Avoid extra snprintf() in dsl_deadlist_merge().
[zfs.git] / module / zfs / dsl_deadlist.c
blob47c234f76c40dfb7dbf391c860db2158ce7f2b56
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 #include <sys/dmu.h>
28 #include <sys/zap.h>
29 #include <sys/zfs_context.h>
30 #include <sys/dsl_pool.h>
31 #include <sys/dsl_dataset.h>
34 * Deadlist concurrency:
36 * Deadlists can only be modified from the syncing thread.
38 * Except for dsl_deadlist_insert(), it can only be modified with the
39 * dp_config_rwlock held with RW_WRITER.
41 * The accessors (dsl_deadlist_space() and dsl_deadlist_space_range()) can
42 * be called concurrently, from open context, with the dl_config_rwlock held
43 * with RW_READER.
45 * Therefore, we only need to provide locking between dsl_deadlist_insert() and
46 * the accessors, protecting:
47 * dl_phys->dl_used,comp,uncomp
48 * and protecting the dl_tree from being loaded.
49 * The locking is provided by dl_lock. Note that locking on the bpobj_t
50 * provides its own locking, and dl_oldfmt is immutable.
54 * Livelist Overview
55 * ================
57 * Livelists use the same 'deadlist_t' struct as deadlists and are also used
58 * to track blkptrs over the lifetime of a dataset. Livelists however, belong
59 * to clones and track the blkptrs that are clone-specific (were born after
60 * the clone's creation). The exception is embedded block pointers which are
61 * not included in livelists because they do not need to be freed.
63 * When it comes time to delete the clone, the livelist provides a quick
64 * reference as to what needs to be freed. For this reason, livelists also track
65 * when clone-specific blkptrs are freed before deletion to prevent double
66 * frees. Each blkptr in a livelist is marked as a FREE or an ALLOC and the
67 * deletion algorithm iterates backwards over the livelist, matching
68 * FREE/ALLOC pairs and then freeing those ALLOCs which remain. livelists
69 * are also updated in the case when blkptrs are remapped: the old version
70 * of the blkptr is cancelled out with a FREE and the new version is tracked
71 * with an ALLOC.
73 * To bound the amount of memory required for deletion, livelists over a
74 * certain size are spread over multiple entries. Entries are grouped by
75 * birth txg so we can be sure the ALLOC/FREE pair for a given blkptr will
76 * be in the same entry. This allows us to delete livelists incrementally
77 * over multiple syncs, one entry at a time.
79 * During the lifetime of the clone, livelists can get extremely large.
80 * Their size is managed by periodic condensing (preemptively cancelling out
81 * FREE/ALLOC pairs). Livelists are disabled when a clone is promoted or when
82 * the shared space between the clone and its origin is so small that it
83 * doesn't make sense to use livelists anymore.
87 * The threshold sublist size at which we create a new sub-livelist for the
88 * next txg. However, since blkptrs of the same transaction group must be in
89 * the same sub-list, the actual sublist size may exceed this. When picking the
90 * size we had to balance the fact that larger sublists mean fewer sublists
91 * (decreasing the cost of insertion) against the consideration that sublists
92 * will be loaded into memory and shouldn't take up an inordinate amount of
93 * space. We settled on ~500000 entries, corresponding to roughly 128M.
95 uint64_t zfs_livelist_max_entries = 500000;
98 * We can approximate how much of a performance gain a livelist will give us
99 * based on the percentage of blocks shared between the clone and its origin.
100 * 0 percent shared means that the clone has completely diverged and that the
101 * old method is maximally effective: every read from the block tree will
102 * result in lots of frees. Livelists give us gains when they track blocks
103 * scattered across the tree, when one read in the old method might only
104 * result in a few frees. Once the clone has been overwritten enough,
105 * writes are no longer sparse and we'll no longer get much of a benefit from
106 * tracking them with a livelist. We chose a lower limit of 75 percent shared
107 * (25 percent overwritten). This means that 1/4 of all block pointers will be
108 * freed (e.g. each read frees 256, out of a max of 1024) so we expect livelists
109 * to make deletion 4x faster. Once the amount of shared space drops below this
110 * threshold, the clone will revert to the old deletion method.
112 int zfs_livelist_min_percent_shared = 75;
114 static int
115 dsl_deadlist_compare(const void *arg1, const void *arg2)
117 const dsl_deadlist_entry_t *dle1 = arg1;
118 const dsl_deadlist_entry_t *dle2 = arg2;
120 return (TREE_CMP(dle1->dle_mintxg, dle2->dle_mintxg));
123 static int
124 dsl_deadlist_cache_compare(const void *arg1, const void *arg2)
126 const dsl_deadlist_cache_entry_t *dlce1 = arg1;
127 const dsl_deadlist_cache_entry_t *dlce2 = arg2;
129 return (TREE_CMP(dlce1->dlce_mintxg, dlce2->dlce_mintxg));
132 static void
133 dsl_deadlist_load_tree(dsl_deadlist_t *dl)
135 zap_cursor_t zc;
136 zap_attribute_t za;
137 int error;
139 ASSERT(MUTEX_HELD(&dl->dl_lock));
141 ASSERT(!dl->dl_oldfmt);
142 if (dl->dl_havecache) {
144 * After loading the tree, the caller may modify the tree,
145 * e.g. to add or remove nodes, or to make a node no longer
146 * refer to the empty_bpobj. These changes would make the
147 * dl_cache incorrect. Therefore we discard the cache here,
148 * so that it can't become incorrect.
150 dsl_deadlist_cache_entry_t *dlce;
151 void *cookie = NULL;
152 while ((dlce = avl_destroy_nodes(&dl->dl_cache, &cookie))
153 != NULL) {
154 kmem_free(dlce, sizeof (*dlce));
156 avl_destroy(&dl->dl_cache);
157 dl->dl_havecache = B_FALSE;
159 if (dl->dl_havetree)
160 return;
162 avl_create(&dl->dl_tree, dsl_deadlist_compare,
163 sizeof (dsl_deadlist_entry_t),
164 offsetof(dsl_deadlist_entry_t, dle_node));
165 for (zap_cursor_init(&zc, dl->dl_os, dl->dl_object);
166 (error = zap_cursor_retrieve(&zc, &za)) == 0;
167 zap_cursor_advance(&zc)) {
168 dsl_deadlist_entry_t *dle = kmem_alloc(sizeof (*dle), KM_SLEEP);
169 dle->dle_mintxg = zfs_strtonum(za.za_name, NULL);
172 * Prefetch all the bpobj's so that we do that i/o
173 * in parallel. Then open them all in a second pass.
175 dle->dle_bpobj.bpo_object = za.za_first_integer;
176 dmu_prefetch(dl->dl_os, dle->dle_bpobj.bpo_object,
177 0, 0, 0, ZIO_PRIORITY_SYNC_READ);
179 avl_add(&dl->dl_tree, dle);
181 VERIFY3U(error, ==, ENOENT);
182 zap_cursor_fini(&zc);
184 for (dsl_deadlist_entry_t *dle = avl_first(&dl->dl_tree);
185 dle != NULL; dle = AVL_NEXT(&dl->dl_tree, dle)) {
186 VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os,
187 dle->dle_bpobj.bpo_object));
189 dl->dl_havetree = B_TRUE;
193 * Load only the non-empty bpobj's into the dl_cache. The cache is an analog
194 * of the dl_tree, but contains only non-empty_bpobj nodes from the ZAP. It
195 * is used only for gathering space statistics. The dl_cache has two
196 * advantages over the dl_tree:
198 * 1. Loading the dl_cache is ~5x faster than loading the dl_tree (if it's
199 * mostly empty_bpobj's), due to less CPU overhead to open the empty_bpobj
200 * many times and to inquire about its (zero) space stats many times.
202 * 2. The dl_cache uses less memory than the dl_tree. We only need to load
203 * the dl_tree of snapshots when deleting a snapshot, after which we free the
204 * dl_tree with dsl_deadlist_discard_tree
206 static void
207 dsl_deadlist_load_cache(dsl_deadlist_t *dl)
209 zap_cursor_t zc;
210 zap_attribute_t za;
211 int error;
213 ASSERT(MUTEX_HELD(&dl->dl_lock));
215 ASSERT(!dl->dl_oldfmt);
216 if (dl->dl_havecache)
217 return;
219 uint64_t empty_bpobj = dmu_objset_pool(dl->dl_os)->dp_empty_bpobj;
221 avl_create(&dl->dl_cache, dsl_deadlist_cache_compare,
222 sizeof (dsl_deadlist_cache_entry_t),
223 offsetof(dsl_deadlist_cache_entry_t, dlce_node));
224 for (zap_cursor_init(&zc, dl->dl_os, dl->dl_object);
225 (error = zap_cursor_retrieve(&zc, &za)) == 0;
226 zap_cursor_advance(&zc)) {
227 if (za.za_first_integer == empty_bpobj)
228 continue;
229 dsl_deadlist_cache_entry_t *dlce =
230 kmem_zalloc(sizeof (*dlce), KM_SLEEP);
231 dlce->dlce_mintxg = zfs_strtonum(za.za_name, NULL);
234 * Prefetch all the bpobj's so that we do that i/o
235 * in parallel. Then open them all in a second pass.
237 dlce->dlce_bpobj = za.za_first_integer;
238 dmu_prefetch(dl->dl_os, dlce->dlce_bpobj,
239 0, 0, 0, ZIO_PRIORITY_SYNC_READ);
240 avl_add(&dl->dl_cache, dlce);
242 VERIFY3U(error, ==, ENOENT);
243 zap_cursor_fini(&zc);
245 for (dsl_deadlist_cache_entry_t *dlce = avl_first(&dl->dl_cache);
246 dlce != NULL; dlce = AVL_NEXT(&dl->dl_cache, dlce)) {
247 bpobj_t bpo;
248 VERIFY0(bpobj_open(&bpo, dl->dl_os, dlce->dlce_bpobj));
250 VERIFY0(bpobj_space(&bpo,
251 &dlce->dlce_bytes, &dlce->dlce_comp, &dlce->dlce_uncomp));
252 bpobj_close(&bpo);
254 dl->dl_havecache = B_TRUE;
258 * Discard the tree to save memory.
260 void
261 dsl_deadlist_discard_tree(dsl_deadlist_t *dl)
263 mutex_enter(&dl->dl_lock);
265 if (!dl->dl_havetree) {
266 mutex_exit(&dl->dl_lock);
267 return;
269 dsl_deadlist_entry_t *dle;
270 void *cookie = NULL;
271 while ((dle = avl_destroy_nodes(&dl->dl_tree, &cookie)) != NULL) {
272 bpobj_close(&dle->dle_bpobj);
273 kmem_free(dle, sizeof (*dle));
275 avl_destroy(&dl->dl_tree);
277 dl->dl_havetree = B_FALSE;
278 mutex_exit(&dl->dl_lock);
281 void
282 dsl_deadlist_iterate(dsl_deadlist_t *dl, deadlist_iter_t func, void *args)
284 dsl_deadlist_entry_t *dle;
286 ASSERT(dsl_deadlist_is_open(dl));
288 mutex_enter(&dl->dl_lock);
289 dsl_deadlist_load_tree(dl);
290 mutex_exit(&dl->dl_lock);
291 for (dle = avl_first(&dl->dl_tree); dle != NULL;
292 dle = AVL_NEXT(&dl->dl_tree, dle)) {
293 if (func(args, dle) != 0)
294 break;
298 void
299 dsl_deadlist_open(dsl_deadlist_t *dl, objset_t *os, uint64_t object)
301 dmu_object_info_t doi;
303 ASSERT(!dsl_deadlist_is_open(dl));
305 mutex_init(&dl->dl_lock, NULL, MUTEX_DEFAULT, NULL);
306 dl->dl_os = os;
307 dl->dl_object = object;
308 VERIFY0(dmu_bonus_hold(os, object, dl, &dl->dl_dbuf));
309 dmu_object_info_from_db(dl->dl_dbuf, &doi);
310 if (doi.doi_type == DMU_OT_BPOBJ) {
311 dmu_buf_rele(dl->dl_dbuf, dl);
312 dl->dl_dbuf = NULL;
313 dl->dl_oldfmt = B_TRUE;
314 VERIFY0(bpobj_open(&dl->dl_bpobj, os, object));
315 return;
318 dl->dl_oldfmt = B_FALSE;
319 dl->dl_phys = dl->dl_dbuf->db_data;
320 dl->dl_havetree = B_FALSE;
321 dl->dl_havecache = B_FALSE;
324 boolean_t
325 dsl_deadlist_is_open(dsl_deadlist_t *dl)
327 return (dl->dl_os != NULL);
330 void
331 dsl_deadlist_close(dsl_deadlist_t *dl)
333 ASSERT(dsl_deadlist_is_open(dl));
334 mutex_destroy(&dl->dl_lock);
336 if (dl->dl_oldfmt) {
337 dl->dl_oldfmt = B_FALSE;
338 bpobj_close(&dl->dl_bpobj);
339 dl->dl_os = NULL;
340 dl->dl_object = 0;
341 return;
344 if (dl->dl_havetree) {
345 dsl_deadlist_entry_t *dle;
346 void *cookie = NULL;
347 while ((dle = avl_destroy_nodes(&dl->dl_tree, &cookie))
348 != NULL) {
349 bpobj_close(&dle->dle_bpobj);
350 kmem_free(dle, sizeof (*dle));
352 avl_destroy(&dl->dl_tree);
354 if (dl->dl_havecache) {
355 dsl_deadlist_cache_entry_t *dlce;
356 void *cookie = NULL;
357 while ((dlce = avl_destroy_nodes(&dl->dl_cache, &cookie))
358 != NULL) {
359 kmem_free(dlce, sizeof (*dlce));
361 avl_destroy(&dl->dl_cache);
363 dmu_buf_rele(dl->dl_dbuf, dl);
364 dl->dl_dbuf = NULL;
365 dl->dl_phys = NULL;
366 dl->dl_os = NULL;
367 dl->dl_object = 0;
370 uint64_t
371 dsl_deadlist_alloc(objset_t *os, dmu_tx_t *tx)
373 if (spa_version(dmu_objset_spa(os)) < SPA_VERSION_DEADLISTS)
374 return (bpobj_alloc(os, SPA_OLD_MAXBLOCKSIZE, tx));
375 return (zap_create(os, DMU_OT_DEADLIST, DMU_OT_DEADLIST_HDR,
376 sizeof (dsl_deadlist_phys_t), tx));
379 void
380 dsl_deadlist_free(objset_t *os, uint64_t dlobj, dmu_tx_t *tx)
382 dmu_object_info_t doi;
383 zap_cursor_t zc;
384 zap_attribute_t za;
385 int error;
387 VERIFY0(dmu_object_info(os, dlobj, &doi));
388 if (doi.doi_type == DMU_OT_BPOBJ) {
389 bpobj_free(os, dlobj, tx);
390 return;
393 for (zap_cursor_init(&zc, os, dlobj);
394 (error = zap_cursor_retrieve(&zc, &za)) == 0;
395 zap_cursor_advance(&zc)) {
396 uint64_t obj = za.za_first_integer;
397 if (obj == dmu_objset_pool(os)->dp_empty_bpobj)
398 bpobj_decr_empty(os, tx);
399 else
400 bpobj_free(os, obj, tx);
402 VERIFY3U(error, ==, ENOENT);
403 zap_cursor_fini(&zc);
404 VERIFY0(dmu_object_free(os, dlobj, tx));
407 static void
408 dle_enqueue(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle,
409 const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx)
411 ASSERT(MUTEX_HELD(&dl->dl_lock));
412 if (dle->dle_bpobj.bpo_object ==
413 dmu_objset_pool(dl->dl_os)->dp_empty_bpobj) {
414 uint64_t obj = bpobj_alloc(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
415 bpobj_close(&dle->dle_bpobj);
416 bpobj_decr_empty(dl->dl_os, tx);
417 VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
418 VERIFY0(zap_update_int_key(dl->dl_os, dl->dl_object,
419 dle->dle_mintxg, obj, tx));
421 bpobj_enqueue(&dle->dle_bpobj, bp, bp_freed, tx);
424 static void
425 dle_enqueue_subobj(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle,
426 uint64_t obj, dmu_tx_t *tx)
428 ASSERT(MUTEX_HELD(&dl->dl_lock));
429 if (dle->dle_bpobj.bpo_object !=
430 dmu_objset_pool(dl->dl_os)->dp_empty_bpobj) {
431 bpobj_enqueue_subobj(&dle->dle_bpobj, obj, tx);
432 } else {
433 bpobj_close(&dle->dle_bpobj);
434 bpobj_decr_empty(dl->dl_os, tx);
435 VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
436 VERIFY0(zap_update_int_key(dl->dl_os, dl->dl_object,
437 dle->dle_mintxg, obj, tx));
442 * Prefetch metadata required for dle_enqueue_subobj().
444 static void
445 dle_prefetch_subobj(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle,
446 uint64_t obj)
448 if (dle->dle_bpobj.bpo_object !=
449 dmu_objset_pool(dl->dl_os)->dp_empty_bpobj)
450 bpobj_prefetch_subobj(&dle->dle_bpobj, obj);
453 void
454 dsl_deadlist_insert(dsl_deadlist_t *dl, const blkptr_t *bp, boolean_t bp_freed,
455 dmu_tx_t *tx)
457 dsl_deadlist_entry_t dle_tofind;
458 dsl_deadlist_entry_t *dle;
459 avl_index_t where;
461 if (dl->dl_oldfmt) {
462 bpobj_enqueue(&dl->dl_bpobj, bp, bp_freed, tx);
463 return;
466 mutex_enter(&dl->dl_lock);
467 dsl_deadlist_load_tree(dl);
469 dmu_buf_will_dirty(dl->dl_dbuf, tx);
471 int sign = bp_freed ? -1 : +1;
472 dl->dl_phys->dl_used +=
473 sign * bp_get_dsize_sync(dmu_objset_spa(dl->dl_os), bp);
474 dl->dl_phys->dl_comp += sign * BP_GET_PSIZE(bp);
475 dl->dl_phys->dl_uncomp += sign * BP_GET_UCSIZE(bp);
477 dle_tofind.dle_mintxg = bp->blk_birth;
478 dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
479 if (dle == NULL)
480 dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
481 else
482 dle = AVL_PREV(&dl->dl_tree, dle);
484 if (dle == NULL) {
485 zfs_panic_recover("blkptr at %p has invalid BLK_BIRTH %llu",
486 bp, (longlong_t)bp->blk_birth);
487 dle = avl_first(&dl->dl_tree);
490 ASSERT3P(dle, !=, NULL);
491 dle_enqueue(dl, dle, bp, bp_freed, tx);
492 mutex_exit(&dl->dl_lock);
496 dsl_deadlist_insert_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
498 dsl_deadlist_t *dl = arg;
499 dsl_deadlist_insert(dl, bp, B_FALSE, tx);
500 return (0);
504 dsl_deadlist_insert_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
506 dsl_deadlist_t *dl = arg;
507 dsl_deadlist_insert(dl, bp, B_TRUE, tx);
508 return (0);
512 * Insert new key in deadlist, which must be > all current entries.
513 * mintxg is not inclusive.
515 void
516 dsl_deadlist_add_key(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
518 uint64_t obj;
519 dsl_deadlist_entry_t *dle;
521 if (dl->dl_oldfmt)
522 return;
524 dle = kmem_alloc(sizeof (*dle), KM_SLEEP);
525 dle->dle_mintxg = mintxg;
527 mutex_enter(&dl->dl_lock);
528 dsl_deadlist_load_tree(dl);
530 obj = bpobj_alloc_empty(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
531 VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
532 avl_add(&dl->dl_tree, dle);
534 VERIFY0(zap_add_int_key(dl->dl_os, dl->dl_object,
535 mintxg, obj, tx));
536 mutex_exit(&dl->dl_lock);
540 * Remove this key, merging its entries into the previous key.
542 void
543 dsl_deadlist_remove_key(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
545 dsl_deadlist_entry_t dle_tofind;
546 dsl_deadlist_entry_t *dle, *dle_prev;
548 if (dl->dl_oldfmt)
549 return;
550 mutex_enter(&dl->dl_lock);
551 dsl_deadlist_load_tree(dl);
553 dle_tofind.dle_mintxg = mintxg;
554 dle = avl_find(&dl->dl_tree, &dle_tofind, NULL);
555 ASSERT3P(dle, !=, NULL);
556 dle_prev = AVL_PREV(&dl->dl_tree, dle);
557 ASSERT3P(dle_prev, !=, NULL);
559 dle_enqueue_subobj(dl, dle_prev, dle->dle_bpobj.bpo_object, tx);
561 avl_remove(&dl->dl_tree, dle);
562 bpobj_close(&dle->dle_bpobj);
563 kmem_free(dle, sizeof (*dle));
565 VERIFY0(zap_remove_int(dl->dl_os, dl->dl_object, mintxg, tx));
566 mutex_exit(&dl->dl_lock);
570 * Remove a deadlist entry and all of its contents by removing the entry from
571 * the deadlist's avl tree, freeing the entry's bpobj and adjusting the
572 * deadlist's space accounting accordingly.
574 void
575 dsl_deadlist_remove_entry(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
577 uint64_t used, comp, uncomp;
578 dsl_deadlist_entry_t dle_tofind;
579 dsl_deadlist_entry_t *dle;
580 objset_t *os = dl->dl_os;
582 if (dl->dl_oldfmt)
583 return;
585 mutex_enter(&dl->dl_lock);
586 dsl_deadlist_load_tree(dl);
588 dle_tofind.dle_mintxg = mintxg;
589 dle = avl_find(&dl->dl_tree, &dle_tofind, NULL);
590 VERIFY3P(dle, !=, NULL);
592 avl_remove(&dl->dl_tree, dle);
593 VERIFY0(zap_remove_int(os, dl->dl_object, mintxg, tx));
594 VERIFY0(bpobj_space(&dle->dle_bpobj, &used, &comp, &uncomp));
595 dmu_buf_will_dirty(dl->dl_dbuf, tx);
596 dl->dl_phys->dl_used -= used;
597 dl->dl_phys->dl_comp -= comp;
598 dl->dl_phys->dl_uncomp -= uncomp;
599 if (dle->dle_bpobj.bpo_object == dmu_objset_pool(os)->dp_empty_bpobj) {
600 bpobj_decr_empty(os, tx);
601 } else {
602 bpobj_free(os, dle->dle_bpobj.bpo_object, tx);
604 bpobj_close(&dle->dle_bpobj);
605 kmem_free(dle, sizeof (*dle));
606 mutex_exit(&dl->dl_lock);
610 * Clear out the contents of a deadlist_entry by freeing its bpobj,
611 * replacing it with an empty bpobj and adjusting the deadlist's
612 * space accounting
614 void
615 dsl_deadlist_clear_entry(dsl_deadlist_entry_t *dle, dsl_deadlist_t *dl,
616 dmu_tx_t *tx)
618 uint64_t new_obj, used, comp, uncomp;
619 objset_t *os = dl->dl_os;
621 mutex_enter(&dl->dl_lock);
622 VERIFY0(zap_remove_int(os, dl->dl_object, dle->dle_mintxg, tx));
623 VERIFY0(bpobj_space(&dle->dle_bpobj, &used, &comp, &uncomp));
624 dmu_buf_will_dirty(dl->dl_dbuf, tx);
625 dl->dl_phys->dl_used -= used;
626 dl->dl_phys->dl_comp -= comp;
627 dl->dl_phys->dl_uncomp -= uncomp;
628 if (dle->dle_bpobj.bpo_object == dmu_objset_pool(os)->dp_empty_bpobj)
629 bpobj_decr_empty(os, tx);
630 else
631 bpobj_free(os, dle->dle_bpobj.bpo_object, tx);
632 bpobj_close(&dle->dle_bpobj);
633 new_obj = bpobj_alloc_empty(os, SPA_OLD_MAXBLOCKSIZE, tx);
634 VERIFY0(bpobj_open(&dle->dle_bpobj, os, new_obj));
635 VERIFY0(zap_add_int_key(os, dl->dl_object, dle->dle_mintxg,
636 new_obj, tx));
637 ASSERT(bpobj_is_empty(&dle->dle_bpobj));
638 mutex_exit(&dl->dl_lock);
642 * Return the first entry in deadlist's avl tree
644 dsl_deadlist_entry_t *
645 dsl_deadlist_first(dsl_deadlist_t *dl)
647 dsl_deadlist_entry_t *dle;
649 mutex_enter(&dl->dl_lock);
650 dsl_deadlist_load_tree(dl);
651 dle = avl_first(&dl->dl_tree);
652 mutex_exit(&dl->dl_lock);
654 return (dle);
658 * Return the last entry in deadlist's avl tree
660 dsl_deadlist_entry_t *
661 dsl_deadlist_last(dsl_deadlist_t *dl)
663 dsl_deadlist_entry_t *dle;
665 mutex_enter(&dl->dl_lock);
666 dsl_deadlist_load_tree(dl);
667 dle = avl_last(&dl->dl_tree);
668 mutex_exit(&dl->dl_lock);
670 return (dle);
674 * Walk ds's snapshots to regenerate generate ZAP & AVL.
676 static void
677 dsl_deadlist_regenerate(objset_t *os, uint64_t dlobj,
678 uint64_t mrs_obj, dmu_tx_t *tx)
680 dsl_deadlist_t dl = { 0 };
681 dsl_pool_t *dp = dmu_objset_pool(os);
683 dsl_deadlist_open(&dl, os, dlobj);
684 if (dl.dl_oldfmt) {
685 dsl_deadlist_close(&dl);
686 return;
689 while (mrs_obj != 0) {
690 dsl_dataset_t *ds;
691 VERIFY0(dsl_dataset_hold_obj(dp, mrs_obj, FTAG, &ds));
692 dsl_deadlist_add_key(&dl,
693 dsl_dataset_phys(ds)->ds_prev_snap_txg, tx);
694 mrs_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
695 dsl_dataset_rele(ds, FTAG);
697 dsl_deadlist_close(&dl);
700 uint64_t
701 dsl_deadlist_clone(dsl_deadlist_t *dl, uint64_t maxtxg,
702 uint64_t mrs_obj, dmu_tx_t *tx)
704 dsl_deadlist_entry_t *dle;
705 uint64_t newobj;
707 newobj = dsl_deadlist_alloc(dl->dl_os, tx);
709 if (dl->dl_oldfmt) {
710 dsl_deadlist_regenerate(dl->dl_os, newobj, mrs_obj, tx);
711 return (newobj);
714 mutex_enter(&dl->dl_lock);
715 dsl_deadlist_load_tree(dl);
717 for (dle = avl_first(&dl->dl_tree); dle;
718 dle = AVL_NEXT(&dl->dl_tree, dle)) {
719 uint64_t obj;
721 if (dle->dle_mintxg >= maxtxg)
722 break;
724 obj = bpobj_alloc_empty(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
725 VERIFY0(zap_add_int_key(dl->dl_os, newobj,
726 dle->dle_mintxg, obj, tx));
728 mutex_exit(&dl->dl_lock);
729 return (newobj);
732 void
733 dsl_deadlist_space(dsl_deadlist_t *dl,
734 uint64_t *usedp, uint64_t *compp, uint64_t *uncompp)
736 ASSERT(dsl_deadlist_is_open(dl));
737 if (dl->dl_oldfmt) {
738 VERIFY0(bpobj_space(&dl->dl_bpobj,
739 usedp, compp, uncompp));
740 return;
743 mutex_enter(&dl->dl_lock);
744 *usedp = dl->dl_phys->dl_used;
745 *compp = dl->dl_phys->dl_comp;
746 *uncompp = dl->dl_phys->dl_uncomp;
747 mutex_exit(&dl->dl_lock);
751 * return space used in the range (mintxg, maxtxg].
752 * Includes maxtxg, does not include mintxg.
753 * mintxg and maxtxg must both be keys in the deadlist (unless maxtxg is
754 * UINT64_MAX).
756 void
757 dsl_deadlist_space_range(dsl_deadlist_t *dl, uint64_t mintxg, uint64_t maxtxg,
758 uint64_t *usedp, uint64_t *compp, uint64_t *uncompp)
760 dsl_deadlist_cache_entry_t *dlce;
761 dsl_deadlist_cache_entry_t dlce_tofind;
762 avl_index_t where;
764 if (dl->dl_oldfmt) {
765 VERIFY0(bpobj_space_range(&dl->dl_bpobj,
766 mintxg, maxtxg, usedp, compp, uncompp));
767 return;
770 *usedp = *compp = *uncompp = 0;
772 mutex_enter(&dl->dl_lock);
773 dsl_deadlist_load_cache(dl);
774 dlce_tofind.dlce_mintxg = mintxg;
775 dlce = avl_find(&dl->dl_cache, &dlce_tofind, &where);
778 * If this mintxg doesn't exist, it may be an empty_bpobj which
779 * is omitted from the sparse tree. Start at the next non-empty
780 * entry.
782 if (dlce == NULL)
783 dlce = avl_nearest(&dl->dl_cache, where, AVL_AFTER);
785 for (; dlce && dlce->dlce_mintxg < maxtxg;
786 dlce = AVL_NEXT(&dl->dl_tree, dlce)) {
787 *usedp += dlce->dlce_bytes;
788 *compp += dlce->dlce_comp;
789 *uncompp += dlce->dlce_uncomp;
792 mutex_exit(&dl->dl_lock);
795 static void
796 dsl_deadlist_insert_bpobj(dsl_deadlist_t *dl, uint64_t obj, uint64_t birth,
797 dmu_tx_t *tx)
799 dsl_deadlist_entry_t dle_tofind;
800 dsl_deadlist_entry_t *dle;
801 avl_index_t where;
802 uint64_t used, comp, uncomp;
803 bpobj_t bpo;
805 ASSERT(MUTEX_HELD(&dl->dl_lock));
807 VERIFY0(bpobj_open(&bpo, dl->dl_os, obj));
808 VERIFY0(bpobj_space(&bpo, &used, &comp, &uncomp));
809 bpobj_close(&bpo);
811 dsl_deadlist_load_tree(dl);
813 dmu_buf_will_dirty(dl->dl_dbuf, tx);
814 dl->dl_phys->dl_used += used;
815 dl->dl_phys->dl_comp += comp;
816 dl->dl_phys->dl_uncomp += uncomp;
818 dle_tofind.dle_mintxg = birth;
819 dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
820 if (dle == NULL)
821 dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
822 dle_enqueue_subobj(dl, dle, obj, tx);
826 * Prefetch metadata required for dsl_deadlist_insert_bpobj().
828 static void
829 dsl_deadlist_prefetch_bpobj(dsl_deadlist_t *dl, uint64_t obj, uint64_t birth)
831 dsl_deadlist_entry_t dle_tofind;
832 dsl_deadlist_entry_t *dle;
833 avl_index_t where;
835 ASSERT(MUTEX_HELD(&dl->dl_lock));
837 dsl_deadlist_load_tree(dl);
839 dle_tofind.dle_mintxg = birth;
840 dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
841 if (dle == NULL)
842 dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
843 dle_prefetch_subobj(dl, dle, obj);
846 static int
847 dsl_deadlist_insert_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
848 dmu_tx_t *tx)
850 dsl_deadlist_t *dl = arg;
851 dsl_deadlist_insert(dl, bp, bp_freed, tx);
852 return (0);
856 * Merge the deadlist pointed to by 'obj' into dl. obj will be left as
857 * an empty deadlist.
859 void
860 dsl_deadlist_merge(dsl_deadlist_t *dl, uint64_t obj, dmu_tx_t *tx)
862 zap_cursor_t zc, pzc;
863 zap_attribute_t *za, *pza;
864 dmu_buf_t *bonus;
865 dsl_deadlist_phys_t *dlp;
866 dmu_object_info_t doi;
867 int error, perror, i;
869 VERIFY0(dmu_object_info(dl->dl_os, obj, &doi));
870 if (doi.doi_type == DMU_OT_BPOBJ) {
871 bpobj_t bpo;
872 VERIFY0(bpobj_open(&bpo, dl->dl_os, obj));
873 VERIFY0(bpobj_iterate(&bpo, dsl_deadlist_insert_cb, dl, tx));
874 bpobj_close(&bpo);
875 return;
878 za = kmem_alloc(sizeof (*za), KM_SLEEP);
879 pza = kmem_alloc(sizeof (*pza), KM_SLEEP);
881 mutex_enter(&dl->dl_lock);
883 * Prefetch up to 128 deadlists first and then more as we progress.
884 * The limit is a balance between ARC use and diminishing returns.
886 for (zap_cursor_init(&pzc, dl->dl_os, obj), i = 0;
887 (perror = zap_cursor_retrieve(&pzc, pza)) == 0 && i < 128;
888 zap_cursor_advance(&pzc), i++) {
889 dsl_deadlist_prefetch_bpobj(dl, pza->za_first_integer,
890 zfs_strtonum(pza->za_name, NULL));
892 for (zap_cursor_init(&zc, dl->dl_os, obj);
893 (error = zap_cursor_retrieve(&zc, za)) == 0;
894 zap_cursor_advance(&zc)) {
895 dsl_deadlist_insert_bpobj(dl, za->za_first_integer,
896 zfs_strtonum(za->za_name, NULL), tx);
897 VERIFY0(zap_remove(dl->dl_os, obj, za->za_name, tx));
898 if (perror == 0) {
899 dsl_deadlist_prefetch_bpobj(dl, pza->za_first_integer,
900 zfs_strtonum(pza->za_name, NULL));
901 zap_cursor_advance(&pzc);
902 perror = zap_cursor_retrieve(&pzc, pza);
905 VERIFY3U(error, ==, ENOENT);
906 zap_cursor_fini(&zc);
907 zap_cursor_fini(&pzc);
909 VERIFY0(dmu_bonus_hold(dl->dl_os, obj, FTAG, &bonus));
910 dlp = bonus->db_data;
911 dmu_buf_will_dirty(bonus, tx);
912 memset(dlp, 0, sizeof (*dlp));
913 dmu_buf_rele(bonus, FTAG);
914 mutex_exit(&dl->dl_lock);
916 kmem_free(za, sizeof (*za));
917 kmem_free(pza, sizeof (*pza));
921 * Remove entries on dl that are born > mintxg, and put them on the bpobj.
923 void
924 dsl_deadlist_move_bpobj(dsl_deadlist_t *dl, bpobj_t *bpo, uint64_t mintxg,
925 dmu_tx_t *tx)
927 dsl_deadlist_entry_t dle_tofind;
928 dsl_deadlist_entry_t *dle, *pdle;
929 avl_index_t where;
930 int i;
932 ASSERT(!dl->dl_oldfmt);
934 mutex_enter(&dl->dl_lock);
935 dmu_buf_will_dirty(dl->dl_dbuf, tx);
936 dsl_deadlist_load_tree(dl);
938 dle_tofind.dle_mintxg = mintxg;
939 dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
940 if (dle == NULL)
941 dle = avl_nearest(&dl->dl_tree, where, AVL_AFTER);
943 * Prefetch up to 128 deadlists first and then more as we progress.
944 * The limit is a balance between ARC use and diminishing returns.
946 for (pdle = dle, i = 0; pdle && i < 128; i++) {
947 bpobj_prefetch_subobj(bpo, pdle->dle_bpobj.bpo_object);
948 pdle = AVL_NEXT(&dl->dl_tree, pdle);
950 while (dle) {
951 uint64_t used, comp, uncomp;
952 dsl_deadlist_entry_t *dle_next;
954 bpobj_enqueue_subobj(bpo, dle->dle_bpobj.bpo_object, tx);
955 if (pdle) {
956 bpobj_prefetch_subobj(bpo, pdle->dle_bpobj.bpo_object);
957 pdle = AVL_NEXT(&dl->dl_tree, pdle);
960 VERIFY0(bpobj_space(&dle->dle_bpobj,
961 &used, &comp, &uncomp));
962 ASSERT3U(dl->dl_phys->dl_used, >=, used);
963 ASSERT3U(dl->dl_phys->dl_comp, >=, comp);
964 ASSERT3U(dl->dl_phys->dl_uncomp, >=, uncomp);
965 dl->dl_phys->dl_used -= used;
966 dl->dl_phys->dl_comp -= comp;
967 dl->dl_phys->dl_uncomp -= uncomp;
969 VERIFY0(zap_remove_int(dl->dl_os, dl->dl_object,
970 dle->dle_mintxg, tx));
972 dle_next = AVL_NEXT(&dl->dl_tree, dle);
973 avl_remove(&dl->dl_tree, dle);
974 bpobj_close(&dle->dle_bpobj);
975 kmem_free(dle, sizeof (*dle));
976 dle = dle_next;
978 mutex_exit(&dl->dl_lock);
981 typedef struct livelist_entry {
982 blkptr_t le_bp;
983 uint32_t le_refcnt;
984 avl_node_t le_node;
985 } livelist_entry_t;
987 static int
988 livelist_compare(const void *larg, const void *rarg)
990 const blkptr_t *l = &((livelist_entry_t *)larg)->le_bp;
991 const blkptr_t *r = &((livelist_entry_t *)rarg)->le_bp;
993 /* Sort them according to dva[0] */
994 uint64_t l_dva0_vdev = DVA_GET_VDEV(&l->blk_dva[0]);
995 uint64_t r_dva0_vdev = DVA_GET_VDEV(&r->blk_dva[0]);
997 if (l_dva0_vdev != r_dva0_vdev)
998 return (TREE_CMP(l_dva0_vdev, r_dva0_vdev));
1000 /* if vdevs are equal, sort by offsets. */
1001 uint64_t l_dva0_offset = DVA_GET_OFFSET(&l->blk_dva[0]);
1002 uint64_t r_dva0_offset = DVA_GET_OFFSET(&r->blk_dva[0]);
1003 if (l_dva0_offset == r_dva0_offset)
1004 ASSERT3U(l->blk_birth, ==, r->blk_birth);
1005 return (TREE_CMP(l_dva0_offset, r_dva0_offset));
1008 struct livelist_iter_arg {
1009 avl_tree_t *avl;
1010 bplist_t *to_free;
1011 zthr_t *t;
1015 * Expects an AVL tree which is incrementally filled will FREE blkptrs
1016 * and used to match up ALLOC/FREE pairs. ALLOC'd blkptrs without a
1017 * corresponding FREE are stored in the supplied bplist.
1019 * Note that multiple FREE and ALLOC entries for the same blkptr may
1020 * be encountered when dedup is involved. For this reason we keep a
1021 * refcount for all the FREE entries of each blkptr and ensure that
1022 * each of those FREE entries has a corresponding ALLOC preceding it.
1024 static int
1025 dsl_livelist_iterate(void *arg, const blkptr_t *bp, boolean_t bp_freed,
1026 dmu_tx_t *tx)
1028 struct livelist_iter_arg *lia = arg;
1029 avl_tree_t *avl = lia->avl;
1030 bplist_t *to_free = lia->to_free;
1031 zthr_t *t = lia->t;
1032 ASSERT(tx == NULL);
1034 if ((t != NULL) && (zthr_has_waiters(t) || zthr_iscancelled(t)))
1035 return (SET_ERROR(EINTR));
1037 livelist_entry_t node;
1038 node.le_bp = *bp;
1039 livelist_entry_t *found = avl_find(avl, &node, NULL);
1040 if (bp_freed) {
1041 if (found == NULL) {
1042 /* first free entry for this blkptr */
1043 livelist_entry_t *e =
1044 kmem_alloc(sizeof (livelist_entry_t), KM_SLEEP);
1045 e->le_bp = *bp;
1046 e->le_refcnt = 1;
1047 avl_add(avl, e);
1048 } else {
1049 /* dedup block free */
1050 ASSERT(BP_GET_DEDUP(bp));
1051 ASSERT3U(BP_GET_CHECKSUM(bp), ==,
1052 BP_GET_CHECKSUM(&found->le_bp));
1053 ASSERT3U(found->le_refcnt + 1, >, found->le_refcnt);
1054 found->le_refcnt++;
1056 } else {
1057 if (found == NULL) {
1058 /* block is currently marked as allocated */
1059 bplist_append(to_free, bp);
1060 } else {
1061 /* alloc matches a free entry */
1062 ASSERT3U(found->le_refcnt, !=, 0);
1063 found->le_refcnt--;
1064 if (found->le_refcnt == 0) {
1065 /* all tracked free pairs have been matched */
1066 avl_remove(avl, found);
1067 kmem_free(found, sizeof (livelist_entry_t));
1068 } else {
1070 * This is definitely a deduped blkptr so
1071 * let's validate it.
1073 ASSERT(BP_GET_DEDUP(bp));
1074 ASSERT3U(BP_GET_CHECKSUM(bp), ==,
1075 BP_GET_CHECKSUM(&found->le_bp));
1079 return (0);
1083 * Accepts a bpobj and a bplist. Will insert into the bplist the blkptrs
1084 * which have an ALLOC entry but no matching FREE
1087 dsl_process_sub_livelist(bpobj_t *bpobj, bplist_t *to_free, zthr_t *t,
1088 uint64_t *size)
1090 avl_tree_t avl;
1091 avl_create(&avl, livelist_compare, sizeof (livelist_entry_t),
1092 offsetof(livelist_entry_t, le_node));
1094 /* process the sublist */
1095 struct livelist_iter_arg arg = {
1096 .avl = &avl,
1097 .to_free = to_free,
1098 .t = t
1100 int err = bpobj_iterate_nofree(bpobj, dsl_livelist_iterate, &arg, size);
1101 VERIFY(err != 0 || avl_numnodes(&avl) == 0);
1103 void *cookie = NULL;
1104 livelist_entry_t *le = NULL;
1105 while ((le = avl_destroy_nodes(&avl, &cookie)) != NULL) {
1106 kmem_free(le, sizeof (livelist_entry_t));
1108 avl_destroy(&avl);
1109 return (err);
1112 ZFS_MODULE_PARAM(zfs_livelist, zfs_livelist_, max_entries, U64, ZMOD_RW,
1113 "Size to start the next sub-livelist in a livelist");
1115 ZFS_MODULE_PARAM(zfs_livelist, zfs_livelist_, min_percent_shared, INT, ZMOD_RW,
1116 "Threshold at which livelist is disabled");