4 * This file and its contents are supplied under the terms of the
5 * Common Development and Distribution License ("CDDL"), version 1.0.
6 * You may only use this file in accordance with the terms of version
9 * A full copy of the text of the CDDL should have accompanied this
10 * source. A copy of the CDDL is also available via the Internet at
11 * http://www.illumos.org/license/CDDL.
17 * Copyright (c) 2017, Datto, Inc. All rights reserved.
18 * Copyright (c) 2018 by Delphix. All rights reserved.
21 #include <sys/dsl_crypt.h>
22 #include <sys/dsl_pool.h>
25 #include <sys/dsl_dir.h>
26 #include <sys/dsl_prop.h>
27 #include <sys/spa_impl.h>
28 #include <sys/dmu_objset.h>
32 * This file's primary purpose is for managing master encryption keys in
33 * memory and on disk. For more info on how these keys are used, see the
34 * block comment in zio_crypt.c.
36 * All master keys are stored encrypted on disk in the form of the DSL
37 * Crypto Key ZAP object. The binary key data in this object is always
38 * randomly generated and is encrypted with the user's wrapping key. This
39 * layer of indirection allows the user to change their key without
40 * needing to re-encrypt the entire dataset. The ZAP also holds on to the
41 * (non-encrypted) encryption algorithm identifier, IV, and MAC needed to
42 * safely decrypt the master key. For more info on the user's key see the
43 * block comment in libzfs_crypto.c
45 * In-memory encryption keys are managed through the spa_keystore. The
46 * keystore consists of 3 AVL trees, which are as follows:
48 * The Wrapping Key Tree:
49 * The wrapping key (wkey) tree stores the user's keys that are fed into the
50 * kernel through 'zfs load-key' and related commands. Datasets inherit their
51 * parent's wkey by default, so these structures are refcounted. The wrapping
52 * keys remain in memory until they are explicitly unloaded (with
53 * "zfs unload-key"). Unloading is only possible when no datasets are using
56 * The DSL Crypto Key Tree:
57 * The DSL Crypto Keys (DCK) are the in-memory representation of decrypted
58 * master keys. They are used by the functions in zio_crypt.c to perform
59 * encryption, decryption, and authentication. Snapshots and clones of a given
60 * dataset will share a DSL Crypto Key, so they are also refcounted. Once the
61 * refcount on a key hits zero, it is immediately zeroed out and freed.
63 * The Crypto Key Mapping Tree:
64 * The zio layer needs to lookup master keys by their dataset object id. Since
65 * the DSL Crypto Keys can belong to multiple datasets, we maintain a tree of
66 * dsl_key_mapping_t's which essentially just map the dataset object id to its
67 * appropriate DSL Crypto Key. The management for creating and destroying these
68 * mappings hooks into the code for owning and disowning datasets. Usually,
69 * there will only be one active dataset owner, but there are times
70 * (particularly during dataset creation and destruction) when this may not be
71 * true or the dataset may not be initialized enough to own. As a result, this
72 * object is also refcounted.
76 * This tunable allows datasets to be raw received even if the stream does
77 * not include IVset guids or if the guids don't match. This is used as part
78 * of the resolution for ZPOOL_ERRATA_ZOL_8308_ENCRYPTION.
80 int zfs_disable_ivset_guid_check
= 0;
83 dsl_wrapping_key_hold(dsl_wrapping_key_t
*wkey
, void *tag
)
85 (void) zfs_refcount_add(&wkey
->wk_refcnt
, tag
);
89 dsl_wrapping_key_rele(dsl_wrapping_key_t
*wkey
, void *tag
)
91 (void) zfs_refcount_remove(&wkey
->wk_refcnt
, tag
);
95 dsl_wrapping_key_free(dsl_wrapping_key_t
*wkey
)
97 ASSERT0(zfs_refcount_count(&wkey
->wk_refcnt
));
99 if (wkey
->wk_key
.ck_data
) {
100 memset(wkey
->wk_key
.ck_data
, 0,
101 CRYPTO_BITS2BYTES(wkey
->wk_key
.ck_length
));
102 kmem_free(wkey
->wk_key
.ck_data
,
103 CRYPTO_BITS2BYTES(wkey
->wk_key
.ck_length
));
106 zfs_refcount_destroy(&wkey
->wk_refcnt
);
107 kmem_free(wkey
, sizeof (dsl_wrapping_key_t
));
111 dsl_wrapping_key_create(uint8_t *wkeydata
, zfs_keyformat_t keyformat
,
112 uint64_t salt
, uint64_t iters
, dsl_wrapping_key_t
**wkey_out
)
114 dsl_wrapping_key_t
*wkey
;
116 /* allocate the wrapping key */
117 wkey
= kmem_alloc(sizeof (dsl_wrapping_key_t
), KM_SLEEP
);
119 /* allocate and initialize the underlying crypto key */
120 wkey
->wk_key
.ck_data
= kmem_alloc(WRAPPING_KEY_LEN
, KM_SLEEP
);
122 wkey
->wk_key
.ck_length
= CRYPTO_BYTES2BITS(WRAPPING_KEY_LEN
);
123 memcpy(wkey
->wk_key
.ck_data
, wkeydata
, WRAPPING_KEY_LEN
);
125 /* initialize the rest of the struct */
126 zfs_refcount_create(&wkey
->wk_refcnt
);
127 wkey
->wk_keyformat
= keyformat
;
128 wkey
->wk_salt
= salt
;
129 wkey
->wk_iters
= iters
;
135 dsl_crypto_params_create_nvlist(dcp_cmd_t cmd
, nvlist_t
*props
,
136 nvlist_t
*crypto_args
, dsl_crypto_params_t
**dcp_out
)
139 uint64_t crypt
= ZIO_CRYPT_INHERIT
;
140 uint64_t keyformat
= ZFS_KEYFORMAT_NONE
;
141 uint64_t salt
= 0, iters
= 0;
142 dsl_crypto_params_t
*dcp
= NULL
;
143 dsl_wrapping_key_t
*wkey
= NULL
;
144 uint8_t *wkeydata
= NULL
;
145 uint_t wkeydata_len
= 0;
146 char *keylocation
= NULL
;
148 dcp
= kmem_zalloc(sizeof (dsl_crypto_params_t
), KM_SLEEP
);
151 /* get relevant arguments from the nvlists */
153 (void) nvlist_lookup_uint64(props
,
154 zfs_prop_to_name(ZFS_PROP_ENCRYPTION
), &crypt
);
155 (void) nvlist_lookup_uint64(props
,
156 zfs_prop_to_name(ZFS_PROP_KEYFORMAT
), &keyformat
);
157 (void) nvlist_lookup_string(props
,
158 zfs_prop_to_name(ZFS_PROP_KEYLOCATION
), &keylocation
);
159 (void) nvlist_lookup_uint64(props
,
160 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
), &salt
);
161 (void) nvlist_lookup_uint64(props
,
162 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
), &iters
);
164 dcp
->cp_crypt
= crypt
;
167 if (crypto_args
!= NULL
) {
168 (void) nvlist_lookup_uint8_array(crypto_args
, "wkeydata",
169 &wkeydata
, &wkeydata_len
);
172 /* check for valid command */
173 if (dcp
->cp_cmd
>= DCP_CMD_MAX
) {
174 ret
= SET_ERROR(EINVAL
);
180 /* check for valid crypt */
181 if (dcp
->cp_crypt
>= ZIO_CRYPT_FUNCTIONS
) {
182 ret
= SET_ERROR(EINVAL
);
185 dcp
->cp_crypt
= crypt
;
188 /* check for valid keyformat */
189 if (keyformat
>= ZFS_KEYFORMAT_FORMATS
) {
190 ret
= SET_ERROR(EINVAL
);
194 /* check for a valid keylocation (of any kind) and copy it in */
195 if (keylocation
!= NULL
) {
196 if (!zfs_prop_valid_keylocation(keylocation
, B_FALSE
)) {
197 ret
= SET_ERROR(EINVAL
);
201 dcp
->cp_keylocation
= spa_strdup(keylocation
);
204 /* check wrapping key length, if given */
205 if (wkeydata
!= NULL
&& wkeydata_len
!= WRAPPING_KEY_LEN
) {
206 ret
= SET_ERROR(EINVAL
);
210 /* if the user asked for the default crypt, determine that now */
211 if (dcp
->cp_crypt
== ZIO_CRYPT_ON
)
212 dcp
->cp_crypt
= ZIO_CRYPT_ON_VALUE
;
214 /* create the wrapping key from the raw data */
215 if (wkeydata
!= NULL
) {
216 /* create the wrapping key with the verified parameters */
217 dsl_wrapping_key_create(wkeydata
, keyformat
, salt
,
223 * Remove the encryption properties from the nvlist since they are not
224 * maintained through the DSL.
226 (void) nvlist_remove_all(props
, zfs_prop_to_name(ZFS_PROP_ENCRYPTION
));
227 (void) nvlist_remove_all(props
, zfs_prop_to_name(ZFS_PROP_KEYFORMAT
));
228 (void) nvlist_remove_all(props
, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
));
229 (void) nvlist_remove_all(props
,
230 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
));
237 kmem_free(dcp
, sizeof (dsl_crypto_params_t
));
243 dsl_crypto_params_free(dsl_crypto_params_t
*dcp
, boolean_t unload
)
248 if (dcp
->cp_keylocation
!= NULL
)
249 spa_strfree(dcp
->cp_keylocation
);
250 if (unload
&& dcp
->cp_wkey
!= NULL
)
251 dsl_wrapping_key_free(dcp
->cp_wkey
);
253 kmem_free(dcp
, sizeof (dsl_crypto_params_t
));
257 spa_crypto_key_compare(const void *a
, const void *b
)
259 const dsl_crypto_key_t
*dcka
= a
;
260 const dsl_crypto_key_t
*dckb
= b
;
262 if (dcka
->dck_obj
< dckb
->dck_obj
)
264 if (dcka
->dck_obj
> dckb
->dck_obj
)
270 spa_key_mapping_compare(const void *a
, const void *b
)
272 const dsl_key_mapping_t
*kma
= a
;
273 const dsl_key_mapping_t
*kmb
= b
;
275 if (kma
->km_dsobj
< kmb
->km_dsobj
)
277 if (kma
->km_dsobj
> kmb
->km_dsobj
)
283 spa_wkey_compare(const void *a
, const void *b
)
285 const dsl_wrapping_key_t
*wka
= a
;
286 const dsl_wrapping_key_t
*wkb
= b
;
288 if (wka
->wk_ddobj
< wkb
->wk_ddobj
)
290 if (wka
->wk_ddobj
> wkb
->wk_ddobj
)
296 spa_keystore_init(spa_keystore_t
*sk
)
298 rw_init(&sk
->sk_dk_lock
, NULL
, RW_DEFAULT
, NULL
);
299 rw_init(&sk
->sk_km_lock
, NULL
, RW_DEFAULT
, NULL
);
300 rw_init(&sk
->sk_wkeys_lock
, NULL
, RW_DEFAULT
, NULL
);
301 avl_create(&sk
->sk_dsl_keys
, spa_crypto_key_compare
,
302 sizeof (dsl_crypto_key_t
),
303 offsetof(dsl_crypto_key_t
, dck_avl_link
));
304 avl_create(&sk
->sk_key_mappings
, spa_key_mapping_compare
,
305 sizeof (dsl_key_mapping_t
),
306 offsetof(dsl_key_mapping_t
, km_avl_link
));
307 avl_create(&sk
->sk_wkeys
, spa_wkey_compare
, sizeof (dsl_wrapping_key_t
),
308 offsetof(dsl_wrapping_key_t
, wk_avl_link
));
312 spa_keystore_fini(spa_keystore_t
*sk
)
314 dsl_wrapping_key_t
*wkey
;
317 ASSERT(avl_is_empty(&sk
->sk_dsl_keys
));
318 ASSERT(avl_is_empty(&sk
->sk_key_mappings
));
320 while ((wkey
= avl_destroy_nodes(&sk
->sk_wkeys
, &cookie
)) != NULL
)
321 dsl_wrapping_key_free(wkey
);
323 avl_destroy(&sk
->sk_wkeys
);
324 avl_destroy(&sk
->sk_key_mappings
);
325 avl_destroy(&sk
->sk_dsl_keys
);
326 rw_destroy(&sk
->sk_wkeys_lock
);
327 rw_destroy(&sk
->sk_km_lock
);
328 rw_destroy(&sk
->sk_dk_lock
);
332 dsl_dir_get_encryption_root_ddobj(dsl_dir_t
*dd
, uint64_t *rddobj
)
334 if (dd
->dd_crypto_obj
== 0)
335 return (SET_ERROR(ENOENT
));
337 return (zap_lookup(dd
->dd_pool
->dp_meta_objset
, dd
->dd_crypto_obj
,
338 DSL_CRYPTO_KEY_ROOT_DDOBJ
, 8, 1, rddobj
));
342 dsl_dir_get_encryption_version(dsl_dir_t
*dd
, uint64_t *version
)
346 if (dd
->dd_crypto_obj
== 0)
347 return (SET_ERROR(ENOENT
));
349 /* version 0 is implied by ENOENT */
350 (void) zap_lookup(dd
->dd_pool
->dp_meta_objset
, dd
->dd_crypto_obj
,
351 DSL_CRYPTO_KEY_VERSION
, 8, 1, version
);
357 dsl_dir_incompatible_encryption_version(dsl_dir_t
*dd
)
360 uint64_t version
= 0;
362 ret
= dsl_dir_get_encryption_version(dd
, &version
);
366 return (version
!= ZIO_CRYPT_KEY_CURRENT_VERSION
);
370 spa_keystore_wkey_hold_ddobj_impl(spa_t
*spa
, uint64_t ddobj
,
371 void *tag
, dsl_wrapping_key_t
**wkey_out
)
374 dsl_wrapping_key_t search_wkey
;
375 dsl_wrapping_key_t
*found_wkey
;
377 ASSERT(RW_LOCK_HELD(&spa
->spa_keystore
.sk_wkeys_lock
));
379 /* init the search wrapping key */
380 search_wkey
.wk_ddobj
= ddobj
;
382 /* lookup the wrapping key */
383 found_wkey
= avl_find(&spa
->spa_keystore
.sk_wkeys
, &search_wkey
, NULL
);
385 ret
= SET_ERROR(ENOENT
);
389 /* increment the refcount */
390 dsl_wrapping_key_hold(found_wkey
, tag
);
392 *wkey_out
= found_wkey
;
401 spa_keystore_wkey_hold_dd(spa_t
*spa
, dsl_dir_t
*dd
, void *tag
,
402 dsl_wrapping_key_t
**wkey_out
)
405 dsl_wrapping_key_t
*wkey
;
407 boolean_t locked
= B_FALSE
;
409 if (!RW_WRITE_HELD(&spa
->spa_keystore
.sk_wkeys_lock
)) {
410 rw_enter(&spa
->spa_keystore
.sk_wkeys_lock
, RW_READER
);
414 /* get the ddobj that the keylocation property was inherited from */
415 ret
= dsl_dir_get_encryption_root_ddobj(dd
, &rddobj
);
419 /* lookup the wkey in the avl tree */
420 ret
= spa_keystore_wkey_hold_ddobj_impl(spa
, rddobj
, tag
, &wkey
);
424 /* unlock the wkey tree if we locked it */
426 rw_exit(&spa
->spa_keystore
.sk_wkeys_lock
);
433 rw_exit(&spa
->spa_keystore
.sk_wkeys_lock
);
440 dsl_crypto_can_set_keylocation(const char *dsname
, const char *keylocation
)
443 dsl_dir_t
*dd
= NULL
;
444 dsl_pool_t
*dp
= NULL
;
447 /* hold the dsl dir */
448 ret
= dsl_pool_hold(dsname
, FTAG
, &dp
);
452 ret
= dsl_dir_hold(dp
, dsname
, FTAG
, &dd
, NULL
);
458 /* if dd is not encrypted, the value may only be "none" */
459 if (dd
->dd_crypto_obj
== 0) {
460 if (strcmp(keylocation
, "none") != 0) {
461 ret
= SET_ERROR(EACCES
);
469 /* check for a valid keylocation for encrypted datasets */
470 if (!zfs_prop_valid_keylocation(keylocation
, B_TRUE
)) {
471 ret
= SET_ERROR(EINVAL
);
475 /* check that this is an encryption root */
476 ret
= dsl_dir_get_encryption_root_ddobj(dd
, &rddobj
);
480 if (rddobj
!= dd
->dd_object
) {
481 ret
= SET_ERROR(EACCES
);
485 dsl_dir_rele(dd
, FTAG
);
486 dsl_pool_rele(dp
, FTAG
);
492 dsl_dir_rele(dd
, FTAG
);
494 dsl_pool_rele(dp
, FTAG
);
500 dsl_crypto_key_free(dsl_crypto_key_t
*dck
)
502 ASSERT(zfs_refcount_count(&dck
->dck_holds
) == 0);
504 /* destroy the zio_crypt_key_t */
505 zio_crypt_key_destroy(&dck
->dck_key
);
507 /* free the refcount, wrapping key, and lock */
508 zfs_refcount_destroy(&dck
->dck_holds
);
510 dsl_wrapping_key_rele(dck
->dck_wkey
, dck
);
513 kmem_free(dck
, sizeof (dsl_crypto_key_t
));
517 dsl_crypto_key_rele(dsl_crypto_key_t
*dck
, void *tag
)
519 if (zfs_refcount_remove(&dck
->dck_holds
, tag
) == 0)
520 dsl_crypto_key_free(dck
);
524 dsl_crypto_key_open(objset_t
*mos
, dsl_wrapping_key_t
*wkey
,
525 uint64_t dckobj
, void *tag
, dsl_crypto_key_t
**dck_out
)
528 uint64_t crypt
= 0, guid
= 0, version
= 0;
529 uint8_t raw_keydata
[MASTER_KEY_MAX_LEN
];
530 uint8_t raw_hmac_keydata
[SHA512_HMAC_KEYLEN
];
531 uint8_t iv
[WRAPPING_IV_LEN
];
532 uint8_t mac
[WRAPPING_MAC_LEN
];
533 dsl_crypto_key_t
*dck
;
535 /* allocate and initialize the key */
536 dck
= kmem_zalloc(sizeof (dsl_crypto_key_t
), KM_SLEEP
);
538 /* fetch all of the values we need from the ZAP */
539 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_CRYPTO_SUITE
, 8, 1,
544 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_GUID
, 8, 1, &guid
);
548 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_MASTER_KEY
, 1,
549 MASTER_KEY_MAX_LEN
, raw_keydata
);
553 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_HMAC_KEY
, 1,
554 SHA512_HMAC_KEYLEN
, raw_hmac_keydata
);
558 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_IV
, 1, WRAPPING_IV_LEN
,
563 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_MAC
, 1, WRAPPING_MAC_LEN
,
568 /* the initial on-disk format for encryption did not have a version */
569 (void) zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_VERSION
, 8, 1, &version
);
572 * Unwrap the keys. If there is an error return EACCES to indicate
573 * an authentication failure.
575 ret
= zio_crypt_key_unwrap(&wkey
->wk_key
, crypt
, version
, guid
,
576 raw_keydata
, raw_hmac_keydata
, iv
, mac
, &dck
->dck_key
);
578 ret
= SET_ERROR(EACCES
);
582 /* finish initializing the dsl_crypto_key_t */
583 zfs_refcount_create(&dck
->dck_holds
);
584 dsl_wrapping_key_hold(wkey
, dck
);
585 dck
->dck_wkey
= wkey
;
586 dck
->dck_obj
= dckobj
;
587 zfs_refcount_add(&dck
->dck_holds
, tag
);
594 memset(dck
, 0, sizeof (dsl_crypto_key_t
));
595 kmem_free(dck
, sizeof (dsl_crypto_key_t
));
603 spa_keystore_dsl_key_hold_impl(spa_t
*spa
, uint64_t dckobj
, void *tag
,
604 dsl_crypto_key_t
**dck_out
)
607 dsl_crypto_key_t search_dck
;
608 dsl_crypto_key_t
*found_dck
;
610 ASSERT(RW_LOCK_HELD(&spa
->spa_keystore
.sk_dk_lock
));
612 /* init the search key */
613 search_dck
.dck_obj
= dckobj
;
615 /* find the matching key in the keystore */
616 found_dck
= avl_find(&spa
->spa_keystore
.sk_dsl_keys
, &search_dck
, NULL
);
618 ret
= SET_ERROR(ENOENT
);
622 /* increment the refcount */
623 zfs_refcount_add(&found_dck
->dck_holds
, tag
);
625 *dck_out
= found_dck
;
634 spa_keystore_dsl_key_hold_dd(spa_t
*spa
, dsl_dir_t
*dd
, void *tag
,
635 dsl_crypto_key_t
**dck_out
)
639 dsl_crypto_key_t
*dck_io
= NULL
, *dck_ks
= NULL
;
640 dsl_wrapping_key_t
*wkey
= NULL
;
641 uint64_t dckobj
= dd
->dd_crypto_obj
;
643 /* Lookup the key in the tree of currently loaded keys */
644 rw_enter(&spa
->spa_keystore
.sk_dk_lock
, RW_READER
);
645 ret
= spa_keystore_dsl_key_hold_impl(spa
, dckobj
, tag
, &dck_ks
);
646 rw_exit(&spa
->spa_keystore
.sk_dk_lock
);
652 /* Lookup the wrapping key from the keystore */
653 ret
= spa_keystore_wkey_hold_dd(spa
, dd
, FTAG
, &wkey
);
656 return (SET_ERROR(EACCES
));
659 /* Read the key from disk */
660 ret
= dsl_crypto_key_open(spa
->spa_meta_objset
, wkey
, dckobj
,
663 dsl_wrapping_key_rele(wkey
, FTAG
);
669 * Add the key to the keystore. It may already exist if it was
670 * added while performing the read from disk. In this case discard
671 * it and return the key from the keystore.
673 rw_enter(&spa
->spa_keystore
.sk_dk_lock
, RW_WRITER
);
674 ret
= spa_keystore_dsl_key_hold_impl(spa
, dckobj
, tag
, &dck_ks
);
676 avl_find(&spa
->spa_keystore
.sk_dsl_keys
, dck_io
, &where
);
677 avl_insert(&spa
->spa_keystore
.sk_dsl_keys
, dck_io
, where
);
680 dsl_crypto_key_free(dck_io
);
684 /* Release the wrapping key (the dsl key now has a reference to it) */
685 dsl_wrapping_key_rele(wkey
, FTAG
);
686 rw_exit(&spa
->spa_keystore
.sk_dk_lock
);
692 spa_keystore_dsl_key_rele(spa_t
*spa
, dsl_crypto_key_t
*dck
, void *tag
)
694 rw_enter(&spa
->spa_keystore
.sk_dk_lock
, RW_WRITER
);
696 if (zfs_refcount_remove(&dck
->dck_holds
, tag
) == 0) {
697 avl_remove(&spa
->spa_keystore
.sk_dsl_keys
, dck
);
698 dsl_crypto_key_free(dck
);
701 rw_exit(&spa
->spa_keystore
.sk_dk_lock
);
705 spa_keystore_load_wkey_impl(spa_t
*spa
, dsl_wrapping_key_t
*wkey
)
709 dsl_wrapping_key_t
*found_wkey
;
711 rw_enter(&spa
->spa_keystore
.sk_wkeys_lock
, RW_WRITER
);
713 /* insert the wrapping key into the keystore */
714 found_wkey
= avl_find(&spa
->spa_keystore
.sk_wkeys
, wkey
, &where
);
715 if (found_wkey
!= NULL
) {
716 ret
= SET_ERROR(EEXIST
);
719 avl_insert(&spa
->spa_keystore
.sk_wkeys
, wkey
, where
);
721 rw_exit(&spa
->spa_keystore
.sk_wkeys_lock
);
726 rw_exit(&spa
->spa_keystore
.sk_wkeys_lock
);
731 spa_keystore_load_wkey(const char *dsname
, dsl_crypto_params_t
*dcp
,
735 dsl_dir_t
*dd
= NULL
;
736 dsl_crypto_key_t
*dck
= NULL
;
737 dsl_wrapping_key_t
*wkey
= dcp
->cp_wkey
;
738 dsl_pool_t
*dp
= NULL
;
739 uint64_t rddobj
, keyformat
, salt
, iters
;
742 * We don't validate the wrapping key's keyformat, salt, or iters
743 * since they will never be needed after the DCK has been wrapped.
745 if (dcp
->cp_wkey
== NULL
||
746 dcp
->cp_cmd
!= DCP_CMD_NONE
||
747 dcp
->cp_crypt
!= ZIO_CRYPT_INHERIT
||
748 dcp
->cp_keylocation
!= NULL
)
749 return (SET_ERROR(EINVAL
));
751 ret
= dsl_pool_hold(dsname
, FTAG
, &dp
);
755 if (!spa_feature_is_enabled(dp
->dp_spa
, SPA_FEATURE_ENCRYPTION
)) {
756 ret
= SET_ERROR(ENOTSUP
);
760 /* hold the dsl dir */
761 ret
= dsl_dir_hold(dp
, dsname
, FTAG
, &dd
, NULL
);
767 /* confirm that dd is the encryption root */
768 ret
= dsl_dir_get_encryption_root_ddobj(dd
, &rddobj
);
769 if (ret
!= 0 || rddobj
!= dd
->dd_object
) {
770 ret
= SET_ERROR(EINVAL
);
774 /* initialize the wkey's ddobj */
775 wkey
->wk_ddobj
= dd
->dd_object
;
777 /* verify that the wkey is correct by opening its dsl key */
778 ret
= dsl_crypto_key_open(dp
->dp_meta_objset
, wkey
,
779 dd
->dd_crypto_obj
, FTAG
, &dck
);
783 /* initialize the wkey encryption parameters from the DSL Crypto Key */
784 ret
= zap_lookup(dp
->dp_meta_objset
, dd
->dd_crypto_obj
,
785 zfs_prop_to_name(ZFS_PROP_KEYFORMAT
), 8, 1, &keyformat
);
789 ret
= zap_lookup(dp
->dp_meta_objset
, dd
->dd_crypto_obj
,
790 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
), 8, 1, &salt
);
794 ret
= zap_lookup(dp
->dp_meta_objset
, dd
->dd_crypto_obj
,
795 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
), 8, 1, &iters
);
799 ASSERT3U(keyformat
, <, ZFS_KEYFORMAT_FORMATS
);
800 ASSERT3U(keyformat
, !=, ZFS_KEYFORMAT_NONE
);
801 IMPLY(keyformat
== ZFS_KEYFORMAT_PASSPHRASE
, iters
!= 0);
802 IMPLY(keyformat
== ZFS_KEYFORMAT_PASSPHRASE
, salt
!= 0);
803 IMPLY(keyformat
!= ZFS_KEYFORMAT_PASSPHRASE
, iters
== 0);
804 IMPLY(keyformat
!= ZFS_KEYFORMAT_PASSPHRASE
, salt
== 0);
806 wkey
->wk_keyformat
= keyformat
;
807 wkey
->wk_salt
= salt
;
808 wkey
->wk_iters
= iters
;
811 * At this point we have verified the wkey and confirmed that it can
812 * be used to decrypt a DSL Crypto Key. We can simply cleanup and
813 * return if this is all the user wanted to do.
818 /* insert the wrapping key into the keystore */
819 ret
= spa_keystore_load_wkey_impl(dp
->dp_spa
, wkey
);
823 dsl_crypto_key_rele(dck
, FTAG
);
824 dsl_dir_rele(dd
, FTAG
);
825 dsl_pool_rele(dp
, FTAG
);
827 /* create any zvols under this ds */
828 zvol_create_minors_recursive(dsname
);
834 dsl_crypto_key_rele(dck
, FTAG
);
836 dsl_dir_rele(dd
, FTAG
);
838 dsl_pool_rele(dp
, FTAG
);
844 spa_keystore_unload_wkey_impl(spa_t
*spa
, uint64_t ddobj
)
847 dsl_wrapping_key_t search_wkey
;
848 dsl_wrapping_key_t
*found_wkey
;
850 /* init the search wrapping key */
851 search_wkey
.wk_ddobj
= ddobj
;
853 rw_enter(&spa
->spa_keystore
.sk_wkeys_lock
, RW_WRITER
);
855 /* remove the wrapping key from the keystore */
856 found_wkey
= avl_find(&spa
->spa_keystore
.sk_wkeys
,
859 ret
= SET_ERROR(EACCES
);
861 } else if (zfs_refcount_count(&found_wkey
->wk_refcnt
) != 0) {
862 ret
= SET_ERROR(EBUSY
);
865 avl_remove(&spa
->spa_keystore
.sk_wkeys
, found_wkey
);
867 rw_exit(&spa
->spa_keystore
.sk_wkeys_lock
);
869 /* free the wrapping key */
870 dsl_wrapping_key_free(found_wkey
);
875 rw_exit(&spa
->spa_keystore
.sk_wkeys_lock
);
880 spa_keystore_unload_wkey(const char *dsname
)
883 dsl_dir_t
*dd
= NULL
;
884 dsl_pool_t
*dp
= NULL
;
887 ret
= spa_open(dsname
, &spa
, FTAG
);
892 * Wait for any outstanding txg IO to complete, releasing any
893 * remaining references on the wkey.
895 if (spa_mode(spa
) != SPA_MODE_READ
)
896 txg_wait_synced(spa
->spa_dsl_pool
, 0);
898 spa_close(spa
, FTAG
);
900 /* hold the dsl dir */
901 ret
= dsl_pool_hold(dsname
, FTAG
, &dp
);
905 if (!spa_feature_is_enabled(dp
->dp_spa
, SPA_FEATURE_ENCRYPTION
)) {
906 ret
= (SET_ERROR(ENOTSUP
));
910 ret
= dsl_dir_hold(dp
, dsname
, FTAG
, &dd
, NULL
);
916 /* unload the wkey */
917 ret
= spa_keystore_unload_wkey_impl(dp
->dp_spa
, dd
->dd_object
);
921 dsl_dir_rele(dd
, FTAG
);
922 dsl_pool_rele(dp
, FTAG
);
924 /* remove any zvols under this ds */
925 zvol_remove_minors(dp
->dp_spa
, dsname
, B_TRUE
);
931 dsl_dir_rele(dd
, FTAG
);
933 dsl_pool_rele(dp
, FTAG
);
939 key_mapping_add_ref(dsl_key_mapping_t
*km
, void *tag
)
941 ASSERT3U(zfs_refcount_count(&km
->km_refcnt
), >=, 1);
942 zfs_refcount_add(&km
->km_refcnt
, tag
);
946 * The locking here is a little tricky to ensure we don't cause unnecessary
947 * performance problems. We want to release a key mapping whenever someone
948 * decrements the refcount to 0, but freeing the mapping requires removing
949 * it from the spa_keystore, which requires holding sk_km_lock as a writer.
950 * Most of the time we don't want to hold this lock as a writer, since the
951 * same lock is held as a reader for each IO that needs to encrypt / decrypt
952 * data for any dataset and in practice we will only actually free the
953 * mapping after unmounting a dataset.
956 key_mapping_rele(spa_t
*spa
, dsl_key_mapping_t
*km
, void *tag
)
958 ASSERT3U(zfs_refcount_count(&km
->km_refcnt
), >=, 1);
960 if (zfs_refcount_remove(&km
->km_refcnt
, tag
) != 0)
964 * We think we are going to need to free the mapping. Add a
965 * reference to prevent most other releasers from thinking
966 * this might be their responsibility. This is inherently
967 * racy, so we will confirm that we are legitimately the
968 * last holder once we have the sk_km_lock as a writer.
970 zfs_refcount_add(&km
->km_refcnt
, FTAG
);
972 rw_enter(&spa
->spa_keystore
.sk_km_lock
, RW_WRITER
);
973 if (zfs_refcount_remove(&km
->km_refcnt
, FTAG
) != 0) {
974 rw_exit(&spa
->spa_keystore
.sk_km_lock
);
978 avl_remove(&spa
->spa_keystore
.sk_key_mappings
, km
);
979 rw_exit(&spa
->spa_keystore
.sk_km_lock
);
981 spa_keystore_dsl_key_rele(spa
, km
->km_key
, km
);
982 zfs_refcount_destroy(&km
->km_refcnt
);
983 kmem_free(km
, sizeof (dsl_key_mapping_t
));
987 spa_keystore_create_mapping(spa_t
*spa
, dsl_dataset_t
*ds
, void *tag
,
988 dsl_key_mapping_t
**km_out
)
992 dsl_key_mapping_t
*km
, *found_km
;
993 boolean_t should_free
= B_FALSE
;
995 /* Allocate and initialize the mapping */
996 km
= kmem_zalloc(sizeof (dsl_key_mapping_t
), KM_SLEEP
);
997 zfs_refcount_create(&km
->km_refcnt
);
999 ret
= spa_keystore_dsl_key_hold_dd(spa
, ds
->ds_dir
, km
, &km
->km_key
);
1001 zfs_refcount_destroy(&km
->km_refcnt
);
1002 kmem_free(km
, sizeof (dsl_key_mapping_t
));
1009 km
->km_dsobj
= ds
->ds_object
;
1011 rw_enter(&spa
->spa_keystore
.sk_km_lock
, RW_WRITER
);
1014 * If a mapping already exists, simply increment its refcount and
1015 * cleanup the one we made. We want to allocate / free outside of
1016 * the lock because this lock is also used by the zio layer to lookup
1017 * key mappings. Otherwise, use the one we created. Normally, there will
1018 * only be one active reference at a time (the objset owner), but there
1019 * are times when there could be multiple async users.
1021 found_km
= avl_find(&spa
->spa_keystore
.sk_key_mappings
, km
, &where
);
1022 if (found_km
!= NULL
) {
1023 should_free
= B_TRUE
;
1024 zfs_refcount_add(&found_km
->km_refcnt
, tag
);
1028 zfs_refcount_add(&km
->km_refcnt
, tag
);
1029 avl_insert(&spa
->spa_keystore
.sk_key_mappings
, km
, where
);
1034 rw_exit(&spa
->spa_keystore
.sk_km_lock
);
1037 spa_keystore_dsl_key_rele(spa
, km
->km_key
, km
);
1038 zfs_refcount_destroy(&km
->km_refcnt
);
1039 kmem_free(km
, sizeof (dsl_key_mapping_t
));
1046 spa_keystore_remove_mapping(spa_t
*spa
, uint64_t dsobj
, void *tag
)
1049 dsl_key_mapping_t search_km
;
1050 dsl_key_mapping_t
*found_km
;
1052 /* init the search key mapping */
1053 search_km
.km_dsobj
= dsobj
;
1055 rw_enter(&spa
->spa_keystore
.sk_km_lock
, RW_READER
);
1057 /* find the matching mapping */
1058 found_km
= avl_find(&spa
->spa_keystore
.sk_key_mappings
,
1060 if (found_km
== NULL
) {
1061 ret
= SET_ERROR(ENOENT
);
1065 rw_exit(&spa
->spa_keystore
.sk_km_lock
);
1067 key_mapping_rele(spa
, found_km
, tag
);
1072 rw_exit(&spa
->spa_keystore
.sk_km_lock
);
1077 * This function is primarily used by the zio and arc layer to lookup
1078 * DSL Crypto Keys for encryption. Callers must release the key with
1079 * spa_keystore_dsl_key_rele(). The function may also be called with
1080 * dck_out == NULL and tag == NULL to simply check that a key exists
1081 * without getting a reference to it.
1084 spa_keystore_lookup_key(spa_t
*spa
, uint64_t dsobj
, void *tag
,
1085 dsl_crypto_key_t
**dck_out
)
1088 dsl_key_mapping_t search_km
;
1089 dsl_key_mapping_t
*found_km
;
1091 ASSERT((tag
!= NULL
&& dck_out
!= NULL
) ||
1092 (tag
== NULL
&& dck_out
== NULL
));
1094 /* init the search key mapping */
1095 search_km
.km_dsobj
= dsobj
;
1097 rw_enter(&spa
->spa_keystore
.sk_km_lock
, RW_READER
);
1099 /* remove the mapping from the tree */
1100 found_km
= avl_find(&spa
->spa_keystore
.sk_key_mappings
, &search_km
,
1102 if (found_km
== NULL
) {
1103 ret
= SET_ERROR(ENOENT
);
1107 if (found_km
&& tag
)
1108 zfs_refcount_add(&found_km
->km_key
->dck_holds
, tag
);
1110 rw_exit(&spa
->spa_keystore
.sk_km_lock
);
1112 if (dck_out
!= NULL
)
1113 *dck_out
= found_km
->km_key
;
1117 rw_exit(&spa
->spa_keystore
.sk_km_lock
);
1119 if (dck_out
!= NULL
)
1125 dmu_objset_check_wkey_loaded(dsl_dir_t
*dd
)
1128 dsl_wrapping_key_t
*wkey
= NULL
;
1130 ret
= spa_keystore_wkey_hold_dd(dd
->dd_pool
->dp_spa
, dd
, FTAG
,
1133 return (SET_ERROR(EACCES
));
1135 dsl_wrapping_key_rele(wkey
, FTAG
);
1140 static zfs_keystatus_t
1141 dsl_dataset_get_keystatus(dsl_dir_t
*dd
)
1143 /* check if this dd has a has a dsl key */
1144 if (dd
->dd_crypto_obj
== 0)
1145 return (ZFS_KEYSTATUS_NONE
);
1147 return (dmu_objset_check_wkey_loaded(dd
) == 0 ?
1148 ZFS_KEYSTATUS_AVAILABLE
: ZFS_KEYSTATUS_UNAVAILABLE
);
1152 dsl_dir_get_crypt(dsl_dir_t
*dd
, uint64_t *crypt
)
1154 if (dd
->dd_crypto_obj
== 0) {
1155 *crypt
= ZIO_CRYPT_OFF
;
1159 return (zap_lookup(dd
->dd_pool
->dp_meta_objset
, dd
->dd_crypto_obj
,
1160 DSL_CRYPTO_KEY_CRYPTO_SUITE
, 8, 1, crypt
));
1164 dsl_crypto_key_sync_impl(objset_t
*mos
, uint64_t dckobj
, uint64_t crypt
,
1165 uint64_t root_ddobj
, uint64_t guid
, uint8_t *iv
, uint8_t *mac
,
1166 uint8_t *keydata
, uint8_t *hmac_keydata
, uint64_t keyformat
,
1167 uint64_t salt
, uint64_t iters
, dmu_tx_t
*tx
)
1169 VERIFY0(zap_update(mos
, dckobj
, DSL_CRYPTO_KEY_CRYPTO_SUITE
, 8, 1,
1171 VERIFY0(zap_update(mos
, dckobj
, DSL_CRYPTO_KEY_ROOT_DDOBJ
, 8, 1,
1173 VERIFY0(zap_update(mos
, dckobj
, DSL_CRYPTO_KEY_GUID
, 8, 1,
1175 VERIFY0(zap_update(mos
, dckobj
, DSL_CRYPTO_KEY_IV
, 1, WRAPPING_IV_LEN
,
1177 VERIFY0(zap_update(mos
, dckobj
, DSL_CRYPTO_KEY_MAC
, 1, WRAPPING_MAC_LEN
,
1179 VERIFY0(zap_update(mos
, dckobj
, DSL_CRYPTO_KEY_MASTER_KEY
, 1,
1180 MASTER_KEY_MAX_LEN
, keydata
, tx
));
1181 VERIFY0(zap_update(mos
, dckobj
, DSL_CRYPTO_KEY_HMAC_KEY
, 1,
1182 SHA512_HMAC_KEYLEN
, hmac_keydata
, tx
));
1183 VERIFY0(zap_update(mos
, dckobj
, zfs_prop_to_name(ZFS_PROP_KEYFORMAT
),
1184 8, 1, &keyformat
, tx
));
1185 VERIFY0(zap_update(mos
, dckobj
, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
),
1187 VERIFY0(zap_update(mos
, dckobj
, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
),
1192 dsl_crypto_key_sync(dsl_crypto_key_t
*dck
, dmu_tx_t
*tx
)
1194 zio_crypt_key_t
*key
= &dck
->dck_key
;
1195 dsl_wrapping_key_t
*wkey
= dck
->dck_wkey
;
1196 uint8_t keydata
[MASTER_KEY_MAX_LEN
];
1197 uint8_t hmac_keydata
[SHA512_HMAC_KEYLEN
];
1198 uint8_t iv
[WRAPPING_IV_LEN
];
1199 uint8_t mac
[WRAPPING_MAC_LEN
];
1201 ASSERT(dmu_tx_is_syncing(tx
));
1202 ASSERT3U(key
->zk_crypt
, <, ZIO_CRYPT_FUNCTIONS
);
1204 /* encrypt and store the keys along with the IV and MAC */
1205 VERIFY0(zio_crypt_key_wrap(&dck
->dck_wkey
->wk_key
, key
, iv
, mac
,
1206 keydata
, hmac_keydata
));
1208 /* update the ZAP with the obtained values */
1209 dsl_crypto_key_sync_impl(tx
->tx_pool
->dp_meta_objset
, dck
->dck_obj
,
1210 key
->zk_crypt
, wkey
->wk_ddobj
, key
->zk_guid
, iv
, mac
, keydata
,
1211 hmac_keydata
, wkey
->wk_keyformat
, wkey
->wk_salt
, wkey
->wk_iters
,
1215 typedef struct spa_keystore_change_key_args
{
1216 const char *skcka_dsname
;
1217 dsl_crypto_params_t
*skcka_cp
;
1218 } spa_keystore_change_key_args_t
;
1221 spa_keystore_change_key_check(void *arg
, dmu_tx_t
*tx
)
1224 dsl_dir_t
*dd
= NULL
;
1225 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1226 spa_keystore_change_key_args_t
*skcka
= arg
;
1227 dsl_crypto_params_t
*dcp
= skcka
->skcka_cp
;
1230 /* check for the encryption feature */
1231 if (!spa_feature_is_enabled(dp
->dp_spa
, SPA_FEATURE_ENCRYPTION
)) {
1232 ret
= SET_ERROR(ENOTSUP
);
1236 /* check for valid key change command */
1237 if (dcp
->cp_cmd
!= DCP_CMD_NEW_KEY
&&
1238 dcp
->cp_cmd
!= DCP_CMD_INHERIT
&&
1239 dcp
->cp_cmd
!= DCP_CMD_FORCE_NEW_KEY
&&
1240 dcp
->cp_cmd
!= DCP_CMD_FORCE_INHERIT
) {
1241 ret
= SET_ERROR(EINVAL
);
1246 ret
= dsl_dir_hold(dp
, skcka
->skcka_dsname
, FTAG
, &dd
, NULL
);
1252 /* verify that the dataset is encrypted */
1253 if (dd
->dd_crypto_obj
== 0) {
1254 ret
= SET_ERROR(EINVAL
);
1258 /* clones must always use their origin's key */
1259 if (dsl_dir_is_clone(dd
)) {
1260 ret
= SET_ERROR(EINVAL
);
1264 /* lookup the ddobj we are inheriting the keylocation from */
1265 ret
= dsl_dir_get_encryption_root_ddobj(dd
, &rddobj
);
1269 /* Handle inheritance */
1270 if (dcp
->cp_cmd
== DCP_CMD_INHERIT
||
1271 dcp
->cp_cmd
== DCP_CMD_FORCE_INHERIT
) {
1272 /* no other encryption params should be given */
1273 if (dcp
->cp_crypt
!= ZIO_CRYPT_INHERIT
||
1274 dcp
->cp_keylocation
!= NULL
||
1275 dcp
->cp_wkey
!= NULL
) {
1276 ret
= SET_ERROR(EINVAL
);
1280 /* check that this is an encryption root */
1281 if (dd
->dd_object
!= rddobj
) {
1282 ret
= SET_ERROR(EINVAL
);
1286 /* check that the parent is encrypted */
1287 if (dd
->dd_parent
->dd_crypto_obj
== 0) {
1288 ret
= SET_ERROR(EINVAL
);
1292 /* if we are rewrapping check that both keys are loaded */
1293 if (dcp
->cp_cmd
== DCP_CMD_INHERIT
) {
1294 ret
= dmu_objset_check_wkey_loaded(dd
);
1298 ret
= dmu_objset_check_wkey_loaded(dd
->dd_parent
);
1303 dsl_dir_rele(dd
, FTAG
);
1307 /* handle forcing an encryption root without rewrapping */
1308 if (dcp
->cp_cmd
== DCP_CMD_FORCE_NEW_KEY
) {
1309 /* no other encryption params should be given */
1310 if (dcp
->cp_crypt
!= ZIO_CRYPT_INHERIT
||
1311 dcp
->cp_keylocation
!= NULL
||
1312 dcp
->cp_wkey
!= NULL
) {
1313 ret
= SET_ERROR(EINVAL
);
1317 /* check that this is not an encryption root */
1318 if (dd
->dd_object
== rddobj
) {
1319 ret
= SET_ERROR(EINVAL
);
1323 dsl_dir_rele(dd
, FTAG
);
1327 /* crypt cannot be changed after creation */
1328 if (dcp
->cp_crypt
!= ZIO_CRYPT_INHERIT
) {
1329 ret
= SET_ERROR(EINVAL
);
1333 /* we are not inheritting our parent's wkey so we need one ourselves */
1334 if (dcp
->cp_wkey
== NULL
) {
1335 ret
= SET_ERROR(EINVAL
);
1339 /* check for a valid keyformat for the new wrapping key */
1340 if (dcp
->cp_wkey
->wk_keyformat
>= ZFS_KEYFORMAT_FORMATS
||
1341 dcp
->cp_wkey
->wk_keyformat
== ZFS_KEYFORMAT_NONE
) {
1342 ret
= SET_ERROR(EINVAL
);
1347 * If this dataset is not currently an encryption root we need a new
1348 * keylocation for this dataset's new wrapping key. Otherwise we can
1349 * just keep the one we already had.
1351 if (dd
->dd_object
!= rddobj
&& dcp
->cp_keylocation
== NULL
) {
1352 ret
= SET_ERROR(EINVAL
);
1356 /* check that the keylocation is valid if it is not NULL */
1357 if (dcp
->cp_keylocation
!= NULL
&&
1358 !zfs_prop_valid_keylocation(dcp
->cp_keylocation
, B_TRUE
)) {
1359 ret
= SET_ERROR(EINVAL
);
1363 /* passphrases require pbkdf2 salt and iters */
1364 if (dcp
->cp_wkey
->wk_keyformat
== ZFS_KEYFORMAT_PASSPHRASE
) {
1365 if (dcp
->cp_wkey
->wk_salt
== 0 ||
1366 dcp
->cp_wkey
->wk_iters
< MIN_PBKDF2_ITERATIONS
) {
1367 ret
= SET_ERROR(EINVAL
);
1371 if (dcp
->cp_wkey
->wk_salt
!= 0 || dcp
->cp_wkey
->wk_iters
!= 0) {
1372 ret
= SET_ERROR(EINVAL
);
1377 /* make sure the dd's wkey is loaded */
1378 ret
= dmu_objset_check_wkey_loaded(dd
);
1382 dsl_dir_rele(dd
, FTAG
);
1388 dsl_dir_rele(dd
, FTAG
);
1394 * This function deals with the intricacies of updating wrapping
1395 * key references and encryption roots recursively in the event
1396 * of a call to 'zfs change-key' or 'zfs promote'. The 'skip'
1397 * parameter should always be set to B_FALSE when called
1401 spa_keystore_change_key_sync_impl(uint64_t rddobj
, uint64_t ddobj
,
1402 uint64_t new_rddobj
, dsl_wrapping_key_t
*wkey
, boolean_t skip
,
1407 zap_attribute_t
*za
;
1408 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1409 dsl_dir_t
*dd
= NULL
;
1410 dsl_crypto_key_t
*dck
= NULL
;
1411 uint64_t curr_rddobj
;
1413 ASSERT(RW_WRITE_HELD(&dp
->dp_spa
->spa_keystore
.sk_wkeys_lock
));
1416 VERIFY0(dsl_dir_hold_obj(dp
, ddobj
, NULL
, FTAG
, &dd
));
1418 /* ignore special dsl dirs */
1419 if (dd
->dd_myname
[0] == '$' || dd
->dd_myname
[0] == '%') {
1420 dsl_dir_rele(dd
, FTAG
);
1424 ret
= dsl_dir_get_encryption_root_ddobj(dd
, &curr_rddobj
);
1425 VERIFY(ret
== 0 || ret
== ENOENT
);
1428 * Stop recursing if this dsl dir didn't inherit from the root
1429 * or if this dd is a clone.
1431 if (ret
== ENOENT
||
1432 (!skip
&& (curr_rddobj
!= rddobj
|| dsl_dir_is_clone(dd
)))) {
1433 dsl_dir_rele(dd
, FTAG
);
1438 * If we don't have a wrapping key just update the dck to reflect the
1439 * new encryption root. Otherwise rewrap the entire dck and re-sync it
1440 * to disk. If skip is set, we don't do any of this work.
1444 VERIFY0(zap_update(dp
->dp_meta_objset
,
1446 DSL_CRYPTO_KEY_ROOT_DDOBJ
, 8, 1,
1449 VERIFY0(spa_keystore_dsl_key_hold_dd(dp
->dp_spa
, dd
,
1451 dsl_wrapping_key_hold(wkey
, dck
);
1452 dsl_wrapping_key_rele(dck
->dck_wkey
, dck
);
1453 dck
->dck_wkey
= wkey
;
1454 dsl_crypto_key_sync(dck
, tx
);
1455 spa_keystore_dsl_key_rele(dp
->dp_spa
, dck
, FTAG
);
1459 zc
= kmem_alloc(sizeof (zap_cursor_t
), KM_SLEEP
);
1460 za
= kmem_alloc(sizeof (zap_attribute_t
), KM_SLEEP
);
1462 /* Recurse into all child dsl dirs. */
1463 for (zap_cursor_init(zc
, dp
->dp_meta_objset
,
1464 dsl_dir_phys(dd
)->dd_child_dir_zapobj
);
1465 zap_cursor_retrieve(zc
, za
) == 0;
1466 zap_cursor_advance(zc
)) {
1467 spa_keystore_change_key_sync_impl(rddobj
,
1468 za
->za_first_integer
, new_rddobj
, wkey
, B_FALSE
, tx
);
1470 zap_cursor_fini(zc
);
1473 * Recurse into all dsl dirs of clones. We utilize the skip parameter
1474 * here so that we don't attempt to process the clones directly. This
1475 * is because the clone and its origin share the same dck, which has
1476 * already been updated.
1478 for (zap_cursor_init(zc
, dp
->dp_meta_objset
,
1479 dsl_dir_phys(dd
)->dd_clones
);
1480 zap_cursor_retrieve(zc
, za
) == 0;
1481 zap_cursor_advance(zc
)) {
1482 dsl_dataset_t
*clone
;
1484 VERIFY0(dsl_dataset_hold_obj(dp
, za
->za_first_integer
,
1486 spa_keystore_change_key_sync_impl(rddobj
,
1487 clone
->ds_dir
->dd_object
, new_rddobj
, wkey
, B_TRUE
, tx
);
1488 dsl_dataset_rele(clone
, FTAG
);
1490 zap_cursor_fini(zc
);
1492 kmem_free(za
, sizeof (zap_attribute_t
));
1493 kmem_free(zc
, sizeof (zap_cursor_t
));
1495 dsl_dir_rele(dd
, FTAG
);
1499 spa_keystore_change_key_sync(void *arg
, dmu_tx_t
*tx
)
1503 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1504 spa_t
*spa
= dp
->dp_spa
;
1505 spa_keystore_change_key_args_t
*skcka
= arg
;
1506 dsl_crypto_params_t
*dcp
= skcka
->skcka_cp
;
1507 dsl_wrapping_key_t
*wkey
= NULL
, *found_wkey
;
1508 dsl_wrapping_key_t wkey_search
;
1509 char *keylocation
= dcp
->cp_keylocation
;
1510 uint64_t rddobj
, new_rddobj
;
1512 /* create and initialize the wrapping key */
1513 VERIFY0(dsl_dataset_hold(dp
, skcka
->skcka_dsname
, FTAG
, &ds
));
1514 ASSERT(!ds
->ds_is_snapshot
);
1516 if (dcp
->cp_cmd
== DCP_CMD_NEW_KEY
||
1517 dcp
->cp_cmd
== DCP_CMD_FORCE_NEW_KEY
) {
1519 * We are changing to a new wkey. Set additional properties
1520 * which can be sent along with this ioctl. Note that this
1521 * command can set keylocation even if it can't normally be
1522 * set via 'zfs set' due to a non-local keylocation.
1524 if (dcp
->cp_cmd
== DCP_CMD_NEW_KEY
) {
1525 wkey
= dcp
->cp_wkey
;
1526 wkey
->wk_ddobj
= ds
->ds_dir
->dd_object
;
1528 keylocation
= "prompt";
1531 if (keylocation
!= NULL
) {
1532 dsl_prop_set_sync_impl(ds
,
1533 zfs_prop_to_name(ZFS_PROP_KEYLOCATION
),
1534 ZPROP_SRC_LOCAL
, 1, strlen(keylocation
) + 1,
1538 VERIFY0(dsl_dir_get_encryption_root_ddobj(ds
->ds_dir
, &rddobj
));
1539 new_rddobj
= ds
->ds_dir
->dd_object
;
1542 * We are inheritting the parent's wkey. Unset any local
1543 * keylocation and grab a reference to the wkey.
1545 if (dcp
->cp_cmd
== DCP_CMD_INHERIT
) {
1546 VERIFY0(spa_keystore_wkey_hold_dd(spa
,
1547 ds
->ds_dir
->dd_parent
, FTAG
, &wkey
));
1550 dsl_prop_set_sync_impl(ds
,
1551 zfs_prop_to_name(ZFS_PROP_KEYLOCATION
), ZPROP_SRC_NONE
,
1554 rddobj
= ds
->ds_dir
->dd_object
;
1555 VERIFY0(dsl_dir_get_encryption_root_ddobj(ds
->ds_dir
->dd_parent
,
1560 ASSERT(dcp
->cp_cmd
== DCP_CMD_FORCE_INHERIT
||
1561 dcp
->cp_cmd
== DCP_CMD_FORCE_NEW_KEY
);
1564 rw_enter(&spa
->spa_keystore
.sk_wkeys_lock
, RW_WRITER
);
1566 /* recurse through all children and rewrap their keys */
1567 spa_keystore_change_key_sync_impl(rddobj
, ds
->ds_dir
->dd_object
,
1568 new_rddobj
, wkey
, B_FALSE
, tx
);
1571 * All references to the old wkey should be released now (if it
1572 * existed). Replace the wrapping key.
1574 wkey_search
.wk_ddobj
= ds
->ds_dir
->dd_object
;
1575 found_wkey
= avl_find(&spa
->spa_keystore
.sk_wkeys
, &wkey_search
, NULL
);
1576 if (found_wkey
!= NULL
) {
1577 ASSERT0(zfs_refcount_count(&found_wkey
->wk_refcnt
));
1578 avl_remove(&spa
->spa_keystore
.sk_wkeys
, found_wkey
);
1579 dsl_wrapping_key_free(found_wkey
);
1582 if (dcp
->cp_cmd
== DCP_CMD_NEW_KEY
) {
1583 avl_find(&spa
->spa_keystore
.sk_wkeys
, wkey
, &where
);
1584 avl_insert(&spa
->spa_keystore
.sk_wkeys
, wkey
, where
);
1585 } else if (wkey
!= NULL
) {
1586 dsl_wrapping_key_rele(wkey
, FTAG
);
1589 rw_exit(&spa
->spa_keystore
.sk_wkeys_lock
);
1591 dsl_dataset_rele(ds
, FTAG
);
1595 spa_keystore_change_key(const char *dsname
, dsl_crypto_params_t
*dcp
)
1597 spa_keystore_change_key_args_t skcka
;
1599 /* initialize the args struct */
1600 skcka
.skcka_dsname
= dsname
;
1601 skcka
.skcka_cp
= dcp
;
1604 * Perform the actual work in syncing context. The blocks modified
1605 * here could be calculated but it would require holding the pool
1606 * lock and traversing all of the datasets that will have their keys
1609 return (dsl_sync_task(dsname
, spa_keystore_change_key_check
,
1610 spa_keystore_change_key_sync
, &skcka
, 15,
1611 ZFS_SPACE_CHECK_RESERVED
));
1615 dsl_dir_rename_crypt_check(dsl_dir_t
*dd
, dsl_dir_t
*newparent
)
1618 uint64_t curr_rddobj
, parent_rddobj
;
1620 if (dd
->dd_crypto_obj
== 0)
1623 ret
= dsl_dir_get_encryption_root_ddobj(dd
, &curr_rddobj
);
1628 * if this is not an encryption root, we must make sure we are not
1629 * moving dd to a new encryption root
1631 if (dd
->dd_object
!= curr_rddobj
) {
1632 ret
= dsl_dir_get_encryption_root_ddobj(newparent
,
1637 if (parent_rddobj
!= curr_rddobj
) {
1638 ret
= SET_ERROR(EACCES
);
1650 * Check to make sure that a promote from targetdd to origindd will not require
1654 dsl_dataset_promote_crypt_check(dsl_dir_t
*target
, dsl_dir_t
*origin
)
1657 uint64_t rddobj
, op_rddobj
, tp_rddobj
;
1659 /* If the dataset is not encrypted we don't need to check anything */
1660 if (origin
->dd_crypto_obj
== 0)
1664 * If we are not changing the first origin snapshot in a chain
1665 * the encryption root won't change either.
1667 if (dsl_dir_is_clone(origin
))
1671 * If the origin is the encryption root we will update
1672 * the DSL Crypto Key to point to the target instead.
1674 ret
= dsl_dir_get_encryption_root_ddobj(origin
, &rddobj
);
1678 if (rddobj
== origin
->dd_object
)
1682 * The origin is inheriting its encryption root from its parent.
1683 * Check that the parent of the target has the same encryption root.
1685 ret
= dsl_dir_get_encryption_root_ddobj(origin
->dd_parent
, &op_rddobj
);
1687 return (SET_ERROR(EACCES
));
1691 ret
= dsl_dir_get_encryption_root_ddobj(target
->dd_parent
, &tp_rddobj
);
1693 return (SET_ERROR(EACCES
));
1697 if (op_rddobj
!= tp_rddobj
)
1698 return (SET_ERROR(EACCES
));
1704 dsl_dataset_promote_crypt_sync(dsl_dir_t
*target
, dsl_dir_t
*origin
,
1708 dsl_pool_t
*dp
= target
->dd_pool
;
1709 dsl_dataset_t
*targetds
;
1710 dsl_dataset_t
*originds
;
1713 if (origin
->dd_crypto_obj
== 0)
1715 if (dsl_dir_is_clone(origin
))
1718 VERIFY0(dsl_dir_get_encryption_root_ddobj(origin
, &rddobj
));
1720 if (rddobj
!= origin
->dd_object
)
1724 * If the target is being promoted to the encryption root update the
1725 * DSL Crypto Key and keylocation to reflect that. We also need to
1726 * update the DSL Crypto Keys of all children inheritting their
1727 * encryption root to point to the new target. Otherwise, the check
1728 * function ensured that the encryption root will not change.
1730 keylocation
= kmem_alloc(ZAP_MAXVALUELEN
, KM_SLEEP
);
1732 VERIFY0(dsl_dataset_hold_obj(dp
,
1733 dsl_dir_phys(target
)->dd_head_dataset_obj
, FTAG
, &targetds
));
1734 VERIFY0(dsl_dataset_hold_obj(dp
,
1735 dsl_dir_phys(origin
)->dd_head_dataset_obj
, FTAG
, &originds
));
1737 VERIFY0(dsl_prop_get_dd(origin
, zfs_prop_to_name(ZFS_PROP_KEYLOCATION
),
1738 1, ZAP_MAXVALUELEN
, keylocation
, NULL
, B_FALSE
));
1739 dsl_prop_set_sync_impl(targetds
, zfs_prop_to_name(ZFS_PROP_KEYLOCATION
),
1740 ZPROP_SRC_LOCAL
, 1, strlen(keylocation
) + 1, keylocation
, tx
);
1741 dsl_prop_set_sync_impl(originds
, zfs_prop_to_name(ZFS_PROP_KEYLOCATION
),
1742 ZPROP_SRC_NONE
, 0, 0, NULL
, tx
);
1744 rw_enter(&dp
->dp_spa
->spa_keystore
.sk_wkeys_lock
, RW_WRITER
);
1745 spa_keystore_change_key_sync_impl(rddobj
, origin
->dd_object
,
1746 target
->dd_object
, NULL
, B_FALSE
, tx
);
1747 rw_exit(&dp
->dp_spa
->spa_keystore
.sk_wkeys_lock
);
1749 dsl_dataset_rele(targetds
, FTAG
);
1750 dsl_dataset_rele(originds
, FTAG
);
1751 kmem_free(keylocation
, ZAP_MAXVALUELEN
);
1755 dmu_objset_create_crypt_check(dsl_dir_t
*parentdd
, dsl_crypto_params_t
*dcp
,
1756 boolean_t
*will_encrypt
)
1759 uint64_t pcrypt
, crypt
;
1760 dsl_crypto_params_t dummy_dcp
= { 0 };
1762 if (will_encrypt
!= NULL
)
1763 *will_encrypt
= B_FALSE
;
1768 if (dcp
->cp_cmd
!= DCP_CMD_NONE
)
1769 return (SET_ERROR(EINVAL
));
1771 if (parentdd
!= NULL
) {
1772 ret
= dsl_dir_get_crypt(parentdd
, &pcrypt
);
1776 pcrypt
= ZIO_CRYPT_OFF
;
1779 crypt
= (dcp
->cp_crypt
== ZIO_CRYPT_INHERIT
) ? pcrypt
: dcp
->cp_crypt
;
1781 ASSERT3U(pcrypt
, !=, ZIO_CRYPT_INHERIT
);
1782 ASSERT3U(crypt
, !=, ZIO_CRYPT_INHERIT
);
1784 /* check for valid dcp with no encryption (inherited or local) */
1785 if (crypt
== ZIO_CRYPT_OFF
) {
1786 /* Must not specify encryption params */
1787 if (dcp
->cp_wkey
!= NULL
||
1788 (dcp
->cp_keylocation
!= NULL
&&
1789 strcmp(dcp
->cp_keylocation
, "none") != 0))
1790 return (SET_ERROR(EINVAL
));
1795 if (will_encrypt
!= NULL
)
1796 *will_encrypt
= B_TRUE
;
1799 * We will now definitely be encrypting. Check the feature flag. When
1800 * creating the pool the caller will check this for us since we won't
1801 * technically have the feature activated yet.
1803 if (parentdd
!= NULL
&&
1804 !spa_feature_is_enabled(parentdd
->dd_pool
->dp_spa
,
1805 SPA_FEATURE_ENCRYPTION
)) {
1806 return (SET_ERROR(EOPNOTSUPP
));
1809 /* Check for errata #4 (encryption enabled, bookmark_v2 disabled) */
1810 if (parentdd
!= NULL
&&
1811 !spa_feature_is_enabled(parentdd
->dd_pool
->dp_spa
,
1812 SPA_FEATURE_BOOKMARK_V2
)) {
1813 return (SET_ERROR(EOPNOTSUPP
));
1816 /* handle inheritance */
1817 if (dcp
->cp_wkey
== NULL
) {
1818 ASSERT3P(parentdd
, !=, NULL
);
1820 /* key must be fully unspecified */
1821 if (dcp
->cp_keylocation
!= NULL
)
1822 return (SET_ERROR(EINVAL
));
1824 /* parent must have a key to inherit */
1825 if (pcrypt
== ZIO_CRYPT_OFF
)
1826 return (SET_ERROR(EINVAL
));
1828 /* check for parent key */
1829 ret
= dmu_objset_check_wkey_loaded(parentdd
);
1836 /* At this point we should have a fully specified key. Check location */
1837 if (dcp
->cp_keylocation
== NULL
||
1838 !zfs_prop_valid_keylocation(dcp
->cp_keylocation
, B_TRUE
))
1839 return (SET_ERROR(EINVAL
));
1841 /* Must have fully specified keyformat */
1842 switch (dcp
->cp_wkey
->wk_keyformat
) {
1843 case ZFS_KEYFORMAT_HEX
:
1844 case ZFS_KEYFORMAT_RAW
:
1845 /* requires no pbkdf2 iters and salt */
1846 if (dcp
->cp_wkey
->wk_salt
!= 0 || dcp
->cp_wkey
->wk_iters
!= 0)
1847 return (SET_ERROR(EINVAL
));
1849 case ZFS_KEYFORMAT_PASSPHRASE
:
1850 /* requires pbkdf2 iters and salt */
1851 if (dcp
->cp_wkey
->wk_salt
== 0 ||
1852 dcp
->cp_wkey
->wk_iters
< MIN_PBKDF2_ITERATIONS
)
1853 return (SET_ERROR(EINVAL
));
1855 case ZFS_KEYFORMAT_NONE
:
1857 /* keyformat must be specified and valid */
1858 return (SET_ERROR(EINVAL
));
1865 dsl_dataset_create_crypt_sync(uint64_t dsobj
, dsl_dir_t
*dd
,
1866 dsl_dataset_t
*origin
, dsl_crypto_params_t
*dcp
, dmu_tx_t
*tx
)
1868 dsl_pool_t
*dp
= dd
->dd_pool
;
1870 dsl_wrapping_key_t
*wkey
;
1872 /* clones always use their origin's wrapping key */
1873 if (dsl_dir_is_clone(dd
)) {
1874 ASSERT3P(dcp
, ==, NULL
);
1877 * If this is an encrypted clone we just need to clone the
1878 * dck into dd. Zapify the dd so we can do that.
1880 if (origin
->ds_dir
->dd_crypto_obj
!= 0) {
1881 dmu_buf_will_dirty(dd
->dd_dbuf
, tx
);
1882 dsl_dir_zapify(dd
, tx
);
1885 dsl_crypto_key_clone_sync(origin
->ds_dir
, tx
);
1886 VERIFY0(zap_add(dp
->dp_meta_objset
, dd
->dd_object
,
1887 DD_FIELD_CRYPTO_KEY_OBJ
, sizeof (uint64_t), 1,
1888 &dd
->dd_crypto_obj
, tx
));
1895 * A NULL dcp at this point indicates this is the origin dataset
1896 * which does not have an objset to encrypt. Raw receives will handle
1897 * encryption separately later. In both cases we can simply return.
1899 if (dcp
== NULL
|| dcp
->cp_cmd
== DCP_CMD_RAW_RECV
)
1902 crypt
= dcp
->cp_crypt
;
1903 wkey
= dcp
->cp_wkey
;
1905 /* figure out the effective crypt */
1906 if (crypt
== ZIO_CRYPT_INHERIT
&& dd
->dd_parent
!= NULL
)
1907 VERIFY0(dsl_dir_get_crypt(dd
->dd_parent
, &crypt
));
1909 /* if we aren't doing encryption just return */
1910 if (crypt
== ZIO_CRYPT_OFF
|| crypt
== ZIO_CRYPT_INHERIT
)
1913 /* zapify the dd so that we can add the crypto key obj to it */
1914 dmu_buf_will_dirty(dd
->dd_dbuf
, tx
);
1915 dsl_dir_zapify(dd
, tx
);
1917 /* use the new key if given or inherit from the parent */
1919 VERIFY0(spa_keystore_wkey_hold_dd(dp
->dp_spa
,
1920 dd
->dd_parent
, FTAG
, &wkey
));
1922 wkey
->wk_ddobj
= dd
->dd_object
;
1925 ASSERT3P(wkey
, !=, NULL
);
1927 /* Create or clone the DSL crypto key and activate the feature */
1928 dd
->dd_crypto_obj
= dsl_crypto_key_create_sync(crypt
, wkey
, tx
);
1929 VERIFY0(zap_add(dp
->dp_meta_objset
, dd
->dd_object
,
1930 DD_FIELD_CRYPTO_KEY_OBJ
, sizeof (uint64_t), 1, &dd
->dd_crypto_obj
,
1932 dsl_dataset_activate_feature(dsobj
, SPA_FEATURE_ENCRYPTION
,
1933 (void *)B_TRUE
, tx
);
1936 * If we inherited the wrapping key we release our reference now.
1937 * Otherwise, this is a new key and we need to load it into the
1940 if (dcp
->cp_wkey
== NULL
) {
1941 dsl_wrapping_key_rele(wkey
, FTAG
);
1943 VERIFY0(spa_keystore_load_wkey_impl(dp
->dp_spa
, wkey
));
1947 typedef struct dsl_crypto_recv_key_arg
{
1948 uint64_t dcrka_dsobj
;
1949 uint64_t dcrka_fromobj
;
1950 dmu_objset_type_t dcrka_ostype
;
1951 nvlist_t
*dcrka_nvl
;
1952 boolean_t dcrka_do_key
;
1953 } dsl_crypto_recv_key_arg_t
;
1956 dsl_crypto_recv_raw_objset_check(dsl_dataset_t
*ds
, dsl_dataset_t
*fromds
,
1957 dmu_objset_type_t ostype
, nvlist_t
*nvl
, dmu_tx_t
*tx
)
1962 uint8_t *buf
= NULL
;
1964 uint64_t intval
, nlevels
, blksz
, ibs
;
1965 uint64_t nblkptr
, maxblkid
;
1967 if (ostype
!= DMU_OST_ZFS
&& ostype
!= DMU_OST_ZVOL
)
1968 return (SET_ERROR(EINVAL
));
1970 /* raw receives also need info about the structure of the metadnode */
1971 ret
= nvlist_lookup_uint64(nvl
, "mdn_compress", &intval
);
1972 if (ret
!= 0 || intval
>= ZIO_COMPRESS_LEGACY_FUNCTIONS
)
1973 return (SET_ERROR(EINVAL
));
1975 ret
= nvlist_lookup_uint64(nvl
, "mdn_checksum", &intval
);
1976 if (ret
!= 0 || intval
>= ZIO_CHECKSUM_LEGACY_FUNCTIONS
)
1977 return (SET_ERROR(EINVAL
));
1979 ret
= nvlist_lookup_uint64(nvl
, "mdn_nlevels", &nlevels
);
1980 if (ret
!= 0 || nlevels
> DN_MAX_LEVELS
)
1981 return (SET_ERROR(EINVAL
));
1983 ret
= nvlist_lookup_uint64(nvl
, "mdn_blksz", &blksz
);
1984 if (ret
!= 0 || blksz
< SPA_MINBLOCKSIZE
)
1985 return (SET_ERROR(EINVAL
));
1986 else if (blksz
> spa_maxblocksize(tx
->tx_pool
->dp_spa
))
1987 return (SET_ERROR(ENOTSUP
));
1989 ret
= nvlist_lookup_uint64(nvl
, "mdn_indblkshift", &ibs
);
1990 if (ret
!= 0 || ibs
< DN_MIN_INDBLKSHIFT
|| ibs
> DN_MAX_INDBLKSHIFT
)
1991 return (SET_ERROR(ENOTSUP
));
1993 ret
= nvlist_lookup_uint64(nvl
, "mdn_nblkptr", &nblkptr
);
1994 if (ret
!= 0 || nblkptr
!= DN_MAX_NBLKPTR
)
1995 return (SET_ERROR(ENOTSUP
));
1997 ret
= nvlist_lookup_uint64(nvl
, "mdn_maxblkid", &maxblkid
);
1999 return (SET_ERROR(EINVAL
));
2001 ret
= nvlist_lookup_uint8_array(nvl
, "portable_mac", &buf
, &len
);
2002 if (ret
!= 0 || len
!= ZIO_OBJSET_MAC_LEN
)
2003 return (SET_ERROR(EINVAL
));
2005 ret
= dmu_objset_from_ds(ds
, &os
);
2009 mdn
= DMU_META_DNODE(os
);
2012 * If we already created the objset, make sure its unchangeable
2013 * properties match the ones received in the nvlist.
2015 rrw_enter(&ds
->ds_bp_rwlock
, RW_READER
, FTAG
);
2016 if (!BP_IS_HOLE(dsl_dataset_get_blkptr(ds
)) &&
2017 (mdn
->dn_nlevels
!= nlevels
|| mdn
->dn_datablksz
!= blksz
||
2018 mdn
->dn_indblkshift
!= ibs
|| mdn
->dn_nblkptr
!= nblkptr
)) {
2019 rrw_exit(&ds
->ds_bp_rwlock
, FTAG
);
2020 return (SET_ERROR(EINVAL
));
2022 rrw_exit(&ds
->ds_bp_rwlock
, FTAG
);
2025 * Check that the ivset guid of the fromds matches the one from the
2026 * send stream. Older versions of the encryption code did not have
2027 * an ivset guid on the from dataset and did not send one in the
2028 * stream. For these streams we provide the
2029 * zfs_disable_ivset_guid_check tunable to allow these datasets to
2030 * be received with a generated ivset guid.
2032 if (fromds
!= NULL
&& !zfs_disable_ivset_guid_check
) {
2033 uint64_t from_ivset_guid
= 0;
2036 (void) nvlist_lookup_uint64(nvl
, "from_ivset_guid", &intval
);
2037 (void) zap_lookup(tx
->tx_pool
->dp_meta_objset
,
2038 fromds
->ds_object
, DS_FIELD_IVSET_GUID
,
2039 sizeof (from_ivset_guid
), 1, &from_ivset_guid
);
2041 if (intval
== 0 || from_ivset_guid
== 0)
2042 return (SET_ERROR(ZFS_ERR_FROM_IVSET_GUID_MISSING
));
2044 if (intval
!= from_ivset_guid
)
2045 return (SET_ERROR(ZFS_ERR_FROM_IVSET_GUID_MISMATCH
));
2052 dsl_crypto_recv_raw_objset_sync(dsl_dataset_t
*ds
, dmu_objset_type_t ostype
,
2053 nvlist_t
*nvl
, dmu_tx_t
*tx
)
2055 dsl_pool_t
*dp
= tx
->tx_pool
;
2059 uint8_t *portable_mac
;
2061 uint64_t compress
, checksum
, nlevels
, blksz
, ibs
, maxblkid
;
2062 boolean_t newds
= B_FALSE
;
2064 VERIFY0(dmu_objset_from_ds(ds
, &os
));
2065 mdn
= DMU_META_DNODE(os
);
2068 * Fetch the values we need from the nvlist. "to_ivset_guid" must
2069 * be set on the snapshot, which doesn't exist yet. The receive
2070 * code will take care of this for us later.
2072 compress
= fnvlist_lookup_uint64(nvl
, "mdn_compress");
2073 checksum
= fnvlist_lookup_uint64(nvl
, "mdn_checksum");
2074 nlevels
= fnvlist_lookup_uint64(nvl
, "mdn_nlevels");
2075 blksz
= fnvlist_lookup_uint64(nvl
, "mdn_blksz");
2076 ibs
= fnvlist_lookup_uint64(nvl
, "mdn_indblkshift");
2077 maxblkid
= fnvlist_lookup_uint64(nvl
, "mdn_maxblkid");
2078 VERIFY0(nvlist_lookup_uint8_array(nvl
, "portable_mac", &portable_mac
,
2081 /* if we haven't created an objset for the ds yet, do that now */
2082 rrw_enter(&ds
->ds_bp_rwlock
, RW_READER
, FTAG
);
2083 if (BP_IS_HOLE(dsl_dataset_get_blkptr(ds
))) {
2084 (void) dmu_objset_create_impl_dnstats(dp
->dp_spa
, ds
,
2085 dsl_dataset_get_blkptr(ds
), ostype
, nlevels
, blksz
,
2089 rrw_exit(&ds
->ds_bp_rwlock
, FTAG
);
2092 * Set the portable MAC. The local MAC will always be zero since the
2093 * incoming data will all be portable and user accounting will be
2094 * deferred until the next mount. Afterwards, flag the os to be
2095 * written out raw next time.
2097 arc_release(os
->os_phys_buf
, &os
->os_phys_buf
);
2098 memcpy(os
->os_phys
->os_portable_mac
, portable_mac
, ZIO_OBJSET_MAC_LEN
);
2099 memset(os
->os_phys
->os_local_mac
, 0, ZIO_OBJSET_MAC_LEN
);
2100 os
->os_flags
&= ~OBJSET_FLAG_USERACCOUNTING_COMPLETE
;
2101 os
->os_next_write_raw
[tx
->tx_txg
& TXG_MASK
] = B_TRUE
;
2103 /* set metadnode compression and checksum */
2104 mdn
->dn_compress
= compress
;
2105 mdn
->dn_checksum
= checksum
;
2107 rw_enter(&mdn
->dn_struct_rwlock
, RW_WRITER
);
2108 dnode_new_blkid(mdn
, maxblkid
, tx
, B_FALSE
, B_TRUE
);
2109 rw_exit(&mdn
->dn_struct_rwlock
);
2112 * We can't normally dirty the dataset in syncing context unless
2113 * we are creating a new dataset. In this case, we perform a
2114 * pseudo txg sync here instead.
2117 dsl_dataset_dirty(ds
, tx
);
2119 zio
= zio_root(dp
->dp_spa
, NULL
, NULL
, ZIO_FLAG_MUSTSUCCEED
);
2120 dsl_dataset_sync(ds
, zio
, tx
);
2121 VERIFY0(zio_wait(zio
));
2123 /* dsl_dataset_sync_done will drop this reference. */
2124 dmu_buf_add_ref(ds
->ds_dbuf
, ds
);
2125 dsl_dataset_sync_done(ds
, tx
);
2130 dsl_crypto_recv_raw_key_check(dsl_dataset_t
*ds
, nvlist_t
*nvl
, dmu_tx_t
*tx
)
2133 objset_t
*mos
= tx
->tx_pool
->dp_meta_objset
;
2134 uint8_t *buf
= NULL
;
2136 uint64_t intval
, key_guid
, version
;
2137 boolean_t is_passphrase
= B_FALSE
;
2139 ASSERT(dsl_dataset_phys(ds
)->ds_flags
& DS_FLAG_INCONSISTENT
);
2142 * Read and check all the encryption values from the nvlist. We need
2143 * all of the fields of a DSL Crypto Key, as well as a fully specified
2146 ret
= nvlist_lookup_uint64(nvl
, DSL_CRYPTO_KEY_CRYPTO_SUITE
, &intval
);
2147 if (ret
!= 0 || intval
>= ZIO_CRYPT_FUNCTIONS
||
2148 intval
<= ZIO_CRYPT_OFF
)
2149 return (SET_ERROR(EINVAL
));
2151 ret
= nvlist_lookup_uint64(nvl
, DSL_CRYPTO_KEY_GUID
, &intval
);
2153 return (SET_ERROR(EINVAL
));
2156 * If this is an incremental receive make sure the given key guid
2157 * matches the one we already have.
2159 if (ds
->ds_dir
->dd_crypto_obj
!= 0) {
2160 ret
= zap_lookup(mos
, ds
->ds_dir
->dd_crypto_obj
,
2161 DSL_CRYPTO_KEY_GUID
, 8, 1, &key_guid
);
2164 if (intval
!= key_guid
)
2165 return (SET_ERROR(EACCES
));
2168 ret
= nvlist_lookup_uint8_array(nvl
, DSL_CRYPTO_KEY_MASTER_KEY
,
2170 if (ret
!= 0 || len
!= MASTER_KEY_MAX_LEN
)
2171 return (SET_ERROR(EINVAL
));
2173 ret
= nvlist_lookup_uint8_array(nvl
, DSL_CRYPTO_KEY_HMAC_KEY
,
2175 if (ret
!= 0 || len
!= SHA512_HMAC_KEYLEN
)
2176 return (SET_ERROR(EINVAL
));
2178 ret
= nvlist_lookup_uint8_array(nvl
, DSL_CRYPTO_KEY_IV
, &buf
, &len
);
2179 if (ret
!= 0 || len
!= WRAPPING_IV_LEN
)
2180 return (SET_ERROR(EINVAL
));
2182 ret
= nvlist_lookup_uint8_array(nvl
, DSL_CRYPTO_KEY_MAC
, &buf
, &len
);
2183 if (ret
!= 0 || len
!= WRAPPING_MAC_LEN
)
2184 return (SET_ERROR(EINVAL
));
2187 * We don't support receiving old on-disk formats. The version 0
2188 * implementation protected several fields in an objset that were
2189 * not always portable during a raw receive. As a result, we call
2190 * the old version an on-disk errata #3.
2192 ret
= nvlist_lookup_uint64(nvl
, DSL_CRYPTO_KEY_VERSION
, &version
);
2193 if (ret
!= 0 || version
!= ZIO_CRYPT_KEY_CURRENT_VERSION
)
2194 return (SET_ERROR(ENOTSUP
));
2196 ret
= nvlist_lookup_uint64(nvl
, zfs_prop_to_name(ZFS_PROP_KEYFORMAT
),
2198 if (ret
!= 0 || intval
>= ZFS_KEYFORMAT_FORMATS
||
2199 intval
== ZFS_KEYFORMAT_NONE
)
2200 return (SET_ERROR(EINVAL
));
2202 is_passphrase
= (intval
== ZFS_KEYFORMAT_PASSPHRASE
);
2205 * for raw receives we allow any number of pbkdf2iters since there
2206 * won't be a chance for the user to change it.
2208 ret
= nvlist_lookup_uint64(nvl
, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
),
2210 if (ret
!= 0 || (is_passphrase
== (intval
== 0)))
2211 return (SET_ERROR(EINVAL
));
2213 ret
= nvlist_lookup_uint64(nvl
, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
),
2215 if (ret
!= 0 || (is_passphrase
== (intval
== 0)))
2216 return (SET_ERROR(EINVAL
));
2222 dsl_crypto_recv_raw_key_sync(dsl_dataset_t
*ds
, nvlist_t
*nvl
, dmu_tx_t
*tx
)
2224 dsl_pool_t
*dp
= tx
->tx_pool
;
2225 objset_t
*mos
= dp
->dp_meta_objset
;
2226 dsl_dir_t
*dd
= ds
->ds_dir
;
2228 uint64_t rddobj
, one
= 1;
2229 uint8_t *keydata
, *hmac_keydata
, *iv
, *mac
;
2230 uint64_t crypt
, key_guid
, keyformat
, iters
, salt
;
2231 uint64_t version
= ZIO_CRYPT_KEY_CURRENT_VERSION
;
2232 char *keylocation
= "prompt";
2234 /* lookup the values we need to create the DSL Crypto Key */
2235 crypt
= fnvlist_lookup_uint64(nvl
, DSL_CRYPTO_KEY_CRYPTO_SUITE
);
2236 key_guid
= fnvlist_lookup_uint64(nvl
, DSL_CRYPTO_KEY_GUID
);
2237 keyformat
= fnvlist_lookup_uint64(nvl
,
2238 zfs_prop_to_name(ZFS_PROP_KEYFORMAT
));
2239 iters
= fnvlist_lookup_uint64(nvl
,
2240 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
));
2241 salt
= fnvlist_lookup_uint64(nvl
,
2242 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
));
2243 VERIFY0(nvlist_lookup_uint8_array(nvl
, DSL_CRYPTO_KEY_MASTER_KEY
,
2245 VERIFY0(nvlist_lookup_uint8_array(nvl
, DSL_CRYPTO_KEY_HMAC_KEY
,
2246 &hmac_keydata
, &len
));
2247 VERIFY0(nvlist_lookup_uint8_array(nvl
, DSL_CRYPTO_KEY_IV
, &iv
, &len
));
2248 VERIFY0(nvlist_lookup_uint8_array(nvl
, DSL_CRYPTO_KEY_MAC
, &mac
, &len
));
2250 /* if this is a new dataset setup the DSL Crypto Key. */
2251 if (dd
->dd_crypto_obj
== 0) {
2252 /* zapify the dsl dir so we can add the key object to it */
2253 dmu_buf_will_dirty(dd
->dd_dbuf
, tx
);
2254 dsl_dir_zapify(dd
, tx
);
2256 /* create the DSL Crypto Key on disk and activate the feature */
2257 dd
->dd_crypto_obj
= zap_create(mos
,
2258 DMU_OTN_ZAP_METADATA
, DMU_OT_NONE
, 0, tx
);
2259 VERIFY0(zap_update(tx
->tx_pool
->dp_meta_objset
,
2260 dd
->dd_crypto_obj
, DSL_CRYPTO_KEY_REFCOUNT
,
2261 sizeof (uint64_t), 1, &one
, tx
));
2262 VERIFY0(zap_update(tx
->tx_pool
->dp_meta_objset
,
2263 dd
->dd_crypto_obj
, DSL_CRYPTO_KEY_VERSION
,
2264 sizeof (uint64_t), 1, &version
, tx
));
2266 dsl_dataset_activate_feature(ds
->ds_object
,
2267 SPA_FEATURE_ENCRYPTION
, (void *)B_TRUE
, tx
);
2268 ds
->ds_feature
[SPA_FEATURE_ENCRYPTION
] = (void *)B_TRUE
;
2270 /* save the dd_crypto_obj on disk */
2271 VERIFY0(zap_add(mos
, dd
->dd_object
, DD_FIELD_CRYPTO_KEY_OBJ
,
2272 sizeof (uint64_t), 1, &dd
->dd_crypto_obj
, tx
));
2275 * Set the keylocation to prompt by default. If keylocation
2276 * has been provided via the properties, this will be overridden
2279 dsl_prop_set_sync_impl(ds
,
2280 zfs_prop_to_name(ZFS_PROP_KEYLOCATION
),
2281 ZPROP_SRC_LOCAL
, 1, strlen(keylocation
) + 1,
2284 rddobj
= dd
->dd_object
;
2286 VERIFY0(dsl_dir_get_encryption_root_ddobj(dd
, &rddobj
));
2289 /* sync the key data to the ZAP object on disk */
2290 dsl_crypto_key_sync_impl(mos
, dd
->dd_crypto_obj
, crypt
,
2291 rddobj
, key_guid
, iv
, mac
, keydata
, hmac_keydata
, keyformat
, salt
,
2296 dsl_crypto_recv_key_check(void *arg
, dmu_tx_t
*tx
)
2299 dsl_crypto_recv_key_arg_t
*dcrka
= arg
;
2300 dsl_dataset_t
*ds
= NULL
, *fromds
= NULL
;
2302 ret
= dsl_dataset_hold_obj(tx
->tx_pool
, dcrka
->dcrka_dsobj
,
2307 if (dcrka
->dcrka_fromobj
!= 0) {
2308 ret
= dsl_dataset_hold_obj(tx
->tx_pool
, dcrka
->dcrka_fromobj
,
2314 ret
= dsl_crypto_recv_raw_objset_check(ds
, fromds
,
2315 dcrka
->dcrka_ostype
, dcrka
->dcrka_nvl
, tx
);
2320 * We run this check even if we won't be doing this part of
2321 * the receive now so that we don't make the user wait until
2322 * the receive finishes to fail.
2324 ret
= dsl_crypto_recv_raw_key_check(ds
, dcrka
->dcrka_nvl
, tx
);
2330 dsl_dataset_rele(ds
, FTAG
);
2332 dsl_dataset_rele(fromds
, FTAG
);
2337 dsl_crypto_recv_key_sync(void *arg
, dmu_tx_t
*tx
)
2339 dsl_crypto_recv_key_arg_t
*dcrka
= arg
;
2342 VERIFY0(dsl_dataset_hold_obj(tx
->tx_pool
, dcrka
->dcrka_dsobj
,
2344 dsl_crypto_recv_raw_objset_sync(ds
, dcrka
->dcrka_ostype
,
2345 dcrka
->dcrka_nvl
, tx
);
2346 if (dcrka
->dcrka_do_key
)
2347 dsl_crypto_recv_raw_key_sync(ds
, dcrka
->dcrka_nvl
, tx
);
2348 dsl_dataset_rele(ds
, FTAG
);
2352 * This function is used to sync an nvlist representing a DSL Crypto Key and
2353 * the associated encryption parameters. The key will be written exactly as is
2354 * without wrapping it.
2357 dsl_crypto_recv_raw(const char *poolname
, uint64_t dsobj
, uint64_t fromobj
,
2358 dmu_objset_type_t ostype
, nvlist_t
*nvl
, boolean_t do_key
)
2360 dsl_crypto_recv_key_arg_t dcrka
;
2362 dcrka
.dcrka_dsobj
= dsobj
;
2363 dcrka
.dcrka_fromobj
= fromobj
;
2364 dcrka
.dcrka_ostype
= ostype
;
2365 dcrka
.dcrka_nvl
= nvl
;
2366 dcrka
.dcrka_do_key
= do_key
;
2368 return (dsl_sync_task(poolname
, dsl_crypto_recv_key_check
,
2369 dsl_crypto_recv_key_sync
, &dcrka
, 1, ZFS_SPACE_CHECK_NORMAL
));
2373 dsl_crypto_populate_key_nvlist(objset_t
*os
, uint64_t from_ivset_guid
,
2377 dsl_dataset_t
*ds
= os
->os_dsl_dataset
;
2380 nvlist_t
*nvl
= NULL
;
2381 uint64_t dckobj
= ds
->ds_dir
->dd_crypto_obj
;
2382 dsl_dir_t
*rdd
= NULL
;
2383 dsl_pool_t
*dp
= ds
->ds_dir
->dd_pool
;
2384 objset_t
*mos
= dp
->dp_meta_objset
;
2385 uint64_t crypt
= 0, key_guid
= 0, format
= 0;
2386 uint64_t iters
= 0, salt
= 0, version
= 0;
2387 uint64_t to_ivset_guid
= 0;
2388 uint8_t raw_keydata
[MASTER_KEY_MAX_LEN
];
2389 uint8_t raw_hmac_keydata
[SHA512_HMAC_KEYLEN
];
2390 uint8_t iv
[WRAPPING_IV_LEN
];
2391 uint8_t mac
[WRAPPING_MAC_LEN
];
2393 ASSERT(dckobj
!= 0);
2395 mdn
= DMU_META_DNODE(os
);
2397 nvl
= fnvlist_alloc();
2399 /* lookup values from the DSL Crypto Key */
2400 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_CRYPTO_SUITE
, 8, 1,
2405 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_GUID
, 8, 1, &key_guid
);
2409 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_MASTER_KEY
, 1,
2410 MASTER_KEY_MAX_LEN
, raw_keydata
);
2414 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_HMAC_KEY
, 1,
2415 SHA512_HMAC_KEYLEN
, raw_hmac_keydata
);
2419 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_IV
, 1, WRAPPING_IV_LEN
,
2424 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_MAC
, 1, WRAPPING_MAC_LEN
,
2429 /* see zfs_disable_ivset_guid_check tunable for errata info */
2430 ret
= zap_lookup(mos
, ds
->ds_object
, DS_FIELD_IVSET_GUID
, 8, 1,
2433 ASSERT3U(dp
->dp_spa
->spa_errata
, !=, 0);
2436 * We don't support raw sends of legacy on-disk formats. See the
2437 * comment in dsl_crypto_recv_key_check() for details.
2439 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_VERSION
, 8, 1, &version
);
2440 if (ret
!= 0 || version
!= ZIO_CRYPT_KEY_CURRENT_VERSION
) {
2441 dp
->dp_spa
->spa_errata
= ZPOOL_ERRATA_ZOL_6845_ENCRYPTION
;
2442 ret
= SET_ERROR(ENOTSUP
);
2447 * Lookup wrapping key properties. An early version of the code did
2448 * not correctly add these values to the wrapping key or the DSL
2449 * Crypto Key on disk for non encryption roots, so to be safe we
2450 * always take the slightly circuitous route of looking it up from
2451 * the encryption root's key.
2453 ret
= dsl_dir_get_encryption_root_ddobj(ds
->ds_dir
, &rddobj
);
2457 dsl_pool_config_enter(dp
, FTAG
);
2459 ret
= dsl_dir_hold_obj(dp
, rddobj
, NULL
, FTAG
, &rdd
);
2463 ret
= zap_lookup(dp
->dp_meta_objset
, rdd
->dd_crypto_obj
,
2464 zfs_prop_to_name(ZFS_PROP_KEYFORMAT
), 8, 1, &format
);
2468 if (format
== ZFS_KEYFORMAT_PASSPHRASE
) {
2469 ret
= zap_lookup(dp
->dp_meta_objset
, rdd
->dd_crypto_obj
,
2470 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
), 8, 1, &iters
);
2474 ret
= zap_lookup(dp
->dp_meta_objset
, rdd
->dd_crypto_obj
,
2475 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
), 8, 1, &salt
);
2480 dsl_dir_rele(rdd
, FTAG
);
2481 dsl_pool_config_exit(dp
, FTAG
);
2483 fnvlist_add_uint64(nvl
, DSL_CRYPTO_KEY_CRYPTO_SUITE
, crypt
);
2484 fnvlist_add_uint64(nvl
, DSL_CRYPTO_KEY_GUID
, key_guid
);
2485 fnvlist_add_uint64(nvl
, DSL_CRYPTO_KEY_VERSION
, version
);
2486 VERIFY0(nvlist_add_uint8_array(nvl
, DSL_CRYPTO_KEY_MASTER_KEY
,
2487 raw_keydata
, MASTER_KEY_MAX_LEN
));
2488 VERIFY0(nvlist_add_uint8_array(nvl
, DSL_CRYPTO_KEY_HMAC_KEY
,
2489 raw_hmac_keydata
, SHA512_HMAC_KEYLEN
));
2490 VERIFY0(nvlist_add_uint8_array(nvl
, DSL_CRYPTO_KEY_IV
, iv
,
2492 VERIFY0(nvlist_add_uint8_array(nvl
, DSL_CRYPTO_KEY_MAC
, mac
,
2494 VERIFY0(nvlist_add_uint8_array(nvl
, "portable_mac",
2495 os
->os_phys
->os_portable_mac
, ZIO_OBJSET_MAC_LEN
));
2496 fnvlist_add_uint64(nvl
, zfs_prop_to_name(ZFS_PROP_KEYFORMAT
), format
);
2497 fnvlist_add_uint64(nvl
, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
), iters
);
2498 fnvlist_add_uint64(nvl
, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
), salt
);
2499 fnvlist_add_uint64(nvl
, "mdn_checksum", mdn
->dn_checksum
);
2500 fnvlist_add_uint64(nvl
, "mdn_compress", mdn
->dn_compress
);
2501 fnvlist_add_uint64(nvl
, "mdn_nlevels", mdn
->dn_nlevels
);
2502 fnvlist_add_uint64(nvl
, "mdn_blksz", mdn
->dn_datablksz
);
2503 fnvlist_add_uint64(nvl
, "mdn_indblkshift", mdn
->dn_indblkshift
);
2504 fnvlist_add_uint64(nvl
, "mdn_nblkptr", mdn
->dn_nblkptr
);
2505 fnvlist_add_uint64(nvl
, "mdn_maxblkid", mdn
->dn_maxblkid
);
2506 fnvlist_add_uint64(nvl
, "to_ivset_guid", to_ivset_guid
);
2507 fnvlist_add_uint64(nvl
, "from_ivset_guid", from_ivset_guid
);
2513 dsl_pool_config_exit(dp
, FTAG
);
2516 dsl_dir_rele(rdd
, FTAG
);
2524 dsl_crypto_key_create_sync(uint64_t crypt
, dsl_wrapping_key_t
*wkey
,
2527 dsl_crypto_key_t dck
;
2528 uint64_t version
= ZIO_CRYPT_KEY_CURRENT_VERSION
;
2529 uint64_t one
= 1ULL;
2531 ASSERT(dmu_tx_is_syncing(tx
));
2532 ASSERT3U(crypt
, <, ZIO_CRYPT_FUNCTIONS
);
2533 ASSERT3U(crypt
, >, ZIO_CRYPT_OFF
);
2535 /* create the DSL Crypto Key ZAP object */
2536 dck
.dck_obj
= zap_create(tx
->tx_pool
->dp_meta_objset
,
2537 DMU_OTN_ZAP_METADATA
, DMU_OT_NONE
, 0, tx
);
2539 /* fill in the key (on the stack) and sync it to disk */
2540 dck
.dck_wkey
= wkey
;
2541 VERIFY0(zio_crypt_key_init(crypt
, &dck
.dck_key
));
2543 dsl_crypto_key_sync(&dck
, tx
);
2544 VERIFY0(zap_update(tx
->tx_pool
->dp_meta_objset
, dck
.dck_obj
,
2545 DSL_CRYPTO_KEY_REFCOUNT
, sizeof (uint64_t), 1, &one
, tx
));
2546 VERIFY0(zap_update(tx
->tx_pool
->dp_meta_objset
, dck
.dck_obj
,
2547 DSL_CRYPTO_KEY_VERSION
, sizeof (uint64_t), 1, &version
, tx
));
2549 zio_crypt_key_destroy(&dck
.dck_key
);
2550 memset(&dck
.dck_key
, 0, sizeof (zio_crypt_key_t
));
2552 return (dck
.dck_obj
);
2556 dsl_crypto_key_clone_sync(dsl_dir_t
*origindd
, dmu_tx_t
*tx
)
2558 objset_t
*mos
= tx
->tx_pool
->dp_meta_objset
;
2560 ASSERT(dmu_tx_is_syncing(tx
));
2562 VERIFY0(zap_increment(mos
, origindd
->dd_crypto_obj
,
2563 DSL_CRYPTO_KEY_REFCOUNT
, 1, tx
));
2565 return (origindd
->dd_crypto_obj
);
2569 dsl_crypto_key_destroy_sync(uint64_t dckobj
, dmu_tx_t
*tx
)
2571 objset_t
*mos
= tx
->tx_pool
->dp_meta_objset
;
2574 /* Decrement the refcount, destroy if this is the last reference */
2575 VERIFY0(zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_REFCOUNT
,
2576 sizeof (uint64_t), 1, &refcnt
));
2579 VERIFY0(zap_increment(mos
, dckobj
, DSL_CRYPTO_KEY_REFCOUNT
,
2582 VERIFY0(zap_destroy(mos
, dckobj
, tx
));
2587 dsl_dataset_crypt_stats(dsl_dataset_t
*ds
, nvlist_t
*nv
)
2590 dsl_dir_t
*dd
= ds
->ds_dir
;
2591 dsl_dir_t
*enc_root
;
2592 char buf
[ZFS_MAX_DATASET_NAME_LEN
];
2594 if (dd
->dd_crypto_obj
== 0)
2597 intval
= dsl_dataset_get_keystatus(dd
);
2598 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_KEYSTATUS
, intval
);
2600 if (dsl_dir_get_crypt(dd
, &intval
) == 0)
2601 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_ENCRYPTION
, intval
);
2602 if (zap_lookup(dd
->dd_pool
->dp_meta_objset
, dd
->dd_crypto_obj
,
2603 DSL_CRYPTO_KEY_GUID
, 8, 1, &intval
) == 0) {
2604 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_KEY_GUID
, intval
);
2606 if (zap_lookup(dd
->dd_pool
->dp_meta_objset
, dd
->dd_crypto_obj
,
2607 zfs_prop_to_name(ZFS_PROP_KEYFORMAT
), 8, 1, &intval
) == 0) {
2608 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_KEYFORMAT
, intval
);
2610 if (zap_lookup(dd
->dd_pool
->dp_meta_objset
, dd
->dd_crypto_obj
,
2611 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
), 8, 1, &intval
) == 0) {
2612 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_PBKDF2_SALT
, intval
);
2614 if (zap_lookup(dd
->dd_pool
->dp_meta_objset
, dd
->dd_crypto_obj
,
2615 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
), 8, 1, &intval
) == 0) {
2616 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_PBKDF2_ITERS
, intval
);
2618 if (zap_lookup(dd
->dd_pool
->dp_meta_objset
, ds
->ds_object
,
2619 DS_FIELD_IVSET_GUID
, 8, 1, &intval
) == 0) {
2620 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_IVSET_GUID
, intval
);
2623 if (dsl_dir_get_encryption_root_ddobj(dd
, &intval
) == 0) {
2624 if (dsl_dir_hold_obj(dd
->dd_pool
, intval
, NULL
, FTAG
,
2626 dsl_dir_name(enc_root
, buf
);
2627 dsl_dir_rele(enc_root
, FTAG
);
2628 dsl_prop_nvlist_add_string(nv
,
2629 ZFS_PROP_ENCRYPTION_ROOT
, buf
);
2635 spa_crypt_get_salt(spa_t
*spa
, uint64_t dsobj
, uint8_t *salt
)
2638 dsl_crypto_key_t
*dck
= NULL
;
2640 /* look up the key from the spa's keystore */
2641 ret
= spa_keystore_lookup_key(spa
, dsobj
, FTAG
, &dck
);
2645 ret
= zio_crypt_key_get_salt(&dck
->dck_key
, salt
);
2649 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
2654 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
2659 * Objset blocks are a special case for MAC generation. These blocks have 2
2660 * 256-bit MACs which are embedded within the block itself, rather than a
2661 * single 128 bit MAC. As a result, this function handles encoding and decoding
2662 * the MACs on its own, unlike other functions in this file.
2665 spa_do_crypt_objset_mac_abd(boolean_t generate
, spa_t
*spa
, uint64_t dsobj
,
2666 abd_t
*abd
, uint_t datalen
, boolean_t byteswap
)
2669 dsl_crypto_key_t
*dck
= NULL
;
2670 void *buf
= abd_borrow_buf_copy(abd
, datalen
);
2671 objset_phys_t
*osp
= buf
;
2672 uint8_t portable_mac
[ZIO_OBJSET_MAC_LEN
];
2673 uint8_t local_mac
[ZIO_OBJSET_MAC_LEN
];
2675 /* look up the key from the spa's keystore */
2676 ret
= spa_keystore_lookup_key(spa
, dsobj
, FTAG
, &dck
);
2680 /* calculate both HMACs */
2681 ret
= zio_crypt_do_objset_hmacs(&dck
->dck_key
, buf
, datalen
,
2682 byteswap
, portable_mac
, local_mac
);
2686 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
2688 /* if we are generating encode the HMACs in the objset_phys_t */
2690 memcpy(osp
->os_portable_mac
, portable_mac
, ZIO_OBJSET_MAC_LEN
);
2691 memcpy(osp
->os_local_mac
, local_mac
, ZIO_OBJSET_MAC_LEN
);
2692 abd_return_buf_copy(abd
, buf
, datalen
);
2696 if (memcmp(portable_mac
, osp
->os_portable_mac
,
2697 ZIO_OBJSET_MAC_LEN
) != 0 ||
2698 memcmp(local_mac
, osp
->os_local_mac
, ZIO_OBJSET_MAC_LEN
) != 0) {
2699 abd_return_buf(abd
, buf
, datalen
);
2700 return (SET_ERROR(ECKSUM
));
2703 abd_return_buf(abd
, buf
, datalen
);
2709 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
2710 abd_return_buf(abd
, buf
, datalen
);
2715 spa_do_crypt_mac_abd(boolean_t generate
, spa_t
*spa
, uint64_t dsobj
, abd_t
*abd
,
2716 uint_t datalen
, uint8_t *mac
)
2719 dsl_crypto_key_t
*dck
= NULL
;
2720 uint8_t *buf
= abd_borrow_buf_copy(abd
, datalen
);
2721 uint8_t digestbuf
[ZIO_DATA_MAC_LEN
];
2723 /* look up the key from the spa's keystore */
2724 ret
= spa_keystore_lookup_key(spa
, dsobj
, FTAG
, &dck
);
2728 /* perform the hmac */
2729 ret
= zio_crypt_do_hmac(&dck
->dck_key
, buf
, datalen
,
2730 digestbuf
, ZIO_DATA_MAC_LEN
);
2734 abd_return_buf(abd
, buf
, datalen
);
2735 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
2738 * Truncate and fill in mac buffer if we were asked to generate a MAC.
2739 * Otherwise verify that the MAC matched what we expected.
2742 memcpy(mac
, digestbuf
, ZIO_DATA_MAC_LEN
);
2746 if (memcmp(digestbuf
, mac
, ZIO_DATA_MAC_LEN
) != 0)
2747 return (SET_ERROR(ECKSUM
));
2753 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
2754 abd_return_buf(abd
, buf
, datalen
);
2759 * This function serves as a multiplexer for encryption and decryption of
2760 * all blocks (except the L2ARC). For encryption, it will populate the IV,
2761 * salt, MAC, and cabd (the ciphertext). On decryption it will simply use
2762 * these fields to populate pabd (the plaintext).
2765 spa_do_crypt_abd(boolean_t encrypt
, spa_t
*spa
, const zbookmark_phys_t
*zb
,
2766 dmu_object_type_t ot
, boolean_t dedup
, boolean_t bswap
, uint8_t *salt
,
2767 uint8_t *iv
, uint8_t *mac
, uint_t datalen
, abd_t
*pabd
, abd_t
*cabd
,
2768 boolean_t
*no_crypt
)
2771 dsl_crypto_key_t
*dck
= NULL
;
2772 uint8_t *plainbuf
= NULL
, *cipherbuf
= NULL
;
2774 ASSERT(spa_feature_is_active(spa
, SPA_FEATURE_ENCRYPTION
));
2776 /* look up the key from the spa's keystore */
2777 ret
= spa_keystore_lookup_key(spa
, zb
->zb_objset
, FTAG
, &dck
);
2779 ret
= SET_ERROR(EACCES
);
2784 plainbuf
= abd_borrow_buf_copy(pabd
, datalen
);
2785 cipherbuf
= abd_borrow_buf(cabd
, datalen
);
2787 plainbuf
= abd_borrow_buf(pabd
, datalen
);
2788 cipherbuf
= abd_borrow_buf_copy(cabd
, datalen
);
2792 * Both encryption and decryption functions need a salt for key
2793 * generation and an IV. When encrypting a non-dedup block, we
2794 * generate the salt and IV randomly to be stored by the caller. Dedup
2795 * blocks perform a (more expensive) HMAC of the plaintext to obtain
2796 * the salt and the IV. ZIL blocks have their salt and IV generated
2797 * at allocation time in zio_alloc_zil(). On decryption, we simply use
2798 * the provided values.
2800 if (encrypt
&& ot
!= DMU_OT_INTENT_LOG
&& !dedup
) {
2801 ret
= zio_crypt_key_get_salt(&dck
->dck_key
, salt
);
2805 ret
= zio_crypt_generate_iv(iv
);
2808 } else if (encrypt
&& dedup
) {
2809 ret
= zio_crypt_generate_iv_salt_dedup(&dck
->dck_key
,
2810 plainbuf
, datalen
, iv
, salt
);
2815 /* call lower level function to perform encryption / decryption */
2816 ret
= zio_do_crypt_data(encrypt
, &dck
->dck_key
, ot
, bswap
, salt
, iv
,
2817 mac
, datalen
, plainbuf
, cipherbuf
, no_crypt
);
2820 * Handle injected decryption faults. Unfortunately, we cannot inject
2821 * faults for dnode blocks because we might trigger the panic in
2822 * dbuf_prepare_encrypted_dnode_leaf(), which exists because syncing
2823 * context is not prepared to handle malicious decryption failures.
2825 if (zio_injection_enabled
&& !encrypt
&& ot
!= DMU_OT_DNODE
&& ret
== 0)
2826 ret
= zio_handle_decrypt_injection(spa
, zb
, ot
, ECKSUM
);
2831 abd_return_buf(pabd
, plainbuf
, datalen
);
2832 abd_return_buf_copy(cabd
, cipherbuf
, datalen
);
2834 abd_return_buf_copy(pabd
, plainbuf
, datalen
);
2835 abd_return_buf(cabd
, cipherbuf
, datalen
);
2838 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
2844 /* zero out any state we might have changed while encrypting */
2845 memset(salt
, 0, ZIO_DATA_SALT_LEN
);
2846 memset(iv
, 0, ZIO_DATA_IV_LEN
);
2847 memset(mac
, 0, ZIO_DATA_MAC_LEN
);
2848 abd_return_buf(pabd
, plainbuf
, datalen
);
2849 abd_return_buf_copy(cabd
, cipherbuf
, datalen
);
2851 abd_return_buf_copy(pabd
, plainbuf
, datalen
);
2852 abd_return_buf(cabd
, cipherbuf
, datalen
);
2855 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
2860 ZFS_MODULE_PARAM(zfs
, zfs_
, disable_ivset_guid_check
, INT
, ZMOD_RW
,
2861 "Set to allow raw receives without IVset guids");