4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2014 by Chunwei Chen. All rights reserved.
23 * Copyright (c) 2019 by Delphix. All rights reserved.
27 * ARC buffer data (ABD).
29 * ABDs are an abstract data structure for the ARC which can use two
30 * different ways of storing the underlying data:
32 * (a) Linear buffer. In this case, all the data in the ABD is stored in one
33 * contiguous buffer in memory (from a zio_[data_]buf_* kmem cache).
35 * +-------------------+
38 * | abd_size = ... | +--------------------------------+
39 * | abd_buf ------------->| raw buffer of size abd_size |
40 * +-------------------+ +--------------------------------+
43 * (b) Scattered buffer. In this case, the data in the ABD is split into
44 * equal-sized chunks (from the abd_chunk_cache kmem_cache), with pointers
45 * to the chunks recorded in an array at the end of the ABD structure.
47 * +-------------------+
51 * | abd_offset = 0 | +-----------+
52 * | abd_chunks[0] ----------------------------->| chunk 0 |
53 * | abd_chunks[1] ---------------------+ +-----------+
54 * | ... | | +-----------+
55 * | abd_chunks[N-1] ---------+ +------->| chunk 1 |
56 * +-------------------+ | +-----------+
59 * +----------------->| chunk N-1 |
62 * In addition to directly allocating a linear or scattered ABD, it is also
63 * possible to create an ABD by requesting the "sub-ABD" starting at an offset
64 * within an existing ABD. In linear buffers this is simple (set abd_buf of
65 * the new ABD to the starting point within the original raw buffer), but
66 * scattered ABDs are a little more complex. The new ABD makes a copy of the
67 * relevant abd_chunks pointers (but not the underlying data). However, to
68 * provide arbitrary rather than only chunk-aligned starting offsets, it also
69 * tracks an abd_offset field which represents the starting point of the data
70 * within the first chunk in abd_chunks. For both linear and scattered ABDs,
71 * creating an offset ABD marks the original ABD as the offset's parent, and the
72 * original ABD's abd_children refcount is incremented. This data allows us to
73 * ensure the root ABD isn't deleted before its children.
75 * Most consumers should never need to know what type of ABD they're using --
76 * the ABD public API ensures that it's possible to transparently switch from
77 * using a linear ABD to a scattered one when doing so would be beneficial.
79 * If you need to use the data within an ABD directly, if you know it's linear
80 * (because you allocated it) you can use abd_to_buf() to access the underlying
81 * raw buffer. Otherwise, you should use one of the abd_borrow_buf* functions
82 * which will allocate a raw buffer if necessary. Use the abd_return_buf*
83 * functions to return any raw buffers that are no longer necessary when you're
86 * There are a variety of ABD APIs that implement basic buffer operations:
87 * compare, copy, read, write, and fill with zeroes. If you need a custom
88 * function which progressively accesses the whole ABD, use the abd_iterate_*
91 * As an additional feature, linear and scatter ABD's can be stitched together
92 * by using the gang ABD type (abd_alloc_gang_abd()). This allows for
93 * multiple ABDs to be viewed as a singular ABD.
95 * It is possible to make all ABDs linear by setting zfs_abd_scatter_enabled to
99 #include <sys/abd_impl.h>
100 #include <sys/param.h>
102 #include <sys/zfs_context.h>
103 #include <sys/zfs_znode.h>
105 /* see block comment above for description */
106 int zfs_abd_scatter_enabled
= B_TRUE
;
109 abd_verify(abd_t
*abd
)
112 ASSERT3U(abd
->abd_size
, >, 0);
113 ASSERT3U(abd
->abd_size
, <=, SPA_MAXBLOCKSIZE
);
114 ASSERT3U(abd
->abd_flags
, ==, abd
->abd_flags
& (ABD_FLAG_LINEAR
|
115 ABD_FLAG_OWNER
| ABD_FLAG_META
| ABD_FLAG_MULTI_ZONE
|
116 ABD_FLAG_MULTI_CHUNK
| ABD_FLAG_LINEAR_PAGE
| ABD_FLAG_GANG
|
117 ABD_FLAG_GANG_FREE
| ABD_FLAG_ZEROS
| ABD_FLAG_ALLOCD
));
118 IMPLY(abd
->abd_parent
!= NULL
, !(abd
->abd_flags
& ABD_FLAG_OWNER
));
119 IMPLY(abd
->abd_flags
& ABD_FLAG_META
, abd
->abd_flags
& ABD_FLAG_OWNER
);
120 if (abd_is_linear(abd
)) {
121 ASSERT3P(ABD_LINEAR_BUF(abd
), !=, NULL
);
122 } else if (abd_is_gang(abd
)) {
123 uint_t child_sizes
= 0;
124 for (abd_t
*cabd
= list_head(&ABD_GANG(abd
).abd_gang_chain
);
126 cabd
= list_next(&ABD_GANG(abd
).abd_gang_chain
, cabd
)) {
127 ASSERT(list_link_active(&cabd
->abd_gang_link
));
128 child_sizes
+= cabd
->abd_size
;
131 ASSERT3U(abd
->abd_size
, ==, child_sizes
);
133 abd_verify_scatter(abd
);
139 abd_init_struct(abd_t
*abd
)
141 list_link_init(&abd
->abd_gang_link
);
142 mutex_init(&abd
->abd_mtx
, NULL
, MUTEX_DEFAULT
, NULL
);
145 zfs_refcount_create(&abd
->abd_children
);
146 abd
->abd_parent
= NULL
;
152 abd_fini_struct(abd_t
*abd
)
154 mutex_destroy(&abd
->abd_mtx
);
155 ASSERT(!list_link_active(&abd
->abd_gang_link
));
157 zfs_refcount_destroy(&abd
->abd_children
);
162 abd_alloc_struct(size_t size
)
164 abd_t
*abd
= abd_alloc_struct_impl(size
);
165 abd_init_struct(abd
);
166 abd
->abd_flags
|= ABD_FLAG_ALLOCD
;
171 abd_free_struct(abd_t
*abd
)
173 abd_fini_struct(abd
);
174 abd_free_struct_impl(abd
);
178 * Allocate an ABD, along with its own underlying data buffers. Use this if you
179 * don't care whether the ABD is linear or not.
182 abd_alloc(size_t size
, boolean_t is_metadata
)
184 if (abd_size_alloc_linear(size
))
185 return (abd_alloc_linear(size
, is_metadata
));
187 VERIFY3U(size
, <=, SPA_MAXBLOCKSIZE
);
189 abd_t
*abd
= abd_alloc_struct(size
);
190 abd
->abd_flags
|= ABD_FLAG_OWNER
;
191 abd
->abd_u
.abd_scatter
.abd_offset
= 0;
192 abd_alloc_chunks(abd
, size
);
195 abd
->abd_flags
|= ABD_FLAG_META
;
197 abd
->abd_size
= size
;
199 abd_update_scatter_stats(abd
, ABDSTAT_INCR
);
205 * Allocate an ABD that must be linear, along with its own underlying data
206 * buffer. Only use this when it would be very annoying to write your ABD
207 * consumer with a scattered ABD.
210 abd_alloc_linear(size_t size
, boolean_t is_metadata
)
212 abd_t
*abd
= abd_alloc_struct(0);
214 VERIFY3U(size
, <=, SPA_MAXBLOCKSIZE
);
216 abd
->abd_flags
|= ABD_FLAG_LINEAR
| ABD_FLAG_OWNER
;
218 abd
->abd_flags
|= ABD_FLAG_META
;
220 abd
->abd_size
= size
;
223 ABD_LINEAR_BUF(abd
) = zio_buf_alloc(size
);
225 ABD_LINEAR_BUF(abd
) = zio_data_buf_alloc(size
);
228 abd_update_linear_stats(abd
, ABDSTAT_INCR
);
234 abd_free_linear(abd_t
*abd
)
236 if (abd_is_linear_page(abd
)) {
237 abd_free_linear_page(abd
);
240 if (abd
->abd_flags
& ABD_FLAG_META
) {
241 zio_buf_free(ABD_LINEAR_BUF(abd
), abd
->abd_size
);
243 zio_data_buf_free(ABD_LINEAR_BUF(abd
), abd
->abd_size
);
246 abd_update_linear_stats(abd
, ABDSTAT_DECR
);
250 abd_free_gang(abd_t
*abd
)
252 ASSERT(abd_is_gang(abd
));
255 while ((cabd
= list_head(&ABD_GANG(abd
).abd_gang_chain
)) != NULL
) {
257 * We must acquire the child ABDs mutex to ensure that if it
258 * is being added to another gang ABD we will set the link
259 * as inactive when removing it from this gang ABD and before
260 * adding it to the other gang ABD.
262 mutex_enter(&cabd
->abd_mtx
);
263 ASSERT(list_link_active(&cabd
->abd_gang_link
));
264 list_remove(&ABD_GANG(abd
).abd_gang_chain
, cabd
);
265 mutex_exit(&cabd
->abd_mtx
);
266 if (cabd
->abd_flags
& ABD_FLAG_GANG_FREE
)
269 list_destroy(&ABD_GANG(abd
).abd_gang_chain
);
273 abd_free_scatter(abd_t
*abd
)
275 abd_free_chunks(abd
);
276 abd_update_scatter_stats(abd
, ABDSTAT_DECR
);
280 * Free an ABD. Use with any kind of abd: those created with abd_alloc_*()
281 * and abd_get_*(), including abd_get_offset_struct().
283 * If the ABD was created with abd_alloc_*(), the underlying data
284 * (scatterlist or linear buffer) will also be freed. (Subject to ownership
285 * changes via abd_*_ownership_of_buf().)
287 * Unless the ABD was created with abd_get_offset_struct(), the abd_t will
298 IMPLY(abd
->abd_flags
& ABD_FLAG_OWNER
, abd
->abd_parent
== NULL
);
301 if (abd_is_gang(abd
)) {
303 } else if (abd_is_linear(abd
)) {
304 if (abd
->abd_flags
& ABD_FLAG_OWNER
)
305 abd_free_linear(abd
);
307 if (abd
->abd_flags
& ABD_FLAG_OWNER
)
308 abd_free_scatter(abd
);
312 if (abd
->abd_parent
!= NULL
) {
313 (void) zfs_refcount_remove_many(&abd
->abd_parent
->abd_children
,
318 abd_fini_struct(abd
);
319 if (abd
->abd_flags
& ABD_FLAG_ALLOCD
)
320 abd_free_struct_impl(abd
);
324 * Allocate an ABD of the same format (same metadata flag, same scatterize
325 * setting) as another ABD.
328 abd_alloc_sametype(abd_t
*sabd
, size_t size
)
330 boolean_t is_metadata
= (sabd
->abd_flags
& ABD_FLAG_META
) != 0;
331 if (abd_is_linear(sabd
) &&
332 !abd_is_linear_page(sabd
)) {
333 return (abd_alloc_linear(size
, is_metadata
));
335 return (abd_alloc(size
, is_metadata
));
340 * Create gang ABD that will be the head of a list of ABD's. This is used
341 * to "chain" scatter/gather lists together when constructing aggregated
342 * IO's. To free this abd, abd_free() must be called.
347 abd_t
*abd
= abd_alloc_struct(0);
348 abd
->abd_flags
|= ABD_FLAG_GANG
| ABD_FLAG_OWNER
;
349 list_create(&ABD_GANG(abd
).abd_gang_chain
,
350 sizeof (abd_t
), offsetof(abd_t
, abd_gang_link
));
355 * Add a child gang ABD to a parent gang ABDs chained list.
358 abd_gang_add_gang(abd_t
*pabd
, abd_t
*cabd
, boolean_t free_on_free
)
360 ASSERT(abd_is_gang(pabd
));
361 ASSERT(abd_is_gang(cabd
));
365 * If the parent is responsible for freeing the child gang
366 * ABD we will just splice the child's children ABD list to
367 * the parent's list and immediately free the child gang ABD
368 * struct. The parent gang ABDs children from the child gang
369 * will retain all the free_on_free settings after being
370 * added to the parents list.
372 pabd
->abd_size
+= cabd
->abd_size
;
373 list_move_tail(&ABD_GANG(pabd
).abd_gang_chain
,
374 &ABD_GANG(cabd
).abd_gang_chain
);
375 ASSERT(list_is_empty(&ABD_GANG(cabd
).abd_gang_chain
));
379 for (abd_t
*child
= list_head(&ABD_GANG(cabd
).abd_gang_chain
);
381 child
= list_next(&ABD_GANG(cabd
).abd_gang_chain
, child
)) {
383 * We always pass B_FALSE for free_on_free as it is the
384 * original child gang ABDs responsibility to determine
385 * if any of its child ABDs should be free'd on the call
388 abd_gang_add(pabd
, child
, B_FALSE
);
395 * Add a child ABD to a gang ABD's chained list.
398 abd_gang_add(abd_t
*pabd
, abd_t
*cabd
, boolean_t free_on_free
)
400 ASSERT(abd_is_gang(pabd
));
401 abd_t
*child_abd
= NULL
;
404 * If the child being added is a gang ABD, we will add the
405 * child's ABDs to the parent gang ABD. This allows us to account
406 * for the offset correctly in the parent gang ABD.
408 if (abd_is_gang(cabd
)) {
409 ASSERT(!list_link_active(&cabd
->abd_gang_link
));
410 ASSERT(!list_is_empty(&ABD_GANG(cabd
).abd_gang_chain
));
411 return (abd_gang_add_gang(pabd
, cabd
, free_on_free
));
413 ASSERT(!abd_is_gang(cabd
));
416 * In order to verify that an ABD is not already part of
417 * another gang ABD, we must lock the child ABD's abd_mtx
418 * to check its abd_gang_link status. We unlock the abd_mtx
419 * only after it is has been added to a gang ABD, which
420 * will update the abd_gang_link's status. See comment below
421 * for how an ABD can be in multiple gang ABD's simultaneously.
423 mutex_enter(&cabd
->abd_mtx
);
424 if (list_link_active(&cabd
->abd_gang_link
)) {
426 * If the child ABD is already part of another
427 * gang ABD then we must allocate a new
428 * ABD to use a separate link. We mark the newly
429 * allocated ABD with ABD_FLAG_GANG_FREE, before
430 * adding it to the gang ABD's list, to make the
431 * gang ABD aware that it is responsible to call
432 * abd_free(). We use abd_get_offset() in order
433 * to just allocate a new ABD but avoid copying the
434 * data over into the newly allocated ABD.
436 * An ABD may become part of multiple gang ABD's. For
437 * example, when writing ditto bocks, the same ABD
438 * is used to write 2 or 3 locations with 2 or 3
439 * zio_t's. Each of the zio's may be aggregated with
440 * different adjacent zio's. zio aggregation uses gang
441 * zio's, so the single ABD can become part of multiple
444 * The ASSERT below is to make sure that if
445 * free_on_free is passed as B_TRUE, the ABD can
446 * not be in multiple gang ABD's. The gang ABD
447 * can not be responsible for cleaning up the child
448 * ABD memory allocation if the ABD can be in
449 * multiple gang ABD's at one time.
451 ASSERT3B(free_on_free
, ==, B_FALSE
);
452 child_abd
= abd_get_offset(cabd
, 0);
453 child_abd
->abd_flags
|= ABD_FLAG_GANG_FREE
;
457 child_abd
->abd_flags
|= ABD_FLAG_GANG_FREE
;
459 ASSERT3P(child_abd
, !=, NULL
);
461 list_insert_tail(&ABD_GANG(pabd
).abd_gang_chain
, child_abd
);
462 mutex_exit(&cabd
->abd_mtx
);
463 pabd
->abd_size
+= child_abd
->abd_size
;
467 * Locate the ABD for the supplied offset in the gang ABD.
468 * Return a new offset relative to the returned ABD.
471 abd_gang_get_offset(abd_t
*abd
, size_t *off
)
475 ASSERT(abd_is_gang(abd
));
476 ASSERT3U(*off
, <, abd
->abd_size
);
477 for (cabd
= list_head(&ABD_GANG(abd
).abd_gang_chain
); cabd
!= NULL
;
478 cabd
= list_next(&ABD_GANG(abd
).abd_gang_chain
, cabd
)) {
479 if (*off
>= cabd
->abd_size
)
480 *off
-= cabd
->abd_size
;
484 VERIFY3P(cabd
, !=, NULL
);
489 * Allocate a new ABD, using the provided struct (if non-NULL, and if
490 * circumstances allow - otherwise allocate the struct). The returned ABD will
491 * point to offset off of sabd. It shares the underlying buffer data with sabd.
492 * Use abd_free() to free. sabd must not be freed while any derived ABDs exist.
495 abd_get_offset_impl(abd_t
*abd
, abd_t
*sabd
, size_t off
, size_t size
)
498 ASSERT3U(off
+ size
, <=, sabd
->abd_size
);
500 if (abd_is_linear(sabd
)) {
502 abd
= abd_alloc_struct(0);
504 * Even if this buf is filesystem metadata, we only track that
505 * if we own the underlying data buffer, which is not true in
506 * this case. Therefore, we don't ever use ABD_FLAG_META here.
508 abd
->abd_flags
|= ABD_FLAG_LINEAR
;
510 ABD_LINEAR_BUF(abd
) = (char *)ABD_LINEAR_BUF(sabd
) + off
;
511 } else if (abd_is_gang(sabd
)) {
514 abd
= abd_alloc_gang();
516 abd
->abd_flags
|= ABD_FLAG_GANG
;
517 list_create(&ABD_GANG(abd
).abd_gang_chain
,
518 sizeof (abd_t
), offsetof(abd_t
, abd_gang_link
));
521 abd
->abd_flags
&= ~ABD_FLAG_OWNER
;
522 for (abd_t
*cabd
= abd_gang_get_offset(sabd
, &off
);
523 cabd
!= NULL
&& left
> 0;
524 cabd
= list_next(&ABD_GANG(sabd
).abd_gang_chain
, cabd
)) {
525 int csize
= MIN(left
, cabd
->abd_size
- off
);
527 abd_t
*nabd
= abd_get_offset_size(cabd
, off
, csize
);
528 abd_gang_add(abd
, nabd
, B_TRUE
);
532 ASSERT3U(left
, ==, 0);
534 abd
= abd_get_offset_scatter(abd
, sabd
, off
, size
);
537 ASSERT3P(abd
, !=, NULL
);
538 abd
->abd_size
= size
;
540 abd
->abd_parent
= sabd
;
541 (void) zfs_refcount_add_many(&sabd
->abd_children
, abd
->abd_size
, abd
);
547 * Like abd_get_offset_size(), but memory for the abd_t is provided by the
548 * caller. Using this routine can improve performance by avoiding the cost
549 * of allocating memory for the abd_t struct, and updating the abd stats.
550 * Usually, the provided abd is returned, but in some circumstances (FreeBSD,
551 * if sabd is scatter and size is more than 2 pages) a new abd_t may need to
552 * be allocated. Therefore callers should be careful to use the returned
556 abd_get_offset_struct(abd_t
*abd
, abd_t
*sabd
, size_t off
, size_t size
)
559 abd_init_struct(abd
);
560 result
= abd_get_offset_impl(abd
, sabd
, off
, size
);
562 abd_fini_struct(abd
);
567 abd_get_offset(abd_t
*sabd
, size_t off
)
569 size_t size
= sabd
->abd_size
> off
? sabd
->abd_size
- off
: 0;
570 VERIFY3U(size
, >, 0);
571 return (abd_get_offset_impl(NULL
, sabd
, off
, size
));
575 abd_get_offset_size(abd_t
*sabd
, size_t off
, size_t size
)
577 ASSERT3U(off
+ size
, <=, sabd
->abd_size
);
578 return (abd_get_offset_impl(NULL
, sabd
, off
, size
));
582 * Return a size scatter ABD containing only zeros.
585 abd_get_zeros(size_t size
)
587 ASSERT3P(abd_zero_scatter
, !=, NULL
);
588 ASSERT3U(size
, <=, SPA_MAXBLOCKSIZE
);
589 return (abd_get_offset_size(abd_zero_scatter
, 0, size
));
593 * Allocate a linear ABD structure for buf.
596 abd_get_from_buf(void *buf
, size_t size
)
598 abd_t
*abd
= abd_alloc_struct(0);
600 VERIFY3U(size
, <=, SPA_MAXBLOCKSIZE
);
603 * Even if this buf is filesystem metadata, we only track that if we
604 * own the underlying data buffer, which is not true in this case.
605 * Therefore, we don't ever use ABD_FLAG_META here.
607 abd
->abd_flags
|= ABD_FLAG_LINEAR
;
608 abd
->abd_size
= size
;
610 ABD_LINEAR_BUF(abd
) = buf
;
616 * Get the raw buffer associated with a linear ABD.
619 abd_to_buf(abd_t
*abd
)
621 ASSERT(abd_is_linear(abd
));
623 return (ABD_LINEAR_BUF(abd
));
627 * Borrow a raw buffer from an ABD without copying the contents of the ABD
628 * into the buffer. If the ABD is scattered, this will allocate a raw buffer
629 * whose contents are undefined. To copy over the existing data in the ABD, use
630 * abd_borrow_buf_copy() instead.
633 abd_borrow_buf(abd_t
*abd
, size_t n
)
637 ASSERT3U(abd
->abd_size
, >=, n
);
638 if (abd_is_linear(abd
)) {
639 buf
= abd_to_buf(abd
);
641 buf
= zio_buf_alloc(n
);
644 (void) zfs_refcount_add_many(&abd
->abd_children
, n
, buf
);
650 abd_borrow_buf_copy(abd_t
*abd
, size_t n
)
652 void *buf
= abd_borrow_buf(abd
, n
);
653 if (!abd_is_linear(abd
)) {
654 abd_copy_to_buf(buf
, abd
, n
);
660 * Return a borrowed raw buffer to an ABD. If the ABD is scattered, this will
661 * not change the contents of the ABD and will ASSERT that you didn't modify
662 * the buffer since it was borrowed. If you want any changes you made to buf to
663 * be copied back to abd, use abd_return_buf_copy() instead.
666 abd_return_buf(abd_t
*abd
, void *buf
, size_t n
)
669 ASSERT3U(abd
->abd_size
, >=, n
);
670 if (abd_is_linear(abd
)) {
671 ASSERT3P(buf
, ==, abd_to_buf(abd
));
673 ASSERT0(abd_cmp_buf(abd
, buf
, n
));
674 zio_buf_free(buf
, n
);
677 (void) zfs_refcount_remove_many(&abd
->abd_children
, n
, buf
);
682 abd_return_buf_copy(abd_t
*abd
, void *buf
, size_t n
)
684 if (!abd_is_linear(abd
)) {
685 abd_copy_from_buf(abd
, buf
, n
);
687 abd_return_buf(abd
, buf
, n
);
691 abd_release_ownership_of_buf(abd_t
*abd
)
693 ASSERT(abd_is_linear(abd
));
694 ASSERT(abd
->abd_flags
& ABD_FLAG_OWNER
);
697 * abd_free() needs to handle LINEAR_PAGE ABD's specially.
698 * Since that flag does not survive the
699 * abd_release_ownership_of_buf() -> abd_get_from_buf() ->
700 * abd_take_ownership_of_buf() sequence, we don't allow releasing
701 * these "linear but not zio_[data_]buf_alloc()'ed" ABD's.
703 ASSERT(!abd_is_linear_page(abd
));
707 abd
->abd_flags
&= ~ABD_FLAG_OWNER
;
708 /* Disable this flag since we no longer own the data buffer */
709 abd
->abd_flags
&= ~ABD_FLAG_META
;
711 abd_update_linear_stats(abd
, ABDSTAT_DECR
);
716 * Give this ABD ownership of the buffer that it's storing. Can only be used on
717 * linear ABDs which were allocated via abd_get_from_buf(), or ones allocated
718 * with abd_alloc_linear() which subsequently released ownership of their buf
719 * with abd_release_ownership_of_buf().
722 abd_take_ownership_of_buf(abd_t
*abd
, boolean_t is_metadata
)
724 ASSERT(abd_is_linear(abd
));
725 ASSERT(!(abd
->abd_flags
& ABD_FLAG_OWNER
));
728 abd
->abd_flags
|= ABD_FLAG_OWNER
;
730 abd
->abd_flags
|= ABD_FLAG_META
;
733 abd_update_linear_stats(abd
, ABDSTAT_INCR
);
737 * Initializes an abd_iter based on whether the abd is a gang ABD
738 * or just a single ABD.
740 static inline abd_t
*
741 abd_init_abd_iter(abd_t
*abd
, struct abd_iter
*aiter
, size_t off
)
745 if (abd_is_gang(abd
)) {
746 cabd
= abd_gang_get_offset(abd
, &off
);
748 abd_iter_init(aiter
, cabd
);
749 abd_iter_advance(aiter
, off
);
752 abd_iter_init(aiter
, abd
);
753 abd_iter_advance(aiter
, off
);
759 * Advances an abd_iter. We have to be careful with gang ABD as
760 * advancing could mean that we are at the end of a particular ABD and
761 * must grab the ABD in the gang ABD's list.
763 static inline abd_t
*
764 abd_advance_abd_iter(abd_t
*abd
, abd_t
*cabd
, struct abd_iter
*aiter
,
767 abd_iter_advance(aiter
, len
);
768 if (abd_is_gang(abd
) && abd_iter_at_end(aiter
)) {
769 ASSERT3P(cabd
, !=, NULL
);
770 cabd
= list_next(&ABD_GANG(abd
).abd_gang_chain
, cabd
);
772 abd_iter_init(aiter
, cabd
);
773 abd_iter_advance(aiter
, 0);
780 abd_iterate_func(abd_t
*abd
, size_t off
, size_t size
,
781 abd_iter_func_t
*func
, void *private)
783 struct abd_iter aiter
;
790 ASSERT3U(off
+ size
, <=, abd
->abd_size
);
792 boolean_t gang
= abd_is_gang(abd
);
793 abd_t
*c_abd
= abd_init_abd_iter(abd
, &aiter
, off
);
796 /* If we are at the end of the gang ABD we are done */
800 abd_iter_map(&aiter
);
802 size_t len
= MIN(aiter
.iter_mapsize
, size
);
805 ret
= func(aiter
.iter_mapaddr
, len
, private);
807 abd_iter_unmap(&aiter
);
813 c_abd
= abd_advance_abd_iter(abd
, c_abd
, &aiter
, len
);
824 abd_copy_to_buf_off_cb(void *buf
, size_t size
, void *private)
826 struct buf_arg
*ba_ptr
= private;
828 (void) memcpy(ba_ptr
->arg_buf
, buf
, size
);
829 ba_ptr
->arg_buf
= (char *)ba_ptr
->arg_buf
+ size
;
835 * Copy abd to buf. (off is the offset in abd.)
838 abd_copy_to_buf_off(void *buf
, abd_t
*abd
, size_t off
, size_t size
)
840 struct buf_arg ba_ptr
= { buf
};
842 (void) abd_iterate_func(abd
, off
, size
, abd_copy_to_buf_off_cb
,
847 abd_cmp_buf_off_cb(void *buf
, size_t size
, void *private)
850 struct buf_arg
*ba_ptr
= private;
852 ret
= memcmp(buf
, ba_ptr
->arg_buf
, size
);
853 ba_ptr
->arg_buf
= (char *)ba_ptr
->arg_buf
+ size
;
859 * Compare the contents of abd to buf. (off is the offset in abd.)
862 abd_cmp_buf_off(abd_t
*abd
, const void *buf
, size_t off
, size_t size
)
864 struct buf_arg ba_ptr
= { (void *) buf
};
866 return (abd_iterate_func(abd
, off
, size
, abd_cmp_buf_off_cb
, &ba_ptr
));
870 abd_copy_from_buf_off_cb(void *buf
, size_t size
, void *private)
872 struct buf_arg
*ba_ptr
= private;
874 (void) memcpy(buf
, ba_ptr
->arg_buf
, size
);
875 ba_ptr
->arg_buf
= (char *)ba_ptr
->arg_buf
+ size
;
881 * Copy from buf to abd. (off is the offset in abd.)
884 abd_copy_from_buf_off(abd_t
*abd
, const void *buf
, size_t off
, size_t size
)
886 struct buf_arg ba_ptr
= { (void *) buf
};
888 (void) abd_iterate_func(abd
, off
, size
, abd_copy_from_buf_off_cb
,
893 abd_zero_off_cb(void *buf
, size_t size
, void *private)
896 (void) memset(buf
, 0, size
);
901 * Zero out the abd from a particular offset to the end.
904 abd_zero_off(abd_t
*abd
, size_t off
, size_t size
)
906 (void) abd_iterate_func(abd
, off
, size
, abd_zero_off_cb
, NULL
);
910 * Iterate over two ABDs and call func incrementally on the two ABDs' data in
911 * equal-sized chunks (passed to func as raw buffers). func could be called many
912 * times during this iteration.
915 abd_iterate_func2(abd_t
*dabd
, abd_t
*sabd
, size_t doff
, size_t soff
,
916 size_t size
, abd_iter_func2_t
*func
, void *private)
919 struct abd_iter daiter
, saiter
;
920 boolean_t dabd_is_gang_abd
, sabd_is_gang_abd
;
921 abd_t
*c_dabd
, *c_sabd
;
929 ASSERT3U(doff
+ size
, <=, dabd
->abd_size
);
930 ASSERT3U(soff
+ size
, <=, sabd
->abd_size
);
932 dabd_is_gang_abd
= abd_is_gang(dabd
);
933 sabd_is_gang_abd
= abd_is_gang(sabd
);
934 c_dabd
= abd_init_abd_iter(dabd
, &daiter
, doff
);
935 c_sabd
= abd_init_abd_iter(sabd
, &saiter
, soff
);
938 /* if we are at the end of the gang ABD we are done */
939 if ((dabd_is_gang_abd
&& !c_dabd
) ||
940 (sabd_is_gang_abd
&& !c_sabd
))
943 abd_iter_map(&daiter
);
944 abd_iter_map(&saiter
);
946 size_t dlen
= MIN(daiter
.iter_mapsize
, size
);
947 size_t slen
= MIN(saiter
.iter_mapsize
, size
);
948 size_t len
= MIN(dlen
, slen
);
949 ASSERT(dlen
> 0 || slen
> 0);
951 ret
= func(daiter
.iter_mapaddr
, saiter
.iter_mapaddr
, len
,
954 abd_iter_unmap(&saiter
);
955 abd_iter_unmap(&daiter
);
962 abd_advance_abd_iter(dabd
, c_dabd
, &daiter
, len
);
964 abd_advance_abd_iter(sabd
, c_sabd
, &saiter
, len
);
971 abd_copy_off_cb(void *dbuf
, void *sbuf
, size_t size
, void *private)
974 (void) memcpy(dbuf
, sbuf
, size
);
979 * Copy from sabd to dabd starting from soff and doff.
982 abd_copy_off(abd_t
*dabd
, abd_t
*sabd
, size_t doff
, size_t soff
, size_t size
)
984 (void) abd_iterate_func2(dabd
, sabd
, doff
, soff
, size
,
985 abd_copy_off_cb
, NULL
);
989 abd_cmp_cb(void *bufa
, void *bufb
, size_t size
, void *private)
992 return (memcmp(bufa
, bufb
, size
));
996 * Compares the contents of two ABDs.
999 abd_cmp(abd_t
*dabd
, abd_t
*sabd
)
1001 ASSERT3U(dabd
->abd_size
, ==, sabd
->abd_size
);
1002 return (abd_iterate_func2(dabd
, sabd
, 0, 0, dabd
->abd_size
,
1007 * Iterate over code ABDs and a data ABD and call @func_raidz_gen.
1009 * @cabds parity ABDs, must have equal size
1010 * @dabd data ABD. Can be NULL (in this case @dsize = 0)
1011 * @func_raidz_gen should be implemented so that its behaviour
1012 * is the same when taking linear and when taking scatter
1015 abd_raidz_gen_iterate(abd_t
**cabds
, abd_t
*dabd
,
1016 ssize_t csize
, ssize_t dsize
, const unsigned parity
,
1017 void (*func_raidz_gen
)(void **, const void *, size_t, size_t))
1021 struct abd_iter caiters
[3];
1022 struct abd_iter daiter
= {0};
1024 unsigned long flags __maybe_unused
= 0;
1026 abd_t
*c_dabd
= NULL
;
1027 boolean_t cabds_is_gang_abd
[3];
1028 boolean_t dabd_is_gang_abd
= B_FALSE
;
1030 ASSERT3U(parity
, <=, 3);
1032 for (i
= 0; i
< parity
; i
++) {
1033 cabds_is_gang_abd
[i
] = abd_is_gang(cabds
[i
]);
1034 c_cabds
[i
] = abd_init_abd_iter(cabds
[i
], &caiters
[i
], 0);
1038 dabd_is_gang_abd
= abd_is_gang(dabd
);
1039 c_dabd
= abd_init_abd_iter(dabd
, &daiter
, 0);
1042 ASSERT3S(dsize
, >=, 0);
1044 abd_enter_critical(flags
);
1046 /* if we are at the end of the gang ABD we are done */
1047 if (dabd_is_gang_abd
&& !c_dabd
)
1050 for (i
= 0; i
< parity
; i
++) {
1052 * If we are at the end of the gang ABD we are
1055 if (cabds_is_gang_abd
[i
] && !c_cabds
[i
])
1057 abd_iter_map(&caiters
[i
]);
1058 caddrs
[i
] = caiters
[i
].iter_mapaddr
;
1063 if (dabd
&& dsize
> 0)
1064 abd_iter_map(&daiter
);
1068 len
= MIN(caiters
[2].iter_mapsize
, len
);
1071 len
= MIN(caiters
[1].iter_mapsize
, len
);
1074 len
= MIN(caiters
[0].iter_mapsize
, len
);
1077 /* must be progressive */
1078 ASSERT3S(len
, >, 0);
1080 if (dabd
&& dsize
> 0) {
1081 /* this needs precise iter.length */
1082 len
= MIN(daiter
.iter_mapsize
, len
);
1087 /* must be progressive */
1088 ASSERT3S(len
, >, 0);
1090 * The iterated function likely will not do well if each
1091 * segment except the last one is not multiple of 512 (raidz).
1093 ASSERT3U(((uint64_t)len
& 511ULL), ==, 0);
1095 func_raidz_gen(caddrs
, daiter
.iter_mapaddr
, len
, dlen
);
1097 for (i
= parity
-1; i
>= 0; i
--) {
1098 abd_iter_unmap(&caiters
[i
]);
1100 abd_advance_abd_iter(cabds
[i
], c_cabds
[i
],
1104 if (dabd
&& dsize
> 0) {
1105 abd_iter_unmap(&daiter
);
1107 abd_advance_abd_iter(dabd
, c_dabd
, &daiter
,
1114 ASSERT3S(dsize
, >=, 0);
1115 ASSERT3S(csize
, >=, 0);
1117 abd_exit_critical(flags
);
1121 * Iterate over code ABDs and data reconstruction target ABDs and call
1122 * @func_raidz_rec. Function maps at most 6 pages atomically.
1124 * @cabds parity ABDs, must have equal size
1125 * @tabds rec target ABDs, at most 3
1126 * @tsize size of data target columns
1127 * @func_raidz_rec expects syndrome data in target columns. Function
1128 * reconstructs data and overwrites target columns.
1131 abd_raidz_rec_iterate(abd_t
**cabds
, abd_t
**tabds
,
1132 ssize_t tsize
, const unsigned parity
,
1133 void (*func_raidz_rec
)(void **t
, const size_t tsize
, void **c
,
1134 const unsigned *mul
),
1135 const unsigned *mul
)
1139 struct abd_iter citers
[3];
1140 struct abd_iter xiters
[3];
1141 void *caddrs
[3], *xaddrs
[3];
1142 unsigned long flags __maybe_unused
= 0;
1143 boolean_t cabds_is_gang_abd
[3];
1144 boolean_t tabds_is_gang_abd
[3];
1148 ASSERT3U(parity
, <=, 3);
1150 for (i
= 0; i
< parity
; i
++) {
1151 cabds_is_gang_abd
[i
] = abd_is_gang(cabds
[i
]);
1152 tabds_is_gang_abd
[i
] = abd_is_gang(tabds
[i
]);
1154 abd_init_abd_iter(cabds
[i
], &citers
[i
], 0);
1156 abd_init_abd_iter(tabds
[i
], &xiters
[i
], 0);
1159 abd_enter_critical(flags
);
1162 for (i
= 0; i
< parity
; i
++) {
1164 * If we are at the end of the gang ABD we
1167 if (cabds_is_gang_abd
[i
] && !c_cabds
[i
])
1169 if (tabds_is_gang_abd
[i
] && !c_tabds
[i
])
1171 abd_iter_map(&citers
[i
]);
1172 abd_iter_map(&xiters
[i
]);
1173 caddrs
[i
] = citers
[i
].iter_mapaddr
;
1174 xaddrs
[i
] = xiters
[i
].iter_mapaddr
;
1180 len
= MIN(xiters
[2].iter_mapsize
, len
);
1181 len
= MIN(citers
[2].iter_mapsize
, len
);
1184 len
= MIN(xiters
[1].iter_mapsize
, len
);
1185 len
= MIN(citers
[1].iter_mapsize
, len
);
1188 len
= MIN(xiters
[0].iter_mapsize
, len
);
1189 len
= MIN(citers
[0].iter_mapsize
, len
);
1191 /* must be progressive */
1192 ASSERT3S(len
, >, 0);
1194 * The iterated function likely will not do well if each
1195 * segment except the last one is not multiple of 512 (raidz).
1197 ASSERT3U(((uint64_t)len
& 511ULL), ==, 0);
1199 func_raidz_rec(xaddrs
, len
, caddrs
, mul
);
1201 for (i
= parity
-1; i
>= 0; i
--) {
1202 abd_iter_unmap(&xiters
[i
]);
1203 abd_iter_unmap(&citers
[i
]);
1205 abd_advance_abd_iter(tabds
[i
], c_tabds
[i
],
1208 abd_advance_abd_iter(cabds
[i
], c_cabds
[i
],
1213 ASSERT3S(tsize
, >=, 0);
1215 abd_exit_critical(flags
);