4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2022 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2017, Intel Corporation.
26 * Copyright (c) 2019, 2023, 2024, Klara Inc.
27 * Copyright (c) 2019, Allan Jude
28 * Copyright (c) 2021, Datto, Inc.
29 * Copyright (c) 2021, 2024 by George Melikov. All rights reserved.
32 #include <sys/sysmacros.h>
33 #include <sys/zfs_context.h>
34 #include <sys/fm/fs/zfs.h>
37 #include <sys/spa_impl.h>
38 #include <sys/vdev_impl.h>
39 #include <sys/vdev_trim.h>
40 #include <sys/zio_impl.h>
41 #include <sys/zio_compress.h>
42 #include <sys/zio_checksum.h>
43 #include <sys/dmu_objset.h>
47 #include <sys/blkptr.h>
48 #include <sys/zfeature.h>
49 #include <sys/dsl_scan.h>
50 #include <sys/metaslab_impl.h>
52 #include <sys/trace_zfs.h>
54 #include <sys/dsl_crypt.h>
58 * ==========================================================================
59 * I/O type descriptions
60 * ==========================================================================
62 const char *const zio_type_name
[ZIO_TYPES
] = {
64 * Note: Linux kernel thread name length is limited
65 * so these names will differ from upstream open zfs.
67 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_flush", "z_trim"
70 int zio_dva_throttle_enabled
= B_TRUE
;
71 static int zio_deadman_log_all
= B_FALSE
;
74 * ==========================================================================
76 * ==========================================================================
78 static kmem_cache_t
*zio_cache
;
79 static kmem_cache_t
*zio_link_cache
;
80 kmem_cache_t
*zio_buf_cache
[SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
];
81 kmem_cache_t
*zio_data_buf_cache
[SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
];
82 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
83 static uint64_t zio_buf_cache_allocs
[SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
];
84 static uint64_t zio_buf_cache_frees
[SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
];
87 /* Mark IOs as "slow" if they take longer than 30 seconds */
88 static uint_t zio_slow_io_ms
= (30 * MILLISEC
);
90 #define BP_SPANB(indblkshift, level) \
91 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
92 #define COMPARE_META_LEVEL 0x80000000ul
94 * The following actions directly effect the spa's sync-to-convergence logic.
95 * The values below define the sync pass when we start performing the action.
96 * Care should be taken when changing these values as they directly impact
97 * spa_sync() performance. Tuning these values may introduce subtle performance
98 * pathologies and should only be done in the context of performance analysis.
99 * These tunables will eventually be removed and replaced with #defines once
100 * enough analysis has been done to determine optimal values.
102 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
103 * regular blocks are not deferred.
105 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
106 * compression (including of metadata). In practice, we don't have this
107 * many sync passes, so this has no effect.
109 * The original intent was that disabling compression would help the sync
110 * passes to converge. However, in practice disabling compression increases
111 * the average number of sync passes, because when we turn compression off, a
112 * lot of block's size will change and thus we have to re-allocate (not
113 * overwrite) them. It also increases the number of 128KB allocations (e.g.
114 * for indirect blocks and spacemaps) because these will not be compressed.
115 * The 128K allocations are especially detrimental to performance on highly
116 * fragmented systems, which may have very few free segments of this size,
117 * and may need to load new metaslabs to satisfy 128K allocations.
120 /* defer frees starting in this pass */
121 uint_t zfs_sync_pass_deferred_free
= 2;
123 /* don't compress starting in this pass */
124 static uint_t zfs_sync_pass_dont_compress
= 8;
126 /* rewrite new bps starting in this pass */
127 static uint_t zfs_sync_pass_rewrite
= 2;
130 * An allocating zio is one that either currently has the DVA allocate
131 * stage set or will have it later in its lifetime.
133 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
136 * Enable smaller cores by excluding metadata
137 * allocations as well.
139 int zio_exclude_metadata
= 0;
140 static int zio_requeue_io_start_cut_in_line
= 1;
143 static const int zio_buf_debug_limit
= 16384;
145 static const int zio_buf_debug_limit
= 0;
148 static inline void __zio_execute(zio_t
*zio
);
150 static void zio_taskq_dispatch(zio_t
*, zio_taskq_type_t
, boolean_t
);
157 zio_cache
= kmem_cache_create("zio_cache",
158 sizeof (zio_t
), 0, NULL
, NULL
, NULL
, NULL
, NULL
, 0);
159 zio_link_cache
= kmem_cache_create("zio_link_cache",
160 sizeof (zio_link_t
), 0, NULL
, NULL
, NULL
, NULL
, NULL
, 0);
162 for (c
= 0; c
< SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
; c
++) {
163 size_t size
= (c
+ 1) << SPA_MINBLOCKSHIFT
;
164 size_t align
, cflags
, data_cflags
;
168 * Create cache for each half-power of 2 size, starting from
169 * SPA_MINBLOCKSIZE. It should give us memory space efficiency
170 * of ~7/8, sufficient for transient allocations mostly using
176 if (!IS_P2ALIGNED(size
, p2
/ 2))
181 * If we are using watchpoints, put each buffer on its own page,
182 * to eliminate the performance overhead of trapping to the
183 * kernel when modifying a non-watched buffer that shares the
184 * page with a watched buffer.
186 if (arc_watch
&& !IS_P2ALIGNED(size
, PAGESIZE
))
190 #if defined(__linux__) && defined(_KERNEL)
192 * Workaround issue of Linux vdev_disk.c, in some cases not
193 * linearizing buffers with disk sector crossing a page
194 * boundary. It is fine for hardware, but somehow required by
195 * LUKS. It is not typical for ZFS to produce such buffers, but
196 * it may happen if 6KB block is compressed to 4KB, while still
197 * having 2KB alignment. Banning the 6KB buffers helps vdevs
200 if (size
> PAGESIZE
&& !IS_P2ALIGNED(size
, PAGESIZE
))
204 if (IS_P2ALIGNED(size
, PAGESIZE
))
207 align
= 1 << (highbit64(size
^ (size
- 1)) - 1);
209 cflags
= (zio_exclude_metadata
|| size
> zio_buf_debug_limit
) ?
211 data_cflags
= KMC_NODEBUG
;
212 if (abd_size_alloc_linear(size
)) {
213 cflags
|= KMC_RECLAIMABLE
;
214 data_cflags
|= KMC_RECLAIMABLE
;
216 if (cflags
== data_cflags
) {
218 * Resulting kmem caches would be identical.
219 * Save memory by creating only one.
221 (void) snprintf(name
, sizeof (name
),
222 "zio_buf_comb_%lu", (ulong_t
)size
);
223 zio_buf_cache
[c
] = kmem_cache_create(name
, size
, align
,
224 NULL
, NULL
, NULL
, NULL
, NULL
, cflags
);
225 zio_data_buf_cache
[c
] = zio_buf_cache
[c
];
228 (void) snprintf(name
, sizeof (name
), "zio_buf_%lu",
230 zio_buf_cache
[c
] = kmem_cache_create(name
, size
, align
,
231 NULL
, NULL
, NULL
, NULL
, NULL
, cflags
);
233 (void) snprintf(name
, sizeof (name
), "zio_data_buf_%lu",
235 zio_data_buf_cache
[c
] = kmem_cache_create(name
, size
, align
,
236 NULL
, NULL
, NULL
, NULL
, NULL
, data_cflags
);
240 ASSERT(zio_buf_cache
[c
] != NULL
);
241 if (zio_buf_cache
[c
- 1] == NULL
)
242 zio_buf_cache
[c
- 1] = zio_buf_cache
[c
];
244 ASSERT(zio_data_buf_cache
[c
] != NULL
);
245 if (zio_data_buf_cache
[c
- 1] == NULL
)
246 zio_data_buf_cache
[c
- 1] = zio_data_buf_cache
[c
];
257 size_t n
= SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
;
259 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
260 for (size_t i
= 0; i
< n
; i
++) {
261 if (zio_buf_cache_allocs
[i
] != zio_buf_cache_frees
[i
])
262 (void) printf("zio_fini: [%d] %llu != %llu\n",
263 (int)((i
+ 1) << SPA_MINBLOCKSHIFT
),
264 (long long unsigned)zio_buf_cache_allocs
[i
],
265 (long long unsigned)zio_buf_cache_frees
[i
]);
270 * The same kmem cache can show up multiple times in both zio_buf_cache
271 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to
274 for (size_t i
= 0; i
< n
; i
++) {
275 kmem_cache_t
*cache
= zio_buf_cache
[i
];
278 for (size_t j
= i
; j
< n
; j
++) {
279 if (cache
== zio_buf_cache
[j
])
280 zio_buf_cache
[j
] = NULL
;
281 if (cache
== zio_data_buf_cache
[j
])
282 zio_data_buf_cache
[j
] = NULL
;
284 kmem_cache_destroy(cache
);
287 for (size_t i
= 0; i
< n
; i
++) {
288 kmem_cache_t
*cache
= zio_data_buf_cache
[i
];
291 for (size_t j
= i
; j
< n
; j
++) {
292 if (cache
== zio_data_buf_cache
[j
])
293 zio_data_buf_cache
[j
] = NULL
;
295 kmem_cache_destroy(cache
);
298 for (size_t i
= 0; i
< n
; i
++) {
299 VERIFY3P(zio_buf_cache
[i
], ==, NULL
);
300 VERIFY3P(zio_data_buf_cache
[i
], ==, NULL
);
303 kmem_cache_destroy(zio_link_cache
);
304 kmem_cache_destroy(zio_cache
);
312 * ==========================================================================
313 * Allocate and free I/O buffers
314 * ==========================================================================
317 #if defined(ZFS_DEBUG) && defined(_KERNEL)
318 #define ZFS_ZIO_BUF_CANARY 1
321 #ifdef ZFS_ZIO_BUF_CANARY
322 static const ulong_t zio_buf_canary
= (ulong_t
)0xdeadc0dedead210b;
325 * Use empty space after the buffer to detect overflows.
327 * Since zio_init() creates kmem caches only for certain set of buffer sizes,
328 * allocations of different sizes may have some unused space after the data.
329 * Filling part of that space with a known pattern on allocation and checking
330 * it on free should allow us to detect some buffer overflows.
333 zio_buf_put_canary(ulong_t
*p
, size_t size
, kmem_cache_t
**cache
, size_t c
)
335 size_t off
= P2ROUNDUP(size
, sizeof (ulong_t
));
336 ulong_t
*canary
= p
+ off
/ sizeof (ulong_t
);
337 size_t asize
= (c
+ 1) << SPA_MINBLOCKSHIFT
;
338 if (c
+ 1 < SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
&&
339 cache
[c
] == cache
[c
+ 1])
340 asize
= (c
+ 2) << SPA_MINBLOCKSHIFT
;
341 for (; off
< asize
; canary
++, off
+= sizeof (ulong_t
))
342 *canary
= zio_buf_canary
;
346 zio_buf_check_canary(ulong_t
*p
, size_t size
, kmem_cache_t
**cache
, size_t c
)
348 size_t off
= P2ROUNDUP(size
, sizeof (ulong_t
));
349 ulong_t
*canary
= p
+ off
/ sizeof (ulong_t
);
350 size_t asize
= (c
+ 1) << SPA_MINBLOCKSHIFT
;
351 if (c
+ 1 < SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
&&
352 cache
[c
] == cache
[c
+ 1])
353 asize
= (c
+ 2) << SPA_MINBLOCKSHIFT
;
354 for (; off
< asize
; canary
++, off
+= sizeof (ulong_t
)) {
355 if (unlikely(*canary
!= zio_buf_canary
)) {
356 PANIC("ZIO buffer overflow %p (%zu) + %zu %#lx != %#lx",
357 p
, size
, (canary
- p
) * sizeof (ulong_t
),
358 *canary
, zio_buf_canary
);
365 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
366 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
367 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
368 * excess / transient data in-core during a crashdump.
371 zio_buf_alloc(size_t size
)
373 size_t c
= (size
- 1) >> SPA_MINBLOCKSHIFT
;
375 VERIFY3U(c
, <, SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
);
376 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
377 atomic_add_64(&zio_buf_cache_allocs
[c
], 1);
380 void *p
= kmem_cache_alloc(zio_buf_cache
[c
], KM_PUSHPAGE
);
381 #ifdef ZFS_ZIO_BUF_CANARY
382 zio_buf_put_canary(p
, size
, zio_buf_cache
, c
);
388 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
389 * crashdump if the kernel panics. This exists so that we will limit the amount
390 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
391 * of kernel heap dumped to disk when the kernel panics)
394 zio_data_buf_alloc(size_t size
)
396 size_t c
= (size
- 1) >> SPA_MINBLOCKSHIFT
;
398 VERIFY3U(c
, <, SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
);
400 void *p
= kmem_cache_alloc(zio_data_buf_cache
[c
], KM_PUSHPAGE
);
401 #ifdef ZFS_ZIO_BUF_CANARY
402 zio_buf_put_canary(p
, size
, zio_data_buf_cache
, c
);
408 zio_buf_free(void *buf
, size_t size
)
410 size_t c
= (size
- 1) >> SPA_MINBLOCKSHIFT
;
412 VERIFY3U(c
, <, SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
);
413 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
414 atomic_add_64(&zio_buf_cache_frees
[c
], 1);
417 #ifdef ZFS_ZIO_BUF_CANARY
418 zio_buf_check_canary(buf
, size
, zio_buf_cache
, c
);
420 kmem_cache_free(zio_buf_cache
[c
], buf
);
424 zio_data_buf_free(void *buf
, size_t size
)
426 size_t c
= (size
- 1) >> SPA_MINBLOCKSHIFT
;
428 VERIFY3U(c
, <, SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
);
430 #ifdef ZFS_ZIO_BUF_CANARY
431 zio_buf_check_canary(buf
, size
, zio_data_buf_cache
, c
);
433 kmem_cache_free(zio_data_buf_cache
[c
], buf
);
437 zio_abd_free(void *abd
, size_t size
)
440 abd_free((abd_t
*)abd
);
444 * ==========================================================================
445 * Push and pop I/O transform buffers
446 * ==========================================================================
449 zio_push_transform(zio_t
*zio
, abd_t
*data
, uint64_t size
, uint64_t bufsize
,
450 zio_transform_func_t
*transform
)
452 zio_transform_t
*zt
= kmem_alloc(sizeof (zio_transform_t
), KM_SLEEP
);
454 zt
->zt_orig_abd
= zio
->io_abd
;
455 zt
->zt_orig_size
= zio
->io_size
;
456 zt
->zt_bufsize
= bufsize
;
457 zt
->zt_transform
= transform
;
459 zt
->zt_next
= zio
->io_transform_stack
;
460 zio
->io_transform_stack
= zt
;
467 zio_pop_transforms(zio_t
*zio
)
471 while ((zt
= zio
->io_transform_stack
) != NULL
) {
472 if (zt
->zt_transform
!= NULL
)
473 zt
->zt_transform(zio
,
474 zt
->zt_orig_abd
, zt
->zt_orig_size
);
476 if (zt
->zt_bufsize
!= 0)
477 abd_free(zio
->io_abd
);
479 zio
->io_abd
= zt
->zt_orig_abd
;
480 zio
->io_size
= zt
->zt_orig_size
;
481 zio
->io_transform_stack
= zt
->zt_next
;
483 kmem_free(zt
, sizeof (zio_transform_t
));
488 * ==========================================================================
489 * I/O transform callbacks for subblocks, decompression, and decryption
490 * ==========================================================================
493 zio_subblock(zio_t
*zio
, abd_t
*data
, uint64_t size
)
495 ASSERT(zio
->io_size
> size
);
497 if (zio
->io_type
== ZIO_TYPE_READ
)
498 abd_copy(data
, zio
->io_abd
, size
);
502 zio_decompress(zio_t
*zio
, abd_t
*data
, uint64_t size
)
504 if (zio
->io_error
== 0) {
505 int ret
= zio_decompress_data(BP_GET_COMPRESS(zio
->io_bp
),
506 zio
->io_abd
, data
, zio
->io_size
, size
,
507 &zio
->io_prop
.zp_complevel
);
509 if (zio_injection_enabled
&& ret
== 0)
510 ret
= zio_handle_fault_injection(zio
, EINVAL
);
513 zio
->io_error
= SET_ERROR(EIO
);
518 zio_decrypt(zio_t
*zio
, abd_t
*data
, uint64_t size
)
522 blkptr_t
*bp
= zio
->io_bp
;
523 spa_t
*spa
= zio
->io_spa
;
524 uint64_t dsobj
= zio
->io_bookmark
.zb_objset
;
525 uint64_t lsize
= BP_GET_LSIZE(bp
);
526 dmu_object_type_t ot
= BP_GET_TYPE(bp
);
527 uint8_t salt
[ZIO_DATA_SALT_LEN
];
528 uint8_t iv
[ZIO_DATA_IV_LEN
];
529 uint8_t mac
[ZIO_DATA_MAC_LEN
];
530 boolean_t no_crypt
= B_FALSE
;
532 ASSERT(BP_USES_CRYPT(bp
));
533 ASSERT3U(size
, !=, 0);
535 if (zio
->io_error
!= 0)
539 * Verify the cksum of MACs stored in an indirect bp. It will always
540 * be possible to verify this since it does not require an encryption
543 if (BP_HAS_INDIRECT_MAC_CKSUM(bp
)) {
544 zio_crypt_decode_mac_bp(bp
, mac
);
546 if (BP_GET_COMPRESS(bp
) != ZIO_COMPRESS_OFF
) {
548 * We haven't decompressed the data yet, but
549 * zio_crypt_do_indirect_mac_checksum() requires
550 * decompressed data to be able to parse out the MACs
551 * from the indirect block. We decompress it now and
552 * throw away the result after we are finished.
554 abd_t
*abd
= abd_alloc_linear(lsize
, B_TRUE
);
555 ret
= zio_decompress_data(BP_GET_COMPRESS(bp
),
556 zio
->io_abd
, abd
, zio
->io_size
, lsize
,
557 &zio
->io_prop
.zp_complevel
);
560 ret
= SET_ERROR(EIO
);
563 ret
= zio_crypt_do_indirect_mac_checksum_abd(B_FALSE
,
564 abd
, lsize
, BP_SHOULD_BYTESWAP(bp
), mac
);
567 ret
= zio_crypt_do_indirect_mac_checksum_abd(B_FALSE
,
568 zio
->io_abd
, size
, BP_SHOULD_BYTESWAP(bp
), mac
);
570 abd_copy(data
, zio
->io_abd
, size
);
572 if (zio_injection_enabled
&& ot
!= DMU_OT_DNODE
&& ret
== 0) {
573 ret
= zio_handle_decrypt_injection(spa
,
574 &zio
->io_bookmark
, ot
, ECKSUM
);
583 * If this is an authenticated block, just check the MAC. It would be
584 * nice to separate this out into its own flag, but when this was done,
585 * we had run out of bits in what is now zio_flag_t. Future cleanup
586 * could make this a flag bit.
588 if (BP_IS_AUTHENTICATED(bp
)) {
589 if (ot
== DMU_OT_OBJSET
) {
590 ret
= spa_do_crypt_objset_mac_abd(B_FALSE
, spa
,
591 dsobj
, zio
->io_abd
, size
, BP_SHOULD_BYTESWAP(bp
));
593 zio_crypt_decode_mac_bp(bp
, mac
);
594 ret
= spa_do_crypt_mac_abd(B_FALSE
, spa
, dsobj
,
595 zio
->io_abd
, size
, mac
);
596 if (zio_injection_enabled
&& ret
== 0) {
597 ret
= zio_handle_decrypt_injection(spa
,
598 &zio
->io_bookmark
, ot
, ECKSUM
);
601 abd_copy(data
, zio
->io_abd
, size
);
609 zio_crypt_decode_params_bp(bp
, salt
, iv
);
611 if (ot
== DMU_OT_INTENT_LOG
) {
612 tmp
= abd_borrow_buf_copy(zio
->io_abd
, sizeof (zil_chain_t
));
613 zio_crypt_decode_mac_zil(tmp
, mac
);
614 abd_return_buf(zio
->io_abd
, tmp
, sizeof (zil_chain_t
));
616 zio_crypt_decode_mac_bp(bp
, mac
);
619 ret
= spa_do_crypt_abd(B_FALSE
, spa
, &zio
->io_bookmark
, BP_GET_TYPE(bp
),
620 BP_GET_DEDUP(bp
), BP_SHOULD_BYTESWAP(bp
), salt
, iv
, mac
, size
, data
,
621 zio
->io_abd
, &no_crypt
);
623 abd_copy(data
, zio
->io_abd
, size
);
631 /* assert that the key was found unless this was speculative */
632 ASSERT(ret
!= EACCES
|| (zio
->io_flags
& ZIO_FLAG_SPECULATIVE
));
635 * If there was a decryption / authentication error return EIO as
636 * the io_error. If this was not a speculative zio, create an ereport.
639 zio
->io_error
= SET_ERROR(EIO
);
640 if ((zio
->io_flags
& ZIO_FLAG_SPECULATIVE
) == 0) {
641 spa_log_error(spa
, &zio
->io_bookmark
,
642 BP_GET_LOGICAL_BIRTH(zio
->io_bp
));
643 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION
,
644 spa
, NULL
, &zio
->io_bookmark
, zio
, 0);
652 * ==========================================================================
653 * I/O parent/child relationships and pipeline interlocks
654 * ==========================================================================
657 zio_walk_parents(zio_t
*cio
, zio_link_t
**zl
)
659 list_t
*pl
= &cio
->io_parent_list
;
661 *zl
= (*zl
== NULL
) ? list_head(pl
) : list_next(pl
, *zl
);
665 ASSERT((*zl
)->zl_child
== cio
);
666 return ((*zl
)->zl_parent
);
670 zio_walk_children(zio_t
*pio
, zio_link_t
**zl
)
672 list_t
*cl
= &pio
->io_child_list
;
674 ASSERT(MUTEX_HELD(&pio
->io_lock
));
676 *zl
= (*zl
== NULL
) ? list_head(cl
) : list_next(cl
, *zl
);
680 ASSERT((*zl
)->zl_parent
== pio
);
681 return ((*zl
)->zl_child
);
685 zio_unique_parent(zio_t
*cio
)
687 zio_link_t
*zl
= NULL
;
688 zio_t
*pio
= zio_walk_parents(cio
, &zl
);
690 VERIFY3P(zio_walk_parents(cio
, &zl
), ==, NULL
);
695 zio_add_child(zio_t
*pio
, zio_t
*cio
)
698 * Logical I/Os can have logical, gang, or vdev children.
699 * Gang I/Os can have gang or vdev children.
700 * Vdev I/Os can only have vdev children.
701 * The following ASSERT captures all of these constraints.
703 ASSERT3S(cio
->io_child_type
, <=, pio
->io_child_type
);
705 /* Parent should not have READY stage if child doesn't have it. */
706 IMPLY((cio
->io_pipeline
& ZIO_STAGE_READY
) == 0 &&
707 (cio
->io_child_type
!= ZIO_CHILD_VDEV
),
708 (pio
->io_pipeline
& ZIO_STAGE_READY
) == 0);
710 zio_link_t
*zl
= kmem_cache_alloc(zio_link_cache
, KM_SLEEP
);
714 mutex_enter(&pio
->io_lock
);
715 mutex_enter(&cio
->io_lock
);
717 ASSERT(pio
->io_state
[ZIO_WAIT_DONE
] == 0);
719 uint64_t *countp
= pio
->io_children
[cio
->io_child_type
];
720 for (int w
= 0; w
< ZIO_WAIT_TYPES
; w
++)
721 countp
[w
] += !cio
->io_state
[w
];
723 list_insert_head(&pio
->io_child_list
, zl
);
724 list_insert_head(&cio
->io_parent_list
, zl
);
726 mutex_exit(&cio
->io_lock
);
727 mutex_exit(&pio
->io_lock
);
731 zio_add_child_first(zio_t
*pio
, zio_t
*cio
)
734 * Logical I/Os can have logical, gang, or vdev children.
735 * Gang I/Os can have gang or vdev children.
736 * Vdev I/Os can only have vdev children.
737 * The following ASSERT captures all of these constraints.
739 ASSERT3S(cio
->io_child_type
, <=, pio
->io_child_type
);
741 /* Parent should not have READY stage if child doesn't have it. */
742 IMPLY((cio
->io_pipeline
& ZIO_STAGE_READY
) == 0 &&
743 (cio
->io_child_type
!= ZIO_CHILD_VDEV
),
744 (pio
->io_pipeline
& ZIO_STAGE_READY
) == 0);
746 zio_link_t
*zl
= kmem_cache_alloc(zio_link_cache
, KM_SLEEP
);
750 ASSERT(list_is_empty(&cio
->io_parent_list
));
751 list_insert_head(&cio
->io_parent_list
, zl
);
753 mutex_enter(&pio
->io_lock
);
755 ASSERT(pio
->io_state
[ZIO_WAIT_DONE
] == 0);
757 uint64_t *countp
= pio
->io_children
[cio
->io_child_type
];
758 for (int w
= 0; w
< ZIO_WAIT_TYPES
; w
++)
759 countp
[w
] += !cio
->io_state
[w
];
761 list_insert_head(&pio
->io_child_list
, zl
);
763 mutex_exit(&pio
->io_lock
);
767 zio_remove_child(zio_t
*pio
, zio_t
*cio
, zio_link_t
*zl
)
769 ASSERT(zl
->zl_parent
== pio
);
770 ASSERT(zl
->zl_child
== cio
);
772 mutex_enter(&pio
->io_lock
);
773 mutex_enter(&cio
->io_lock
);
775 list_remove(&pio
->io_child_list
, zl
);
776 list_remove(&cio
->io_parent_list
, zl
);
778 mutex_exit(&cio
->io_lock
);
779 mutex_exit(&pio
->io_lock
);
780 kmem_cache_free(zio_link_cache
, zl
);
784 zio_wait_for_children(zio_t
*zio
, uint8_t childbits
, enum zio_wait_type wait
)
786 boolean_t waiting
= B_FALSE
;
788 mutex_enter(&zio
->io_lock
);
789 ASSERT(zio
->io_stall
== NULL
);
790 for (int c
= 0; c
< ZIO_CHILD_TYPES
; c
++) {
791 if (!(ZIO_CHILD_BIT_IS_SET(childbits
, c
)))
794 uint64_t *countp
= &zio
->io_children
[c
][wait
];
797 ASSERT3U(zio
->io_stage
, !=, ZIO_STAGE_OPEN
);
798 zio
->io_stall
= countp
;
803 mutex_exit(&zio
->io_lock
);
807 __attribute__((always_inline
))
809 zio_notify_parent(zio_t
*pio
, zio_t
*zio
, enum zio_wait_type wait
,
810 zio_t
**next_to_executep
)
812 uint64_t *countp
= &pio
->io_children
[zio
->io_child_type
][wait
];
813 int *errorp
= &pio
->io_child_error
[zio
->io_child_type
];
815 mutex_enter(&pio
->io_lock
);
816 if (zio
->io_error
&& !(zio
->io_flags
& ZIO_FLAG_DONT_PROPAGATE
))
817 *errorp
= zio_worst_error(*errorp
, zio
->io_error
);
818 pio
->io_reexecute
|= zio
->io_reexecute
;
819 ASSERT3U(*countp
, >, 0);
822 * Propogate the Direct I/O checksum verify failure to the parent.
824 if (zio
->io_flags
& ZIO_FLAG_DIO_CHKSUM_ERR
)
825 pio
->io_flags
|= ZIO_FLAG_DIO_CHKSUM_ERR
;
829 if (*countp
== 0 && pio
->io_stall
== countp
) {
830 zio_taskq_type_t type
=
831 pio
->io_stage
< ZIO_STAGE_VDEV_IO_START
? ZIO_TASKQ_ISSUE
:
833 pio
->io_stall
= NULL
;
834 mutex_exit(&pio
->io_lock
);
837 * If we can tell the caller to execute this parent next, do
838 * so. We do this if the parent's zio type matches the child's
839 * type, or if it's a zio_null() with no done callback, and so
840 * has no actual work to do. Otherwise dispatch the parent zio
843 * Having the caller execute the parent when possible reduces
844 * locking on the zio taskq's, reduces context switch
845 * overhead, and has no recursion penalty. Note that one
846 * read from disk typically causes at least 3 zio's: a
847 * zio_null(), the logical zio_read(), and then a physical
848 * zio. When the physical ZIO completes, we are able to call
849 * zio_done() on all 3 of these zio's from one invocation of
850 * zio_execute() by returning the parent back to
851 * zio_execute(). Since the parent isn't executed until this
852 * thread returns back to zio_execute(), the caller should do
855 * In other cases, dispatching the parent prevents
856 * overflowing the stack when we have deeply nested
857 * parent-child relationships, as we do with the "mega zio"
858 * of writes for spa_sync(), and the chain of ZIL blocks.
860 if (next_to_executep
!= NULL
&& *next_to_executep
== NULL
&&
861 (pio
->io_type
== zio
->io_type
||
862 (pio
->io_type
== ZIO_TYPE_NULL
&& !pio
->io_done
))) {
863 *next_to_executep
= pio
;
865 zio_taskq_dispatch(pio
, type
, B_FALSE
);
868 mutex_exit(&pio
->io_lock
);
873 zio_inherit_child_errors(zio_t
*zio
, enum zio_child c
)
875 if (zio
->io_child_error
[c
] != 0 && zio
->io_error
== 0)
876 zio
->io_error
= zio
->io_child_error
[c
];
880 zio_bookmark_compare(const void *x1
, const void *x2
)
882 const zio_t
*z1
= x1
;
883 const zio_t
*z2
= x2
;
885 if (z1
->io_bookmark
.zb_objset
< z2
->io_bookmark
.zb_objset
)
887 if (z1
->io_bookmark
.zb_objset
> z2
->io_bookmark
.zb_objset
)
890 if (z1
->io_bookmark
.zb_object
< z2
->io_bookmark
.zb_object
)
892 if (z1
->io_bookmark
.zb_object
> z2
->io_bookmark
.zb_object
)
895 if (z1
->io_bookmark
.zb_level
< z2
->io_bookmark
.zb_level
)
897 if (z1
->io_bookmark
.zb_level
> z2
->io_bookmark
.zb_level
)
900 if (z1
->io_bookmark
.zb_blkid
< z2
->io_bookmark
.zb_blkid
)
902 if (z1
->io_bookmark
.zb_blkid
> z2
->io_bookmark
.zb_blkid
)
914 * ==========================================================================
915 * Create the various types of I/O (read, write, free, etc)
916 * ==========================================================================
919 zio_create(zio_t
*pio
, spa_t
*spa
, uint64_t txg
, const blkptr_t
*bp
,
920 abd_t
*data
, uint64_t lsize
, uint64_t psize
, zio_done_func_t
*done
,
921 void *private, zio_type_t type
, zio_priority_t priority
,
922 zio_flag_t flags
, vdev_t
*vd
, uint64_t offset
,
923 const zbookmark_phys_t
*zb
, enum zio_stage stage
,
924 enum zio_stage pipeline
)
928 IMPLY(type
!= ZIO_TYPE_TRIM
, psize
<= SPA_MAXBLOCKSIZE
);
929 ASSERT(P2PHASE(psize
, SPA_MINBLOCKSIZE
) == 0);
930 ASSERT(P2PHASE(offset
, SPA_MINBLOCKSIZE
) == 0);
932 ASSERT(!vd
|| spa_config_held(spa
, SCL_STATE_ALL
, RW_READER
));
933 ASSERT(!bp
|| !(flags
& ZIO_FLAG_CONFIG_WRITER
));
934 ASSERT(vd
|| stage
== ZIO_STAGE_OPEN
);
936 IMPLY(lsize
!= psize
, (flags
& ZIO_FLAG_RAW_COMPRESS
) != 0);
938 zio
= kmem_cache_alloc(zio_cache
, KM_SLEEP
);
939 memset(zio
, 0, sizeof (zio_t
));
941 mutex_init(&zio
->io_lock
, NULL
, MUTEX_NOLOCKDEP
, NULL
);
942 cv_init(&zio
->io_cv
, NULL
, CV_DEFAULT
, NULL
);
944 list_create(&zio
->io_parent_list
, sizeof (zio_link_t
),
945 offsetof(zio_link_t
, zl_parent_node
));
946 list_create(&zio
->io_child_list
, sizeof (zio_link_t
),
947 offsetof(zio_link_t
, zl_child_node
));
948 metaslab_trace_init(&zio
->io_alloc_list
);
951 zio
->io_child_type
= ZIO_CHILD_VDEV
;
952 else if (flags
& ZIO_FLAG_GANG_CHILD
)
953 zio
->io_child_type
= ZIO_CHILD_GANG
;
954 else if (flags
& ZIO_FLAG_DDT_CHILD
)
955 zio
->io_child_type
= ZIO_CHILD_DDT
;
957 zio
->io_child_type
= ZIO_CHILD_LOGICAL
;
960 if (type
!= ZIO_TYPE_WRITE
||
961 zio
->io_child_type
== ZIO_CHILD_DDT
) {
962 zio
->io_bp_copy
= *bp
;
963 zio
->io_bp
= &zio
->io_bp_copy
; /* so caller can free */
965 zio
->io_bp
= (blkptr_t
*)bp
;
967 zio
->io_bp_orig
= *bp
;
968 if (zio
->io_child_type
== ZIO_CHILD_LOGICAL
)
969 zio
->io_logical
= zio
;
970 if (zio
->io_child_type
> ZIO_CHILD_GANG
&& BP_IS_GANG(bp
))
971 pipeline
|= ZIO_GANG_STAGES
;
977 zio
->io_private
= private;
979 zio
->io_priority
= priority
;
981 zio
->io_offset
= offset
;
982 zio
->io_orig_abd
= zio
->io_abd
= data
;
983 zio
->io_orig_size
= zio
->io_size
= psize
;
984 zio
->io_lsize
= lsize
;
985 zio
->io_orig_flags
= zio
->io_flags
= flags
;
986 zio
->io_orig_stage
= zio
->io_stage
= stage
;
987 zio
->io_orig_pipeline
= zio
->io_pipeline
= pipeline
;
988 zio
->io_pipeline_trace
= ZIO_STAGE_OPEN
;
989 zio
->io_allocator
= ZIO_ALLOCATOR_NONE
;
991 zio
->io_state
[ZIO_WAIT_READY
] = (stage
>= ZIO_STAGE_READY
) ||
992 (pipeline
& ZIO_STAGE_READY
) == 0;
993 zio
->io_state
[ZIO_WAIT_DONE
] = (stage
>= ZIO_STAGE_DONE
);
996 zio
->io_bookmark
= *zb
;
999 zio
->io_metaslab_class
= pio
->io_metaslab_class
;
1000 if (zio
->io_logical
== NULL
)
1001 zio
->io_logical
= pio
->io_logical
;
1002 if (zio
->io_child_type
== ZIO_CHILD_GANG
)
1003 zio
->io_gang_leader
= pio
->io_gang_leader
;
1004 zio_add_child_first(pio
, zio
);
1007 taskq_init_ent(&zio
->io_tqent
);
1013 zio_destroy(zio_t
*zio
)
1015 metaslab_trace_fini(&zio
->io_alloc_list
);
1016 list_destroy(&zio
->io_parent_list
);
1017 list_destroy(&zio
->io_child_list
);
1018 mutex_destroy(&zio
->io_lock
);
1019 cv_destroy(&zio
->io_cv
);
1020 kmem_cache_free(zio_cache
, zio
);
1024 * ZIO intended to be between others. Provides synchronization at READY
1025 * and DONE pipeline stages and calls the respective callbacks.
1028 zio_null(zio_t
*pio
, spa_t
*spa
, vdev_t
*vd
, zio_done_func_t
*done
,
1029 void *private, zio_flag_t flags
)
1033 zio
= zio_create(pio
, spa
, 0, NULL
, NULL
, 0, 0, done
, private,
1034 ZIO_TYPE_NULL
, ZIO_PRIORITY_NOW
, flags
, vd
, 0, NULL
,
1035 ZIO_STAGE_OPEN
, ZIO_INTERLOCK_PIPELINE
);
1041 * ZIO intended to be a root of a tree. Unlike null ZIO does not have a
1042 * READY pipeline stage (is ready on creation), so it should not be used
1043 * as child of any ZIO that may need waiting for grandchildren READY stage
1044 * (any other ZIO type).
1047 zio_root(spa_t
*spa
, zio_done_func_t
*done
, void *private, zio_flag_t flags
)
1051 zio
= zio_create(NULL
, spa
, 0, NULL
, NULL
, 0, 0, done
, private,
1052 ZIO_TYPE_NULL
, ZIO_PRIORITY_NOW
, flags
, NULL
, 0, NULL
,
1053 ZIO_STAGE_OPEN
, ZIO_ROOT_PIPELINE
);
1059 zfs_blkptr_verify_log(spa_t
*spa
, const blkptr_t
*bp
,
1060 enum blk_verify_flag blk_verify
, const char *fmt
, ...)
1066 (void) vsnprintf(buf
, sizeof (buf
), fmt
, adx
);
1069 zfs_dbgmsg("bad blkptr at %px: "
1070 "DVA[0]=%#llx/%#llx "
1071 "DVA[1]=%#llx/%#llx "
1072 "DVA[2]=%#llx/%#llx "
1078 "cksum=%#llx/%#llx/%#llx/%#llx",
1080 (long long)bp
->blk_dva
[0].dva_word
[0],
1081 (long long)bp
->blk_dva
[0].dva_word
[1],
1082 (long long)bp
->blk_dva
[1].dva_word
[0],
1083 (long long)bp
->blk_dva
[1].dva_word
[1],
1084 (long long)bp
->blk_dva
[2].dva_word
[0],
1085 (long long)bp
->blk_dva
[2].dva_word
[1],
1086 (long long)bp
->blk_prop
,
1087 (long long)bp
->blk_pad
[0],
1088 (long long)bp
->blk_pad
[1],
1089 (long long)BP_GET_PHYSICAL_BIRTH(bp
),
1090 (long long)BP_GET_LOGICAL_BIRTH(bp
),
1091 (long long)bp
->blk_fill
,
1092 (long long)bp
->blk_cksum
.zc_word
[0],
1093 (long long)bp
->blk_cksum
.zc_word
[1],
1094 (long long)bp
->blk_cksum
.zc_word
[2],
1095 (long long)bp
->blk_cksum
.zc_word
[3]);
1096 switch (blk_verify
) {
1097 case BLK_VERIFY_HALT
:
1098 zfs_panic_recover("%s: %s", spa_name(spa
), buf
);
1100 case BLK_VERIFY_LOG
:
1101 zfs_dbgmsg("%s: %s", spa_name(spa
), buf
);
1103 case BLK_VERIFY_ONLY
:
1111 * Verify the block pointer fields contain reasonable values. This means
1112 * it only contains known object types, checksum/compression identifiers,
1113 * block sizes within the maximum allowed limits, valid DVAs, etc.
1115 * If everything checks out B_TRUE is returned. The zfs_blkptr_verify
1116 * argument controls the behavior when an invalid field is detected.
1118 * Values for blk_verify_flag:
1119 * BLK_VERIFY_ONLY: evaluate the block
1120 * BLK_VERIFY_LOG: evaluate the block and log problems
1121 * BLK_VERIFY_HALT: call zfs_panic_recover on error
1123 * Values for blk_config_flag:
1124 * BLK_CONFIG_HELD: caller holds SCL_VDEV for writer
1125 * BLK_CONFIG_NEEDED: caller holds no config lock, SCL_VDEV will be
1126 * obtained for reader
1127 * BLK_CONFIG_SKIP: skip checks which require SCL_VDEV, for better
1131 zfs_blkptr_verify(spa_t
*spa
, const blkptr_t
*bp
,
1132 enum blk_config_flag blk_config
, enum blk_verify_flag blk_verify
)
1136 if (unlikely(!DMU_OT_IS_VALID(BP_GET_TYPE(bp
)))) {
1137 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
1138 "blkptr at %px has invalid TYPE %llu",
1139 bp
, (longlong_t
)BP_GET_TYPE(bp
));
1141 if (unlikely(BP_GET_COMPRESS(bp
) >= ZIO_COMPRESS_FUNCTIONS
)) {
1142 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
1143 "blkptr at %px has invalid COMPRESS %llu",
1144 bp
, (longlong_t
)BP_GET_COMPRESS(bp
));
1146 if (unlikely(BP_GET_LSIZE(bp
) > SPA_MAXBLOCKSIZE
)) {
1147 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
1148 "blkptr at %px has invalid LSIZE %llu",
1149 bp
, (longlong_t
)BP_GET_LSIZE(bp
));
1151 if (BP_IS_EMBEDDED(bp
)) {
1152 if (unlikely(BPE_GET_ETYPE(bp
) >= NUM_BP_EMBEDDED_TYPES
)) {
1153 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
1154 "blkptr at %px has invalid ETYPE %llu",
1155 bp
, (longlong_t
)BPE_GET_ETYPE(bp
));
1157 if (unlikely(BPE_GET_PSIZE(bp
) > BPE_PAYLOAD_SIZE
)) {
1158 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
1159 "blkptr at %px has invalid PSIZE %llu",
1160 bp
, (longlong_t
)BPE_GET_PSIZE(bp
));
1162 return (errors
== 0);
1164 if (unlikely(BP_GET_CHECKSUM(bp
) >= ZIO_CHECKSUM_FUNCTIONS
)) {
1165 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
1166 "blkptr at %px has invalid CHECKSUM %llu",
1167 bp
, (longlong_t
)BP_GET_CHECKSUM(bp
));
1169 if (unlikely(BP_GET_PSIZE(bp
) > SPA_MAXBLOCKSIZE
)) {
1170 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
1171 "blkptr at %px has invalid PSIZE %llu",
1172 bp
, (longlong_t
)BP_GET_PSIZE(bp
));
1176 * Do not verify individual DVAs if the config is not trusted. This
1177 * will be done once the zio is executed in vdev_mirror_map_alloc.
1179 if (unlikely(!spa
->spa_trust_config
))
1180 return (errors
== 0);
1182 switch (blk_config
) {
1183 case BLK_CONFIG_HELD
:
1184 ASSERT(spa_config_held(spa
, SCL_VDEV
, RW_WRITER
));
1186 case BLK_CONFIG_NEEDED
:
1187 spa_config_enter(spa
, SCL_VDEV
, bp
, RW_READER
);
1189 case BLK_CONFIG_SKIP
:
1190 return (errors
== 0);
1192 panic("invalid blk_config %u", blk_config
);
1196 * Pool-specific checks.
1198 * Note: it would be nice to verify that the logical birth
1199 * and physical birth are not too large. However,
1200 * spa_freeze() allows the birth time of log blocks (and
1201 * dmu_sync()-ed blocks that are in the log) to be arbitrarily
1204 for (int i
= 0; i
< BP_GET_NDVAS(bp
); i
++) {
1205 const dva_t
*dva
= &bp
->blk_dva
[i
];
1206 uint64_t vdevid
= DVA_GET_VDEV(dva
);
1208 if (unlikely(vdevid
>= spa
->spa_root_vdev
->vdev_children
)) {
1209 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
1210 "blkptr at %px DVA %u has invalid VDEV %llu",
1211 bp
, i
, (longlong_t
)vdevid
);
1214 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[vdevid
];
1215 if (unlikely(vd
== NULL
)) {
1216 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
1217 "blkptr at %px DVA %u has invalid VDEV %llu",
1218 bp
, i
, (longlong_t
)vdevid
);
1221 if (unlikely(vd
->vdev_ops
== &vdev_hole_ops
)) {
1222 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
1223 "blkptr at %px DVA %u has hole VDEV %llu",
1224 bp
, i
, (longlong_t
)vdevid
);
1227 if (vd
->vdev_ops
== &vdev_missing_ops
) {
1229 * "missing" vdevs are valid during import, but we
1230 * don't have their detailed info (e.g. asize), so
1231 * we can't perform any more checks on them.
1235 uint64_t offset
= DVA_GET_OFFSET(dva
);
1236 uint64_t asize
= DVA_GET_ASIZE(dva
);
1237 if (DVA_GET_GANG(dva
))
1238 asize
= vdev_gang_header_asize(vd
);
1239 if (unlikely(offset
+ asize
> vd
->vdev_asize
)) {
1240 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
1241 "blkptr at %px DVA %u has invalid OFFSET %llu",
1242 bp
, i
, (longlong_t
)offset
);
1245 if (blk_config
== BLK_CONFIG_NEEDED
)
1246 spa_config_exit(spa
, SCL_VDEV
, bp
);
1248 return (errors
== 0);
1252 zfs_dva_valid(spa_t
*spa
, const dva_t
*dva
, const blkptr_t
*bp
)
1255 uint64_t vdevid
= DVA_GET_VDEV(dva
);
1257 if (vdevid
>= spa
->spa_root_vdev
->vdev_children
)
1260 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[vdevid
];
1264 if (vd
->vdev_ops
== &vdev_hole_ops
)
1267 if (vd
->vdev_ops
== &vdev_missing_ops
) {
1271 uint64_t offset
= DVA_GET_OFFSET(dva
);
1272 uint64_t asize
= DVA_GET_ASIZE(dva
);
1274 if (DVA_GET_GANG(dva
))
1275 asize
= vdev_gang_header_asize(vd
);
1276 if (offset
+ asize
> vd
->vdev_asize
)
1283 zio_read(zio_t
*pio
, spa_t
*spa
, const blkptr_t
*bp
,
1284 abd_t
*data
, uint64_t size
, zio_done_func_t
*done
, void *private,
1285 zio_priority_t priority
, zio_flag_t flags
, const zbookmark_phys_t
*zb
)
1289 zio
= zio_create(pio
, spa
, BP_GET_BIRTH(bp
), bp
,
1290 data
, size
, size
, done
, private,
1291 ZIO_TYPE_READ
, priority
, flags
, NULL
, 0, zb
,
1292 ZIO_STAGE_OPEN
, (flags
& ZIO_FLAG_DDT_CHILD
) ?
1293 ZIO_DDT_CHILD_READ_PIPELINE
: ZIO_READ_PIPELINE
);
1299 zio_write(zio_t
*pio
, spa_t
*spa
, uint64_t txg
, blkptr_t
*bp
,
1300 abd_t
*data
, uint64_t lsize
, uint64_t psize
, const zio_prop_t
*zp
,
1301 zio_done_func_t
*ready
, zio_done_func_t
*children_ready
,
1302 zio_done_func_t
*done
, void *private, zio_priority_t priority
,
1303 zio_flag_t flags
, const zbookmark_phys_t
*zb
)
1306 enum zio_stage pipeline
= zp
->zp_direct_write
== B_TRUE
?
1307 ZIO_DIRECT_WRITE_PIPELINE
: (flags
& ZIO_FLAG_DDT_CHILD
) ?
1308 ZIO_DDT_CHILD_WRITE_PIPELINE
: ZIO_WRITE_PIPELINE
;
1311 zio
= zio_create(pio
, spa
, txg
, bp
, data
, lsize
, psize
, done
, private,
1312 ZIO_TYPE_WRITE
, priority
, flags
, NULL
, 0, zb
,
1313 ZIO_STAGE_OPEN
, pipeline
);
1315 zio
->io_ready
= ready
;
1316 zio
->io_children_ready
= children_ready
;
1320 * Data can be NULL if we are going to call zio_write_override() to
1321 * provide the already-allocated BP. But we may need the data to
1322 * verify a dedup hit (if requested). In this case, don't try to
1323 * dedup (just take the already-allocated BP verbatim). Encrypted
1324 * dedup blocks need data as well so we also disable dedup in this
1328 (zio
->io_prop
.zp_dedup_verify
|| zio
->io_prop
.zp_encrypt
)) {
1329 zio
->io_prop
.zp_dedup
= zio
->io_prop
.zp_dedup_verify
= B_FALSE
;
1336 zio_rewrite(zio_t
*pio
, spa_t
*spa
, uint64_t txg
, blkptr_t
*bp
, abd_t
*data
,
1337 uint64_t size
, zio_done_func_t
*done
, void *private,
1338 zio_priority_t priority
, zio_flag_t flags
, zbookmark_phys_t
*zb
)
1342 zio
= zio_create(pio
, spa
, txg
, bp
, data
, size
, size
, done
, private,
1343 ZIO_TYPE_WRITE
, priority
, flags
| ZIO_FLAG_IO_REWRITE
, NULL
, 0, zb
,
1344 ZIO_STAGE_OPEN
, ZIO_REWRITE_PIPELINE
);
1350 zio_write_override(zio_t
*zio
, blkptr_t
*bp
, int copies
, boolean_t nopwrite
,
1353 ASSERT(zio
->io_type
== ZIO_TYPE_WRITE
);
1354 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
1355 ASSERT(zio
->io_stage
== ZIO_STAGE_OPEN
);
1356 ASSERT(zio
->io_txg
== spa_syncing_txg(zio
->io_spa
));
1357 ASSERT(!brtwrite
|| !nopwrite
);
1360 * We must reset the io_prop to match the values that existed
1361 * when the bp was first written by dmu_sync() keeping in mind
1362 * that nopwrite and dedup are mutually exclusive.
1364 zio
->io_prop
.zp_dedup
= nopwrite
? B_FALSE
: zio
->io_prop
.zp_dedup
;
1365 zio
->io_prop
.zp_nopwrite
= nopwrite
;
1366 zio
->io_prop
.zp_brtwrite
= brtwrite
;
1367 zio
->io_prop
.zp_copies
= copies
;
1368 zio
->io_bp_override
= bp
;
1372 zio_free(spa_t
*spa
, uint64_t txg
, const blkptr_t
*bp
)
1375 (void) zfs_blkptr_verify(spa
, bp
, BLK_CONFIG_NEEDED
, BLK_VERIFY_HALT
);
1378 * The check for EMBEDDED is a performance optimization. We
1379 * process the free here (by ignoring it) rather than
1380 * putting it on the list and then processing it in zio_free_sync().
1382 if (BP_IS_EMBEDDED(bp
))
1386 * Frees that are for the currently-syncing txg, are not going to be
1387 * deferred, and which will not need to do a read (i.e. not GANG or
1388 * DEDUP), can be processed immediately. Otherwise, put them on the
1389 * in-memory list for later processing.
1391 * Note that we only defer frees after zfs_sync_pass_deferred_free
1392 * when the log space map feature is disabled. [see relevant comment
1393 * in spa_sync_iterate_to_convergence()]
1395 if (BP_IS_GANG(bp
) ||
1397 txg
!= spa
->spa_syncing_txg
||
1398 (spa_sync_pass(spa
) >= zfs_sync_pass_deferred_free
&&
1399 !spa_feature_is_active(spa
, SPA_FEATURE_LOG_SPACEMAP
)) ||
1400 brt_maybe_exists(spa
, bp
)) {
1401 metaslab_check_free(spa
, bp
);
1402 bplist_append(&spa
->spa_free_bplist
[txg
& TXG_MASK
], bp
);
1404 VERIFY3P(zio_free_sync(NULL
, spa
, txg
, bp
, 0), ==, NULL
);
1409 * To improve performance, this function may return NULL if we were able
1410 * to do the free immediately. This avoids the cost of creating a zio
1411 * (and linking it to the parent, etc).
1414 zio_free_sync(zio_t
*pio
, spa_t
*spa
, uint64_t txg
, const blkptr_t
*bp
,
1417 ASSERT(!BP_IS_HOLE(bp
));
1418 ASSERT(spa_syncing_txg(spa
) == txg
);
1420 if (BP_IS_EMBEDDED(bp
))
1423 metaslab_check_free(spa
, bp
);
1425 dsl_scan_freed(spa
, bp
);
1427 if (BP_IS_GANG(bp
) ||
1429 brt_maybe_exists(spa
, bp
)) {
1431 * GANG, DEDUP and BRT blocks can induce a read (for the gang
1432 * block header, the DDT or the BRT), so issue them
1433 * asynchronously so that this thread is not tied up.
1435 enum zio_stage stage
=
1436 ZIO_FREE_PIPELINE
| ZIO_STAGE_ISSUE_ASYNC
;
1438 return (zio_create(pio
, spa
, txg
, bp
, NULL
, BP_GET_PSIZE(bp
),
1439 BP_GET_PSIZE(bp
), NULL
, NULL
,
1440 ZIO_TYPE_FREE
, ZIO_PRIORITY_NOW
,
1441 flags
, NULL
, 0, NULL
, ZIO_STAGE_OPEN
, stage
));
1443 metaslab_free(spa
, bp
, txg
, B_FALSE
);
1449 zio_claim(zio_t
*pio
, spa_t
*spa
, uint64_t txg
, const blkptr_t
*bp
,
1450 zio_done_func_t
*done
, void *private, zio_flag_t flags
)
1454 (void) zfs_blkptr_verify(spa
, bp
, (flags
& ZIO_FLAG_CONFIG_WRITER
) ?
1455 BLK_CONFIG_HELD
: BLK_CONFIG_NEEDED
, BLK_VERIFY_HALT
);
1457 if (BP_IS_EMBEDDED(bp
))
1458 return (zio_null(pio
, spa
, NULL
, NULL
, NULL
, 0));
1461 * A claim is an allocation of a specific block. Claims are needed
1462 * to support immediate writes in the intent log. The issue is that
1463 * immediate writes contain committed data, but in a txg that was
1464 * *not* committed. Upon opening the pool after an unclean shutdown,
1465 * the intent log claims all blocks that contain immediate write data
1466 * so that the SPA knows they're in use.
1468 * All claims *must* be resolved in the first txg -- before the SPA
1469 * starts allocating blocks -- so that nothing is allocated twice.
1470 * If txg == 0 we just verify that the block is claimable.
1472 ASSERT3U(BP_GET_LOGICAL_BIRTH(&spa
->spa_uberblock
.ub_rootbp
), <,
1473 spa_min_claim_txg(spa
));
1474 ASSERT(txg
== spa_min_claim_txg(spa
) || txg
== 0);
1475 ASSERT(!BP_GET_DEDUP(bp
) || !spa_writeable(spa
)); /* zdb(8) */
1477 zio
= zio_create(pio
, spa
, txg
, bp
, NULL
, BP_GET_PSIZE(bp
),
1478 BP_GET_PSIZE(bp
), done
, private, ZIO_TYPE_CLAIM
, ZIO_PRIORITY_NOW
,
1479 flags
, NULL
, 0, NULL
, ZIO_STAGE_OPEN
, ZIO_CLAIM_PIPELINE
);
1480 ASSERT0(zio
->io_queued_timestamp
);
1486 zio_trim(zio_t
*pio
, vdev_t
*vd
, uint64_t offset
, uint64_t size
,
1487 zio_done_func_t
*done
, void *private, zio_priority_t priority
,
1488 zio_flag_t flags
, enum trim_flag trim_flags
)
1492 ASSERT0(vd
->vdev_children
);
1493 ASSERT0(P2PHASE(offset
, 1ULL << vd
->vdev_ashift
));
1494 ASSERT0(P2PHASE(size
, 1ULL << vd
->vdev_ashift
));
1495 ASSERT3U(size
, !=, 0);
1497 zio
= zio_create(pio
, vd
->vdev_spa
, 0, NULL
, NULL
, size
, size
, done
,
1498 private, ZIO_TYPE_TRIM
, priority
, flags
| ZIO_FLAG_PHYSICAL
,
1499 vd
, offset
, NULL
, ZIO_STAGE_OPEN
, ZIO_TRIM_PIPELINE
);
1500 zio
->io_trim_flags
= trim_flags
;
1506 zio_read_phys(zio_t
*pio
, vdev_t
*vd
, uint64_t offset
, uint64_t size
,
1507 abd_t
*data
, int checksum
, zio_done_func_t
*done
, void *private,
1508 zio_priority_t priority
, zio_flag_t flags
, boolean_t labels
)
1512 ASSERT(vd
->vdev_children
== 0);
1513 ASSERT(!labels
|| offset
+ size
<= VDEV_LABEL_START_SIZE
||
1514 offset
>= vd
->vdev_psize
- VDEV_LABEL_END_SIZE
);
1515 ASSERT3U(offset
+ size
, <=, vd
->vdev_psize
);
1517 zio
= zio_create(pio
, vd
->vdev_spa
, 0, NULL
, data
, size
, size
, done
,
1518 private, ZIO_TYPE_READ
, priority
, flags
| ZIO_FLAG_PHYSICAL
, vd
,
1519 offset
, NULL
, ZIO_STAGE_OPEN
, ZIO_READ_PHYS_PIPELINE
);
1521 zio
->io_prop
.zp_checksum
= checksum
;
1527 zio_write_phys(zio_t
*pio
, vdev_t
*vd
, uint64_t offset
, uint64_t size
,
1528 abd_t
*data
, int checksum
, zio_done_func_t
*done
, void *private,
1529 zio_priority_t priority
, zio_flag_t flags
, boolean_t labels
)
1533 ASSERT(vd
->vdev_children
== 0);
1534 ASSERT(!labels
|| offset
+ size
<= VDEV_LABEL_START_SIZE
||
1535 offset
>= vd
->vdev_psize
- VDEV_LABEL_END_SIZE
);
1536 ASSERT3U(offset
+ size
, <=, vd
->vdev_psize
);
1538 zio
= zio_create(pio
, vd
->vdev_spa
, 0, NULL
, data
, size
, size
, done
,
1539 private, ZIO_TYPE_WRITE
, priority
, flags
| ZIO_FLAG_PHYSICAL
, vd
,
1540 offset
, NULL
, ZIO_STAGE_OPEN
, ZIO_WRITE_PHYS_PIPELINE
);
1542 zio
->io_prop
.zp_checksum
= checksum
;
1544 if (zio_checksum_table
[checksum
].ci_flags
& ZCHECKSUM_FLAG_EMBEDDED
) {
1546 * zec checksums are necessarily destructive -- they modify
1547 * the end of the write buffer to hold the verifier/checksum.
1548 * Therefore, we must make a local copy in case the data is
1549 * being written to multiple places in parallel.
1551 abd_t
*wbuf
= abd_alloc_sametype(data
, size
);
1552 abd_copy(wbuf
, data
, size
);
1554 zio_push_transform(zio
, wbuf
, size
, size
, NULL
);
1561 * Create a child I/O to do some work for us.
1564 zio_vdev_child_io(zio_t
*pio
, blkptr_t
*bp
, vdev_t
*vd
, uint64_t offset
,
1565 abd_t
*data
, uint64_t size
, int type
, zio_priority_t priority
,
1566 zio_flag_t flags
, zio_done_func_t
*done
, void *private)
1568 enum zio_stage pipeline
= ZIO_VDEV_CHILD_PIPELINE
;
1572 * vdev child I/Os do not propagate their error to the parent.
1573 * Therefore, for correct operation the caller *must* check for
1574 * and handle the error in the child i/o's done callback.
1575 * The only exceptions are i/os that we don't care about
1576 * (OPTIONAL or REPAIR).
1578 ASSERT((flags
& ZIO_FLAG_OPTIONAL
) || (flags
& ZIO_FLAG_IO_REPAIR
) ||
1581 if (type
== ZIO_TYPE_READ
&& bp
!= NULL
) {
1583 * If we have the bp, then the child should perform the
1584 * checksum and the parent need not. This pushes error
1585 * detection as close to the leaves as possible and
1586 * eliminates redundant checksums in the interior nodes.
1588 pipeline
|= ZIO_STAGE_CHECKSUM_VERIFY
;
1589 pio
->io_pipeline
&= ~ZIO_STAGE_CHECKSUM_VERIFY
;
1591 * We never allow the mirror VDEV to attempt reading from any
1592 * additional data copies after the first Direct I/O checksum
1593 * verify failure. This is to avoid bad data being written out
1594 * through the mirror during self healing. See comment in
1595 * vdev_mirror_io_done() for more details.
1597 ASSERT0(pio
->io_flags
& ZIO_FLAG_DIO_CHKSUM_ERR
);
1598 } else if (type
== ZIO_TYPE_WRITE
&&
1599 pio
->io_prop
.zp_direct_write
== B_TRUE
) {
1601 * By default we only will verify checksums for Direct I/O
1602 * writes for Linux. FreeBSD is able to place user pages under
1603 * write protection before issuing them to the ZIO pipeline.
1605 * Checksum validation errors will only be reported through
1606 * the top-level VDEV, which is set by this child ZIO.
1608 ASSERT3P(bp
, !=, NULL
);
1609 ASSERT3U(pio
->io_child_type
, ==, ZIO_CHILD_LOGICAL
);
1610 pipeline
|= ZIO_STAGE_DIO_CHECKSUM_VERIFY
;
1613 if (vd
->vdev_ops
->vdev_op_leaf
) {
1614 ASSERT0(vd
->vdev_children
);
1615 offset
+= VDEV_LABEL_START_SIZE
;
1618 flags
|= ZIO_VDEV_CHILD_FLAGS(pio
);
1621 * If we've decided to do a repair, the write is not speculative --
1622 * even if the original read was.
1624 if (flags
& ZIO_FLAG_IO_REPAIR
)
1625 flags
&= ~ZIO_FLAG_SPECULATIVE
;
1628 * If we're creating a child I/O that is not associated with a
1629 * top-level vdev, then the child zio is not an allocating I/O.
1630 * If this is a retried I/O then we ignore it since we will
1631 * have already processed the original allocating I/O.
1633 if (flags
& ZIO_FLAG_IO_ALLOCATING
&&
1634 (vd
!= vd
->vdev_top
|| (flags
& ZIO_FLAG_IO_RETRY
))) {
1635 ASSERT(pio
->io_metaslab_class
!= NULL
);
1636 ASSERT(pio
->io_metaslab_class
->mc_alloc_throttle_enabled
);
1637 ASSERT(type
== ZIO_TYPE_WRITE
);
1638 ASSERT(priority
== ZIO_PRIORITY_ASYNC_WRITE
);
1639 ASSERT(!(flags
& ZIO_FLAG_IO_REPAIR
));
1640 ASSERT(!(pio
->io_flags
& ZIO_FLAG_IO_REWRITE
) ||
1641 pio
->io_child_type
== ZIO_CHILD_GANG
);
1643 flags
&= ~ZIO_FLAG_IO_ALLOCATING
;
1646 zio
= zio_create(pio
, pio
->io_spa
, pio
->io_txg
, bp
, data
, size
, size
,
1647 done
, private, type
, priority
, flags
, vd
, offset
, &pio
->io_bookmark
,
1648 ZIO_STAGE_VDEV_IO_START
>> 1, pipeline
);
1649 ASSERT3U(zio
->io_child_type
, ==, ZIO_CHILD_VDEV
);
1655 zio_vdev_delegated_io(vdev_t
*vd
, uint64_t offset
, abd_t
*data
, uint64_t size
,
1656 zio_type_t type
, zio_priority_t priority
, zio_flag_t flags
,
1657 zio_done_func_t
*done
, void *private)
1661 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
1663 zio
= zio_create(NULL
, vd
->vdev_spa
, 0, NULL
,
1664 data
, size
, size
, done
, private, type
, priority
,
1665 flags
| ZIO_FLAG_CANFAIL
| ZIO_FLAG_DONT_RETRY
| ZIO_FLAG_DELEGATED
,
1667 ZIO_STAGE_VDEV_IO_START
>> 1, ZIO_VDEV_CHILD_PIPELINE
);
1674 * Send a flush command to the given vdev. Unlike most zio creation functions,
1675 * the flush zios are issued immediately. You can wait on pio to pause until
1676 * the flushes complete.
1679 zio_flush(zio_t
*pio
, vdev_t
*vd
)
1681 const zio_flag_t flags
= ZIO_FLAG_CANFAIL
| ZIO_FLAG_DONT_PROPAGATE
|
1682 ZIO_FLAG_DONT_RETRY
;
1684 if (vd
->vdev_nowritecache
)
1687 if (vd
->vdev_children
== 0) {
1688 zio_nowait(zio_create(pio
, vd
->vdev_spa
, 0, NULL
, NULL
, 0, 0,
1689 NULL
, NULL
, ZIO_TYPE_FLUSH
, ZIO_PRIORITY_NOW
, flags
, vd
, 0,
1690 NULL
, ZIO_STAGE_OPEN
, ZIO_FLUSH_PIPELINE
));
1692 for (uint64_t c
= 0; c
< vd
->vdev_children
; c
++)
1693 zio_flush(pio
, vd
->vdev_child
[c
]);
1698 zio_shrink(zio_t
*zio
, uint64_t size
)
1700 ASSERT3P(zio
->io_executor
, ==, NULL
);
1701 ASSERT3U(zio
->io_orig_size
, ==, zio
->io_size
);
1702 ASSERT3U(size
, <=, zio
->io_size
);
1705 * We don't shrink for raidz because of problems with the
1706 * reconstruction when reading back less than the block size.
1707 * Note, BP_IS_RAIDZ() assumes no compression.
1709 ASSERT(BP_GET_COMPRESS(zio
->io_bp
) == ZIO_COMPRESS_OFF
);
1710 if (!BP_IS_RAIDZ(zio
->io_bp
)) {
1711 /* we are not doing a raw write */
1712 ASSERT3U(zio
->io_size
, ==, zio
->io_lsize
);
1713 zio
->io_orig_size
= zio
->io_size
= zio
->io_lsize
= size
;
1718 * Round provided allocation size up to a value that can be allocated
1719 * by at least some vdev(s) in the pool with minimum or no additional
1720 * padding and without extra space usage on others
1723 zio_roundup_alloc_size(spa_t
*spa
, uint64_t size
)
1725 if (size
> spa
->spa_min_alloc
)
1726 return (roundup(size
, spa
->spa_gcd_alloc
));
1727 return (spa
->spa_min_alloc
);
1731 zio_get_compression_max_size(enum zio_compress compress
, uint64_t gcd_alloc
,
1732 uint64_t min_alloc
, size_t s_len
)
1736 /* minimum 12.5% must be saved (legacy value, may be changed later) */
1737 d_len
= s_len
- (s_len
>> 3);
1739 /* ZLE can't use exactly d_len bytes, it needs more, so ignore it */
1740 if (compress
== ZIO_COMPRESS_ZLE
)
1743 d_len
= d_len
- d_len
% gcd_alloc
;
1745 if (d_len
< min_alloc
)
1746 return (BPE_PAYLOAD_SIZE
);
1751 * ==========================================================================
1752 * Prepare to read and write logical blocks
1753 * ==========================================================================
1757 zio_read_bp_init(zio_t
*zio
)
1759 blkptr_t
*bp
= zio
->io_bp
;
1761 BP_IS_EMBEDDED(bp
) ? BPE_GET_PSIZE(bp
) : BP_GET_PSIZE(bp
);
1763 ASSERT3P(zio
->io_bp
, ==, &zio
->io_bp_copy
);
1765 if (BP_GET_COMPRESS(bp
) != ZIO_COMPRESS_OFF
&&
1766 zio
->io_child_type
== ZIO_CHILD_LOGICAL
&&
1767 !(zio
->io_flags
& ZIO_FLAG_RAW_COMPRESS
)) {
1768 zio_push_transform(zio
, abd_alloc_sametype(zio
->io_abd
, psize
),
1769 psize
, psize
, zio_decompress
);
1772 if (((BP_IS_PROTECTED(bp
) && !(zio
->io_flags
& ZIO_FLAG_RAW_ENCRYPT
)) ||
1773 BP_HAS_INDIRECT_MAC_CKSUM(bp
)) &&
1774 zio
->io_child_type
== ZIO_CHILD_LOGICAL
) {
1775 zio_push_transform(zio
, abd_alloc_sametype(zio
->io_abd
, psize
),
1776 psize
, psize
, zio_decrypt
);
1779 if (BP_IS_EMBEDDED(bp
) && BPE_GET_ETYPE(bp
) == BP_EMBEDDED_TYPE_DATA
) {
1780 int psize
= BPE_GET_PSIZE(bp
);
1781 void *data
= abd_borrow_buf(zio
->io_abd
, psize
);
1783 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
1784 decode_embedded_bp_compressed(bp
, data
);
1785 abd_return_buf_copy(zio
->io_abd
, data
, psize
);
1787 ASSERT(!BP_IS_EMBEDDED(bp
));
1790 if (BP_GET_DEDUP(bp
) && zio
->io_child_type
== ZIO_CHILD_LOGICAL
)
1791 zio
->io_pipeline
= ZIO_DDT_READ_PIPELINE
;
1797 zio_write_bp_init(zio_t
*zio
)
1799 if (!IO_IS_ALLOCATING(zio
))
1802 ASSERT(zio
->io_child_type
!= ZIO_CHILD_DDT
);
1804 if (zio
->io_bp_override
) {
1805 blkptr_t
*bp
= zio
->io_bp
;
1806 zio_prop_t
*zp
= &zio
->io_prop
;
1808 ASSERT(BP_GET_LOGICAL_BIRTH(bp
) != zio
->io_txg
);
1810 *bp
= *zio
->io_bp_override
;
1811 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
1813 if (zp
->zp_brtwrite
)
1816 ASSERT(!BP_GET_DEDUP(zio
->io_bp_override
));
1818 if (BP_IS_EMBEDDED(bp
))
1822 * If we've been overridden and nopwrite is set then
1823 * set the flag accordingly to indicate that a nopwrite
1824 * has already occurred.
1826 if (!BP_IS_HOLE(bp
) && zp
->zp_nopwrite
) {
1827 ASSERT(!zp
->zp_dedup
);
1828 ASSERT3U(BP_GET_CHECKSUM(bp
), ==, zp
->zp_checksum
);
1829 zio
->io_flags
|= ZIO_FLAG_NOPWRITE
;
1833 ASSERT(!zp
->zp_nopwrite
);
1835 if (BP_IS_HOLE(bp
) || !zp
->zp_dedup
)
1838 ASSERT((zio_checksum_table
[zp
->zp_checksum
].ci_flags
&
1839 ZCHECKSUM_FLAG_DEDUP
) || zp
->zp_dedup_verify
);
1841 if (BP_GET_CHECKSUM(bp
) == zp
->zp_checksum
&&
1843 BP_SET_DEDUP(bp
, 1);
1844 zio
->io_pipeline
|= ZIO_STAGE_DDT_WRITE
;
1849 * We were unable to handle this as an override bp, treat
1850 * it as a regular write I/O.
1852 zio
->io_bp_override
= NULL
;
1853 *bp
= zio
->io_bp_orig
;
1854 zio
->io_pipeline
= zio
->io_orig_pipeline
;
1861 zio_write_compress(zio_t
*zio
)
1863 spa_t
*spa
= zio
->io_spa
;
1864 zio_prop_t
*zp
= &zio
->io_prop
;
1865 enum zio_compress compress
= zp
->zp_compress
;
1866 blkptr_t
*bp
= zio
->io_bp
;
1867 uint64_t lsize
= zio
->io_lsize
;
1868 uint64_t psize
= zio
->io_size
;
1872 * If our children haven't all reached the ready stage,
1873 * wait for them and then repeat this pipeline stage.
1875 if (zio_wait_for_children(zio
, ZIO_CHILD_LOGICAL_BIT
|
1876 ZIO_CHILD_GANG_BIT
, ZIO_WAIT_READY
)) {
1880 if (!IO_IS_ALLOCATING(zio
))
1883 if (zio
->io_children_ready
!= NULL
) {
1885 * Now that all our children are ready, run the callback
1886 * associated with this zio in case it wants to modify the
1887 * data to be written.
1889 ASSERT3U(zp
->zp_level
, >, 0);
1890 zio
->io_children_ready(zio
);
1893 ASSERT(zio
->io_child_type
!= ZIO_CHILD_DDT
);
1894 ASSERT(zio
->io_bp_override
== NULL
);
1896 if (!BP_IS_HOLE(bp
) && BP_GET_LOGICAL_BIRTH(bp
) == zio
->io_txg
) {
1898 * We're rewriting an existing block, which means we're
1899 * working on behalf of spa_sync(). For spa_sync() to
1900 * converge, it must eventually be the case that we don't
1901 * have to allocate new blocks. But compression changes
1902 * the blocksize, which forces a reallocate, and makes
1903 * convergence take longer. Therefore, after the first
1904 * few passes, stop compressing to ensure convergence.
1906 pass
= spa_sync_pass(spa
);
1908 ASSERT(zio
->io_txg
== spa_syncing_txg(spa
));
1909 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
1910 ASSERT(!BP_GET_DEDUP(bp
));
1912 if (pass
>= zfs_sync_pass_dont_compress
)
1913 compress
= ZIO_COMPRESS_OFF
;
1915 /* Make sure someone doesn't change their mind on overwrites */
1916 ASSERT(BP_IS_EMBEDDED(bp
) || BP_IS_GANG(bp
) ||
1917 MIN(zp
->zp_copies
, spa_max_replication(spa
))
1918 == BP_GET_NDVAS(bp
));
1921 /* If it's a compressed write that is not raw, compress the buffer. */
1922 if (compress
!= ZIO_COMPRESS_OFF
&&
1923 !(zio
->io_flags
& ZIO_FLAG_RAW_COMPRESS
)) {
1925 if (abd_cmp_zero(zio
->io_abd
, lsize
) == 0)
1927 else if (compress
== ZIO_COMPRESS_EMPTY
)
1930 psize
= zio_compress_data(compress
, zio
->io_abd
, &cabd
,
1932 zio_get_compression_max_size(compress
,
1933 spa
->spa_gcd_alloc
, spa
->spa_min_alloc
, lsize
),
1936 compress
= ZIO_COMPRESS_OFF
;
1937 } else if (psize
>= lsize
) {
1938 compress
= ZIO_COMPRESS_OFF
;
1941 } else if (!zp
->zp_dedup
&& !zp
->zp_encrypt
&&
1942 psize
<= BPE_PAYLOAD_SIZE
&&
1943 zp
->zp_level
== 0 && !DMU_OT_HAS_FILL(zp
->zp_type
) &&
1944 spa_feature_is_enabled(spa
, SPA_FEATURE_EMBEDDED_DATA
)) {
1945 void *cbuf
= abd_borrow_buf_copy(cabd
, lsize
);
1946 encode_embedded_bp_compressed(bp
,
1947 cbuf
, compress
, lsize
, psize
);
1948 BPE_SET_ETYPE(bp
, BP_EMBEDDED_TYPE_DATA
);
1949 BP_SET_TYPE(bp
, zio
->io_prop
.zp_type
);
1950 BP_SET_LEVEL(bp
, zio
->io_prop
.zp_level
);
1951 abd_return_buf(cabd
, cbuf
, lsize
);
1953 BP_SET_LOGICAL_BIRTH(bp
, zio
->io_txg
);
1954 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
1955 ASSERT(spa_feature_is_active(spa
,
1956 SPA_FEATURE_EMBEDDED_DATA
));
1960 * Round compressed size up to the minimum allocation
1961 * size of the smallest-ashift device, and zero the
1962 * tail. This ensures that the compressed size of the
1963 * BP (and thus compressratio property) are correct,
1964 * in that we charge for the padding used to fill out
1967 size_t rounded
= (size_t)zio_roundup_alloc_size(spa
,
1969 if (rounded
>= lsize
) {
1970 compress
= ZIO_COMPRESS_OFF
;
1974 abd_zero_off(cabd
, psize
, rounded
- psize
);
1976 zio_push_transform(zio
, cabd
,
1977 psize
, lsize
, NULL
);
1982 * We were unable to handle this as an override bp, treat
1983 * it as a regular write I/O.
1985 zio
->io_bp_override
= NULL
;
1986 *bp
= zio
->io_bp_orig
;
1987 zio
->io_pipeline
= zio
->io_orig_pipeline
;
1989 } else if ((zio
->io_flags
& ZIO_FLAG_RAW_ENCRYPT
) != 0 &&
1990 zp
->zp_type
== DMU_OT_DNODE
) {
1992 * The DMU actually relies on the zio layer's compression
1993 * to free metadnode blocks that have had all contained
1994 * dnodes freed. As a result, even when doing a raw
1995 * receive, we must check whether the block can be compressed
1998 if (abd_cmp_zero(zio
->io_abd
, lsize
) == 0) {
2000 compress
= ZIO_COMPRESS_OFF
;
2004 } else if (zio
->io_flags
& ZIO_FLAG_RAW_COMPRESS
&&
2005 !(zio
->io_flags
& ZIO_FLAG_RAW_ENCRYPT
)) {
2007 * If we are raw receiving an encrypted dataset we should not
2008 * take this codepath because it will change the on-disk block
2009 * and decryption will fail.
2011 size_t rounded
= MIN((size_t)zio_roundup_alloc_size(spa
, psize
),
2014 if (rounded
!= psize
) {
2015 abd_t
*cdata
= abd_alloc_linear(rounded
, B_TRUE
);
2016 abd_zero_off(cdata
, psize
, rounded
- psize
);
2017 abd_copy_off(cdata
, zio
->io_abd
, 0, 0, psize
);
2019 zio_push_transform(zio
, cdata
,
2020 psize
, rounded
, NULL
);
2023 ASSERT3U(psize
, !=, 0);
2027 * The final pass of spa_sync() must be all rewrites, but the first
2028 * few passes offer a trade-off: allocating blocks defers convergence,
2029 * but newly allocated blocks are sequential, so they can be written
2030 * to disk faster. Therefore, we allow the first few passes of
2031 * spa_sync() to allocate new blocks, but force rewrites after that.
2032 * There should only be a handful of blocks after pass 1 in any case.
2034 if (!BP_IS_HOLE(bp
) && BP_GET_LOGICAL_BIRTH(bp
) == zio
->io_txg
&&
2035 BP_GET_PSIZE(bp
) == psize
&&
2036 pass
>= zfs_sync_pass_rewrite
) {
2037 VERIFY3U(psize
, !=, 0);
2038 enum zio_stage gang_stages
= zio
->io_pipeline
& ZIO_GANG_STAGES
;
2040 zio
->io_pipeline
= ZIO_REWRITE_PIPELINE
| gang_stages
;
2041 zio
->io_flags
|= ZIO_FLAG_IO_REWRITE
;
2044 zio
->io_pipeline
= ZIO_WRITE_PIPELINE
;
2048 if (BP_GET_LOGICAL_BIRTH(&zio
->io_bp_orig
) != 0 &&
2049 spa_feature_is_active(spa
, SPA_FEATURE_HOLE_BIRTH
)) {
2050 BP_SET_LSIZE(bp
, lsize
);
2051 BP_SET_TYPE(bp
, zp
->zp_type
);
2052 BP_SET_LEVEL(bp
, zp
->zp_level
);
2053 BP_SET_BIRTH(bp
, zio
->io_txg
, 0);
2055 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
2057 ASSERT(zp
->zp_checksum
!= ZIO_CHECKSUM_GANG_HEADER
);
2058 BP_SET_LSIZE(bp
, lsize
);
2059 BP_SET_TYPE(bp
, zp
->zp_type
);
2060 BP_SET_LEVEL(bp
, zp
->zp_level
);
2061 BP_SET_PSIZE(bp
, psize
);
2062 BP_SET_COMPRESS(bp
, compress
);
2063 BP_SET_CHECKSUM(bp
, zp
->zp_checksum
);
2064 BP_SET_DEDUP(bp
, zp
->zp_dedup
);
2065 BP_SET_BYTEORDER(bp
, ZFS_HOST_BYTEORDER
);
2067 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
2068 ASSERT(!(zio
->io_flags
& ZIO_FLAG_IO_REWRITE
));
2069 ASSERT(!zp
->zp_encrypt
||
2070 DMU_OT_IS_ENCRYPTED(zp
->zp_type
));
2071 zio
->io_pipeline
= ZIO_DDT_WRITE_PIPELINE
;
2073 if (zp
->zp_nopwrite
) {
2074 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
2075 ASSERT(!(zio
->io_flags
& ZIO_FLAG_IO_REWRITE
));
2076 zio
->io_pipeline
|= ZIO_STAGE_NOP_WRITE
;
2083 zio_free_bp_init(zio_t
*zio
)
2085 blkptr_t
*bp
= zio
->io_bp
;
2087 if (zio
->io_child_type
== ZIO_CHILD_LOGICAL
) {
2088 if (BP_GET_DEDUP(bp
))
2089 zio
->io_pipeline
= ZIO_DDT_FREE_PIPELINE
;
2092 ASSERT3P(zio
->io_bp
, ==, &zio
->io_bp_copy
);
2098 * ==========================================================================
2099 * Execute the I/O pipeline
2100 * ==========================================================================
2104 zio_taskq_dispatch(zio_t
*zio
, zio_taskq_type_t q
, boolean_t cutinline
)
2106 spa_t
*spa
= zio
->io_spa
;
2107 zio_type_t t
= zio
->io_type
;
2110 * If we're a config writer or a probe, the normal issue and
2111 * interrupt threads may all be blocked waiting for the config lock.
2112 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
2114 if (zio
->io_flags
& (ZIO_FLAG_CONFIG_WRITER
| ZIO_FLAG_PROBE
))
2118 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
2120 if (t
== ZIO_TYPE_WRITE
&& zio
->io_vd
&& zio
->io_vd
->vdev_aux
)
2124 * If this is a high priority I/O, then use the high priority taskq if
2125 * available or cut the line otherwise.
2127 if (zio
->io_priority
== ZIO_PRIORITY_SYNC_WRITE
) {
2128 if (spa
->spa_zio_taskq
[t
][q
+ 1].stqs_count
!= 0)
2134 ASSERT3U(q
, <, ZIO_TASKQ_TYPES
);
2136 spa_taskq_dispatch(spa
, t
, q
, zio_execute
, zio
, cutinline
);
2140 zio_taskq_member(zio_t
*zio
, zio_taskq_type_t q
)
2142 spa_t
*spa
= zio
->io_spa
;
2144 taskq_t
*tq
= taskq_of_curthread();
2146 for (zio_type_t t
= 0; t
< ZIO_TYPES
; t
++) {
2147 spa_taskqs_t
*tqs
= &spa
->spa_zio_taskq
[t
][q
];
2149 for (i
= 0; i
< tqs
->stqs_count
; i
++) {
2150 if (tqs
->stqs_taskq
[i
] == tq
)
2159 zio_issue_async(zio_t
*zio
)
2161 ASSERT((zio
->io_type
!= ZIO_TYPE_WRITE
) || ZIO_HAS_ALLOCATOR(zio
));
2162 zio_taskq_dispatch(zio
, ZIO_TASKQ_ISSUE
, B_FALSE
);
2167 zio_interrupt(void *zio
)
2169 zio_taskq_dispatch(zio
, ZIO_TASKQ_INTERRUPT
, B_FALSE
);
2173 zio_delay_interrupt(zio_t
*zio
)
2176 * The timeout_generic() function isn't defined in userspace, so
2177 * rather than trying to implement the function, the zio delay
2178 * functionality has been disabled for userspace builds.
2183 * If io_target_timestamp is zero, then no delay has been registered
2184 * for this IO, thus jump to the end of this function and "skip" the
2185 * delay; issuing it directly to the zio layer.
2187 if (zio
->io_target_timestamp
!= 0) {
2188 hrtime_t now
= gethrtime();
2190 if (now
>= zio
->io_target_timestamp
) {
2192 * This IO has already taken longer than the target
2193 * delay to complete, so we don't want to delay it
2194 * any longer; we "miss" the delay and issue it
2195 * directly to the zio layer. This is likely due to
2196 * the target latency being set to a value less than
2197 * the underlying hardware can satisfy (e.g. delay
2198 * set to 1ms, but the disks take 10ms to complete an
2202 DTRACE_PROBE2(zio__delay__miss
, zio_t
*, zio
,
2208 hrtime_t diff
= zio
->io_target_timestamp
- now
;
2209 clock_t expire_at_tick
= ddi_get_lbolt() +
2212 DTRACE_PROBE3(zio__delay__hit
, zio_t
*, zio
,
2213 hrtime_t
, now
, hrtime_t
, diff
);
2215 if (NSEC_TO_TICK(diff
) == 0) {
2216 /* Our delay is less than a jiffy - just spin */
2217 zfs_sleep_until(zio
->io_target_timestamp
);
2221 * Use taskq_dispatch_delay() in the place of
2222 * OpenZFS's timeout_generic().
2224 tid
= taskq_dispatch_delay(system_taskq
,
2225 zio_interrupt
, zio
, TQ_NOSLEEP
,
2227 if (tid
== TASKQID_INVALID
) {
2229 * Couldn't allocate a task. Just
2230 * finish the zio without a delay.
2239 DTRACE_PROBE1(zio__delay__skip
, zio_t
*, zio
);
2244 zio_deadman_impl(zio_t
*pio
, int ziodepth
)
2246 zio_t
*cio
, *cio_next
;
2247 zio_link_t
*zl
= NULL
;
2248 vdev_t
*vd
= pio
->io_vd
;
2250 if (zio_deadman_log_all
|| (vd
!= NULL
&& vd
->vdev_ops
->vdev_op_leaf
)) {
2251 vdev_queue_t
*vq
= vd
? &vd
->vdev_queue
: NULL
;
2252 zbookmark_phys_t
*zb
= &pio
->io_bookmark
;
2253 uint64_t delta
= gethrtime() - pio
->io_timestamp
;
2254 uint64_t failmode
= spa_get_deadman_failmode(pio
->io_spa
);
2256 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
2257 "delta=%llu queued=%llu io=%llu "
2259 "last=%llu type=%d "
2260 "priority=%d flags=0x%llx stage=0x%x "
2261 "pipeline=0x%x pipeline-trace=0x%x "
2262 "objset=%llu object=%llu "
2263 "level=%llu blkid=%llu "
2264 "offset=%llu size=%llu "
2266 ziodepth
, pio
, pio
->io_timestamp
,
2267 (u_longlong_t
)delta
, pio
->io_delta
, pio
->io_delay
,
2268 vd
? vd
->vdev_path
: "NULL",
2269 vq
? vq
->vq_io_complete_ts
: 0, pio
->io_type
,
2270 pio
->io_priority
, (u_longlong_t
)pio
->io_flags
,
2271 pio
->io_stage
, pio
->io_pipeline
, pio
->io_pipeline_trace
,
2272 (u_longlong_t
)zb
->zb_objset
, (u_longlong_t
)zb
->zb_object
,
2273 (u_longlong_t
)zb
->zb_level
, (u_longlong_t
)zb
->zb_blkid
,
2274 (u_longlong_t
)pio
->io_offset
, (u_longlong_t
)pio
->io_size
,
2276 (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN
,
2277 pio
->io_spa
, vd
, zb
, pio
, 0);
2279 if (failmode
== ZIO_FAILURE_MODE_CONTINUE
&&
2280 taskq_empty_ent(&pio
->io_tqent
)) {
2285 mutex_enter(&pio
->io_lock
);
2286 for (cio
= zio_walk_children(pio
, &zl
); cio
!= NULL
; cio
= cio_next
) {
2287 cio_next
= zio_walk_children(pio
, &zl
);
2288 zio_deadman_impl(cio
, ziodepth
+ 1);
2290 mutex_exit(&pio
->io_lock
);
2294 * Log the critical information describing this zio and all of its children
2295 * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2298 zio_deadman(zio_t
*pio
, const char *tag
)
2300 spa_t
*spa
= pio
->io_spa
;
2301 char *name
= spa_name(spa
);
2303 if (!zfs_deadman_enabled
|| spa_suspended(spa
))
2306 zio_deadman_impl(pio
, 0);
2308 switch (spa_get_deadman_failmode(spa
)) {
2309 case ZIO_FAILURE_MODE_WAIT
:
2310 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag
, name
);
2313 case ZIO_FAILURE_MODE_CONTINUE
:
2314 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag
, name
);
2317 case ZIO_FAILURE_MODE_PANIC
:
2318 fm_panic("%s determined I/O to pool '%s' is hung.", tag
, name
);
2324 * Execute the I/O pipeline until one of the following occurs:
2325 * (1) the I/O completes; (2) the pipeline stalls waiting for
2326 * dependent child I/Os; (3) the I/O issues, so we're waiting
2327 * for an I/O completion interrupt; (4) the I/O is delegated by
2328 * vdev-level caching or aggregation; (5) the I/O is deferred
2329 * due to vdev-level queueing; (6) the I/O is handed off to
2330 * another thread. In all cases, the pipeline stops whenever
2331 * there's no CPU work; it never burns a thread in cv_wait_io().
2333 * There's no locking on io_stage because there's no legitimate way
2334 * for multiple threads to be attempting to process the same I/O.
2336 static zio_pipe_stage_t
*zio_pipeline
[];
2339 * zio_execute() is a wrapper around the static function
2340 * __zio_execute() so that we can force __zio_execute() to be
2341 * inlined. This reduces stack overhead which is important
2342 * because __zio_execute() is called recursively in several zio
2343 * code paths. zio_execute() itself cannot be inlined because
2344 * it is externally visible.
2347 zio_execute(void *zio
)
2349 fstrans_cookie_t cookie
;
2351 cookie
= spl_fstrans_mark();
2353 spl_fstrans_unmark(cookie
);
2357 * Used to determine if in the current context the stack is sized large
2358 * enough to allow zio_execute() to be called recursively. A minimum
2359 * stack size of 16K is required to avoid needing to re-dispatch the zio.
2362 zio_execute_stack_check(zio_t
*zio
)
2364 #if !defined(HAVE_LARGE_STACKS)
2365 dsl_pool_t
*dp
= spa_get_dsl(zio
->io_spa
);
2367 /* Executing in txg_sync_thread() context. */
2368 if (dp
&& curthread
== dp
->dp_tx
.tx_sync_thread
)
2371 /* Pool initialization outside of zio_taskq context. */
2372 if (dp
&& spa_is_initializing(dp
->dp_spa
) &&
2373 !zio_taskq_member(zio
, ZIO_TASKQ_ISSUE
) &&
2374 !zio_taskq_member(zio
, ZIO_TASKQ_ISSUE_HIGH
))
2378 #endif /* HAVE_LARGE_STACKS */
2383 __attribute__((always_inline
))
2385 __zio_execute(zio_t
*zio
)
2387 ASSERT3U(zio
->io_queued_timestamp
, >, 0);
2389 while (zio
->io_stage
< ZIO_STAGE_DONE
) {
2390 enum zio_stage pipeline
= zio
->io_pipeline
;
2391 enum zio_stage stage
= zio
->io_stage
;
2393 zio
->io_executor
= curthread
;
2395 ASSERT(!MUTEX_HELD(&zio
->io_lock
));
2396 ASSERT(ISP2(stage
));
2397 ASSERT(zio
->io_stall
== NULL
);
2401 } while ((stage
& pipeline
) == 0);
2403 ASSERT(stage
<= ZIO_STAGE_DONE
);
2406 * If we are in interrupt context and this pipeline stage
2407 * will grab a config lock that is held across I/O,
2408 * or may wait for an I/O that needs an interrupt thread
2409 * to complete, issue async to avoid deadlock.
2411 * For VDEV_IO_START, we cut in line so that the io will
2412 * be sent to disk promptly.
2414 if ((stage
& ZIO_BLOCKING_STAGES
) && zio
->io_vd
== NULL
&&
2415 zio_taskq_member(zio
, ZIO_TASKQ_INTERRUPT
)) {
2416 boolean_t cut
= (stage
== ZIO_STAGE_VDEV_IO_START
) ?
2417 zio_requeue_io_start_cut_in_line
: B_FALSE
;
2418 zio_taskq_dispatch(zio
, ZIO_TASKQ_ISSUE
, cut
);
2423 * If the current context doesn't have large enough stacks
2424 * the zio must be issued asynchronously to prevent overflow.
2426 if (zio_execute_stack_check(zio
)) {
2427 boolean_t cut
= (stage
== ZIO_STAGE_VDEV_IO_START
) ?
2428 zio_requeue_io_start_cut_in_line
: B_FALSE
;
2429 zio_taskq_dispatch(zio
, ZIO_TASKQ_ISSUE
, cut
);
2433 zio
->io_stage
= stage
;
2434 zio
->io_pipeline_trace
|= zio
->io_stage
;
2437 * The zio pipeline stage returns the next zio to execute
2438 * (typically the same as this one), or NULL if we should
2441 zio
= zio_pipeline
[highbit64(stage
) - 1](zio
);
2450 * ==========================================================================
2451 * Initiate I/O, either sync or async
2452 * ==========================================================================
2455 zio_wait(zio_t
*zio
)
2458 * Some routines, like zio_free_sync(), may return a NULL zio
2459 * to avoid the performance overhead of creating and then destroying
2460 * an unneeded zio. For the callers' simplicity, we accept a NULL
2461 * zio and ignore it.
2466 long timeout
= MSEC_TO_TICK(zfs_deadman_ziotime_ms
);
2469 ASSERT3S(zio
->io_stage
, ==, ZIO_STAGE_OPEN
);
2470 ASSERT3P(zio
->io_executor
, ==, NULL
);
2472 zio
->io_waiter
= curthread
;
2473 ASSERT0(zio
->io_queued_timestamp
);
2474 zio
->io_queued_timestamp
= gethrtime();
2476 if (zio
->io_type
== ZIO_TYPE_WRITE
) {
2477 spa_select_allocator(zio
);
2481 mutex_enter(&zio
->io_lock
);
2482 while (zio
->io_executor
!= NULL
) {
2483 error
= cv_timedwait_io(&zio
->io_cv
, &zio
->io_lock
,
2484 ddi_get_lbolt() + timeout
);
2486 if (zfs_deadman_enabled
&& error
== -1 &&
2487 gethrtime() - zio
->io_queued_timestamp
>
2488 spa_deadman_ziotime(zio
->io_spa
)) {
2489 mutex_exit(&zio
->io_lock
);
2490 timeout
= MSEC_TO_TICK(zfs_deadman_checktime_ms
);
2491 zio_deadman(zio
, FTAG
);
2492 mutex_enter(&zio
->io_lock
);
2495 mutex_exit(&zio
->io_lock
);
2497 error
= zio
->io_error
;
2504 zio_nowait(zio_t
*zio
)
2507 * See comment in zio_wait().
2512 ASSERT3P(zio
->io_executor
, ==, NULL
);
2514 if (zio
->io_child_type
== ZIO_CHILD_LOGICAL
&&
2515 list_is_empty(&zio
->io_parent_list
)) {
2519 * This is a logical async I/O with no parent to wait for it.
2520 * We add it to the spa_async_root_zio "Godfather" I/O which
2521 * will ensure they complete prior to unloading the pool.
2523 spa_t
*spa
= zio
->io_spa
;
2524 pio
= spa
->spa_async_zio_root
[CPU_SEQID_UNSTABLE
];
2526 zio_add_child(pio
, zio
);
2529 ASSERT0(zio
->io_queued_timestamp
);
2530 zio
->io_queued_timestamp
= gethrtime();
2531 if (zio
->io_type
== ZIO_TYPE_WRITE
) {
2532 spa_select_allocator(zio
);
2538 * ==========================================================================
2539 * Reexecute, cancel, or suspend/resume failed I/O
2540 * ==========================================================================
2544 zio_reexecute(void *arg
)
2547 zio_t
*cio
, *cio_next
, *gio
;
2549 ASSERT(pio
->io_child_type
== ZIO_CHILD_LOGICAL
);
2550 ASSERT(pio
->io_orig_stage
== ZIO_STAGE_OPEN
);
2551 ASSERT(pio
->io_gang_leader
== NULL
);
2552 ASSERT(pio
->io_gang_tree
== NULL
);
2554 mutex_enter(&pio
->io_lock
);
2555 pio
->io_flags
= pio
->io_orig_flags
;
2556 pio
->io_stage
= pio
->io_orig_stage
;
2557 pio
->io_pipeline
= pio
->io_orig_pipeline
;
2558 pio
->io_reexecute
= 0;
2559 pio
->io_flags
|= ZIO_FLAG_REEXECUTED
;
2560 pio
->io_pipeline_trace
= 0;
2562 pio
->io_state
[ZIO_WAIT_READY
] = (pio
->io_stage
>= ZIO_STAGE_READY
) ||
2563 (pio
->io_pipeline
& ZIO_STAGE_READY
) == 0;
2564 pio
->io_state
[ZIO_WAIT_DONE
] = (pio
->io_stage
>= ZIO_STAGE_DONE
);
2565 zio_link_t
*zl
= NULL
;
2566 while ((gio
= zio_walk_parents(pio
, &zl
)) != NULL
) {
2567 for (int w
= 0; w
< ZIO_WAIT_TYPES
; w
++) {
2568 gio
->io_children
[pio
->io_child_type
][w
] +=
2572 for (int c
= 0; c
< ZIO_CHILD_TYPES
; c
++)
2573 pio
->io_child_error
[c
] = 0;
2575 if (IO_IS_ALLOCATING(pio
))
2576 BP_ZERO(pio
->io_bp
);
2579 * As we reexecute pio's children, new children could be created.
2580 * New children go to the head of pio's io_child_list, however,
2581 * so we will (correctly) not reexecute them. The key is that
2582 * the remainder of pio's io_child_list, from 'cio_next' onward,
2583 * cannot be affected by any side effects of reexecuting 'cio'.
2586 for (cio
= zio_walk_children(pio
, &zl
); cio
!= NULL
; cio
= cio_next
) {
2587 cio_next
= zio_walk_children(pio
, &zl
);
2588 mutex_exit(&pio
->io_lock
);
2590 mutex_enter(&pio
->io_lock
);
2592 mutex_exit(&pio
->io_lock
);
2595 * Now that all children have been reexecuted, execute the parent.
2596 * We don't reexecute "The Godfather" I/O here as it's the
2597 * responsibility of the caller to wait on it.
2599 if (!(pio
->io_flags
& ZIO_FLAG_GODFATHER
)) {
2600 pio
->io_queued_timestamp
= gethrtime();
2606 zio_suspend(spa_t
*spa
, zio_t
*zio
, zio_suspend_reason_t reason
)
2608 if (spa_get_failmode(spa
) == ZIO_FAILURE_MODE_PANIC
)
2609 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2610 "failure and the failure mode property for this pool "
2611 "is set to panic.", spa_name(spa
));
2613 if (reason
!= ZIO_SUSPEND_MMP
) {
2614 cmn_err(CE_WARN
, "Pool '%s' has encountered an uncorrectable "
2615 "I/O failure and has been suspended.", spa_name(spa
));
2618 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE
, spa
, NULL
,
2621 mutex_enter(&spa
->spa_suspend_lock
);
2623 if (spa
->spa_suspend_zio_root
== NULL
)
2624 spa
->spa_suspend_zio_root
= zio_root(spa
, NULL
, NULL
,
2625 ZIO_FLAG_CANFAIL
| ZIO_FLAG_SPECULATIVE
|
2626 ZIO_FLAG_GODFATHER
);
2628 spa
->spa_suspended
= reason
;
2631 ASSERT(!(zio
->io_flags
& ZIO_FLAG_GODFATHER
));
2632 ASSERT(zio
!= spa
->spa_suspend_zio_root
);
2633 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
2634 ASSERT(zio_unique_parent(zio
) == NULL
);
2635 ASSERT(zio
->io_stage
== ZIO_STAGE_DONE
);
2636 zio_add_child(spa
->spa_suspend_zio_root
, zio
);
2639 mutex_exit(&spa
->spa_suspend_lock
);
2643 zio_resume(spa_t
*spa
)
2648 * Reexecute all previously suspended i/o.
2650 mutex_enter(&spa
->spa_suspend_lock
);
2651 if (spa
->spa_suspended
!= ZIO_SUSPEND_NONE
)
2652 cmn_err(CE_WARN
, "Pool '%s' was suspended and is being "
2653 "resumed. Failed I/O will be retried.",
2655 spa
->spa_suspended
= ZIO_SUSPEND_NONE
;
2656 cv_broadcast(&spa
->spa_suspend_cv
);
2657 pio
= spa
->spa_suspend_zio_root
;
2658 spa
->spa_suspend_zio_root
= NULL
;
2659 mutex_exit(&spa
->spa_suspend_lock
);
2665 return (zio_wait(pio
));
2669 zio_resume_wait(spa_t
*spa
)
2671 mutex_enter(&spa
->spa_suspend_lock
);
2672 while (spa_suspended(spa
))
2673 cv_wait(&spa
->spa_suspend_cv
, &spa
->spa_suspend_lock
);
2674 mutex_exit(&spa
->spa_suspend_lock
);
2678 * ==========================================================================
2681 * A gang block is a collection of small blocks that looks to the DMU
2682 * like one large block. When zio_dva_allocate() cannot find a block
2683 * of the requested size, due to either severe fragmentation or the pool
2684 * being nearly full, it calls zio_write_gang_block() to construct the
2685 * block from smaller fragments.
2687 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2688 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
2689 * an indirect block: it's an array of block pointers. It consumes
2690 * only one sector and hence is allocatable regardless of fragmentation.
2691 * The gang header's bps point to its gang members, which hold the data.
2693 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2694 * as the verifier to ensure uniqueness of the SHA256 checksum.
2695 * Critically, the gang block bp's blk_cksum is the checksum of the data,
2696 * not the gang header. This ensures that data block signatures (needed for
2697 * deduplication) are independent of how the block is physically stored.
2699 * Gang blocks can be nested: a gang member may itself be a gang block.
2700 * Thus every gang block is a tree in which root and all interior nodes are
2701 * gang headers, and the leaves are normal blocks that contain user data.
2702 * The root of the gang tree is called the gang leader.
2704 * To perform any operation (read, rewrite, free, claim) on a gang block,
2705 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2706 * in the io_gang_tree field of the original logical i/o by recursively
2707 * reading the gang leader and all gang headers below it. This yields
2708 * an in-core tree containing the contents of every gang header and the
2709 * bps for every constituent of the gang block.
2711 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2712 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
2713 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2714 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2715 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2716 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
2717 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2718 * of the gang header plus zio_checksum_compute() of the data to update the
2719 * gang header's blk_cksum as described above.
2721 * The two-phase assemble/issue model solves the problem of partial failure --
2722 * what if you'd freed part of a gang block but then couldn't read the
2723 * gang header for another part? Assembling the entire gang tree first
2724 * ensures that all the necessary gang header I/O has succeeded before
2725 * starting the actual work of free, claim, or write. Once the gang tree
2726 * is assembled, free and claim are in-memory operations that cannot fail.
2728 * In the event that a gang write fails, zio_dva_unallocate() walks the
2729 * gang tree to immediately free (i.e. insert back into the space map)
2730 * everything we've allocated. This ensures that we don't get ENOSPC
2731 * errors during repeated suspend/resume cycles due to a flaky device.
2733 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
2734 * the gang tree, we won't modify the block, so we can safely defer the free
2735 * (knowing that the block is still intact). If we *can* assemble the gang
2736 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2737 * each constituent bp and we can allocate a new block on the next sync pass.
2739 * In all cases, the gang tree allows complete recovery from partial failure.
2740 * ==========================================================================
2744 zio_gang_issue_func_done(zio_t
*zio
)
2746 abd_free(zio
->io_abd
);
2750 zio_read_gang(zio_t
*pio
, blkptr_t
*bp
, zio_gang_node_t
*gn
, abd_t
*data
,
2756 return (zio_read(pio
, pio
->io_spa
, bp
, abd_get_offset(data
, offset
),
2757 BP_GET_PSIZE(bp
), zio_gang_issue_func_done
,
2758 NULL
, pio
->io_priority
, ZIO_GANG_CHILD_FLAGS(pio
),
2759 &pio
->io_bookmark
));
2763 zio_rewrite_gang(zio_t
*pio
, blkptr_t
*bp
, zio_gang_node_t
*gn
, abd_t
*data
,
2770 abd_get_from_buf(gn
->gn_gbh
, SPA_GANGBLOCKSIZE
);
2771 zio
= zio_rewrite(pio
, pio
->io_spa
, pio
->io_txg
, bp
,
2772 gbh_abd
, SPA_GANGBLOCKSIZE
, zio_gang_issue_func_done
, NULL
,
2773 pio
->io_priority
, ZIO_GANG_CHILD_FLAGS(pio
),
2776 * As we rewrite each gang header, the pipeline will compute
2777 * a new gang block header checksum for it; but no one will
2778 * compute a new data checksum, so we do that here. The one
2779 * exception is the gang leader: the pipeline already computed
2780 * its data checksum because that stage precedes gang assembly.
2781 * (Presently, nothing actually uses interior data checksums;
2782 * this is just good hygiene.)
2784 if (gn
!= pio
->io_gang_leader
->io_gang_tree
) {
2785 abd_t
*buf
= abd_get_offset(data
, offset
);
2787 zio_checksum_compute(zio
, BP_GET_CHECKSUM(bp
),
2788 buf
, BP_GET_PSIZE(bp
));
2793 * If we are here to damage data for testing purposes,
2794 * leave the GBH alone so that we can detect the damage.
2796 if (pio
->io_gang_leader
->io_flags
& ZIO_FLAG_INDUCE_DAMAGE
)
2797 zio
->io_pipeline
&= ~ZIO_VDEV_IO_STAGES
;
2799 zio
= zio_rewrite(pio
, pio
->io_spa
, pio
->io_txg
, bp
,
2800 abd_get_offset(data
, offset
), BP_GET_PSIZE(bp
),
2801 zio_gang_issue_func_done
, NULL
, pio
->io_priority
,
2802 ZIO_GANG_CHILD_FLAGS(pio
), &pio
->io_bookmark
);
2809 zio_free_gang(zio_t
*pio
, blkptr_t
*bp
, zio_gang_node_t
*gn
, abd_t
*data
,
2812 (void) gn
, (void) data
, (void) offset
;
2814 zio_t
*zio
= zio_free_sync(pio
, pio
->io_spa
, pio
->io_txg
, bp
,
2815 ZIO_GANG_CHILD_FLAGS(pio
));
2817 zio
= zio_null(pio
, pio
->io_spa
,
2818 NULL
, NULL
, NULL
, ZIO_GANG_CHILD_FLAGS(pio
));
2824 zio_claim_gang(zio_t
*pio
, blkptr_t
*bp
, zio_gang_node_t
*gn
, abd_t
*data
,
2827 (void) gn
, (void) data
, (void) offset
;
2828 return (zio_claim(pio
, pio
->io_spa
, pio
->io_txg
, bp
,
2829 NULL
, NULL
, ZIO_GANG_CHILD_FLAGS(pio
)));
2832 static zio_gang_issue_func_t
*zio_gang_issue_func
[ZIO_TYPES
] = {
2841 static void zio_gang_tree_assemble_done(zio_t
*zio
);
2843 static zio_gang_node_t
*
2844 zio_gang_node_alloc(zio_gang_node_t
**gnpp
)
2846 zio_gang_node_t
*gn
;
2848 ASSERT(*gnpp
== NULL
);
2850 gn
= kmem_zalloc(sizeof (*gn
), KM_SLEEP
);
2851 gn
->gn_gbh
= zio_buf_alloc(SPA_GANGBLOCKSIZE
);
2858 zio_gang_node_free(zio_gang_node_t
**gnpp
)
2860 zio_gang_node_t
*gn
= *gnpp
;
2862 for (int g
= 0; g
< SPA_GBH_NBLKPTRS
; g
++)
2863 ASSERT(gn
->gn_child
[g
] == NULL
);
2865 zio_buf_free(gn
->gn_gbh
, SPA_GANGBLOCKSIZE
);
2866 kmem_free(gn
, sizeof (*gn
));
2871 zio_gang_tree_free(zio_gang_node_t
**gnpp
)
2873 zio_gang_node_t
*gn
= *gnpp
;
2878 for (int g
= 0; g
< SPA_GBH_NBLKPTRS
; g
++)
2879 zio_gang_tree_free(&gn
->gn_child
[g
]);
2881 zio_gang_node_free(gnpp
);
2885 zio_gang_tree_assemble(zio_t
*gio
, blkptr_t
*bp
, zio_gang_node_t
**gnpp
)
2887 zio_gang_node_t
*gn
= zio_gang_node_alloc(gnpp
);
2888 abd_t
*gbh_abd
= abd_get_from_buf(gn
->gn_gbh
, SPA_GANGBLOCKSIZE
);
2890 ASSERT(gio
->io_gang_leader
== gio
);
2891 ASSERT(BP_IS_GANG(bp
));
2893 zio_nowait(zio_read(gio
, gio
->io_spa
, bp
, gbh_abd
, SPA_GANGBLOCKSIZE
,
2894 zio_gang_tree_assemble_done
, gn
, gio
->io_priority
,
2895 ZIO_GANG_CHILD_FLAGS(gio
), &gio
->io_bookmark
));
2899 zio_gang_tree_assemble_done(zio_t
*zio
)
2901 zio_t
*gio
= zio
->io_gang_leader
;
2902 zio_gang_node_t
*gn
= zio
->io_private
;
2903 blkptr_t
*bp
= zio
->io_bp
;
2905 ASSERT(gio
== zio_unique_parent(zio
));
2906 ASSERT(list_is_empty(&zio
->io_child_list
));
2911 /* this ABD was created from a linear buf in zio_gang_tree_assemble */
2912 if (BP_SHOULD_BYTESWAP(bp
))
2913 byteswap_uint64_array(abd_to_buf(zio
->io_abd
), zio
->io_size
);
2915 ASSERT3P(abd_to_buf(zio
->io_abd
), ==, gn
->gn_gbh
);
2916 ASSERT(zio
->io_size
== SPA_GANGBLOCKSIZE
);
2917 ASSERT(gn
->gn_gbh
->zg_tail
.zec_magic
== ZEC_MAGIC
);
2919 abd_free(zio
->io_abd
);
2921 for (int g
= 0; g
< SPA_GBH_NBLKPTRS
; g
++) {
2922 blkptr_t
*gbp
= &gn
->gn_gbh
->zg_blkptr
[g
];
2923 if (!BP_IS_GANG(gbp
))
2925 zio_gang_tree_assemble(gio
, gbp
, &gn
->gn_child
[g
]);
2930 zio_gang_tree_issue(zio_t
*pio
, zio_gang_node_t
*gn
, blkptr_t
*bp
, abd_t
*data
,
2933 zio_t
*gio
= pio
->io_gang_leader
;
2936 ASSERT(BP_IS_GANG(bp
) == !!gn
);
2937 ASSERT(BP_GET_CHECKSUM(bp
) == BP_GET_CHECKSUM(gio
->io_bp
));
2938 ASSERT(BP_GET_LSIZE(bp
) == BP_GET_PSIZE(bp
) || gn
== gio
->io_gang_tree
);
2941 * If you're a gang header, your data is in gn->gn_gbh.
2942 * If you're a gang member, your data is in 'data' and gn == NULL.
2944 zio
= zio_gang_issue_func
[gio
->io_type
](pio
, bp
, gn
, data
, offset
);
2947 ASSERT(gn
->gn_gbh
->zg_tail
.zec_magic
== ZEC_MAGIC
);
2949 for (int g
= 0; g
< SPA_GBH_NBLKPTRS
; g
++) {
2950 blkptr_t
*gbp
= &gn
->gn_gbh
->zg_blkptr
[g
];
2951 if (BP_IS_HOLE(gbp
))
2953 zio_gang_tree_issue(zio
, gn
->gn_child
[g
], gbp
, data
,
2955 offset
+= BP_GET_PSIZE(gbp
);
2959 if (gn
== gio
->io_gang_tree
)
2960 ASSERT3U(gio
->io_size
, ==, offset
);
2967 zio_gang_assemble(zio_t
*zio
)
2969 blkptr_t
*bp
= zio
->io_bp
;
2971 ASSERT(BP_IS_GANG(bp
) && zio
->io_gang_leader
== NULL
);
2972 ASSERT(zio
->io_child_type
> ZIO_CHILD_GANG
);
2974 zio
->io_gang_leader
= zio
;
2976 zio_gang_tree_assemble(zio
, bp
, &zio
->io_gang_tree
);
2982 zio_gang_issue(zio_t
*zio
)
2984 blkptr_t
*bp
= zio
->io_bp
;
2986 if (zio_wait_for_children(zio
, ZIO_CHILD_GANG_BIT
, ZIO_WAIT_DONE
)) {
2990 ASSERT(BP_IS_GANG(bp
) && zio
->io_gang_leader
== zio
);
2991 ASSERT(zio
->io_child_type
> ZIO_CHILD_GANG
);
2993 if (zio
->io_child_error
[ZIO_CHILD_GANG
] == 0)
2994 zio_gang_tree_issue(zio
, zio
->io_gang_tree
, bp
, zio
->io_abd
,
2997 zio_gang_tree_free(&zio
->io_gang_tree
);
2999 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
3005 zio_gang_inherit_allocator(zio_t
*pio
, zio_t
*cio
)
3007 cio
->io_allocator
= pio
->io_allocator
;
3011 zio_write_gang_member_ready(zio_t
*zio
)
3013 zio_t
*pio
= zio_unique_parent(zio
);
3014 dva_t
*cdva
= zio
->io_bp
->blk_dva
;
3015 dva_t
*pdva
= pio
->io_bp
->blk_dva
;
3017 zio_t
*gio __maybe_unused
= zio
->io_gang_leader
;
3019 if (BP_IS_HOLE(zio
->io_bp
))
3022 ASSERT(BP_IS_HOLE(&zio
->io_bp_orig
));
3024 ASSERT(zio
->io_child_type
== ZIO_CHILD_GANG
);
3025 ASSERT3U(zio
->io_prop
.zp_copies
, ==, gio
->io_prop
.zp_copies
);
3026 ASSERT3U(zio
->io_prop
.zp_copies
, <=, BP_GET_NDVAS(zio
->io_bp
));
3027 ASSERT3U(pio
->io_prop
.zp_copies
, <=, BP_GET_NDVAS(pio
->io_bp
));
3028 VERIFY3U(BP_GET_NDVAS(zio
->io_bp
), <=, BP_GET_NDVAS(pio
->io_bp
));
3030 mutex_enter(&pio
->io_lock
);
3031 for (int d
= 0; d
< BP_GET_NDVAS(zio
->io_bp
); d
++) {
3032 ASSERT(DVA_GET_GANG(&pdva
[d
]));
3033 asize
= DVA_GET_ASIZE(&pdva
[d
]);
3034 asize
+= DVA_GET_ASIZE(&cdva
[d
]);
3035 DVA_SET_ASIZE(&pdva
[d
], asize
);
3037 mutex_exit(&pio
->io_lock
);
3041 zio_write_gang_done(zio_t
*zio
)
3044 * The io_abd field will be NULL for a zio with no data. The io_flags
3045 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
3046 * check for it here as it is cleared in zio_ready.
3048 if (zio
->io_abd
!= NULL
)
3049 abd_free(zio
->io_abd
);
3053 zio_write_gang_block(zio_t
*pio
, metaslab_class_t
*mc
)
3055 spa_t
*spa
= pio
->io_spa
;
3056 blkptr_t
*bp
= pio
->io_bp
;
3057 zio_t
*gio
= pio
->io_gang_leader
;
3059 zio_gang_node_t
*gn
, **gnpp
;
3060 zio_gbh_phys_t
*gbh
;
3062 uint64_t txg
= pio
->io_txg
;
3063 uint64_t resid
= pio
->io_size
;
3065 int copies
= gio
->io_prop
.zp_copies
;
3068 boolean_t has_data
= !(pio
->io_flags
& ZIO_FLAG_NODATA
);
3071 * If one copy was requested, store 2 copies of the GBH, so that we
3072 * can still traverse all the data (e.g. to free or scrub) even if a
3073 * block is damaged. Note that we can't store 3 copies of the GBH in
3074 * all cases, e.g. with encryption, which uses DVA[2] for the IV+salt.
3076 int gbh_copies
= copies
;
3077 if (gbh_copies
== 1) {
3078 gbh_copies
= MIN(2, spa_max_replication(spa
));
3081 ASSERT(ZIO_HAS_ALLOCATOR(pio
));
3082 int flags
= METASLAB_HINTBP_FAVOR
| METASLAB_GANG_HEADER
;
3083 if (pio
->io_flags
& ZIO_FLAG_IO_ALLOCATING
) {
3084 ASSERT(pio
->io_priority
== ZIO_PRIORITY_ASYNC_WRITE
);
3087 flags
|= METASLAB_ASYNC_ALLOC
;
3088 VERIFY(zfs_refcount_held(&mc
->mc_allocator
[pio
->io_allocator
].
3089 mca_alloc_slots
, pio
));
3092 * The logical zio has already placed a reservation for
3093 * 'copies' allocation slots but gang blocks may require
3094 * additional copies. These additional copies
3095 * (i.e. gbh_copies - copies) are guaranteed to succeed
3096 * since metaslab_class_throttle_reserve() always allows
3097 * additional reservations for gang blocks.
3099 VERIFY(metaslab_class_throttle_reserve(mc
, gbh_copies
- copies
,
3100 pio
->io_allocator
, pio
, flags
));
3103 error
= metaslab_alloc(spa
, mc
, SPA_GANGBLOCKSIZE
,
3104 bp
, gbh_copies
, txg
, pio
== gio
? NULL
: gio
->io_bp
, flags
,
3105 &pio
->io_alloc_list
, pio
, pio
->io_allocator
);
3107 if (pio
->io_flags
& ZIO_FLAG_IO_ALLOCATING
) {
3108 ASSERT(pio
->io_priority
== ZIO_PRIORITY_ASYNC_WRITE
);
3112 * If we failed to allocate the gang block header then
3113 * we remove any additional allocation reservations that
3114 * we placed here. The original reservation will
3115 * be removed when the logical I/O goes to the ready
3118 metaslab_class_throttle_unreserve(mc
,
3119 gbh_copies
- copies
, pio
->io_allocator
, pio
);
3122 pio
->io_error
= error
;
3127 gnpp
= &gio
->io_gang_tree
;
3129 gnpp
= pio
->io_private
;
3130 ASSERT(pio
->io_ready
== zio_write_gang_member_ready
);
3133 gn
= zio_gang_node_alloc(gnpp
);
3135 memset(gbh
, 0, SPA_GANGBLOCKSIZE
);
3136 gbh_abd
= abd_get_from_buf(gbh
, SPA_GANGBLOCKSIZE
);
3139 * Create the gang header.
3141 zio
= zio_rewrite(pio
, spa
, txg
, bp
, gbh_abd
, SPA_GANGBLOCKSIZE
,
3142 zio_write_gang_done
, NULL
, pio
->io_priority
,
3143 ZIO_GANG_CHILD_FLAGS(pio
), &pio
->io_bookmark
);
3145 zio_gang_inherit_allocator(pio
, zio
);
3148 * Create and nowait the gang children.
3150 for (int g
= 0; resid
!= 0; resid
-= lsize
, g
++) {
3151 lsize
= P2ROUNDUP(resid
/ (SPA_GBH_NBLKPTRS
- g
),
3153 ASSERT(lsize
>= SPA_MINBLOCKSIZE
&& lsize
<= resid
);
3155 zp
.zp_checksum
= gio
->io_prop
.zp_checksum
;
3156 zp
.zp_compress
= ZIO_COMPRESS_OFF
;
3157 zp
.zp_complevel
= gio
->io_prop
.zp_complevel
;
3158 zp
.zp_type
= zp
.zp_storage_type
= DMU_OT_NONE
;
3160 zp
.zp_copies
= gio
->io_prop
.zp_copies
;
3161 zp
.zp_dedup
= B_FALSE
;
3162 zp
.zp_dedup_verify
= B_FALSE
;
3163 zp
.zp_nopwrite
= B_FALSE
;
3164 zp
.zp_encrypt
= gio
->io_prop
.zp_encrypt
;
3165 zp
.zp_byteorder
= gio
->io_prop
.zp_byteorder
;
3166 zp
.zp_direct_write
= B_FALSE
;
3167 memset(zp
.zp_salt
, 0, ZIO_DATA_SALT_LEN
);
3168 memset(zp
.zp_iv
, 0, ZIO_DATA_IV_LEN
);
3169 memset(zp
.zp_mac
, 0, ZIO_DATA_MAC_LEN
);
3171 zio_t
*cio
= zio_write(zio
, spa
, txg
, &gbh
->zg_blkptr
[g
],
3172 has_data
? abd_get_offset(pio
->io_abd
, pio
->io_size
-
3173 resid
) : NULL
, lsize
, lsize
, &zp
,
3174 zio_write_gang_member_ready
, NULL
,
3175 zio_write_gang_done
, &gn
->gn_child
[g
], pio
->io_priority
,
3176 ZIO_GANG_CHILD_FLAGS(pio
), &pio
->io_bookmark
);
3178 zio_gang_inherit_allocator(zio
, cio
);
3180 if (pio
->io_flags
& ZIO_FLAG_IO_ALLOCATING
) {
3181 ASSERT(pio
->io_priority
== ZIO_PRIORITY_ASYNC_WRITE
);
3185 * Gang children won't throttle but we should
3186 * account for their work, so reserve an allocation
3187 * slot for them here.
3189 VERIFY(metaslab_class_throttle_reserve(mc
,
3190 zp
.zp_copies
, cio
->io_allocator
, cio
, flags
));
3196 * Set pio's pipeline to just wait for zio to finish.
3198 pio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
3206 * The zio_nop_write stage in the pipeline determines if allocating a
3207 * new bp is necessary. The nopwrite feature can handle writes in
3208 * either syncing or open context (i.e. zil writes) and as a result is
3209 * mutually exclusive with dedup.
3211 * By leveraging a cryptographically secure checksum, such as SHA256, we
3212 * can compare the checksums of the new data and the old to determine if
3213 * allocating a new block is required. Note that our requirements for
3214 * cryptographic strength are fairly weak: there can't be any accidental
3215 * hash collisions, but we don't need to be secure against intentional
3216 * (malicious) collisions. To trigger a nopwrite, you have to be able
3217 * to write the file to begin with, and triggering an incorrect (hash
3218 * collision) nopwrite is no worse than simply writing to the file.
3219 * That said, there are no known attacks against the checksum algorithms
3220 * used for nopwrite, assuming that the salt and the checksums
3221 * themselves remain secret.
3224 zio_nop_write(zio_t
*zio
)
3226 blkptr_t
*bp
= zio
->io_bp
;
3227 blkptr_t
*bp_orig
= &zio
->io_bp_orig
;
3228 zio_prop_t
*zp
= &zio
->io_prop
;
3230 ASSERT(BP_IS_HOLE(bp
));
3231 ASSERT(BP_GET_LEVEL(bp
) == 0);
3232 ASSERT(!(zio
->io_flags
& ZIO_FLAG_IO_REWRITE
));
3233 ASSERT(zp
->zp_nopwrite
);
3234 ASSERT(!zp
->zp_dedup
);
3235 ASSERT(zio
->io_bp_override
== NULL
);
3236 ASSERT(IO_IS_ALLOCATING(zio
));
3239 * Check to see if the original bp and the new bp have matching
3240 * characteristics (i.e. same checksum, compression algorithms, etc).
3241 * If they don't then just continue with the pipeline which will
3242 * allocate a new bp.
3244 if (BP_IS_HOLE(bp_orig
) ||
3245 !(zio_checksum_table
[BP_GET_CHECKSUM(bp
)].ci_flags
&
3246 ZCHECKSUM_FLAG_NOPWRITE
) ||
3247 BP_IS_ENCRYPTED(bp
) || BP_IS_ENCRYPTED(bp_orig
) ||
3248 BP_GET_CHECKSUM(bp
) != BP_GET_CHECKSUM(bp_orig
) ||
3249 BP_GET_COMPRESS(bp
) != BP_GET_COMPRESS(bp_orig
) ||
3250 BP_GET_DEDUP(bp
) != BP_GET_DEDUP(bp_orig
) ||
3251 zp
->zp_copies
!= BP_GET_NDVAS(bp_orig
))
3255 * If the checksums match then reset the pipeline so that we
3256 * avoid allocating a new bp and issuing any I/O.
3258 if (ZIO_CHECKSUM_EQUAL(bp
->blk_cksum
, bp_orig
->blk_cksum
)) {
3259 ASSERT(zio_checksum_table
[zp
->zp_checksum
].ci_flags
&
3260 ZCHECKSUM_FLAG_NOPWRITE
);
3261 ASSERT3U(BP_GET_PSIZE(bp
), ==, BP_GET_PSIZE(bp_orig
));
3262 ASSERT3U(BP_GET_LSIZE(bp
), ==, BP_GET_LSIZE(bp_orig
));
3263 ASSERT(zp
->zp_compress
!= ZIO_COMPRESS_OFF
);
3264 ASSERT3U(bp
->blk_prop
, ==, bp_orig
->blk_prop
);
3267 * If we're overwriting a block that is currently on an
3268 * indirect vdev, then ignore the nopwrite request and
3269 * allow a new block to be allocated on a concrete vdev.
3271 spa_config_enter(zio
->io_spa
, SCL_VDEV
, FTAG
, RW_READER
);
3272 for (int d
= 0; d
< BP_GET_NDVAS(bp_orig
); d
++) {
3273 vdev_t
*tvd
= vdev_lookup_top(zio
->io_spa
,
3274 DVA_GET_VDEV(&bp_orig
->blk_dva
[d
]));
3275 if (tvd
->vdev_ops
== &vdev_indirect_ops
) {
3276 spa_config_exit(zio
->io_spa
, SCL_VDEV
, FTAG
);
3280 spa_config_exit(zio
->io_spa
, SCL_VDEV
, FTAG
);
3283 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
3284 zio
->io_flags
|= ZIO_FLAG_NOPWRITE
;
3291 * ==========================================================================
3292 * Block Reference Table
3293 * ==========================================================================
3296 zio_brt_free(zio_t
*zio
)
3302 if (BP_GET_LEVEL(bp
) > 0 ||
3303 BP_IS_METADATA(bp
) ||
3304 !brt_maybe_exists(zio
->io_spa
, bp
)) {
3308 if (!brt_entry_decref(zio
->io_spa
, bp
)) {
3310 * This isn't the last reference, so we cannot free
3313 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
3320 * ==========================================================================
3322 * ==========================================================================
3325 zio_ddt_child_read_done(zio_t
*zio
)
3327 blkptr_t
*bp
= zio
->io_bp
;
3329 ddt_entry_t
*dde
= zio
->io_private
;
3330 zio_t
*pio
= zio_unique_parent(zio
);
3332 mutex_enter(&pio
->io_lock
);
3333 ddt
= ddt_select(zio
->io_spa
, bp
);
3335 if (zio
->io_error
== 0) {
3336 ddt_phys_variant_t v
= ddt_phys_select(ddt
, dde
, bp
);
3337 /* this phys variant doesn't need repair */
3338 ddt_phys_clear(dde
->dde_phys
, v
);
3341 if (zio
->io_error
== 0 && dde
->dde_io
->dde_repair_abd
== NULL
)
3342 dde
->dde_io
->dde_repair_abd
= zio
->io_abd
;
3344 abd_free(zio
->io_abd
);
3345 mutex_exit(&pio
->io_lock
);
3349 zio_ddt_read_start(zio_t
*zio
)
3351 blkptr_t
*bp
= zio
->io_bp
;
3353 ASSERT(BP_GET_DEDUP(bp
));
3354 ASSERT(BP_GET_PSIZE(bp
) == zio
->io_size
);
3355 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
3357 if (zio
->io_child_error
[ZIO_CHILD_DDT
]) {
3358 ddt_t
*ddt
= ddt_select(zio
->io_spa
, bp
);
3359 ddt_entry_t
*dde
= ddt_repair_start(ddt
, bp
);
3360 ddt_phys_variant_t v_self
= ddt_phys_select(ddt
, dde
, bp
);
3361 ddt_univ_phys_t
*ddp
= dde
->dde_phys
;
3364 ASSERT(zio
->io_vsd
== NULL
);
3367 if (v_self
== DDT_PHYS_NONE
)
3370 /* issue I/O for the other copies */
3371 for (int p
= 0; p
< DDT_NPHYS(ddt
); p
++) {
3372 ddt_phys_variant_t v
= DDT_PHYS_VARIANT(ddt
, p
);
3374 if (ddt_phys_birth(ddp
, v
) == 0 || v
== v_self
)
3377 ddt_bp_create(ddt
->ddt_checksum
, &dde
->dde_key
,
3379 zio_nowait(zio_read(zio
, zio
->io_spa
, &blk
,
3380 abd_alloc_for_io(zio
->io_size
, B_TRUE
),
3381 zio
->io_size
, zio_ddt_child_read_done
, dde
,
3382 zio
->io_priority
, ZIO_DDT_CHILD_FLAGS(zio
) |
3383 ZIO_FLAG_DONT_PROPAGATE
, &zio
->io_bookmark
));
3388 zio_nowait(zio_read(zio
, zio
->io_spa
, bp
,
3389 zio
->io_abd
, zio
->io_size
, NULL
, NULL
, zio
->io_priority
,
3390 ZIO_DDT_CHILD_FLAGS(zio
), &zio
->io_bookmark
));
3396 zio_ddt_read_done(zio_t
*zio
)
3398 blkptr_t
*bp
= zio
->io_bp
;
3400 if (zio_wait_for_children(zio
, ZIO_CHILD_DDT_BIT
, ZIO_WAIT_DONE
)) {
3404 ASSERT(BP_GET_DEDUP(bp
));
3405 ASSERT(BP_GET_PSIZE(bp
) == zio
->io_size
);
3406 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
3408 if (zio
->io_child_error
[ZIO_CHILD_DDT
]) {
3409 ddt_t
*ddt
= ddt_select(zio
->io_spa
, bp
);
3410 ddt_entry_t
*dde
= zio
->io_vsd
;
3412 ASSERT(spa_load_state(zio
->io_spa
) != SPA_LOAD_NONE
);
3416 zio
->io_stage
= ZIO_STAGE_DDT_READ_START
>> 1;
3417 zio_taskq_dispatch(zio
, ZIO_TASKQ_ISSUE
, B_FALSE
);
3420 if (dde
->dde_io
->dde_repair_abd
!= NULL
) {
3421 abd_copy(zio
->io_abd
, dde
->dde_io
->dde_repair_abd
,
3423 zio
->io_child_error
[ZIO_CHILD_DDT
] = 0;
3425 ddt_repair_done(ddt
, dde
);
3429 ASSERT(zio
->io_vsd
== NULL
);
3435 zio_ddt_collision(zio_t
*zio
, ddt_t
*ddt
, ddt_entry_t
*dde
)
3437 spa_t
*spa
= zio
->io_spa
;
3438 boolean_t do_raw
= !!(zio
->io_flags
& ZIO_FLAG_RAW
);
3440 ASSERT(!(zio
->io_bp_override
&& do_raw
));
3443 * Note: we compare the original data, not the transformed data,
3444 * because when zio->io_bp is an override bp, we will not have
3445 * pushed the I/O transforms. That's an important optimization
3446 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3447 * However, we should never get a raw, override zio so in these
3448 * cases we can compare the io_abd directly. This is useful because
3449 * it allows us to do dedup verification even if we don't have access
3450 * to the original data (for instance, if the encryption keys aren't
3454 for (int p
= 0; p
< DDT_NPHYS(ddt
); p
++) {
3455 if (DDT_PHYS_IS_DITTO(ddt
, p
))
3458 if (dde
->dde_io
== NULL
)
3461 zio_t
*lio
= dde
->dde_io
->dde_lead_zio
[p
];
3466 return (lio
->io_size
!= zio
->io_size
||
3467 abd_cmp(zio
->io_abd
, lio
->io_abd
) != 0);
3469 return (lio
->io_orig_size
!= zio
->io_orig_size
||
3470 abd_cmp(zio
->io_orig_abd
, lio
->io_orig_abd
) != 0);
3473 for (int p
= 0; p
< DDT_NPHYS(ddt
); p
++) {
3474 ddt_phys_variant_t v
= DDT_PHYS_VARIANT(ddt
, p
);
3475 uint64_t phys_birth
= ddt_phys_birth(dde
->dde_phys
, v
);
3477 if (phys_birth
!= 0 && do_raw
) {
3478 blkptr_t blk
= *zio
->io_bp
;
3483 ddt_bp_fill(dde
->dde_phys
, v
, &blk
, phys_birth
);
3484 psize
= BP_GET_PSIZE(&blk
);
3486 if (psize
!= zio
->io_size
)
3491 tmpabd
= abd_alloc_for_io(psize
, B_TRUE
);
3493 error
= zio_wait(zio_read(NULL
, spa
, &blk
, tmpabd
,
3494 psize
, NULL
, NULL
, ZIO_PRIORITY_SYNC_READ
,
3495 ZIO_FLAG_CANFAIL
| ZIO_FLAG_SPECULATIVE
|
3496 ZIO_FLAG_RAW
, &zio
->io_bookmark
));
3499 if (abd_cmp(tmpabd
, zio
->io_abd
) != 0)
3500 error
= SET_ERROR(ENOENT
);
3505 return (error
!= 0);
3506 } else if (phys_birth
!= 0) {
3507 arc_buf_t
*abuf
= NULL
;
3508 arc_flags_t aflags
= ARC_FLAG_WAIT
;
3509 blkptr_t blk
= *zio
->io_bp
;
3512 ddt_bp_fill(dde
->dde_phys
, v
, &blk
, phys_birth
);
3514 if (BP_GET_LSIZE(&blk
) != zio
->io_orig_size
)
3519 error
= arc_read(NULL
, spa
, &blk
,
3520 arc_getbuf_func
, &abuf
, ZIO_PRIORITY_SYNC_READ
,
3521 ZIO_FLAG_CANFAIL
| ZIO_FLAG_SPECULATIVE
,
3522 &aflags
, &zio
->io_bookmark
);
3525 if (abd_cmp_buf(zio
->io_orig_abd
, abuf
->b_data
,
3526 zio
->io_orig_size
) != 0)
3527 error
= SET_ERROR(ENOENT
);
3528 arc_buf_destroy(abuf
, &abuf
);
3532 return (error
!= 0);
3540 zio_ddt_child_write_done(zio_t
*zio
)
3542 ddt_t
*ddt
= ddt_select(zio
->io_spa
, zio
->io_bp
);
3543 ddt_entry_t
*dde
= zio
->io_private
;
3545 zio_link_t
*zl
= NULL
;
3546 ASSERT3P(zio_walk_parents(zio
, &zl
), !=, NULL
);
3548 int p
= DDT_PHYS_FOR_COPIES(ddt
, zio
->io_prop
.zp_copies
);
3549 ddt_phys_variant_t v
= DDT_PHYS_VARIANT(ddt
, p
);
3550 ddt_univ_phys_t
*ddp
= dde
->dde_phys
;
3554 /* we're the lead, so once we're done there's no one else outstanding */
3555 if (dde
->dde_io
->dde_lead_zio
[p
] == zio
)
3556 dde
->dde_io
->dde_lead_zio
[p
] = NULL
;
3558 ddt_univ_phys_t
*orig
= &dde
->dde_io
->dde_orig_phys
;
3560 if (zio
->io_error
!= 0) {
3562 * The write failed, so we're about to abort the entire IO
3563 * chain. We need to revert the entry back to what it was at
3564 * the last time it was successfully extended.
3566 ddt_phys_copy(ddp
, orig
, v
);
3567 ddt_phys_clear(orig
, v
);
3574 * We've successfully added new DVAs to the entry. Clear the saved
3575 * state or, if there's still outstanding IO, remember it so we can
3576 * revert to a known good state if that IO fails.
3578 if (dde
->dde_io
->dde_lead_zio
[p
] == NULL
)
3579 ddt_phys_clear(orig
, v
);
3581 ddt_phys_copy(orig
, ddp
, v
);
3584 * Add references for all dedup writes that were waiting on the
3585 * physical one, skipping any other physical writes that are waiting.
3589 while ((pio
= zio_walk_parents(zio
, &zl
)) != NULL
) {
3590 if (!(pio
->io_flags
& ZIO_FLAG_DDT_CHILD
))
3591 ddt_phys_addref(ddp
, v
);
3598 zio_ddt_child_write_ready(zio_t
*zio
)
3600 ddt_t
*ddt
= ddt_select(zio
->io_spa
, zio
->io_bp
);
3601 ddt_entry_t
*dde
= zio
->io_private
;
3603 zio_link_t
*zl
= NULL
;
3604 ASSERT3P(zio_walk_parents(zio
, &zl
), !=, NULL
);
3606 int p
= DDT_PHYS_FOR_COPIES(ddt
, zio
->io_prop
.zp_copies
);
3607 ddt_phys_variant_t v
= DDT_PHYS_VARIANT(ddt
, p
);
3609 if (zio
->io_error
!= 0)
3614 ddt_phys_extend(dde
->dde_phys
, v
, zio
->io_bp
);
3618 while ((pio
= zio_walk_parents(zio
, &zl
)) != NULL
) {
3619 if (!(pio
->io_flags
& ZIO_FLAG_DDT_CHILD
))
3620 ddt_bp_fill(dde
->dde_phys
, v
, pio
->io_bp
, zio
->io_txg
);
3627 zio_ddt_write(zio_t
*zio
)
3629 spa_t
*spa
= zio
->io_spa
;
3630 blkptr_t
*bp
= zio
->io_bp
;
3631 uint64_t txg
= zio
->io_txg
;
3632 zio_prop_t
*zp
= &zio
->io_prop
;
3633 ddt_t
*ddt
= ddt_select(spa
, bp
);
3636 ASSERT(BP_GET_DEDUP(bp
));
3637 ASSERT(BP_GET_CHECKSUM(bp
) == zp
->zp_checksum
);
3638 ASSERT(BP_IS_HOLE(bp
) || zio
->io_bp_override
);
3639 ASSERT(!(zio
->io_bp_override
&& (zio
->io_flags
& ZIO_FLAG_RAW
)));
3641 * Deduplication will not take place for Direct I/O writes. The
3642 * ddt_tree will be emptied in syncing context. Direct I/O writes take
3643 * place in the open-context. Direct I/O write can not attempt to
3644 * modify the ddt_tree while issuing out a write.
3646 ASSERT3B(zio
->io_prop
.zp_direct_write
, ==, B_FALSE
);
3649 dde
= ddt_lookup(ddt
, bp
);
3651 /* DDT size is over its quota so no new entries */
3652 zp
->zp_dedup
= B_FALSE
;
3653 BP_SET_DEDUP(bp
, B_FALSE
);
3654 if (zio
->io_bp_override
== NULL
)
3655 zio
->io_pipeline
= ZIO_WRITE_PIPELINE
;
3660 if (zp
->zp_dedup_verify
&& zio_ddt_collision(zio
, ddt
, dde
)) {
3662 * If we're using a weak checksum, upgrade to a strong checksum
3663 * and try again. If we're already using a strong checksum,
3664 * we can't resolve it, so just convert to an ordinary write.
3665 * (And automatically e-mail a paper to Nature?)
3667 if (!(zio_checksum_table
[zp
->zp_checksum
].ci_flags
&
3668 ZCHECKSUM_FLAG_DEDUP
)) {
3669 zp
->zp_checksum
= spa_dedup_checksum(spa
);
3670 zio_pop_transforms(zio
);
3671 zio
->io_stage
= ZIO_STAGE_OPEN
;
3674 zp
->zp_dedup
= B_FALSE
;
3675 BP_SET_DEDUP(bp
, B_FALSE
);
3677 ASSERT(!BP_GET_DEDUP(bp
));
3678 zio
->io_pipeline
= ZIO_WRITE_PIPELINE
;
3683 int p
= DDT_PHYS_FOR_COPIES(ddt
, zp
->zp_copies
);
3684 ddt_phys_variant_t v
= DDT_PHYS_VARIANT(ddt
, p
);
3685 ddt_univ_phys_t
*ddp
= dde
->dde_phys
;
3688 * In the common cases, at this point we have a regular BP with no
3689 * allocated DVAs, and the corresponding DDT entry for its checksum.
3690 * Our goal is to fill the BP with enough DVAs to satisfy its copies=
3693 * One of three things needs to happen to fulfill this:
3695 * - if the DDT entry has enough DVAs to satisfy the BP, we just copy
3696 * them out of the entry and return;
3698 * - if the DDT entry has no DVAs (ie its brand new), then we have to
3699 * issue the write as normal so that DVAs can be allocated and the
3700 * data land on disk. We then copy the DVAs into the DDT entry on
3703 * - if the DDT entry has some DVAs, but too few, we have to issue the
3704 * write, adjusted to have allocate fewer copies. When it returns, we
3705 * add the new DVAs to the DDT entry, and update the BP to have the
3706 * full amount it originally requested.
3708 * In all cases, if there's already a writing IO in flight, we need to
3709 * defer the action until after the write is done. If our action is to
3710 * write, we need to adjust our request for additional DVAs to match
3711 * what will be in the DDT entry after it completes. In this way every
3712 * IO can be guaranteed to recieve enough DVAs simply by joining the
3713 * end of the chain and letting the sequence play out.
3717 * Number of DVAs in the DDT entry. If the BP is encrypted we ignore
3718 * the third one as normal.
3720 int have_dvas
= ddt_phys_dva_count(ddp
, v
, BP_IS_ENCRYPTED(bp
));
3721 IMPLY(have_dvas
== 0, ddt_phys_birth(ddp
, v
) == 0);
3723 /* Number of DVAs requested bya the IO. */
3724 uint8_t need_dvas
= zp
->zp_copies
;
3727 * What we do next depends on whether or not there's IO outstanding that
3728 * will update this entry.
3730 if (dde
->dde_io
== NULL
|| dde
->dde_io
->dde_lead_zio
[p
] == NULL
) {
3732 * No IO outstanding, so we only need to worry about ourselves.
3736 * Override BPs bring their own DVAs and their own problems.
3738 if (zio
->io_bp_override
) {
3740 * For a brand-new entry, all the work has been done
3741 * for us, and we can just fill it out from the provided
3744 if (have_dvas
== 0) {
3745 ASSERT(BP_GET_LOGICAL_BIRTH(bp
) == txg
);
3746 ASSERT(BP_EQUAL(bp
, zio
->io_bp_override
));
3747 ddt_phys_extend(ddp
, v
, bp
);
3748 ddt_phys_addref(ddp
, v
);
3754 * If we already have this entry, then we want to treat
3755 * it like a regular write. To do this we just wipe
3756 * them out and proceed like a regular write.
3758 * Even if there are some DVAs in the entry, we still
3759 * have to clear them out. We can't use them to fill
3760 * out the dedup entry, as they are all referenced
3761 * together by a bp already on disk, and will be freed
3765 BP_SET_BIRTH(bp
, 0, 0);
3769 * If there are enough DVAs in the entry to service our request,
3770 * then we can just use them as-is.
3772 if (have_dvas
>= need_dvas
) {
3773 ddt_bp_fill(ddp
, v
, bp
, txg
);
3774 ddt_phys_addref(ddp
, v
);
3780 * Otherwise, we have to issue IO to fill the entry up to the
3783 need_dvas
-= have_dvas
;
3786 * There's a write in-flight. If there's already enough DVAs on
3787 * the entry, then either there were already enough to start
3788 * with, or the in-flight IO is between READY and DONE, and so
3789 * has extended the entry with new DVAs. Either way, we don't
3790 * need to do anything, we can just slot in behind it.
3793 if (zio
->io_bp_override
) {
3795 * If there's a write out, then we're soon going to
3796 * have our own copies of this block, so clear out the
3797 * override block and treat it as a regular dedup
3798 * write. See comment above.
3801 BP_SET_BIRTH(bp
, 0, 0);
3804 if (have_dvas
>= need_dvas
) {
3806 * A minor point: there might already be enough
3807 * committed DVAs in the entry to service our request,
3808 * but we don't know which are completed and which are
3809 * allocated but not yet written. In this case, should
3810 * the IO for the new DVAs fail, we will be on the end
3811 * of the IO chain and will also recieve an error, even
3812 * though our request could have been serviced.
3814 * This is an extremely rare case, as it requires the
3815 * original block to be copied with a request for a
3816 * larger number of DVAs, then copied again requesting
3817 * the same (or already fulfilled) number of DVAs while
3818 * the first request is active, and then that first
3819 * request errors. In return, the logic required to
3820 * catch and handle it is complex. For now, I'm just
3821 * not going to bother with it.
3825 * We always fill the bp here as we may have arrived
3826 * after the in-flight write has passed READY, and so
3829 ddt_bp_fill(ddp
, v
, bp
, txg
);
3830 zio_add_child(zio
, dde
->dde_io
->dde_lead_zio
[p
]);
3836 * There's not enough in the entry yet, so we need to look at
3837 * the write in-flight and see how many DVAs it will have once
3840 * The in-flight write has potentially had its copies request
3841 * reduced (if we're filling out an existing entry), so we need
3842 * to reach in and get the original write to find out what it is
3845 * Note that the parent of the lead zio will always have the
3846 * highest zp_copies of any zio in the chain, because ones that
3847 * can be serviced without additional IO are always added to
3848 * the back of the chain.
3850 zio_link_t
*zl
= NULL
;
3852 zio_walk_parents(dde
->dde_io
->dde_lead_zio
[p
], &zl
);
3854 uint8_t parent_dvas
= pio
->io_prop
.zp_copies
;
3856 if (parent_dvas
>= need_dvas
) {
3857 zio_add_child(zio
, dde
->dde_io
->dde_lead_zio
[p
]);
3863 * Still not enough, so we will need to issue to get the
3866 need_dvas
-= parent_dvas
;
3870 * We need to write. We will create a new write with the copies
3871 * property adjusted to match the number of DVAs we need to need to
3872 * grow the DDT entry by to satisfy the request.
3874 zio_prop_t czp
= *zp
;
3875 czp
.zp_copies
= need_dvas
;
3876 zio_t
*cio
= zio_write(zio
, spa
, txg
, bp
, zio
->io_orig_abd
,
3877 zio
->io_orig_size
, zio
->io_orig_size
, &czp
,
3878 zio_ddt_child_write_ready
, NULL
,
3879 zio_ddt_child_write_done
, dde
, zio
->io_priority
,
3880 ZIO_DDT_CHILD_FLAGS(zio
), &zio
->io_bookmark
);
3882 zio_push_transform(cio
, zio
->io_abd
, zio
->io_size
, 0, NULL
);
3885 * We are the new lead zio, because our parent has the highest
3886 * zp_copies that has been requested for this entry so far.
3888 ddt_alloc_entry_io(dde
);
3889 if (dde
->dde_io
->dde_lead_zio
[p
] == NULL
) {
3891 * First time out, take a copy of the stable entry to revert
3892 * to if there's an error (see zio_ddt_child_write_done())
3894 ddt_phys_copy(&dde
->dde_io
->dde_orig_phys
, dde
->dde_phys
, v
);
3897 * Make the existing chain our child, because it cannot
3898 * complete until we have.
3900 zio_add_child(cio
, dde
->dde_io
->dde_lead_zio
[p
]);
3902 dde
->dde_io
->dde_lead_zio
[p
] = cio
;
3911 static ddt_entry_t
*freedde
; /* for debugging */
3914 zio_ddt_free(zio_t
*zio
)
3916 spa_t
*spa
= zio
->io_spa
;
3917 blkptr_t
*bp
= zio
->io_bp
;
3918 ddt_t
*ddt
= ddt_select(spa
, bp
);
3919 ddt_entry_t
*dde
= NULL
;
3921 ASSERT(BP_GET_DEDUP(bp
));
3922 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
3925 freedde
= dde
= ddt_lookup(ddt
, bp
);
3927 ddt_phys_variant_t v
= ddt_phys_select(ddt
, dde
, bp
);
3928 if (v
!= DDT_PHYS_NONE
)
3929 ddt_phys_decref(dde
->dde_phys
, v
);
3934 * When no entry was found, it must have been pruned,
3935 * so we can free it now instead of decrementing the
3936 * refcount in the DDT.
3939 BP_SET_DEDUP(bp
, 0);
3940 zio
->io_pipeline
|= ZIO_STAGE_DVA_FREE
;
3947 * ==========================================================================
3948 * Allocate and free blocks
3949 * ==========================================================================
3953 zio_io_to_allocate(spa_t
*spa
, int allocator
)
3957 ASSERT(MUTEX_HELD(&spa
->spa_allocs
[allocator
].spaa_lock
));
3959 zio
= avl_first(&spa
->spa_allocs
[allocator
].spaa_tree
);
3963 ASSERT(IO_IS_ALLOCATING(zio
));
3964 ASSERT(ZIO_HAS_ALLOCATOR(zio
));
3967 * Try to place a reservation for this zio. If we're unable to
3968 * reserve then we throttle.
3970 ASSERT3U(zio
->io_allocator
, ==, allocator
);
3971 if (!metaslab_class_throttle_reserve(zio
->io_metaslab_class
,
3972 zio
->io_prop
.zp_copies
, allocator
, zio
, 0)) {
3976 avl_remove(&spa
->spa_allocs
[allocator
].spaa_tree
, zio
);
3977 ASSERT3U(zio
->io_stage
, <, ZIO_STAGE_DVA_ALLOCATE
);
3983 zio_dva_throttle(zio_t
*zio
)
3985 spa_t
*spa
= zio
->io_spa
;
3987 metaslab_class_t
*mc
;
3989 /* locate an appropriate allocation class */
3990 mc
= spa_preferred_class(spa
, zio
);
3992 if (zio
->io_priority
== ZIO_PRIORITY_SYNC_WRITE
||
3993 !mc
->mc_alloc_throttle_enabled
||
3994 zio
->io_child_type
== ZIO_CHILD_GANG
||
3995 zio
->io_flags
& ZIO_FLAG_NODATA
) {
3999 ASSERT(zio
->io_type
== ZIO_TYPE_WRITE
);
4000 ASSERT(ZIO_HAS_ALLOCATOR(zio
));
4001 ASSERT(zio
->io_child_type
> ZIO_CHILD_GANG
);
4002 ASSERT3U(zio
->io_queued_timestamp
, >, 0);
4003 ASSERT(zio
->io_stage
== ZIO_STAGE_DVA_THROTTLE
);
4005 int allocator
= zio
->io_allocator
;
4006 zio
->io_metaslab_class
= mc
;
4007 mutex_enter(&spa
->spa_allocs
[allocator
].spaa_lock
);
4008 avl_add(&spa
->spa_allocs
[allocator
].spaa_tree
, zio
);
4009 nio
= zio_io_to_allocate(spa
, allocator
);
4010 mutex_exit(&spa
->spa_allocs
[allocator
].spaa_lock
);
4015 zio_allocate_dispatch(spa_t
*spa
, int allocator
)
4019 mutex_enter(&spa
->spa_allocs
[allocator
].spaa_lock
);
4020 zio
= zio_io_to_allocate(spa
, allocator
);
4021 mutex_exit(&spa
->spa_allocs
[allocator
].spaa_lock
);
4025 ASSERT3U(zio
->io_stage
, ==, ZIO_STAGE_DVA_THROTTLE
);
4026 ASSERT0(zio
->io_error
);
4027 zio_taskq_dispatch(zio
, ZIO_TASKQ_ISSUE
, B_TRUE
);
4031 zio_dva_allocate(zio_t
*zio
)
4033 spa_t
*spa
= zio
->io_spa
;
4034 metaslab_class_t
*mc
;
4035 blkptr_t
*bp
= zio
->io_bp
;
4039 if (zio
->io_gang_leader
== NULL
) {
4040 ASSERT(zio
->io_child_type
> ZIO_CHILD_GANG
);
4041 zio
->io_gang_leader
= zio
;
4044 ASSERT(BP_IS_HOLE(bp
));
4045 ASSERT0(BP_GET_NDVAS(bp
));
4046 ASSERT3U(zio
->io_prop
.zp_copies
, >, 0);
4047 ASSERT3U(zio
->io_prop
.zp_copies
, <=, spa_max_replication(spa
));
4048 ASSERT3U(zio
->io_size
, ==, BP_GET_PSIZE(bp
));
4050 if (zio
->io_flags
& ZIO_FLAG_NODATA
)
4051 flags
|= METASLAB_DONT_THROTTLE
;
4052 if (zio
->io_flags
& ZIO_FLAG_GANG_CHILD
)
4053 flags
|= METASLAB_GANG_CHILD
;
4054 if (zio
->io_priority
== ZIO_PRIORITY_ASYNC_WRITE
)
4055 flags
|= METASLAB_ASYNC_ALLOC
;
4058 * if not already chosen, locate an appropriate allocation class
4060 mc
= zio
->io_metaslab_class
;
4062 mc
= spa_preferred_class(spa
, zio
);
4063 zio
->io_metaslab_class
= mc
;
4067 * Try allocating the block in the usual metaslab class.
4068 * If that's full, allocate it in the normal class.
4069 * If that's full, allocate as a gang block,
4070 * and if all are full, the allocation fails (which shouldn't happen).
4072 * Note that we do not fall back on embedded slog (ZIL) space, to
4073 * preserve unfragmented slog space, which is critical for decent
4074 * sync write performance. If a log allocation fails, we will fall
4075 * back to spa_sync() which is abysmal for performance.
4077 ASSERT(ZIO_HAS_ALLOCATOR(zio
));
4078 error
= metaslab_alloc(spa
, mc
, zio
->io_size
, bp
,
4079 zio
->io_prop
.zp_copies
, zio
->io_txg
, NULL
, flags
,
4080 &zio
->io_alloc_list
, zio
, zio
->io_allocator
);
4083 * Fallback to normal class when an alloc class is full
4085 if (error
== ENOSPC
&& mc
!= spa_normal_class(spa
)) {
4087 * When the dedup or special class is spilling into the normal
4088 * class, there can still be significant space available due
4089 * to deferred frees that are in-flight. We track the txg when
4090 * this occurred and back off adding new DDT entries for a few
4091 * txgs to allow the free blocks to be processed.
4093 if ((mc
== spa_dedup_class(spa
) || (spa_special_has_ddt(spa
) &&
4094 mc
== spa_special_class(spa
))) &&
4095 spa
->spa_dedup_class_full_txg
!= zio
->io_txg
) {
4096 spa
->spa_dedup_class_full_txg
= zio
->io_txg
;
4097 zfs_dbgmsg("%s[%d]: %s class spilling, req size %d, "
4098 "%llu allocated of %llu",
4099 spa_name(spa
), (int)zio
->io_txg
,
4100 mc
== spa_dedup_class(spa
) ? "dedup" : "special",
4102 (u_longlong_t
)metaslab_class_get_alloc(mc
),
4103 (u_longlong_t
)metaslab_class_get_space(mc
));
4107 * If throttling, transfer reservation over to normal class.
4108 * The io_allocator slot can remain the same even though we
4109 * are switching classes.
4111 if (mc
->mc_alloc_throttle_enabled
&&
4112 (zio
->io_flags
& ZIO_FLAG_IO_ALLOCATING
)) {
4113 metaslab_class_throttle_unreserve(mc
,
4114 zio
->io_prop
.zp_copies
, zio
->io_allocator
, zio
);
4115 zio
->io_flags
&= ~ZIO_FLAG_IO_ALLOCATING
;
4117 VERIFY(metaslab_class_throttle_reserve(
4118 spa_normal_class(spa
),
4119 zio
->io_prop
.zp_copies
, zio
->io_allocator
, zio
,
4120 flags
| METASLAB_MUST_RESERVE
));
4122 zio
->io_metaslab_class
= mc
= spa_normal_class(spa
);
4123 if (zfs_flags
& ZFS_DEBUG_METASLAB_ALLOC
) {
4124 zfs_dbgmsg("%s: metaslab allocation failure, "
4125 "trying normal class: zio %px, size %llu, error %d",
4126 spa_name(spa
), zio
, (u_longlong_t
)zio
->io_size
,
4130 error
= metaslab_alloc(spa
, mc
, zio
->io_size
, bp
,
4131 zio
->io_prop
.zp_copies
, zio
->io_txg
, NULL
, flags
,
4132 &zio
->io_alloc_list
, zio
, zio
->io_allocator
);
4135 if (error
== ENOSPC
&& zio
->io_size
> SPA_MINBLOCKSIZE
) {
4136 if (zfs_flags
& ZFS_DEBUG_METASLAB_ALLOC
) {
4137 zfs_dbgmsg("%s: metaslab allocation failure, "
4138 "trying ganging: zio %px, size %llu, error %d",
4139 spa_name(spa
), zio
, (u_longlong_t
)zio
->io_size
,
4142 return (zio_write_gang_block(zio
, mc
));
4145 if (error
!= ENOSPC
||
4146 (zfs_flags
& ZFS_DEBUG_METASLAB_ALLOC
)) {
4147 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
4148 "size %llu, error %d",
4149 spa_name(spa
), zio
, (u_longlong_t
)zio
->io_size
,
4152 zio
->io_error
= error
;
4159 zio_dva_free(zio_t
*zio
)
4161 metaslab_free(zio
->io_spa
, zio
->io_bp
, zio
->io_txg
, B_FALSE
);
4167 zio_dva_claim(zio_t
*zio
)
4171 error
= metaslab_claim(zio
->io_spa
, zio
->io_bp
, zio
->io_txg
);
4173 zio
->io_error
= error
;
4179 * Undo an allocation. This is used by zio_done() when an I/O fails
4180 * and we want to give back the block we just allocated.
4181 * This handles both normal blocks and gang blocks.
4184 zio_dva_unallocate(zio_t
*zio
, zio_gang_node_t
*gn
, blkptr_t
*bp
)
4186 ASSERT(BP_GET_LOGICAL_BIRTH(bp
) == zio
->io_txg
|| BP_IS_HOLE(bp
));
4187 ASSERT(zio
->io_bp_override
== NULL
);
4189 if (!BP_IS_HOLE(bp
)) {
4190 metaslab_free(zio
->io_spa
, bp
, BP_GET_LOGICAL_BIRTH(bp
),
4195 for (int g
= 0; g
< SPA_GBH_NBLKPTRS
; g
++) {
4196 zio_dva_unallocate(zio
, gn
->gn_child
[g
],
4197 &gn
->gn_gbh
->zg_blkptr
[g
]);
4203 * Try to allocate an intent log block. Return 0 on success, errno on failure.
4206 zio_alloc_zil(spa_t
*spa
, objset_t
*os
, uint64_t txg
, blkptr_t
*new_bp
,
4207 uint64_t size
, boolean_t
*slog
)
4210 zio_alloc_list_t io_alloc_list
;
4212 ASSERT(txg
> spa_syncing_txg(spa
));
4214 metaslab_trace_init(&io_alloc_list
);
4217 * Block pointer fields are useful to metaslabs for stats and debugging.
4218 * Fill in the obvious ones before calling into metaslab_alloc().
4220 BP_SET_TYPE(new_bp
, DMU_OT_INTENT_LOG
);
4221 BP_SET_PSIZE(new_bp
, size
);
4222 BP_SET_LEVEL(new_bp
, 0);
4225 * When allocating a zil block, we don't have information about
4226 * the final destination of the block except the objset it's part
4227 * of, so we just hash the objset ID to pick the allocator to get
4230 int flags
= METASLAB_ZIL
;
4231 int allocator
= (uint_t
)cityhash1(os
->os_dsl_dataset
->ds_object
)
4232 % spa
->spa_alloc_count
;
4233 error
= metaslab_alloc(spa
, spa_log_class(spa
), size
, new_bp
, 1,
4234 txg
, NULL
, flags
, &io_alloc_list
, NULL
, allocator
);
4235 *slog
= (error
== 0);
4237 error
= metaslab_alloc(spa
, spa_embedded_log_class(spa
), size
,
4238 new_bp
, 1, txg
, NULL
, flags
,
4239 &io_alloc_list
, NULL
, allocator
);
4242 error
= metaslab_alloc(spa
, spa_normal_class(spa
), size
,
4243 new_bp
, 1, txg
, NULL
, flags
,
4244 &io_alloc_list
, NULL
, allocator
);
4246 metaslab_trace_fini(&io_alloc_list
);
4249 BP_SET_LSIZE(new_bp
, size
);
4250 BP_SET_PSIZE(new_bp
, size
);
4251 BP_SET_COMPRESS(new_bp
, ZIO_COMPRESS_OFF
);
4252 BP_SET_CHECKSUM(new_bp
,
4253 spa_version(spa
) >= SPA_VERSION_SLIM_ZIL
4254 ? ZIO_CHECKSUM_ZILOG2
: ZIO_CHECKSUM_ZILOG
);
4255 BP_SET_TYPE(new_bp
, DMU_OT_INTENT_LOG
);
4256 BP_SET_LEVEL(new_bp
, 0);
4257 BP_SET_DEDUP(new_bp
, 0);
4258 BP_SET_BYTEORDER(new_bp
, ZFS_HOST_BYTEORDER
);
4261 * encrypted blocks will require an IV and salt. We generate
4262 * these now since we will not be rewriting the bp at
4265 if (os
->os_encrypted
) {
4266 uint8_t iv
[ZIO_DATA_IV_LEN
];
4267 uint8_t salt
[ZIO_DATA_SALT_LEN
];
4269 BP_SET_CRYPT(new_bp
, B_TRUE
);
4270 VERIFY0(spa_crypt_get_salt(spa
,
4271 dmu_objset_id(os
), salt
));
4272 VERIFY0(zio_crypt_generate_iv(iv
));
4274 zio_crypt_encode_params_bp(new_bp
, salt
, iv
);
4277 zfs_dbgmsg("%s: zil block allocation failure: "
4278 "size %llu, error %d", spa_name(spa
), (u_longlong_t
)size
,
4286 * ==========================================================================
4287 * Read and write to physical devices
4288 * ==========================================================================
4292 * Issue an I/O to the underlying vdev. Typically the issue pipeline
4293 * stops after this stage and will resume upon I/O completion.
4294 * However, there are instances where the vdev layer may need to
4295 * continue the pipeline when an I/O was not issued. Since the I/O
4296 * that was sent to the vdev layer might be different than the one
4297 * currently active in the pipeline (see vdev_queue_io()), we explicitly
4298 * force the underlying vdev layers to call either zio_execute() or
4299 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
4302 zio_vdev_io_start(zio_t
*zio
)
4304 vdev_t
*vd
= zio
->io_vd
;
4306 spa_t
*spa
= zio
->io_spa
;
4310 ASSERT(zio
->io_error
== 0);
4311 ASSERT(zio
->io_child_error
[ZIO_CHILD_VDEV
] == 0);
4314 if (!(zio
->io_flags
& ZIO_FLAG_CONFIG_WRITER
))
4315 spa_config_enter(spa
, SCL_ZIO
, zio
, RW_READER
);
4318 * The mirror_ops handle multiple DVAs in a single BP.
4320 vdev_mirror_ops
.vdev_op_io_start(zio
);
4324 ASSERT3P(zio
->io_logical
, !=, zio
);
4325 if (zio
->io_type
== ZIO_TYPE_WRITE
) {
4326 ASSERT(spa
->spa_trust_config
);
4329 * Note: the code can handle other kinds of writes,
4330 * but we don't expect them.
4332 if (zio
->io_vd
->vdev_noalloc
) {
4333 ASSERT(zio
->io_flags
&
4334 (ZIO_FLAG_PHYSICAL
| ZIO_FLAG_SELF_HEAL
|
4335 ZIO_FLAG_RESILVER
| ZIO_FLAG_INDUCE_DAMAGE
));
4339 align
= 1ULL << vd
->vdev_top
->vdev_ashift
;
4341 if (!(zio
->io_flags
& ZIO_FLAG_PHYSICAL
) &&
4342 P2PHASE(zio
->io_size
, align
) != 0) {
4343 /* Transform logical writes to be a full physical block size. */
4344 uint64_t asize
= P2ROUNDUP(zio
->io_size
, align
);
4345 abd_t
*abuf
= abd_alloc_sametype(zio
->io_abd
, asize
);
4346 ASSERT(vd
== vd
->vdev_top
);
4347 if (zio
->io_type
== ZIO_TYPE_WRITE
) {
4348 abd_copy(abuf
, zio
->io_abd
, zio
->io_size
);
4349 abd_zero_off(abuf
, zio
->io_size
, asize
- zio
->io_size
);
4351 zio_push_transform(zio
, abuf
, asize
, asize
, zio_subblock
);
4355 * If this is not a physical io, make sure that it is properly aligned
4356 * before proceeding.
4358 if (!(zio
->io_flags
& ZIO_FLAG_PHYSICAL
)) {
4359 ASSERT0(P2PHASE(zio
->io_offset
, align
));
4360 ASSERT0(P2PHASE(zio
->io_size
, align
));
4363 * For physical writes, we allow 512b aligned writes and assume
4364 * the device will perform a read-modify-write as necessary.
4366 ASSERT0(P2PHASE(zio
->io_offset
, SPA_MINBLOCKSIZE
));
4367 ASSERT0(P2PHASE(zio
->io_size
, SPA_MINBLOCKSIZE
));
4370 VERIFY(zio
->io_type
!= ZIO_TYPE_WRITE
|| spa_writeable(spa
));
4373 * If this is a repair I/O, and there's no self-healing involved --
4374 * that is, we're just resilvering what we expect to resilver --
4375 * then don't do the I/O unless zio's txg is actually in vd's DTL.
4376 * This prevents spurious resilvering.
4378 * There are a few ways that we can end up creating these spurious
4381 * 1. A resilver i/o will be issued if any DVA in the BP has a
4382 * dirty DTL. The mirror code will issue resilver writes to
4383 * each DVA, including the one(s) that are not on vdevs with dirty
4386 * 2. With nested replication, which happens when we have a
4387 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
4388 * For example, given mirror(replacing(A+B), C), it's likely that
4389 * only A is out of date (it's the new device). In this case, we'll
4390 * read from C, then use the data to resilver A+B -- but we don't
4391 * actually want to resilver B, just A. The top-level mirror has no
4392 * way to know this, so instead we just discard unnecessary repairs
4393 * as we work our way down the vdev tree.
4395 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
4396 * The same logic applies to any form of nested replication: ditto
4397 * + mirror, RAID-Z + replacing, etc.
4399 * However, indirect vdevs point off to other vdevs which may have
4400 * DTL's, so we never bypass them. The child i/os on concrete vdevs
4401 * will be properly bypassed instead.
4403 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from
4404 * a dRAID spare vdev. For example, when a dRAID spare is first
4405 * used, its spare blocks need to be written to but the leaf vdev's
4406 * of such blocks can have empty DTL_PARTIAL.
4408 * There seemed no clean way to allow such writes while bypassing
4409 * spurious ones. At this point, just avoid all bypassing for dRAID
4412 if ((zio
->io_flags
& ZIO_FLAG_IO_REPAIR
) &&
4413 !(zio
->io_flags
& ZIO_FLAG_SELF_HEAL
) &&
4414 zio
->io_txg
!= 0 && /* not a delegated i/o */
4415 vd
->vdev_ops
!= &vdev_indirect_ops
&&
4416 vd
->vdev_top
->vdev_ops
!= &vdev_draid_ops
&&
4417 !vdev_dtl_contains(vd
, DTL_PARTIAL
, zio
->io_txg
, 1)) {
4418 ASSERT(zio
->io_type
== ZIO_TYPE_WRITE
);
4419 zio_vdev_io_bypass(zio
);
4424 * Select the next best leaf I/O to process. Distributed spares are
4425 * excluded since they dispatch the I/O directly to a leaf vdev after
4426 * applying the dRAID mapping.
4428 if (vd
->vdev_ops
->vdev_op_leaf
&&
4429 vd
->vdev_ops
!= &vdev_draid_spare_ops
&&
4430 (zio
->io_type
== ZIO_TYPE_READ
||
4431 zio
->io_type
== ZIO_TYPE_WRITE
||
4432 zio
->io_type
== ZIO_TYPE_TRIM
)) {
4434 if (zio_handle_device_injection(vd
, zio
, ENOSYS
) != 0) {
4436 * "no-op" injections return success, but do no actual
4437 * work. Just skip the remaining vdev stages.
4439 zio_vdev_io_bypass(zio
);
4444 if ((zio
= vdev_queue_io(zio
)) == NULL
)
4447 if (!vdev_accessible(vd
, zio
)) {
4448 zio
->io_error
= SET_ERROR(ENXIO
);
4452 zio
->io_delay
= gethrtime();
4455 vd
->vdev_ops
->vdev_op_io_start(zio
);
4460 zio_vdev_io_done(zio_t
*zio
)
4462 vdev_t
*vd
= zio
->io_vd
;
4463 vdev_ops_t
*ops
= vd
? vd
->vdev_ops
: &vdev_mirror_ops
;
4464 boolean_t unexpected_error
= B_FALSE
;
4466 if (zio_wait_for_children(zio
, ZIO_CHILD_VDEV_BIT
, ZIO_WAIT_DONE
)) {
4470 ASSERT(zio
->io_type
== ZIO_TYPE_READ
||
4471 zio
->io_type
== ZIO_TYPE_WRITE
||
4472 zio
->io_type
== ZIO_TYPE_FLUSH
||
4473 zio
->io_type
== ZIO_TYPE_TRIM
);
4476 zio
->io_delay
= gethrtime() - zio
->io_delay
;
4478 if (vd
!= NULL
&& vd
->vdev_ops
->vdev_op_leaf
&&
4479 vd
->vdev_ops
!= &vdev_draid_spare_ops
) {
4480 if (zio
->io_type
!= ZIO_TYPE_FLUSH
)
4481 vdev_queue_io_done(zio
);
4483 if (zio_injection_enabled
&& zio
->io_error
== 0)
4484 zio
->io_error
= zio_handle_device_injections(vd
, zio
,
4487 if (zio_injection_enabled
&& zio
->io_error
== 0)
4488 zio
->io_error
= zio_handle_label_injection(zio
, EIO
);
4490 if (zio
->io_error
&& zio
->io_type
!= ZIO_TYPE_FLUSH
&&
4491 zio
->io_type
!= ZIO_TYPE_TRIM
) {
4492 if (!vdev_accessible(vd
, zio
)) {
4493 zio
->io_error
= SET_ERROR(ENXIO
);
4495 unexpected_error
= B_TRUE
;
4500 ops
->vdev_op_io_done(zio
);
4502 if (unexpected_error
&& vd
->vdev_remove_wanted
== B_FALSE
)
4503 VERIFY(vdev_probe(vd
, zio
) == NULL
);
4509 * This function is used to change the priority of an existing zio that is
4510 * currently in-flight. This is used by the arc to upgrade priority in the
4511 * event that a demand read is made for a block that is currently queued
4512 * as a scrub or async read IO. Otherwise, the high priority read request
4513 * would end up having to wait for the lower priority IO.
4516 zio_change_priority(zio_t
*pio
, zio_priority_t priority
)
4518 zio_t
*cio
, *cio_next
;
4519 zio_link_t
*zl
= NULL
;
4521 ASSERT3U(priority
, <, ZIO_PRIORITY_NUM_QUEUEABLE
);
4523 if (pio
->io_vd
!= NULL
&& pio
->io_vd
->vdev_ops
->vdev_op_leaf
) {
4524 vdev_queue_change_io_priority(pio
, priority
);
4526 pio
->io_priority
= priority
;
4529 mutex_enter(&pio
->io_lock
);
4530 for (cio
= zio_walk_children(pio
, &zl
); cio
!= NULL
; cio
= cio_next
) {
4531 cio_next
= zio_walk_children(pio
, &zl
);
4532 zio_change_priority(cio
, priority
);
4534 mutex_exit(&pio
->io_lock
);
4538 * For non-raidz ZIOs, we can just copy aside the bad data read from the
4539 * disk, and use that to finish the checksum ereport later.
4542 zio_vsd_default_cksum_finish(zio_cksum_report_t
*zcr
,
4543 const abd_t
*good_buf
)
4545 /* no processing needed */
4546 zfs_ereport_finish_checksum(zcr
, good_buf
, zcr
->zcr_cbdata
, B_FALSE
);
4550 zio_vsd_default_cksum_report(zio_t
*zio
, zio_cksum_report_t
*zcr
)
4552 void *abd
= abd_alloc_sametype(zio
->io_abd
, zio
->io_size
);
4554 abd_copy(abd
, zio
->io_abd
, zio
->io_size
);
4556 zcr
->zcr_cbinfo
= zio
->io_size
;
4557 zcr
->zcr_cbdata
= abd
;
4558 zcr
->zcr_finish
= zio_vsd_default_cksum_finish
;
4559 zcr
->zcr_free
= zio_abd_free
;
4563 zio_vdev_io_assess(zio_t
*zio
)
4565 vdev_t
*vd
= zio
->io_vd
;
4567 if (zio_wait_for_children(zio
, ZIO_CHILD_VDEV_BIT
, ZIO_WAIT_DONE
)) {
4571 if (vd
== NULL
&& !(zio
->io_flags
& ZIO_FLAG_CONFIG_WRITER
))
4572 spa_config_exit(zio
->io_spa
, SCL_ZIO
, zio
);
4574 if (zio
->io_vsd
!= NULL
) {
4575 zio
->io_vsd_ops
->vsd_free(zio
);
4580 * If a Direct I/O operation has a checksum verify error then this I/O
4581 * should not attempt to be issued again.
4583 if (zio
->io_flags
& ZIO_FLAG_DIO_CHKSUM_ERR
) {
4584 if (zio
->io_type
== ZIO_TYPE_WRITE
) {
4585 ASSERT3U(zio
->io_child_type
, ==, ZIO_CHILD_LOGICAL
);
4586 ASSERT3U(zio
->io_error
, ==, EIO
);
4588 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
4592 if (zio_injection_enabled
&& zio
->io_error
== 0)
4593 zio
->io_error
= zio_handle_fault_injection(zio
, EIO
);
4596 * If the I/O failed, determine whether we should attempt to retry it.
4598 * On retry, we cut in line in the issue queue, since we don't want
4599 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
4601 if (zio
->io_error
&& vd
== NULL
&&
4602 !(zio
->io_flags
& (ZIO_FLAG_DONT_RETRY
| ZIO_FLAG_IO_RETRY
))) {
4603 ASSERT(!(zio
->io_flags
& ZIO_FLAG_DONT_QUEUE
)); /* not a leaf */
4604 ASSERT(!(zio
->io_flags
& ZIO_FLAG_IO_BYPASS
)); /* not a leaf */
4606 zio
->io_flags
|= ZIO_FLAG_IO_RETRY
| ZIO_FLAG_DONT_AGGREGATE
;
4607 zio
->io_stage
= ZIO_STAGE_VDEV_IO_START
>> 1;
4608 zio_taskq_dispatch(zio
, ZIO_TASKQ_ISSUE
,
4609 zio_requeue_io_start_cut_in_line
);
4614 * If we got an error on a leaf device, convert it to ENXIO
4615 * if the device is not accessible at all.
4617 if (zio
->io_error
&& vd
!= NULL
&& vd
->vdev_ops
->vdev_op_leaf
&&
4618 !vdev_accessible(vd
, zio
))
4619 zio
->io_error
= SET_ERROR(ENXIO
);
4622 * If we can't write to an interior vdev (mirror or RAID-Z),
4623 * set vdev_cant_write so that we stop trying to allocate from it.
4625 if (zio
->io_error
== ENXIO
&& zio
->io_type
== ZIO_TYPE_WRITE
&&
4626 vd
!= NULL
&& !vd
->vdev_ops
->vdev_op_leaf
) {
4627 vdev_dbgmsg(vd
, "zio_vdev_io_assess(zio=%px) setting "
4628 "cant_write=TRUE due to write failure with ENXIO",
4630 vd
->vdev_cant_write
= B_TRUE
;
4634 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
4635 * attempts will ever succeed. In this case we set a persistent
4636 * boolean flag so that we don't bother with it in the future.
4638 if ((zio
->io_error
== ENOTSUP
|| zio
->io_error
== ENOTTY
) &&
4639 zio
->io_type
== ZIO_TYPE_FLUSH
&& vd
!= NULL
)
4640 vd
->vdev_nowritecache
= B_TRUE
;
4643 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
4649 zio_vdev_io_reissue(zio_t
*zio
)
4651 ASSERT(zio
->io_stage
== ZIO_STAGE_VDEV_IO_START
);
4652 ASSERT(zio
->io_error
== 0);
4654 zio
->io_stage
>>= 1;
4658 zio_vdev_io_redone(zio_t
*zio
)
4660 ASSERT(zio
->io_stage
== ZIO_STAGE_VDEV_IO_DONE
);
4662 zio
->io_stage
>>= 1;
4666 zio_vdev_io_bypass(zio_t
*zio
)
4668 ASSERT(zio
->io_stage
== ZIO_STAGE_VDEV_IO_START
);
4669 ASSERT(zio
->io_error
== 0);
4671 zio
->io_flags
|= ZIO_FLAG_IO_BYPASS
;
4672 zio
->io_stage
= ZIO_STAGE_VDEV_IO_ASSESS
>> 1;
4676 * ==========================================================================
4677 * Encrypt and store encryption parameters
4678 * ==========================================================================
4683 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4684 * managing the storage of encryption parameters and passing them to the
4685 * lower-level encryption functions.
4688 zio_encrypt(zio_t
*zio
)
4690 zio_prop_t
*zp
= &zio
->io_prop
;
4691 spa_t
*spa
= zio
->io_spa
;
4692 blkptr_t
*bp
= zio
->io_bp
;
4693 uint64_t psize
= BP_GET_PSIZE(bp
);
4694 uint64_t dsobj
= zio
->io_bookmark
.zb_objset
;
4695 dmu_object_type_t ot
= BP_GET_TYPE(bp
);
4696 void *enc_buf
= NULL
;
4698 uint8_t salt
[ZIO_DATA_SALT_LEN
];
4699 uint8_t iv
[ZIO_DATA_IV_LEN
];
4700 uint8_t mac
[ZIO_DATA_MAC_LEN
];
4701 boolean_t no_crypt
= B_FALSE
;
4703 /* the root zio already encrypted the data */
4704 if (zio
->io_child_type
== ZIO_CHILD_GANG
)
4707 /* only ZIL blocks are re-encrypted on rewrite */
4708 if (!IO_IS_ALLOCATING(zio
) && ot
!= DMU_OT_INTENT_LOG
)
4711 if (!(zp
->zp_encrypt
|| BP_IS_ENCRYPTED(bp
))) {
4712 BP_SET_CRYPT(bp
, B_FALSE
);
4716 /* if we are doing raw encryption set the provided encryption params */
4717 if (zio
->io_flags
& ZIO_FLAG_RAW_ENCRYPT
) {
4718 ASSERT0(BP_GET_LEVEL(bp
));
4719 BP_SET_CRYPT(bp
, B_TRUE
);
4720 BP_SET_BYTEORDER(bp
, zp
->zp_byteorder
);
4721 if (ot
!= DMU_OT_OBJSET
)
4722 zio_crypt_encode_mac_bp(bp
, zp
->zp_mac
);
4724 /* dnode blocks must be written out in the provided byteorder */
4725 if (zp
->zp_byteorder
!= ZFS_HOST_BYTEORDER
&&
4726 ot
== DMU_OT_DNODE
) {
4727 void *bswap_buf
= zio_buf_alloc(psize
);
4728 abd_t
*babd
= abd_get_from_buf(bswap_buf
, psize
);
4730 ASSERT3U(BP_GET_COMPRESS(bp
), ==, ZIO_COMPRESS_OFF
);
4731 abd_copy_to_buf(bswap_buf
, zio
->io_abd
, psize
);
4732 dmu_ot_byteswap
[DMU_OT_BYTESWAP(ot
)].ob_func(bswap_buf
,
4735 abd_take_ownership_of_buf(babd
, B_TRUE
);
4736 zio_push_transform(zio
, babd
, psize
, psize
, NULL
);
4739 if (DMU_OT_IS_ENCRYPTED(ot
))
4740 zio_crypt_encode_params_bp(bp
, zp
->zp_salt
, zp
->zp_iv
);
4744 /* indirect blocks only maintain a cksum of the lower level MACs */
4745 if (BP_GET_LEVEL(bp
) > 0) {
4746 BP_SET_CRYPT(bp
, B_TRUE
);
4747 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE
,
4748 zio
->io_orig_abd
, BP_GET_LSIZE(bp
), BP_SHOULD_BYTESWAP(bp
),
4750 zio_crypt_encode_mac_bp(bp
, mac
);
4755 * Objset blocks are a special case since they have 2 256-bit MACs
4756 * embedded within them.
4758 if (ot
== DMU_OT_OBJSET
) {
4759 ASSERT0(DMU_OT_IS_ENCRYPTED(ot
));
4760 ASSERT3U(BP_GET_COMPRESS(bp
), ==, ZIO_COMPRESS_OFF
);
4761 BP_SET_CRYPT(bp
, B_TRUE
);
4762 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE
, spa
, dsobj
,
4763 zio
->io_abd
, psize
, BP_SHOULD_BYTESWAP(bp
)));
4767 /* unencrypted object types are only authenticated with a MAC */
4768 if (!DMU_OT_IS_ENCRYPTED(ot
)) {
4769 BP_SET_CRYPT(bp
, B_TRUE
);
4770 VERIFY0(spa_do_crypt_mac_abd(B_TRUE
, spa
, dsobj
,
4771 zio
->io_abd
, psize
, mac
));
4772 zio_crypt_encode_mac_bp(bp
, mac
);
4777 * Later passes of sync-to-convergence may decide to rewrite data
4778 * in place to avoid more disk reallocations. This presents a problem
4779 * for encryption because this constitutes rewriting the new data with
4780 * the same encryption key and IV. However, this only applies to blocks
4781 * in the MOS (particularly the spacemaps) and we do not encrypt the
4782 * MOS. We assert that the zio is allocating or an intent log write
4785 ASSERT(IO_IS_ALLOCATING(zio
) || ot
== DMU_OT_INTENT_LOG
);
4786 ASSERT(BP_GET_LEVEL(bp
) == 0 || ot
== DMU_OT_INTENT_LOG
);
4787 ASSERT(spa_feature_is_active(spa
, SPA_FEATURE_ENCRYPTION
));
4788 ASSERT3U(psize
, !=, 0);
4790 enc_buf
= zio_buf_alloc(psize
);
4791 eabd
= abd_get_from_buf(enc_buf
, psize
);
4792 abd_take_ownership_of_buf(eabd
, B_TRUE
);
4795 * For an explanation of what encryption parameters are stored
4796 * where, see the block comment in zio_crypt.c.
4798 if (ot
== DMU_OT_INTENT_LOG
) {
4799 zio_crypt_decode_params_bp(bp
, salt
, iv
);
4801 BP_SET_CRYPT(bp
, B_TRUE
);
4804 /* Perform the encryption. This should not fail */
4805 VERIFY0(spa_do_crypt_abd(B_TRUE
, spa
, &zio
->io_bookmark
,
4806 BP_GET_TYPE(bp
), BP_GET_DEDUP(bp
), BP_SHOULD_BYTESWAP(bp
),
4807 salt
, iv
, mac
, psize
, zio
->io_abd
, eabd
, &no_crypt
));
4809 /* encode encryption metadata into the bp */
4810 if (ot
== DMU_OT_INTENT_LOG
) {
4812 * ZIL blocks store the MAC in the embedded checksum, so the
4813 * transform must always be applied.
4815 zio_crypt_encode_mac_zil(enc_buf
, mac
);
4816 zio_push_transform(zio
, eabd
, psize
, psize
, NULL
);
4818 BP_SET_CRYPT(bp
, B_TRUE
);
4819 zio_crypt_encode_params_bp(bp
, salt
, iv
);
4820 zio_crypt_encode_mac_bp(bp
, mac
);
4823 ASSERT3U(ot
, ==, DMU_OT_DNODE
);
4826 zio_push_transform(zio
, eabd
, psize
, psize
, NULL
);
4834 * ==========================================================================
4835 * Generate and verify checksums
4836 * ==========================================================================
4839 zio_checksum_generate(zio_t
*zio
)
4841 blkptr_t
*bp
= zio
->io_bp
;
4842 enum zio_checksum checksum
;
4846 * This is zio_write_phys().
4847 * We're either generating a label checksum, or none at all.
4849 checksum
= zio
->io_prop
.zp_checksum
;
4851 if (checksum
== ZIO_CHECKSUM_OFF
)
4854 ASSERT(checksum
== ZIO_CHECKSUM_LABEL
);
4856 if (BP_IS_GANG(bp
) && zio
->io_child_type
== ZIO_CHILD_GANG
) {
4857 ASSERT(!IO_IS_ALLOCATING(zio
));
4858 checksum
= ZIO_CHECKSUM_GANG_HEADER
;
4860 checksum
= BP_GET_CHECKSUM(bp
);
4864 zio_checksum_compute(zio
, checksum
, zio
->io_abd
, zio
->io_size
);
4870 zio_checksum_verify(zio_t
*zio
)
4872 zio_bad_cksum_t info
;
4873 blkptr_t
*bp
= zio
->io_bp
;
4876 ASSERT(zio
->io_vd
!= NULL
);
4880 * This is zio_read_phys().
4881 * We're either verifying a label checksum, or nothing at all.
4883 if (zio
->io_prop
.zp_checksum
== ZIO_CHECKSUM_OFF
)
4886 ASSERT3U(zio
->io_prop
.zp_checksum
, ==, ZIO_CHECKSUM_LABEL
);
4889 ASSERT0(zio
->io_flags
& ZIO_FLAG_DIO_CHKSUM_ERR
);
4890 IMPLY(zio
->io_flags
& ZIO_FLAG_DIO_READ
,
4891 !(zio
->io_flags
& ZIO_FLAG_SPECULATIVE
));
4893 if ((error
= zio_checksum_error(zio
, &info
)) != 0) {
4894 zio
->io_error
= error
;
4895 if (error
== ECKSUM
&&
4896 !(zio
->io_flags
& ZIO_FLAG_SPECULATIVE
)) {
4897 if (zio
->io_flags
& ZIO_FLAG_DIO_READ
) {
4898 zio
->io_flags
|= ZIO_FLAG_DIO_CHKSUM_ERR
;
4899 zio_t
*pio
= zio_unique_parent(zio
);
4901 * Any Direct I/O read that has a checksum
4902 * error must be treated as suspicous as the
4903 * contents of the buffer could be getting
4904 * manipulated while the I/O is taking place.
4906 * The checksum verify error will only be
4907 * reported here for disk and file VDEV's and
4908 * will be reported on those that the failure
4909 * occurred on. Other types of VDEV's report the
4910 * verify failure in their own code paths.
4912 if (pio
->io_child_type
== ZIO_CHILD_LOGICAL
) {
4913 zio_dio_chksum_verify_error_report(zio
);
4916 mutex_enter(&zio
->io_vd
->vdev_stat_lock
);
4917 zio
->io_vd
->vdev_stat
.vs_checksum_errors
++;
4918 mutex_exit(&zio
->io_vd
->vdev_stat_lock
);
4919 (void) zfs_ereport_start_checksum(zio
->io_spa
,
4920 zio
->io_vd
, &zio
->io_bookmark
, zio
,
4921 zio
->io_offset
, zio
->io_size
, &info
);
4930 zio_dio_checksum_verify(zio_t
*zio
)
4932 zio_t
*pio
= zio_unique_parent(zio
);
4935 ASSERT3P(zio
->io_vd
, !=, NULL
);
4936 ASSERT3P(zio
->io_bp
, !=, NULL
);
4937 ASSERT3U(zio
->io_child_type
, ==, ZIO_CHILD_VDEV
);
4938 ASSERT3U(zio
->io_type
, ==, ZIO_TYPE_WRITE
);
4939 ASSERT3B(pio
->io_prop
.zp_direct_write
, ==, B_TRUE
);
4940 ASSERT3U(pio
->io_child_type
, ==, ZIO_CHILD_LOGICAL
);
4942 if (zfs_vdev_direct_write_verify
== 0 || zio
->io_error
!= 0)
4945 if ((error
= zio_checksum_error(zio
, NULL
)) != 0) {
4946 zio
->io_error
= error
;
4947 if (error
== ECKSUM
) {
4948 zio
->io_flags
|= ZIO_FLAG_DIO_CHKSUM_ERR
;
4949 zio_dio_chksum_verify_error_report(zio
);
4959 * Called by RAID-Z to ensure we don't compute the checksum twice.
4962 zio_checksum_verified(zio_t
*zio
)
4964 zio
->io_pipeline
&= ~ZIO_STAGE_CHECKSUM_VERIFY
;
4968 * Report Direct I/O checksum verify error and create ZED event.
4971 zio_dio_chksum_verify_error_report(zio_t
*zio
)
4973 ASSERT(zio
->io_flags
& ZIO_FLAG_DIO_CHKSUM_ERR
);
4975 if (zio
->io_child_type
== ZIO_CHILD_LOGICAL
)
4978 mutex_enter(&zio
->io_vd
->vdev_stat_lock
);
4979 zio
->io_vd
->vdev_stat
.vs_dio_verify_errors
++;
4980 mutex_exit(&zio
->io_vd
->vdev_stat_lock
);
4981 if (zio
->io_type
== ZIO_TYPE_WRITE
) {
4983 * Convert checksum error for writes into EIO.
4985 zio
->io_error
= SET_ERROR(EIO
);
4987 * Report dio_verify_wr ZED event.
4989 (void) zfs_ereport_post(FM_EREPORT_ZFS_DIO_VERIFY_WR
,
4990 zio
->io_spa
, zio
->io_vd
, &zio
->io_bookmark
, zio
, 0);
4993 * Report dio_verify_rd ZED event.
4995 (void) zfs_ereport_post(FM_EREPORT_ZFS_DIO_VERIFY_RD
,
4996 zio
->io_spa
, zio
->io_vd
, &zio
->io_bookmark
, zio
, 0);
5001 * ==========================================================================
5002 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
5003 * An error of 0 indicates success. ENXIO indicates whole-device failure,
5004 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO
5005 * indicate errors that are specific to one I/O, and most likely permanent.
5006 * Any other error is presumed to be worse because we weren't expecting it.
5007 * ==========================================================================
5010 zio_worst_error(int e1
, int e2
)
5012 static int zio_error_rank
[] = { 0, ENXIO
, ECKSUM
, EIO
};
5015 for (r1
= 0; r1
< sizeof (zio_error_rank
) / sizeof (int); r1
++)
5016 if (e1
== zio_error_rank
[r1
])
5019 for (r2
= 0; r2
< sizeof (zio_error_rank
) / sizeof (int); r2
++)
5020 if (e2
== zio_error_rank
[r2
])
5023 return (r1
> r2
? e1
: e2
);
5027 * ==========================================================================
5029 * ==========================================================================
5032 zio_ready(zio_t
*zio
)
5034 blkptr_t
*bp
= zio
->io_bp
;
5035 zio_t
*pio
, *pio_next
;
5036 zio_link_t
*zl
= NULL
;
5038 if (zio_wait_for_children(zio
, ZIO_CHILD_LOGICAL_BIT
|
5039 ZIO_CHILD_GANG_BIT
| ZIO_CHILD_DDT_BIT
, ZIO_WAIT_READY
)) {
5043 if (zio
->io_ready
) {
5044 ASSERT(IO_IS_ALLOCATING(zio
));
5045 ASSERT(BP_GET_LOGICAL_BIRTH(bp
) == zio
->io_txg
||
5046 BP_IS_HOLE(bp
) || (zio
->io_flags
& ZIO_FLAG_NOPWRITE
));
5047 ASSERT(zio
->io_children
[ZIO_CHILD_GANG
][ZIO_WAIT_READY
] == 0);
5053 if (bp
!= NULL
&& bp
!= &zio
->io_bp_copy
)
5054 zio
->io_bp_copy
= *bp
;
5057 if (zio
->io_error
!= 0) {
5058 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
5060 if (zio
->io_flags
& ZIO_FLAG_IO_ALLOCATING
) {
5061 ASSERT(IO_IS_ALLOCATING(zio
));
5062 ASSERT(zio
->io_priority
== ZIO_PRIORITY_ASYNC_WRITE
);
5063 ASSERT(zio
->io_metaslab_class
!= NULL
);
5064 ASSERT(ZIO_HAS_ALLOCATOR(zio
));
5067 * We were unable to allocate anything, unreserve and
5068 * issue the next I/O to allocate.
5070 metaslab_class_throttle_unreserve(
5071 zio
->io_metaslab_class
, zio
->io_prop
.zp_copies
,
5072 zio
->io_allocator
, zio
);
5073 zio_allocate_dispatch(zio
->io_spa
, zio
->io_allocator
);
5077 mutex_enter(&zio
->io_lock
);
5078 zio
->io_state
[ZIO_WAIT_READY
] = 1;
5079 pio
= zio_walk_parents(zio
, &zl
);
5080 mutex_exit(&zio
->io_lock
);
5083 * As we notify zio's parents, new parents could be added.
5084 * New parents go to the head of zio's io_parent_list, however,
5085 * so we will (correctly) not notify them. The remainder of zio's
5086 * io_parent_list, from 'pio_next' onward, cannot change because
5087 * all parents must wait for us to be done before they can be done.
5089 for (; pio
!= NULL
; pio
= pio_next
) {
5090 pio_next
= zio_walk_parents(zio
, &zl
);
5091 zio_notify_parent(pio
, zio
, ZIO_WAIT_READY
, NULL
);
5094 if (zio
->io_flags
& ZIO_FLAG_NODATA
) {
5095 if (bp
!= NULL
&& BP_IS_GANG(bp
)) {
5096 zio
->io_flags
&= ~ZIO_FLAG_NODATA
;
5098 ASSERT((uintptr_t)zio
->io_abd
< SPA_MAXBLOCKSIZE
);
5099 zio
->io_pipeline
&= ~ZIO_VDEV_IO_STAGES
;
5103 if (zio_injection_enabled
&&
5104 zio
->io_spa
->spa_syncing_txg
== zio
->io_txg
)
5105 zio_handle_ignored_writes(zio
);
5111 * Update the allocation throttle accounting.
5114 zio_dva_throttle_done(zio_t
*zio
)
5116 zio_t
*lio __maybe_unused
= zio
->io_logical
;
5117 zio_t
*pio
= zio_unique_parent(zio
);
5118 vdev_t
*vd
= zio
->io_vd
;
5119 int flags
= METASLAB_ASYNC_ALLOC
;
5121 ASSERT3P(zio
->io_bp
, !=, NULL
);
5122 ASSERT3U(zio
->io_type
, ==, ZIO_TYPE_WRITE
);
5123 ASSERT3U(zio
->io_priority
, ==, ZIO_PRIORITY_ASYNC_WRITE
);
5124 ASSERT3U(zio
->io_child_type
, ==, ZIO_CHILD_VDEV
);
5126 ASSERT3P(vd
, ==, vd
->vdev_top
);
5127 ASSERT(zio_injection_enabled
|| !(zio
->io_flags
& ZIO_FLAG_IO_RETRY
));
5128 ASSERT(!(zio
->io_flags
& ZIO_FLAG_IO_REPAIR
));
5129 ASSERT(zio
->io_flags
& ZIO_FLAG_IO_ALLOCATING
);
5130 ASSERT(!(lio
->io_flags
& ZIO_FLAG_IO_REWRITE
));
5131 ASSERT(!(lio
->io_orig_flags
& ZIO_FLAG_NODATA
));
5134 * Parents of gang children can have two flavors -- ones that
5135 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
5136 * and ones that allocated the constituent blocks. The allocation
5137 * throttle needs to know the allocating parent zio so we must find
5140 if (pio
->io_child_type
== ZIO_CHILD_GANG
) {
5142 * If our parent is a rewrite gang child then our grandparent
5143 * would have been the one that performed the allocation.
5145 if (pio
->io_flags
& ZIO_FLAG_IO_REWRITE
)
5146 pio
= zio_unique_parent(pio
);
5147 flags
|= METASLAB_GANG_CHILD
;
5150 ASSERT(IO_IS_ALLOCATING(pio
));
5151 ASSERT(ZIO_HAS_ALLOCATOR(pio
));
5152 ASSERT3P(zio
, !=, zio
->io_logical
);
5153 ASSERT(zio
->io_logical
!= NULL
);
5154 ASSERT(!(zio
->io_flags
& ZIO_FLAG_IO_REPAIR
));
5155 ASSERT0(zio
->io_flags
& ZIO_FLAG_NOPWRITE
);
5156 ASSERT(zio
->io_metaslab_class
!= NULL
);
5158 mutex_enter(&pio
->io_lock
);
5159 metaslab_group_alloc_decrement(zio
->io_spa
, vd
->vdev_id
, pio
, flags
,
5160 pio
->io_allocator
, B_TRUE
);
5161 mutex_exit(&pio
->io_lock
);
5163 metaslab_class_throttle_unreserve(zio
->io_metaslab_class
, 1,
5164 pio
->io_allocator
, pio
);
5167 * Call into the pipeline to see if there is more work that
5168 * needs to be done. If there is work to be done it will be
5169 * dispatched to another taskq thread.
5171 zio_allocate_dispatch(zio
->io_spa
, pio
->io_allocator
);
5175 zio_done(zio_t
*zio
)
5178 * Always attempt to keep stack usage minimal here since
5179 * we can be called recursively up to 19 levels deep.
5181 const uint64_t psize
= zio
->io_size
;
5182 zio_t
*pio
, *pio_next
;
5183 zio_link_t
*zl
= NULL
;
5186 * If our children haven't all completed,
5187 * wait for them and then repeat this pipeline stage.
5189 if (zio_wait_for_children(zio
, ZIO_CHILD_ALL_BITS
, ZIO_WAIT_DONE
)) {
5194 * If the allocation throttle is enabled, then update the accounting.
5195 * We only track child I/Os that are part of an allocating async
5196 * write. We must do this since the allocation is performed
5197 * by the logical I/O but the actual write is done by child I/Os.
5199 if (zio
->io_flags
& ZIO_FLAG_IO_ALLOCATING
&&
5200 zio
->io_child_type
== ZIO_CHILD_VDEV
) {
5201 ASSERT(zio
->io_metaslab_class
!= NULL
);
5202 ASSERT(zio
->io_metaslab_class
->mc_alloc_throttle_enabled
);
5203 zio_dva_throttle_done(zio
);
5207 * If the allocation throttle is enabled, verify that
5208 * we have decremented the refcounts for every I/O that was throttled.
5210 if (zio
->io_flags
& ZIO_FLAG_IO_ALLOCATING
) {
5211 ASSERT(zio
->io_type
== ZIO_TYPE_WRITE
);
5212 ASSERT(zio
->io_priority
== ZIO_PRIORITY_ASYNC_WRITE
);
5213 ASSERT(zio
->io_bp
!= NULL
);
5214 ASSERT(ZIO_HAS_ALLOCATOR(zio
));
5216 metaslab_group_alloc_verify(zio
->io_spa
, zio
->io_bp
, zio
,
5218 VERIFY(zfs_refcount_not_held(&zio
->io_metaslab_class
->
5219 mc_allocator
[zio
->io_allocator
].mca_alloc_slots
, zio
));
5223 for (int c
= 0; c
< ZIO_CHILD_TYPES
; c
++)
5224 for (int w
= 0; w
< ZIO_WAIT_TYPES
; w
++)
5225 ASSERT(zio
->io_children
[c
][w
] == 0);
5227 if (zio
->io_bp
!= NULL
&& !BP_IS_EMBEDDED(zio
->io_bp
)) {
5228 ASSERT(zio
->io_bp
->blk_pad
[0] == 0);
5229 ASSERT(zio
->io_bp
->blk_pad
[1] == 0);
5230 ASSERT(memcmp(zio
->io_bp
, &zio
->io_bp_copy
,
5231 sizeof (blkptr_t
)) == 0 ||
5232 (zio
->io_bp
== zio_unique_parent(zio
)->io_bp
));
5233 if (zio
->io_type
== ZIO_TYPE_WRITE
&& !BP_IS_HOLE(zio
->io_bp
) &&
5234 zio
->io_bp_override
== NULL
&&
5235 !(zio
->io_flags
& ZIO_FLAG_IO_REPAIR
)) {
5236 ASSERT3U(zio
->io_prop
.zp_copies
, <=,
5237 BP_GET_NDVAS(zio
->io_bp
));
5238 ASSERT(BP_COUNT_GANG(zio
->io_bp
) == 0 ||
5239 (BP_COUNT_GANG(zio
->io_bp
) ==
5240 BP_GET_NDVAS(zio
->io_bp
)));
5242 if (zio
->io_flags
& ZIO_FLAG_NOPWRITE
)
5243 VERIFY(BP_EQUAL(zio
->io_bp
, &zio
->io_bp_orig
));
5247 * If there were child vdev/gang/ddt errors, they apply to us now.
5249 zio_inherit_child_errors(zio
, ZIO_CHILD_VDEV
);
5250 zio_inherit_child_errors(zio
, ZIO_CHILD_GANG
);
5251 zio_inherit_child_errors(zio
, ZIO_CHILD_DDT
);
5254 * If the I/O on the transformed data was successful, generate any
5255 * checksum reports now while we still have the transformed data.
5257 if (zio
->io_error
== 0) {
5258 while (zio
->io_cksum_report
!= NULL
) {
5259 zio_cksum_report_t
*zcr
= zio
->io_cksum_report
;
5260 uint64_t align
= zcr
->zcr_align
;
5261 uint64_t asize
= P2ROUNDUP(psize
, align
);
5262 abd_t
*adata
= zio
->io_abd
;
5264 if (adata
!= NULL
&& asize
!= psize
) {
5265 adata
= abd_alloc(asize
, B_TRUE
);
5266 abd_copy(adata
, zio
->io_abd
, psize
);
5267 abd_zero_off(adata
, psize
, asize
- psize
);
5270 zio
->io_cksum_report
= zcr
->zcr_next
;
5271 zcr
->zcr_next
= NULL
;
5272 zcr
->zcr_finish(zcr
, adata
);
5273 zfs_ereport_free_checksum(zcr
);
5275 if (adata
!= NULL
&& asize
!= psize
)
5280 zio_pop_transforms(zio
); /* note: may set zio->io_error */
5282 vdev_stat_update(zio
, psize
);
5285 * If this I/O is attached to a particular vdev is slow, exceeding
5286 * 30 seconds to complete, post an error described the I/O delay.
5287 * We ignore these errors if the device is currently unavailable.
5289 if (zio
->io_delay
>= MSEC2NSEC(zio_slow_io_ms
)) {
5290 if (zio
->io_vd
!= NULL
&& !vdev_is_dead(zio
->io_vd
)) {
5292 * We want to only increment our slow IO counters if
5293 * the IO is valid (i.e. not if the drive is removed).
5295 * zfs_ereport_post() will also do these checks, but
5296 * it can also ratelimit and have other failures, so we
5297 * need to increment the slow_io counters independent
5300 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY
,
5301 zio
->io_spa
, zio
->io_vd
, zio
)) {
5302 mutex_enter(&zio
->io_vd
->vdev_stat_lock
);
5303 zio
->io_vd
->vdev_stat
.vs_slow_ios
++;
5304 mutex_exit(&zio
->io_vd
->vdev_stat_lock
);
5306 (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY
,
5307 zio
->io_spa
, zio
->io_vd
, &zio
->io_bookmark
,
5313 if (zio
->io_error
) {
5315 * If this I/O is attached to a particular vdev,
5316 * generate an error message describing the I/O failure
5317 * at the block level. We ignore these errors if the
5318 * device is currently unavailable.
5320 if (zio
->io_error
!= ECKSUM
&& zio
->io_vd
!= NULL
&&
5321 !vdev_is_dead(zio
->io_vd
) &&
5322 !(zio
->io_flags
& ZIO_FLAG_DIO_CHKSUM_ERR
)) {
5323 int ret
= zfs_ereport_post(FM_EREPORT_ZFS_IO
,
5324 zio
->io_spa
, zio
->io_vd
, &zio
->io_bookmark
, zio
, 0);
5325 if (ret
!= EALREADY
) {
5326 mutex_enter(&zio
->io_vd
->vdev_stat_lock
);
5327 if (zio
->io_type
== ZIO_TYPE_READ
)
5328 zio
->io_vd
->vdev_stat
.vs_read_errors
++;
5329 else if (zio
->io_type
== ZIO_TYPE_WRITE
)
5330 zio
->io_vd
->vdev_stat
.vs_write_errors
++;
5331 mutex_exit(&zio
->io_vd
->vdev_stat_lock
);
5335 if ((zio
->io_error
== EIO
|| !(zio
->io_flags
&
5336 (ZIO_FLAG_SPECULATIVE
| ZIO_FLAG_DONT_PROPAGATE
))) &&
5337 !(zio
->io_flags
& ZIO_FLAG_DIO_CHKSUM_ERR
) &&
5338 zio
== zio
->io_logical
) {
5340 * For logical I/O requests, tell the SPA to log the
5341 * error and generate a logical data ereport.
5343 spa_log_error(zio
->io_spa
, &zio
->io_bookmark
,
5344 BP_GET_LOGICAL_BIRTH(zio
->io_bp
));
5345 (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA
,
5346 zio
->io_spa
, NULL
, &zio
->io_bookmark
, zio
, 0);
5350 if (zio
->io_error
&& zio
== zio
->io_logical
) {
5352 * Determine whether zio should be reexecuted. This will
5353 * propagate all the way to the root via zio_notify_parent().
5355 ASSERT(zio
->io_vd
== NULL
&& zio
->io_bp
!= NULL
);
5356 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
5358 if (IO_IS_ALLOCATING(zio
) &&
5359 !(zio
->io_flags
& ZIO_FLAG_CANFAIL
) &&
5360 !(zio
->io_flags
& ZIO_FLAG_DIO_CHKSUM_ERR
)) {
5361 if (zio
->io_error
!= ENOSPC
)
5362 zio
->io_reexecute
|= ZIO_REEXECUTE_NOW
;
5364 zio
->io_reexecute
|= ZIO_REEXECUTE_SUSPEND
;
5367 if ((zio
->io_type
== ZIO_TYPE_READ
||
5368 zio
->io_type
== ZIO_TYPE_FREE
) &&
5369 !(zio
->io_flags
& ZIO_FLAG_SCAN_THREAD
) &&
5370 zio
->io_error
== ENXIO
&&
5371 spa_load_state(zio
->io_spa
) == SPA_LOAD_NONE
&&
5372 spa_get_failmode(zio
->io_spa
) != ZIO_FAILURE_MODE_CONTINUE
)
5373 zio
->io_reexecute
|= ZIO_REEXECUTE_SUSPEND
;
5375 if (!(zio
->io_flags
& ZIO_FLAG_CANFAIL
) && !zio
->io_reexecute
)
5376 zio
->io_reexecute
|= ZIO_REEXECUTE_SUSPEND
;
5379 * Here is a possibly good place to attempt to do
5380 * either combinatorial reconstruction or error correction
5381 * based on checksums. It also might be a good place
5382 * to send out preliminary ereports before we suspend
5388 * If there were logical child errors, they apply to us now.
5389 * We defer this until now to avoid conflating logical child
5390 * errors with errors that happened to the zio itself when
5391 * updating vdev stats and reporting FMA events above.
5393 zio_inherit_child_errors(zio
, ZIO_CHILD_LOGICAL
);
5395 if ((zio
->io_error
|| zio
->io_reexecute
) &&
5396 IO_IS_ALLOCATING(zio
) && zio
->io_gang_leader
== zio
&&
5397 !(zio
->io_flags
& (ZIO_FLAG_IO_REWRITE
| ZIO_FLAG_NOPWRITE
)))
5398 zio_dva_unallocate(zio
, zio
->io_gang_tree
, zio
->io_bp
);
5400 zio_gang_tree_free(&zio
->io_gang_tree
);
5403 * Godfather I/Os should never suspend.
5405 if ((zio
->io_flags
& ZIO_FLAG_GODFATHER
) &&
5406 (zio
->io_reexecute
& ZIO_REEXECUTE_SUSPEND
))
5407 zio
->io_reexecute
&= ~ZIO_REEXECUTE_SUSPEND
;
5409 if (zio
->io_reexecute
) {
5411 * A Direct I/O operation that has a checksum verify error
5412 * should not attempt to reexecute. Instead, the error should
5413 * just be propagated back.
5415 ASSERT(!(zio
->io_flags
& ZIO_FLAG_DIO_CHKSUM_ERR
));
5418 * This is a logical I/O that wants to reexecute.
5420 * Reexecute is top-down. When an i/o fails, if it's not
5421 * the root, it simply notifies its parent and sticks around.
5422 * The parent, seeing that it still has children in zio_done(),
5423 * does the same. This percolates all the way up to the root.
5424 * The root i/o will reexecute or suspend the entire tree.
5426 * This approach ensures that zio_reexecute() honors
5427 * all the original i/o dependency relationships, e.g.
5428 * parents not executing until children are ready.
5430 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
5432 zio
->io_gang_leader
= NULL
;
5434 mutex_enter(&zio
->io_lock
);
5435 zio
->io_state
[ZIO_WAIT_DONE
] = 1;
5436 mutex_exit(&zio
->io_lock
);
5439 * "The Godfather" I/O monitors its children but is
5440 * not a true parent to them. It will track them through
5441 * the pipeline but severs its ties whenever they get into
5442 * trouble (e.g. suspended). This allows "The Godfather"
5443 * I/O to return status without blocking.
5446 for (pio
= zio_walk_parents(zio
, &zl
); pio
!= NULL
;
5448 zio_link_t
*remove_zl
= zl
;
5449 pio_next
= zio_walk_parents(zio
, &zl
);
5451 if ((pio
->io_flags
& ZIO_FLAG_GODFATHER
) &&
5452 (zio
->io_reexecute
& ZIO_REEXECUTE_SUSPEND
)) {
5453 zio_remove_child(pio
, zio
, remove_zl
);
5455 * This is a rare code path, so we don't
5456 * bother with "next_to_execute".
5458 zio_notify_parent(pio
, zio
, ZIO_WAIT_DONE
,
5463 if ((pio
= zio_unique_parent(zio
)) != NULL
) {
5465 * We're not a root i/o, so there's nothing to do
5466 * but notify our parent. Don't propagate errors
5467 * upward since we haven't permanently failed yet.
5469 ASSERT(!(zio
->io_flags
& ZIO_FLAG_GODFATHER
));
5470 zio
->io_flags
|= ZIO_FLAG_DONT_PROPAGATE
;
5472 * This is a rare code path, so we don't bother with
5473 * "next_to_execute".
5475 zio_notify_parent(pio
, zio
, ZIO_WAIT_DONE
, NULL
);
5476 } else if (zio
->io_reexecute
& ZIO_REEXECUTE_SUSPEND
) {
5478 * We'd fail again if we reexecuted now, so suspend
5479 * until conditions improve (e.g. device comes online).
5481 zio_suspend(zio
->io_spa
, zio
, ZIO_SUSPEND_IOERR
);
5484 * Reexecution is potentially a huge amount of work.
5485 * Hand it off to the otherwise-unused claim taskq.
5487 spa_taskq_dispatch(zio
->io_spa
,
5488 ZIO_TYPE_CLAIM
, ZIO_TASKQ_ISSUE
,
5489 zio_reexecute
, zio
, B_FALSE
);
5494 ASSERT(list_is_empty(&zio
->io_child_list
));
5495 ASSERT(zio
->io_reexecute
== 0);
5496 ASSERT(zio
->io_error
== 0 || (zio
->io_flags
& ZIO_FLAG_CANFAIL
));
5499 * Report any checksum errors, since the I/O is complete.
5501 while (zio
->io_cksum_report
!= NULL
) {
5502 zio_cksum_report_t
*zcr
= zio
->io_cksum_report
;
5503 zio
->io_cksum_report
= zcr
->zcr_next
;
5504 zcr
->zcr_next
= NULL
;
5505 zcr
->zcr_finish(zcr
, NULL
);
5506 zfs_ereport_free_checksum(zcr
);
5510 * It is the responsibility of the done callback to ensure that this
5511 * particular zio is no longer discoverable for adoption, and as
5512 * such, cannot acquire any new parents.
5517 mutex_enter(&zio
->io_lock
);
5518 zio
->io_state
[ZIO_WAIT_DONE
] = 1;
5519 mutex_exit(&zio
->io_lock
);
5522 * We are done executing this zio. We may want to execute a parent
5523 * next. See the comment in zio_notify_parent().
5525 zio_t
*next_to_execute
= NULL
;
5527 for (pio
= zio_walk_parents(zio
, &zl
); pio
!= NULL
; pio
= pio_next
) {
5528 zio_link_t
*remove_zl
= zl
;
5529 pio_next
= zio_walk_parents(zio
, &zl
);
5530 zio_remove_child(pio
, zio
, remove_zl
);
5531 zio_notify_parent(pio
, zio
, ZIO_WAIT_DONE
, &next_to_execute
);
5534 if (zio
->io_waiter
!= NULL
) {
5535 mutex_enter(&zio
->io_lock
);
5536 zio
->io_executor
= NULL
;
5537 cv_broadcast(&zio
->io_cv
);
5538 mutex_exit(&zio
->io_lock
);
5543 return (next_to_execute
);
5547 * ==========================================================================
5548 * I/O pipeline definition
5549 * ==========================================================================
5551 static zio_pipe_stage_t
*zio_pipeline
[] = {
5559 zio_checksum_generate
,
5576 zio_checksum_verify
,
5577 zio_dio_checksum_verify
,
5585 * Compare two zbookmark_phys_t's to see which we would reach first in a
5586 * pre-order traversal of the object tree.
5588 * This is simple in every case aside from the meta-dnode object. For all other
5589 * objects, we traverse them in order (object 1 before object 2, and so on).
5590 * However, all of these objects are traversed while traversing object 0, since
5591 * the data it points to is the list of objects. Thus, we need to convert to a
5592 * canonical representation so we can compare meta-dnode bookmarks to
5593 * non-meta-dnode bookmarks.
5595 * We do this by calculating "equivalents" for each field of the zbookmark.
5596 * zbookmarks outside of the meta-dnode use their own object and level, and
5597 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
5598 * blocks this bookmark refers to) by multiplying their blkid by their span
5599 * (the number of L0 blocks contained within one block at their level).
5600 * zbookmarks inside the meta-dnode calculate their object equivalent
5601 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
5602 * level + 1<<31 (any value larger than a level could ever be) for their level.
5603 * This causes them to always compare before a bookmark in their object
5604 * equivalent, compare appropriately to bookmarks in other objects, and to
5605 * compare appropriately to other bookmarks in the meta-dnode.
5608 zbookmark_compare(uint16_t dbss1
, uint8_t ibs1
, uint16_t dbss2
, uint8_t ibs2
,
5609 const zbookmark_phys_t
*zb1
, const zbookmark_phys_t
*zb2
)
5612 * These variables represent the "equivalent" values for the zbookmark,
5613 * after converting zbookmarks inside the meta dnode to their
5614 * normal-object equivalents.
5616 uint64_t zb1obj
, zb2obj
;
5617 uint64_t zb1L0
, zb2L0
;
5618 uint64_t zb1level
, zb2level
;
5620 if (zb1
->zb_object
== zb2
->zb_object
&&
5621 zb1
->zb_level
== zb2
->zb_level
&&
5622 zb1
->zb_blkid
== zb2
->zb_blkid
)
5625 IMPLY(zb1
->zb_level
> 0, ibs1
>= SPA_MINBLOCKSHIFT
);
5626 IMPLY(zb2
->zb_level
> 0, ibs2
>= SPA_MINBLOCKSHIFT
);
5629 * BP_SPANB calculates the span in blocks.
5631 zb1L0
= (zb1
->zb_blkid
) * BP_SPANB(ibs1
, zb1
->zb_level
);
5632 zb2L0
= (zb2
->zb_blkid
) * BP_SPANB(ibs2
, zb2
->zb_level
);
5634 if (zb1
->zb_object
== DMU_META_DNODE_OBJECT
) {
5635 zb1obj
= zb1L0
* (dbss1
<< (SPA_MINBLOCKSHIFT
- DNODE_SHIFT
));
5637 zb1level
= zb1
->zb_level
+ COMPARE_META_LEVEL
;
5639 zb1obj
= zb1
->zb_object
;
5640 zb1level
= zb1
->zb_level
;
5643 if (zb2
->zb_object
== DMU_META_DNODE_OBJECT
) {
5644 zb2obj
= zb2L0
* (dbss2
<< (SPA_MINBLOCKSHIFT
- DNODE_SHIFT
));
5646 zb2level
= zb2
->zb_level
+ COMPARE_META_LEVEL
;
5648 zb2obj
= zb2
->zb_object
;
5649 zb2level
= zb2
->zb_level
;
5652 /* Now that we have a canonical representation, do the comparison. */
5653 if (zb1obj
!= zb2obj
)
5654 return (zb1obj
< zb2obj
? -1 : 1);
5655 else if (zb1L0
!= zb2L0
)
5656 return (zb1L0
< zb2L0
? -1 : 1);
5657 else if (zb1level
!= zb2level
)
5658 return (zb1level
> zb2level
? -1 : 1);
5660 * This can (theoretically) happen if the bookmarks have the same object
5661 * and level, but different blkids, if the block sizes are not the same.
5662 * There is presently no way to change the indirect block sizes
5668 * This function checks the following: given that last_block is the place that
5669 * our traversal stopped last time, does that guarantee that we've visited
5670 * every node under subtree_root? Therefore, we can't just use the raw output
5671 * of zbookmark_compare. We have to pass in a modified version of
5672 * subtree_root; by incrementing the block id, and then checking whether
5673 * last_block is before or equal to that, we can tell whether or not having
5674 * visited last_block implies that all of subtree_root's children have been
5678 zbookmark_subtree_completed(const dnode_phys_t
*dnp
,
5679 const zbookmark_phys_t
*subtree_root
, const zbookmark_phys_t
*last_block
)
5681 zbookmark_phys_t mod_zb
= *subtree_root
;
5683 ASSERT0(last_block
->zb_level
);
5685 /* The objset_phys_t isn't before anything. */
5690 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
5691 * data block size in sectors, because that variable is only used if
5692 * the bookmark refers to a block in the meta-dnode. Since we don't
5693 * know without examining it what object it refers to, and there's no
5694 * harm in passing in this value in other cases, we always pass it in.
5696 * We pass in 0 for the indirect block size shift because zb2 must be
5697 * level 0. The indirect block size is only used to calculate the span
5698 * of the bookmark, but since the bookmark must be level 0, the span is
5699 * always 1, so the math works out.
5701 * If you make changes to how the zbookmark_compare code works, be sure
5702 * to make sure that this code still works afterwards.
5704 return (zbookmark_compare(dnp
->dn_datablkszsec
, dnp
->dn_indblkshift
,
5705 1ULL << (DNODE_BLOCK_SHIFT
- SPA_MINBLOCKSHIFT
), 0, &mod_zb
,
5710 * This function is similar to zbookmark_subtree_completed(), but returns true
5711 * if subtree_root is equal or ahead of last_block, i.e. still to be done.
5714 zbookmark_subtree_tbd(const dnode_phys_t
*dnp
,
5715 const zbookmark_phys_t
*subtree_root
, const zbookmark_phys_t
*last_block
)
5717 ASSERT0(last_block
->zb_level
);
5720 return (zbookmark_compare(dnp
->dn_datablkszsec
, dnp
->dn_indblkshift
,
5721 1ULL << (DNODE_BLOCK_SHIFT
- SPA_MINBLOCKSHIFT
), 0, subtree_root
,
5725 EXPORT_SYMBOL(zio_type_name
);
5726 EXPORT_SYMBOL(zio_buf_alloc
);
5727 EXPORT_SYMBOL(zio_data_buf_alloc
);
5728 EXPORT_SYMBOL(zio_buf_free
);
5729 EXPORT_SYMBOL(zio_data_buf_free
);
5731 ZFS_MODULE_PARAM(zfs_zio
, zio_
, slow_io_ms
, INT
, ZMOD_RW
,
5732 "Max I/O completion time (milliseconds) before marking it as slow");
5734 ZFS_MODULE_PARAM(zfs_zio
, zio_
, requeue_io_start_cut_in_line
, INT
, ZMOD_RW
,
5735 "Prioritize requeued I/O");
5737 ZFS_MODULE_PARAM(zfs
, zfs_
, sync_pass_deferred_free
, UINT
, ZMOD_RW
,
5738 "Defer frees starting in this pass");
5740 ZFS_MODULE_PARAM(zfs
, zfs_
, sync_pass_dont_compress
, UINT
, ZMOD_RW
,
5741 "Don't compress starting in this pass");
5743 ZFS_MODULE_PARAM(zfs
, zfs_
, sync_pass_rewrite
, UINT
, ZMOD_RW
,
5744 "Rewrite new bps starting in this pass");
5746 ZFS_MODULE_PARAM(zfs_zio
, zio_
, dva_throttle_enabled
, INT
, ZMOD_RW
,
5747 "Throttle block allocations in the ZIO pipeline");
5749 ZFS_MODULE_PARAM(zfs_zio
, zio_
, deadman_log_all
, INT
, ZMOD_RW
,
5750 "Log all slow ZIOs, not just those with vdevs");