FreeBSD: Parameterize ZFS_ENTER/ZFS_VERIFY_VP with an error code
[zfs.git] / module / zfs / dsl_dir.c
blobaca32ff9bbb9b55a95e6477f6afa62e50dc51a7c
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Martin Matuska. All rights reserved.
25 * Copyright (c) 2014 Joyent, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
28 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
31 #include <sys/dmu.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/dsl_dataset.h>
35 #include <sys/dsl_dir.h>
36 #include <sys/dsl_prop.h>
37 #include <sys/dsl_synctask.h>
38 #include <sys/dsl_deleg.h>
39 #include <sys/dmu_impl.h>
40 #include <sys/spa.h>
41 #include <sys/spa_impl.h>
42 #include <sys/metaslab.h>
43 #include <sys/zap.h>
44 #include <sys/zio.h>
45 #include <sys/arc.h>
46 #include <sys/sunddi.h>
47 #include <sys/zfeature.h>
48 #include <sys/policy.h>
49 #include <sys/zfs_vfsops.h>
50 #include <sys/zfs_znode.h>
51 #include <sys/zvol.h>
52 #include <sys/zthr.h>
53 #include "zfs_namecheck.h"
54 #include "zfs_prop.h"
57 * Filesystem and Snapshot Limits
58 * ------------------------------
60 * These limits are used to restrict the number of filesystems and/or snapshots
61 * that can be created at a given level in the tree or below. A typical
62 * use-case is with a delegated dataset where the administrator wants to ensure
63 * that a user within the zone is not creating too many additional filesystems
64 * or snapshots, even though they're not exceeding their space quota.
66 * The filesystem and snapshot counts are stored as extensible properties. This
67 * capability is controlled by a feature flag and must be enabled to be used.
68 * Once enabled, the feature is not active until the first limit is set. At
69 * that point, future operations to create/destroy filesystems or snapshots
70 * will validate and update the counts.
72 * Because the count properties will not exist before the feature is active,
73 * the counts are updated when a limit is first set on an uninitialized
74 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes
75 * all of the nested filesystems/snapshots. Thus, a new leaf node has a
76 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and
77 * snapshot count properties on a node indicate uninitialized counts on that
78 * node.) When first setting a limit on an uninitialized node, the code starts
79 * at the filesystem with the new limit and descends into all sub-filesystems
80 * to add the count properties.
82 * In practice this is lightweight since a limit is typically set when the
83 * filesystem is created and thus has no children. Once valid, changing the
84 * limit value won't require a re-traversal since the counts are already valid.
85 * When recursively fixing the counts, if a node with a limit is encountered
86 * during the descent, the counts are known to be valid and there is no need to
87 * descend into that filesystem's children. The counts on filesystems above the
88 * one with the new limit will still be uninitialized, unless a limit is
89 * eventually set on one of those filesystems. The counts are always recursively
90 * updated when a limit is set on a dataset, unless there is already a limit.
91 * When a new limit value is set on a filesystem with an existing limit, it is
92 * possible for the new limit to be less than the current count at that level
93 * since a user who can change the limit is also allowed to exceed the limit.
95 * Once the feature is active, then whenever a filesystem or snapshot is
96 * created, the code recurses up the tree, validating the new count against the
97 * limit at each initialized level. In practice, most levels will not have a
98 * limit set. If there is a limit at any initialized level up the tree, the
99 * check must pass or the creation will fail. Likewise, when a filesystem or
100 * snapshot is destroyed, the counts are recursively adjusted all the way up
101 * the initialized nodes in the tree. Renaming a filesystem into different point
102 * in the tree will first validate, then update the counts on each branch up to
103 * the common ancestor. A receive will also validate the counts and then update
104 * them.
106 * An exception to the above behavior is that the limit is not enforced if the
107 * user has permission to modify the limit. This is primarily so that
108 * recursive snapshots in the global zone always work. We want to prevent a
109 * denial-of-service in which a lower level delegated dataset could max out its
110 * limit and thus block recursive snapshots from being taken in the global zone.
111 * Because of this, it is possible for the snapshot count to be over the limit
112 * and snapshots taken in the global zone could cause a lower level dataset to
113 * hit or exceed its limit. The administrator taking the global zone recursive
114 * snapshot should be aware of this side-effect and behave accordingly.
115 * For consistency, the filesystem limit is also not enforced if the user can
116 * modify the limit.
118 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check()
119 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in
120 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by
121 * dsl_dir_init_fs_ss_count().
124 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd);
126 typedef struct ddulrt_arg {
127 dsl_dir_t *ddulrta_dd;
128 uint64_t ddlrta_txg;
129 } ddulrt_arg_t;
131 static void
132 dsl_dir_evict_async(void *dbu)
134 dsl_dir_t *dd = dbu;
135 int t;
136 dsl_pool_t *dp __maybe_unused = dd->dd_pool;
138 dd->dd_dbuf = NULL;
140 for (t = 0; t < TXG_SIZE; t++) {
141 ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t));
142 ASSERT(dd->dd_tempreserved[t] == 0);
143 ASSERT(dd->dd_space_towrite[t] == 0);
146 if (dd->dd_parent)
147 dsl_dir_async_rele(dd->dd_parent, dd);
149 spa_async_close(dd->dd_pool->dp_spa, dd);
151 if (dsl_deadlist_is_open(&dd->dd_livelist))
152 dsl_dir_livelist_close(dd);
154 dsl_prop_fini(dd);
155 cv_destroy(&dd->dd_activity_cv);
156 mutex_destroy(&dd->dd_activity_lock);
157 mutex_destroy(&dd->dd_lock);
158 kmem_free(dd, sizeof (dsl_dir_t));
162 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj,
163 const char *tail, void *tag, dsl_dir_t **ddp)
165 dmu_buf_t *dbuf;
166 dsl_dir_t *dd;
167 dmu_object_info_t doi;
168 int err;
170 ASSERT(dsl_pool_config_held(dp));
172 err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf);
173 if (err != 0)
174 return (err);
175 dd = dmu_buf_get_user(dbuf);
177 dmu_object_info_from_db(dbuf, &doi);
178 ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR);
179 ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t));
181 if (dd == NULL) {
182 dsl_dir_t *winner;
184 dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP);
185 dd->dd_object = ddobj;
186 dd->dd_dbuf = dbuf;
187 dd->dd_pool = dp;
189 mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL);
190 mutex_init(&dd->dd_activity_lock, NULL, MUTEX_DEFAULT, NULL);
191 cv_init(&dd->dd_activity_cv, NULL, CV_DEFAULT, NULL);
192 dsl_prop_init(dd);
194 if (dsl_dir_is_zapified(dd)) {
195 err = zap_lookup(dp->dp_meta_objset,
196 ddobj, DD_FIELD_CRYPTO_KEY_OBJ,
197 sizeof (uint64_t), 1, &dd->dd_crypto_obj);
198 if (err == 0) {
199 /* check for on-disk format errata */
200 if (dsl_dir_incompatible_encryption_version(
201 dd)) {
202 dp->dp_spa->spa_errata =
203 ZPOOL_ERRATA_ZOL_6845_ENCRYPTION;
205 } else if (err != ENOENT) {
206 goto errout;
210 dsl_dir_snap_cmtime_update(dd);
212 if (dsl_dir_phys(dd)->dd_parent_obj) {
213 err = dsl_dir_hold_obj(dp,
214 dsl_dir_phys(dd)->dd_parent_obj, NULL, dd,
215 &dd->dd_parent);
216 if (err != 0)
217 goto errout;
218 if (tail) {
219 #ifdef ZFS_DEBUG
220 uint64_t foundobj;
222 err = zap_lookup(dp->dp_meta_objset,
223 dsl_dir_phys(dd->dd_parent)->
224 dd_child_dir_zapobj, tail,
225 sizeof (foundobj), 1, &foundobj);
226 ASSERT(err || foundobj == ddobj);
227 #endif
228 (void) strlcpy(dd->dd_myname, tail,
229 sizeof (dd->dd_myname));
230 } else {
231 err = zap_value_search(dp->dp_meta_objset,
232 dsl_dir_phys(dd->dd_parent)->
233 dd_child_dir_zapobj,
234 ddobj, 0, dd->dd_myname);
236 if (err != 0)
237 goto errout;
238 } else {
239 (void) strlcpy(dd->dd_myname, spa_name(dp->dp_spa),
240 sizeof (dd->dd_myname));
243 if (dsl_dir_is_clone(dd)) {
244 dmu_buf_t *origin_bonus;
245 dsl_dataset_phys_t *origin_phys;
248 * We can't open the origin dataset, because
249 * that would require opening this dsl_dir.
250 * Just look at its phys directly instead.
252 err = dmu_bonus_hold(dp->dp_meta_objset,
253 dsl_dir_phys(dd)->dd_origin_obj, FTAG,
254 &origin_bonus);
255 if (err != 0)
256 goto errout;
257 origin_phys = origin_bonus->db_data;
258 dd->dd_origin_txg =
259 origin_phys->ds_creation_txg;
260 dmu_buf_rele(origin_bonus, FTAG);
261 if (dsl_dir_is_zapified(dd)) {
262 uint64_t obj;
263 err = zap_lookup(dp->dp_meta_objset,
264 dd->dd_object, DD_FIELD_LIVELIST,
265 sizeof (uint64_t), 1, &obj);
266 if (err == 0)
267 dsl_dir_livelist_open(dd, obj);
268 else if (err != ENOENT)
269 goto errout;
273 dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async,
274 &dd->dd_dbuf);
275 winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu);
276 if (winner != NULL) {
277 if (dd->dd_parent)
278 dsl_dir_rele(dd->dd_parent, dd);
279 if (dsl_deadlist_is_open(&dd->dd_livelist))
280 dsl_dir_livelist_close(dd);
281 dsl_prop_fini(dd);
282 cv_destroy(&dd->dd_activity_cv);
283 mutex_destroy(&dd->dd_activity_lock);
284 mutex_destroy(&dd->dd_lock);
285 kmem_free(dd, sizeof (dsl_dir_t));
286 dd = winner;
287 } else {
288 spa_open_ref(dp->dp_spa, dd);
293 * The dsl_dir_t has both open-to-close and instantiate-to-evict
294 * holds on the spa. We need the open-to-close holds because
295 * otherwise the spa_refcnt wouldn't change when we open a
296 * dir which the spa also has open, so we could incorrectly
297 * think it was OK to unload/export/destroy the pool. We need
298 * the instantiate-to-evict hold because the dsl_dir_t has a
299 * pointer to the dd_pool, which has a pointer to the spa_t.
301 spa_open_ref(dp->dp_spa, tag);
302 ASSERT3P(dd->dd_pool, ==, dp);
303 ASSERT3U(dd->dd_object, ==, ddobj);
304 ASSERT3P(dd->dd_dbuf, ==, dbuf);
305 *ddp = dd;
306 return (0);
308 errout:
309 if (dd->dd_parent)
310 dsl_dir_rele(dd->dd_parent, dd);
311 if (dsl_deadlist_is_open(&dd->dd_livelist))
312 dsl_dir_livelist_close(dd);
313 dsl_prop_fini(dd);
314 cv_destroy(&dd->dd_activity_cv);
315 mutex_destroy(&dd->dd_activity_lock);
316 mutex_destroy(&dd->dd_lock);
317 kmem_free(dd, sizeof (dsl_dir_t));
318 dmu_buf_rele(dbuf, tag);
319 return (err);
322 void
323 dsl_dir_rele(dsl_dir_t *dd, void *tag)
325 dprintf_dd(dd, "%s\n", "");
326 spa_close(dd->dd_pool->dp_spa, tag);
327 dmu_buf_rele(dd->dd_dbuf, tag);
331 * Remove a reference to the given dsl dir that is being asynchronously
332 * released. Async releases occur from a taskq performing eviction of
333 * dsl datasets and dirs. This process is identical to a normal release
334 * with the exception of using the async API for releasing the reference on
335 * the spa.
337 void
338 dsl_dir_async_rele(dsl_dir_t *dd, void *tag)
340 dprintf_dd(dd, "%s\n", "");
341 spa_async_close(dd->dd_pool->dp_spa, tag);
342 dmu_buf_rele(dd->dd_dbuf, tag);
345 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */
346 void
347 dsl_dir_name(dsl_dir_t *dd, char *buf)
349 if (dd->dd_parent) {
350 dsl_dir_name(dd->dd_parent, buf);
351 VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <,
352 ZFS_MAX_DATASET_NAME_LEN);
353 } else {
354 buf[0] = '\0';
356 if (!MUTEX_HELD(&dd->dd_lock)) {
358 * recursive mutex so that we can use
359 * dprintf_dd() with dd_lock held
361 mutex_enter(&dd->dd_lock);
362 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
363 <, ZFS_MAX_DATASET_NAME_LEN);
364 mutex_exit(&dd->dd_lock);
365 } else {
366 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
367 <, ZFS_MAX_DATASET_NAME_LEN);
371 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */
373 dsl_dir_namelen(dsl_dir_t *dd)
375 int result = 0;
377 if (dd->dd_parent) {
378 /* parent's name + 1 for the "/" */
379 result = dsl_dir_namelen(dd->dd_parent) + 1;
382 if (!MUTEX_HELD(&dd->dd_lock)) {
383 /* see dsl_dir_name */
384 mutex_enter(&dd->dd_lock);
385 result += strlen(dd->dd_myname);
386 mutex_exit(&dd->dd_lock);
387 } else {
388 result += strlen(dd->dd_myname);
391 return (result);
394 static int
395 getcomponent(const char *path, char *component, const char **nextp)
397 char *p;
399 if ((path == NULL) || (path[0] == '\0'))
400 return (SET_ERROR(ENOENT));
401 /* This would be a good place to reserve some namespace... */
402 p = strpbrk(path, "/@");
403 if (p && (p[1] == '/' || p[1] == '@')) {
404 /* two separators in a row */
405 return (SET_ERROR(EINVAL));
407 if (p == NULL || p == path) {
409 * if the first thing is an @ or /, it had better be an
410 * @ and it had better not have any more ats or slashes,
411 * and it had better have something after the @.
413 if (p != NULL &&
414 (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0'))
415 return (SET_ERROR(EINVAL));
416 if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN)
417 return (SET_ERROR(ENAMETOOLONG));
418 (void) strlcpy(component, path, ZFS_MAX_DATASET_NAME_LEN);
419 p = NULL;
420 } else if (p[0] == '/') {
421 if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
422 return (SET_ERROR(ENAMETOOLONG));
423 (void) strncpy(component, path, p - path);
424 component[p - path] = '\0';
425 p++;
426 } else if (p[0] == '@') {
428 * if the next separator is an @, there better not be
429 * any more slashes.
431 if (strchr(path, '/'))
432 return (SET_ERROR(EINVAL));
433 if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
434 return (SET_ERROR(ENAMETOOLONG));
435 (void) strncpy(component, path, p - path);
436 component[p - path] = '\0';
437 } else {
438 panic("invalid p=%p", (void *)p);
440 *nextp = p;
441 return (0);
445 * Return the dsl_dir_t, and possibly the last component which couldn't
446 * be found in *tail. The name must be in the specified dsl_pool_t. This
447 * thread must hold the dp_config_rwlock for the pool. Returns NULL if the
448 * path is bogus, or if tail==NULL and we couldn't parse the whole name.
449 * (*tail)[0] == '@' means that the last component is a snapshot.
452 dsl_dir_hold(dsl_pool_t *dp, const char *name, void *tag,
453 dsl_dir_t **ddp, const char **tailp)
455 char *buf;
456 const char *spaname, *next, *nextnext = NULL;
457 int err;
458 dsl_dir_t *dd;
459 uint64_t ddobj;
461 buf = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
462 err = getcomponent(name, buf, &next);
463 if (err != 0)
464 goto error;
466 /* Make sure the name is in the specified pool. */
467 spaname = spa_name(dp->dp_spa);
468 if (strcmp(buf, spaname) != 0) {
469 err = SET_ERROR(EXDEV);
470 goto error;
473 ASSERT(dsl_pool_config_held(dp));
475 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd);
476 if (err != 0) {
477 goto error;
480 while (next != NULL) {
481 dsl_dir_t *child_dd;
482 err = getcomponent(next, buf, &nextnext);
483 if (err != 0)
484 break;
485 ASSERT(next[0] != '\0');
486 if (next[0] == '@')
487 break;
488 dprintf("looking up %s in obj%lld\n",
489 buf, (longlong_t)dsl_dir_phys(dd)->dd_child_dir_zapobj);
491 err = zap_lookup(dp->dp_meta_objset,
492 dsl_dir_phys(dd)->dd_child_dir_zapobj,
493 buf, sizeof (ddobj), 1, &ddobj);
494 if (err != 0) {
495 if (err == ENOENT)
496 err = 0;
497 break;
500 err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd);
501 if (err != 0)
502 break;
503 dsl_dir_rele(dd, tag);
504 dd = child_dd;
505 next = nextnext;
508 if (err != 0) {
509 dsl_dir_rele(dd, tag);
510 goto error;
514 * It's an error if there's more than one component left, or
515 * tailp==NULL and there's any component left.
517 if (next != NULL &&
518 (tailp == NULL || (nextnext && nextnext[0] != '\0'))) {
519 /* bad path name */
520 dsl_dir_rele(dd, tag);
521 dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp);
522 err = SET_ERROR(ENOENT);
524 if (tailp != NULL)
525 *tailp = next;
526 if (err == 0)
527 *ddp = dd;
528 error:
529 kmem_free(buf, ZFS_MAX_DATASET_NAME_LEN);
530 return (err);
534 * If the counts are already initialized for this filesystem and its
535 * descendants then do nothing, otherwise initialize the counts.
537 * The counts on this filesystem, and those below, may be uninitialized due to
538 * either the use of a pre-existing pool which did not support the
539 * filesystem/snapshot limit feature, or one in which the feature had not yet
540 * been enabled.
542 * Recursively descend the filesystem tree and update the filesystem/snapshot
543 * counts on each filesystem below, then update the cumulative count on the
544 * current filesystem. If the filesystem already has a count set on it,
545 * then we know that its counts, and the counts on the filesystems below it,
546 * are already correct, so we don't have to update this filesystem.
548 static void
549 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx)
551 uint64_t my_fs_cnt = 0;
552 uint64_t my_ss_cnt = 0;
553 dsl_pool_t *dp = dd->dd_pool;
554 objset_t *os = dp->dp_meta_objset;
555 zap_cursor_t *zc;
556 zap_attribute_t *za;
557 dsl_dataset_t *ds;
559 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT));
560 ASSERT(dsl_pool_config_held(dp));
561 ASSERT(dmu_tx_is_syncing(tx));
563 dsl_dir_zapify(dd, tx);
566 * If the filesystem count has already been initialized then we
567 * don't need to recurse down any further.
569 if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0)
570 return;
572 zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
573 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
575 /* Iterate my child dirs */
576 for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj);
577 zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) {
578 dsl_dir_t *chld_dd;
579 uint64_t count;
581 VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG,
582 &chld_dd));
585 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets.
587 if (chld_dd->dd_myname[0] == '$') {
588 dsl_dir_rele(chld_dd, FTAG);
589 continue;
592 my_fs_cnt++; /* count this child */
594 dsl_dir_init_fs_ss_count(chld_dd, tx);
596 VERIFY0(zap_lookup(os, chld_dd->dd_object,
597 DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count));
598 my_fs_cnt += count;
599 VERIFY0(zap_lookup(os, chld_dd->dd_object,
600 DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count));
601 my_ss_cnt += count;
603 dsl_dir_rele(chld_dd, FTAG);
605 zap_cursor_fini(zc);
606 /* Count my snapshots (we counted children's snapshots above) */
607 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
608 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds));
610 for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj);
611 zap_cursor_retrieve(zc, za) == 0;
612 zap_cursor_advance(zc)) {
613 /* Don't count temporary snapshots */
614 if (za->za_name[0] != '%')
615 my_ss_cnt++;
617 zap_cursor_fini(zc);
619 dsl_dataset_rele(ds, FTAG);
621 kmem_free(zc, sizeof (zap_cursor_t));
622 kmem_free(za, sizeof (zap_attribute_t));
624 /* we're in a sync task, update counts */
625 dmu_buf_will_dirty(dd->dd_dbuf, tx);
626 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
627 sizeof (my_fs_cnt), 1, &my_fs_cnt, tx));
628 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
629 sizeof (my_ss_cnt), 1, &my_ss_cnt, tx));
632 static int
633 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx)
635 char *ddname = (char *)arg;
636 dsl_pool_t *dp = dmu_tx_pool(tx);
637 dsl_dataset_t *ds;
638 dsl_dir_t *dd;
639 int error;
641 error = dsl_dataset_hold(dp, ddname, FTAG, &ds);
642 if (error != 0)
643 return (error);
645 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) {
646 dsl_dataset_rele(ds, FTAG);
647 return (SET_ERROR(ENOTSUP));
650 dd = ds->ds_dir;
651 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) &&
652 dsl_dir_is_zapified(dd) &&
653 zap_contains(dp->dp_meta_objset, dd->dd_object,
654 DD_FIELD_FILESYSTEM_COUNT) == 0) {
655 dsl_dataset_rele(ds, FTAG);
656 return (SET_ERROR(EALREADY));
659 dsl_dataset_rele(ds, FTAG);
660 return (0);
663 static void
664 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx)
666 char *ddname = (char *)arg;
667 dsl_pool_t *dp = dmu_tx_pool(tx);
668 dsl_dataset_t *ds;
669 spa_t *spa;
671 VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds));
673 spa = dsl_dataset_get_spa(ds);
675 if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) {
677 * Since the feature was not active and we're now setting a
678 * limit, increment the feature-active counter so that the
679 * feature becomes active for the first time.
681 * We are already in a sync task so we can update the MOS.
683 spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx);
687 * Since we are now setting a non-UINT64_MAX limit on the filesystem,
688 * we need to ensure the counts are correct. Descend down the tree from
689 * this point and update all of the counts to be accurate.
691 dsl_dir_init_fs_ss_count(ds->ds_dir, tx);
693 dsl_dataset_rele(ds, FTAG);
697 * Make sure the feature is enabled and activate it if necessary.
698 * Since we're setting a limit, ensure the on-disk counts are valid.
699 * This is only called by the ioctl path when setting a limit value.
701 * We do not need to validate the new limit, since users who can change the
702 * limit are also allowed to exceed the limit.
705 dsl_dir_activate_fs_ss_limit(const char *ddname)
707 int error;
709 error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check,
710 dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0,
711 ZFS_SPACE_CHECK_RESERVED);
713 if (error == EALREADY)
714 error = 0;
716 return (error);
720 * Used to determine if the filesystem_limit or snapshot_limit should be
721 * enforced. We allow the limit to be exceeded if the user has permission to
722 * write the property value. We pass in the creds that we got in the open
723 * context since we will always be the GZ root in syncing context. We also have
724 * to handle the case where we are allowed to change the limit on the current
725 * dataset, but there may be another limit in the tree above.
727 * We can never modify these two properties within a non-global zone. In
728 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We
729 * can't use that function since we are already holding the dp_config_rwlock.
730 * In addition, we already have the dd and dealing with snapshots is simplified
731 * in this code.
734 typedef enum {
735 ENFORCE_ALWAYS,
736 ENFORCE_NEVER,
737 ENFORCE_ABOVE
738 } enforce_res_t;
740 static enforce_res_t
741 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop,
742 cred_t *cr, proc_t *proc)
744 enforce_res_t enforce = ENFORCE_ALWAYS;
745 uint64_t obj;
746 dsl_dataset_t *ds;
747 uint64_t zoned;
748 const char *zonedstr;
750 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
751 prop == ZFS_PROP_SNAPSHOT_LIMIT);
753 #ifdef _KERNEL
754 if (crgetzoneid(cr) != GLOBAL_ZONEID)
755 return (ENFORCE_ALWAYS);
758 * We are checking the saved credentials of the user process, which is
759 * not the current process. Note that we can't use secpolicy_zfs(),
760 * because it only works if the cred is that of the current process (on
761 * Linux).
763 if (secpolicy_zfs_proc(cr, proc) == 0)
764 return (ENFORCE_NEVER);
765 #else
766 (void) proc;
767 #endif
769 if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0)
770 return (ENFORCE_ALWAYS);
772 ASSERT(dsl_pool_config_held(dd->dd_pool));
774 if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0)
775 return (ENFORCE_ALWAYS);
777 zonedstr = zfs_prop_to_name(ZFS_PROP_ZONED);
778 if (dsl_prop_get_ds(ds, zonedstr, 8, 1, &zoned, NULL) || zoned) {
779 /* Only root can access zoned fs's from the GZ */
780 enforce = ENFORCE_ALWAYS;
781 } else {
782 if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0)
783 enforce = ENFORCE_ABOVE;
786 dsl_dataset_rele(ds, FTAG);
787 return (enforce);
791 * Check if adding additional child filesystem(s) would exceed any filesystem
792 * limits or adding additional snapshot(s) would exceed any snapshot limits.
793 * The prop argument indicates which limit to check.
795 * Note that all filesystem limits up to the root (or the highest
796 * initialized) filesystem or the given ancestor must be satisfied.
799 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop,
800 dsl_dir_t *ancestor, cred_t *cr, proc_t *proc)
802 objset_t *os = dd->dd_pool->dp_meta_objset;
803 uint64_t limit, count;
804 char *count_prop;
805 enforce_res_t enforce;
806 int err = 0;
808 ASSERT(dsl_pool_config_held(dd->dd_pool));
809 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
810 prop == ZFS_PROP_SNAPSHOT_LIMIT);
813 * If we're allowed to change the limit, don't enforce the limit
814 * e.g. this can happen if a snapshot is taken by an administrative
815 * user in the global zone (i.e. a recursive snapshot by root).
816 * However, we must handle the case of delegated permissions where we
817 * are allowed to change the limit on the current dataset, but there
818 * is another limit in the tree above.
820 enforce = dsl_enforce_ds_ss_limits(dd, prop, cr, proc);
821 if (enforce == ENFORCE_NEVER)
822 return (0);
825 * e.g. if renaming a dataset with no snapshots, count adjustment
826 * is 0.
828 if (delta == 0)
829 return (0);
831 if (prop == ZFS_PROP_SNAPSHOT_LIMIT) {
833 * We don't enforce the limit for temporary snapshots. This is
834 * indicated by a NULL cred_t argument.
836 if (cr == NULL)
837 return (0);
839 count_prop = DD_FIELD_SNAPSHOT_COUNT;
840 } else {
841 count_prop = DD_FIELD_FILESYSTEM_COUNT;
845 * If an ancestor has been provided, stop checking the limit once we
846 * hit that dir. We need this during rename so that we don't overcount
847 * the check once we recurse up to the common ancestor.
849 if (ancestor == dd)
850 return (0);
853 * If we hit an uninitialized node while recursing up the tree, we can
854 * stop since we know there is no limit here (or above). The counts are
855 * not valid on this node and we know we won't touch this node's counts.
857 if (!dsl_dir_is_zapified(dd))
858 return (0);
859 err = zap_lookup(os, dd->dd_object,
860 count_prop, sizeof (count), 1, &count);
861 if (err == ENOENT)
862 return (0);
863 if (err != 0)
864 return (err);
866 err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL,
867 B_FALSE);
868 if (err != 0)
869 return (err);
871 /* Is there a limit which we've hit? */
872 if (enforce == ENFORCE_ALWAYS && (count + delta) > limit)
873 return (SET_ERROR(EDQUOT));
875 if (dd->dd_parent != NULL)
876 err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop,
877 ancestor, cr, proc);
879 return (err);
883 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all
884 * parents. When a new filesystem/snapshot is created, increment the count on
885 * all parents, and when a filesystem/snapshot is destroyed, decrement the
886 * count.
888 void
889 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop,
890 dmu_tx_t *tx)
892 int err;
893 objset_t *os = dd->dd_pool->dp_meta_objset;
894 uint64_t count;
896 ASSERT(dsl_pool_config_held(dd->dd_pool));
897 ASSERT(dmu_tx_is_syncing(tx));
898 ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 ||
899 strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0);
902 * We don't do accounting for hidden ($FREE, $MOS & $ORIGIN) objsets.
904 if (dd->dd_myname[0] == '$' && strcmp(prop,
905 DD_FIELD_FILESYSTEM_COUNT) == 0) {
906 return;
910 * e.g. if renaming a dataset with no snapshots, count adjustment is 0
912 if (delta == 0)
913 return;
916 * If we hit an uninitialized node while recursing up the tree, we can
917 * stop since we know the counts are not valid on this node and we
918 * know we shouldn't touch this node's counts. An uninitialized count
919 * on the node indicates that either the feature has not yet been
920 * activated or there are no limits on this part of the tree.
922 if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object,
923 prop, sizeof (count), 1, &count)) == ENOENT)
924 return;
925 VERIFY0(err);
927 count += delta;
928 /* Use a signed verify to make sure we're not neg. */
929 VERIFY3S(count, >=, 0);
931 VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count,
932 tx));
934 /* Roll up this additional count into our ancestors */
935 if (dd->dd_parent != NULL)
936 dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx);
939 uint64_t
940 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name,
941 dmu_tx_t *tx)
943 objset_t *mos = dp->dp_meta_objset;
944 uint64_t ddobj;
945 dsl_dir_phys_t *ddphys;
946 dmu_buf_t *dbuf;
948 ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0,
949 DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx);
950 if (pds) {
951 VERIFY0(zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj,
952 name, sizeof (uint64_t), 1, &ddobj, tx));
953 } else {
954 /* it's the root dir */
955 VERIFY0(zap_add(mos, DMU_POOL_DIRECTORY_OBJECT,
956 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx));
958 VERIFY0(dmu_bonus_hold(mos, ddobj, FTAG, &dbuf));
959 dmu_buf_will_dirty(dbuf, tx);
960 ddphys = dbuf->db_data;
962 ddphys->dd_creation_time = gethrestime_sec();
963 if (pds) {
964 ddphys->dd_parent_obj = pds->dd_object;
966 /* update the filesystem counts */
967 dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx);
969 ddphys->dd_props_zapobj = zap_create(mos,
970 DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx);
971 ddphys->dd_child_dir_zapobj = zap_create(mos,
972 DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx);
973 if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN)
974 ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN;
976 dmu_buf_rele(dbuf, FTAG);
978 return (ddobj);
981 boolean_t
982 dsl_dir_is_clone(dsl_dir_t *dd)
984 return (dsl_dir_phys(dd)->dd_origin_obj &&
985 (dd->dd_pool->dp_origin_snap == NULL ||
986 dsl_dir_phys(dd)->dd_origin_obj !=
987 dd->dd_pool->dp_origin_snap->ds_object));
990 uint64_t
991 dsl_dir_get_used(dsl_dir_t *dd)
993 return (dsl_dir_phys(dd)->dd_used_bytes);
996 uint64_t
997 dsl_dir_get_compressed(dsl_dir_t *dd)
999 return (dsl_dir_phys(dd)->dd_compressed_bytes);
1002 uint64_t
1003 dsl_dir_get_quota(dsl_dir_t *dd)
1005 return (dsl_dir_phys(dd)->dd_quota);
1008 uint64_t
1009 dsl_dir_get_reservation(dsl_dir_t *dd)
1011 return (dsl_dir_phys(dd)->dd_reserved);
1014 uint64_t
1015 dsl_dir_get_compressratio(dsl_dir_t *dd)
1017 /* a fixed point number, 100x the ratio */
1018 return (dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 :
1019 (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 /
1020 dsl_dir_phys(dd)->dd_compressed_bytes));
1023 uint64_t
1024 dsl_dir_get_logicalused(dsl_dir_t *dd)
1026 return (dsl_dir_phys(dd)->dd_uncompressed_bytes);
1029 uint64_t
1030 dsl_dir_get_usedsnap(dsl_dir_t *dd)
1032 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]);
1035 uint64_t
1036 dsl_dir_get_usedds(dsl_dir_t *dd)
1038 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]);
1041 uint64_t
1042 dsl_dir_get_usedrefreserv(dsl_dir_t *dd)
1044 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]);
1047 uint64_t
1048 dsl_dir_get_usedchild(dsl_dir_t *dd)
1050 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] +
1051 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]);
1054 void
1055 dsl_dir_get_origin(dsl_dir_t *dd, char *buf)
1057 dsl_dataset_t *ds;
1058 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
1059 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds));
1061 dsl_dataset_name(ds, buf);
1063 dsl_dataset_rele(ds, FTAG);
1067 dsl_dir_get_filesystem_count(dsl_dir_t *dd, uint64_t *count)
1069 if (dsl_dir_is_zapified(dd)) {
1070 objset_t *os = dd->dd_pool->dp_meta_objset;
1071 return (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
1072 sizeof (*count), 1, count));
1073 } else {
1074 return (SET_ERROR(ENOENT));
1079 dsl_dir_get_snapshot_count(dsl_dir_t *dd, uint64_t *count)
1081 if (dsl_dir_is_zapified(dd)) {
1082 objset_t *os = dd->dd_pool->dp_meta_objset;
1083 return (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
1084 sizeof (*count), 1, count));
1085 } else {
1086 return (SET_ERROR(ENOENT));
1090 void
1091 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv)
1093 mutex_enter(&dd->dd_lock);
1094 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA,
1095 dsl_dir_get_quota(dd));
1096 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION,
1097 dsl_dir_get_reservation(dd));
1098 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED,
1099 dsl_dir_get_logicalused(dd));
1100 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1101 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP,
1102 dsl_dir_get_usedsnap(dd));
1103 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS,
1104 dsl_dir_get_usedds(dd));
1105 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV,
1106 dsl_dir_get_usedrefreserv(dd));
1107 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD,
1108 dsl_dir_get_usedchild(dd));
1110 mutex_exit(&dd->dd_lock);
1112 uint64_t count;
1113 if (dsl_dir_get_filesystem_count(dd, &count) == 0) {
1114 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_FILESYSTEM_COUNT,
1115 count);
1117 if (dsl_dir_get_snapshot_count(dd, &count) == 0) {
1118 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_SNAPSHOT_COUNT,
1119 count);
1122 if (dsl_dir_is_clone(dd)) {
1123 char buf[ZFS_MAX_DATASET_NAME_LEN];
1124 dsl_dir_get_origin(dd, buf);
1125 dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf);
1130 void
1131 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx)
1133 dsl_pool_t *dp = dd->dd_pool;
1135 ASSERT(dsl_dir_phys(dd));
1137 if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) {
1138 /* up the hold count until we can be written out */
1139 dmu_buf_add_ref(dd->dd_dbuf, dd);
1143 static int64_t
1144 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta)
1146 uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved);
1147 uint64_t new_accounted =
1148 MAX(used + delta, dsl_dir_phys(dd)->dd_reserved);
1149 return (new_accounted - old_accounted);
1152 void
1153 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx)
1155 ASSERT(dmu_tx_is_syncing(tx));
1157 mutex_enter(&dd->dd_lock);
1158 ASSERT0(dd->dd_tempreserved[tx->tx_txg & TXG_MASK]);
1159 dprintf_dd(dd, "txg=%llu towrite=%lluK\n", (u_longlong_t)tx->tx_txg,
1160 (u_longlong_t)dd->dd_space_towrite[tx->tx_txg & TXG_MASK] / 1024);
1161 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] = 0;
1162 mutex_exit(&dd->dd_lock);
1164 /* release the hold from dsl_dir_dirty */
1165 dmu_buf_rele(dd->dd_dbuf, dd);
1168 static uint64_t
1169 dsl_dir_space_towrite(dsl_dir_t *dd)
1171 uint64_t space = 0;
1173 ASSERT(MUTEX_HELD(&dd->dd_lock));
1175 for (int i = 0; i < TXG_SIZE; i++) {
1176 space += dd->dd_space_towrite[i & TXG_MASK];
1177 ASSERT3U(dd->dd_space_towrite[i & TXG_MASK], >=, 0);
1179 return (space);
1183 * How much space would dd have available if ancestor had delta applied
1184 * to it? If ondiskonly is set, we're only interested in what's
1185 * on-disk, not estimated pending changes.
1187 uint64_t
1188 dsl_dir_space_available(dsl_dir_t *dd,
1189 dsl_dir_t *ancestor, int64_t delta, int ondiskonly)
1191 uint64_t parentspace, myspace, quota, used;
1194 * If there are no restrictions otherwise, assume we have
1195 * unlimited space available.
1197 quota = UINT64_MAX;
1198 parentspace = UINT64_MAX;
1200 if (dd->dd_parent != NULL) {
1201 parentspace = dsl_dir_space_available(dd->dd_parent,
1202 ancestor, delta, ondiskonly);
1205 mutex_enter(&dd->dd_lock);
1206 if (dsl_dir_phys(dd)->dd_quota != 0)
1207 quota = dsl_dir_phys(dd)->dd_quota;
1208 used = dsl_dir_phys(dd)->dd_used_bytes;
1209 if (!ondiskonly)
1210 used += dsl_dir_space_towrite(dd);
1212 if (dd->dd_parent == NULL) {
1213 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool,
1214 ZFS_SPACE_CHECK_NORMAL);
1215 quota = MIN(quota, poolsize);
1218 if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) {
1220 * We have some space reserved, in addition to what our
1221 * parent gave us.
1223 parentspace += dsl_dir_phys(dd)->dd_reserved - used;
1226 if (dd == ancestor) {
1227 ASSERT(delta <= 0);
1228 ASSERT(used >= -delta);
1229 used += delta;
1230 if (parentspace != UINT64_MAX)
1231 parentspace -= delta;
1234 if (used > quota) {
1235 /* over quota */
1236 myspace = 0;
1237 } else {
1239 * the lesser of the space provided by our parent and
1240 * the space left in our quota
1242 myspace = MIN(parentspace, quota - used);
1245 mutex_exit(&dd->dd_lock);
1247 return (myspace);
1250 struct tempreserve {
1251 list_node_t tr_node;
1252 dsl_dir_t *tr_ds;
1253 uint64_t tr_size;
1256 static int
1257 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree,
1258 boolean_t ignorequota, list_t *tr_list,
1259 dmu_tx_t *tx, boolean_t first)
1261 uint64_t txg;
1262 uint64_t quota;
1263 struct tempreserve *tr;
1264 int retval;
1265 uint64_t ref_rsrv;
1267 top_of_function:
1268 txg = tx->tx_txg;
1269 retval = EDQUOT;
1270 ref_rsrv = 0;
1272 ASSERT3U(txg, !=, 0);
1273 ASSERT3S(asize, >, 0);
1275 mutex_enter(&dd->dd_lock);
1278 * Check against the dsl_dir's quota. We don't add in the delta
1279 * when checking for over-quota because they get one free hit.
1281 uint64_t est_inflight = dsl_dir_space_towrite(dd);
1282 for (int i = 0; i < TXG_SIZE; i++)
1283 est_inflight += dd->dd_tempreserved[i];
1284 uint64_t used_on_disk = dsl_dir_phys(dd)->dd_used_bytes;
1287 * On the first iteration, fetch the dataset's used-on-disk and
1288 * refreservation values. Also, if checkrefquota is set, test if
1289 * allocating this space would exceed the dataset's refquota.
1291 if (first && tx->tx_objset) {
1292 int error;
1293 dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset;
1295 error = dsl_dataset_check_quota(ds, !netfree,
1296 asize, est_inflight, &used_on_disk, &ref_rsrv);
1297 if (error != 0) {
1298 mutex_exit(&dd->dd_lock);
1299 DMU_TX_STAT_BUMP(dmu_tx_quota);
1300 return (error);
1305 * If this transaction will result in a net free of space,
1306 * we want to let it through.
1308 if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0)
1309 quota = UINT64_MAX;
1310 else
1311 quota = dsl_dir_phys(dd)->dd_quota;
1314 * Adjust the quota against the actual pool size at the root
1315 * minus any outstanding deferred frees.
1316 * To ensure that it's possible to remove files from a full
1317 * pool without inducing transient overcommits, we throttle
1318 * netfree transactions against a quota that is slightly larger,
1319 * but still within the pool's allocation slop. In cases where
1320 * we're very close to full, this will allow a steady trickle of
1321 * removes to get through.
1323 if (dd->dd_parent == NULL) {
1324 uint64_t avail = dsl_pool_unreserved_space(dd->dd_pool,
1325 (netfree) ?
1326 ZFS_SPACE_CHECK_RESERVED : ZFS_SPACE_CHECK_NORMAL);
1328 if (avail < quota) {
1329 quota = avail;
1330 retval = SET_ERROR(ENOSPC);
1335 * If they are requesting more space, and our current estimate
1336 * is over quota, they get to try again unless the actual
1337 * on-disk is over quota and there are no pending changes
1338 * or deferred frees (which may free up space for us).
1340 if (used_on_disk + est_inflight >= quota) {
1341 if (est_inflight > 0 || used_on_disk < quota) {
1342 retval = SET_ERROR(ERESTART);
1343 } else {
1344 ASSERT3U(used_on_disk, >=, quota);
1346 if (retval == ENOSPC && (used_on_disk - quota) <
1347 dsl_pool_deferred_space(dd->dd_pool)) {
1348 retval = SET_ERROR(ERESTART);
1352 dprintf_dd(dd, "failing: used=%lluK inflight = %lluK "
1353 "quota=%lluK tr=%lluK err=%d\n",
1354 (u_longlong_t)used_on_disk>>10,
1355 (u_longlong_t)est_inflight>>10,
1356 (u_longlong_t)quota>>10, (u_longlong_t)asize>>10, retval);
1357 mutex_exit(&dd->dd_lock);
1358 DMU_TX_STAT_BUMP(dmu_tx_quota);
1359 return (retval);
1362 /* We need to up our estimated delta before dropping dd_lock */
1363 dd->dd_tempreserved[txg & TXG_MASK] += asize;
1365 uint64_t parent_rsrv = parent_delta(dd, used_on_disk + est_inflight,
1366 asize - ref_rsrv);
1367 mutex_exit(&dd->dd_lock);
1369 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1370 tr->tr_ds = dd;
1371 tr->tr_size = asize;
1372 list_insert_tail(tr_list, tr);
1374 /* see if it's OK with our parent */
1375 if (dd->dd_parent != NULL && parent_rsrv != 0) {
1377 * Recurse on our parent without recursion. This has been
1378 * observed to be potentially large stack usage even within
1379 * the test suite. Largest seen stack was 7632 bytes on linux.
1382 dd = dd->dd_parent;
1383 asize = parent_rsrv;
1384 ignorequota = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0);
1385 first = B_FALSE;
1386 goto top_of_function;
1388 } else {
1389 return (0);
1394 * Reserve space in this dsl_dir, to be used in this tx's txg.
1395 * After the space has been dirtied (and dsl_dir_willuse_space()
1396 * has been called), the reservation should be canceled, using
1397 * dsl_dir_tempreserve_clear().
1400 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize,
1401 boolean_t netfree, void **tr_cookiep, dmu_tx_t *tx)
1403 int err;
1404 list_t *tr_list;
1406 if (asize == 0) {
1407 *tr_cookiep = NULL;
1408 return (0);
1411 tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
1412 list_create(tr_list, sizeof (struct tempreserve),
1413 offsetof(struct tempreserve, tr_node));
1414 ASSERT3S(asize, >, 0);
1416 err = arc_tempreserve_space(dd->dd_pool->dp_spa, lsize, tx->tx_txg);
1417 if (err == 0) {
1418 struct tempreserve *tr;
1420 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1421 tr->tr_size = lsize;
1422 list_insert_tail(tr_list, tr);
1423 } else {
1424 if (err == EAGAIN) {
1426 * If arc_memory_throttle() detected that pageout
1427 * is running and we are low on memory, we delay new
1428 * non-pageout transactions to give pageout an
1429 * advantage.
1431 * It is unfortunate to be delaying while the caller's
1432 * locks are held.
1434 txg_delay(dd->dd_pool, tx->tx_txg,
1435 MSEC2NSEC(10), MSEC2NSEC(10));
1436 err = SET_ERROR(ERESTART);
1440 if (err == 0) {
1441 err = dsl_dir_tempreserve_impl(dd, asize, netfree,
1442 B_FALSE, tr_list, tx, B_TRUE);
1445 if (err != 0)
1446 dsl_dir_tempreserve_clear(tr_list, tx);
1447 else
1448 *tr_cookiep = tr_list;
1450 return (err);
1454 * Clear a temporary reservation that we previously made with
1455 * dsl_dir_tempreserve_space().
1457 void
1458 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx)
1460 int txgidx = tx->tx_txg & TXG_MASK;
1461 list_t *tr_list = tr_cookie;
1462 struct tempreserve *tr;
1464 ASSERT3U(tx->tx_txg, !=, 0);
1466 if (tr_cookie == NULL)
1467 return;
1469 while ((tr = list_head(tr_list)) != NULL) {
1470 if (tr->tr_ds) {
1471 mutex_enter(&tr->tr_ds->dd_lock);
1472 ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=,
1473 tr->tr_size);
1474 tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size;
1475 mutex_exit(&tr->tr_ds->dd_lock);
1476 } else {
1477 arc_tempreserve_clear(tr->tr_size);
1479 list_remove(tr_list, tr);
1480 kmem_free(tr, sizeof (struct tempreserve));
1483 kmem_free(tr_list, sizeof (list_t));
1487 * This should be called from open context when we think we're going to write
1488 * or free space, for example when dirtying data. Be conservative; it's okay
1489 * to write less space or free more, but we don't want to write more or free
1490 * less than the amount specified.
1492 * NOTE: The behavior of this function is identical to the Illumos / FreeBSD
1493 * version however it has been adjusted to use an iterative rather than
1494 * recursive algorithm to minimize stack usage.
1496 void
1497 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx)
1499 int64_t parent_space;
1500 uint64_t est_used;
1502 do {
1503 mutex_enter(&dd->dd_lock);
1504 if (space > 0)
1505 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space;
1507 est_used = dsl_dir_space_towrite(dd) +
1508 dsl_dir_phys(dd)->dd_used_bytes;
1509 parent_space = parent_delta(dd, est_used, space);
1510 mutex_exit(&dd->dd_lock);
1512 /* Make sure that we clean up dd_space_to* */
1513 dsl_dir_dirty(dd, tx);
1515 dd = dd->dd_parent;
1516 space = parent_space;
1517 } while (space && dd);
1520 /* call from syncing context when we actually write/free space for this dd */
1521 void
1522 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type,
1523 int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx)
1525 int64_t accounted_delta;
1527 ASSERT(dmu_tx_is_syncing(tx));
1528 ASSERT(type < DD_USED_NUM);
1530 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1533 * dsl_dataset_set_refreservation_sync_impl() calls this with
1534 * dd_lock held, so that it can atomically update
1535 * ds->ds_reserved and the dsl_dir accounting, so that
1536 * dsl_dataset_check_quota() can see dataset and dir accounting
1537 * consistently.
1539 boolean_t needlock = !MUTEX_HELD(&dd->dd_lock);
1540 if (needlock)
1541 mutex_enter(&dd->dd_lock);
1542 dsl_dir_phys_t *ddp = dsl_dir_phys(dd);
1543 accounted_delta = parent_delta(dd, ddp->dd_used_bytes, used);
1544 ASSERT(used >= 0 || ddp->dd_used_bytes >= -used);
1545 ASSERT(compressed >= 0 || ddp->dd_compressed_bytes >= -compressed);
1546 ASSERT(uncompressed >= 0 ||
1547 ddp->dd_uncompressed_bytes >= -uncompressed);
1548 ddp->dd_used_bytes += used;
1549 ddp->dd_uncompressed_bytes += uncompressed;
1550 ddp->dd_compressed_bytes += compressed;
1552 if (ddp->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1553 ASSERT(used >= 0 || ddp->dd_used_breakdown[type] >= -used);
1554 ddp->dd_used_breakdown[type] += used;
1555 #ifdef ZFS_DEBUG
1557 dd_used_t t;
1558 uint64_t u = 0;
1559 for (t = 0; t < DD_USED_NUM; t++)
1560 u += ddp->dd_used_breakdown[t];
1561 ASSERT3U(u, ==, ddp->dd_used_bytes);
1563 #endif
1565 if (needlock)
1566 mutex_exit(&dd->dd_lock);
1568 if (dd->dd_parent != NULL) {
1569 dsl_dir_diduse_transfer_space(dd->dd_parent,
1570 accounted_delta, compressed, uncompressed,
1571 used, DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
1575 void
1576 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta,
1577 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
1579 ASSERT(dmu_tx_is_syncing(tx));
1580 ASSERT(oldtype < DD_USED_NUM);
1581 ASSERT(newtype < DD_USED_NUM);
1583 dsl_dir_phys_t *ddp = dsl_dir_phys(dd);
1584 if (delta == 0 ||
1585 !(ddp->dd_flags & DD_FLAG_USED_BREAKDOWN))
1586 return;
1588 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1589 mutex_enter(&dd->dd_lock);
1590 ASSERT(delta > 0 ?
1591 ddp->dd_used_breakdown[oldtype] >= delta :
1592 ddp->dd_used_breakdown[newtype] >= -delta);
1593 ASSERT(ddp->dd_used_bytes >= ABS(delta));
1594 ddp->dd_used_breakdown[oldtype] -= delta;
1595 ddp->dd_used_breakdown[newtype] += delta;
1596 mutex_exit(&dd->dd_lock);
1599 void
1600 dsl_dir_diduse_transfer_space(dsl_dir_t *dd, int64_t used,
1601 int64_t compressed, int64_t uncompressed, int64_t tonew,
1602 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
1604 int64_t accounted_delta;
1606 ASSERT(dmu_tx_is_syncing(tx));
1607 ASSERT(oldtype < DD_USED_NUM);
1608 ASSERT(newtype < DD_USED_NUM);
1610 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1612 mutex_enter(&dd->dd_lock);
1613 dsl_dir_phys_t *ddp = dsl_dir_phys(dd);
1614 accounted_delta = parent_delta(dd, ddp->dd_used_bytes, used);
1615 ASSERT(used >= 0 || ddp->dd_used_bytes >= -used);
1616 ASSERT(compressed >= 0 || ddp->dd_compressed_bytes >= -compressed);
1617 ASSERT(uncompressed >= 0 ||
1618 ddp->dd_uncompressed_bytes >= -uncompressed);
1619 ddp->dd_used_bytes += used;
1620 ddp->dd_uncompressed_bytes += uncompressed;
1621 ddp->dd_compressed_bytes += compressed;
1623 if (ddp->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1624 ASSERT(tonew - used <= 0 ||
1625 ddp->dd_used_breakdown[oldtype] >= tonew - used);
1626 ASSERT(tonew >= 0 ||
1627 ddp->dd_used_breakdown[newtype] >= -tonew);
1628 ddp->dd_used_breakdown[oldtype] -= tonew - used;
1629 ddp->dd_used_breakdown[newtype] += tonew;
1630 #ifdef ZFS_DEBUG
1632 dd_used_t t;
1633 uint64_t u = 0;
1634 for (t = 0; t < DD_USED_NUM; t++)
1635 u += ddp->dd_used_breakdown[t];
1636 ASSERT3U(u, ==, ddp->dd_used_bytes);
1638 #endif
1640 mutex_exit(&dd->dd_lock);
1642 if (dd->dd_parent != NULL) {
1643 dsl_dir_diduse_transfer_space(dd->dd_parent,
1644 accounted_delta, compressed, uncompressed,
1645 used, DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
1649 typedef struct dsl_dir_set_qr_arg {
1650 const char *ddsqra_name;
1651 zprop_source_t ddsqra_source;
1652 uint64_t ddsqra_value;
1653 } dsl_dir_set_qr_arg_t;
1655 static int
1656 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx)
1658 dsl_dir_set_qr_arg_t *ddsqra = arg;
1659 dsl_pool_t *dp = dmu_tx_pool(tx);
1660 dsl_dataset_t *ds;
1661 int error;
1662 uint64_t towrite, newval;
1664 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1665 if (error != 0)
1666 return (error);
1668 error = dsl_prop_predict(ds->ds_dir, "quota",
1669 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1670 if (error != 0) {
1671 dsl_dataset_rele(ds, FTAG);
1672 return (error);
1675 if (newval == 0) {
1676 dsl_dataset_rele(ds, FTAG);
1677 return (0);
1680 mutex_enter(&ds->ds_dir->dd_lock);
1682 * If we are doing the preliminary check in open context, and
1683 * there are pending changes, then don't fail it, since the
1684 * pending changes could under-estimate the amount of space to be
1685 * freed up.
1687 towrite = dsl_dir_space_towrite(ds->ds_dir);
1688 if ((dmu_tx_is_syncing(tx) || towrite == 0) &&
1689 (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved ||
1690 newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) {
1691 error = SET_ERROR(ENOSPC);
1693 mutex_exit(&ds->ds_dir->dd_lock);
1694 dsl_dataset_rele(ds, FTAG);
1695 return (error);
1698 static void
1699 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx)
1701 dsl_dir_set_qr_arg_t *ddsqra = arg;
1702 dsl_pool_t *dp = dmu_tx_pool(tx);
1703 dsl_dataset_t *ds;
1704 uint64_t newval;
1706 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1708 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1709 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA),
1710 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1711 &ddsqra->ddsqra_value, tx);
1713 VERIFY0(dsl_prop_get_int_ds(ds,
1714 zfs_prop_to_name(ZFS_PROP_QUOTA), &newval));
1715 } else {
1716 newval = ddsqra->ddsqra_value;
1717 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1718 zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval);
1721 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
1722 mutex_enter(&ds->ds_dir->dd_lock);
1723 dsl_dir_phys(ds->ds_dir)->dd_quota = newval;
1724 mutex_exit(&ds->ds_dir->dd_lock);
1725 dsl_dataset_rele(ds, FTAG);
1729 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota)
1731 dsl_dir_set_qr_arg_t ddsqra;
1733 ddsqra.ddsqra_name = ddname;
1734 ddsqra.ddsqra_source = source;
1735 ddsqra.ddsqra_value = quota;
1737 return (dsl_sync_task(ddname, dsl_dir_set_quota_check,
1738 dsl_dir_set_quota_sync, &ddsqra, 0,
1739 ZFS_SPACE_CHECK_EXTRA_RESERVED));
1742 static int
1743 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx)
1745 dsl_dir_set_qr_arg_t *ddsqra = arg;
1746 dsl_pool_t *dp = dmu_tx_pool(tx);
1747 dsl_dataset_t *ds;
1748 dsl_dir_t *dd;
1749 uint64_t newval, used, avail;
1750 int error;
1752 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1753 if (error != 0)
1754 return (error);
1755 dd = ds->ds_dir;
1758 * If we are doing the preliminary check in open context, the
1759 * space estimates may be inaccurate.
1761 if (!dmu_tx_is_syncing(tx)) {
1762 dsl_dataset_rele(ds, FTAG);
1763 return (0);
1766 error = dsl_prop_predict(ds->ds_dir,
1767 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1768 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1769 if (error != 0) {
1770 dsl_dataset_rele(ds, FTAG);
1771 return (error);
1774 mutex_enter(&dd->dd_lock);
1775 used = dsl_dir_phys(dd)->dd_used_bytes;
1776 mutex_exit(&dd->dd_lock);
1778 if (dd->dd_parent) {
1779 avail = dsl_dir_space_available(dd->dd_parent,
1780 NULL, 0, FALSE);
1781 } else {
1782 avail = dsl_pool_adjustedsize(dd->dd_pool,
1783 ZFS_SPACE_CHECK_NORMAL) - used;
1786 if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) {
1787 uint64_t delta = MAX(used, newval) -
1788 MAX(used, dsl_dir_phys(dd)->dd_reserved);
1790 if (delta > avail ||
1791 (dsl_dir_phys(dd)->dd_quota > 0 &&
1792 newval > dsl_dir_phys(dd)->dd_quota))
1793 error = SET_ERROR(ENOSPC);
1796 dsl_dataset_rele(ds, FTAG);
1797 return (error);
1800 void
1801 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx)
1803 uint64_t used;
1804 int64_t delta;
1806 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1808 mutex_enter(&dd->dd_lock);
1809 used = dsl_dir_phys(dd)->dd_used_bytes;
1810 delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved);
1811 dsl_dir_phys(dd)->dd_reserved = value;
1813 if (dd->dd_parent != NULL) {
1814 /* Roll up this additional usage into our ancestors */
1815 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1816 delta, 0, 0, tx);
1818 mutex_exit(&dd->dd_lock);
1821 static void
1822 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx)
1824 dsl_dir_set_qr_arg_t *ddsqra = arg;
1825 dsl_pool_t *dp = dmu_tx_pool(tx);
1826 dsl_dataset_t *ds;
1827 uint64_t newval;
1829 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1831 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1832 dsl_prop_set_sync_impl(ds,
1833 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1834 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1835 &ddsqra->ddsqra_value, tx);
1837 VERIFY0(dsl_prop_get_int_ds(ds,
1838 zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval));
1839 } else {
1840 newval = ddsqra->ddsqra_value;
1841 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1842 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1843 (longlong_t)newval);
1846 dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx);
1847 dsl_dataset_rele(ds, FTAG);
1851 dsl_dir_set_reservation(const char *ddname, zprop_source_t source,
1852 uint64_t reservation)
1854 dsl_dir_set_qr_arg_t ddsqra;
1856 ddsqra.ddsqra_name = ddname;
1857 ddsqra.ddsqra_source = source;
1858 ddsqra.ddsqra_value = reservation;
1860 return (dsl_sync_task(ddname, dsl_dir_set_reservation_check,
1861 dsl_dir_set_reservation_sync, &ddsqra, 0,
1862 ZFS_SPACE_CHECK_EXTRA_RESERVED));
1865 static dsl_dir_t *
1866 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2)
1868 for (; ds1; ds1 = ds1->dd_parent) {
1869 dsl_dir_t *dd;
1870 for (dd = ds2; dd; dd = dd->dd_parent) {
1871 if (ds1 == dd)
1872 return (dd);
1875 return (NULL);
1879 * If delta is applied to dd, how much of that delta would be applied to
1880 * ancestor? Syncing context only.
1882 static int64_t
1883 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor)
1885 if (dd == ancestor)
1886 return (delta);
1888 mutex_enter(&dd->dd_lock);
1889 delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta);
1890 mutex_exit(&dd->dd_lock);
1891 return (would_change(dd->dd_parent, delta, ancestor));
1894 typedef struct dsl_dir_rename_arg {
1895 const char *ddra_oldname;
1896 const char *ddra_newname;
1897 cred_t *ddra_cred;
1898 proc_t *ddra_proc;
1899 } dsl_dir_rename_arg_t;
1901 typedef struct dsl_valid_rename_arg {
1902 int char_delta;
1903 int nest_delta;
1904 } dsl_valid_rename_arg_t;
1906 static int
1907 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1909 (void) dp;
1910 dsl_valid_rename_arg_t *dvra = arg;
1911 char namebuf[ZFS_MAX_DATASET_NAME_LEN];
1913 dsl_dataset_name(ds, namebuf);
1915 ASSERT3U(strnlen(namebuf, ZFS_MAX_DATASET_NAME_LEN),
1916 <, ZFS_MAX_DATASET_NAME_LEN);
1917 int namelen = strlen(namebuf) + dvra->char_delta;
1918 int depth = get_dataset_depth(namebuf) + dvra->nest_delta;
1920 if (namelen >= ZFS_MAX_DATASET_NAME_LEN)
1921 return (SET_ERROR(ENAMETOOLONG));
1922 if (dvra->nest_delta > 0 && depth >= zfs_max_dataset_nesting)
1923 return (SET_ERROR(ENAMETOOLONG));
1924 return (0);
1927 static int
1928 dsl_dir_rename_check(void *arg, dmu_tx_t *tx)
1930 dsl_dir_rename_arg_t *ddra = arg;
1931 dsl_pool_t *dp = dmu_tx_pool(tx);
1932 dsl_dir_t *dd, *newparent;
1933 dsl_valid_rename_arg_t dvra;
1934 dsl_dataset_t *parentds;
1935 objset_t *parentos;
1936 const char *mynewname;
1937 int error;
1939 /* target dir should exist */
1940 error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL);
1941 if (error != 0)
1942 return (error);
1944 /* new parent should exist */
1945 error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG,
1946 &newparent, &mynewname);
1947 if (error != 0) {
1948 dsl_dir_rele(dd, FTAG);
1949 return (error);
1952 /* can't rename to different pool */
1953 if (dd->dd_pool != newparent->dd_pool) {
1954 dsl_dir_rele(newparent, FTAG);
1955 dsl_dir_rele(dd, FTAG);
1956 return (SET_ERROR(EXDEV));
1959 /* new name should not already exist */
1960 if (mynewname == NULL) {
1961 dsl_dir_rele(newparent, FTAG);
1962 dsl_dir_rele(dd, FTAG);
1963 return (SET_ERROR(EEXIST));
1966 /* can't rename below anything but filesystems (eg. no ZVOLs) */
1967 error = dsl_dataset_hold_obj(newparent->dd_pool,
1968 dsl_dir_phys(newparent)->dd_head_dataset_obj, FTAG, &parentds);
1969 if (error != 0) {
1970 dsl_dir_rele(newparent, FTAG);
1971 dsl_dir_rele(dd, FTAG);
1972 return (error);
1974 error = dmu_objset_from_ds(parentds, &parentos);
1975 if (error != 0) {
1976 dsl_dataset_rele(parentds, FTAG);
1977 dsl_dir_rele(newparent, FTAG);
1978 dsl_dir_rele(dd, FTAG);
1979 return (error);
1981 if (dmu_objset_type(parentos) != DMU_OST_ZFS) {
1982 dsl_dataset_rele(parentds, FTAG);
1983 dsl_dir_rele(newparent, FTAG);
1984 dsl_dir_rele(dd, FTAG);
1985 return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
1987 dsl_dataset_rele(parentds, FTAG);
1989 ASSERT3U(strnlen(ddra->ddra_newname, ZFS_MAX_DATASET_NAME_LEN),
1990 <, ZFS_MAX_DATASET_NAME_LEN);
1991 ASSERT3U(strnlen(ddra->ddra_oldname, ZFS_MAX_DATASET_NAME_LEN),
1992 <, ZFS_MAX_DATASET_NAME_LEN);
1993 dvra.char_delta = strlen(ddra->ddra_newname)
1994 - strlen(ddra->ddra_oldname);
1995 dvra.nest_delta = get_dataset_depth(ddra->ddra_newname)
1996 - get_dataset_depth(ddra->ddra_oldname);
1998 /* if the name length is growing, validate child name lengths */
1999 if (dvra.char_delta > 0 || dvra.nest_delta > 0) {
2000 error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename,
2001 &dvra, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
2002 if (error != 0) {
2003 dsl_dir_rele(newparent, FTAG);
2004 dsl_dir_rele(dd, FTAG);
2005 return (error);
2009 if (dmu_tx_is_syncing(tx)) {
2010 if (spa_feature_is_active(dp->dp_spa,
2011 SPA_FEATURE_FS_SS_LIMIT)) {
2013 * Although this is the check function and we don't
2014 * normally make on-disk changes in check functions,
2015 * we need to do that here.
2017 * Ensure this portion of the tree's counts have been
2018 * initialized in case the new parent has limits set.
2020 dsl_dir_init_fs_ss_count(dd, tx);
2024 if (newparent != dd->dd_parent) {
2025 /* is there enough space? */
2026 uint64_t myspace =
2027 MAX(dsl_dir_phys(dd)->dd_used_bytes,
2028 dsl_dir_phys(dd)->dd_reserved);
2029 objset_t *os = dd->dd_pool->dp_meta_objset;
2030 uint64_t fs_cnt = 0;
2031 uint64_t ss_cnt = 0;
2033 if (dsl_dir_is_zapified(dd)) {
2034 int err;
2036 err = zap_lookup(os, dd->dd_object,
2037 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
2038 &fs_cnt);
2039 if (err != ENOENT && err != 0) {
2040 dsl_dir_rele(newparent, FTAG);
2041 dsl_dir_rele(dd, FTAG);
2042 return (err);
2046 * have to add 1 for the filesystem itself that we're
2047 * moving
2049 fs_cnt++;
2051 err = zap_lookup(os, dd->dd_object,
2052 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
2053 &ss_cnt);
2054 if (err != ENOENT && err != 0) {
2055 dsl_dir_rele(newparent, FTAG);
2056 dsl_dir_rele(dd, FTAG);
2057 return (err);
2061 /* check for encryption errors */
2062 error = dsl_dir_rename_crypt_check(dd, newparent);
2063 if (error != 0) {
2064 dsl_dir_rele(newparent, FTAG);
2065 dsl_dir_rele(dd, FTAG);
2066 return (SET_ERROR(EACCES));
2069 /* no rename into our descendant */
2070 if (closest_common_ancestor(dd, newparent) == dd) {
2071 dsl_dir_rele(newparent, FTAG);
2072 dsl_dir_rele(dd, FTAG);
2073 return (SET_ERROR(EINVAL));
2076 error = dsl_dir_transfer_possible(dd->dd_parent,
2077 newparent, fs_cnt, ss_cnt, myspace,
2078 ddra->ddra_cred, ddra->ddra_proc);
2079 if (error != 0) {
2080 dsl_dir_rele(newparent, FTAG);
2081 dsl_dir_rele(dd, FTAG);
2082 return (error);
2086 dsl_dir_rele(newparent, FTAG);
2087 dsl_dir_rele(dd, FTAG);
2088 return (0);
2091 static void
2092 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx)
2094 dsl_dir_rename_arg_t *ddra = arg;
2095 dsl_pool_t *dp = dmu_tx_pool(tx);
2096 dsl_dir_t *dd, *newparent;
2097 const char *mynewname;
2098 objset_t *mos = dp->dp_meta_objset;
2100 VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL));
2101 VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent,
2102 &mynewname));
2104 /* Log this before we change the name. */
2105 spa_history_log_internal_dd(dd, "rename", tx,
2106 "-> %s", ddra->ddra_newname);
2108 if (newparent != dd->dd_parent) {
2109 objset_t *os = dd->dd_pool->dp_meta_objset;
2110 uint64_t fs_cnt = 0;
2111 uint64_t ss_cnt = 0;
2114 * We already made sure the dd counts were initialized in the
2115 * check function.
2117 if (spa_feature_is_active(dp->dp_spa,
2118 SPA_FEATURE_FS_SS_LIMIT)) {
2119 VERIFY0(zap_lookup(os, dd->dd_object,
2120 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
2121 &fs_cnt));
2122 /* add 1 for the filesystem itself that we're moving */
2123 fs_cnt++;
2125 VERIFY0(zap_lookup(os, dd->dd_object,
2126 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
2127 &ss_cnt));
2130 dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt,
2131 DD_FIELD_FILESYSTEM_COUNT, tx);
2132 dsl_fs_ss_count_adjust(newparent, fs_cnt,
2133 DD_FIELD_FILESYSTEM_COUNT, tx);
2135 dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt,
2136 DD_FIELD_SNAPSHOT_COUNT, tx);
2137 dsl_fs_ss_count_adjust(newparent, ss_cnt,
2138 DD_FIELD_SNAPSHOT_COUNT, tx);
2140 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
2141 -dsl_dir_phys(dd)->dd_used_bytes,
2142 -dsl_dir_phys(dd)->dd_compressed_bytes,
2143 -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
2144 dsl_dir_diduse_space(newparent, DD_USED_CHILD,
2145 dsl_dir_phys(dd)->dd_used_bytes,
2146 dsl_dir_phys(dd)->dd_compressed_bytes,
2147 dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
2149 if (dsl_dir_phys(dd)->dd_reserved >
2150 dsl_dir_phys(dd)->dd_used_bytes) {
2151 uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved -
2152 dsl_dir_phys(dd)->dd_used_bytes;
2154 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
2155 -unused_rsrv, 0, 0, tx);
2156 dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV,
2157 unused_rsrv, 0, 0, tx);
2161 dmu_buf_will_dirty(dd->dd_dbuf, tx);
2163 /* remove from old parent zapobj */
2164 VERIFY0(zap_remove(mos,
2165 dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj,
2166 dd->dd_myname, tx));
2168 (void) strlcpy(dd->dd_myname, mynewname,
2169 sizeof (dd->dd_myname));
2170 dsl_dir_rele(dd->dd_parent, dd);
2171 dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object;
2172 VERIFY0(dsl_dir_hold_obj(dp,
2173 newparent->dd_object, NULL, dd, &dd->dd_parent));
2175 /* add to new parent zapobj */
2176 VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj,
2177 dd->dd_myname, 8, 1, &dd->dd_object, tx));
2179 /* TODO: A rename callback to avoid these layering violations. */
2180 zfsvfs_update_fromname(ddra->ddra_oldname, ddra->ddra_newname);
2181 zvol_rename_minors(dp->dp_spa, ddra->ddra_oldname,
2182 ddra->ddra_newname, B_TRUE);
2184 dsl_prop_notify_all(dd);
2186 dsl_dir_rele(newparent, FTAG);
2187 dsl_dir_rele(dd, FTAG);
2191 dsl_dir_rename(const char *oldname, const char *newname)
2193 dsl_dir_rename_arg_t ddra;
2195 ddra.ddra_oldname = oldname;
2196 ddra.ddra_newname = newname;
2197 ddra.ddra_cred = CRED();
2198 ddra.ddra_proc = curproc;
2200 return (dsl_sync_task(oldname,
2201 dsl_dir_rename_check, dsl_dir_rename_sync, &ddra,
2202 3, ZFS_SPACE_CHECK_RESERVED));
2206 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd,
2207 uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space,
2208 cred_t *cr, proc_t *proc)
2210 dsl_dir_t *ancestor;
2211 int64_t adelta;
2212 uint64_t avail;
2213 int err;
2215 ancestor = closest_common_ancestor(sdd, tdd);
2216 adelta = would_change(sdd, -space, ancestor);
2217 avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE);
2218 if (avail < space)
2219 return (SET_ERROR(ENOSPC));
2221 err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT,
2222 ancestor, cr, proc);
2223 if (err != 0)
2224 return (err);
2225 err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT,
2226 ancestor, cr, proc);
2227 if (err != 0)
2228 return (err);
2230 return (0);
2233 inode_timespec_t
2234 dsl_dir_snap_cmtime(dsl_dir_t *dd)
2236 inode_timespec_t t;
2238 mutex_enter(&dd->dd_lock);
2239 t = dd->dd_snap_cmtime;
2240 mutex_exit(&dd->dd_lock);
2242 return (t);
2245 void
2246 dsl_dir_snap_cmtime_update(dsl_dir_t *dd)
2248 inode_timespec_t t;
2250 gethrestime(&t);
2251 mutex_enter(&dd->dd_lock);
2252 dd->dd_snap_cmtime = t;
2253 mutex_exit(&dd->dd_lock);
2256 void
2257 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx)
2259 objset_t *mos = dd->dd_pool->dp_meta_objset;
2260 dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx);
2263 boolean_t
2264 dsl_dir_is_zapified(dsl_dir_t *dd)
2266 dmu_object_info_t doi;
2268 dmu_object_info_from_db(dd->dd_dbuf, &doi);
2269 return (doi.doi_type == DMU_OTN_ZAP_METADATA);
2272 void
2273 dsl_dir_livelist_open(dsl_dir_t *dd, uint64_t obj)
2275 objset_t *mos = dd->dd_pool->dp_meta_objset;
2276 ASSERT(spa_feature_is_active(dd->dd_pool->dp_spa,
2277 SPA_FEATURE_LIVELIST));
2278 dsl_deadlist_open(&dd->dd_livelist, mos, obj);
2279 bplist_create(&dd->dd_pending_allocs);
2280 bplist_create(&dd->dd_pending_frees);
2283 void
2284 dsl_dir_livelist_close(dsl_dir_t *dd)
2286 dsl_deadlist_close(&dd->dd_livelist);
2287 bplist_destroy(&dd->dd_pending_allocs);
2288 bplist_destroy(&dd->dd_pending_frees);
2291 void
2292 dsl_dir_remove_livelist(dsl_dir_t *dd, dmu_tx_t *tx, boolean_t total)
2294 uint64_t obj;
2295 dsl_pool_t *dp = dmu_tx_pool(tx);
2296 spa_t *spa = dp->dp_spa;
2297 livelist_condense_entry_t to_condense = spa->spa_to_condense;
2299 if (!dsl_deadlist_is_open(&dd->dd_livelist))
2300 return;
2303 * If the livelist being removed is set to be condensed, stop the
2304 * condense zthr and indicate the cancellation in the spa_to_condense
2305 * struct in case the condense no-wait synctask has already started
2307 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
2308 if (ll_condense_thread != NULL &&
2309 (to_condense.ds != NULL) && (to_condense.ds->ds_dir == dd)) {
2311 * We use zthr_wait_cycle_done instead of zthr_cancel
2312 * because we don't want to destroy the zthr, just have
2313 * it skip its current task.
2315 spa->spa_to_condense.cancelled = B_TRUE;
2316 zthr_wait_cycle_done(ll_condense_thread);
2318 * If we've returned from zthr_wait_cycle_done without
2319 * clearing the to_condense data structure it's either
2320 * because the no-wait synctask has started (which is
2321 * indicated by 'syncing' field of to_condense) and we
2322 * can expect it to clear to_condense on its own.
2323 * Otherwise, we returned before the zthr ran. The
2324 * checkfunc will now fail as cancelled == B_TRUE so we
2325 * can safely NULL out ds, allowing a different dir's
2326 * livelist to be condensed.
2328 * We can be sure that the to_condense struct will not
2329 * be repopulated at this stage because both this
2330 * function and dsl_livelist_try_condense execute in
2331 * syncing context.
2333 if ((spa->spa_to_condense.ds != NULL) &&
2334 !spa->spa_to_condense.syncing) {
2335 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf,
2336 spa);
2337 spa->spa_to_condense.ds = NULL;
2341 dsl_dir_livelist_close(dd);
2342 VERIFY0(zap_lookup(dp->dp_meta_objset, dd->dd_object,
2343 DD_FIELD_LIVELIST, sizeof (uint64_t), 1, &obj));
2344 VERIFY0(zap_remove(dp->dp_meta_objset, dd->dd_object,
2345 DD_FIELD_LIVELIST, tx));
2346 if (total) {
2347 dsl_deadlist_free(dp->dp_meta_objset, obj, tx);
2348 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2352 static int
2353 dsl_dir_activity_in_progress(dsl_dir_t *dd, dsl_dataset_t *ds,
2354 zfs_wait_activity_t activity, boolean_t *in_progress)
2356 int error = 0;
2358 ASSERT(MUTEX_HELD(&dd->dd_activity_lock));
2360 switch (activity) {
2361 case ZFS_WAIT_DELETEQ: {
2362 #ifdef _KERNEL
2363 objset_t *os;
2364 error = dmu_objset_from_ds(ds, &os);
2365 if (error != 0)
2366 break;
2368 mutex_enter(&os->os_user_ptr_lock);
2369 void *user = dmu_objset_get_user(os);
2370 mutex_exit(&os->os_user_ptr_lock);
2371 if (dmu_objset_type(os) != DMU_OST_ZFS ||
2372 user == NULL || zfs_get_vfs_flag_unmounted(os)) {
2373 *in_progress = B_FALSE;
2374 return (0);
2377 uint64_t readonly = B_FALSE;
2378 error = zfs_get_temporary_prop(ds, ZFS_PROP_READONLY, &readonly,
2379 NULL);
2381 if (error != 0)
2382 break;
2384 if (readonly || !spa_writeable(dd->dd_pool->dp_spa)) {
2385 *in_progress = B_FALSE;
2386 return (0);
2389 uint64_t count, unlinked_obj;
2390 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
2391 &unlinked_obj);
2392 if (error != 0) {
2393 dsl_dataset_rele(ds, FTAG);
2394 break;
2396 error = zap_count(os, unlinked_obj, &count);
2398 if (error == 0)
2399 *in_progress = (count != 0);
2400 break;
2401 #else
2403 * The delete queue is ZPL specific, and libzpool doesn't have
2404 * it. It doesn't make sense to wait for it.
2406 (void) ds;
2407 *in_progress = B_FALSE;
2408 break;
2409 #endif
2411 default:
2412 panic("unrecognized value for activity %d", activity);
2415 return (error);
2419 dsl_dir_wait(dsl_dir_t *dd, dsl_dataset_t *ds, zfs_wait_activity_t activity,
2420 boolean_t *waited)
2422 int error = 0;
2423 boolean_t in_progress;
2424 dsl_pool_t *dp = dd->dd_pool;
2425 for (;;) {
2426 dsl_pool_config_enter(dp, FTAG);
2427 error = dsl_dir_activity_in_progress(dd, ds, activity,
2428 &in_progress);
2429 dsl_pool_config_exit(dp, FTAG);
2430 if (error != 0 || !in_progress)
2431 break;
2433 *waited = B_TRUE;
2435 if (cv_wait_sig(&dd->dd_activity_cv, &dd->dd_activity_lock) ==
2436 0 || dd->dd_activity_cancelled) {
2437 error = SET_ERROR(EINTR);
2438 break;
2441 return (error);
2444 void
2445 dsl_dir_cancel_waiters(dsl_dir_t *dd)
2447 mutex_enter(&dd->dd_activity_lock);
2448 dd->dd_activity_cancelled = B_TRUE;
2449 cv_broadcast(&dd->dd_activity_cv);
2450 while (dd->dd_activity_waiters > 0)
2451 cv_wait(&dd->dd_activity_cv, &dd->dd_activity_lock);
2452 mutex_exit(&dd->dd_activity_lock);
2455 #if defined(_KERNEL)
2456 EXPORT_SYMBOL(dsl_dir_set_quota);
2457 EXPORT_SYMBOL(dsl_dir_set_reservation);
2458 #endif