FreeBSD: Parameterize ZFS_ENTER/ZFS_VERIFY_VP with an error code
[zfs.git] / module / zfs / zap_micro.c
blob85134e999beac908ce85292b586a55c54b9f02a6
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
29 #include <sys/zio.h>
30 #include <sys/spa.h>
31 #include <sys/dmu.h>
32 #include <sys/zfs_context.h>
33 #include <sys/zap.h>
34 #include <sys/zap_impl.h>
35 #include <sys/zap_leaf.h>
36 #include <sys/avl.h>
37 #include <sys/arc.h>
38 #include <sys/dmu_objset.h>
40 #ifdef _KERNEL
41 #include <sys/sunddi.h>
42 #endif
44 static int mzap_upgrade(zap_t **zapp,
45 void *tag, dmu_tx_t *tx, zap_flags_t flags);
47 uint64_t
48 zap_getflags(zap_t *zap)
50 if (zap->zap_ismicro)
51 return (0);
52 return (zap_f_phys(zap)->zap_flags);
55 int
56 zap_hashbits(zap_t *zap)
58 if (zap_getflags(zap) & ZAP_FLAG_HASH64)
59 return (48);
60 else
61 return (28);
64 uint32_t
65 zap_maxcd(zap_t *zap)
67 if (zap_getflags(zap) & ZAP_FLAG_HASH64)
68 return ((1<<16)-1);
69 else
70 return (-1U);
73 static uint64_t
74 zap_hash(zap_name_t *zn)
76 zap_t *zap = zn->zn_zap;
77 uint64_t h = 0;
79 if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
80 ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
81 h = *(uint64_t *)zn->zn_key_orig;
82 } else {
83 h = zap->zap_salt;
84 ASSERT(h != 0);
85 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
87 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
88 const uint64_t *wp = zn->zn_key_norm;
90 ASSERT(zn->zn_key_intlen == 8);
91 for (int i = 0; i < zn->zn_key_norm_numints;
92 wp++, i++) {
93 uint64_t word = *wp;
95 for (int j = 0; j < zn->zn_key_intlen; j++) {
96 h = (h >> 8) ^
97 zfs_crc64_table[(h ^ word) & 0xFF];
98 word >>= NBBY;
101 } else {
102 const uint8_t *cp = zn->zn_key_norm;
105 * We previously stored the terminating null on
106 * disk, but didn't hash it, so we need to
107 * continue to not hash it. (The
108 * zn_key_*_numints includes the terminating
109 * null for non-binary keys.)
111 int len = zn->zn_key_norm_numints - 1;
113 ASSERT(zn->zn_key_intlen == 1);
114 for (int i = 0; i < len; cp++, i++) {
115 h = (h >> 8) ^
116 zfs_crc64_table[(h ^ *cp) & 0xFF];
121 * Don't use all 64 bits, since we need some in the cookie for
122 * the collision differentiator. We MUST use the high bits,
123 * since those are the ones that we first pay attention to when
124 * choosing the bucket.
126 h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
128 return (h);
131 static int
132 zap_normalize(zap_t *zap, const char *name, char *namenorm, int normflags)
134 ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
136 size_t inlen = strlen(name) + 1;
137 size_t outlen = ZAP_MAXNAMELEN;
139 int err = 0;
140 (void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
141 normflags | U8_TEXTPREP_IGNORE_NULL | U8_TEXTPREP_IGNORE_INVALID,
142 U8_UNICODE_LATEST, &err);
144 return (err);
147 boolean_t
148 zap_match(zap_name_t *zn, const char *matchname)
150 ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
152 if (zn->zn_matchtype & MT_NORMALIZE) {
153 char norm[ZAP_MAXNAMELEN];
155 if (zap_normalize(zn->zn_zap, matchname, norm,
156 zn->zn_normflags) != 0)
157 return (B_FALSE);
159 return (strcmp(zn->zn_key_norm, norm) == 0);
160 } else {
161 return (strcmp(zn->zn_key_orig, matchname) == 0);
165 void
166 zap_name_free(zap_name_t *zn)
168 kmem_free(zn, sizeof (zap_name_t));
171 zap_name_t *
172 zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt)
174 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
176 zn->zn_zap = zap;
177 zn->zn_key_intlen = sizeof (*key);
178 zn->zn_key_orig = key;
179 zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1;
180 zn->zn_matchtype = mt;
181 zn->zn_normflags = zap->zap_normflags;
184 * If we're dealing with a case sensitive lookup on a mixed or
185 * insensitive fs, remove U8_TEXTPREP_TOUPPER or the lookup
186 * will fold case to all caps overriding the lookup request.
188 if (mt & MT_MATCH_CASE)
189 zn->zn_normflags &= ~U8_TEXTPREP_TOUPPER;
191 if (zap->zap_normflags) {
193 * We *must* use zap_normflags because this normalization is
194 * what the hash is computed from.
196 if (zap_normalize(zap, key, zn->zn_normbuf,
197 zap->zap_normflags) != 0) {
198 zap_name_free(zn);
199 return (NULL);
201 zn->zn_key_norm = zn->zn_normbuf;
202 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
203 } else {
204 if (mt != 0) {
205 zap_name_free(zn);
206 return (NULL);
208 zn->zn_key_norm = zn->zn_key_orig;
209 zn->zn_key_norm_numints = zn->zn_key_orig_numints;
212 zn->zn_hash = zap_hash(zn);
214 if (zap->zap_normflags != zn->zn_normflags) {
216 * We *must* use zn_normflags because this normalization is
217 * what the matching is based on. (Not the hash!)
219 if (zap_normalize(zap, key, zn->zn_normbuf,
220 zn->zn_normflags) != 0) {
221 zap_name_free(zn);
222 return (NULL);
224 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
227 return (zn);
230 static zap_name_t *
231 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
233 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
235 ASSERT(zap->zap_normflags == 0);
236 zn->zn_zap = zap;
237 zn->zn_key_intlen = sizeof (*key);
238 zn->zn_key_orig = zn->zn_key_norm = key;
239 zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
240 zn->zn_matchtype = 0;
242 zn->zn_hash = zap_hash(zn);
243 return (zn);
246 static void
247 mzap_byteswap(mzap_phys_t *buf, size_t size)
249 buf->mz_block_type = BSWAP_64(buf->mz_block_type);
250 buf->mz_salt = BSWAP_64(buf->mz_salt);
251 buf->mz_normflags = BSWAP_64(buf->mz_normflags);
252 int max = (size / MZAP_ENT_LEN) - 1;
253 for (int i = 0; i < max; i++) {
254 buf->mz_chunk[i].mze_value =
255 BSWAP_64(buf->mz_chunk[i].mze_value);
256 buf->mz_chunk[i].mze_cd =
257 BSWAP_32(buf->mz_chunk[i].mze_cd);
261 void
262 zap_byteswap(void *buf, size_t size)
264 uint64_t block_type = *(uint64_t *)buf;
266 if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
267 /* ASSERT(magic == ZAP_LEAF_MAGIC); */
268 mzap_byteswap(buf, size);
269 } else {
270 fzap_byteswap(buf, size);
274 static int
275 mze_compare(const void *arg1, const void *arg2)
277 const mzap_ent_t *mze1 = arg1;
278 const mzap_ent_t *mze2 = arg2;
280 int cmp = TREE_CMP(mze1->mze_hash, mze2->mze_hash);
281 if (likely(cmp))
282 return (cmp);
284 return (TREE_CMP(mze1->mze_cd, mze2->mze_cd));
287 static void
288 mze_insert(zap_t *zap, int chunkid, uint64_t hash)
290 ASSERT(zap->zap_ismicro);
291 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
293 mzap_ent_t *mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP);
294 mze->mze_chunkid = chunkid;
295 mze->mze_hash = hash;
296 mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd;
297 ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0);
298 avl_add(&zap->zap_m.zap_avl, mze);
301 static mzap_ent_t *
302 mze_find(zap_name_t *zn)
304 mzap_ent_t mze_tofind;
305 mzap_ent_t *mze;
306 avl_index_t idx;
307 avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl;
309 ASSERT(zn->zn_zap->zap_ismicro);
310 ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
312 mze_tofind.mze_hash = zn->zn_hash;
313 mze_tofind.mze_cd = 0;
315 mze = avl_find(avl, &mze_tofind, &idx);
316 if (mze == NULL)
317 mze = avl_nearest(avl, idx, AVL_AFTER);
318 for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) {
319 ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd);
320 if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name))
321 return (mze);
324 return (NULL);
327 static uint32_t
328 mze_find_unused_cd(zap_t *zap, uint64_t hash)
330 mzap_ent_t mze_tofind;
331 avl_index_t idx;
332 avl_tree_t *avl = &zap->zap_m.zap_avl;
334 ASSERT(zap->zap_ismicro);
335 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
337 mze_tofind.mze_hash = hash;
338 mze_tofind.mze_cd = 0;
340 uint32_t cd = 0;
341 for (mzap_ent_t *mze = avl_find(avl, &mze_tofind, &idx);
342 mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
343 if (mze->mze_cd != cd)
344 break;
345 cd++;
348 return (cd);
352 * Each mzap entry requires at max : 4 chunks
353 * 3 chunks for names + 1 chunk for value.
355 #define MZAP_ENT_CHUNKS (1 + ZAP_LEAF_ARRAY_NCHUNKS(MZAP_NAME_LEN) + \
356 ZAP_LEAF_ARRAY_NCHUNKS(sizeof (uint64_t)))
359 * Check if the current entry keeps the colliding entries under the fatzap leaf
360 * size.
362 static boolean_t
363 mze_canfit_fzap_leaf(zap_name_t *zn, uint64_t hash)
365 zap_t *zap = zn->zn_zap;
366 mzap_ent_t mze_tofind;
367 mzap_ent_t *mze;
368 avl_index_t idx;
369 avl_tree_t *avl = &zap->zap_m.zap_avl;
370 uint32_t mzap_ents = 0;
372 mze_tofind.mze_hash = hash;
373 mze_tofind.mze_cd = 0;
375 for (mze = avl_find(avl, &mze_tofind, &idx);
376 mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
377 mzap_ents++;
380 /* Include the new entry being added */
381 mzap_ents++;
383 return (ZAP_LEAF_NUMCHUNKS_DEF > (mzap_ents * MZAP_ENT_CHUNKS));
386 static void
387 mze_remove(zap_t *zap, mzap_ent_t *mze)
389 ASSERT(zap->zap_ismicro);
390 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
392 avl_remove(&zap->zap_m.zap_avl, mze);
393 kmem_free(mze, sizeof (mzap_ent_t));
396 static void
397 mze_destroy(zap_t *zap)
399 mzap_ent_t *mze;
400 void *avlcookie = NULL;
402 while ((mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie)))
403 kmem_free(mze, sizeof (mzap_ent_t));
404 avl_destroy(&zap->zap_m.zap_avl);
407 static zap_t *
408 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
410 zap_t *winner;
411 uint64_t *zap_hdr = (uint64_t *)db->db_data;
412 uint64_t zap_block_type = zap_hdr[0];
413 uint64_t zap_magic = zap_hdr[1];
415 ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
417 zap_t *zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
418 rw_init(&zap->zap_rwlock, NULL, RW_DEFAULT, NULL);
419 rw_enter(&zap->zap_rwlock, RW_WRITER);
420 zap->zap_objset = os;
421 zap->zap_object = obj;
422 zap->zap_dbuf = db;
424 if (zap_block_type != ZBT_MICRO) {
425 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, MUTEX_DEFAULT,
427 zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1;
428 if (zap_block_type != ZBT_HEADER || zap_magic != ZAP_MAGIC) {
429 winner = NULL; /* No actual winner here... */
430 goto handle_winner;
432 } else {
433 zap->zap_ismicro = TRUE;
437 * Make sure that zap_ismicro is set before we let others see
438 * it, because zap_lockdir() checks zap_ismicro without the lock
439 * held.
441 dmu_buf_init_user(&zap->zap_dbu, zap_evict_sync, NULL, &zap->zap_dbuf);
442 winner = dmu_buf_set_user(db, &zap->zap_dbu);
444 if (winner != NULL)
445 goto handle_winner;
447 if (zap->zap_ismicro) {
448 zap->zap_salt = zap_m_phys(zap)->mz_salt;
449 zap->zap_normflags = zap_m_phys(zap)->mz_normflags;
450 zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
451 avl_create(&zap->zap_m.zap_avl, mze_compare,
452 sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node));
454 for (int i = 0; i < zap->zap_m.zap_num_chunks; i++) {
455 mzap_ent_phys_t *mze =
456 &zap_m_phys(zap)->mz_chunk[i];
457 if (mze->mze_name[0]) {
458 zap_name_t *zn;
460 zap->zap_m.zap_num_entries++;
461 zn = zap_name_alloc(zap, mze->mze_name, 0);
462 mze_insert(zap, i, zn->zn_hash);
463 zap_name_free(zn);
466 } else {
467 zap->zap_salt = zap_f_phys(zap)->zap_salt;
468 zap->zap_normflags = zap_f_phys(zap)->zap_normflags;
470 ASSERT3U(sizeof (struct zap_leaf_header), ==,
471 2*ZAP_LEAF_CHUNKSIZE);
474 * The embedded pointer table should not overlap the
475 * other members.
477 ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
478 &zap_f_phys(zap)->zap_salt);
481 * The embedded pointer table should end at the end of
482 * the block
484 ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
485 1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
486 (uintptr_t)zap_f_phys(zap), ==,
487 zap->zap_dbuf->db_size);
489 rw_exit(&zap->zap_rwlock);
490 return (zap);
492 handle_winner:
493 rw_exit(&zap->zap_rwlock);
494 rw_destroy(&zap->zap_rwlock);
495 if (!zap->zap_ismicro)
496 mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
497 kmem_free(zap, sizeof (zap_t));
498 return (winner);
502 * This routine "consumes" the caller's hold on the dbuf, which must
503 * have the specified tag.
505 static int
506 zap_lockdir_impl(dmu_buf_t *db, void *tag, dmu_tx_t *tx,
507 krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
509 ASSERT0(db->db_offset);
510 objset_t *os = dmu_buf_get_objset(db);
511 uint64_t obj = db->db_object;
512 dmu_object_info_t doi;
514 *zapp = NULL;
516 dmu_object_info_from_db(db, &doi);
517 if (DMU_OT_BYTESWAP(doi.doi_type) != DMU_BSWAP_ZAP)
518 return (SET_ERROR(EINVAL));
520 zap_t *zap = dmu_buf_get_user(db);
521 if (zap == NULL) {
522 zap = mzap_open(os, obj, db);
523 if (zap == NULL) {
525 * mzap_open() didn't like what it saw on-disk.
526 * Check for corruption!
528 return (SET_ERROR(EIO));
533 * We're checking zap_ismicro without the lock held, in order to
534 * tell what type of lock we want. Once we have some sort of
535 * lock, see if it really is the right type. In practice this
536 * can only be different if it was upgraded from micro to fat,
537 * and micro wanted WRITER but fat only needs READER.
539 krw_t lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
540 rw_enter(&zap->zap_rwlock, lt);
541 if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
542 /* it was upgraded, now we only need reader */
543 ASSERT(lt == RW_WRITER);
544 ASSERT(RW_READER ==
545 ((!zap->zap_ismicro && fatreader) ? RW_READER : lti));
546 rw_downgrade(&zap->zap_rwlock);
547 lt = RW_READER;
550 zap->zap_objset = os;
552 if (lt == RW_WRITER)
553 dmu_buf_will_dirty(db, tx);
555 ASSERT3P(zap->zap_dbuf, ==, db);
557 ASSERT(!zap->zap_ismicro ||
558 zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
559 if (zap->zap_ismicro && tx && adding &&
560 zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
561 uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
562 if (newsz > MZAP_MAX_BLKSZ) {
563 dprintf("upgrading obj %llu: num_entries=%u\n",
564 (u_longlong_t)obj, zap->zap_m.zap_num_entries);
565 *zapp = zap;
566 int err = mzap_upgrade(zapp, tag, tx, 0);
567 if (err != 0)
568 rw_exit(&zap->zap_rwlock);
569 return (err);
571 VERIFY0(dmu_object_set_blocksize(os, obj, newsz, 0, tx));
572 zap->zap_m.zap_num_chunks =
573 db->db_size / MZAP_ENT_LEN - 1;
576 *zapp = zap;
577 return (0);
580 static int
581 zap_lockdir_by_dnode(dnode_t *dn, dmu_tx_t *tx,
582 krw_t lti, boolean_t fatreader, boolean_t adding, void *tag, zap_t **zapp)
584 dmu_buf_t *db;
586 int err = dmu_buf_hold_by_dnode(dn, 0, tag, &db, DMU_READ_NO_PREFETCH);
587 if (err != 0) {
588 return (err);
590 #ifdef ZFS_DEBUG
592 dmu_object_info_t doi;
593 dmu_object_info_from_db(db, &doi);
594 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
596 #endif
598 err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp);
599 if (err != 0) {
600 dmu_buf_rele(db, tag);
602 return (err);
606 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
607 krw_t lti, boolean_t fatreader, boolean_t adding, void *tag, zap_t **zapp)
609 dmu_buf_t *db;
611 int err = dmu_buf_hold(os, obj, 0, tag, &db, DMU_READ_NO_PREFETCH);
612 if (err != 0)
613 return (err);
614 #ifdef ZFS_DEBUG
616 dmu_object_info_t doi;
617 dmu_object_info_from_db(db, &doi);
618 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
620 #endif
621 err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp);
622 if (err != 0)
623 dmu_buf_rele(db, tag);
624 return (err);
627 void
628 zap_unlockdir(zap_t *zap, void *tag)
630 rw_exit(&zap->zap_rwlock);
631 dmu_buf_rele(zap->zap_dbuf, tag);
634 static int
635 mzap_upgrade(zap_t **zapp, void *tag, dmu_tx_t *tx, zap_flags_t flags)
637 int err = 0;
638 zap_t *zap = *zapp;
640 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
642 int sz = zap->zap_dbuf->db_size;
643 mzap_phys_t *mzp = vmem_alloc(sz, KM_SLEEP);
644 memcpy(mzp, zap->zap_dbuf->db_data, sz);
645 int nchunks = zap->zap_m.zap_num_chunks;
647 if (!flags) {
648 err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
649 1ULL << fzap_default_block_shift, 0, tx);
650 if (err != 0) {
651 vmem_free(mzp, sz);
652 return (err);
656 dprintf("upgrading obj=%llu with %u chunks\n",
657 (u_longlong_t)zap->zap_object, nchunks);
658 /* XXX destroy the avl later, so we can use the stored hash value */
659 mze_destroy(zap);
661 fzap_upgrade(zap, tx, flags);
663 for (int i = 0; i < nchunks; i++) {
664 mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
665 if (mze->mze_name[0] == 0)
666 continue;
667 dprintf("adding %s=%llu\n",
668 mze->mze_name, (u_longlong_t)mze->mze_value);
669 zap_name_t *zn = zap_name_alloc(zap, mze->mze_name, 0);
670 /* If we fail here, we would end up losing entries */
671 VERIFY0(fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd,
672 tag, tx));
673 zap = zn->zn_zap; /* fzap_add_cd() may change zap */
674 zap_name_free(zn);
676 vmem_free(mzp, sz);
677 *zapp = zap;
678 return (0);
682 * The "normflags" determine the behavior of the matchtype_t which is
683 * passed to zap_lookup_norm(). Names which have the same normalized
684 * version will be stored with the same hash value, and therefore we can
685 * perform normalization-insensitive lookups. We can be Unicode form-
686 * insensitive and/or case-insensitive. The following flags are valid for
687 * "normflags":
689 * U8_TEXTPREP_NFC
690 * U8_TEXTPREP_NFD
691 * U8_TEXTPREP_NFKC
692 * U8_TEXTPREP_NFKD
693 * U8_TEXTPREP_TOUPPER
695 * The *_NF* (Normalization Form) flags are mutually exclusive; at most one
696 * of them may be supplied.
698 void
699 mzap_create_impl(dnode_t *dn, int normflags, zap_flags_t flags, dmu_tx_t *tx)
701 dmu_buf_t *db;
703 VERIFY0(dmu_buf_hold_by_dnode(dn, 0, FTAG, &db, DMU_READ_NO_PREFETCH));
705 dmu_buf_will_dirty(db, tx);
706 mzap_phys_t *zp = db->db_data;
707 zp->mz_block_type = ZBT_MICRO;
708 zp->mz_salt =
709 ((uintptr_t)db ^ (uintptr_t)tx ^ (dn->dn_object << 1)) | 1ULL;
710 zp->mz_normflags = normflags;
712 if (flags != 0) {
713 zap_t *zap;
714 /* Only fat zap supports flags; upgrade immediately. */
715 VERIFY0(zap_lockdir_impl(db, FTAG, tx, RW_WRITER,
716 B_FALSE, B_FALSE, &zap));
717 VERIFY0(mzap_upgrade(&zap, FTAG, tx, flags));
718 zap_unlockdir(zap, FTAG);
719 } else {
720 dmu_buf_rele(db, FTAG);
724 static uint64_t
725 zap_create_impl(objset_t *os, int normflags, zap_flags_t flags,
726 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
727 dmu_object_type_t bonustype, int bonuslen, int dnodesize,
728 dnode_t **allocated_dnode, void *tag, dmu_tx_t *tx)
730 uint64_t obj;
732 ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP);
734 if (allocated_dnode == NULL) {
735 dnode_t *dn;
736 obj = dmu_object_alloc_hold(os, ot, 1ULL << leaf_blockshift,
737 indirect_blockshift, bonustype, bonuslen, dnodesize,
738 &dn, FTAG, tx);
739 mzap_create_impl(dn, normflags, flags, tx);
740 dnode_rele(dn, FTAG);
741 } else {
742 obj = dmu_object_alloc_hold(os, ot, 1ULL << leaf_blockshift,
743 indirect_blockshift, bonustype, bonuslen, dnodesize,
744 allocated_dnode, tag, tx);
745 mzap_create_impl(*allocated_dnode, normflags, flags, tx);
748 return (obj);
752 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
753 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
755 return (zap_create_claim_dnsize(os, obj, ot, bonustype, bonuslen,
756 0, tx));
760 zap_create_claim_dnsize(objset_t *os, uint64_t obj, dmu_object_type_t ot,
761 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
763 return (zap_create_claim_norm_dnsize(os, obj,
764 0, ot, bonustype, bonuslen, dnodesize, tx));
768 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
769 dmu_object_type_t ot,
770 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
772 return (zap_create_claim_norm_dnsize(os, obj, normflags, ot, bonustype,
773 bonuslen, 0, tx));
777 zap_create_claim_norm_dnsize(objset_t *os, uint64_t obj, int normflags,
778 dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen,
779 int dnodesize, dmu_tx_t *tx)
781 dnode_t *dn;
782 int error;
784 ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP);
785 error = dmu_object_claim_dnsize(os, obj, ot, 0, bonustype, bonuslen,
786 dnodesize, tx);
787 if (error != 0)
788 return (error);
790 error = dnode_hold(os, obj, FTAG, &dn);
791 if (error != 0)
792 return (error);
794 mzap_create_impl(dn, normflags, 0, tx);
796 dnode_rele(dn, FTAG);
798 return (0);
801 uint64_t
802 zap_create(objset_t *os, dmu_object_type_t ot,
803 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
805 return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
808 uint64_t
809 zap_create_dnsize(objset_t *os, dmu_object_type_t ot,
810 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
812 return (zap_create_norm_dnsize(os, 0, ot, bonustype, bonuslen,
813 dnodesize, tx));
816 uint64_t
817 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
818 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
820 return (zap_create_norm_dnsize(os, normflags, ot, bonustype, bonuslen,
821 0, tx));
824 uint64_t
825 zap_create_norm_dnsize(objset_t *os, int normflags, dmu_object_type_t ot,
826 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
828 return (zap_create_impl(os, normflags, 0, ot, 0, 0,
829 bonustype, bonuslen, dnodesize, NULL, NULL, tx));
832 uint64_t
833 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
834 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
835 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
837 return (zap_create_flags_dnsize(os, normflags, flags, ot,
838 leaf_blockshift, indirect_blockshift, bonustype, bonuslen, 0, tx));
841 uint64_t
842 zap_create_flags_dnsize(objset_t *os, int normflags, zap_flags_t flags,
843 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
844 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
846 return (zap_create_impl(os, normflags, flags, ot, leaf_blockshift,
847 indirect_blockshift, bonustype, bonuslen, dnodesize, NULL, NULL,
848 tx));
852 * Create a zap object and return a pointer to the newly allocated dnode via
853 * the allocated_dnode argument. The returned dnode will be held and the
854 * caller is responsible for releasing the hold by calling dnode_rele().
856 uint64_t
857 zap_create_hold(objset_t *os, int normflags, zap_flags_t flags,
858 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
859 dmu_object_type_t bonustype, int bonuslen, int dnodesize,
860 dnode_t **allocated_dnode, void *tag, dmu_tx_t *tx)
862 return (zap_create_impl(os, normflags, flags, ot, leaf_blockshift,
863 indirect_blockshift, bonustype, bonuslen, dnodesize,
864 allocated_dnode, tag, tx));
868 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
871 * dmu_object_free will free the object number and free the
872 * data. Freeing the data will cause our pageout function to be
873 * called, which will destroy our data (zap_leaf_t's and zap_t).
876 return (dmu_object_free(os, zapobj, tx));
879 void
880 zap_evict_sync(void *dbu)
882 zap_t *zap = dbu;
884 rw_destroy(&zap->zap_rwlock);
886 if (zap->zap_ismicro)
887 mze_destroy(zap);
888 else
889 mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
891 kmem_free(zap, sizeof (zap_t));
895 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
897 zap_t *zap;
899 int err =
900 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
901 if (err != 0)
902 return (err);
903 if (!zap->zap_ismicro) {
904 err = fzap_count(zap, count);
905 } else {
906 *count = zap->zap_m.zap_num_entries;
908 zap_unlockdir(zap, FTAG);
909 return (err);
913 * zn may be NULL; if not specified, it will be computed if needed.
914 * See also the comment above zap_entry_normalization_conflict().
916 static boolean_t
917 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze)
919 int direction = AVL_BEFORE;
920 boolean_t allocdzn = B_FALSE;
922 if (zap->zap_normflags == 0)
923 return (B_FALSE);
925 again:
926 for (mzap_ent_t *other = avl_walk(&zap->zap_m.zap_avl, mze, direction);
927 other && other->mze_hash == mze->mze_hash;
928 other = avl_walk(&zap->zap_m.zap_avl, other, direction)) {
930 if (zn == NULL) {
931 zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name,
932 MT_NORMALIZE);
933 allocdzn = B_TRUE;
935 if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
936 if (allocdzn)
937 zap_name_free(zn);
938 return (B_TRUE);
942 if (direction == AVL_BEFORE) {
943 direction = AVL_AFTER;
944 goto again;
947 if (allocdzn)
948 zap_name_free(zn);
949 return (B_FALSE);
953 * Routines for manipulating attributes.
957 zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
958 uint64_t integer_size, uint64_t num_integers, void *buf)
960 return (zap_lookup_norm(os, zapobj, name, integer_size,
961 num_integers, buf, 0, NULL, 0, NULL));
964 static int
965 zap_lookup_impl(zap_t *zap, const char *name,
966 uint64_t integer_size, uint64_t num_integers, void *buf,
967 matchtype_t mt, char *realname, int rn_len,
968 boolean_t *ncp)
970 int err = 0;
972 zap_name_t *zn = zap_name_alloc(zap, name, mt);
973 if (zn == NULL)
974 return (SET_ERROR(ENOTSUP));
976 if (!zap->zap_ismicro) {
977 err = fzap_lookup(zn, integer_size, num_integers, buf,
978 realname, rn_len, ncp);
979 } else {
980 mzap_ent_t *mze = mze_find(zn);
981 if (mze == NULL) {
982 err = SET_ERROR(ENOENT);
983 } else {
984 if (num_integers < 1) {
985 err = SET_ERROR(EOVERFLOW);
986 } else if (integer_size != 8) {
987 err = SET_ERROR(EINVAL);
988 } else {
989 *(uint64_t *)buf =
990 MZE_PHYS(zap, mze)->mze_value;
991 (void) strlcpy(realname,
992 MZE_PHYS(zap, mze)->mze_name, rn_len);
993 if (ncp) {
994 *ncp = mzap_normalization_conflict(zap,
995 zn, mze);
1000 zap_name_free(zn);
1001 return (err);
1005 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
1006 uint64_t integer_size, uint64_t num_integers, void *buf,
1007 matchtype_t mt, char *realname, int rn_len,
1008 boolean_t *ncp)
1010 zap_t *zap;
1012 int err =
1013 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1014 if (err != 0)
1015 return (err);
1016 err = zap_lookup_impl(zap, name, integer_size,
1017 num_integers, buf, mt, realname, rn_len, ncp);
1018 zap_unlockdir(zap, FTAG);
1019 return (err);
1023 zap_prefetch(objset_t *os, uint64_t zapobj, const char *name)
1025 zap_t *zap;
1026 int err;
1027 zap_name_t *zn;
1029 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1030 if (err)
1031 return (err);
1032 zn = zap_name_alloc(zap, name, 0);
1033 if (zn == NULL) {
1034 zap_unlockdir(zap, FTAG);
1035 return (SET_ERROR(ENOTSUP));
1038 fzap_prefetch(zn);
1039 zap_name_free(zn);
1040 zap_unlockdir(zap, FTAG);
1041 return (err);
1045 zap_lookup_by_dnode(dnode_t *dn, const char *name,
1046 uint64_t integer_size, uint64_t num_integers, void *buf)
1048 return (zap_lookup_norm_by_dnode(dn, name, integer_size,
1049 num_integers, buf, 0, NULL, 0, NULL));
1053 zap_lookup_norm_by_dnode(dnode_t *dn, const char *name,
1054 uint64_t integer_size, uint64_t num_integers, void *buf,
1055 matchtype_t mt, char *realname, int rn_len,
1056 boolean_t *ncp)
1058 zap_t *zap;
1060 int err = zap_lockdir_by_dnode(dn, NULL, RW_READER, TRUE, FALSE,
1061 FTAG, &zap);
1062 if (err != 0)
1063 return (err);
1064 err = zap_lookup_impl(zap, name, integer_size,
1065 num_integers, buf, mt, realname, rn_len, ncp);
1066 zap_unlockdir(zap, FTAG);
1067 return (err);
1071 zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1072 int key_numints)
1074 zap_t *zap;
1076 int err =
1077 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1078 if (err != 0)
1079 return (err);
1080 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1081 if (zn == NULL) {
1082 zap_unlockdir(zap, FTAG);
1083 return (SET_ERROR(ENOTSUP));
1086 fzap_prefetch(zn);
1087 zap_name_free(zn);
1088 zap_unlockdir(zap, FTAG);
1089 return (err);
1093 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1094 int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
1096 zap_t *zap;
1098 int err =
1099 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1100 if (err != 0)
1101 return (err);
1102 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1103 if (zn == NULL) {
1104 zap_unlockdir(zap, FTAG);
1105 return (SET_ERROR(ENOTSUP));
1108 err = fzap_lookup(zn, integer_size, num_integers, buf,
1109 NULL, 0, NULL);
1110 zap_name_free(zn);
1111 zap_unlockdir(zap, FTAG);
1112 return (err);
1116 zap_contains(objset_t *os, uint64_t zapobj, const char *name)
1118 int err = zap_lookup_norm(os, zapobj, name, 0,
1119 0, NULL, 0, NULL, 0, NULL);
1120 if (err == EOVERFLOW || err == EINVAL)
1121 err = 0; /* found, but skipped reading the value */
1122 return (err);
1126 zap_length(objset_t *os, uint64_t zapobj, const char *name,
1127 uint64_t *integer_size, uint64_t *num_integers)
1129 zap_t *zap;
1131 int err =
1132 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1133 if (err != 0)
1134 return (err);
1135 zap_name_t *zn = zap_name_alloc(zap, name, 0);
1136 if (zn == NULL) {
1137 zap_unlockdir(zap, FTAG);
1138 return (SET_ERROR(ENOTSUP));
1140 if (!zap->zap_ismicro) {
1141 err = fzap_length(zn, integer_size, num_integers);
1142 } else {
1143 mzap_ent_t *mze = mze_find(zn);
1144 if (mze == NULL) {
1145 err = SET_ERROR(ENOENT);
1146 } else {
1147 if (integer_size)
1148 *integer_size = 8;
1149 if (num_integers)
1150 *num_integers = 1;
1153 zap_name_free(zn);
1154 zap_unlockdir(zap, FTAG);
1155 return (err);
1159 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1160 int key_numints, uint64_t *integer_size, uint64_t *num_integers)
1162 zap_t *zap;
1164 int err =
1165 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1166 if (err != 0)
1167 return (err);
1168 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1169 if (zn == NULL) {
1170 zap_unlockdir(zap, FTAG);
1171 return (SET_ERROR(ENOTSUP));
1173 err = fzap_length(zn, integer_size, num_integers);
1174 zap_name_free(zn);
1175 zap_unlockdir(zap, FTAG);
1176 return (err);
1179 static void
1180 mzap_addent(zap_name_t *zn, uint64_t value)
1182 zap_t *zap = zn->zn_zap;
1183 int start = zap->zap_m.zap_alloc_next;
1185 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
1187 #ifdef ZFS_DEBUG
1188 for (int i = 0; i < zap->zap_m.zap_num_chunks; i++) {
1189 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
1190 ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
1192 #endif
1194 uint32_t cd = mze_find_unused_cd(zap, zn->zn_hash);
1195 /* given the limited size of the microzap, this can't happen */
1196 ASSERT(cd < zap_maxcd(zap));
1198 again:
1199 for (int i = start; i < zap->zap_m.zap_num_chunks; i++) {
1200 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
1201 if (mze->mze_name[0] == 0) {
1202 mze->mze_value = value;
1203 mze->mze_cd = cd;
1204 (void) strlcpy(mze->mze_name, zn->zn_key_orig,
1205 sizeof (mze->mze_name));
1206 zap->zap_m.zap_num_entries++;
1207 zap->zap_m.zap_alloc_next = i+1;
1208 if (zap->zap_m.zap_alloc_next ==
1209 zap->zap_m.zap_num_chunks)
1210 zap->zap_m.zap_alloc_next = 0;
1211 mze_insert(zap, i, zn->zn_hash);
1212 return;
1215 if (start != 0) {
1216 start = 0;
1217 goto again;
1219 cmn_err(CE_PANIC, "out of entries!");
1222 static int
1223 zap_add_impl(zap_t *zap, const char *key,
1224 int integer_size, uint64_t num_integers,
1225 const void *val, dmu_tx_t *tx, void *tag)
1227 const uint64_t *intval = val;
1228 int err = 0;
1230 zap_name_t *zn = zap_name_alloc(zap, key, 0);
1231 if (zn == NULL) {
1232 zap_unlockdir(zap, tag);
1233 return (SET_ERROR(ENOTSUP));
1235 if (!zap->zap_ismicro) {
1236 err = fzap_add(zn, integer_size, num_integers, val, tag, tx);
1237 zap = zn->zn_zap; /* fzap_add() may change zap */
1238 } else if (integer_size != 8 || num_integers != 1 ||
1239 strlen(key) >= MZAP_NAME_LEN ||
1240 !mze_canfit_fzap_leaf(zn, zn->zn_hash)) {
1241 err = mzap_upgrade(&zn->zn_zap, tag, tx, 0);
1242 if (err == 0) {
1243 err = fzap_add(zn, integer_size, num_integers, val,
1244 tag, tx);
1246 zap = zn->zn_zap; /* fzap_add() may change zap */
1247 } else {
1248 if (mze_find(zn) != NULL) {
1249 err = SET_ERROR(EEXIST);
1250 } else {
1251 mzap_addent(zn, *intval);
1254 ASSERT(zap == zn->zn_zap);
1255 zap_name_free(zn);
1256 if (zap != NULL) /* may be NULL if fzap_add() failed */
1257 zap_unlockdir(zap, tag);
1258 return (err);
1262 zap_add(objset_t *os, uint64_t zapobj, const char *key,
1263 int integer_size, uint64_t num_integers,
1264 const void *val, dmu_tx_t *tx)
1266 zap_t *zap;
1267 int err;
1269 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1270 if (err != 0)
1271 return (err);
1272 err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG);
1273 /* zap_add_impl() calls zap_unlockdir() */
1274 return (err);
1278 zap_add_by_dnode(dnode_t *dn, const char *key,
1279 int integer_size, uint64_t num_integers,
1280 const void *val, dmu_tx_t *tx)
1282 zap_t *zap;
1283 int err;
1285 err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1286 if (err != 0)
1287 return (err);
1288 err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG);
1289 /* zap_add_impl() calls zap_unlockdir() */
1290 return (err);
1294 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1295 int key_numints, int integer_size, uint64_t num_integers,
1296 const void *val, dmu_tx_t *tx)
1298 zap_t *zap;
1300 int err =
1301 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1302 if (err != 0)
1303 return (err);
1304 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1305 if (zn == NULL) {
1306 zap_unlockdir(zap, FTAG);
1307 return (SET_ERROR(ENOTSUP));
1309 err = fzap_add(zn, integer_size, num_integers, val, FTAG, tx);
1310 zap = zn->zn_zap; /* fzap_add() may change zap */
1311 zap_name_free(zn);
1312 if (zap != NULL) /* may be NULL if fzap_add() failed */
1313 zap_unlockdir(zap, FTAG);
1314 return (err);
1318 zap_update(objset_t *os, uint64_t zapobj, const char *name,
1319 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1321 zap_t *zap;
1322 const uint64_t *intval = val;
1324 int err =
1325 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1326 if (err != 0)
1327 return (err);
1328 zap_name_t *zn = zap_name_alloc(zap, name, 0);
1329 if (zn == NULL) {
1330 zap_unlockdir(zap, FTAG);
1331 return (SET_ERROR(ENOTSUP));
1333 if (!zap->zap_ismicro) {
1334 err = fzap_update(zn, integer_size, num_integers, val,
1335 FTAG, tx);
1336 zap = zn->zn_zap; /* fzap_update() may change zap */
1337 } else if (integer_size != 8 || num_integers != 1 ||
1338 strlen(name) >= MZAP_NAME_LEN) {
1339 dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
1340 (u_longlong_t)zapobj, integer_size,
1341 (u_longlong_t)num_integers, name);
1342 err = mzap_upgrade(&zn->zn_zap, FTAG, tx, 0);
1343 if (err == 0) {
1344 err = fzap_update(zn, integer_size, num_integers,
1345 val, FTAG, tx);
1347 zap = zn->zn_zap; /* fzap_update() may change zap */
1348 } else {
1349 mzap_ent_t *mze = mze_find(zn);
1350 if (mze != NULL) {
1351 MZE_PHYS(zap, mze)->mze_value = *intval;
1352 } else {
1353 mzap_addent(zn, *intval);
1356 ASSERT(zap == zn->zn_zap);
1357 zap_name_free(zn);
1358 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */
1359 zap_unlockdir(zap, FTAG);
1360 return (err);
1364 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1365 int key_numints,
1366 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1368 zap_t *zap;
1370 int err =
1371 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1372 if (err != 0)
1373 return (err);
1374 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1375 if (zn == NULL) {
1376 zap_unlockdir(zap, FTAG);
1377 return (SET_ERROR(ENOTSUP));
1379 err = fzap_update(zn, integer_size, num_integers, val, FTAG, tx);
1380 zap = zn->zn_zap; /* fzap_update() may change zap */
1381 zap_name_free(zn);
1382 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */
1383 zap_unlockdir(zap, FTAG);
1384 return (err);
1388 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
1390 return (zap_remove_norm(os, zapobj, name, 0, tx));
1393 static int
1394 zap_remove_impl(zap_t *zap, const char *name,
1395 matchtype_t mt, dmu_tx_t *tx)
1397 int err = 0;
1399 zap_name_t *zn = zap_name_alloc(zap, name, mt);
1400 if (zn == NULL)
1401 return (SET_ERROR(ENOTSUP));
1402 if (!zap->zap_ismicro) {
1403 err = fzap_remove(zn, tx);
1404 } else {
1405 mzap_ent_t *mze = mze_find(zn);
1406 if (mze == NULL) {
1407 err = SET_ERROR(ENOENT);
1408 } else {
1409 zap->zap_m.zap_num_entries--;
1410 memset(&zap_m_phys(zap)->mz_chunk[mze->mze_chunkid], 0,
1411 sizeof (mzap_ent_phys_t));
1412 mze_remove(zap, mze);
1415 zap_name_free(zn);
1416 return (err);
1420 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
1421 matchtype_t mt, dmu_tx_t *tx)
1423 zap_t *zap;
1424 int err;
1426 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1427 if (err)
1428 return (err);
1429 err = zap_remove_impl(zap, name, mt, tx);
1430 zap_unlockdir(zap, FTAG);
1431 return (err);
1435 zap_remove_by_dnode(dnode_t *dn, const char *name, dmu_tx_t *tx)
1437 zap_t *zap;
1438 int err;
1440 err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1441 if (err)
1442 return (err);
1443 err = zap_remove_impl(zap, name, 0, tx);
1444 zap_unlockdir(zap, FTAG);
1445 return (err);
1449 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1450 int key_numints, dmu_tx_t *tx)
1452 zap_t *zap;
1454 int err =
1455 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1456 if (err != 0)
1457 return (err);
1458 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1459 if (zn == NULL) {
1460 zap_unlockdir(zap, FTAG);
1461 return (SET_ERROR(ENOTSUP));
1463 err = fzap_remove(zn, tx);
1464 zap_name_free(zn);
1465 zap_unlockdir(zap, FTAG);
1466 return (err);
1470 * Routines for iterating over the attributes.
1473 static void
1474 zap_cursor_init_impl(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1475 uint64_t serialized, boolean_t prefetch)
1477 zc->zc_objset = os;
1478 zc->zc_zap = NULL;
1479 zc->zc_leaf = NULL;
1480 zc->zc_zapobj = zapobj;
1481 zc->zc_serialized = serialized;
1482 zc->zc_hash = 0;
1483 zc->zc_cd = 0;
1484 zc->zc_prefetch = prefetch;
1486 void
1487 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1488 uint64_t serialized)
1490 zap_cursor_init_impl(zc, os, zapobj, serialized, B_TRUE);
1494 * Initialize a cursor at the beginning of the ZAP object. The entire
1495 * ZAP object will be prefetched.
1497 void
1498 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1500 zap_cursor_init_impl(zc, os, zapobj, 0, B_TRUE);
1504 * Initialize a cursor at the beginning, but request that we not prefetch
1505 * the entire ZAP object.
1507 void
1508 zap_cursor_init_noprefetch(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1510 zap_cursor_init_impl(zc, os, zapobj, 0, B_FALSE);
1513 void
1514 zap_cursor_fini(zap_cursor_t *zc)
1516 if (zc->zc_zap) {
1517 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1518 zap_unlockdir(zc->zc_zap, NULL);
1519 zc->zc_zap = NULL;
1521 if (zc->zc_leaf) {
1522 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1523 zap_put_leaf(zc->zc_leaf);
1524 zc->zc_leaf = NULL;
1526 zc->zc_objset = NULL;
1529 uint64_t
1530 zap_cursor_serialize(zap_cursor_t *zc)
1532 if (zc->zc_hash == -1ULL)
1533 return (-1ULL);
1534 if (zc->zc_zap == NULL)
1535 return (zc->zc_serialized);
1536 ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
1537 ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
1540 * We want to keep the high 32 bits of the cursor zero if we can, so
1541 * that 32-bit programs can access this. So usually use a small
1542 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
1543 * of the cursor.
1545 * [ collision differentiator | zap_hashbits()-bit hash value ]
1547 return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
1548 ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
1552 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
1554 int err;
1556 if (zc->zc_hash == -1ULL)
1557 return (SET_ERROR(ENOENT));
1559 if (zc->zc_zap == NULL) {
1560 int hb;
1561 err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1562 RW_READER, TRUE, FALSE, NULL, &zc->zc_zap);
1563 if (err != 0)
1564 return (err);
1567 * To support zap_cursor_init_serialized, advance, retrieve,
1568 * we must add to the existing zc_cd, which may already
1569 * be 1 due to the zap_cursor_advance.
1571 ASSERT(zc->zc_hash == 0);
1572 hb = zap_hashbits(zc->zc_zap);
1573 zc->zc_hash = zc->zc_serialized << (64 - hb);
1574 zc->zc_cd += zc->zc_serialized >> hb;
1575 if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
1576 zc->zc_cd = 0;
1577 } else {
1578 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1580 if (!zc->zc_zap->zap_ismicro) {
1581 err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
1582 } else {
1583 avl_index_t idx;
1584 mzap_ent_t mze_tofind;
1586 mze_tofind.mze_hash = zc->zc_hash;
1587 mze_tofind.mze_cd = zc->zc_cd;
1589 mzap_ent_t *mze =
1590 avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx);
1591 if (mze == NULL) {
1592 mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl,
1593 idx, AVL_AFTER);
1595 if (mze) {
1596 mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze);
1597 ASSERT3U(mze->mze_cd, ==, mzep->mze_cd);
1598 za->za_normalization_conflict =
1599 mzap_normalization_conflict(zc->zc_zap, NULL, mze);
1600 za->za_integer_length = 8;
1601 za->za_num_integers = 1;
1602 za->za_first_integer = mzep->mze_value;
1603 (void) strlcpy(za->za_name, mzep->mze_name,
1604 sizeof (za->za_name));
1605 zc->zc_hash = mze->mze_hash;
1606 zc->zc_cd = mze->mze_cd;
1607 err = 0;
1608 } else {
1609 zc->zc_hash = -1ULL;
1610 err = SET_ERROR(ENOENT);
1613 rw_exit(&zc->zc_zap->zap_rwlock);
1614 return (err);
1617 void
1618 zap_cursor_advance(zap_cursor_t *zc)
1620 if (zc->zc_hash == -1ULL)
1621 return;
1622 zc->zc_cd++;
1626 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
1628 zap_t *zap;
1630 int err =
1631 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1632 if (err != 0)
1633 return (err);
1635 memset(zs, 0, sizeof (zap_stats_t));
1637 if (zap->zap_ismicro) {
1638 zs->zs_blocksize = zap->zap_dbuf->db_size;
1639 zs->zs_num_entries = zap->zap_m.zap_num_entries;
1640 zs->zs_num_blocks = 1;
1641 } else {
1642 fzap_get_stats(zap, zs);
1644 zap_unlockdir(zap, FTAG);
1645 return (0);
1648 #if defined(_KERNEL)
1649 EXPORT_SYMBOL(zap_create);
1650 EXPORT_SYMBOL(zap_create_dnsize);
1651 EXPORT_SYMBOL(zap_create_norm);
1652 EXPORT_SYMBOL(zap_create_norm_dnsize);
1653 EXPORT_SYMBOL(zap_create_flags);
1654 EXPORT_SYMBOL(zap_create_flags_dnsize);
1655 EXPORT_SYMBOL(zap_create_claim);
1656 EXPORT_SYMBOL(zap_create_claim_norm);
1657 EXPORT_SYMBOL(zap_create_claim_norm_dnsize);
1658 EXPORT_SYMBOL(zap_create_hold);
1659 EXPORT_SYMBOL(zap_destroy);
1660 EXPORT_SYMBOL(zap_lookup);
1661 EXPORT_SYMBOL(zap_lookup_by_dnode);
1662 EXPORT_SYMBOL(zap_lookup_norm);
1663 EXPORT_SYMBOL(zap_lookup_uint64);
1664 EXPORT_SYMBOL(zap_contains);
1665 EXPORT_SYMBOL(zap_prefetch);
1666 EXPORT_SYMBOL(zap_prefetch_uint64);
1667 EXPORT_SYMBOL(zap_add);
1668 EXPORT_SYMBOL(zap_add_by_dnode);
1669 EXPORT_SYMBOL(zap_add_uint64);
1670 EXPORT_SYMBOL(zap_update);
1671 EXPORT_SYMBOL(zap_update_uint64);
1672 EXPORT_SYMBOL(zap_length);
1673 EXPORT_SYMBOL(zap_length_uint64);
1674 EXPORT_SYMBOL(zap_remove);
1675 EXPORT_SYMBOL(zap_remove_by_dnode);
1676 EXPORT_SYMBOL(zap_remove_norm);
1677 EXPORT_SYMBOL(zap_remove_uint64);
1678 EXPORT_SYMBOL(zap_count);
1679 EXPORT_SYMBOL(zap_value_search);
1680 EXPORT_SYMBOL(zap_join);
1681 EXPORT_SYMBOL(zap_join_increment);
1682 EXPORT_SYMBOL(zap_add_int);
1683 EXPORT_SYMBOL(zap_remove_int);
1684 EXPORT_SYMBOL(zap_lookup_int);
1685 EXPORT_SYMBOL(zap_increment_int);
1686 EXPORT_SYMBOL(zap_add_int_key);
1687 EXPORT_SYMBOL(zap_lookup_int_key);
1688 EXPORT_SYMBOL(zap_increment);
1689 EXPORT_SYMBOL(zap_cursor_init);
1690 EXPORT_SYMBOL(zap_cursor_fini);
1691 EXPORT_SYMBOL(zap_cursor_retrieve);
1692 EXPORT_SYMBOL(zap_cursor_advance);
1693 EXPORT_SYMBOL(zap_cursor_serialize);
1694 EXPORT_SYMBOL(zap_cursor_init_serialized);
1695 EXPORT_SYMBOL(zap_get_stats);
1696 #endif