FreeBSD: Parameterize ZFS_ENTER/ZFS_VERIFY_VP with an error code
[zfs.git] / module / zfs / abd.c
blobb6d7ac6407e3580fda2937b6503f7de4f45e1145
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2014 by Chunwei Chen. All rights reserved.
23 * Copyright (c) 2019 by Delphix. All rights reserved.
27 * ARC buffer data (ABD).
29 * ABDs are an abstract data structure for the ARC which can use two
30 * different ways of storing the underlying data:
32 * (a) Linear buffer. In this case, all the data in the ABD is stored in one
33 * contiguous buffer in memory (from a zio_[data_]buf_* kmem cache).
35 * +-------------------+
36 * | ABD (linear) |
37 * | abd_flags = ... |
38 * | abd_size = ... | +--------------------------------+
39 * | abd_buf ------------->| raw buffer of size abd_size |
40 * +-------------------+ +--------------------------------+
41 * no abd_chunks
43 * (b) Scattered buffer. In this case, the data in the ABD is split into
44 * equal-sized chunks (from the abd_chunk_cache kmem_cache), with pointers
45 * to the chunks recorded in an array at the end of the ABD structure.
47 * +-------------------+
48 * | ABD (scattered) |
49 * | abd_flags = ... |
50 * | abd_size = ... |
51 * | abd_offset = 0 | +-----------+
52 * | abd_chunks[0] ----------------------------->| chunk 0 |
53 * | abd_chunks[1] ---------------------+ +-----------+
54 * | ... | | +-----------+
55 * | abd_chunks[N-1] ---------+ +------->| chunk 1 |
56 * +-------------------+ | +-----------+
57 * | ...
58 * | +-----------+
59 * +----------------->| chunk N-1 |
60 * +-----------+
62 * In addition to directly allocating a linear or scattered ABD, it is also
63 * possible to create an ABD by requesting the "sub-ABD" starting at an offset
64 * within an existing ABD. In linear buffers this is simple (set abd_buf of
65 * the new ABD to the starting point within the original raw buffer), but
66 * scattered ABDs are a little more complex. The new ABD makes a copy of the
67 * relevant abd_chunks pointers (but not the underlying data). However, to
68 * provide arbitrary rather than only chunk-aligned starting offsets, it also
69 * tracks an abd_offset field which represents the starting point of the data
70 * within the first chunk in abd_chunks. For both linear and scattered ABDs,
71 * creating an offset ABD marks the original ABD as the offset's parent, and the
72 * original ABD's abd_children refcount is incremented. This data allows us to
73 * ensure the root ABD isn't deleted before its children.
75 * Most consumers should never need to know what type of ABD they're using --
76 * the ABD public API ensures that it's possible to transparently switch from
77 * using a linear ABD to a scattered one when doing so would be beneficial.
79 * If you need to use the data within an ABD directly, if you know it's linear
80 * (because you allocated it) you can use abd_to_buf() to access the underlying
81 * raw buffer. Otherwise, you should use one of the abd_borrow_buf* functions
82 * which will allocate a raw buffer if necessary. Use the abd_return_buf*
83 * functions to return any raw buffers that are no longer necessary when you're
84 * done using them.
86 * There are a variety of ABD APIs that implement basic buffer operations:
87 * compare, copy, read, write, and fill with zeroes. If you need a custom
88 * function which progressively accesses the whole ABD, use the abd_iterate_*
89 * functions.
91 * As an additional feature, linear and scatter ABD's can be stitched together
92 * by using the gang ABD type (abd_alloc_gang_abd()). This allows for
93 * multiple ABDs to be viewed as a singular ABD.
95 * It is possible to make all ABDs linear by setting zfs_abd_scatter_enabled to
96 * B_FALSE.
99 #include <sys/abd_impl.h>
100 #include <sys/param.h>
101 #include <sys/zio.h>
102 #include <sys/zfs_context.h>
103 #include <sys/zfs_znode.h>
105 /* see block comment above for description */
106 int zfs_abd_scatter_enabled = B_TRUE;
108 void
109 abd_verify(abd_t *abd)
111 #ifdef ZFS_DEBUG
112 ASSERT3U(abd->abd_size, >, 0);
113 ASSERT3U(abd->abd_size, <=, SPA_MAXBLOCKSIZE);
114 ASSERT3U(abd->abd_flags, ==, abd->abd_flags & (ABD_FLAG_LINEAR |
115 ABD_FLAG_OWNER | ABD_FLAG_META | ABD_FLAG_MULTI_ZONE |
116 ABD_FLAG_MULTI_CHUNK | ABD_FLAG_LINEAR_PAGE | ABD_FLAG_GANG |
117 ABD_FLAG_GANG_FREE | ABD_FLAG_ZEROS | ABD_FLAG_ALLOCD));
118 IMPLY(abd->abd_parent != NULL, !(abd->abd_flags & ABD_FLAG_OWNER));
119 IMPLY(abd->abd_flags & ABD_FLAG_META, abd->abd_flags & ABD_FLAG_OWNER);
120 if (abd_is_linear(abd)) {
121 ASSERT3P(ABD_LINEAR_BUF(abd), !=, NULL);
122 } else if (abd_is_gang(abd)) {
123 uint_t child_sizes = 0;
124 for (abd_t *cabd = list_head(&ABD_GANG(abd).abd_gang_chain);
125 cabd != NULL;
126 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
127 ASSERT(list_link_active(&cabd->abd_gang_link));
128 child_sizes += cabd->abd_size;
129 abd_verify(cabd);
131 ASSERT3U(abd->abd_size, ==, child_sizes);
132 } else {
133 abd_verify_scatter(abd);
135 #endif
138 static void
139 abd_init_struct(abd_t *abd)
141 list_link_init(&abd->abd_gang_link);
142 mutex_init(&abd->abd_mtx, NULL, MUTEX_DEFAULT, NULL);
143 abd->abd_flags = 0;
144 #ifdef ZFS_DEBUG
145 zfs_refcount_create(&abd->abd_children);
146 abd->abd_parent = NULL;
147 #endif
148 abd->abd_size = 0;
151 static void
152 abd_fini_struct(abd_t *abd)
154 mutex_destroy(&abd->abd_mtx);
155 ASSERT(!list_link_active(&abd->abd_gang_link));
156 #ifdef ZFS_DEBUG
157 zfs_refcount_destroy(&abd->abd_children);
158 #endif
161 abd_t *
162 abd_alloc_struct(size_t size)
164 abd_t *abd = abd_alloc_struct_impl(size);
165 abd_init_struct(abd);
166 abd->abd_flags |= ABD_FLAG_ALLOCD;
167 return (abd);
170 void
171 abd_free_struct(abd_t *abd)
173 abd_fini_struct(abd);
174 abd_free_struct_impl(abd);
178 * Allocate an ABD, along with its own underlying data buffers. Use this if you
179 * don't care whether the ABD is linear or not.
181 abd_t *
182 abd_alloc(size_t size, boolean_t is_metadata)
184 if (abd_size_alloc_linear(size))
185 return (abd_alloc_linear(size, is_metadata));
187 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
189 abd_t *abd = abd_alloc_struct(size);
190 abd->abd_flags |= ABD_FLAG_OWNER;
191 abd->abd_u.abd_scatter.abd_offset = 0;
192 abd_alloc_chunks(abd, size);
194 if (is_metadata) {
195 abd->abd_flags |= ABD_FLAG_META;
197 abd->abd_size = size;
199 abd_update_scatter_stats(abd, ABDSTAT_INCR);
201 return (abd);
205 * Allocate an ABD that must be linear, along with its own underlying data
206 * buffer. Only use this when it would be very annoying to write your ABD
207 * consumer with a scattered ABD.
209 abd_t *
210 abd_alloc_linear(size_t size, boolean_t is_metadata)
212 abd_t *abd = abd_alloc_struct(0);
214 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
216 abd->abd_flags |= ABD_FLAG_LINEAR | ABD_FLAG_OWNER;
217 if (is_metadata) {
218 abd->abd_flags |= ABD_FLAG_META;
220 abd->abd_size = size;
222 if (is_metadata) {
223 ABD_LINEAR_BUF(abd) = zio_buf_alloc(size);
224 } else {
225 ABD_LINEAR_BUF(abd) = zio_data_buf_alloc(size);
228 abd_update_linear_stats(abd, ABDSTAT_INCR);
230 return (abd);
233 static void
234 abd_free_linear(abd_t *abd)
236 if (abd_is_linear_page(abd)) {
237 abd_free_linear_page(abd);
238 return;
240 if (abd->abd_flags & ABD_FLAG_META) {
241 zio_buf_free(ABD_LINEAR_BUF(abd), abd->abd_size);
242 } else {
243 zio_data_buf_free(ABD_LINEAR_BUF(abd), abd->abd_size);
246 abd_update_linear_stats(abd, ABDSTAT_DECR);
249 static void
250 abd_free_gang(abd_t *abd)
252 ASSERT(abd_is_gang(abd));
253 abd_t *cabd;
255 while ((cabd = list_head(&ABD_GANG(abd).abd_gang_chain)) != NULL) {
257 * We must acquire the child ABDs mutex to ensure that if it
258 * is being added to another gang ABD we will set the link
259 * as inactive when removing it from this gang ABD and before
260 * adding it to the other gang ABD.
262 mutex_enter(&cabd->abd_mtx);
263 ASSERT(list_link_active(&cabd->abd_gang_link));
264 list_remove(&ABD_GANG(abd).abd_gang_chain, cabd);
265 mutex_exit(&cabd->abd_mtx);
266 if (cabd->abd_flags & ABD_FLAG_GANG_FREE)
267 abd_free(cabd);
269 list_destroy(&ABD_GANG(abd).abd_gang_chain);
272 static void
273 abd_free_scatter(abd_t *abd)
275 abd_free_chunks(abd);
276 abd_update_scatter_stats(abd, ABDSTAT_DECR);
280 * Free an ABD. Use with any kind of abd: those created with abd_alloc_*()
281 * and abd_get_*(), including abd_get_offset_struct().
283 * If the ABD was created with abd_alloc_*(), the underlying data
284 * (scatterlist or linear buffer) will also be freed. (Subject to ownership
285 * changes via abd_*_ownership_of_buf().)
287 * Unless the ABD was created with abd_get_offset_struct(), the abd_t will
288 * also be freed.
290 void
291 abd_free(abd_t *abd)
293 if (abd == NULL)
294 return;
296 abd_verify(abd);
297 #ifdef ZFS_DEBUG
298 IMPLY(abd->abd_flags & ABD_FLAG_OWNER, abd->abd_parent == NULL);
299 #endif
301 if (abd_is_gang(abd)) {
302 abd_free_gang(abd);
303 } else if (abd_is_linear(abd)) {
304 if (abd->abd_flags & ABD_FLAG_OWNER)
305 abd_free_linear(abd);
306 } else {
307 if (abd->abd_flags & ABD_FLAG_OWNER)
308 abd_free_scatter(abd);
311 #ifdef ZFS_DEBUG
312 if (abd->abd_parent != NULL) {
313 (void) zfs_refcount_remove_many(&abd->abd_parent->abd_children,
314 abd->abd_size, abd);
316 #endif
318 abd_fini_struct(abd);
319 if (abd->abd_flags & ABD_FLAG_ALLOCD)
320 abd_free_struct_impl(abd);
324 * Allocate an ABD of the same format (same metadata flag, same scatterize
325 * setting) as another ABD.
327 abd_t *
328 abd_alloc_sametype(abd_t *sabd, size_t size)
330 boolean_t is_metadata = (sabd->abd_flags & ABD_FLAG_META) != 0;
331 if (abd_is_linear(sabd) &&
332 !abd_is_linear_page(sabd)) {
333 return (abd_alloc_linear(size, is_metadata));
334 } else {
335 return (abd_alloc(size, is_metadata));
340 * Create gang ABD that will be the head of a list of ABD's. This is used
341 * to "chain" scatter/gather lists together when constructing aggregated
342 * IO's. To free this abd, abd_free() must be called.
344 abd_t *
345 abd_alloc_gang(void)
347 abd_t *abd = abd_alloc_struct(0);
348 abd->abd_flags |= ABD_FLAG_GANG | ABD_FLAG_OWNER;
349 list_create(&ABD_GANG(abd).abd_gang_chain,
350 sizeof (abd_t), offsetof(abd_t, abd_gang_link));
351 return (abd);
355 * Add a child gang ABD to a parent gang ABDs chained list.
357 static void
358 abd_gang_add_gang(abd_t *pabd, abd_t *cabd, boolean_t free_on_free)
360 ASSERT(abd_is_gang(pabd));
361 ASSERT(abd_is_gang(cabd));
363 if (free_on_free) {
365 * If the parent is responsible for freeing the child gang
366 * ABD we will just splice the child's children ABD list to
367 * the parent's list and immediately free the child gang ABD
368 * struct. The parent gang ABDs children from the child gang
369 * will retain all the free_on_free settings after being
370 * added to the parents list.
372 pabd->abd_size += cabd->abd_size;
373 list_move_tail(&ABD_GANG(pabd).abd_gang_chain,
374 &ABD_GANG(cabd).abd_gang_chain);
375 ASSERT(list_is_empty(&ABD_GANG(cabd).abd_gang_chain));
376 abd_verify(pabd);
377 abd_free(cabd);
378 } else {
379 for (abd_t *child = list_head(&ABD_GANG(cabd).abd_gang_chain);
380 child != NULL;
381 child = list_next(&ABD_GANG(cabd).abd_gang_chain, child)) {
383 * We always pass B_FALSE for free_on_free as it is the
384 * original child gang ABDs responsibility to determine
385 * if any of its child ABDs should be free'd on the call
386 * to abd_free().
388 abd_gang_add(pabd, child, B_FALSE);
390 abd_verify(pabd);
395 * Add a child ABD to a gang ABD's chained list.
397 void
398 abd_gang_add(abd_t *pabd, abd_t *cabd, boolean_t free_on_free)
400 ASSERT(abd_is_gang(pabd));
401 abd_t *child_abd = NULL;
404 * If the child being added is a gang ABD, we will add the
405 * child's ABDs to the parent gang ABD. This allows us to account
406 * for the offset correctly in the parent gang ABD.
408 if (abd_is_gang(cabd)) {
409 ASSERT(!list_link_active(&cabd->abd_gang_link));
410 ASSERT(!list_is_empty(&ABD_GANG(cabd).abd_gang_chain));
411 return (abd_gang_add_gang(pabd, cabd, free_on_free));
413 ASSERT(!abd_is_gang(cabd));
416 * In order to verify that an ABD is not already part of
417 * another gang ABD, we must lock the child ABD's abd_mtx
418 * to check its abd_gang_link status. We unlock the abd_mtx
419 * only after it is has been added to a gang ABD, which
420 * will update the abd_gang_link's status. See comment below
421 * for how an ABD can be in multiple gang ABD's simultaneously.
423 mutex_enter(&cabd->abd_mtx);
424 if (list_link_active(&cabd->abd_gang_link)) {
426 * If the child ABD is already part of another
427 * gang ABD then we must allocate a new
428 * ABD to use a separate link. We mark the newly
429 * allocated ABD with ABD_FLAG_GANG_FREE, before
430 * adding it to the gang ABD's list, to make the
431 * gang ABD aware that it is responsible to call
432 * abd_free(). We use abd_get_offset() in order
433 * to just allocate a new ABD but avoid copying the
434 * data over into the newly allocated ABD.
436 * An ABD may become part of multiple gang ABD's. For
437 * example, when writing ditto bocks, the same ABD
438 * is used to write 2 or 3 locations with 2 or 3
439 * zio_t's. Each of the zio's may be aggregated with
440 * different adjacent zio's. zio aggregation uses gang
441 * zio's, so the single ABD can become part of multiple
442 * gang zio's.
444 * The ASSERT below is to make sure that if
445 * free_on_free is passed as B_TRUE, the ABD can
446 * not be in multiple gang ABD's. The gang ABD
447 * can not be responsible for cleaning up the child
448 * ABD memory allocation if the ABD can be in
449 * multiple gang ABD's at one time.
451 ASSERT3B(free_on_free, ==, B_FALSE);
452 child_abd = abd_get_offset(cabd, 0);
453 child_abd->abd_flags |= ABD_FLAG_GANG_FREE;
454 } else {
455 child_abd = cabd;
456 if (free_on_free)
457 child_abd->abd_flags |= ABD_FLAG_GANG_FREE;
459 ASSERT3P(child_abd, !=, NULL);
461 list_insert_tail(&ABD_GANG(pabd).abd_gang_chain, child_abd);
462 mutex_exit(&cabd->abd_mtx);
463 pabd->abd_size += child_abd->abd_size;
467 * Locate the ABD for the supplied offset in the gang ABD.
468 * Return a new offset relative to the returned ABD.
470 abd_t *
471 abd_gang_get_offset(abd_t *abd, size_t *off)
473 abd_t *cabd;
475 ASSERT(abd_is_gang(abd));
476 ASSERT3U(*off, <, abd->abd_size);
477 for (cabd = list_head(&ABD_GANG(abd).abd_gang_chain); cabd != NULL;
478 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
479 if (*off >= cabd->abd_size)
480 *off -= cabd->abd_size;
481 else
482 return (cabd);
484 VERIFY3P(cabd, !=, NULL);
485 return (cabd);
489 * Allocate a new ABD, using the provided struct (if non-NULL, and if
490 * circumstances allow - otherwise allocate the struct). The returned ABD will
491 * point to offset off of sabd. It shares the underlying buffer data with sabd.
492 * Use abd_free() to free. sabd must not be freed while any derived ABDs exist.
494 static abd_t *
495 abd_get_offset_impl(abd_t *abd, abd_t *sabd, size_t off, size_t size)
497 abd_verify(sabd);
498 ASSERT3U(off + size, <=, sabd->abd_size);
500 if (abd_is_linear(sabd)) {
501 if (abd == NULL)
502 abd = abd_alloc_struct(0);
504 * Even if this buf is filesystem metadata, we only track that
505 * if we own the underlying data buffer, which is not true in
506 * this case. Therefore, we don't ever use ABD_FLAG_META here.
508 abd->abd_flags |= ABD_FLAG_LINEAR;
510 ABD_LINEAR_BUF(abd) = (char *)ABD_LINEAR_BUF(sabd) + off;
511 } else if (abd_is_gang(sabd)) {
512 size_t left = size;
513 if (abd == NULL) {
514 abd = abd_alloc_gang();
515 } else {
516 abd->abd_flags |= ABD_FLAG_GANG;
517 list_create(&ABD_GANG(abd).abd_gang_chain,
518 sizeof (abd_t), offsetof(abd_t, abd_gang_link));
521 abd->abd_flags &= ~ABD_FLAG_OWNER;
522 for (abd_t *cabd = abd_gang_get_offset(sabd, &off);
523 cabd != NULL && left > 0;
524 cabd = list_next(&ABD_GANG(sabd).abd_gang_chain, cabd)) {
525 int csize = MIN(left, cabd->abd_size - off);
527 abd_t *nabd = abd_get_offset_size(cabd, off, csize);
528 abd_gang_add(abd, nabd, B_TRUE);
529 left -= csize;
530 off = 0;
532 ASSERT3U(left, ==, 0);
533 } else {
534 abd = abd_get_offset_scatter(abd, sabd, off, size);
537 ASSERT3P(abd, !=, NULL);
538 abd->abd_size = size;
539 #ifdef ZFS_DEBUG
540 abd->abd_parent = sabd;
541 (void) zfs_refcount_add_many(&sabd->abd_children, abd->abd_size, abd);
542 #endif
543 return (abd);
547 * Like abd_get_offset_size(), but memory for the abd_t is provided by the
548 * caller. Using this routine can improve performance by avoiding the cost
549 * of allocating memory for the abd_t struct, and updating the abd stats.
550 * Usually, the provided abd is returned, but in some circumstances (FreeBSD,
551 * if sabd is scatter and size is more than 2 pages) a new abd_t may need to
552 * be allocated. Therefore callers should be careful to use the returned
553 * abd_t*.
555 abd_t *
556 abd_get_offset_struct(abd_t *abd, abd_t *sabd, size_t off, size_t size)
558 abd_t *result;
559 abd_init_struct(abd);
560 result = abd_get_offset_impl(abd, sabd, off, size);
561 if (result != abd)
562 abd_fini_struct(abd);
563 return (result);
566 abd_t *
567 abd_get_offset(abd_t *sabd, size_t off)
569 size_t size = sabd->abd_size > off ? sabd->abd_size - off : 0;
570 VERIFY3U(size, >, 0);
571 return (abd_get_offset_impl(NULL, sabd, off, size));
574 abd_t *
575 abd_get_offset_size(abd_t *sabd, size_t off, size_t size)
577 ASSERT3U(off + size, <=, sabd->abd_size);
578 return (abd_get_offset_impl(NULL, sabd, off, size));
582 * Return a size scatter ABD containing only zeros.
584 abd_t *
585 abd_get_zeros(size_t size)
587 ASSERT3P(abd_zero_scatter, !=, NULL);
588 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
589 return (abd_get_offset_size(abd_zero_scatter, 0, size));
593 * Allocate a linear ABD structure for buf.
595 abd_t *
596 abd_get_from_buf(void *buf, size_t size)
598 abd_t *abd = abd_alloc_struct(0);
600 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
603 * Even if this buf is filesystem metadata, we only track that if we
604 * own the underlying data buffer, which is not true in this case.
605 * Therefore, we don't ever use ABD_FLAG_META here.
607 abd->abd_flags |= ABD_FLAG_LINEAR;
608 abd->abd_size = size;
610 ABD_LINEAR_BUF(abd) = buf;
612 return (abd);
616 * Get the raw buffer associated with a linear ABD.
618 void *
619 abd_to_buf(abd_t *abd)
621 ASSERT(abd_is_linear(abd));
622 abd_verify(abd);
623 return (ABD_LINEAR_BUF(abd));
627 * Borrow a raw buffer from an ABD without copying the contents of the ABD
628 * into the buffer. If the ABD is scattered, this will allocate a raw buffer
629 * whose contents are undefined. To copy over the existing data in the ABD, use
630 * abd_borrow_buf_copy() instead.
632 void *
633 abd_borrow_buf(abd_t *abd, size_t n)
635 void *buf;
636 abd_verify(abd);
637 ASSERT3U(abd->abd_size, >=, n);
638 if (abd_is_linear(abd)) {
639 buf = abd_to_buf(abd);
640 } else {
641 buf = zio_buf_alloc(n);
643 #ifdef ZFS_DEBUG
644 (void) zfs_refcount_add_many(&abd->abd_children, n, buf);
645 #endif
646 return (buf);
649 void *
650 abd_borrow_buf_copy(abd_t *abd, size_t n)
652 void *buf = abd_borrow_buf(abd, n);
653 if (!abd_is_linear(abd)) {
654 abd_copy_to_buf(buf, abd, n);
656 return (buf);
660 * Return a borrowed raw buffer to an ABD. If the ABD is scattered, this will
661 * not change the contents of the ABD and will ASSERT that you didn't modify
662 * the buffer since it was borrowed. If you want any changes you made to buf to
663 * be copied back to abd, use abd_return_buf_copy() instead.
665 void
666 abd_return_buf(abd_t *abd, void *buf, size_t n)
668 abd_verify(abd);
669 ASSERT3U(abd->abd_size, >=, n);
670 if (abd_is_linear(abd)) {
671 ASSERT3P(buf, ==, abd_to_buf(abd));
672 } else {
673 ASSERT0(abd_cmp_buf(abd, buf, n));
674 zio_buf_free(buf, n);
676 #ifdef ZFS_DEBUG
677 (void) zfs_refcount_remove_many(&abd->abd_children, n, buf);
678 #endif
681 void
682 abd_return_buf_copy(abd_t *abd, void *buf, size_t n)
684 if (!abd_is_linear(abd)) {
685 abd_copy_from_buf(abd, buf, n);
687 abd_return_buf(abd, buf, n);
690 void
691 abd_release_ownership_of_buf(abd_t *abd)
693 ASSERT(abd_is_linear(abd));
694 ASSERT(abd->abd_flags & ABD_FLAG_OWNER);
697 * abd_free() needs to handle LINEAR_PAGE ABD's specially.
698 * Since that flag does not survive the
699 * abd_release_ownership_of_buf() -> abd_get_from_buf() ->
700 * abd_take_ownership_of_buf() sequence, we don't allow releasing
701 * these "linear but not zio_[data_]buf_alloc()'ed" ABD's.
703 ASSERT(!abd_is_linear_page(abd));
705 abd_verify(abd);
707 abd->abd_flags &= ~ABD_FLAG_OWNER;
708 /* Disable this flag since we no longer own the data buffer */
709 abd->abd_flags &= ~ABD_FLAG_META;
711 abd_update_linear_stats(abd, ABDSTAT_DECR);
716 * Give this ABD ownership of the buffer that it's storing. Can only be used on
717 * linear ABDs which were allocated via abd_get_from_buf(), or ones allocated
718 * with abd_alloc_linear() which subsequently released ownership of their buf
719 * with abd_release_ownership_of_buf().
721 void
722 abd_take_ownership_of_buf(abd_t *abd, boolean_t is_metadata)
724 ASSERT(abd_is_linear(abd));
725 ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER));
726 abd_verify(abd);
728 abd->abd_flags |= ABD_FLAG_OWNER;
729 if (is_metadata) {
730 abd->abd_flags |= ABD_FLAG_META;
733 abd_update_linear_stats(abd, ABDSTAT_INCR);
737 * Initializes an abd_iter based on whether the abd is a gang ABD
738 * or just a single ABD.
740 static inline abd_t *
741 abd_init_abd_iter(abd_t *abd, struct abd_iter *aiter, size_t off)
743 abd_t *cabd = NULL;
745 if (abd_is_gang(abd)) {
746 cabd = abd_gang_get_offset(abd, &off);
747 if (cabd) {
748 abd_iter_init(aiter, cabd);
749 abd_iter_advance(aiter, off);
751 } else {
752 abd_iter_init(aiter, abd);
753 abd_iter_advance(aiter, off);
755 return (cabd);
759 * Advances an abd_iter. We have to be careful with gang ABD as
760 * advancing could mean that we are at the end of a particular ABD and
761 * must grab the ABD in the gang ABD's list.
763 static inline abd_t *
764 abd_advance_abd_iter(abd_t *abd, abd_t *cabd, struct abd_iter *aiter,
765 size_t len)
767 abd_iter_advance(aiter, len);
768 if (abd_is_gang(abd) && abd_iter_at_end(aiter)) {
769 ASSERT3P(cabd, !=, NULL);
770 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd);
771 if (cabd) {
772 abd_iter_init(aiter, cabd);
773 abd_iter_advance(aiter, 0);
776 return (cabd);
780 abd_iterate_func(abd_t *abd, size_t off, size_t size,
781 abd_iter_func_t *func, void *private)
783 struct abd_iter aiter;
784 int ret = 0;
786 if (size == 0)
787 return (0);
789 abd_verify(abd);
790 ASSERT3U(off + size, <=, abd->abd_size);
792 boolean_t gang = abd_is_gang(abd);
793 abd_t *c_abd = abd_init_abd_iter(abd, &aiter, off);
795 while (size > 0) {
796 /* If we are at the end of the gang ABD we are done */
797 if (gang && !c_abd)
798 break;
800 abd_iter_map(&aiter);
802 size_t len = MIN(aiter.iter_mapsize, size);
803 ASSERT3U(len, >, 0);
805 ret = func(aiter.iter_mapaddr, len, private);
807 abd_iter_unmap(&aiter);
809 if (ret != 0)
810 break;
812 size -= len;
813 c_abd = abd_advance_abd_iter(abd, c_abd, &aiter, len);
816 return (ret);
819 struct buf_arg {
820 void *arg_buf;
823 static int
824 abd_copy_to_buf_off_cb(void *buf, size_t size, void *private)
826 struct buf_arg *ba_ptr = private;
828 (void) memcpy(ba_ptr->arg_buf, buf, size);
829 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
831 return (0);
835 * Copy abd to buf. (off is the offset in abd.)
837 void
838 abd_copy_to_buf_off(void *buf, abd_t *abd, size_t off, size_t size)
840 struct buf_arg ba_ptr = { buf };
842 (void) abd_iterate_func(abd, off, size, abd_copy_to_buf_off_cb,
843 &ba_ptr);
846 static int
847 abd_cmp_buf_off_cb(void *buf, size_t size, void *private)
849 int ret;
850 struct buf_arg *ba_ptr = private;
852 ret = memcmp(buf, ba_ptr->arg_buf, size);
853 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
855 return (ret);
859 * Compare the contents of abd to buf. (off is the offset in abd.)
862 abd_cmp_buf_off(abd_t *abd, const void *buf, size_t off, size_t size)
864 struct buf_arg ba_ptr = { (void *) buf };
866 return (abd_iterate_func(abd, off, size, abd_cmp_buf_off_cb, &ba_ptr));
869 static int
870 abd_copy_from_buf_off_cb(void *buf, size_t size, void *private)
872 struct buf_arg *ba_ptr = private;
874 (void) memcpy(buf, ba_ptr->arg_buf, size);
875 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
877 return (0);
881 * Copy from buf to abd. (off is the offset in abd.)
883 void
884 abd_copy_from_buf_off(abd_t *abd, const void *buf, size_t off, size_t size)
886 struct buf_arg ba_ptr = { (void *) buf };
888 (void) abd_iterate_func(abd, off, size, abd_copy_from_buf_off_cb,
889 &ba_ptr);
892 static int
893 abd_zero_off_cb(void *buf, size_t size, void *private)
895 (void) private;
896 (void) memset(buf, 0, size);
897 return (0);
901 * Zero out the abd from a particular offset to the end.
903 void
904 abd_zero_off(abd_t *abd, size_t off, size_t size)
906 (void) abd_iterate_func(abd, off, size, abd_zero_off_cb, NULL);
910 * Iterate over two ABDs and call func incrementally on the two ABDs' data in
911 * equal-sized chunks (passed to func as raw buffers). func could be called many
912 * times during this iteration.
915 abd_iterate_func2(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff,
916 size_t size, abd_iter_func2_t *func, void *private)
918 int ret = 0;
919 struct abd_iter daiter, saiter;
920 boolean_t dabd_is_gang_abd, sabd_is_gang_abd;
921 abd_t *c_dabd, *c_sabd;
923 if (size == 0)
924 return (0);
926 abd_verify(dabd);
927 abd_verify(sabd);
929 ASSERT3U(doff + size, <=, dabd->abd_size);
930 ASSERT3U(soff + size, <=, sabd->abd_size);
932 dabd_is_gang_abd = abd_is_gang(dabd);
933 sabd_is_gang_abd = abd_is_gang(sabd);
934 c_dabd = abd_init_abd_iter(dabd, &daiter, doff);
935 c_sabd = abd_init_abd_iter(sabd, &saiter, soff);
937 while (size > 0) {
938 /* if we are at the end of the gang ABD we are done */
939 if ((dabd_is_gang_abd && !c_dabd) ||
940 (sabd_is_gang_abd && !c_sabd))
941 break;
943 abd_iter_map(&daiter);
944 abd_iter_map(&saiter);
946 size_t dlen = MIN(daiter.iter_mapsize, size);
947 size_t slen = MIN(saiter.iter_mapsize, size);
948 size_t len = MIN(dlen, slen);
949 ASSERT(dlen > 0 || slen > 0);
951 ret = func(daiter.iter_mapaddr, saiter.iter_mapaddr, len,
952 private);
954 abd_iter_unmap(&saiter);
955 abd_iter_unmap(&daiter);
957 if (ret != 0)
958 break;
960 size -= len;
961 c_dabd =
962 abd_advance_abd_iter(dabd, c_dabd, &daiter, len);
963 c_sabd =
964 abd_advance_abd_iter(sabd, c_sabd, &saiter, len);
967 return (ret);
970 static int
971 abd_copy_off_cb(void *dbuf, void *sbuf, size_t size, void *private)
973 (void) private;
974 (void) memcpy(dbuf, sbuf, size);
975 return (0);
979 * Copy from sabd to dabd starting from soff and doff.
981 void
982 abd_copy_off(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, size_t size)
984 (void) abd_iterate_func2(dabd, sabd, doff, soff, size,
985 abd_copy_off_cb, NULL);
988 static int
989 abd_cmp_cb(void *bufa, void *bufb, size_t size, void *private)
991 (void) private;
992 return (memcmp(bufa, bufb, size));
996 * Compares the contents of two ABDs.
999 abd_cmp(abd_t *dabd, abd_t *sabd)
1001 ASSERT3U(dabd->abd_size, ==, sabd->abd_size);
1002 return (abd_iterate_func2(dabd, sabd, 0, 0, dabd->abd_size,
1003 abd_cmp_cb, NULL));
1007 * Iterate over code ABDs and a data ABD and call @func_raidz_gen.
1009 * @cabds parity ABDs, must have equal size
1010 * @dabd data ABD. Can be NULL (in this case @dsize = 0)
1011 * @func_raidz_gen should be implemented so that its behaviour
1012 * is the same when taking linear and when taking scatter
1014 void
1015 abd_raidz_gen_iterate(abd_t **cabds, abd_t *dabd,
1016 ssize_t csize, ssize_t dsize, const unsigned parity,
1017 void (*func_raidz_gen)(void **, const void *, size_t, size_t))
1019 int i;
1020 ssize_t len, dlen;
1021 struct abd_iter caiters[3];
1022 struct abd_iter daiter = {0};
1023 void *caddrs[3];
1024 unsigned long flags __maybe_unused = 0;
1025 abd_t *c_cabds[3];
1026 abd_t *c_dabd = NULL;
1027 boolean_t cabds_is_gang_abd[3];
1028 boolean_t dabd_is_gang_abd = B_FALSE;
1030 ASSERT3U(parity, <=, 3);
1032 for (i = 0; i < parity; i++) {
1033 cabds_is_gang_abd[i] = abd_is_gang(cabds[i]);
1034 c_cabds[i] = abd_init_abd_iter(cabds[i], &caiters[i], 0);
1037 if (dabd) {
1038 dabd_is_gang_abd = abd_is_gang(dabd);
1039 c_dabd = abd_init_abd_iter(dabd, &daiter, 0);
1042 ASSERT3S(dsize, >=, 0);
1044 abd_enter_critical(flags);
1045 while (csize > 0) {
1046 /* if we are at the end of the gang ABD we are done */
1047 if (dabd_is_gang_abd && !c_dabd)
1048 break;
1050 for (i = 0; i < parity; i++) {
1052 * If we are at the end of the gang ABD we are
1053 * done.
1055 if (cabds_is_gang_abd[i] && !c_cabds[i])
1056 break;
1057 abd_iter_map(&caiters[i]);
1058 caddrs[i] = caiters[i].iter_mapaddr;
1061 len = csize;
1063 if (dabd && dsize > 0)
1064 abd_iter_map(&daiter);
1066 switch (parity) {
1067 case 3:
1068 len = MIN(caiters[2].iter_mapsize, len);
1069 zfs_fallthrough;
1070 case 2:
1071 len = MIN(caiters[1].iter_mapsize, len);
1072 zfs_fallthrough;
1073 case 1:
1074 len = MIN(caiters[0].iter_mapsize, len);
1077 /* must be progressive */
1078 ASSERT3S(len, >, 0);
1080 if (dabd && dsize > 0) {
1081 /* this needs precise iter.length */
1082 len = MIN(daiter.iter_mapsize, len);
1083 dlen = len;
1084 } else
1085 dlen = 0;
1087 /* must be progressive */
1088 ASSERT3S(len, >, 0);
1090 * The iterated function likely will not do well if each
1091 * segment except the last one is not multiple of 512 (raidz).
1093 ASSERT3U(((uint64_t)len & 511ULL), ==, 0);
1095 func_raidz_gen(caddrs, daiter.iter_mapaddr, len, dlen);
1097 for (i = parity-1; i >= 0; i--) {
1098 abd_iter_unmap(&caiters[i]);
1099 c_cabds[i] =
1100 abd_advance_abd_iter(cabds[i], c_cabds[i],
1101 &caiters[i], len);
1104 if (dabd && dsize > 0) {
1105 abd_iter_unmap(&daiter);
1106 c_dabd =
1107 abd_advance_abd_iter(dabd, c_dabd, &daiter,
1108 dlen);
1109 dsize -= dlen;
1112 csize -= len;
1114 ASSERT3S(dsize, >=, 0);
1115 ASSERT3S(csize, >=, 0);
1117 abd_exit_critical(flags);
1121 * Iterate over code ABDs and data reconstruction target ABDs and call
1122 * @func_raidz_rec. Function maps at most 6 pages atomically.
1124 * @cabds parity ABDs, must have equal size
1125 * @tabds rec target ABDs, at most 3
1126 * @tsize size of data target columns
1127 * @func_raidz_rec expects syndrome data in target columns. Function
1128 * reconstructs data and overwrites target columns.
1130 void
1131 abd_raidz_rec_iterate(abd_t **cabds, abd_t **tabds,
1132 ssize_t tsize, const unsigned parity,
1133 void (*func_raidz_rec)(void **t, const size_t tsize, void **c,
1134 const unsigned *mul),
1135 const unsigned *mul)
1137 int i;
1138 ssize_t len;
1139 struct abd_iter citers[3];
1140 struct abd_iter xiters[3];
1141 void *caddrs[3], *xaddrs[3];
1142 unsigned long flags __maybe_unused = 0;
1143 boolean_t cabds_is_gang_abd[3];
1144 boolean_t tabds_is_gang_abd[3];
1145 abd_t *c_cabds[3];
1146 abd_t *c_tabds[3];
1148 ASSERT3U(parity, <=, 3);
1150 for (i = 0; i < parity; i++) {
1151 cabds_is_gang_abd[i] = abd_is_gang(cabds[i]);
1152 tabds_is_gang_abd[i] = abd_is_gang(tabds[i]);
1153 c_cabds[i] =
1154 abd_init_abd_iter(cabds[i], &citers[i], 0);
1155 c_tabds[i] =
1156 abd_init_abd_iter(tabds[i], &xiters[i], 0);
1159 abd_enter_critical(flags);
1160 while (tsize > 0) {
1162 for (i = 0; i < parity; i++) {
1164 * If we are at the end of the gang ABD we
1165 * are done.
1167 if (cabds_is_gang_abd[i] && !c_cabds[i])
1168 break;
1169 if (tabds_is_gang_abd[i] && !c_tabds[i])
1170 break;
1171 abd_iter_map(&citers[i]);
1172 abd_iter_map(&xiters[i]);
1173 caddrs[i] = citers[i].iter_mapaddr;
1174 xaddrs[i] = xiters[i].iter_mapaddr;
1177 len = tsize;
1178 switch (parity) {
1179 case 3:
1180 len = MIN(xiters[2].iter_mapsize, len);
1181 len = MIN(citers[2].iter_mapsize, len);
1182 zfs_fallthrough;
1183 case 2:
1184 len = MIN(xiters[1].iter_mapsize, len);
1185 len = MIN(citers[1].iter_mapsize, len);
1186 zfs_fallthrough;
1187 case 1:
1188 len = MIN(xiters[0].iter_mapsize, len);
1189 len = MIN(citers[0].iter_mapsize, len);
1191 /* must be progressive */
1192 ASSERT3S(len, >, 0);
1194 * The iterated function likely will not do well if each
1195 * segment except the last one is not multiple of 512 (raidz).
1197 ASSERT3U(((uint64_t)len & 511ULL), ==, 0);
1199 func_raidz_rec(xaddrs, len, caddrs, mul);
1201 for (i = parity-1; i >= 0; i--) {
1202 abd_iter_unmap(&xiters[i]);
1203 abd_iter_unmap(&citers[i]);
1204 c_tabds[i] =
1205 abd_advance_abd_iter(tabds[i], c_tabds[i],
1206 &xiters[i], len);
1207 c_cabds[i] =
1208 abd_advance_abd_iter(cabds[i], c_cabds[i],
1209 &citers[i], len);
1212 tsize -= len;
1213 ASSERT3S(tsize, >=, 0);
1215 abd_exit_critical(flags);