FreeBSD: Parameterize ZFS_ENTER/ZFS_VERIFY_VP with an error code
[zfs.git] / module / zfs / vdev_initialize.c
blob8945705a0a29e1e65c548a529fbed9f4c7c9a7b1
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2016, 2019 by Delphix. All rights reserved.
26 #include <sys/spa.h>
27 #include <sys/spa_impl.h>
28 #include <sys/txg.h>
29 #include <sys/vdev_impl.h>
30 #include <sys/metaslab_impl.h>
31 #include <sys/dsl_synctask.h>
32 #include <sys/zap.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_initialize.h>
37 * Value that is written to disk during initialization.
39 #ifdef _ILP32
40 static unsigned long zfs_initialize_value = 0xdeadbeefUL;
41 #else
42 static unsigned long zfs_initialize_value = 0xdeadbeefdeadbeeeULL;
43 #endif
45 /* maximum number of I/Os outstanding per leaf vdev */
46 static const int zfs_initialize_limit = 1;
48 /* size of initializing writes; default 1MiB, see zfs_remove_max_segment */
49 static unsigned long zfs_initialize_chunk_size = 1024 * 1024;
51 static boolean_t
52 vdev_initialize_should_stop(vdev_t *vd)
54 return (vd->vdev_initialize_exit_wanted || !vdev_writeable(vd) ||
55 vd->vdev_detached || vd->vdev_top->vdev_removing);
58 static void
59 vdev_initialize_zap_update_sync(void *arg, dmu_tx_t *tx)
62 * We pass in the guid instead of the vdev_t since the vdev may
63 * have been freed prior to the sync task being processed. This
64 * happens when a vdev is detached as we call spa_config_vdev_exit(),
65 * stop the initializing thread, schedule the sync task, and free
66 * the vdev. Later when the scheduled sync task is invoked, it would
67 * find that the vdev has been freed.
69 uint64_t guid = *(uint64_t *)arg;
70 uint64_t txg = dmu_tx_get_txg(tx);
71 kmem_free(arg, sizeof (uint64_t));
73 vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
74 if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
75 return;
77 uint64_t last_offset = vd->vdev_initialize_offset[txg & TXG_MASK];
78 vd->vdev_initialize_offset[txg & TXG_MASK] = 0;
80 VERIFY(vd->vdev_leaf_zap != 0);
82 objset_t *mos = vd->vdev_spa->spa_meta_objset;
84 if (last_offset > 0) {
85 vd->vdev_initialize_last_offset = last_offset;
86 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
87 VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
88 sizeof (last_offset), 1, &last_offset, tx));
90 if (vd->vdev_initialize_action_time > 0) {
91 uint64_t val = (uint64_t)vd->vdev_initialize_action_time;
92 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
93 VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, sizeof (val),
94 1, &val, tx));
97 uint64_t initialize_state = vd->vdev_initialize_state;
98 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
99 VDEV_LEAF_ZAP_INITIALIZE_STATE, sizeof (initialize_state), 1,
100 &initialize_state, tx));
103 static void
104 vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state)
106 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
107 spa_t *spa = vd->vdev_spa;
109 if (new_state == vd->vdev_initialize_state)
110 return;
113 * Copy the vd's guid, this will be freed by the sync task.
115 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
116 *guid = vd->vdev_guid;
119 * If we're suspending, then preserving the original start time.
121 if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) {
122 vd->vdev_initialize_action_time = gethrestime_sec();
125 vdev_initializing_state_t old_state = vd->vdev_initialize_state;
126 vd->vdev_initialize_state = new_state;
128 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
129 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
130 dsl_sync_task_nowait(spa_get_dsl(spa), vdev_initialize_zap_update_sync,
131 guid, tx);
133 switch (new_state) {
134 case VDEV_INITIALIZE_ACTIVE:
135 spa_history_log_internal(spa, "initialize", tx,
136 "vdev=%s activated", vd->vdev_path);
137 break;
138 case VDEV_INITIALIZE_SUSPENDED:
139 spa_history_log_internal(spa, "initialize", tx,
140 "vdev=%s suspended", vd->vdev_path);
141 break;
142 case VDEV_INITIALIZE_CANCELED:
143 if (old_state == VDEV_INITIALIZE_ACTIVE ||
144 old_state == VDEV_INITIALIZE_SUSPENDED)
145 spa_history_log_internal(spa, "initialize", tx,
146 "vdev=%s canceled", vd->vdev_path);
147 break;
148 case VDEV_INITIALIZE_COMPLETE:
149 spa_history_log_internal(spa, "initialize", tx,
150 "vdev=%s complete", vd->vdev_path);
151 break;
152 default:
153 panic("invalid state %llu", (unsigned long long)new_state);
156 dmu_tx_commit(tx);
158 if (new_state != VDEV_INITIALIZE_ACTIVE)
159 spa_notify_waiters(spa);
162 static void
163 vdev_initialize_cb(zio_t *zio)
165 vdev_t *vd = zio->io_vd;
166 mutex_enter(&vd->vdev_initialize_io_lock);
167 if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
169 * The I/O failed because the vdev was unavailable; roll the
170 * last offset back. (This works because spa_sync waits on
171 * spa_txg_zio before it runs sync tasks.)
173 uint64_t *off =
174 &vd->vdev_initialize_offset[zio->io_txg & TXG_MASK];
175 *off = MIN(*off, zio->io_offset);
176 } else {
178 * Since initializing is best-effort, we ignore I/O errors and
179 * rely on vdev_probe to determine if the errors are more
180 * critical.
182 if (zio->io_error != 0)
183 vd->vdev_stat.vs_initialize_errors++;
185 vd->vdev_initialize_bytes_done += zio->io_orig_size;
187 ASSERT3U(vd->vdev_initialize_inflight, >, 0);
188 vd->vdev_initialize_inflight--;
189 cv_broadcast(&vd->vdev_initialize_io_cv);
190 mutex_exit(&vd->vdev_initialize_io_lock);
192 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
195 /* Takes care of physical writing and limiting # of concurrent ZIOs. */
196 static int
197 vdev_initialize_write(vdev_t *vd, uint64_t start, uint64_t size, abd_t *data)
199 spa_t *spa = vd->vdev_spa;
201 /* Limit inflight initializing I/Os */
202 mutex_enter(&vd->vdev_initialize_io_lock);
203 while (vd->vdev_initialize_inflight >= zfs_initialize_limit) {
204 cv_wait(&vd->vdev_initialize_io_cv,
205 &vd->vdev_initialize_io_lock);
207 vd->vdev_initialize_inflight++;
208 mutex_exit(&vd->vdev_initialize_io_lock);
210 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
211 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
212 uint64_t txg = dmu_tx_get_txg(tx);
214 spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
215 mutex_enter(&vd->vdev_initialize_lock);
217 if (vd->vdev_initialize_offset[txg & TXG_MASK] == 0) {
218 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
219 *guid = vd->vdev_guid;
221 /* This is the first write of this txg. */
222 dsl_sync_task_nowait(spa_get_dsl(spa),
223 vdev_initialize_zap_update_sync, guid, tx);
227 * We know the vdev struct will still be around since all
228 * consumers of vdev_free must stop the initialization first.
230 if (vdev_initialize_should_stop(vd)) {
231 mutex_enter(&vd->vdev_initialize_io_lock);
232 ASSERT3U(vd->vdev_initialize_inflight, >, 0);
233 vd->vdev_initialize_inflight--;
234 mutex_exit(&vd->vdev_initialize_io_lock);
235 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
236 mutex_exit(&vd->vdev_initialize_lock);
237 dmu_tx_commit(tx);
238 return (SET_ERROR(EINTR));
240 mutex_exit(&vd->vdev_initialize_lock);
242 vd->vdev_initialize_offset[txg & TXG_MASK] = start + size;
243 zio_nowait(zio_write_phys(spa->spa_txg_zio[txg & TXG_MASK], vd, start,
244 size, data, ZIO_CHECKSUM_OFF, vdev_initialize_cb, NULL,
245 ZIO_PRIORITY_INITIALIZING, ZIO_FLAG_CANFAIL, B_FALSE));
246 /* vdev_initialize_cb releases SCL_STATE_ALL */
248 dmu_tx_commit(tx);
250 return (0);
254 * Callback to fill each ABD chunk with zfs_initialize_value. len must be
255 * divisible by sizeof (uint64_t), and buf must be 8-byte aligned. The ABD
256 * allocation will guarantee these for us.
258 static int
259 vdev_initialize_block_fill(void *buf, size_t len, void *unused)
261 (void) unused;
263 ASSERT0(len % sizeof (uint64_t));
264 #ifdef _ILP32
265 for (uint64_t i = 0; i < len; i += sizeof (uint32_t)) {
266 *(uint32_t *)((char *)(buf) + i) = zfs_initialize_value;
268 #else
269 for (uint64_t i = 0; i < len; i += sizeof (uint64_t)) {
270 *(uint64_t *)((char *)(buf) + i) = zfs_initialize_value;
272 #endif
273 return (0);
276 static abd_t *
277 vdev_initialize_block_alloc(void)
279 /* Allocate ABD for filler data */
280 abd_t *data = abd_alloc_for_io(zfs_initialize_chunk_size, B_FALSE);
282 ASSERT0(zfs_initialize_chunk_size % sizeof (uint64_t));
283 (void) abd_iterate_func(data, 0, zfs_initialize_chunk_size,
284 vdev_initialize_block_fill, NULL);
286 return (data);
289 static void
290 vdev_initialize_block_free(abd_t *data)
292 abd_free(data);
295 static int
296 vdev_initialize_ranges(vdev_t *vd, abd_t *data)
298 range_tree_t *rt = vd->vdev_initialize_tree;
299 zfs_btree_t *bt = &rt->rt_root;
300 zfs_btree_index_t where;
302 for (range_seg_t *rs = zfs_btree_first(bt, &where); rs != NULL;
303 rs = zfs_btree_next(bt, &where, &where)) {
304 uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
306 /* Split range into legally-sized physical chunks */
307 uint64_t writes_required =
308 ((size - 1) / zfs_initialize_chunk_size) + 1;
310 for (uint64_t w = 0; w < writes_required; w++) {
311 int error;
313 error = vdev_initialize_write(vd,
314 VDEV_LABEL_START_SIZE + rs_get_start(rs, rt) +
315 (w * zfs_initialize_chunk_size),
316 MIN(size - (w * zfs_initialize_chunk_size),
317 zfs_initialize_chunk_size), data);
318 if (error != 0)
319 return (error);
322 return (0);
325 static void
326 vdev_initialize_xlate_last_rs_end(void *arg, range_seg64_t *physical_rs)
328 uint64_t *last_rs_end = (uint64_t *)arg;
330 if (physical_rs->rs_end > *last_rs_end)
331 *last_rs_end = physical_rs->rs_end;
334 static void
335 vdev_initialize_xlate_progress(void *arg, range_seg64_t *physical_rs)
337 vdev_t *vd = (vdev_t *)arg;
339 uint64_t size = physical_rs->rs_end - physical_rs->rs_start;
340 vd->vdev_initialize_bytes_est += size;
342 if (vd->vdev_initialize_last_offset > physical_rs->rs_end) {
343 vd->vdev_initialize_bytes_done += size;
344 } else if (vd->vdev_initialize_last_offset > physical_rs->rs_start &&
345 vd->vdev_initialize_last_offset < physical_rs->rs_end) {
346 vd->vdev_initialize_bytes_done +=
347 vd->vdev_initialize_last_offset - physical_rs->rs_start;
351 static void
352 vdev_initialize_calculate_progress(vdev_t *vd)
354 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
355 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
356 ASSERT(vd->vdev_leaf_zap != 0);
358 vd->vdev_initialize_bytes_est = 0;
359 vd->vdev_initialize_bytes_done = 0;
361 for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
362 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
363 mutex_enter(&msp->ms_lock);
365 uint64_t ms_free = (msp->ms_size -
366 metaslab_allocated_space(msp)) /
367 vdev_get_ndisks(vd->vdev_top);
370 * Convert the metaslab range to a physical range
371 * on our vdev. We use this to determine if we are
372 * in the middle of this metaslab range.
374 range_seg64_t logical_rs, physical_rs, remain_rs;
375 logical_rs.rs_start = msp->ms_start;
376 logical_rs.rs_end = msp->ms_start + msp->ms_size;
378 /* Metaslab space after this offset has not been initialized */
379 vdev_xlate(vd, &logical_rs, &physical_rs, &remain_rs);
380 if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) {
381 vd->vdev_initialize_bytes_est += ms_free;
382 mutex_exit(&msp->ms_lock);
383 continue;
386 /* Metaslab space before this offset has been initialized */
387 uint64_t last_rs_end = physical_rs.rs_end;
388 if (!vdev_xlate_is_empty(&remain_rs)) {
389 vdev_xlate_walk(vd, &remain_rs,
390 vdev_initialize_xlate_last_rs_end, &last_rs_end);
393 if (vd->vdev_initialize_last_offset > last_rs_end) {
394 vd->vdev_initialize_bytes_done += ms_free;
395 vd->vdev_initialize_bytes_est += ms_free;
396 mutex_exit(&msp->ms_lock);
397 continue;
401 * If we get here, we're in the middle of initializing this
402 * metaslab. Load it and walk the free tree for more accurate
403 * progress estimation.
405 VERIFY0(metaslab_load(msp));
407 zfs_btree_index_t where;
408 range_tree_t *rt = msp->ms_allocatable;
409 for (range_seg_t *rs =
410 zfs_btree_first(&rt->rt_root, &where); rs;
411 rs = zfs_btree_next(&rt->rt_root, &where,
412 &where)) {
413 logical_rs.rs_start = rs_get_start(rs, rt);
414 logical_rs.rs_end = rs_get_end(rs, rt);
416 vdev_xlate_walk(vd, &logical_rs,
417 vdev_initialize_xlate_progress, vd);
419 mutex_exit(&msp->ms_lock);
423 static int
424 vdev_initialize_load(vdev_t *vd)
426 int err = 0;
427 ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
428 spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
429 ASSERT(vd->vdev_leaf_zap != 0);
431 if (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE ||
432 vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED) {
433 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
434 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
435 sizeof (vd->vdev_initialize_last_offset), 1,
436 &vd->vdev_initialize_last_offset);
437 if (err == ENOENT) {
438 vd->vdev_initialize_last_offset = 0;
439 err = 0;
443 vdev_initialize_calculate_progress(vd);
444 return (err);
447 static void
448 vdev_initialize_xlate_range_add(void *arg, range_seg64_t *physical_rs)
450 vdev_t *vd = arg;
452 /* Only add segments that we have not visited yet */
453 if (physical_rs->rs_end <= vd->vdev_initialize_last_offset)
454 return;
456 /* Pick up where we left off mid-range. */
457 if (vd->vdev_initialize_last_offset > physical_rs->rs_start) {
458 zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to "
459 "(%llu, %llu)", vd->vdev_path,
460 (u_longlong_t)physical_rs->rs_start,
461 (u_longlong_t)physical_rs->rs_end,
462 (u_longlong_t)vd->vdev_initialize_last_offset,
463 (u_longlong_t)physical_rs->rs_end);
464 ASSERT3U(physical_rs->rs_end, >,
465 vd->vdev_initialize_last_offset);
466 physical_rs->rs_start = vd->vdev_initialize_last_offset;
469 ASSERT3U(physical_rs->rs_end, >, physical_rs->rs_start);
471 range_tree_add(vd->vdev_initialize_tree, physical_rs->rs_start,
472 physical_rs->rs_end - physical_rs->rs_start);
476 * Convert the logical range into a physical range and add it to our
477 * avl tree.
479 static void
480 vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size)
482 vdev_t *vd = arg;
483 range_seg64_t logical_rs;
484 logical_rs.rs_start = start;
485 logical_rs.rs_end = start + size;
487 ASSERT(vd->vdev_ops->vdev_op_leaf);
488 vdev_xlate_walk(vd, &logical_rs, vdev_initialize_xlate_range_add, arg);
491 static __attribute__((noreturn)) void
492 vdev_initialize_thread(void *arg)
494 vdev_t *vd = arg;
495 spa_t *spa = vd->vdev_spa;
496 int error = 0;
497 uint64_t ms_count = 0;
499 ASSERT(vdev_is_concrete(vd));
500 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
502 vd->vdev_initialize_last_offset = 0;
503 VERIFY0(vdev_initialize_load(vd));
505 abd_t *deadbeef = vdev_initialize_block_alloc();
507 vd->vdev_initialize_tree = range_tree_create(NULL, RANGE_SEG64, NULL,
508 0, 0);
510 for (uint64_t i = 0; !vd->vdev_detached &&
511 i < vd->vdev_top->vdev_ms_count; i++) {
512 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
513 boolean_t unload_when_done = B_FALSE;
516 * If we've expanded the top-level vdev or it's our
517 * first pass, calculate our progress.
519 if (vd->vdev_top->vdev_ms_count != ms_count) {
520 vdev_initialize_calculate_progress(vd);
521 ms_count = vd->vdev_top->vdev_ms_count;
524 spa_config_exit(spa, SCL_CONFIG, FTAG);
525 metaslab_disable(msp);
526 mutex_enter(&msp->ms_lock);
527 if (!msp->ms_loaded && !msp->ms_loading)
528 unload_when_done = B_TRUE;
529 VERIFY0(metaslab_load(msp));
531 range_tree_walk(msp->ms_allocatable, vdev_initialize_range_add,
532 vd);
533 mutex_exit(&msp->ms_lock);
535 error = vdev_initialize_ranges(vd, deadbeef);
536 metaslab_enable(msp, B_TRUE, unload_when_done);
537 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
539 range_tree_vacate(vd->vdev_initialize_tree, NULL, NULL);
540 if (error != 0)
541 break;
544 spa_config_exit(spa, SCL_CONFIG, FTAG);
545 mutex_enter(&vd->vdev_initialize_io_lock);
546 while (vd->vdev_initialize_inflight > 0) {
547 cv_wait(&vd->vdev_initialize_io_cv,
548 &vd->vdev_initialize_io_lock);
550 mutex_exit(&vd->vdev_initialize_io_lock);
552 range_tree_destroy(vd->vdev_initialize_tree);
553 vdev_initialize_block_free(deadbeef);
554 vd->vdev_initialize_tree = NULL;
556 mutex_enter(&vd->vdev_initialize_lock);
557 if (!vd->vdev_initialize_exit_wanted) {
558 if (vdev_writeable(vd)) {
559 vdev_initialize_change_state(vd,
560 VDEV_INITIALIZE_COMPLETE);
561 } else if (vd->vdev_faulted) {
562 vdev_initialize_change_state(vd,
563 VDEV_INITIALIZE_CANCELED);
566 ASSERT(vd->vdev_initialize_thread != NULL ||
567 vd->vdev_initialize_inflight == 0);
570 * Drop the vdev_initialize_lock while we sync out the
571 * txg since it's possible that a device might be trying to
572 * come online and must check to see if it needs to restart an
573 * initialization. That thread will be holding the spa_config_lock
574 * which would prevent the txg_wait_synced from completing.
576 mutex_exit(&vd->vdev_initialize_lock);
577 txg_wait_synced(spa_get_dsl(spa), 0);
578 mutex_enter(&vd->vdev_initialize_lock);
580 vd->vdev_initialize_thread = NULL;
581 cv_broadcast(&vd->vdev_initialize_cv);
582 mutex_exit(&vd->vdev_initialize_lock);
584 thread_exit();
588 * Initiates a device. Caller must hold vdev_initialize_lock.
589 * Device must be a leaf and not already be initializing.
591 void
592 vdev_initialize(vdev_t *vd)
594 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
595 ASSERT(vd->vdev_ops->vdev_op_leaf);
596 ASSERT(vdev_is_concrete(vd));
597 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
598 ASSERT(!vd->vdev_detached);
599 ASSERT(!vd->vdev_initialize_exit_wanted);
600 ASSERT(!vd->vdev_top->vdev_removing);
602 vdev_initialize_change_state(vd, VDEV_INITIALIZE_ACTIVE);
603 vd->vdev_initialize_thread = thread_create(NULL, 0,
604 vdev_initialize_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
608 * Wait for the initialize thread to be terminated (cancelled or stopped).
610 static void
611 vdev_initialize_stop_wait_impl(vdev_t *vd)
613 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
615 while (vd->vdev_initialize_thread != NULL)
616 cv_wait(&vd->vdev_initialize_cv, &vd->vdev_initialize_lock);
618 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
619 vd->vdev_initialize_exit_wanted = B_FALSE;
623 * Wait for vdev initialize threads which were either to cleanly exit.
625 void
626 vdev_initialize_stop_wait(spa_t *spa, list_t *vd_list)
628 (void) spa;
629 vdev_t *vd;
631 ASSERT(MUTEX_HELD(&spa_namespace_lock));
633 while ((vd = list_remove_head(vd_list)) != NULL) {
634 mutex_enter(&vd->vdev_initialize_lock);
635 vdev_initialize_stop_wait_impl(vd);
636 mutex_exit(&vd->vdev_initialize_lock);
641 * Stop initializing a device, with the resultant initializing state being
642 * tgt_state. For blocking behavior pass NULL for vd_list. Otherwise, when
643 * a list_t is provided the stopping vdev is inserted in to the list. Callers
644 * are then required to call vdev_initialize_stop_wait() to block for all the
645 * initialization threads to exit. The caller must hold vdev_initialize_lock
646 * and must not be writing to the spa config, as the initializing thread may
647 * try to enter the config as a reader before exiting.
649 void
650 vdev_initialize_stop(vdev_t *vd, vdev_initializing_state_t tgt_state,
651 list_t *vd_list)
653 ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
654 ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
655 ASSERT(vd->vdev_ops->vdev_op_leaf);
656 ASSERT(vdev_is_concrete(vd));
659 * Allow cancel requests to proceed even if the initialize thread
660 * has stopped.
662 if (vd->vdev_initialize_thread == NULL &&
663 tgt_state != VDEV_INITIALIZE_CANCELED) {
664 return;
667 vdev_initialize_change_state(vd, tgt_state);
668 vd->vdev_initialize_exit_wanted = B_TRUE;
670 if (vd_list == NULL) {
671 vdev_initialize_stop_wait_impl(vd);
672 } else {
673 ASSERT(MUTEX_HELD(&spa_namespace_lock));
674 list_insert_tail(vd_list, vd);
678 static void
679 vdev_initialize_stop_all_impl(vdev_t *vd, vdev_initializing_state_t tgt_state,
680 list_t *vd_list)
682 if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
683 mutex_enter(&vd->vdev_initialize_lock);
684 vdev_initialize_stop(vd, tgt_state, vd_list);
685 mutex_exit(&vd->vdev_initialize_lock);
686 return;
689 for (uint64_t i = 0; i < vd->vdev_children; i++) {
690 vdev_initialize_stop_all_impl(vd->vdev_child[i], tgt_state,
691 vd_list);
696 * Convenience function to stop initializing of a vdev tree and set all
697 * initialize thread pointers to NULL.
699 void
700 vdev_initialize_stop_all(vdev_t *vd, vdev_initializing_state_t tgt_state)
702 spa_t *spa = vd->vdev_spa;
703 list_t vd_list;
705 ASSERT(MUTEX_HELD(&spa_namespace_lock));
707 list_create(&vd_list, sizeof (vdev_t),
708 offsetof(vdev_t, vdev_initialize_node));
710 vdev_initialize_stop_all_impl(vd, tgt_state, &vd_list);
711 vdev_initialize_stop_wait(spa, &vd_list);
713 if (vd->vdev_spa->spa_sync_on) {
714 /* Make sure that our state has been synced to disk */
715 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
718 list_destroy(&vd_list);
721 void
722 vdev_initialize_restart(vdev_t *vd)
724 ASSERT(MUTEX_HELD(&spa_namespace_lock));
725 ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
727 if (vd->vdev_leaf_zap != 0) {
728 mutex_enter(&vd->vdev_initialize_lock);
729 uint64_t initialize_state = VDEV_INITIALIZE_NONE;
730 int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
731 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_STATE,
732 sizeof (initialize_state), 1, &initialize_state);
733 ASSERT(err == 0 || err == ENOENT);
734 vd->vdev_initialize_state = initialize_state;
736 uint64_t timestamp = 0;
737 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
738 vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME,
739 sizeof (timestamp), 1, &timestamp);
740 ASSERT(err == 0 || err == ENOENT);
741 vd->vdev_initialize_action_time = timestamp;
743 if (vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED ||
744 vd->vdev_offline) {
745 /* load progress for reporting, but don't resume */
746 VERIFY0(vdev_initialize_load(vd));
747 } else if (vd->vdev_initialize_state ==
748 VDEV_INITIALIZE_ACTIVE && vdev_writeable(vd) &&
749 !vd->vdev_top->vdev_removing &&
750 vd->vdev_initialize_thread == NULL) {
751 vdev_initialize(vd);
754 mutex_exit(&vd->vdev_initialize_lock);
757 for (uint64_t i = 0; i < vd->vdev_children; i++) {
758 vdev_initialize_restart(vd->vdev_child[i]);
762 EXPORT_SYMBOL(vdev_initialize);
763 EXPORT_SYMBOL(vdev_initialize_stop);
764 EXPORT_SYMBOL(vdev_initialize_stop_all);
765 EXPORT_SYMBOL(vdev_initialize_stop_wait);
766 EXPORT_SYMBOL(vdev_initialize_restart);
768 ZFS_MODULE_PARAM(zfs, zfs_, initialize_value, ULONG, ZMOD_RW,
769 "Value written during zpool initialize");
771 ZFS_MODULE_PARAM(zfs, zfs_, initialize_chunk_size, ULONG, ZMOD_RW,
772 "Size in bytes of writes by zpool initialize");