FreeBSD: Parameterize ZFS_ENTER/ZFS_VERIFY_VP with an error code
[zfs.git] / module / zfs / dsl_pool.c
blobc8766090558dfc909b1414f69f45f3b5c4920dce
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Steven Hartland. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2016 Nexenta Systems, Inc. All rights reserved.
29 #include <sys/dsl_pool.h>
30 #include <sys/dsl_dataset.h>
31 #include <sys/dsl_prop.h>
32 #include <sys/dsl_dir.h>
33 #include <sys/dsl_synctask.h>
34 #include <sys/dsl_scan.h>
35 #include <sys/dnode.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/arc.h>
39 #include <sys/zap.h>
40 #include <sys/zio.h>
41 #include <sys/zfs_context.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/zfs_znode.h>
44 #include <sys/spa_impl.h>
45 #include <sys/vdev_impl.h>
46 #include <sys/metaslab_impl.h>
47 #include <sys/bptree.h>
48 #include <sys/zfeature.h>
49 #include <sys/zil_impl.h>
50 #include <sys/dsl_userhold.h>
51 #include <sys/trace_zfs.h>
52 #include <sys/mmp.h>
55 * ZFS Write Throttle
56 * ------------------
58 * ZFS must limit the rate of incoming writes to the rate at which it is able
59 * to sync data modifications to the backend storage. Throttling by too much
60 * creates an artificial limit; throttling by too little can only be sustained
61 * for short periods and would lead to highly lumpy performance. On a per-pool
62 * basis, ZFS tracks the amount of modified (dirty) data. As operations change
63 * data, the amount of dirty data increases; as ZFS syncs out data, the amount
64 * of dirty data decreases. When the amount of dirty data exceeds a
65 * predetermined threshold further modifications are blocked until the amount
66 * of dirty data decreases (as data is synced out).
68 * The limit on dirty data is tunable, and should be adjusted according to
69 * both the IO capacity and available memory of the system. The larger the
70 * window, the more ZFS is able to aggregate and amortize metadata (and data)
71 * changes. However, memory is a limited resource, and allowing for more dirty
72 * data comes at the cost of keeping other useful data in memory (for example
73 * ZFS data cached by the ARC).
75 * Implementation
77 * As buffers are modified dsl_pool_willuse_space() increments both the per-
78 * txg (dp_dirty_pertxg[]) and poolwide (dp_dirty_total) accounting of
79 * dirty space used; dsl_pool_dirty_space() decrements those values as data
80 * is synced out from dsl_pool_sync(). While only the poolwide value is
81 * relevant, the per-txg value is useful for debugging. The tunable
82 * zfs_dirty_data_max determines the dirty space limit. Once that value is
83 * exceeded, new writes are halted until space frees up.
85 * The zfs_dirty_data_sync_percent tunable dictates the threshold at which we
86 * ensure that there is a txg syncing (see the comment in txg.c for a full
87 * description of transaction group stages).
89 * The IO scheduler uses both the dirty space limit and current amount of
90 * dirty data as inputs. Those values affect the number of concurrent IOs ZFS
91 * issues. See the comment in vdev_queue.c for details of the IO scheduler.
93 * The delay is also calculated based on the amount of dirty data. See the
94 * comment above dmu_tx_delay() for details.
98 * zfs_dirty_data_max will be set to zfs_dirty_data_max_percent% of all memory,
99 * capped at zfs_dirty_data_max_max. It can also be overridden with a module
100 * parameter.
102 unsigned long zfs_dirty_data_max = 0;
103 unsigned long zfs_dirty_data_max_max = 0;
104 int zfs_dirty_data_max_percent = 10;
105 int zfs_dirty_data_max_max_percent = 25;
108 * zfs_wrlog_data_max, the upper limit of TX_WRITE log data.
109 * Once it is reached, write operation is blocked,
110 * until log data is cleared out after txg sync.
111 * It only counts TX_WRITE log with WR_COPIED or WR_NEED_COPY.
113 unsigned long zfs_wrlog_data_max = 0;
116 * If there's at least this much dirty data (as a percentage of
117 * zfs_dirty_data_max), push out a txg. This should be less than
118 * zfs_vdev_async_write_active_min_dirty_percent.
120 static int zfs_dirty_data_sync_percent = 20;
123 * Once there is this amount of dirty data, the dmu_tx_delay() will kick in
124 * and delay each transaction.
125 * This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
127 int zfs_delay_min_dirty_percent = 60;
130 * This controls how quickly the delay approaches infinity.
131 * Larger values cause it to delay more for a given amount of dirty data.
132 * Therefore larger values will cause there to be less dirty data for a
133 * given throughput.
135 * For the smoothest delay, this value should be about 1 billion divided
136 * by the maximum number of operations per second. This will smoothly
137 * handle between 10x and 1/10th this number.
139 * Note: zfs_delay_scale * zfs_dirty_data_max must be < 2^64, due to the
140 * multiply in dmu_tx_delay().
142 unsigned long zfs_delay_scale = 1000 * 1000 * 1000 / 2000;
145 * This determines the number of threads used by the dp_sync_taskq.
147 static int zfs_sync_taskq_batch_pct = 75;
150 * These tunables determine the behavior of how zil_itxg_clean() is
151 * called via zil_clean() in the context of spa_sync(). When an itxg
152 * list needs to be cleaned, TQ_NOSLEEP will be used when dispatching.
153 * If the dispatch fails, the call to zil_itxg_clean() will occur
154 * synchronously in the context of spa_sync(), which can negatively
155 * impact the performance of spa_sync() (e.g. in the case of the itxg
156 * list having a large number of itxs that needs to be cleaned).
158 * Thus, these tunables can be used to manipulate the behavior of the
159 * taskq used by zil_clean(); they determine the number of taskq entries
160 * that are pre-populated when the taskq is first created (via the
161 * "zfs_zil_clean_taskq_minalloc" tunable) and the maximum number of
162 * taskq entries that are cached after an on-demand allocation (via the
163 * "zfs_zil_clean_taskq_maxalloc").
165 * The idea being, we want to try reasonably hard to ensure there will
166 * already be a taskq entry pre-allocated by the time that it is needed
167 * by zil_clean(). This way, we can avoid the possibility of an
168 * on-demand allocation of a new taskq entry from failing, which would
169 * result in zil_itxg_clean() being called synchronously from zil_clean()
170 * (which can adversely affect performance of spa_sync()).
172 * Additionally, the number of threads used by the taskq can be
173 * configured via the "zfs_zil_clean_taskq_nthr_pct" tunable.
175 static int zfs_zil_clean_taskq_nthr_pct = 100;
176 static int zfs_zil_clean_taskq_minalloc = 1024;
177 static int zfs_zil_clean_taskq_maxalloc = 1024 * 1024;
180 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
182 uint64_t obj;
183 int err;
185 err = zap_lookup(dp->dp_meta_objset,
186 dsl_dir_phys(dp->dp_root_dir)->dd_child_dir_zapobj,
187 name, sizeof (obj), 1, &obj);
188 if (err)
189 return (err);
191 return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
194 static dsl_pool_t *
195 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
197 dsl_pool_t *dp;
198 blkptr_t *bp = spa_get_rootblkptr(spa);
200 dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
201 dp->dp_spa = spa;
202 dp->dp_meta_rootbp = *bp;
203 rrw_init(&dp->dp_config_rwlock, B_TRUE);
204 txg_init(dp, txg);
205 mmp_init(spa);
207 txg_list_create(&dp->dp_dirty_datasets, spa,
208 offsetof(dsl_dataset_t, ds_dirty_link));
209 txg_list_create(&dp->dp_dirty_zilogs, spa,
210 offsetof(zilog_t, zl_dirty_link));
211 txg_list_create(&dp->dp_dirty_dirs, spa,
212 offsetof(dsl_dir_t, dd_dirty_link));
213 txg_list_create(&dp->dp_sync_tasks, spa,
214 offsetof(dsl_sync_task_t, dst_node));
215 txg_list_create(&dp->dp_early_sync_tasks, spa,
216 offsetof(dsl_sync_task_t, dst_node));
218 dp->dp_sync_taskq = taskq_create("dp_sync_taskq",
219 zfs_sync_taskq_batch_pct, minclsyspri, 1, INT_MAX,
220 TASKQ_THREADS_CPU_PCT);
222 dp->dp_zil_clean_taskq = taskq_create("dp_zil_clean_taskq",
223 zfs_zil_clean_taskq_nthr_pct, minclsyspri,
224 zfs_zil_clean_taskq_minalloc,
225 zfs_zil_clean_taskq_maxalloc,
226 TASKQ_PREPOPULATE | TASKQ_THREADS_CPU_PCT);
228 mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
229 cv_init(&dp->dp_spaceavail_cv, NULL, CV_DEFAULT, NULL);
231 aggsum_init(&dp->dp_wrlog_total, 0);
232 for (int i = 0; i < TXG_SIZE; i++) {
233 aggsum_init(&dp->dp_wrlog_pertxg[i], 0);
236 dp->dp_zrele_taskq = taskq_create("z_zrele", 100, defclsyspri,
237 boot_ncpus * 8, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC |
238 TASKQ_THREADS_CPU_PCT);
239 dp->dp_unlinked_drain_taskq = taskq_create("z_unlinked_drain",
240 100, defclsyspri, boot_ncpus, INT_MAX,
241 TASKQ_PREPOPULATE | TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
243 return (dp);
247 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
249 int err;
250 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
253 * Initialize the caller's dsl_pool_t structure before we actually open
254 * the meta objset. This is done because a self-healing write zio may
255 * be issued as part of dmu_objset_open_impl() and the spa needs its
256 * dsl_pool_t initialized in order to handle the write.
258 *dpp = dp;
260 err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
261 &dp->dp_meta_objset);
262 if (err != 0) {
263 dsl_pool_close(dp);
264 *dpp = NULL;
267 return (err);
271 dsl_pool_open(dsl_pool_t *dp)
273 int err;
274 dsl_dir_t *dd;
275 dsl_dataset_t *ds;
276 uint64_t obj;
278 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
279 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
280 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
281 &dp->dp_root_dir_obj);
282 if (err)
283 goto out;
285 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
286 NULL, dp, &dp->dp_root_dir);
287 if (err)
288 goto out;
290 err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
291 if (err)
292 goto out;
294 if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
295 err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
296 if (err)
297 goto out;
298 err = dsl_dataset_hold_obj(dp,
299 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds);
300 if (err == 0) {
301 err = dsl_dataset_hold_obj(dp,
302 dsl_dataset_phys(ds)->ds_prev_snap_obj, dp,
303 &dp->dp_origin_snap);
304 dsl_dataset_rele(ds, FTAG);
306 dsl_dir_rele(dd, dp);
307 if (err)
308 goto out;
311 if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
312 err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
313 &dp->dp_free_dir);
314 if (err)
315 goto out;
317 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
318 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
319 if (err)
320 goto out;
321 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
322 dp->dp_meta_objset, obj));
325 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
326 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
327 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj);
328 if (err == 0) {
329 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj,
330 dp->dp_meta_objset, obj));
331 } else if (err == ENOENT) {
333 * We might not have created the remap bpobj yet.
335 err = 0;
336 } else {
337 goto out;
342 * Note: errors ignored, because the these special dirs, used for
343 * space accounting, are only created on demand.
345 (void) dsl_pool_open_special_dir(dp, LEAK_DIR_NAME,
346 &dp->dp_leak_dir);
348 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_ASYNC_DESTROY)) {
349 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
350 DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
351 &dp->dp_bptree_obj);
352 if (err != 0)
353 goto out;
356 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMPTY_BPOBJ)) {
357 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
358 DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
359 &dp->dp_empty_bpobj);
360 if (err != 0)
361 goto out;
364 err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
365 DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
366 &dp->dp_tmp_userrefs_obj);
367 if (err == ENOENT)
368 err = 0;
369 if (err)
370 goto out;
372 err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
374 out:
375 rrw_exit(&dp->dp_config_rwlock, FTAG);
376 return (err);
379 void
380 dsl_pool_close(dsl_pool_t *dp)
383 * Drop our references from dsl_pool_open().
385 * Since we held the origin_snap from "syncing" context (which
386 * includes pool-opening context), it actually only got a "ref"
387 * and not a hold, so just drop that here.
389 if (dp->dp_origin_snap != NULL)
390 dsl_dataset_rele(dp->dp_origin_snap, dp);
391 if (dp->dp_mos_dir != NULL)
392 dsl_dir_rele(dp->dp_mos_dir, dp);
393 if (dp->dp_free_dir != NULL)
394 dsl_dir_rele(dp->dp_free_dir, dp);
395 if (dp->dp_leak_dir != NULL)
396 dsl_dir_rele(dp->dp_leak_dir, dp);
397 if (dp->dp_root_dir != NULL)
398 dsl_dir_rele(dp->dp_root_dir, dp);
400 bpobj_close(&dp->dp_free_bpobj);
401 bpobj_close(&dp->dp_obsolete_bpobj);
403 /* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
404 if (dp->dp_meta_objset != NULL)
405 dmu_objset_evict(dp->dp_meta_objset);
407 txg_list_destroy(&dp->dp_dirty_datasets);
408 txg_list_destroy(&dp->dp_dirty_zilogs);
409 txg_list_destroy(&dp->dp_sync_tasks);
410 txg_list_destroy(&dp->dp_early_sync_tasks);
411 txg_list_destroy(&dp->dp_dirty_dirs);
413 taskq_destroy(dp->dp_zil_clean_taskq);
414 taskq_destroy(dp->dp_sync_taskq);
417 * We can't set retry to TRUE since we're explicitly specifying
418 * a spa to flush. This is good enough; any missed buffers for
419 * this spa won't cause trouble, and they'll eventually fall
420 * out of the ARC just like any other unused buffer.
422 arc_flush(dp->dp_spa, FALSE);
424 mmp_fini(dp->dp_spa);
425 txg_fini(dp);
426 dsl_scan_fini(dp);
427 dmu_buf_user_evict_wait();
429 rrw_destroy(&dp->dp_config_rwlock);
430 mutex_destroy(&dp->dp_lock);
431 cv_destroy(&dp->dp_spaceavail_cv);
433 ASSERT0(aggsum_value(&dp->dp_wrlog_total));
434 aggsum_fini(&dp->dp_wrlog_total);
435 for (int i = 0; i < TXG_SIZE; i++) {
436 ASSERT0(aggsum_value(&dp->dp_wrlog_pertxg[i]));
437 aggsum_fini(&dp->dp_wrlog_pertxg[i]);
440 taskq_destroy(dp->dp_unlinked_drain_taskq);
441 taskq_destroy(dp->dp_zrele_taskq);
442 if (dp->dp_blkstats != NULL) {
443 mutex_destroy(&dp->dp_blkstats->zab_lock);
444 vmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
446 kmem_free(dp, sizeof (dsl_pool_t));
449 void
450 dsl_pool_create_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
452 uint64_t obj;
454 * Currently, we only create the obsolete_bpobj where there are
455 * indirect vdevs with referenced mappings.
457 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_DEVICE_REMOVAL));
458 /* create and open the obsolete_bpobj */
459 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
460 VERIFY0(bpobj_open(&dp->dp_obsolete_bpobj, dp->dp_meta_objset, obj));
461 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
462 DMU_POOL_OBSOLETE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
463 spa_feature_incr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
466 void
467 dsl_pool_destroy_obsolete_bpobj(dsl_pool_t *dp, dmu_tx_t *tx)
469 spa_feature_decr(dp->dp_spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
470 VERIFY0(zap_remove(dp->dp_meta_objset,
471 DMU_POOL_DIRECTORY_OBJECT,
472 DMU_POOL_OBSOLETE_BPOBJ, tx));
473 bpobj_free(dp->dp_meta_objset,
474 dp->dp_obsolete_bpobj.bpo_object, tx);
475 bpobj_close(&dp->dp_obsolete_bpobj);
478 dsl_pool_t *
479 dsl_pool_create(spa_t *spa, nvlist_t *zplprops __attribute__((unused)),
480 dsl_crypto_params_t *dcp, uint64_t txg)
482 int err;
483 dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
484 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
485 #ifdef _KERNEL
486 objset_t *os;
487 #else
488 objset_t *os __attribute__((unused));
489 #endif
490 dsl_dataset_t *ds;
491 uint64_t obj;
493 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
495 /* create and open the MOS (meta-objset) */
496 dp->dp_meta_objset = dmu_objset_create_impl(spa,
497 NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
498 spa->spa_meta_objset = dp->dp_meta_objset;
500 /* create the pool directory */
501 err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
502 DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
503 ASSERT0(err);
505 /* Initialize scan structures */
506 VERIFY0(dsl_scan_init(dp, txg));
508 /* create and open the root dir */
509 dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
510 VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
511 NULL, dp, &dp->dp_root_dir));
513 /* create and open the meta-objset dir */
514 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
515 VERIFY0(dsl_pool_open_special_dir(dp,
516 MOS_DIR_NAME, &dp->dp_mos_dir));
518 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
519 /* create and open the free dir */
520 (void) dsl_dir_create_sync(dp, dp->dp_root_dir,
521 FREE_DIR_NAME, tx);
522 VERIFY0(dsl_pool_open_special_dir(dp,
523 FREE_DIR_NAME, &dp->dp_free_dir));
525 /* create and open the free_bplist */
526 obj = bpobj_alloc(dp->dp_meta_objset, SPA_OLD_MAXBLOCKSIZE, tx);
527 VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
528 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
529 VERIFY0(bpobj_open(&dp->dp_free_bpobj,
530 dp->dp_meta_objset, obj));
533 if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
534 dsl_pool_create_origin(dp, tx);
537 * Some features may be needed when creating the root dataset, so we
538 * create the feature objects here.
540 if (spa_version(spa) >= SPA_VERSION_FEATURES)
541 spa_feature_create_zap_objects(spa, tx);
543 if (dcp != NULL && dcp->cp_crypt != ZIO_CRYPT_OFF &&
544 dcp->cp_crypt != ZIO_CRYPT_INHERIT)
545 spa_feature_enable(spa, SPA_FEATURE_ENCRYPTION, tx);
547 /* create the root dataset */
548 obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, dcp, 0, tx);
550 /* create the root objset */
551 VERIFY0(dsl_dataset_hold_obj_flags(dp, obj,
552 DS_HOLD_FLAG_DECRYPT, FTAG, &ds));
553 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
554 os = dmu_objset_create_impl(dp->dp_spa, ds,
555 dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
556 rrw_exit(&ds->ds_bp_rwlock, FTAG);
557 #ifdef _KERNEL
558 zfs_create_fs(os, kcred, zplprops, tx);
559 #endif
560 dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
562 dmu_tx_commit(tx);
564 rrw_exit(&dp->dp_config_rwlock, FTAG);
566 return (dp);
570 * Account for the meta-objset space in its placeholder dsl_dir.
572 void
573 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
574 int64_t used, int64_t comp, int64_t uncomp)
576 ASSERT3U(comp, ==, uncomp); /* it's all metadata */
577 mutex_enter(&dp->dp_lock);
578 dp->dp_mos_used_delta += used;
579 dp->dp_mos_compressed_delta += comp;
580 dp->dp_mos_uncompressed_delta += uncomp;
581 mutex_exit(&dp->dp_lock);
584 static void
585 dsl_pool_sync_mos(dsl_pool_t *dp, dmu_tx_t *tx)
587 zio_t *zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
588 dmu_objset_sync(dp->dp_meta_objset, zio, tx);
589 VERIFY0(zio_wait(zio));
590 dmu_objset_sync_done(dp->dp_meta_objset, tx);
591 taskq_wait(dp->dp_sync_taskq);
592 multilist_destroy(&dp->dp_meta_objset->os_synced_dnodes);
594 dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
595 spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
598 static void
599 dsl_pool_dirty_delta(dsl_pool_t *dp, int64_t delta)
601 ASSERT(MUTEX_HELD(&dp->dp_lock));
603 if (delta < 0)
604 ASSERT3U(-delta, <=, dp->dp_dirty_total);
606 dp->dp_dirty_total += delta;
609 * Note: we signal even when increasing dp_dirty_total.
610 * This ensures forward progress -- each thread wakes the next waiter.
612 if (dp->dp_dirty_total < zfs_dirty_data_max)
613 cv_signal(&dp->dp_spaceavail_cv);
616 void
617 dsl_pool_wrlog_count(dsl_pool_t *dp, int64_t size, uint64_t txg)
619 ASSERT3S(size, >=, 0);
621 aggsum_add(&dp->dp_wrlog_pertxg[txg & TXG_MASK], size);
622 aggsum_add(&dp->dp_wrlog_total, size);
624 /* Choose a value slightly bigger than min dirty sync bytes */
625 uint64_t sync_min =
626 zfs_dirty_data_max * (zfs_dirty_data_sync_percent + 10) / 100;
627 if (aggsum_compare(&dp->dp_wrlog_pertxg[txg & TXG_MASK], sync_min) > 0)
628 txg_kick(dp, txg);
631 boolean_t
632 dsl_pool_wrlog_over_max(dsl_pool_t *dp)
634 return (aggsum_compare(&dp->dp_wrlog_total, zfs_wrlog_data_max) > 0);
637 static void
638 dsl_pool_wrlog_clear(dsl_pool_t *dp, uint64_t txg)
640 int64_t delta;
641 delta = -(int64_t)aggsum_value(&dp->dp_wrlog_pertxg[txg & TXG_MASK]);
642 aggsum_add(&dp->dp_wrlog_pertxg[txg & TXG_MASK], delta);
643 aggsum_add(&dp->dp_wrlog_total, delta);
646 #ifdef ZFS_DEBUG
647 static boolean_t
648 dsl_early_sync_task_verify(dsl_pool_t *dp, uint64_t txg)
650 spa_t *spa = dp->dp_spa;
651 vdev_t *rvd = spa->spa_root_vdev;
653 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
654 vdev_t *vd = rvd->vdev_child[c];
655 txg_list_t *tl = &vd->vdev_ms_list;
656 metaslab_t *ms;
658 for (ms = txg_list_head(tl, TXG_CLEAN(txg)); ms;
659 ms = txg_list_next(tl, ms, TXG_CLEAN(txg))) {
660 VERIFY(range_tree_is_empty(ms->ms_freeing));
661 VERIFY(range_tree_is_empty(ms->ms_checkpointing));
665 return (B_TRUE);
667 #else
668 #define dsl_early_sync_task_verify(dp, txg) \
669 ((void) sizeof (dp), (void) sizeof (txg), B_TRUE)
670 #endif
672 void
673 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
675 zio_t *zio;
676 dmu_tx_t *tx;
677 dsl_dir_t *dd;
678 dsl_dataset_t *ds;
679 objset_t *mos = dp->dp_meta_objset;
680 list_t synced_datasets;
682 list_create(&synced_datasets, sizeof (dsl_dataset_t),
683 offsetof(dsl_dataset_t, ds_synced_link));
685 tx = dmu_tx_create_assigned(dp, txg);
688 * Run all early sync tasks before writing out any dirty blocks.
689 * For more info on early sync tasks see block comment in
690 * dsl_early_sync_task().
692 if (!txg_list_empty(&dp->dp_early_sync_tasks, txg)) {
693 dsl_sync_task_t *dst;
695 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
696 while ((dst =
697 txg_list_remove(&dp->dp_early_sync_tasks, txg)) != NULL) {
698 ASSERT(dsl_early_sync_task_verify(dp, txg));
699 dsl_sync_task_sync(dst, tx);
701 ASSERT(dsl_early_sync_task_verify(dp, txg));
705 * Write out all dirty blocks of dirty datasets.
707 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
708 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
710 * We must not sync any non-MOS datasets twice, because
711 * we may have taken a snapshot of them. However, we
712 * may sync newly-created datasets on pass 2.
714 ASSERT(!list_link_active(&ds->ds_synced_link));
715 list_insert_tail(&synced_datasets, ds);
716 dsl_dataset_sync(ds, zio, tx);
718 VERIFY0(zio_wait(zio));
721 * Update the long range free counter after
722 * we're done syncing user data
724 mutex_enter(&dp->dp_lock);
725 ASSERT(spa_sync_pass(dp->dp_spa) == 1 ||
726 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] == 0);
727 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] = 0;
728 mutex_exit(&dp->dp_lock);
731 * After the data blocks have been written (ensured by the zio_wait()
732 * above), update the user/group/project space accounting. This happens
733 * in tasks dispatched to dp_sync_taskq, so wait for them before
734 * continuing.
736 for (ds = list_head(&synced_datasets); ds != NULL;
737 ds = list_next(&synced_datasets, ds)) {
738 dmu_objset_sync_done(ds->ds_objset, tx);
740 taskq_wait(dp->dp_sync_taskq);
743 * Sync the datasets again to push out the changes due to
744 * userspace updates. This must be done before we process the
745 * sync tasks, so that any snapshots will have the correct
746 * user accounting information (and we won't get confused
747 * about which blocks are part of the snapshot).
749 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
750 while ((ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) != NULL) {
751 objset_t *os = ds->ds_objset;
753 ASSERT(list_link_active(&ds->ds_synced_link));
754 dmu_buf_rele(ds->ds_dbuf, ds);
755 dsl_dataset_sync(ds, zio, tx);
758 * Release any key mappings created by calls to
759 * dsl_dataset_dirty() from the userquota accounting
760 * code paths.
762 if (os->os_encrypted && !os->os_raw_receive &&
763 !os->os_next_write_raw[txg & TXG_MASK]) {
764 ASSERT3P(ds->ds_key_mapping, !=, NULL);
765 key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
768 VERIFY0(zio_wait(zio));
771 * Now that the datasets have been completely synced, we can
772 * clean up our in-memory structures accumulated while syncing:
774 * - move dead blocks from the pending deadlist and livelists
775 * to the on-disk versions
776 * - release hold from dsl_dataset_dirty()
777 * - release key mapping hold from dsl_dataset_dirty()
779 while ((ds = list_remove_head(&synced_datasets)) != NULL) {
780 objset_t *os = ds->ds_objset;
782 if (os->os_encrypted && !os->os_raw_receive &&
783 !os->os_next_write_raw[txg & TXG_MASK]) {
784 ASSERT3P(ds->ds_key_mapping, !=, NULL);
785 key_mapping_rele(dp->dp_spa, ds->ds_key_mapping, ds);
788 dsl_dataset_sync_done(ds, tx);
791 while ((dd = txg_list_remove(&dp->dp_dirty_dirs, txg)) != NULL) {
792 dsl_dir_sync(dd, tx);
796 * The MOS's space is accounted for in the pool/$MOS
797 * (dp_mos_dir). We can't modify the mos while we're syncing
798 * it, so we remember the deltas and apply them here.
800 if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
801 dp->dp_mos_uncompressed_delta != 0) {
802 dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
803 dp->dp_mos_used_delta,
804 dp->dp_mos_compressed_delta,
805 dp->dp_mos_uncompressed_delta, tx);
806 dp->dp_mos_used_delta = 0;
807 dp->dp_mos_compressed_delta = 0;
808 dp->dp_mos_uncompressed_delta = 0;
811 if (dmu_objset_is_dirty(mos, txg)) {
812 dsl_pool_sync_mos(dp, tx);
816 * We have written all of the accounted dirty data, so our
817 * dp_space_towrite should now be zero. However, some seldom-used
818 * code paths do not adhere to this (e.g. dbuf_undirty()). Shore up
819 * the accounting of any dirtied space now.
821 * Note that, besides any dirty data from datasets, the amount of
822 * dirty data in the MOS is also accounted by the pool. Therefore,
823 * we want to do this cleanup after dsl_pool_sync_mos() so we don't
824 * attempt to update the accounting for the same dirty data twice.
825 * (i.e. at this point we only update the accounting for the space
826 * that we know that we "leaked").
828 dsl_pool_undirty_space(dp, dp->dp_dirty_pertxg[txg & TXG_MASK], txg);
831 * If we modify a dataset in the same txg that we want to destroy it,
832 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
833 * dsl_dir_destroy_check() will fail if there are unexpected holds.
834 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
835 * and clearing the hold on it) before we process the sync_tasks.
836 * The MOS data dirtied by the sync_tasks will be synced on the next
837 * pass.
839 if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
840 dsl_sync_task_t *dst;
842 * No more sync tasks should have been added while we
843 * were syncing.
845 ASSERT3U(spa_sync_pass(dp->dp_spa), ==, 1);
846 while ((dst = txg_list_remove(&dp->dp_sync_tasks, txg)) != NULL)
847 dsl_sync_task_sync(dst, tx);
850 dmu_tx_commit(tx);
852 DTRACE_PROBE2(dsl_pool_sync__done, dsl_pool_t *dp, dp, uint64_t, txg);
855 void
856 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
858 zilog_t *zilog;
860 while ((zilog = txg_list_head(&dp->dp_dirty_zilogs, txg))) {
861 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
863 * We don't remove the zilog from the dp_dirty_zilogs
864 * list until after we've cleaned it. This ensures that
865 * callers of zilog_is_dirty() receive an accurate
866 * answer when they are racing with the spa sync thread.
868 zil_clean(zilog, txg);
869 (void) txg_list_remove_this(&dp->dp_dirty_zilogs, zilog, txg);
870 ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
871 dmu_buf_rele(ds->ds_dbuf, zilog);
874 dsl_pool_wrlog_clear(dp, txg);
876 ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
880 * TRUE if the current thread is the tx_sync_thread or if we
881 * are being called from SPA context during pool initialization.
884 dsl_pool_sync_context(dsl_pool_t *dp)
886 return (curthread == dp->dp_tx.tx_sync_thread ||
887 spa_is_initializing(dp->dp_spa) ||
888 taskq_member(dp->dp_sync_taskq, curthread));
892 * This function returns the amount of allocatable space in the pool
893 * minus whatever space is currently reserved by ZFS for specific
894 * purposes. Specifically:
896 * 1] Any reserved SLOP space
897 * 2] Any space used by the checkpoint
898 * 3] Any space used for deferred frees
900 * The latter 2 are especially important because they are needed to
901 * rectify the SPA's and DMU's different understanding of how much space
902 * is used. Now the DMU is aware of that extra space tracked by the SPA
903 * without having to maintain a separate special dir (e.g similar to
904 * $MOS, $FREEING, and $LEAKED).
906 * Note: By deferred frees here, we mean the frees that were deferred
907 * in spa_sync() after sync pass 1 (spa_deferred_bpobj), and not the
908 * segments placed in ms_defer trees during metaslab_sync_done().
910 uint64_t
911 dsl_pool_adjustedsize(dsl_pool_t *dp, zfs_space_check_t slop_policy)
913 spa_t *spa = dp->dp_spa;
914 uint64_t space, resv, adjustedsize;
915 uint64_t spa_deferred_frees =
916 spa->spa_deferred_bpobj.bpo_phys->bpo_bytes;
918 space = spa_get_dspace(spa)
919 - spa_get_checkpoint_space(spa) - spa_deferred_frees;
920 resv = spa_get_slop_space(spa);
922 switch (slop_policy) {
923 case ZFS_SPACE_CHECK_NORMAL:
924 break;
925 case ZFS_SPACE_CHECK_RESERVED:
926 resv >>= 1;
927 break;
928 case ZFS_SPACE_CHECK_EXTRA_RESERVED:
929 resv >>= 2;
930 break;
931 case ZFS_SPACE_CHECK_NONE:
932 resv = 0;
933 break;
934 default:
935 panic("invalid slop policy value: %d", slop_policy);
936 break;
938 adjustedsize = (space >= resv) ? (space - resv) : 0;
940 return (adjustedsize);
943 uint64_t
944 dsl_pool_unreserved_space(dsl_pool_t *dp, zfs_space_check_t slop_policy)
946 uint64_t poolsize = dsl_pool_adjustedsize(dp, slop_policy);
947 uint64_t deferred =
948 metaslab_class_get_deferred(spa_normal_class(dp->dp_spa));
949 uint64_t quota = (poolsize >= deferred) ? (poolsize - deferred) : 0;
950 return (quota);
953 uint64_t
954 dsl_pool_deferred_space(dsl_pool_t *dp)
956 return (metaslab_class_get_deferred(spa_normal_class(dp->dp_spa)));
959 boolean_t
960 dsl_pool_need_dirty_delay(dsl_pool_t *dp)
962 uint64_t delay_min_bytes =
963 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
965 mutex_enter(&dp->dp_lock);
966 uint64_t dirty = dp->dp_dirty_total;
967 mutex_exit(&dp->dp_lock);
969 return (dirty > delay_min_bytes);
972 static boolean_t
973 dsl_pool_need_dirty_sync(dsl_pool_t *dp, uint64_t txg)
975 ASSERT(MUTEX_HELD(&dp->dp_lock));
977 uint64_t dirty_min_bytes =
978 zfs_dirty_data_max * zfs_dirty_data_sync_percent / 100;
979 uint64_t dirty = dp->dp_dirty_pertxg[txg & TXG_MASK];
981 return (dirty > dirty_min_bytes);
984 void
985 dsl_pool_dirty_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
987 if (space > 0) {
988 mutex_enter(&dp->dp_lock);
989 dp->dp_dirty_pertxg[tx->tx_txg & TXG_MASK] += space;
990 dsl_pool_dirty_delta(dp, space);
991 boolean_t needsync = !dmu_tx_is_syncing(tx) &&
992 dsl_pool_need_dirty_sync(dp, tx->tx_txg);
993 mutex_exit(&dp->dp_lock);
995 if (needsync)
996 txg_kick(dp, tx->tx_txg);
1000 void
1001 dsl_pool_undirty_space(dsl_pool_t *dp, int64_t space, uint64_t txg)
1003 ASSERT3S(space, >=, 0);
1004 if (space == 0)
1005 return;
1007 mutex_enter(&dp->dp_lock);
1008 if (dp->dp_dirty_pertxg[txg & TXG_MASK] < space) {
1009 /* XXX writing something we didn't dirty? */
1010 space = dp->dp_dirty_pertxg[txg & TXG_MASK];
1012 ASSERT3U(dp->dp_dirty_pertxg[txg & TXG_MASK], >=, space);
1013 dp->dp_dirty_pertxg[txg & TXG_MASK] -= space;
1014 ASSERT3U(dp->dp_dirty_total, >=, space);
1015 dsl_pool_dirty_delta(dp, -space);
1016 mutex_exit(&dp->dp_lock);
1019 static int
1020 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
1022 dmu_tx_t *tx = arg;
1023 dsl_dataset_t *ds, *prev = NULL;
1024 int err;
1026 err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
1027 if (err)
1028 return (err);
1030 while (dsl_dataset_phys(ds)->ds_prev_snap_obj != 0) {
1031 err = dsl_dataset_hold_obj(dp,
1032 dsl_dataset_phys(ds)->ds_prev_snap_obj, FTAG, &prev);
1033 if (err) {
1034 dsl_dataset_rele(ds, FTAG);
1035 return (err);
1038 if (dsl_dataset_phys(prev)->ds_next_snap_obj != ds->ds_object)
1039 break;
1040 dsl_dataset_rele(ds, FTAG);
1041 ds = prev;
1042 prev = NULL;
1045 if (prev == NULL) {
1046 prev = dp->dp_origin_snap;
1049 * The $ORIGIN can't have any data, or the accounting
1050 * will be wrong.
1052 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1053 ASSERT0(dsl_dataset_phys(prev)->ds_bp.blk_birth);
1054 rrw_exit(&ds->ds_bp_rwlock, FTAG);
1056 /* The origin doesn't get attached to itself */
1057 if (ds->ds_object == prev->ds_object) {
1058 dsl_dataset_rele(ds, FTAG);
1059 return (0);
1062 dmu_buf_will_dirty(ds->ds_dbuf, tx);
1063 dsl_dataset_phys(ds)->ds_prev_snap_obj = prev->ds_object;
1064 dsl_dataset_phys(ds)->ds_prev_snap_txg =
1065 dsl_dataset_phys(prev)->ds_creation_txg;
1067 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
1068 dsl_dir_phys(ds->ds_dir)->dd_origin_obj = prev->ds_object;
1070 dmu_buf_will_dirty(prev->ds_dbuf, tx);
1071 dsl_dataset_phys(prev)->ds_num_children++;
1073 if (dsl_dataset_phys(ds)->ds_next_snap_obj == 0) {
1074 ASSERT(ds->ds_prev == NULL);
1075 VERIFY0(dsl_dataset_hold_obj(dp,
1076 dsl_dataset_phys(ds)->ds_prev_snap_obj,
1077 ds, &ds->ds_prev));
1081 ASSERT3U(dsl_dir_phys(ds->ds_dir)->dd_origin_obj, ==, prev->ds_object);
1082 ASSERT3U(dsl_dataset_phys(ds)->ds_prev_snap_obj, ==, prev->ds_object);
1084 if (dsl_dataset_phys(prev)->ds_next_clones_obj == 0) {
1085 dmu_buf_will_dirty(prev->ds_dbuf, tx);
1086 dsl_dataset_phys(prev)->ds_next_clones_obj =
1087 zap_create(dp->dp_meta_objset,
1088 DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
1090 VERIFY0(zap_add_int(dp->dp_meta_objset,
1091 dsl_dataset_phys(prev)->ds_next_clones_obj, ds->ds_object, tx));
1093 dsl_dataset_rele(ds, FTAG);
1094 if (prev != dp->dp_origin_snap)
1095 dsl_dataset_rele(prev, FTAG);
1096 return (0);
1099 void
1100 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
1102 ASSERT(dmu_tx_is_syncing(tx));
1103 ASSERT(dp->dp_origin_snap != NULL);
1105 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
1106 tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
1109 static int
1110 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1112 dmu_tx_t *tx = arg;
1113 objset_t *mos = dp->dp_meta_objset;
1115 if (dsl_dir_phys(ds->ds_dir)->dd_origin_obj != 0) {
1116 dsl_dataset_t *origin;
1118 VERIFY0(dsl_dataset_hold_obj(dp,
1119 dsl_dir_phys(ds->ds_dir)->dd_origin_obj, FTAG, &origin));
1121 if (dsl_dir_phys(origin->ds_dir)->dd_clones == 0) {
1122 dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
1123 dsl_dir_phys(origin->ds_dir)->dd_clones =
1124 zap_create(mos, DMU_OT_DSL_CLONES, DMU_OT_NONE,
1125 0, tx);
1128 VERIFY0(zap_add_int(dp->dp_meta_objset,
1129 dsl_dir_phys(origin->ds_dir)->dd_clones,
1130 ds->ds_object, tx));
1132 dsl_dataset_rele(origin, FTAG);
1134 return (0);
1137 void
1138 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
1140 uint64_t obj;
1142 ASSERT(dmu_tx_is_syncing(tx));
1144 (void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
1145 VERIFY0(dsl_pool_open_special_dir(dp,
1146 FREE_DIR_NAME, &dp->dp_free_dir));
1149 * We can't use bpobj_alloc(), because spa_version() still
1150 * returns the old version, and we need a new-version bpobj with
1151 * subobj support. So call dmu_object_alloc() directly.
1153 obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
1154 SPA_OLD_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
1155 VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1156 DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
1157 VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
1159 VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1160 upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN | DS_FIND_SERIALIZE));
1163 void
1164 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
1166 uint64_t dsobj;
1167 dsl_dataset_t *ds;
1169 ASSERT(dmu_tx_is_syncing(tx));
1170 ASSERT(dp->dp_origin_snap == NULL);
1171 ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
1173 /* create the origin dir, ds, & snap-ds */
1174 dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
1175 NULL, 0, kcred, NULL, tx);
1176 VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
1177 dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
1178 VERIFY0(dsl_dataset_hold_obj(dp, dsl_dataset_phys(ds)->ds_prev_snap_obj,
1179 dp, &dp->dp_origin_snap));
1180 dsl_dataset_rele(ds, FTAG);
1183 taskq_t *
1184 dsl_pool_zrele_taskq(dsl_pool_t *dp)
1186 return (dp->dp_zrele_taskq);
1189 taskq_t *
1190 dsl_pool_unlinked_drain_taskq(dsl_pool_t *dp)
1192 return (dp->dp_unlinked_drain_taskq);
1196 * Walk through the pool-wide zap object of temporary snapshot user holds
1197 * and release them.
1199 void
1200 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
1202 zap_attribute_t za;
1203 zap_cursor_t zc;
1204 objset_t *mos = dp->dp_meta_objset;
1205 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1206 nvlist_t *holds;
1208 if (zapobj == 0)
1209 return;
1210 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1212 holds = fnvlist_alloc();
1214 for (zap_cursor_init(&zc, mos, zapobj);
1215 zap_cursor_retrieve(&zc, &za) == 0;
1216 zap_cursor_advance(&zc)) {
1217 char *htag;
1218 nvlist_t *tags;
1220 htag = strchr(za.za_name, '-');
1221 *htag = '\0';
1222 ++htag;
1223 if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
1224 tags = fnvlist_alloc();
1225 fnvlist_add_boolean(tags, htag);
1226 fnvlist_add_nvlist(holds, za.za_name, tags);
1227 fnvlist_free(tags);
1228 } else {
1229 fnvlist_add_boolean(tags, htag);
1232 dsl_dataset_user_release_tmp(dp, holds);
1233 fnvlist_free(holds);
1234 zap_cursor_fini(&zc);
1238 * Create the pool-wide zap object for storing temporary snapshot holds.
1240 static void
1241 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
1243 objset_t *mos = dp->dp_meta_objset;
1245 ASSERT(dp->dp_tmp_userrefs_obj == 0);
1246 ASSERT(dmu_tx_is_syncing(tx));
1248 dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
1249 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
1252 static int
1253 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
1254 const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
1256 objset_t *mos = dp->dp_meta_objset;
1257 uint64_t zapobj = dp->dp_tmp_userrefs_obj;
1258 char *name;
1259 int error;
1261 ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
1262 ASSERT(dmu_tx_is_syncing(tx));
1265 * If the pool was created prior to SPA_VERSION_USERREFS, the
1266 * zap object for temporary holds might not exist yet.
1268 if (zapobj == 0) {
1269 if (holding) {
1270 dsl_pool_user_hold_create_obj(dp, tx);
1271 zapobj = dp->dp_tmp_userrefs_obj;
1272 } else {
1273 return (SET_ERROR(ENOENT));
1277 name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
1278 if (holding)
1279 error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
1280 else
1281 error = zap_remove(mos, zapobj, name, tx);
1282 kmem_strfree(name);
1284 return (error);
1288 * Add a temporary hold for the given dataset object and tag.
1291 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1292 uint64_t now, dmu_tx_t *tx)
1294 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
1298 * Release a temporary hold for the given dataset object and tag.
1301 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
1302 dmu_tx_t *tx)
1304 return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, 0,
1305 tx, B_FALSE));
1309 * DSL Pool Configuration Lock
1311 * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
1312 * creation / destruction / rename / property setting). It must be held for
1313 * read to hold a dataset or dsl_dir. I.e. you must call
1314 * dsl_pool_config_enter() or dsl_pool_hold() before calling
1315 * dsl_{dataset,dir}_hold{_obj}. In most circumstances, the dp_config_rwlock
1316 * must be held continuously until all datasets and dsl_dirs are released.
1318 * The only exception to this rule is that if a "long hold" is placed on
1319 * a dataset, then the dp_config_rwlock may be dropped while the dataset
1320 * is still held. The long hold will prevent the dataset from being
1321 * destroyed -- the destroy will fail with EBUSY. A long hold can be
1322 * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
1323 * (by calling dsl_{dataset,objset}_{try}own{_obj}).
1325 * Legitimate long-holders (including owners) should be long-running, cancelable
1326 * tasks that should cause "zfs destroy" to fail. This includes DMU
1327 * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
1328 * "zfs send", and "zfs diff". There are several other long-holders whose
1329 * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
1331 * The usual formula for long-holding would be:
1332 * dsl_pool_hold()
1333 * dsl_dataset_hold()
1334 * ... perform checks ...
1335 * dsl_dataset_long_hold()
1336 * dsl_pool_rele()
1337 * ... perform long-running task ...
1338 * dsl_dataset_long_rele()
1339 * dsl_dataset_rele()
1341 * Note that when the long hold is released, the dataset is still held but
1342 * the pool is not held. The dataset may change arbitrarily during this time
1343 * (e.g. it could be destroyed). Therefore you shouldn't do anything to the
1344 * dataset except release it.
1346 * Operations generally fall somewhere into the following taxonomy:
1348 * Read-Only Modifying
1350 * Dataset Layer / MOS zfs get zfs destroy
1352 * Individual Dataset read() write()
1355 * Dataset Layer Operations
1357 * Modifying operations should generally use dsl_sync_task(). The synctask
1358 * infrastructure enforces proper locking strategy with respect to the
1359 * dp_config_rwlock. See the comment above dsl_sync_task() for details.
1361 * Read-only operations will manually hold the pool, then the dataset, obtain
1362 * information from the dataset, then release the pool and dataset.
1363 * dmu_objset_{hold,rele}() are convenience routines that also do the pool
1364 * hold/rele.
1367 * Operations On Individual Datasets
1369 * Objects _within_ an objset should only be modified by the current 'owner'
1370 * of the objset to prevent incorrect concurrent modification. Thus, use
1371 * {dmu_objset,dsl_dataset}_own to mark some entity as the current owner,
1372 * and fail with EBUSY if there is already an owner. The owner can then
1373 * implement its own locking strategy, independent of the dataset layer's
1374 * locking infrastructure.
1375 * (E.g., the ZPL has its own set of locks to control concurrency. A regular
1376 * vnop will not reach into the dataset layer).
1378 * Ideally, objects would also only be read by the objset’s owner, so that we
1379 * don’t observe state mid-modification.
1380 * (E.g. the ZPL is creating a new object and linking it into a directory; if
1381 * you don’t coordinate with the ZPL to hold ZPL-level locks, you could see an
1382 * intermediate state. The ioctl level violates this but in pretty benign
1383 * ways, e.g. reading the zpl props object.)
1387 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
1389 spa_t *spa;
1390 int error;
1392 error = spa_open(name, &spa, tag);
1393 if (error == 0) {
1394 *dp = spa_get_dsl(spa);
1395 dsl_pool_config_enter(*dp, tag);
1397 return (error);
1400 void
1401 dsl_pool_rele(dsl_pool_t *dp, void *tag)
1403 dsl_pool_config_exit(dp, tag);
1404 spa_close(dp->dp_spa, tag);
1407 void
1408 dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1411 * We use a "reentrant" reader-writer lock, but not reentrantly.
1413 * The rrwlock can (with the track_all flag) track all reading threads,
1414 * which is very useful for debugging which code path failed to release
1415 * the lock, and for verifying that the *current* thread does hold
1416 * the lock.
1418 * (Unlike a rwlock, which knows that N threads hold it for
1419 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1420 * if any thread holds it for read, even if this thread doesn't).
1422 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1423 rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1426 void
1427 dsl_pool_config_enter_prio(dsl_pool_t *dp, void *tag)
1429 ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1430 rrw_enter_read_prio(&dp->dp_config_rwlock, tag);
1433 void
1434 dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1436 rrw_exit(&dp->dp_config_rwlock, tag);
1439 boolean_t
1440 dsl_pool_config_held(dsl_pool_t *dp)
1442 return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1445 boolean_t
1446 dsl_pool_config_held_writer(dsl_pool_t *dp)
1448 return (RRW_WRITE_HELD(&dp->dp_config_rwlock));
1451 EXPORT_SYMBOL(dsl_pool_config_enter);
1452 EXPORT_SYMBOL(dsl_pool_config_exit);
1454 /* zfs_dirty_data_max_percent only applied at module load in arc_init(). */
1455 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_percent, INT, ZMOD_RD,
1456 "Max percent of RAM allowed to be dirty");
1458 /* zfs_dirty_data_max_max_percent only applied at module load in arc_init(). */
1459 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max_percent, INT, ZMOD_RD,
1460 "zfs_dirty_data_max upper bound as % of RAM");
1462 ZFS_MODULE_PARAM(zfs, zfs_, delay_min_dirty_percent, INT, ZMOD_RW,
1463 "Transaction delay threshold");
1465 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max, ULONG, ZMOD_RW,
1466 "Determines the dirty space limit");
1468 ZFS_MODULE_PARAM(zfs, zfs_, wrlog_data_max, ULONG, ZMOD_RW,
1469 "The size limit of write-transaction zil log data");
1471 /* zfs_dirty_data_max_max only applied at module load in arc_init(). */
1472 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_max_max, ULONG, ZMOD_RD,
1473 "zfs_dirty_data_max upper bound in bytes");
1475 ZFS_MODULE_PARAM(zfs, zfs_, dirty_data_sync_percent, INT, ZMOD_RW,
1476 "Dirty data txg sync threshold as a percentage of zfs_dirty_data_max");
1478 ZFS_MODULE_PARAM(zfs, zfs_, delay_scale, ULONG, ZMOD_RW,
1479 "How quickly delay approaches infinity");
1481 ZFS_MODULE_PARAM(zfs, zfs_, sync_taskq_batch_pct, INT, ZMOD_RW,
1482 "Max percent of CPUs that are used to sync dirty data");
1484 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_nthr_pct, INT, ZMOD_RW,
1485 "Max percent of CPUs that are used per dp_sync_taskq");
1487 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_minalloc, INT, ZMOD_RW,
1488 "Number of taskq entries that are pre-populated");
1490 ZFS_MODULE_PARAM(zfs_zil, zfs_zil_, clean_taskq_maxalloc, INT, ZMOD_RW,
1491 "Max number of taskq entries that are cached");