zdb: fix printf() length for uint64_t devid
[zfs.git] / cmd / ztest.c
blob8cfbdfe1c2e2def81bbcfedd4163cd2042ab4637
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2013 Steven Hartland. All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2017 Joyent, Inc.
28 * Copyright (c) 2017, Intel Corporation.
32 * The objective of this program is to provide a DMU/ZAP/SPA stress test
33 * that runs entirely in userland, is easy to use, and easy to extend.
35 * The overall design of the ztest program is as follows:
37 * (1) For each major functional area (e.g. adding vdevs to a pool,
38 * creating and destroying datasets, reading and writing objects, etc)
39 * we have a simple routine to test that functionality. These
40 * individual routines do not have to do anything "stressful".
42 * (2) We turn these simple functionality tests into a stress test by
43 * running them all in parallel, with as many threads as desired,
44 * and spread across as many datasets, objects, and vdevs as desired.
46 * (3) While all this is happening, we inject faults into the pool to
47 * verify that self-healing data really works.
49 * (4) Every time we open a dataset, we change its checksum and compression
50 * functions. Thus even individual objects vary from block to block
51 * in which checksum they use and whether they're compressed.
53 * (5) To verify that we never lose on-disk consistency after a crash,
54 * we run the entire test in a child of the main process.
55 * At random times, the child self-immolates with a SIGKILL.
56 * This is the software equivalent of pulling the power cord.
57 * The parent then runs the test again, using the existing
58 * storage pool, as many times as desired. If backwards compatibility
59 * testing is enabled ztest will sometimes run the "older" version
60 * of ztest after a SIGKILL.
62 * (6) To verify that we don't have future leaks or temporal incursions,
63 * many of the functional tests record the transaction group number
64 * as part of their data. When reading old data, they verify that
65 * the transaction group number is less than the current, open txg.
66 * If you add a new test, please do this if applicable.
68 * (7) Threads are created with a reduced stack size, for sanity checking.
69 * Therefore, it's important not to allocate huge buffers on the stack.
71 * When run with no arguments, ztest runs for about five minutes and
72 * produces no output if successful. To get a little bit of information,
73 * specify -V. To get more information, specify -VV, and so on.
75 * To turn this into an overnight stress test, use -T to specify run time.
77 * You can ask more vdevs [-v], datasets [-d], or threads [-t]
78 * to increase the pool capacity, fanout, and overall stress level.
80 * Use the -k option to set the desired frequency of kills.
82 * When ztest invokes itself it passes all relevant information through a
83 * temporary file which is mmap-ed in the child process. This allows shared
84 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
85 * stored at offset 0 of this file and contains information on the size and
86 * number of shared structures in the file. The information stored in this file
87 * must remain backwards compatible with older versions of ztest so that
88 * ztest can invoke them during backwards compatibility testing (-B).
91 #include <sys/zfs_context.h>
92 #include <sys/spa.h>
93 #include <sys/dmu.h>
94 #include <sys/txg.h>
95 #include <sys/dbuf.h>
96 #include <sys/zap.h>
97 #include <sys/dmu_objset.h>
98 #include <sys/poll.h>
99 #include <sys/stat.h>
100 #include <sys/time.h>
101 #include <sys/wait.h>
102 #include <sys/mman.h>
103 #include <sys/resource.h>
104 #include <sys/zio.h>
105 #include <sys/zil.h>
106 #include <sys/zil_impl.h>
107 #include <sys/vdev_draid.h>
108 #include <sys/vdev_impl.h>
109 #include <sys/vdev_file.h>
110 #include <sys/vdev_initialize.h>
111 #include <sys/vdev_raidz.h>
112 #include <sys/vdev_trim.h>
113 #include <sys/spa_impl.h>
114 #include <sys/metaslab_impl.h>
115 #include <sys/dsl_prop.h>
116 #include <sys/dsl_dataset.h>
117 #include <sys/dsl_destroy.h>
118 #include <sys/dsl_scan.h>
119 #include <sys/zio_checksum.h>
120 #include <sys/zfs_refcount.h>
121 #include <sys/zfeature.h>
122 #include <sys/dsl_userhold.h>
123 #include <sys/abd.h>
124 #include <sys/blake3.h>
125 #include <stdio.h>
126 #include <stdlib.h>
127 #include <unistd.h>
128 #include <getopt.h>
129 #include <signal.h>
130 #include <umem.h>
131 #include <ctype.h>
132 #include <math.h>
133 #include <sys/fs/zfs.h>
134 #include <zfs_fletcher.h>
135 #include <libnvpair.h>
136 #include <libzutil.h>
137 #include <sys/crypto/icp.h>
138 #include <sys/zfs_impl.h>
139 #if (__GLIBC__ && !__UCLIBC__)
140 #include <execinfo.h> /* for backtrace() */
141 #endif
143 static int ztest_fd_data = -1;
144 static int ztest_fd_rand = -1;
146 typedef struct ztest_shared_hdr {
147 uint64_t zh_hdr_size;
148 uint64_t zh_opts_size;
149 uint64_t zh_size;
150 uint64_t zh_stats_size;
151 uint64_t zh_stats_count;
152 uint64_t zh_ds_size;
153 uint64_t zh_ds_count;
154 } ztest_shared_hdr_t;
156 static ztest_shared_hdr_t *ztest_shared_hdr;
158 enum ztest_class_state {
159 ZTEST_VDEV_CLASS_OFF,
160 ZTEST_VDEV_CLASS_ON,
161 ZTEST_VDEV_CLASS_RND
164 #define ZO_GVARS_MAX_ARGLEN ((size_t)64)
165 #define ZO_GVARS_MAX_COUNT ((size_t)10)
167 typedef struct ztest_shared_opts {
168 char zo_pool[ZFS_MAX_DATASET_NAME_LEN];
169 char zo_dir[ZFS_MAX_DATASET_NAME_LEN];
170 char zo_alt_ztest[MAXNAMELEN];
171 char zo_alt_libpath[MAXNAMELEN];
172 uint64_t zo_vdevs;
173 uint64_t zo_vdevtime;
174 size_t zo_vdev_size;
175 int zo_ashift;
176 int zo_mirrors;
177 int zo_raid_children;
178 int zo_raid_parity;
179 char zo_raid_type[8];
180 int zo_draid_data;
181 int zo_draid_spares;
182 int zo_datasets;
183 int zo_threads;
184 uint64_t zo_passtime;
185 uint64_t zo_killrate;
186 int zo_verbose;
187 int zo_init;
188 uint64_t zo_time;
189 uint64_t zo_maxloops;
190 uint64_t zo_metaslab_force_ganging;
191 int zo_mmp_test;
192 int zo_special_vdevs;
193 int zo_dump_dbgmsg;
194 int zo_gvars_count;
195 char zo_gvars[ZO_GVARS_MAX_COUNT][ZO_GVARS_MAX_ARGLEN];
196 } ztest_shared_opts_t;
198 /* Default values for command line options. */
199 #define DEFAULT_POOL "ztest"
200 #define DEFAULT_VDEV_DIR "/tmp"
201 #define DEFAULT_VDEV_COUNT 5
202 #define DEFAULT_VDEV_SIZE (SPA_MINDEVSIZE * 4) /* 256m default size */
203 #define DEFAULT_VDEV_SIZE_STR "256M"
204 #define DEFAULT_ASHIFT SPA_MINBLOCKSHIFT
205 #define DEFAULT_MIRRORS 2
206 #define DEFAULT_RAID_CHILDREN 4
207 #define DEFAULT_RAID_PARITY 1
208 #define DEFAULT_DRAID_DATA 4
209 #define DEFAULT_DRAID_SPARES 1
210 #define DEFAULT_DATASETS_COUNT 7
211 #define DEFAULT_THREADS 23
212 #define DEFAULT_RUN_TIME 300 /* 300 seconds */
213 #define DEFAULT_RUN_TIME_STR "300 sec"
214 #define DEFAULT_PASS_TIME 60 /* 60 seconds */
215 #define DEFAULT_PASS_TIME_STR "60 sec"
216 #define DEFAULT_KILL_RATE 70 /* 70% kill rate */
217 #define DEFAULT_KILLRATE_STR "70%"
218 #define DEFAULT_INITS 1
219 #define DEFAULT_MAX_LOOPS 50 /* 5 minutes */
220 #define DEFAULT_FORCE_GANGING (64 << 10)
221 #define DEFAULT_FORCE_GANGING_STR "64K"
223 /* Simplifying assumption: -1 is not a valid default. */
224 #define NO_DEFAULT -1
226 static const ztest_shared_opts_t ztest_opts_defaults = {
227 .zo_pool = DEFAULT_POOL,
228 .zo_dir = DEFAULT_VDEV_DIR,
229 .zo_alt_ztest = { '\0' },
230 .zo_alt_libpath = { '\0' },
231 .zo_vdevs = DEFAULT_VDEV_COUNT,
232 .zo_ashift = DEFAULT_ASHIFT,
233 .zo_mirrors = DEFAULT_MIRRORS,
234 .zo_raid_children = DEFAULT_RAID_CHILDREN,
235 .zo_raid_parity = DEFAULT_RAID_PARITY,
236 .zo_raid_type = VDEV_TYPE_RAIDZ,
237 .zo_vdev_size = DEFAULT_VDEV_SIZE,
238 .zo_draid_data = DEFAULT_DRAID_DATA, /* data drives */
239 .zo_draid_spares = DEFAULT_DRAID_SPARES, /* distributed spares */
240 .zo_datasets = DEFAULT_DATASETS_COUNT,
241 .zo_threads = DEFAULT_THREADS,
242 .zo_passtime = DEFAULT_PASS_TIME,
243 .zo_killrate = DEFAULT_KILL_RATE,
244 .zo_verbose = 0,
245 .zo_mmp_test = 0,
246 .zo_init = DEFAULT_INITS,
247 .zo_time = DEFAULT_RUN_TIME,
248 .zo_maxloops = DEFAULT_MAX_LOOPS, /* max loops during spa_freeze() */
249 .zo_metaslab_force_ganging = DEFAULT_FORCE_GANGING,
250 .zo_special_vdevs = ZTEST_VDEV_CLASS_RND,
251 .zo_gvars_count = 0,
254 extern uint64_t metaslab_force_ganging;
255 extern uint64_t metaslab_df_alloc_threshold;
256 extern uint64_t zfs_deadman_synctime_ms;
257 extern uint_t metaslab_preload_limit;
258 extern int zfs_compressed_arc_enabled;
259 extern int zfs_abd_scatter_enabled;
260 extern uint_t dmu_object_alloc_chunk_shift;
261 extern boolean_t zfs_force_some_double_word_sm_entries;
262 extern unsigned long zio_decompress_fail_fraction;
263 extern unsigned long zfs_reconstruct_indirect_damage_fraction;
266 static ztest_shared_opts_t *ztest_shared_opts;
267 static ztest_shared_opts_t ztest_opts;
268 static const char *const ztest_wkeydata = "abcdefghijklmnopqrstuvwxyz012345";
270 typedef struct ztest_shared_ds {
271 uint64_t zd_seq;
272 } ztest_shared_ds_t;
274 static ztest_shared_ds_t *ztest_shared_ds;
275 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
277 #define BT_MAGIC 0x123456789abcdefULL
278 #define MAXFAULTS(zs) \
279 (MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raid_parity + 1) - 1)
281 enum ztest_io_type {
282 ZTEST_IO_WRITE_TAG,
283 ZTEST_IO_WRITE_PATTERN,
284 ZTEST_IO_WRITE_ZEROES,
285 ZTEST_IO_TRUNCATE,
286 ZTEST_IO_SETATTR,
287 ZTEST_IO_REWRITE,
288 ZTEST_IO_TYPES
291 typedef struct ztest_block_tag {
292 uint64_t bt_magic;
293 uint64_t bt_objset;
294 uint64_t bt_object;
295 uint64_t bt_dnodesize;
296 uint64_t bt_offset;
297 uint64_t bt_gen;
298 uint64_t bt_txg;
299 uint64_t bt_crtxg;
300 } ztest_block_tag_t;
302 typedef struct bufwad {
303 uint64_t bw_index;
304 uint64_t bw_txg;
305 uint64_t bw_data;
306 } bufwad_t;
309 * It would be better to use a rangelock_t per object. Unfortunately
310 * the rangelock_t is not a drop-in replacement for rl_t, because we
311 * still need to map from object ID to rangelock_t.
313 typedef enum {
314 RL_READER,
315 RL_WRITER,
316 RL_APPEND
317 } rl_type_t;
319 typedef struct rll {
320 void *rll_writer;
321 int rll_readers;
322 kmutex_t rll_lock;
323 kcondvar_t rll_cv;
324 } rll_t;
326 typedef struct rl {
327 uint64_t rl_object;
328 uint64_t rl_offset;
329 uint64_t rl_size;
330 rll_t *rl_lock;
331 } rl_t;
333 #define ZTEST_RANGE_LOCKS 64
334 #define ZTEST_OBJECT_LOCKS 64
337 * Object descriptor. Used as a template for object lookup/create/remove.
339 typedef struct ztest_od {
340 uint64_t od_dir;
341 uint64_t od_object;
342 dmu_object_type_t od_type;
343 dmu_object_type_t od_crtype;
344 uint64_t od_blocksize;
345 uint64_t od_crblocksize;
346 uint64_t od_crdnodesize;
347 uint64_t od_gen;
348 uint64_t od_crgen;
349 char od_name[ZFS_MAX_DATASET_NAME_LEN];
350 } ztest_od_t;
353 * Per-dataset state.
355 typedef struct ztest_ds {
356 ztest_shared_ds_t *zd_shared;
357 objset_t *zd_os;
358 pthread_rwlock_t zd_zilog_lock;
359 zilog_t *zd_zilog;
360 ztest_od_t *zd_od; /* debugging aid */
361 char zd_name[ZFS_MAX_DATASET_NAME_LEN];
362 kmutex_t zd_dirobj_lock;
363 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS];
364 rll_t zd_range_lock[ZTEST_RANGE_LOCKS];
365 } ztest_ds_t;
368 * Per-iteration state.
370 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id);
372 typedef struct ztest_info {
373 ztest_func_t *zi_func; /* test function */
374 uint64_t zi_iters; /* iterations per execution */
375 uint64_t *zi_interval; /* execute every <interval> seconds */
376 const char *zi_funcname; /* name of test function */
377 } ztest_info_t;
379 typedef struct ztest_shared_callstate {
380 uint64_t zc_count; /* per-pass count */
381 uint64_t zc_time; /* per-pass time */
382 uint64_t zc_next; /* next time to call this function */
383 } ztest_shared_callstate_t;
385 static ztest_shared_callstate_t *ztest_shared_callstate;
386 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
388 ztest_func_t ztest_dmu_read_write;
389 ztest_func_t ztest_dmu_write_parallel;
390 ztest_func_t ztest_dmu_object_alloc_free;
391 ztest_func_t ztest_dmu_object_next_chunk;
392 ztest_func_t ztest_dmu_commit_callbacks;
393 ztest_func_t ztest_zap;
394 ztest_func_t ztest_zap_parallel;
395 ztest_func_t ztest_zil_commit;
396 ztest_func_t ztest_zil_remount;
397 ztest_func_t ztest_dmu_read_write_zcopy;
398 ztest_func_t ztest_dmu_objset_create_destroy;
399 ztest_func_t ztest_dmu_prealloc;
400 ztest_func_t ztest_fzap;
401 ztest_func_t ztest_dmu_snapshot_create_destroy;
402 ztest_func_t ztest_dsl_prop_get_set;
403 ztest_func_t ztest_spa_prop_get_set;
404 ztest_func_t ztest_spa_create_destroy;
405 ztest_func_t ztest_fault_inject;
406 ztest_func_t ztest_dmu_snapshot_hold;
407 ztest_func_t ztest_mmp_enable_disable;
408 ztest_func_t ztest_scrub;
409 ztest_func_t ztest_dsl_dataset_promote_busy;
410 ztest_func_t ztest_vdev_attach_detach;
411 ztest_func_t ztest_vdev_LUN_growth;
412 ztest_func_t ztest_vdev_add_remove;
413 ztest_func_t ztest_vdev_class_add;
414 ztest_func_t ztest_vdev_aux_add_remove;
415 ztest_func_t ztest_split_pool;
416 ztest_func_t ztest_reguid;
417 ztest_func_t ztest_spa_upgrade;
418 ztest_func_t ztest_device_removal;
419 ztest_func_t ztest_spa_checkpoint_create_discard;
420 ztest_func_t ztest_initialize;
421 ztest_func_t ztest_trim;
422 ztest_func_t ztest_blake3;
423 ztest_func_t ztest_fletcher;
424 ztest_func_t ztest_fletcher_incr;
425 ztest_func_t ztest_verify_dnode_bt;
427 static uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */
428 static uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */
429 static uint64_t zopt_often = 1ULL * NANOSEC; /* every second */
430 static uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */
431 static uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */
433 #define ZTI_INIT(func, iters, interval) \
434 { .zi_func = (func), \
435 .zi_iters = (iters), \
436 .zi_interval = (interval), \
437 .zi_funcname = # func }
439 static ztest_info_t ztest_info[] = {
440 ZTI_INIT(ztest_dmu_read_write, 1, &zopt_always),
441 ZTI_INIT(ztest_dmu_write_parallel, 10, &zopt_always),
442 ZTI_INIT(ztest_dmu_object_alloc_free, 1, &zopt_always),
443 ZTI_INIT(ztest_dmu_object_next_chunk, 1, &zopt_sometimes),
444 ZTI_INIT(ztest_dmu_commit_callbacks, 1, &zopt_always),
445 ZTI_INIT(ztest_zap, 30, &zopt_always),
446 ZTI_INIT(ztest_zap_parallel, 100, &zopt_always),
447 ZTI_INIT(ztest_split_pool, 1, &zopt_sometimes),
448 ZTI_INIT(ztest_zil_commit, 1, &zopt_incessant),
449 ZTI_INIT(ztest_zil_remount, 1, &zopt_sometimes),
450 ZTI_INIT(ztest_dmu_read_write_zcopy, 1, &zopt_often),
451 ZTI_INIT(ztest_dmu_objset_create_destroy, 1, &zopt_often),
452 ZTI_INIT(ztest_dsl_prop_get_set, 1, &zopt_often),
453 ZTI_INIT(ztest_spa_prop_get_set, 1, &zopt_sometimes),
454 #if 0
455 ZTI_INIT(ztest_dmu_prealloc, 1, &zopt_sometimes),
456 #endif
457 ZTI_INIT(ztest_fzap, 1, &zopt_sometimes),
458 ZTI_INIT(ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes),
459 ZTI_INIT(ztest_spa_create_destroy, 1, &zopt_sometimes),
460 ZTI_INIT(ztest_fault_inject, 1, &zopt_sometimes),
461 ZTI_INIT(ztest_dmu_snapshot_hold, 1, &zopt_sometimes),
462 ZTI_INIT(ztest_mmp_enable_disable, 1, &zopt_sometimes),
463 ZTI_INIT(ztest_reguid, 1, &zopt_rarely),
464 ZTI_INIT(ztest_scrub, 1, &zopt_rarely),
465 ZTI_INIT(ztest_spa_upgrade, 1, &zopt_rarely),
466 ZTI_INIT(ztest_dsl_dataset_promote_busy, 1, &zopt_rarely),
467 ZTI_INIT(ztest_vdev_attach_detach, 1, &zopt_sometimes),
468 ZTI_INIT(ztest_vdev_LUN_growth, 1, &zopt_rarely),
469 ZTI_INIT(ztest_vdev_add_remove, 1, &ztest_opts.zo_vdevtime),
470 ZTI_INIT(ztest_vdev_class_add, 1, &ztest_opts.zo_vdevtime),
471 ZTI_INIT(ztest_vdev_aux_add_remove, 1, &ztest_opts.zo_vdevtime),
472 ZTI_INIT(ztest_device_removal, 1, &zopt_sometimes),
473 ZTI_INIT(ztest_spa_checkpoint_create_discard, 1, &zopt_rarely),
474 ZTI_INIT(ztest_initialize, 1, &zopt_sometimes),
475 ZTI_INIT(ztest_trim, 1, &zopt_sometimes),
476 ZTI_INIT(ztest_blake3, 1, &zopt_rarely),
477 ZTI_INIT(ztest_fletcher, 1, &zopt_rarely),
478 ZTI_INIT(ztest_fletcher_incr, 1, &zopt_rarely),
479 ZTI_INIT(ztest_verify_dnode_bt, 1, &zopt_sometimes),
482 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
485 * The following struct is used to hold a list of uncalled commit callbacks.
486 * The callbacks are ordered by txg number.
488 typedef struct ztest_cb_list {
489 kmutex_t zcl_callbacks_lock;
490 list_t zcl_callbacks;
491 } ztest_cb_list_t;
494 * Stuff we need to share writably between parent and child.
496 typedef struct ztest_shared {
497 boolean_t zs_do_init;
498 hrtime_t zs_proc_start;
499 hrtime_t zs_proc_stop;
500 hrtime_t zs_thread_start;
501 hrtime_t zs_thread_stop;
502 hrtime_t zs_thread_kill;
503 uint64_t zs_enospc_count;
504 uint64_t zs_vdev_next_leaf;
505 uint64_t zs_vdev_aux;
506 uint64_t zs_alloc;
507 uint64_t zs_space;
508 uint64_t zs_splits;
509 uint64_t zs_mirrors;
510 uint64_t zs_metaslab_sz;
511 uint64_t zs_metaslab_df_alloc_threshold;
512 uint64_t zs_guid;
513 } ztest_shared_t;
515 #define ID_PARALLEL -1ULL
517 static char ztest_dev_template[] = "%s/%s.%llua";
518 static char ztest_aux_template[] = "%s/%s.%s.%llu";
519 static ztest_shared_t *ztest_shared;
521 static spa_t *ztest_spa = NULL;
522 static ztest_ds_t *ztest_ds;
524 static kmutex_t ztest_vdev_lock;
525 static boolean_t ztest_device_removal_active = B_FALSE;
526 static boolean_t ztest_pool_scrubbed = B_FALSE;
527 static kmutex_t ztest_checkpoint_lock;
530 * The ztest_name_lock protects the pool and dataset namespace used by
531 * the individual tests. To modify the namespace, consumers must grab
532 * this lock as writer. Grabbing the lock as reader will ensure that the
533 * namespace does not change while the lock is held.
535 static pthread_rwlock_t ztest_name_lock;
537 static boolean_t ztest_dump_core = B_TRUE;
538 static boolean_t ztest_exiting;
540 /* Global commit callback list */
541 static ztest_cb_list_t zcl;
542 /* Commit cb delay */
543 static uint64_t zc_min_txg_delay = UINT64_MAX;
544 static int zc_cb_counter = 0;
547 * Minimum number of commit callbacks that need to be registered for us to check
548 * whether the minimum txg delay is acceptable.
550 #define ZTEST_COMMIT_CB_MIN_REG 100
553 * If a number of txgs equal to this threshold have been created after a commit
554 * callback has been registered but not called, then we assume there is an
555 * implementation bug.
557 #define ZTEST_COMMIT_CB_THRESH (TXG_CONCURRENT_STATES + 1000)
559 enum ztest_object {
560 ZTEST_META_DNODE = 0,
561 ZTEST_DIROBJ,
562 ZTEST_OBJECTS
565 static __attribute__((noreturn)) void usage(boolean_t requested);
566 static int ztest_scrub_impl(spa_t *spa);
569 * These libumem hooks provide a reasonable set of defaults for the allocator's
570 * debugging facilities.
572 const char *
573 _umem_debug_init(void)
575 return ("default,verbose"); /* $UMEM_DEBUG setting */
578 const char *
579 _umem_logging_init(void)
581 return ("fail,contents"); /* $UMEM_LOGGING setting */
584 static void
585 dump_debug_buffer(void)
587 ssize_t ret __attribute__((unused));
589 if (!ztest_opts.zo_dump_dbgmsg)
590 return;
593 * We use write() instead of printf() so that this function
594 * is safe to call from a signal handler.
596 ret = write(STDOUT_FILENO, "\n", 1);
597 zfs_dbgmsg_print("ztest");
600 #define BACKTRACE_SZ 100
602 static void sig_handler(int signo)
604 struct sigaction action;
605 #if (__GLIBC__ && !__UCLIBC__) /* backtrace() is a GNU extension */
606 int nptrs;
607 void *buffer[BACKTRACE_SZ];
609 nptrs = backtrace(buffer, BACKTRACE_SZ);
610 backtrace_symbols_fd(buffer, nptrs, STDERR_FILENO);
611 #endif
612 dump_debug_buffer();
615 * Restore default action and re-raise signal so SIGSEGV and
616 * SIGABRT can trigger a core dump.
618 action.sa_handler = SIG_DFL;
619 sigemptyset(&action.sa_mask);
620 action.sa_flags = 0;
621 (void) sigaction(signo, &action, NULL);
622 raise(signo);
625 #define FATAL_MSG_SZ 1024
627 static const char *fatal_msg;
629 static __attribute__((format(printf, 2, 3))) __attribute__((noreturn)) void
630 fatal(int do_perror, const char *message, ...)
632 va_list args;
633 int save_errno = errno;
634 char *buf;
636 (void) fflush(stdout);
637 buf = umem_alloc(FATAL_MSG_SZ, UMEM_NOFAIL);
638 if (buf == NULL)
639 goto out;
641 va_start(args, message);
642 (void) sprintf(buf, "ztest: ");
643 /* LINTED */
644 (void) vsprintf(buf + strlen(buf), message, args);
645 va_end(args);
646 if (do_perror) {
647 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf),
648 ": %s", strerror(save_errno));
650 (void) fprintf(stderr, "%s\n", buf);
651 fatal_msg = buf; /* to ease debugging */
653 out:
654 if (ztest_dump_core)
655 abort();
656 else
657 dump_debug_buffer();
659 exit(3);
662 static int
663 str2shift(const char *buf)
665 const char *ends = "BKMGTPEZ";
666 int i;
668 if (buf[0] == '\0')
669 return (0);
670 for (i = 0; i < strlen(ends); i++) {
671 if (toupper(buf[0]) == ends[i])
672 break;
674 if (i == strlen(ends)) {
675 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n",
676 buf);
677 usage(B_FALSE);
679 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) {
680 return (10*i);
682 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf);
683 usage(B_FALSE);
686 static uint64_t
687 nicenumtoull(const char *buf)
689 char *end;
690 uint64_t val;
692 val = strtoull(buf, &end, 0);
693 if (end == buf) {
694 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf);
695 usage(B_FALSE);
696 } else if (end[0] == '.') {
697 double fval = strtod(buf, &end);
698 fval *= pow(2, str2shift(end));
700 * UINT64_MAX is not exactly representable as a double.
701 * The closest representation is UINT64_MAX + 1, so we
702 * use a >= comparison instead of > for the bounds check.
704 if (fval >= (double)UINT64_MAX) {
705 (void) fprintf(stderr, "ztest: value too large: %s\n",
706 buf);
707 usage(B_FALSE);
709 val = (uint64_t)fval;
710 } else {
711 int shift = str2shift(end);
712 if (shift >= 64 || (val << shift) >> shift != val) {
713 (void) fprintf(stderr, "ztest: value too large: %s\n",
714 buf);
715 usage(B_FALSE);
717 val <<= shift;
719 return (val);
722 typedef struct ztest_option {
723 const char short_opt;
724 const char *long_opt;
725 const char *long_opt_param;
726 const char *comment;
727 unsigned int default_int;
728 const char *default_str;
729 } ztest_option_t;
732 * The following option_table is used for generating the usage info as well as
733 * the long and short option information for calling getopt_long().
735 static ztest_option_t option_table[] = {
736 { 'v', "vdevs", "INTEGER", "Number of vdevs", DEFAULT_VDEV_COUNT,
737 NULL},
738 { 's', "vdev-size", "INTEGER", "Size of each vdev",
739 NO_DEFAULT, DEFAULT_VDEV_SIZE_STR},
740 { 'a', "alignment-shift", "INTEGER",
741 "Alignment shift; use 0 for random", DEFAULT_ASHIFT, NULL},
742 { 'm', "mirror-copies", "INTEGER", "Number of mirror copies",
743 DEFAULT_MIRRORS, NULL},
744 { 'r', "raid-disks", "INTEGER", "Number of raidz/draid disks",
745 DEFAULT_RAID_CHILDREN, NULL},
746 { 'R', "raid-parity", "INTEGER", "Raid parity",
747 DEFAULT_RAID_PARITY, NULL},
748 { 'K', "raid-kind", "raidz|draid|random", "Raid kind",
749 NO_DEFAULT, "random"},
750 { 'D', "draid-data", "INTEGER", "Number of draid data drives",
751 DEFAULT_DRAID_DATA, NULL},
752 { 'S', "draid-spares", "INTEGER", "Number of draid spares",
753 DEFAULT_DRAID_SPARES, NULL},
754 { 'd', "datasets", "INTEGER", "Number of datasets",
755 DEFAULT_DATASETS_COUNT, NULL},
756 { 't', "threads", "INTEGER", "Number of ztest threads",
757 DEFAULT_THREADS, NULL},
758 { 'g', "gang-block-threshold", "INTEGER",
759 "Metaslab gang block threshold",
760 NO_DEFAULT, DEFAULT_FORCE_GANGING_STR},
761 { 'i', "init-count", "INTEGER", "Number of times to initialize pool",
762 DEFAULT_INITS, NULL},
763 { 'k', "kill-percentage", "INTEGER", "Kill percentage",
764 NO_DEFAULT, DEFAULT_KILLRATE_STR},
765 { 'p', "pool-name", "STRING", "Pool name",
766 NO_DEFAULT, DEFAULT_POOL},
767 { 'f', "vdev-file-directory", "PATH", "File directory for vdev files",
768 NO_DEFAULT, DEFAULT_VDEV_DIR},
769 { 'M', "multi-host", NULL,
770 "Multi-host; simulate pool imported on remote host",
771 NO_DEFAULT, NULL},
772 { 'E', "use-existing-pool", NULL,
773 "Use existing pool instead of creating new one", NO_DEFAULT, NULL},
774 { 'T', "run-time", "INTEGER", "Total run time",
775 NO_DEFAULT, DEFAULT_RUN_TIME_STR},
776 { 'P', "pass-time", "INTEGER", "Time per pass",
777 NO_DEFAULT, DEFAULT_PASS_TIME_STR},
778 { 'F', "freeze-loops", "INTEGER", "Max loops in spa_freeze()",
779 DEFAULT_MAX_LOOPS, NULL},
780 { 'B', "alt-ztest", "PATH", "Alternate ztest path",
781 NO_DEFAULT, NULL},
782 { 'C', "vdev-class-state", "on|off|random", "vdev class state",
783 NO_DEFAULT, "random"},
784 { 'o', "option", "\"OPTION=INTEGER\"",
785 "Set global variable to an unsigned 32-bit integer value",
786 NO_DEFAULT, NULL},
787 { 'G', "dump-debug-msg", NULL,
788 "Dump zfs_dbgmsg buffer before exiting due to an error",
789 NO_DEFAULT, NULL},
790 { 'V', "verbose", NULL,
791 "Verbose (use multiple times for ever more verbosity)",
792 NO_DEFAULT, NULL},
793 { 'h', "help", NULL, "Show this help",
794 NO_DEFAULT, NULL},
795 {0, 0, 0, 0, 0, 0}
798 static struct option *long_opts = NULL;
799 static char *short_opts = NULL;
801 static void
802 init_options(void)
804 ASSERT3P(long_opts, ==, NULL);
805 ASSERT3P(short_opts, ==, NULL);
807 int count = sizeof (option_table) / sizeof (option_table[0]);
808 long_opts = umem_alloc(sizeof (struct option) * count, UMEM_NOFAIL);
810 short_opts = umem_alloc(sizeof (char) * 2 * count, UMEM_NOFAIL);
811 int short_opt_index = 0;
813 for (int i = 0; i < count; i++) {
814 long_opts[i].val = option_table[i].short_opt;
815 long_opts[i].name = option_table[i].long_opt;
816 long_opts[i].has_arg = option_table[i].long_opt_param != NULL
817 ? required_argument : no_argument;
818 long_opts[i].flag = NULL;
819 short_opts[short_opt_index++] = option_table[i].short_opt;
820 if (option_table[i].long_opt_param != NULL) {
821 short_opts[short_opt_index++] = ':';
826 static void
827 fini_options(void)
829 int count = sizeof (option_table) / sizeof (option_table[0]);
831 umem_free(long_opts, sizeof (struct option) * count);
832 umem_free(short_opts, sizeof (char) * 2 * count);
834 long_opts = NULL;
835 short_opts = NULL;
838 static __attribute__((noreturn)) void
839 usage(boolean_t requested)
841 char option[80];
842 FILE *fp = requested ? stdout : stderr;
844 (void) fprintf(fp, "Usage: %s [OPTIONS...]\n", DEFAULT_POOL);
845 for (int i = 0; option_table[i].short_opt != 0; i++) {
846 if (option_table[i].long_opt_param != NULL) {
847 (void) sprintf(option, " -%c --%s=%s",
848 option_table[i].short_opt,
849 option_table[i].long_opt,
850 option_table[i].long_opt_param);
851 } else {
852 (void) sprintf(option, " -%c --%s",
853 option_table[i].short_opt,
854 option_table[i].long_opt);
856 (void) fprintf(fp, " %-40s%s", option,
857 option_table[i].comment);
859 if (option_table[i].long_opt_param != NULL) {
860 if (option_table[i].default_str != NULL) {
861 (void) fprintf(fp, " (default: %s)",
862 option_table[i].default_str);
863 } else if (option_table[i].default_int != NO_DEFAULT) {
864 (void) fprintf(fp, " (default: %u)",
865 option_table[i].default_int);
868 (void) fprintf(fp, "\n");
870 exit(requested ? 0 : 1);
873 static uint64_t
874 ztest_random(uint64_t range)
876 uint64_t r;
878 ASSERT3S(ztest_fd_rand, >=, 0);
880 if (range == 0)
881 return (0);
883 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r))
884 fatal(B_TRUE, "short read from /dev/urandom");
886 return (r % range);
889 static void
890 ztest_parse_name_value(const char *input, ztest_shared_opts_t *zo)
892 char name[32];
893 char *value;
894 int state = ZTEST_VDEV_CLASS_RND;
896 (void) strlcpy(name, input, sizeof (name));
898 value = strchr(name, '=');
899 if (value == NULL) {
900 (void) fprintf(stderr, "missing value in property=value "
901 "'-C' argument (%s)\n", input);
902 usage(B_FALSE);
904 *(value) = '\0';
905 value++;
907 if (strcmp(value, "on") == 0) {
908 state = ZTEST_VDEV_CLASS_ON;
909 } else if (strcmp(value, "off") == 0) {
910 state = ZTEST_VDEV_CLASS_OFF;
911 } else if (strcmp(value, "random") == 0) {
912 state = ZTEST_VDEV_CLASS_RND;
913 } else {
914 (void) fprintf(stderr, "invalid property value '%s'\n", value);
915 usage(B_FALSE);
918 if (strcmp(name, "special") == 0) {
919 zo->zo_special_vdevs = state;
920 } else {
921 (void) fprintf(stderr, "invalid property name '%s'\n", name);
922 usage(B_FALSE);
924 if (zo->zo_verbose >= 3)
925 (void) printf("%s vdev state is '%s'\n", name, value);
928 static void
929 process_options(int argc, char **argv)
931 char *path;
932 ztest_shared_opts_t *zo = &ztest_opts;
934 int opt;
935 uint64_t value;
936 const char *raid_kind = "random";
938 memcpy(zo, &ztest_opts_defaults, sizeof (*zo));
940 init_options();
942 while ((opt = getopt_long(argc, argv, short_opts, long_opts,
943 NULL)) != EOF) {
944 value = 0;
945 switch (opt) {
946 case 'v':
947 case 's':
948 case 'a':
949 case 'm':
950 case 'r':
951 case 'R':
952 case 'D':
953 case 'S':
954 case 'd':
955 case 't':
956 case 'g':
957 case 'i':
958 case 'k':
959 case 'T':
960 case 'P':
961 case 'F':
962 value = nicenumtoull(optarg);
964 switch (opt) {
965 case 'v':
966 zo->zo_vdevs = value;
967 break;
968 case 's':
969 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value);
970 break;
971 case 'a':
972 zo->zo_ashift = value;
973 break;
974 case 'm':
975 zo->zo_mirrors = value;
976 break;
977 case 'r':
978 zo->zo_raid_children = MAX(1, value);
979 break;
980 case 'R':
981 zo->zo_raid_parity = MIN(MAX(value, 1), 3);
982 break;
983 case 'K':
984 raid_kind = optarg;
985 break;
986 case 'D':
987 zo->zo_draid_data = MAX(1, value);
988 break;
989 case 'S':
990 zo->zo_draid_spares = MAX(1, value);
991 break;
992 case 'd':
993 zo->zo_datasets = MAX(1, value);
994 break;
995 case 't':
996 zo->zo_threads = MAX(1, value);
997 break;
998 case 'g':
999 zo->zo_metaslab_force_ganging =
1000 MAX(SPA_MINBLOCKSIZE << 1, value);
1001 break;
1002 case 'i':
1003 zo->zo_init = value;
1004 break;
1005 case 'k':
1006 zo->zo_killrate = value;
1007 break;
1008 case 'p':
1009 (void) strlcpy(zo->zo_pool, optarg,
1010 sizeof (zo->zo_pool));
1011 break;
1012 case 'f':
1013 path = realpath(optarg, NULL);
1014 if (path == NULL) {
1015 (void) fprintf(stderr, "error: %s: %s\n",
1016 optarg, strerror(errno));
1017 usage(B_FALSE);
1018 } else {
1019 (void) strlcpy(zo->zo_dir, path,
1020 sizeof (zo->zo_dir));
1021 free(path);
1023 break;
1024 case 'M':
1025 zo->zo_mmp_test = 1;
1026 break;
1027 case 'V':
1028 zo->zo_verbose++;
1029 break;
1030 case 'E':
1031 zo->zo_init = 0;
1032 break;
1033 case 'T':
1034 zo->zo_time = value;
1035 break;
1036 case 'P':
1037 zo->zo_passtime = MAX(1, value);
1038 break;
1039 case 'F':
1040 zo->zo_maxloops = MAX(1, value);
1041 break;
1042 case 'B':
1043 (void) strlcpy(zo->zo_alt_ztest, optarg,
1044 sizeof (zo->zo_alt_ztest));
1045 break;
1046 case 'C':
1047 ztest_parse_name_value(optarg, zo);
1048 break;
1049 case 'o':
1050 if (zo->zo_gvars_count >= ZO_GVARS_MAX_COUNT) {
1051 (void) fprintf(stderr,
1052 "max global var count (%zu) exceeded\n",
1053 ZO_GVARS_MAX_COUNT);
1054 usage(B_FALSE);
1056 char *v = zo->zo_gvars[zo->zo_gvars_count];
1057 if (strlcpy(v, optarg, ZO_GVARS_MAX_ARGLEN) >=
1058 ZO_GVARS_MAX_ARGLEN) {
1059 (void) fprintf(stderr,
1060 "global var option '%s' is too long\n",
1061 optarg);
1062 usage(B_FALSE);
1064 zo->zo_gvars_count++;
1065 break;
1066 case 'G':
1067 zo->zo_dump_dbgmsg = 1;
1068 break;
1069 case 'h':
1070 usage(B_TRUE);
1071 break;
1072 case '?':
1073 default:
1074 usage(B_FALSE);
1075 break;
1079 fini_options();
1081 /* When raid choice is 'random' add a draid pool 50% of the time */
1082 if (strcmp(raid_kind, "random") == 0) {
1083 raid_kind = (ztest_random(2) == 0) ? "draid" : "raidz";
1085 if (ztest_opts.zo_verbose >= 3)
1086 (void) printf("choosing RAID type '%s'\n", raid_kind);
1089 if (strcmp(raid_kind, "draid") == 0) {
1090 uint64_t min_devsize;
1092 /* With fewer disk use 256M, otherwise 128M is OK */
1093 min_devsize = (ztest_opts.zo_raid_children < 16) ?
1094 (256ULL << 20) : (128ULL << 20);
1096 /* No top-level mirrors with dRAID for now */
1097 zo->zo_mirrors = 0;
1099 /* Use more appropriate defaults for dRAID */
1100 if (zo->zo_vdevs == ztest_opts_defaults.zo_vdevs)
1101 zo->zo_vdevs = 1;
1102 if (zo->zo_raid_children ==
1103 ztest_opts_defaults.zo_raid_children)
1104 zo->zo_raid_children = 16;
1105 if (zo->zo_ashift < 12)
1106 zo->zo_ashift = 12;
1107 if (zo->zo_vdev_size < min_devsize)
1108 zo->zo_vdev_size = min_devsize;
1110 if (zo->zo_draid_data + zo->zo_raid_parity >
1111 zo->zo_raid_children - zo->zo_draid_spares) {
1112 (void) fprintf(stderr, "error: too few draid "
1113 "children (%d) for stripe width (%d)\n",
1114 zo->zo_raid_children,
1115 zo->zo_draid_data + zo->zo_raid_parity);
1116 usage(B_FALSE);
1119 (void) strlcpy(zo->zo_raid_type, VDEV_TYPE_DRAID,
1120 sizeof (zo->zo_raid_type));
1122 } else /* using raidz */ {
1123 ASSERT0(strcmp(raid_kind, "raidz"));
1125 zo->zo_raid_parity = MIN(zo->zo_raid_parity,
1126 zo->zo_raid_children - 1);
1129 zo->zo_vdevtime =
1130 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs :
1131 UINT64_MAX >> 2);
1133 if (*zo->zo_alt_ztest) {
1134 const char *invalid_what = "ztest";
1135 char *val = zo->zo_alt_ztest;
1136 if (0 != access(val, X_OK) ||
1137 (strrchr(val, '/') == NULL && (errno == EINVAL)))
1138 goto invalid;
1140 int dirlen = strrchr(val, '/') - val;
1141 strlcpy(zo->zo_alt_libpath, val,
1142 MIN(sizeof (zo->zo_alt_libpath), dirlen + 1));
1143 invalid_what = "library path", val = zo->zo_alt_libpath;
1144 if (strrchr(val, '/') == NULL && (errno == EINVAL))
1145 goto invalid;
1146 *strrchr(val, '/') = '\0';
1147 strlcat(val, "/lib", sizeof (zo->zo_alt_libpath));
1149 if (0 != access(zo->zo_alt_libpath, X_OK))
1150 goto invalid;
1151 return;
1153 invalid:
1154 ztest_dump_core = B_FALSE;
1155 fatal(B_TRUE, "invalid alternate %s %s", invalid_what, val);
1159 static void
1160 ztest_kill(ztest_shared_t *zs)
1162 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa));
1163 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa));
1166 * Before we kill ourselves, make sure that the config is updated.
1167 * See comment above spa_write_cachefile().
1169 mutex_enter(&spa_namespace_lock);
1170 spa_write_cachefile(ztest_spa, B_FALSE, B_FALSE, B_FALSE);
1171 mutex_exit(&spa_namespace_lock);
1173 (void) raise(SIGKILL);
1176 static void
1177 ztest_record_enospc(const char *s)
1179 (void) s;
1180 ztest_shared->zs_enospc_count++;
1183 static uint64_t
1184 ztest_get_ashift(void)
1186 if (ztest_opts.zo_ashift == 0)
1187 return (SPA_MINBLOCKSHIFT + ztest_random(5));
1188 return (ztest_opts.zo_ashift);
1191 static boolean_t
1192 ztest_is_draid_spare(const char *name)
1194 uint64_t spare_id = 0, parity = 0, vdev_id = 0;
1196 if (sscanf(name, VDEV_TYPE_DRAID "%"PRIu64"-%"PRIu64"-%"PRIu64"",
1197 &parity, &vdev_id, &spare_id) == 3) {
1198 return (B_TRUE);
1201 return (B_FALSE);
1204 static nvlist_t *
1205 make_vdev_file(const char *path, const char *aux, const char *pool,
1206 size_t size, uint64_t ashift)
1208 char *pathbuf = NULL;
1209 uint64_t vdev;
1210 nvlist_t *file;
1211 boolean_t draid_spare = B_FALSE;
1214 if (ashift == 0)
1215 ashift = ztest_get_ashift();
1217 if (path == NULL) {
1218 pathbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1219 path = pathbuf;
1221 if (aux != NULL) {
1222 vdev = ztest_shared->zs_vdev_aux;
1223 (void) snprintf(pathbuf, MAXPATHLEN,
1224 ztest_aux_template, ztest_opts.zo_dir,
1225 pool == NULL ? ztest_opts.zo_pool : pool,
1226 aux, vdev);
1227 } else {
1228 vdev = ztest_shared->zs_vdev_next_leaf++;
1229 (void) snprintf(pathbuf, MAXPATHLEN,
1230 ztest_dev_template, ztest_opts.zo_dir,
1231 pool == NULL ? ztest_opts.zo_pool : pool, vdev);
1233 } else {
1234 draid_spare = ztest_is_draid_spare(path);
1237 if (size != 0 && !draid_spare) {
1238 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666);
1239 if (fd == -1)
1240 fatal(B_TRUE, "can't open %s", path);
1241 if (ftruncate(fd, size) != 0)
1242 fatal(B_TRUE, "can't ftruncate %s", path);
1243 (void) close(fd);
1246 file = fnvlist_alloc();
1247 fnvlist_add_string(file, ZPOOL_CONFIG_TYPE,
1248 draid_spare ? VDEV_TYPE_DRAID_SPARE : VDEV_TYPE_FILE);
1249 fnvlist_add_string(file, ZPOOL_CONFIG_PATH, path);
1250 fnvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift);
1251 umem_free(pathbuf, MAXPATHLEN);
1253 return (file);
1256 static nvlist_t *
1257 make_vdev_raid(const char *path, const char *aux, const char *pool, size_t size,
1258 uint64_t ashift, int r)
1260 nvlist_t *raid, **child;
1261 int c;
1263 if (r < 2)
1264 return (make_vdev_file(path, aux, pool, size, ashift));
1265 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL);
1267 for (c = 0; c < r; c++)
1268 child[c] = make_vdev_file(path, aux, pool, size, ashift);
1270 raid = fnvlist_alloc();
1271 fnvlist_add_string(raid, ZPOOL_CONFIG_TYPE,
1272 ztest_opts.zo_raid_type);
1273 fnvlist_add_uint64(raid, ZPOOL_CONFIG_NPARITY,
1274 ztest_opts.zo_raid_parity);
1275 fnvlist_add_nvlist_array(raid, ZPOOL_CONFIG_CHILDREN,
1276 (const nvlist_t **)child, r);
1278 if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0) {
1279 uint64_t ndata = ztest_opts.zo_draid_data;
1280 uint64_t nparity = ztest_opts.zo_raid_parity;
1281 uint64_t nspares = ztest_opts.zo_draid_spares;
1282 uint64_t children = ztest_opts.zo_raid_children;
1283 uint64_t ngroups = 1;
1286 * Calculate the minimum number of groups required to fill a
1287 * slice. This is the LCM of the stripe width (data + parity)
1288 * and the number of data drives (children - spares).
1290 while (ngroups * (ndata + nparity) % (children - nspares) != 0)
1291 ngroups++;
1293 /* Store the basic dRAID configuration. */
1294 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NDATA, ndata);
1295 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NSPARES, nspares);
1296 fnvlist_add_uint64(raid, ZPOOL_CONFIG_DRAID_NGROUPS, ngroups);
1299 for (c = 0; c < r; c++)
1300 fnvlist_free(child[c]);
1302 umem_free(child, r * sizeof (nvlist_t *));
1304 return (raid);
1307 static nvlist_t *
1308 make_vdev_mirror(const char *path, const char *aux, const char *pool,
1309 size_t size, uint64_t ashift, int r, int m)
1311 nvlist_t *mirror, **child;
1312 int c;
1314 if (m < 1)
1315 return (make_vdev_raid(path, aux, pool, size, ashift, r));
1317 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL);
1319 for (c = 0; c < m; c++)
1320 child[c] = make_vdev_raid(path, aux, pool, size, ashift, r);
1322 mirror = fnvlist_alloc();
1323 fnvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, VDEV_TYPE_MIRROR);
1324 fnvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN,
1325 (const nvlist_t **)child, m);
1327 for (c = 0; c < m; c++)
1328 fnvlist_free(child[c]);
1330 umem_free(child, m * sizeof (nvlist_t *));
1332 return (mirror);
1335 static nvlist_t *
1336 make_vdev_root(const char *path, const char *aux, const char *pool, size_t size,
1337 uint64_t ashift, const char *class, int r, int m, int t)
1339 nvlist_t *root, **child;
1340 int c;
1341 boolean_t log;
1343 ASSERT3S(t, >, 0);
1345 log = (class != NULL && strcmp(class, "log") == 0);
1347 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL);
1349 for (c = 0; c < t; c++) {
1350 child[c] = make_vdev_mirror(path, aux, pool, size, ashift,
1351 r, m);
1352 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, log);
1354 if (class != NULL && class[0] != '\0') {
1355 ASSERT(m > 1 || log); /* expecting a mirror */
1356 fnvlist_add_string(child[c],
1357 ZPOOL_CONFIG_ALLOCATION_BIAS, class);
1361 root = fnvlist_alloc();
1362 fnvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
1363 fnvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN,
1364 (const nvlist_t **)child, t);
1366 for (c = 0; c < t; c++)
1367 fnvlist_free(child[c]);
1369 umem_free(child, t * sizeof (nvlist_t *));
1371 return (root);
1375 * Find a random spa version. Returns back a random spa version in the
1376 * range [initial_version, SPA_VERSION_FEATURES].
1378 static uint64_t
1379 ztest_random_spa_version(uint64_t initial_version)
1381 uint64_t version = initial_version;
1383 if (version <= SPA_VERSION_BEFORE_FEATURES) {
1384 version = version +
1385 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1);
1388 if (version > SPA_VERSION_BEFORE_FEATURES)
1389 version = SPA_VERSION_FEATURES;
1391 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
1392 return (version);
1395 static int
1396 ztest_random_blocksize(void)
1398 ASSERT3U(ztest_spa->spa_max_ashift, !=, 0);
1401 * Choose a block size >= the ashift.
1402 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
1404 int maxbs = SPA_OLD_MAXBLOCKSHIFT;
1405 if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE)
1406 maxbs = 20;
1407 uint64_t block_shift =
1408 ztest_random(maxbs - ztest_spa->spa_max_ashift + 1);
1409 return (1 << (SPA_MINBLOCKSHIFT + block_shift));
1412 static int
1413 ztest_random_dnodesize(void)
1415 int slots;
1416 int max_slots = spa_maxdnodesize(ztest_spa) >> DNODE_SHIFT;
1418 if (max_slots == DNODE_MIN_SLOTS)
1419 return (DNODE_MIN_SIZE);
1422 * Weight the random distribution more heavily toward smaller
1423 * dnode sizes since that is more likely to reflect real-world
1424 * usage.
1426 ASSERT3U(max_slots, >, 4);
1427 switch (ztest_random(10)) {
1428 case 0:
1429 slots = 5 + ztest_random(max_slots - 4);
1430 break;
1431 case 1 ... 4:
1432 slots = 2 + ztest_random(3);
1433 break;
1434 default:
1435 slots = 1;
1436 break;
1439 return (slots << DNODE_SHIFT);
1442 static int
1443 ztest_random_ibshift(void)
1445 return (DN_MIN_INDBLKSHIFT +
1446 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1));
1449 static uint64_t
1450 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok)
1452 uint64_t top;
1453 vdev_t *rvd = spa->spa_root_vdev;
1454 vdev_t *tvd;
1456 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
1458 do {
1459 top = ztest_random(rvd->vdev_children);
1460 tvd = rvd->vdev_child[top];
1461 } while (!vdev_is_concrete(tvd) || (tvd->vdev_islog && !log_ok) ||
1462 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL);
1464 return (top);
1467 static uint64_t
1468 ztest_random_dsl_prop(zfs_prop_t prop)
1470 uint64_t value;
1472 do {
1473 value = zfs_prop_random_value(prop, ztest_random(-1ULL));
1474 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF);
1476 return (value);
1479 static int
1480 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value,
1481 boolean_t inherit)
1483 const char *propname = zfs_prop_to_name(prop);
1484 const char *valname;
1485 char *setpoint;
1486 uint64_t curval;
1487 int error;
1489 error = dsl_prop_set_int(osname, propname,
1490 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value);
1492 if (error == ENOSPC) {
1493 ztest_record_enospc(FTAG);
1494 return (error);
1496 ASSERT0(error);
1498 setpoint = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
1499 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint));
1501 if (ztest_opts.zo_verbose >= 6) {
1502 int err;
1504 err = zfs_prop_index_to_string(prop, curval, &valname);
1505 if (err)
1506 (void) printf("%s %s = %llu at '%s'\n", osname,
1507 propname, (unsigned long long)curval, setpoint);
1508 else
1509 (void) printf("%s %s = %s at '%s'\n",
1510 osname, propname, valname, setpoint);
1512 umem_free(setpoint, MAXPATHLEN);
1514 return (error);
1517 static int
1518 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value)
1520 spa_t *spa = ztest_spa;
1521 nvlist_t *props = NULL;
1522 int error;
1524 props = fnvlist_alloc();
1525 fnvlist_add_uint64(props, zpool_prop_to_name(prop), value);
1527 error = spa_prop_set(spa, props);
1529 fnvlist_free(props);
1531 if (error == ENOSPC) {
1532 ztest_record_enospc(FTAG);
1533 return (error);
1535 ASSERT0(error);
1537 return (error);
1540 static int
1541 ztest_dmu_objset_own(const char *name, dmu_objset_type_t type,
1542 boolean_t readonly, boolean_t decrypt, const void *tag, objset_t **osp)
1544 int err;
1545 char *cp = NULL;
1546 char ddname[ZFS_MAX_DATASET_NAME_LEN];
1548 strlcpy(ddname, name, sizeof (ddname));
1549 cp = strchr(ddname, '@');
1550 if (cp != NULL)
1551 *cp = '\0';
1553 err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1554 while (decrypt && err == EACCES) {
1555 dsl_crypto_params_t *dcp;
1556 nvlist_t *crypto_args = fnvlist_alloc();
1558 fnvlist_add_uint8_array(crypto_args, "wkeydata",
1559 (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
1560 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, NULL,
1561 crypto_args, &dcp));
1562 err = spa_keystore_load_wkey(ddname, dcp, B_FALSE);
1564 * Note: if there was an error loading, the wkey was not
1565 * consumed, and needs to be freed.
1567 dsl_crypto_params_free(dcp, (err != 0));
1568 fnvlist_free(crypto_args);
1570 if (err == EINVAL) {
1572 * We couldn't load a key for this dataset so try
1573 * the parent. This loop will eventually hit the
1574 * encryption root since ztest only makes clones
1575 * as children of their origin datasets.
1577 cp = strrchr(ddname, '/');
1578 if (cp == NULL)
1579 return (err);
1581 *cp = '\0';
1582 err = EACCES;
1583 continue;
1584 } else if (err != 0) {
1585 break;
1588 err = dmu_objset_own(name, type, readonly, decrypt, tag, osp);
1589 break;
1592 return (err);
1595 static void
1596 ztest_rll_init(rll_t *rll)
1598 rll->rll_writer = NULL;
1599 rll->rll_readers = 0;
1600 mutex_init(&rll->rll_lock, NULL, MUTEX_DEFAULT, NULL);
1601 cv_init(&rll->rll_cv, NULL, CV_DEFAULT, NULL);
1604 static void
1605 ztest_rll_destroy(rll_t *rll)
1607 ASSERT3P(rll->rll_writer, ==, NULL);
1608 ASSERT0(rll->rll_readers);
1609 mutex_destroy(&rll->rll_lock);
1610 cv_destroy(&rll->rll_cv);
1613 static void
1614 ztest_rll_lock(rll_t *rll, rl_type_t type)
1616 mutex_enter(&rll->rll_lock);
1618 if (type == RL_READER) {
1619 while (rll->rll_writer != NULL)
1620 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1621 rll->rll_readers++;
1622 } else {
1623 while (rll->rll_writer != NULL || rll->rll_readers)
1624 (void) cv_wait(&rll->rll_cv, &rll->rll_lock);
1625 rll->rll_writer = curthread;
1628 mutex_exit(&rll->rll_lock);
1631 static void
1632 ztest_rll_unlock(rll_t *rll)
1634 mutex_enter(&rll->rll_lock);
1636 if (rll->rll_writer) {
1637 ASSERT0(rll->rll_readers);
1638 rll->rll_writer = NULL;
1639 } else {
1640 ASSERT3S(rll->rll_readers, >, 0);
1641 ASSERT3P(rll->rll_writer, ==, NULL);
1642 rll->rll_readers--;
1645 if (rll->rll_writer == NULL && rll->rll_readers == 0)
1646 cv_broadcast(&rll->rll_cv);
1648 mutex_exit(&rll->rll_lock);
1651 static void
1652 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type)
1654 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1656 ztest_rll_lock(rll, type);
1659 static void
1660 ztest_object_unlock(ztest_ds_t *zd, uint64_t object)
1662 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)];
1664 ztest_rll_unlock(rll);
1667 static rl_t *
1668 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset,
1669 uint64_t size, rl_type_t type)
1671 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1));
1672 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)];
1673 rl_t *rl;
1675 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL);
1676 rl->rl_object = object;
1677 rl->rl_offset = offset;
1678 rl->rl_size = size;
1679 rl->rl_lock = rll;
1681 ztest_rll_lock(rll, type);
1683 return (rl);
1686 static void
1687 ztest_range_unlock(rl_t *rl)
1689 rll_t *rll = rl->rl_lock;
1691 ztest_rll_unlock(rll);
1693 umem_free(rl, sizeof (*rl));
1696 static void
1697 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os)
1699 zd->zd_os = os;
1700 zd->zd_zilog = dmu_objset_zil(os);
1701 zd->zd_shared = szd;
1702 dmu_objset_name(os, zd->zd_name);
1703 int l;
1705 if (zd->zd_shared != NULL)
1706 zd->zd_shared->zd_seq = 0;
1708 VERIFY0(pthread_rwlock_init(&zd->zd_zilog_lock, NULL));
1709 mutex_init(&zd->zd_dirobj_lock, NULL, MUTEX_DEFAULT, NULL);
1711 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1712 ztest_rll_init(&zd->zd_object_lock[l]);
1714 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1715 ztest_rll_init(&zd->zd_range_lock[l]);
1718 static void
1719 ztest_zd_fini(ztest_ds_t *zd)
1721 int l;
1723 mutex_destroy(&zd->zd_dirobj_lock);
1724 (void) pthread_rwlock_destroy(&zd->zd_zilog_lock);
1726 for (l = 0; l < ZTEST_OBJECT_LOCKS; l++)
1727 ztest_rll_destroy(&zd->zd_object_lock[l]);
1729 for (l = 0; l < ZTEST_RANGE_LOCKS; l++)
1730 ztest_rll_destroy(&zd->zd_range_lock[l]);
1733 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1735 static uint64_t
1736 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag)
1738 uint64_t txg;
1739 int error;
1742 * Attempt to assign tx to some transaction group.
1744 error = dmu_tx_assign(tx, txg_how);
1745 if (error) {
1746 if (error == ERESTART) {
1747 ASSERT3U(txg_how, ==, TXG_NOWAIT);
1748 dmu_tx_wait(tx);
1749 } else {
1750 ASSERT3U(error, ==, ENOSPC);
1751 ztest_record_enospc(tag);
1753 dmu_tx_abort(tx);
1754 return (0);
1756 txg = dmu_tx_get_txg(tx);
1757 ASSERT3U(txg, !=, 0);
1758 return (txg);
1761 static void
1762 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1763 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1764 uint64_t crtxg)
1766 bt->bt_magic = BT_MAGIC;
1767 bt->bt_objset = dmu_objset_id(os);
1768 bt->bt_object = object;
1769 bt->bt_dnodesize = dnodesize;
1770 bt->bt_offset = offset;
1771 bt->bt_gen = gen;
1772 bt->bt_txg = txg;
1773 bt->bt_crtxg = crtxg;
1776 static void
1777 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object,
1778 uint64_t dnodesize, uint64_t offset, uint64_t gen, uint64_t txg,
1779 uint64_t crtxg)
1781 ASSERT3U(bt->bt_magic, ==, BT_MAGIC);
1782 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os));
1783 ASSERT3U(bt->bt_object, ==, object);
1784 ASSERT3U(bt->bt_dnodesize, ==, dnodesize);
1785 ASSERT3U(bt->bt_offset, ==, offset);
1786 ASSERT3U(bt->bt_gen, <=, gen);
1787 ASSERT3U(bt->bt_txg, <=, txg);
1788 ASSERT3U(bt->bt_crtxg, ==, crtxg);
1791 static ztest_block_tag_t *
1792 ztest_bt_bonus(dmu_buf_t *db)
1794 dmu_object_info_t doi;
1795 ztest_block_tag_t *bt;
1797 dmu_object_info_from_db(db, &doi);
1798 ASSERT3U(doi.doi_bonus_size, <=, db->db_size);
1799 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt));
1800 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt));
1802 return (bt);
1806 * Generate a token to fill up unused bonus buffer space. Try to make
1807 * it unique to the object, generation, and offset to verify that data
1808 * is not getting overwritten by data from other dnodes.
1810 #define ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
1811 (((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
1814 * Fill up the unused bonus buffer region before the block tag with a
1815 * verifiable pattern. Filling the whole bonus area with non-zero data
1816 * helps ensure that all dnode traversal code properly skips the
1817 * interior regions of large dnodes.
1819 static void
1820 ztest_fill_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1821 objset_t *os, uint64_t gen)
1823 uint64_t *bonusp;
1825 ASSERT(IS_P2ALIGNED((char *)end - (char *)db->db_data, 8));
1827 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1828 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1829 gen, bonusp - (uint64_t *)db->db_data);
1830 *bonusp = token;
1835 * Verify that the unused area of a bonus buffer is filled with the
1836 * expected tokens.
1838 static void
1839 ztest_verify_unused_bonus(dmu_buf_t *db, void *end, uint64_t obj,
1840 objset_t *os, uint64_t gen)
1842 uint64_t *bonusp;
1844 for (bonusp = db->db_data; bonusp < (uint64_t *)end; bonusp++) {
1845 uint64_t token = ZTEST_BONUS_FILL_TOKEN(obj, dmu_objset_id(os),
1846 gen, bonusp - (uint64_t *)db->db_data);
1847 VERIFY3U(*bonusp, ==, token);
1852 * ZIL logging ops
1855 #define lrz_type lr_mode
1856 #define lrz_blocksize lr_uid
1857 #define lrz_ibshift lr_gid
1858 #define lrz_bonustype lr_rdev
1859 #define lrz_dnodesize lr_crtime[1]
1861 static void
1862 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr)
1864 char *name = (void *)(lr + 1); /* name follows lr */
1865 size_t namesize = strlen(name) + 1;
1866 itx_t *itx;
1868 if (zil_replaying(zd->zd_zilog, tx))
1869 return;
1871 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize);
1872 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1873 sizeof (*lr) + namesize - sizeof (lr_t));
1875 zil_itx_assign(zd->zd_zilog, itx, tx);
1878 static void
1879 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object)
1881 char *name = (void *)(lr + 1); /* name follows lr */
1882 size_t namesize = strlen(name) + 1;
1883 itx_t *itx;
1885 if (zil_replaying(zd->zd_zilog, tx))
1886 return;
1888 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize);
1889 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1890 sizeof (*lr) + namesize - sizeof (lr_t));
1892 itx->itx_oid = object;
1893 zil_itx_assign(zd->zd_zilog, itx, tx);
1896 static void
1897 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr)
1899 itx_t *itx;
1900 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES);
1902 if (zil_replaying(zd->zd_zilog, tx))
1903 return;
1905 if (lr->lr_length > zil_max_log_data(zd->zd_zilog, sizeof (lr_write_t)))
1906 write_state = WR_INDIRECT;
1908 itx = zil_itx_create(TX_WRITE,
1909 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0));
1911 if (write_state == WR_COPIED &&
1912 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length,
1913 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) {
1914 zil_itx_destroy(itx);
1915 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
1916 write_state = WR_NEED_COPY;
1918 itx->itx_private = zd;
1919 itx->itx_wr_state = write_state;
1920 itx->itx_sync = (ztest_random(8) == 0);
1922 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1923 sizeof (*lr) - sizeof (lr_t));
1925 zil_itx_assign(zd->zd_zilog, itx, tx);
1928 static void
1929 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr)
1931 itx_t *itx;
1933 if (zil_replaying(zd->zd_zilog, tx))
1934 return;
1936 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
1937 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1938 sizeof (*lr) - sizeof (lr_t));
1940 itx->itx_sync = B_FALSE;
1941 zil_itx_assign(zd->zd_zilog, itx, tx);
1944 static void
1945 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr)
1947 itx_t *itx;
1949 if (zil_replaying(zd->zd_zilog, tx))
1950 return;
1952 itx = zil_itx_create(TX_SETATTR, sizeof (*lr));
1953 memcpy(&itx->itx_lr + 1, &lr->lr_common + 1,
1954 sizeof (*lr) - sizeof (lr_t));
1956 itx->itx_sync = B_FALSE;
1957 zil_itx_assign(zd->zd_zilog, itx, tx);
1961 * ZIL replay ops
1963 static int
1964 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap)
1966 ztest_ds_t *zd = arg1;
1967 lr_create_t *lr = arg2;
1968 char *name = (void *)(lr + 1); /* name follows lr */
1969 objset_t *os = zd->zd_os;
1970 ztest_block_tag_t *bbt;
1971 dmu_buf_t *db;
1972 dmu_tx_t *tx;
1973 uint64_t txg;
1974 int error = 0;
1975 int bonuslen;
1977 if (byteswap)
1978 byteswap_uint64_array(lr, sizeof (*lr));
1980 ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
1981 ASSERT3S(name[0], !=, '\0');
1983 tx = dmu_tx_create(os);
1985 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name);
1987 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
1988 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1989 } else {
1990 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1993 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
1994 if (txg == 0)
1995 return (ENOSPC);
1997 ASSERT3U(dmu_objset_zil(os)->zl_replay, ==, !!lr->lr_foid);
1998 bonuslen = DN_BONUS_SIZE(lr->lrz_dnodesize);
2000 if (lr->lrz_type == DMU_OT_ZAP_OTHER) {
2001 if (lr->lr_foid == 0) {
2002 lr->lr_foid = zap_create_dnsize(os,
2003 lr->lrz_type, lr->lrz_bonustype,
2004 bonuslen, lr->lrz_dnodesize, tx);
2005 } else {
2006 error = zap_create_claim_dnsize(os, lr->lr_foid,
2007 lr->lrz_type, lr->lrz_bonustype,
2008 bonuslen, lr->lrz_dnodesize, tx);
2010 } else {
2011 if (lr->lr_foid == 0) {
2012 lr->lr_foid = dmu_object_alloc_dnsize(os,
2013 lr->lrz_type, 0, lr->lrz_bonustype,
2014 bonuslen, lr->lrz_dnodesize, tx);
2015 } else {
2016 error = dmu_object_claim_dnsize(os, lr->lr_foid,
2017 lr->lrz_type, 0, lr->lrz_bonustype,
2018 bonuslen, lr->lrz_dnodesize, tx);
2022 if (error) {
2023 ASSERT3U(error, ==, EEXIST);
2024 ASSERT(zd->zd_zilog->zl_replay);
2025 dmu_tx_commit(tx);
2026 return (error);
2029 ASSERT3U(lr->lr_foid, !=, 0);
2031 if (lr->lrz_type != DMU_OT_ZAP_OTHER)
2032 VERIFY0(dmu_object_set_blocksize(os, lr->lr_foid,
2033 lr->lrz_blocksize, lr->lrz_ibshift, tx));
2035 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2036 bbt = ztest_bt_bonus(db);
2037 dmu_buf_will_dirty(db, tx);
2038 ztest_bt_generate(bbt, os, lr->lr_foid, lr->lrz_dnodesize, -1ULL,
2039 lr->lr_gen, txg, txg);
2040 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, lr->lr_gen);
2041 dmu_buf_rele(db, FTAG);
2043 VERIFY0(zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1,
2044 &lr->lr_foid, tx));
2046 (void) ztest_log_create(zd, tx, lr);
2048 dmu_tx_commit(tx);
2050 return (0);
2053 static int
2054 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap)
2056 ztest_ds_t *zd = arg1;
2057 lr_remove_t *lr = arg2;
2058 char *name = (void *)(lr + 1); /* name follows lr */
2059 objset_t *os = zd->zd_os;
2060 dmu_object_info_t doi;
2061 dmu_tx_t *tx;
2062 uint64_t object, txg;
2064 if (byteswap)
2065 byteswap_uint64_array(lr, sizeof (*lr));
2067 ASSERT3U(lr->lr_doid, ==, ZTEST_DIROBJ);
2068 ASSERT3S(name[0], !=, '\0');
2070 VERIFY0(
2071 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object));
2072 ASSERT3U(object, !=, 0);
2074 ztest_object_lock(zd, object, RL_WRITER);
2076 VERIFY0(dmu_object_info(os, object, &doi));
2078 tx = dmu_tx_create(os);
2080 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name);
2081 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
2083 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2084 if (txg == 0) {
2085 ztest_object_unlock(zd, object);
2086 return (ENOSPC);
2089 if (doi.doi_type == DMU_OT_ZAP_OTHER) {
2090 VERIFY0(zap_destroy(os, object, tx));
2091 } else {
2092 VERIFY0(dmu_object_free(os, object, tx));
2095 VERIFY0(zap_remove(os, lr->lr_doid, name, tx));
2097 (void) ztest_log_remove(zd, tx, lr, object);
2099 dmu_tx_commit(tx);
2101 ztest_object_unlock(zd, object);
2103 return (0);
2106 static int
2107 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap)
2109 ztest_ds_t *zd = arg1;
2110 lr_write_t *lr = arg2;
2111 objset_t *os = zd->zd_os;
2112 void *data = lr + 1; /* data follows lr */
2113 uint64_t offset, length;
2114 ztest_block_tag_t *bt = data;
2115 ztest_block_tag_t *bbt;
2116 uint64_t gen, txg, lrtxg, crtxg;
2117 dmu_object_info_t doi;
2118 dmu_tx_t *tx;
2119 dmu_buf_t *db;
2120 arc_buf_t *abuf = NULL;
2121 rl_t *rl;
2123 if (byteswap)
2124 byteswap_uint64_array(lr, sizeof (*lr));
2126 offset = lr->lr_offset;
2127 length = lr->lr_length;
2129 /* If it's a dmu_sync() block, write the whole block */
2130 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
2131 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
2132 if (length < blocksize) {
2133 offset -= offset % blocksize;
2134 length = blocksize;
2138 if (bt->bt_magic == BSWAP_64(BT_MAGIC))
2139 byteswap_uint64_array(bt, sizeof (*bt));
2141 if (bt->bt_magic != BT_MAGIC)
2142 bt = NULL;
2144 ztest_object_lock(zd, lr->lr_foid, RL_READER);
2145 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER);
2147 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2149 dmu_object_info_from_db(db, &doi);
2151 bbt = ztest_bt_bonus(db);
2152 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2153 gen = bbt->bt_gen;
2154 crtxg = bbt->bt_crtxg;
2155 lrtxg = lr->lr_common.lrc_txg;
2157 tx = dmu_tx_create(os);
2159 dmu_tx_hold_write(tx, lr->lr_foid, offset, length);
2161 if (ztest_random(8) == 0 && length == doi.doi_data_block_size &&
2162 P2PHASE(offset, length) == 0)
2163 abuf = dmu_request_arcbuf(db, length);
2165 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2166 if (txg == 0) {
2167 if (abuf != NULL)
2168 dmu_return_arcbuf(abuf);
2169 dmu_buf_rele(db, FTAG);
2170 ztest_range_unlock(rl);
2171 ztest_object_unlock(zd, lr->lr_foid);
2172 return (ENOSPC);
2175 if (bt != NULL) {
2177 * Usually, verify the old data before writing new data --
2178 * but not always, because we also want to verify correct
2179 * behavior when the data was not recently read into cache.
2181 ASSERT(doi.doi_data_block_size);
2182 ASSERT0(offset % doi.doi_data_block_size);
2183 if (ztest_random(4) != 0) {
2184 int prefetch = ztest_random(2) ?
2185 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH;
2186 ztest_block_tag_t rbt;
2188 VERIFY(dmu_read(os, lr->lr_foid, offset,
2189 sizeof (rbt), &rbt, prefetch) == 0);
2190 if (rbt.bt_magic == BT_MAGIC) {
2191 ztest_bt_verify(&rbt, os, lr->lr_foid, 0,
2192 offset, gen, txg, crtxg);
2197 * Writes can appear to be newer than the bonus buffer because
2198 * the ztest_get_data() callback does a dmu_read() of the
2199 * open-context data, which may be different than the data
2200 * as it was when the write was generated.
2202 if (zd->zd_zilog->zl_replay) {
2203 ztest_bt_verify(bt, os, lr->lr_foid, 0, offset,
2204 MAX(gen, bt->bt_gen), MAX(txg, lrtxg),
2205 bt->bt_crtxg);
2209 * Set the bt's gen/txg to the bonus buffer's gen/txg
2210 * so that all of the usual ASSERTs will work.
2212 ztest_bt_generate(bt, os, lr->lr_foid, 0, offset, gen, txg,
2213 crtxg);
2216 if (abuf == NULL) {
2217 dmu_write(os, lr->lr_foid, offset, length, data, tx);
2218 } else {
2219 memcpy(abuf->b_data, data, length);
2220 VERIFY0(dmu_assign_arcbuf_by_dbuf(db, offset, abuf, tx));
2223 (void) ztest_log_write(zd, tx, lr);
2225 dmu_buf_rele(db, FTAG);
2227 dmu_tx_commit(tx);
2229 ztest_range_unlock(rl);
2230 ztest_object_unlock(zd, lr->lr_foid);
2232 return (0);
2235 static int
2236 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
2238 ztest_ds_t *zd = arg1;
2239 lr_truncate_t *lr = arg2;
2240 objset_t *os = zd->zd_os;
2241 dmu_tx_t *tx;
2242 uint64_t txg;
2243 rl_t *rl;
2245 if (byteswap)
2246 byteswap_uint64_array(lr, sizeof (*lr));
2248 ztest_object_lock(zd, lr->lr_foid, RL_READER);
2249 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length,
2250 RL_WRITER);
2252 tx = dmu_tx_create(os);
2254 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length);
2256 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2257 if (txg == 0) {
2258 ztest_range_unlock(rl);
2259 ztest_object_unlock(zd, lr->lr_foid);
2260 return (ENOSPC);
2263 VERIFY0(dmu_free_range(os, lr->lr_foid, lr->lr_offset,
2264 lr->lr_length, tx));
2266 (void) ztest_log_truncate(zd, tx, lr);
2268 dmu_tx_commit(tx);
2270 ztest_range_unlock(rl);
2271 ztest_object_unlock(zd, lr->lr_foid);
2273 return (0);
2276 static int
2277 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap)
2279 ztest_ds_t *zd = arg1;
2280 lr_setattr_t *lr = arg2;
2281 objset_t *os = zd->zd_os;
2282 dmu_tx_t *tx;
2283 dmu_buf_t *db;
2284 ztest_block_tag_t *bbt;
2285 uint64_t txg, lrtxg, crtxg, dnodesize;
2287 if (byteswap)
2288 byteswap_uint64_array(lr, sizeof (*lr));
2290 ztest_object_lock(zd, lr->lr_foid, RL_WRITER);
2292 VERIFY0(dmu_bonus_hold(os, lr->lr_foid, FTAG, &db));
2294 tx = dmu_tx_create(os);
2295 dmu_tx_hold_bonus(tx, lr->lr_foid);
2297 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2298 if (txg == 0) {
2299 dmu_buf_rele(db, FTAG);
2300 ztest_object_unlock(zd, lr->lr_foid);
2301 return (ENOSPC);
2304 bbt = ztest_bt_bonus(db);
2305 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2306 crtxg = bbt->bt_crtxg;
2307 lrtxg = lr->lr_common.lrc_txg;
2308 dnodesize = bbt->bt_dnodesize;
2310 if (zd->zd_zilog->zl_replay) {
2311 ASSERT3U(lr->lr_size, !=, 0);
2312 ASSERT3U(lr->lr_mode, !=, 0);
2313 ASSERT3U(lrtxg, !=, 0);
2314 } else {
2316 * Randomly change the size and increment the generation.
2318 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) *
2319 sizeof (*bbt);
2320 lr->lr_mode = bbt->bt_gen + 1;
2321 ASSERT0(lrtxg);
2325 * Verify that the current bonus buffer is not newer than our txg.
2327 ztest_bt_verify(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2328 MAX(txg, lrtxg), crtxg);
2330 dmu_buf_will_dirty(db, tx);
2332 ASSERT3U(lr->lr_size, >=, sizeof (*bbt));
2333 ASSERT3U(lr->lr_size, <=, db->db_size);
2334 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx));
2335 bbt = ztest_bt_bonus(db);
2337 ztest_bt_generate(bbt, os, lr->lr_foid, dnodesize, -1ULL, lr->lr_mode,
2338 txg, crtxg);
2339 ztest_fill_unused_bonus(db, bbt, lr->lr_foid, os, bbt->bt_gen);
2340 dmu_buf_rele(db, FTAG);
2342 (void) ztest_log_setattr(zd, tx, lr);
2344 dmu_tx_commit(tx);
2346 ztest_object_unlock(zd, lr->lr_foid);
2348 return (0);
2351 static zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = {
2352 NULL, /* 0 no such transaction type */
2353 ztest_replay_create, /* TX_CREATE */
2354 NULL, /* TX_MKDIR */
2355 NULL, /* TX_MKXATTR */
2356 NULL, /* TX_SYMLINK */
2357 ztest_replay_remove, /* TX_REMOVE */
2358 NULL, /* TX_RMDIR */
2359 NULL, /* TX_LINK */
2360 NULL, /* TX_RENAME */
2361 ztest_replay_write, /* TX_WRITE */
2362 ztest_replay_truncate, /* TX_TRUNCATE */
2363 ztest_replay_setattr, /* TX_SETATTR */
2364 NULL, /* TX_ACL */
2365 NULL, /* TX_CREATE_ACL */
2366 NULL, /* TX_CREATE_ATTR */
2367 NULL, /* TX_CREATE_ACL_ATTR */
2368 NULL, /* TX_MKDIR_ACL */
2369 NULL, /* TX_MKDIR_ATTR */
2370 NULL, /* TX_MKDIR_ACL_ATTR */
2371 NULL, /* TX_WRITE2 */
2372 NULL, /* TX_SETSAXATTR */
2373 NULL, /* TX_RENAME_EXCHANGE */
2374 NULL, /* TX_RENAME_WHITEOUT */
2378 * ZIL get_data callbacks
2381 static void
2382 ztest_get_done(zgd_t *zgd, int error)
2384 (void) error;
2385 ztest_ds_t *zd = zgd->zgd_private;
2386 uint64_t object = ((rl_t *)zgd->zgd_lr)->rl_object;
2388 if (zgd->zgd_db)
2389 dmu_buf_rele(zgd->zgd_db, zgd);
2391 ztest_range_unlock((rl_t *)zgd->zgd_lr);
2392 ztest_object_unlock(zd, object);
2394 umem_free(zgd, sizeof (*zgd));
2397 static int
2398 ztest_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
2399 struct lwb *lwb, zio_t *zio)
2401 (void) arg2;
2402 ztest_ds_t *zd = arg;
2403 objset_t *os = zd->zd_os;
2404 uint64_t object = lr->lr_foid;
2405 uint64_t offset = lr->lr_offset;
2406 uint64_t size = lr->lr_length;
2407 uint64_t txg = lr->lr_common.lrc_txg;
2408 uint64_t crtxg;
2409 dmu_object_info_t doi;
2410 dmu_buf_t *db;
2411 zgd_t *zgd;
2412 int error;
2414 ASSERT3P(lwb, !=, NULL);
2415 ASSERT3U(size, !=, 0);
2417 ztest_object_lock(zd, object, RL_READER);
2418 error = dmu_bonus_hold(os, object, FTAG, &db);
2419 if (error) {
2420 ztest_object_unlock(zd, object);
2421 return (error);
2424 crtxg = ztest_bt_bonus(db)->bt_crtxg;
2426 if (crtxg == 0 || crtxg > txg) {
2427 dmu_buf_rele(db, FTAG);
2428 ztest_object_unlock(zd, object);
2429 return (ENOENT);
2432 dmu_object_info_from_db(db, &doi);
2433 dmu_buf_rele(db, FTAG);
2434 db = NULL;
2436 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL);
2437 zgd->zgd_lwb = lwb;
2438 zgd->zgd_private = zd;
2440 if (buf != NULL) { /* immediate write */
2441 zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2442 object, offset, size, RL_READER);
2444 error = dmu_read(os, object, offset, size, buf,
2445 DMU_READ_NO_PREFETCH);
2446 ASSERT0(error);
2447 } else {
2448 ASSERT3P(zio, !=, NULL);
2449 size = doi.doi_data_block_size;
2450 if (ISP2(size)) {
2451 offset = P2ALIGN(offset, size);
2452 } else {
2453 ASSERT3U(offset, <, size);
2454 offset = 0;
2457 zgd->zgd_lr = (struct zfs_locked_range *)ztest_range_lock(zd,
2458 object, offset, size, RL_READER);
2460 error = dmu_buf_hold_noread(os, object, offset, zgd, &db);
2462 if (error == 0) {
2463 blkptr_t *bp = &lr->lr_blkptr;
2465 zgd->zgd_db = db;
2466 zgd->zgd_bp = bp;
2468 ASSERT3U(db->db_offset, ==, offset);
2469 ASSERT3U(db->db_size, ==, size);
2471 error = dmu_sync(zio, lr->lr_common.lrc_txg,
2472 ztest_get_done, zgd);
2474 if (error == 0)
2475 return (0);
2479 ztest_get_done(zgd, error);
2481 return (error);
2484 static void *
2485 ztest_lr_alloc(size_t lrsize, char *name)
2487 char *lr;
2488 size_t namesize = name ? strlen(name) + 1 : 0;
2490 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL);
2492 if (name)
2493 memcpy(lr + lrsize, name, namesize);
2495 return (lr);
2498 static void
2499 ztest_lr_free(void *lr, size_t lrsize, char *name)
2501 size_t namesize = name ? strlen(name) + 1 : 0;
2503 umem_free(lr, lrsize + namesize);
2507 * Lookup a bunch of objects. Returns the number of objects not found.
2509 static int
2510 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count)
2512 int missing = 0;
2513 int error;
2514 int i;
2516 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2518 for (i = 0; i < count; i++, od++) {
2519 od->od_object = 0;
2520 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name,
2521 sizeof (uint64_t), 1, &od->od_object);
2522 if (error) {
2523 ASSERT3S(error, ==, ENOENT);
2524 ASSERT0(od->od_object);
2525 missing++;
2526 } else {
2527 dmu_buf_t *db;
2528 ztest_block_tag_t *bbt;
2529 dmu_object_info_t doi;
2531 ASSERT3U(od->od_object, !=, 0);
2532 ASSERT0(missing); /* there should be no gaps */
2534 ztest_object_lock(zd, od->od_object, RL_READER);
2535 VERIFY0(dmu_bonus_hold(zd->zd_os, od->od_object,
2536 FTAG, &db));
2537 dmu_object_info_from_db(db, &doi);
2538 bbt = ztest_bt_bonus(db);
2539 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC);
2540 od->od_type = doi.doi_type;
2541 od->od_blocksize = doi.doi_data_block_size;
2542 od->od_gen = bbt->bt_gen;
2543 dmu_buf_rele(db, FTAG);
2544 ztest_object_unlock(zd, od->od_object);
2548 return (missing);
2551 static int
2552 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count)
2554 int missing = 0;
2555 int i;
2557 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2559 for (i = 0; i < count; i++, od++) {
2560 if (missing) {
2561 od->od_object = 0;
2562 missing++;
2563 continue;
2566 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2568 lr->lr_doid = od->od_dir;
2569 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */
2570 lr->lrz_type = od->od_crtype;
2571 lr->lrz_blocksize = od->od_crblocksize;
2572 lr->lrz_ibshift = ztest_random_ibshift();
2573 lr->lrz_bonustype = DMU_OT_UINT64_OTHER;
2574 lr->lrz_dnodesize = od->od_crdnodesize;
2575 lr->lr_gen = od->od_crgen;
2576 lr->lr_crtime[0] = time(NULL);
2578 if (ztest_replay_create(zd, lr, B_FALSE) != 0) {
2579 ASSERT0(missing);
2580 od->od_object = 0;
2581 missing++;
2582 } else {
2583 od->od_object = lr->lr_foid;
2584 od->od_type = od->od_crtype;
2585 od->od_blocksize = od->od_crblocksize;
2586 od->od_gen = od->od_crgen;
2587 ASSERT3U(od->od_object, !=, 0);
2590 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2593 return (missing);
2596 static int
2597 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count)
2599 int missing = 0;
2600 int error;
2601 int i;
2603 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock));
2605 od += count - 1;
2607 for (i = count - 1; i >= 0; i--, od--) {
2608 if (missing) {
2609 missing++;
2610 continue;
2614 * No object was found.
2616 if (od->od_object == 0)
2617 continue;
2619 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name);
2621 lr->lr_doid = od->od_dir;
2623 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) {
2624 ASSERT3U(error, ==, ENOSPC);
2625 missing++;
2626 } else {
2627 od->od_object = 0;
2629 ztest_lr_free(lr, sizeof (*lr), od->od_name);
2632 return (missing);
2635 static int
2636 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size,
2637 void *data)
2639 lr_write_t *lr;
2640 int error;
2642 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL);
2644 lr->lr_foid = object;
2645 lr->lr_offset = offset;
2646 lr->lr_length = size;
2647 lr->lr_blkoff = 0;
2648 BP_ZERO(&lr->lr_blkptr);
2650 memcpy(lr + 1, data, size);
2652 error = ztest_replay_write(zd, lr, B_FALSE);
2654 ztest_lr_free(lr, sizeof (*lr) + size, NULL);
2656 return (error);
2659 static int
2660 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2662 lr_truncate_t *lr;
2663 int error;
2665 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2667 lr->lr_foid = object;
2668 lr->lr_offset = offset;
2669 lr->lr_length = size;
2671 error = ztest_replay_truncate(zd, lr, B_FALSE);
2673 ztest_lr_free(lr, sizeof (*lr), NULL);
2675 return (error);
2678 static int
2679 ztest_setattr(ztest_ds_t *zd, uint64_t object)
2681 lr_setattr_t *lr;
2682 int error;
2684 lr = ztest_lr_alloc(sizeof (*lr), NULL);
2686 lr->lr_foid = object;
2687 lr->lr_size = 0;
2688 lr->lr_mode = 0;
2690 error = ztest_replay_setattr(zd, lr, B_FALSE);
2692 ztest_lr_free(lr, sizeof (*lr), NULL);
2694 return (error);
2697 static void
2698 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size)
2700 objset_t *os = zd->zd_os;
2701 dmu_tx_t *tx;
2702 uint64_t txg;
2703 rl_t *rl;
2705 txg_wait_synced(dmu_objset_pool(os), 0);
2707 ztest_object_lock(zd, object, RL_READER);
2708 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER);
2710 tx = dmu_tx_create(os);
2712 dmu_tx_hold_write(tx, object, offset, size);
2714 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG);
2716 if (txg != 0) {
2717 dmu_prealloc(os, object, offset, size, tx);
2718 dmu_tx_commit(tx);
2719 txg_wait_synced(dmu_objset_pool(os), txg);
2720 } else {
2721 (void) dmu_free_long_range(os, object, offset, size);
2724 ztest_range_unlock(rl);
2725 ztest_object_unlock(zd, object);
2728 static void
2729 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset)
2731 int err;
2732 ztest_block_tag_t wbt;
2733 dmu_object_info_t doi;
2734 enum ztest_io_type io_type;
2735 uint64_t blocksize;
2736 void *data;
2738 VERIFY0(dmu_object_info(zd->zd_os, object, &doi));
2739 blocksize = doi.doi_data_block_size;
2740 data = umem_alloc(blocksize, UMEM_NOFAIL);
2743 * Pick an i/o type at random, biased toward writing block tags.
2745 io_type = ztest_random(ZTEST_IO_TYPES);
2746 if (ztest_random(2) == 0)
2747 io_type = ZTEST_IO_WRITE_TAG;
2749 (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2751 switch (io_type) {
2753 case ZTEST_IO_WRITE_TAG:
2754 ztest_bt_generate(&wbt, zd->zd_os, object, doi.doi_dnodesize,
2755 offset, 0, 0, 0);
2756 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt);
2757 break;
2759 case ZTEST_IO_WRITE_PATTERN:
2760 (void) memset(data, 'a' + (object + offset) % 5, blocksize);
2761 if (ztest_random(2) == 0) {
2763 * Induce fletcher2 collisions to ensure that
2764 * zio_ddt_collision() detects and resolves them
2765 * when using fletcher2-verify for deduplication.
2767 ((uint64_t *)data)[0] ^= 1ULL << 63;
2768 ((uint64_t *)data)[4] ^= 1ULL << 63;
2770 (void) ztest_write(zd, object, offset, blocksize, data);
2771 break;
2773 case ZTEST_IO_WRITE_ZEROES:
2774 memset(data, 0, blocksize);
2775 (void) ztest_write(zd, object, offset, blocksize, data);
2776 break;
2778 case ZTEST_IO_TRUNCATE:
2779 (void) ztest_truncate(zd, object, offset, blocksize);
2780 break;
2782 case ZTEST_IO_SETATTR:
2783 (void) ztest_setattr(zd, object);
2784 break;
2785 default:
2786 break;
2788 case ZTEST_IO_REWRITE:
2789 (void) pthread_rwlock_rdlock(&ztest_name_lock);
2790 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2791 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa),
2792 B_FALSE);
2793 ASSERT(err == 0 || err == ENOSPC);
2794 err = ztest_dsl_prop_set_uint64(zd->zd_name,
2795 ZFS_PROP_COMPRESSION,
2796 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION),
2797 B_FALSE);
2798 ASSERT(err == 0 || err == ENOSPC);
2799 (void) pthread_rwlock_unlock(&ztest_name_lock);
2801 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data,
2802 DMU_READ_NO_PREFETCH));
2804 (void) ztest_write(zd, object, offset, blocksize, data);
2805 break;
2808 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2810 umem_free(data, blocksize);
2814 * Initialize an object description template.
2816 static void
2817 ztest_od_init(ztest_od_t *od, uint64_t id, const char *tag, uint64_t index,
2818 dmu_object_type_t type, uint64_t blocksize, uint64_t dnodesize,
2819 uint64_t gen)
2821 od->od_dir = ZTEST_DIROBJ;
2822 od->od_object = 0;
2824 od->od_crtype = type;
2825 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize();
2826 od->od_crdnodesize = dnodesize ? dnodesize : ztest_random_dnodesize();
2827 od->od_crgen = gen;
2829 od->od_type = DMU_OT_NONE;
2830 od->od_blocksize = 0;
2831 od->od_gen = 0;
2833 (void) snprintf(od->od_name, sizeof (od->od_name),
2834 "%s(%"PRId64")[%"PRIu64"]",
2835 tag, id, index);
2839 * Lookup or create the objects for a test using the od template.
2840 * If the objects do not all exist, or if 'remove' is specified,
2841 * remove any existing objects and create new ones. Otherwise,
2842 * use the existing objects.
2844 static int
2845 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove)
2847 int count = size / sizeof (*od);
2848 int rv = 0;
2850 mutex_enter(&zd->zd_dirobj_lock);
2851 if ((ztest_lookup(zd, od, count) != 0 || remove) &&
2852 (ztest_remove(zd, od, count) != 0 ||
2853 ztest_create(zd, od, count) != 0))
2854 rv = -1;
2855 zd->zd_od = od;
2856 mutex_exit(&zd->zd_dirobj_lock);
2858 return (rv);
2861 void
2862 ztest_zil_commit(ztest_ds_t *zd, uint64_t id)
2864 (void) id;
2865 zilog_t *zilog = zd->zd_zilog;
2867 (void) pthread_rwlock_rdlock(&zd->zd_zilog_lock);
2869 zil_commit(zilog, ztest_random(ZTEST_OBJECTS));
2872 * Remember the committed values in zd, which is in parent/child
2873 * shared memory. If we die, the next iteration of ztest_run()
2874 * will verify that the log really does contain this record.
2876 mutex_enter(&zilog->zl_lock);
2877 ASSERT3P(zd->zd_shared, !=, NULL);
2878 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq);
2879 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq;
2880 mutex_exit(&zilog->zl_lock);
2882 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2886 * This function is designed to simulate the operations that occur during a
2887 * mount/unmount operation. We hold the dataset across these operations in an
2888 * attempt to expose any implicit assumptions about ZIL management.
2890 void
2891 ztest_zil_remount(ztest_ds_t *zd, uint64_t id)
2893 (void) id;
2894 objset_t *os = zd->zd_os;
2897 * We hold the ztest_vdev_lock so we don't cause problems with
2898 * other threads that wish to remove a log device, such as
2899 * ztest_device_removal().
2901 mutex_enter(&ztest_vdev_lock);
2904 * We grab the zd_dirobj_lock to ensure that no other thread is
2905 * updating the zil (i.e. adding in-memory log records) and the
2906 * zd_zilog_lock to block any I/O.
2908 mutex_enter(&zd->zd_dirobj_lock);
2909 (void) pthread_rwlock_wrlock(&zd->zd_zilog_lock);
2911 /* zfsvfs_teardown() */
2912 zil_close(zd->zd_zilog);
2914 /* zfsvfs_setup() */
2915 VERIFY3P(zil_open(os, ztest_get_data, NULL), ==, zd->zd_zilog);
2916 zil_replay(os, zd, ztest_replay_vector);
2918 (void) pthread_rwlock_unlock(&zd->zd_zilog_lock);
2919 mutex_exit(&zd->zd_dirobj_lock);
2920 mutex_exit(&ztest_vdev_lock);
2924 * Verify that we can't destroy an active pool, create an existing pool,
2925 * or create a pool with a bad vdev spec.
2927 void
2928 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id)
2930 (void) zd, (void) id;
2931 ztest_shared_opts_t *zo = &ztest_opts;
2932 spa_t *spa;
2933 nvlist_t *nvroot;
2935 if (zo->zo_mmp_test)
2936 return;
2939 * Attempt to create using a bad file.
2941 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
2942 VERIFY3U(ENOENT, ==,
2943 spa_create("ztest_bad_file", nvroot, NULL, NULL, NULL));
2944 fnvlist_free(nvroot);
2947 * Attempt to create using a bad mirror.
2949 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 2, 1);
2950 VERIFY3U(ENOENT, ==,
2951 spa_create("ztest_bad_mirror", nvroot, NULL, NULL, NULL));
2952 fnvlist_free(nvroot);
2955 * Attempt to create an existing pool. It shouldn't matter
2956 * what's in the nvroot; we should fail with EEXIST.
2958 (void) pthread_rwlock_rdlock(&ztest_name_lock);
2959 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, NULL, 0, 0, 1);
2960 VERIFY3U(EEXIST, ==,
2961 spa_create(zo->zo_pool, nvroot, NULL, NULL, NULL));
2962 fnvlist_free(nvroot);
2965 * We open a reference to the spa and then we try to export it
2966 * expecting one of the following errors:
2968 * EBUSY
2969 * Because of the reference we just opened.
2971 * ZFS_ERR_EXPORT_IN_PROGRESS
2972 * For the case that there is another ztest thread doing
2973 * an export concurrently.
2975 VERIFY0(spa_open(zo->zo_pool, &spa, FTAG));
2976 int error = spa_destroy(zo->zo_pool);
2977 if (error != EBUSY && error != ZFS_ERR_EXPORT_IN_PROGRESS) {
2978 fatal(B_FALSE, "spa_destroy(%s) returned unexpected value %d",
2979 spa->spa_name, error);
2981 spa_close(spa, FTAG);
2983 (void) pthread_rwlock_unlock(&ztest_name_lock);
2987 * Start and then stop the MMP threads to ensure the startup and shutdown code
2988 * works properly. Actual protection and property-related code tested via ZTS.
2990 void
2991 ztest_mmp_enable_disable(ztest_ds_t *zd, uint64_t id)
2993 (void) zd, (void) id;
2994 ztest_shared_opts_t *zo = &ztest_opts;
2995 spa_t *spa = ztest_spa;
2997 if (zo->zo_mmp_test)
2998 return;
3001 * Since enabling MMP involves setting a property, it could not be done
3002 * while the pool is suspended.
3004 if (spa_suspended(spa))
3005 return;
3007 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3008 mutex_enter(&spa->spa_props_lock);
3010 zfs_multihost_fail_intervals = 0;
3012 if (!spa_multihost(spa)) {
3013 spa->spa_multihost = B_TRUE;
3014 mmp_thread_start(spa);
3017 mutex_exit(&spa->spa_props_lock);
3018 spa_config_exit(spa, SCL_CONFIG, FTAG);
3020 txg_wait_synced(spa_get_dsl(spa), 0);
3021 mmp_signal_all_threads();
3022 txg_wait_synced(spa_get_dsl(spa), 0);
3024 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3025 mutex_enter(&spa->spa_props_lock);
3027 if (spa_multihost(spa)) {
3028 mmp_thread_stop(spa);
3029 spa->spa_multihost = B_FALSE;
3032 mutex_exit(&spa->spa_props_lock);
3033 spa_config_exit(spa, SCL_CONFIG, FTAG);
3036 void
3037 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id)
3039 (void) zd, (void) id;
3040 spa_t *spa;
3041 uint64_t initial_version = SPA_VERSION_INITIAL;
3042 uint64_t version, newversion;
3043 nvlist_t *nvroot, *props;
3044 char *name;
3046 if (ztest_opts.zo_mmp_test)
3047 return;
3049 /* dRAID added after feature flags, skip upgrade test. */
3050 if (strcmp(ztest_opts.zo_raid_type, VDEV_TYPE_DRAID) == 0)
3051 return;
3053 mutex_enter(&ztest_vdev_lock);
3054 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool);
3057 * Clean up from previous runs.
3059 (void) spa_destroy(name);
3061 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0,
3062 NULL, ztest_opts.zo_raid_children, ztest_opts.zo_mirrors, 1);
3065 * If we're configuring a RAIDZ device then make sure that the
3066 * initial version is capable of supporting that feature.
3068 switch (ztest_opts.zo_raid_parity) {
3069 case 0:
3070 case 1:
3071 initial_version = SPA_VERSION_INITIAL;
3072 break;
3073 case 2:
3074 initial_version = SPA_VERSION_RAIDZ2;
3075 break;
3076 case 3:
3077 initial_version = SPA_VERSION_RAIDZ3;
3078 break;
3082 * Create a pool with a spa version that can be upgraded. Pick
3083 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
3085 do {
3086 version = ztest_random_spa_version(initial_version);
3087 } while (version > SPA_VERSION_BEFORE_FEATURES);
3089 props = fnvlist_alloc();
3090 fnvlist_add_uint64(props,
3091 zpool_prop_to_name(ZPOOL_PROP_VERSION), version);
3092 VERIFY0(spa_create(name, nvroot, props, NULL, NULL));
3093 fnvlist_free(nvroot);
3094 fnvlist_free(props);
3096 VERIFY0(spa_open(name, &spa, FTAG));
3097 VERIFY3U(spa_version(spa), ==, version);
3098 newversion = ztest_random_spa_version(version + 1);
3100 if (ztest_opts.zo_verbose >= 4) {
3101 (void) printf("upgrading spa version from "
3102 "%"PRIu64" to %"PRIu64"\n",
3103 version, newversion);
3106 spa_upgrade(spa, newversion);
3107 VERIFY3U(spa_version(spa), >, version);
3108 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config,
3109 zpool_prop_to_name(ZPOOL_PROP_VERSION)));
3110 spa_close(spa, FTAG);
3112 kmem_strfree(name);
3113 mutex_exit(&ztest_vdev_lock);
3116 static void
3117 ztest_spa_checkpoint(spa_t *spa)
3119 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3121 int error = spa_checkpoint(spa->spa_name);
3123 switch (error) {
3124 case 0:
3125 case ZFS_ERR_DEVRM_IN_PROGRESS:
3126 case ZFS_ERR_DISCARDING_CHECKPOINT:
3127 case ZFS_ERR_CHECKPOINT_EXISTS:
3128 break;
3129 case ENOSPC:
3130 ztest_record_enospc(FTAG);
3131 break;
3132 default:
3133 fatal(B_FALSE, "spa_checkpoint(%s) = %d", spa->spa_name, error);
3137 static void
3138 ztest_spa_discard_checkpoint(spa_t *spa)
3140 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock));
3142 int error = spa_checkpoint_discard(spa->spa_name);
3144 switch (error) {
3145 case 0:
3146 case ZFS_ERR_DISCARDING_CHECKPOINT:
3147 case ZFS_ERR_NO_CHECKPOINT:
3148 break;
3149 default:
3150 fatal(B_FALSE, "spa_discard_checkpoint(%s) = %d",
3151 spa->spa_name, error);
3156 void
3157 ztest_spa_checkpoint_create_discard(ztest_ds_t *zd, uint64_t id)
3159 (void) zd, (void) id;
3160 spa_t *spa = ztest_spa;
3162 mutex_enter(&ztest_checkpoint_lock);
3163 if (ztest_random(2) == 0) {
3164 ztest_spa_checkpoint(spa);
3165 } else {
3166 ztest_spa_discard_checkpoint(spa);
3168 mutex_exit(&ztest_checkpoint_lock);
3172 static vdev_t *
3173 vdev_lookup_by_path(vdev_t *vd, const char *path)
3175 vdev_t *mvd;
3176 int c;
3178 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
3179 return (vd);
3181 for (c = 0; c < vd->vdev_children; c++)
3182 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
3183 NULL)
3184 return (mvd);
3186 return (NULL);
3189 static int
3190 spa_num_top_vdevs(spa_t *spa)
3192 vdev_t *rvd = spa->spa_root_vdev;
3193 ASSERT3U(spa_config_held(spa, SCL_VDEV, RW_READER), ==, SCL_VDEV);
3194 return (rvd->vdev_children);
3198 * Verify that vdev_add() works as expected.
3200 void
3201 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id)
3203 (void) zd, (void) id;
3204 ztest_shared_t *zs = ztest_shared;
3205 spa_t *spa = ztest_spa;
3206 uint64_t leaves;
3207 uint64_t guid;
3208 nvlist_t *nvroot;
3209 int error;
3211 if (ztest_opts.zo_mmp_test)
3212 return;
3214 mutex_enter(&ztest_vdev_lock);
3215 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) *
3216 ztest_opts.zo_raid_children;
3218 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3220 ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3223 * If we have slogs then remove them 1/4 of the time.
3225 if (spa_has_slogs(spa) && ztest_random(4) == 0) {
3226 metaslab_group_t *mg;
3229 * find the first real slog in log allocation class
3231 mg = spa_log_class(spa)->mc_allocator[0].mca_rotor;
3232 while (!mg->mg_vd->vdev_islog)
3233 mg = mg->mg_next;
3235 guid = mg->mg_vd->vdev_guid;
3237 spa_config_exit(spa, SCL_VDEV, FTAG);
3240 * We have to grab the zs_name_lock as writer to
3241 * prevent a race between removing a slog (dmu_objset_find)
3242 * and destroying a dataset. Removing the slog will
3243 * grab a reference on the dataset which may cause
3244 * dsl_destroy_head() to fail with EBUSY thus
3245 * leaving the dataset in an inconsistent state.
3247 pthread_rwlock_wrlock(&ztest_name_lock);
3248 error = spa_vdev_remove(spa, guid, B_FALSE);
3249 pthread_rwlock_unlock(&ztest_name_lock);
3251 switch (error) {
3252 case 0:
3253 case EEXIST: /* Generic zil_reset() error */
3254 case EBUSY: /* Replay required */
3255 case EACCES: /* Crypto key not loaded */
3256 case ZFS_ERR_CHECKPOINT_EXISTS:
3257 case ZFS_ERR_DISCARDING_CHECKPOINT:
3258 break;
3259 default:
3260 fatal(B_FALSE, "spa_vdev_remove() = %d", error);
3262 } else {
3263 spa_config_exit(spa, SCL_VDEV, FTAG);
3266 * Make 1/4 of the devices be log devices
3268 nvroot = make_vdev_root(NULL, NULL, NULL,
3269 ztest_opts.zo_vdev_size, 0, (ztest_random(4) == 0) ?
3270 "log" : NULL, ztest_opts.zo_raid_children, zs->zs_mirrors,
3273 error = spa_vdev_add(spa, nvroot);
3274 fnvlist_free(nvroot);
3276 switch (error) {
3277 case 0:
3278 break;
3279 case ENOSPC:
3280 ztest_record_enospc("spa_vdev_add");
3281 break;
3282 default:
3283 fatal(B_FALSE, "spa_vdev_add() = %d", error);
3287 mutex_exit(&ztest_vdev_lock);
3290 void
3291 ztest_vdev_class_add(ztest_ds_t *zd, uint64_t id)
3293 (void) zd, (void) id;
3294 ztest_shared_t *zs = ztest_shared;
3295 spa_t *spa = ztest_spa;
3296 uint64_t leaves;
3297 nvlist_t *nvroot;
3298 const char *class = (ztest_random(2) == 0) ?
3299 VDEV_ALLOC_BIAS_SPECIAL : VDEV_ALLOC_BIAS_DEDUP;
3300 int error;
3303 * By default add a special vdev 50% of the time
3305 if ((ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_OFF) ||
3306 (ztest_opts.zo_special_vdevs == ZTEST_VDEV_CLASS_RND &&
3307 ztest_random(2) == 0)) {
3308 return;
3311 mutex_enter(&ztest_vdev_lock);
3313 /* Only test with mirrors */
3314 if (zs->zs_mirrors < 2) {
3315 mutex_exit(&ztest_vdev_lock);
3316 return;
3319 /* requires feature@allocation_classes */
3320 if (!spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES)) {
3321 mutex_exit(&ztest_vdev_lock);
3322 return;
3325 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) *
3326 ztest_opts.zo_raid_children;
3328 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3329 ztest_shared->zs_vdev_next_leaf = spa_num_top_vdevs(spa) * leaves;
3330 spa_config_exit(spa, SCL_VDEV, FTAG);
3332 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
3333 class, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
3335 error = spa_vdev_add(spa, nvroot);
3336 fnvlist_free(nvroot);
3338 if (error == ENOSPC)
3339 ztest_record_enospc("spa_vdev_add");
3340 else if (error != 0)
3341 fatal(B_FALSE, "spa_vdev_add() = %d", error);
3344 * 50% of the time allow small blocks in the special class
3346 if (error == 0 &&
3347 spa_special_class(spa)->mc_groups == 1 && ztest_random(2) == 0) {
3348 if (ztest_opts.zo_verbose >= 3)
3349 (void) printf("Enabling special VDEV small blocks\n");
3350 error = ztest_dsl_prop_set_uint64(zd->zd_name,
3351 ZFS_PROP_SPECIAL_SMALL_BLOCKS, 32768, B_FALSE);
3352 ASSERT(error == 0 || error == ENOSPC);
3355 mutex_exit(&ztest_vdev_lock);
3357 if (ztest_opts.zo_verbose >= 3) {
3358 metaslab_class_t *mc;
3360 if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL) == 0)
3361 mc = spa_special_class(spa);
3362 else
3363 mc = spa_dedup_class(spa);
3364 (void) printf("Added a %s mirrored vdev (of %d)\n",
3365 class, (int)mc->mc_groups);
3370 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
3372 void
3373 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id)
3375 (void) zd, (void) id;
3376 ztest_shared_t *zs = ztest_shared;
3377 spa_t *spa = ztest_spa;
3378 vdev_t *rvd = spa->spa_root_vdev;
3379 spa_aux_vdev_t *sav;
3380 const char *aux;
3381 char *path;
3382 uint64_t guid = 0;
3383 int error, ignore_err = 0;
3385 if (ztest_opts.zo_mmp_test)
3386 return;
3388 path = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3390 if (ztest_random(2) == 0) {
3391 sav = &spa->spa_spares;
3392 aux = ZPOOL_CONFIG_SPARES;
3393 } else {
3394 sav = &spa->spa_l2cache;
3395 aux = ZPOOL_CONFIG_L2CACHE;
3398 mutex_enter(&ztest_vdev_lock);
3400 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3402 if (sav->sav_count != 0 && ztest_random(4) == 0) {
3404 * Pick a random device to remove.
3406 vdev_t *svd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3408 /* dRAID spares cannot be removed; try anyways to see ENOTSUP */
3409 if (strstr(svd->vdev_path, VDEV_TYPE_DRAID) != NULL)
3410 ignore_err = ENOTSUP;
3412 guid = svd->vdev_guid;
3413 } else {
3415 * Find an unused device we can add.
3417 zs->zs_vdev_aux = 0;
3418 for (;;) {
3419 int c;
3420 (void) snprintf(path, MAXPATHLEN, ztest_aux_template,
3421 ztest_opts.zo_dir, ztest_opts.zo_pool, aux,
3422 zs->zs_vdev_aux);
3423 for (c = 0; c < sav->sav_count; c++)
3424 if (strcmp(sav->sav_vdevs[c]->vdev_path,
3425 path) == 0)
3426 break;
3427 if (c == sav->sav_count &&
3428 vdev_lookup_by_path(rvd, path) == NULL)
3429 break;
3430 zs->zs_vdev_aux++;
3434 spa_config_exit(spa, SCL_VDEV, FTAG);
3436 if (guid == 0) {
3438 * Add a new device.
3440 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL,
3441 (ztest_opts.zo_vdev_size * 5) / 4, 0, NULL, 0, 0, 1);
3442 error = spa_vdev_add(spa, nvroot);
3444 switch (error) {
3445 case 0:
3446 break;
3447 default:
3448 fatal(B_FALSE, "spa_vdev_add(%p) = %d", nvroot, error);
3450 fnvlist_free(nvroot);
3451 } else {
3453 * Remove an existing device. Sometimes, dirty its
3454 * vdev state first to make sure we handle removal
3455 * of devices that have pending state changes.
3457 if (ztest_random(2) == 0)
3458 (void) vdev_online(spa, guid, 0, NULL);
3460 error = spa_vdev_remove(spa, guid, B_FALSE);
3462 switch (error) {
3463 case 0:
3464 case EBUSY:
3465 case ZFS_ERR_CHECKPOINT_EXISTS:
3466 case ZFS_ERR_DISCARDING_CHECKPOINT:
3467 break;
3468 default:
3469 if (error != ignore_err)
3470 fatal(B_FALSE,
3471 "spa_vdev_remove(%"PRIu64") = %d",
3472 guid, error);
3476 mutex_exit(&ztest_vdev_lock);
3478 umem_free(path, MAXPATHLEN);
3482 * split a pool if it has mirror tlvdevs
3484 void
3485 ztest_split_pool(ztest_ds_t *zd, uint64_t id)
3487 (void) zd, (void) id;
3488 ztest_shared_t *zs = ztest_shared;
3489 spa_t *spa = ztest_spa;
3490 vdev_t *rvd = spa->spa_root_vdev;
3491 nvlist_t *tree, **child, *config, *split, **schild;
3492 uint_t c, children, schildren = 0, lastlogid = 0;
3493 int error = 0;
3495 if (ztest_opts.zo_mmp_test)
3496 return;
3498 mutex_enter(&ztest_vdev_lock);
3500 /* ensure we have a usable config; mirrors of raidz aren't supported */
3501 if (zs->zs_mirrors < 3 || ztest_opts.zo_raid_children > 1) {
3502 mutex_exit(&ztest_vdev_lock);
3503 return;
3506 /* clean up the old pool, if any */
3507 (void) spa_destroy("splitp");
3509 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3511 /* generate a config from the existing config */
3512 mutex_enter(&spa->spa_props_lock);
3513 tree = fnvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE);
3514 mutex_exit(&spa->spa_props_lock);
3516 VERIFY0(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN,
3517 &child, &children));
3519 schild = umem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
3520 UMEM_NOFAIL);
3521 for (c = 0; c < children; c++) {
3522 vdev_t *tvd = rvd->vdev_child[c];
3523 nvlist_t **mchild;
3524 uint_t mchildren;
3526 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) {
3527 schild[schildren] = fnvlist_alloc();
3528 fnvlist_add_string(schild[schildren],
3529 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE);
3530 fnvlist_add_uint64(schild[schildren],
3531 ZPOOL_CONFIG_IS_HOLE, 1);
3532 if (lastlogid == 0)
3533 lastlogid = schildren;
3534 ++schildren;
3535 continue;
3537 lastlogid = 0;
3538 VERIFY0(nvlist_lookup_nvlist_array(child[c],
3539 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren));
3540 schild[schildren++] = fnvlist_dup(mchild[0]);
3543 /* OK, create a config that can be used to split */
3544 split = fnvlist_alloc();
3545 fnvlist_add_string(split, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT);
3546 fnvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN,
3547 (const nvlist_t **)schild, lastlogid != 0 ? lastlogid : schildren);
3549 config = fnvlist_alloc();
3550 fnvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split);
3552 for (c = 0; c < schildren; c++)
3553 fnvlist_free(schild[c]);
3554 umem_free(schild, rvd->vdev_children * sizeof (nvlist_t *));
3555 fnvlist_free(split);
3557 spa_config_exit(spa, SCL_VDEV, FTAG);
3559 (void) pthread_rwlock_wrlock(&ztest_name_lock);
3560 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE);
3561 (void) pthread_rwlock_unlock(&ztest_name_lock);
3563 fnvlist_free(config);
3565 if (error == 0) {
3566 (void) printf("successful split - results:\n");
3567 mutex_enter(&spa_namespace_lock);
3568 show_pool_stats(spa);
3569 show_pool_stats(spa_lookup("splitp"));
3570 mutex_exit(&spa_namespace_lock);
3571 ++zs->zs_splits;
3572 --zs->zs_mirrors;
3574 mutex_exit(&ztest_vdev_lock);
3578 * Verify that we can attach and detach devices.
3580 void
3581 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id)
3583 (void) zd, (void) id;
3584 ztest_shared_t *zs = ztest_shared;
3585 spa_t *spa = ztest_spa;
3586 spa_aux_vdev_t *sav = &spa->spa_spares;
3587 vdev_t *rvd = spa->spa_root_vdev;
3588 vdev_t *oldvd, *newvd, *pvd;
3589 nvlist_t *root;
3590 uint64_t leaves;
3591 uint64_t leaf, top;
3592 uint64_t ashift = ztest_get_ashift();
3593 uint64_t oldguid, pguid;
3594 uint64_t oldsize, newsize;
3595 char *oldpath, *newpath;
3596 int replacing;
3597 int oldvd_has_siblings = B_FALSE;
3598 int newvd_is_spare = B_FALSE;
3599 int newvd_is_dspare = B_FALSE;
3600 int oldvd_is_log;
3601 int oldvd_is_special;
3602 int error, expected_error;
3604 if (ztest_opts.zo_mmp_test)
3605 return;
3607 oldpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3608 newpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
3610 mutex_enter(&ztest_vdev_lock);
3611 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raid_children;
3613 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3616 * If a vdev is in the process of being removed, its removal may
3617 * finish while we are in progress, leading to an unexpected error
3618 * value. Don't bother trying to attach while we are in the middle
3619 * of removal.
3621 if (ztest_device_removal_active) {
3622 spa_config_exit(spa, SCL_ALL, FTAG);
3623 goto out;
3627 * Decide whether to do an attach or a replace.
3629 replacing = ztest_random(2);
3632 * Pick a random top-level vdev.
3634 top = ztest_random_vdev_top(spa, B_TRUE);
3637 * Pick a random leaf within it.
3639 leaf = ztest_random(leaves);
3642 * Locate this vdev.
3644 oldvd = rvd->vdev_child[top];
3646 /* pick a child from the mirror */
3647 if (zs->zs_mirrors >= 1) {
3648 ASSERT3P(oldvd->vdev_ops, ==, &vdev_mirror_ops);
3649 ASSERT3U(oldvd->vdev_children, >=, zs->zs_mirrors);
3650 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raid_children];
3653 /* pick a child out of the raidz group */
3654 if (ztest_opts.zo_raid_children > 1) {
3655 if (strcmp(oldvd->vdev_ops->vdev_op_type, "raidz") == 0)
3656 ASSERT3P(oldvd->vdev_ops, ==, &vdev_raidz_ops);
3657 else
3658 ASSERT3P(oldvd->vdev_ops, ==, &vdev_draid_ops);
3659 ASSERT3U(oldvd->vdev_children, ==, ztest_opts.zo_raid_children);
3660 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raid_children];
3664 * If we're already doing an attach or replace, oldvd may be a
3665 * mirror vdev -- in which case, pick a random child.
3667 while (oldvd->vdev_children != 0) {
3668 oldvd_has_siblings = B_TRUE;
3669 ASSERT3U(oldvd->vdev_children, >=, 2);
3670 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)];
3673 oldguid = oldvd->vdev_guid;
3674 oldsize = vdev_get_min_asize(oldvd);
3675 oldvd_is_log = oldvd->vdev_top->vdev_islog;
3676 oldvd_is_special =
3677 oldvd->vdev_top->vdev_alloc_bias == VDEV_BIAS_SPECIAL ||
3678 oldvd->vdev_top->vdev_alloc_bias == VDEV_BIAS_DEDUP;
3679 (void) strlcpy(oldpath, oldvd->vdev_path, MAXPATHLEN);
3680 pvd = oldvd->vdev_parent;
3681 pguid = pvd->vdev_guid;
3684 * If oldvd has siblings, then half of the time, detach it. Prior
3685 * to the detach the pool is scrubbed in order to prevent creating
3686 * unrepairable blocks as a result of the data corruption injection.
3688 if (oldvd_has_siblings && ztest_random(2) == 0) {
3689 spa_config_exit(spa, SCL_ALL, FTAG);
3691 error = ztest_scrub_impl(spa);
3692 if (error)
3693 goto out;
3695 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE);
3696 if (error != 0 && error != ENODEV && error != EBUSY &&
3697 error != ENOTSUP && error != ZFS_ERR_CHECKPOINT_EXISTS &&
3698 error != ZFS_ERR_DISCARDING_CHECKPOINT)
3699 fatal(B_FALSE, "detach (%s) returned %d",
3700 oldpath, error);
3701 goto out;
3705 * For the new vdev, choose with equal probability between the two
3706 * standard paths (ending in either 'a' or 'b') or a random hot spare.
3708 if (sav->sav_count != 0 && ztest_random(3) == 0) {
3709 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)];
3710 newvd_is_spare = B_TRUE;
3712 if (newvd->vdev_ops == &vdev_draid_spare_ops)
3713 newvd_is_dspare = B_TRUE;
3715 (void) strlcpy(newpath, newvd->vdev_path, MAXPATHLEN);
3716 } else {
3717 (void) snprintf(newpath, MAXPATHLEN, ztest_dev_template,
3718 ztest_opts.zo_dir, ztest_opts.zo_pool,
3719 top * leaves + leaf);
3720 if (ztest_random(2) == 0)
3721 newpath[strlen(newpath) - 1] = 'b';
3722 newvd = vdev_lookup_by_path(rvd, newpath);
3725 if (newvd) {
3727 * Reopen to ensure the vdev's asize field isn't stale.
3729 vdev_reopen(newvd);
3730 newsize = vdev_get_min_asize(newvd);
3731 } else {
3733 * Make newsize a little bigger or smaller than oldsize.
3734 * If it's smaller, the attach should fail.
3735 * If it's larger, and we're doing a replace,
3736 * we should get dynamic LUN growth when we're done.
3738 newsize = 10 * oldsize / (9 + ztest_random(3));
3742 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
3743 * unless it's a replace; in that case any non-replacing parent is OK.
3745 * If newvd is already part of the pool, it should fail with EBUSY.
3747 * If newvd is too small, it should fail with EOVERFLOW.
3749 * If newvd is a distributed spare and it's being attached to a
3750 * dRAID which is not its parent it should fail with EINVAL.
3752 if (pvd->vdev_ops != &vdev_mirror_ops &&
3753 pvd->vdev_ops != &vdev_root_ops && (!replacing ||
3754 pvd->vdev_ops == &vdev_replacing_ops ||
3755 pvd->vdev_ops == &vdev_spare_ops))
3756 expected_error = ENOTSUP;
3757 else if (newvd_is_spare &&
3758 (!replacing || oldvd_is_log || oldvd_is_special))
3759 expected_error = ENOTSUP;
3760 else if (newvd == oldvd)
3761 expected_error = replacing ? 0 : EBUSY;
3762 else if (vdev_lookup_by_path(rvd, newpath) != NULL)
3763 expected_error = EBUSY;
3764 else if (!newvd_is_dspare && newsize < oldsize)
3765 expected_error = EOVERFLOW;
3766 else if (ashift > oldvd->vdev_top->vdev_ashift)
3767 expected_error = EDOM;
3768 else if (newvd_is_dspare && pvd != vdev_draid_spare_get_parent(newvd))
3769 expected_error = EINVAL;
3770 else
3771 expected_error = 0;
3773 spa_config_exit(spa, SCL_ALL, FTAG);
3776 * Build the nvlist describing newpath.
3778 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0,
3779 ashift, NULL, 0, 0, 1);
3782 * When supported select either a healing or sequential resilver.
3784 boolean_t rebuilding = B_FALSE;
3785 if (pvd->vdev_ops == &vdev_mirror_ops ||
3786 pvd->vdev_ops == &vdev_root_ops) {
3787 rebuilding = !!ztest_random(2);
3790 error = spa_vdev_attach(spa, oldguid, root, replacing, rebuilding);
3792 fnvlist_free(root);
3795 * If our parent was the replacing vdev, but the replace completed,
3796 * then instead of failing with ENOTSUP we may either succeed,
3797 * fail with ENODEV, or fail with EOVERFLOW.
3799 if (expected_error == ENOTSUP &&
3800 (error == 0 || error == ENODEV || error == EOVERFLOW))
3801 expected_error = error;
3804 * If someone grew the LUN, the replacement may be too small.
3806 if (error == EOVERFLOW || error == EBUSY)
3807 expected_error = error;
3809 if (error == ZFS_ERR_CHECKPOINT_EXISTS ||
3810 error == ZFS_ERR_DISCARDING_CHECKPOINT ||
3811 error == ZFS_ERR_RESILVER_IN_PROGRESS ||
3812 error == ZFS_ERR_REBUILD_IN_PROGRESS)
3813 expected_error = error;
3815 if (error != expected_error && expected_error != EBUSY) {
3816 fatal(B_FALSE, "attach (%s %"PRIu64", %s %"PRIu64", %d) "
3817 "returned %d, expected %d",
3818 oldpath, oldsize, newpath,
3819 newsize, replacing, error, expected_error);
3821 out:
3822 mutex_exit(&ztest_vdev_lock);
3824 umem_free(oldpath, MAXPATHLEN);
3825 umem_free(newpath, MAXPATHLEN);
3828 void
3829 ztest_device_removal(ztest_ds_t *zd, uint64_t id)
3831 (void) zd, (void) id;
3832 spa_t *spa = ztest_spa;
3833 vdev_t *vd;
3834 uint64_t guid;
3835 int error;
3837 mutex_enter(&ztest_vdev_lock);
3839 if (ztest_device_removal_active) {
3840 mutex_exit(&ztest_vdev_lock);
3841 return;
3845 * Remove a random top-level vdev and wait for removal to finish.
3847 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3848 vd = vdev_lookup_top(spa, ztest_random_vdev_top(spa, B_FALSE));
3849 guid = vd->vdev_guid;
3850 spa_config_exit(spa, SCL_VDEV, FTAG);
3852 error = spa_vdev_remove(spa, guid, B_FALSE);
3853 if (error == 0) {
3854 ztest_device_removal_active = B_TRUE;
3855 mutex_exit(&ztest_vdev_lock);
3858 * spa->spa_vdev_removal is created in a sync task that
3859 * is initiated via dsl_sync_task_nowait(). Since the
3860 * task may not run before spa_vdev_remove() returns, we
3861 * must wait at least 1 txg to ensure that the removal
3862 * struct has been created.
3864 txg_wait_synced(spa_get_dsl(spa), 0);
3866 while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
3867 txg_wait_synced(spa_get_dsl(spa), 0);
3868 } else {
3869 mutex_exit(&ztest_vdev_lock);
3870 return;
3874 * The pool needs to be scrubbed after completing device removal.
3875 * Failure to do so may result in checksum errors due to the
3876 * strategy employed by ztest_fault_inject() when selecting which
3877 * offset are redundant and can be damaged.
3879 error = spa_scan(spa, POOL_SCAN_SCRUB);
3880 if (error == 0) {
3881 while (dsl_scan_scrubbing(spa_get_dsl(spa)))
3882 txg_wait_synced(spa_get_dsl(spa), 0);
3885 mutex_enter(&ztest_vdev_lock);
3886 ztest_device_removal_active = B_FALSE;
3887 mutex_exit(&ztest_vdev_lock);
3891 * Callback function which expands the physical size of the vdev.
3893 static vdev_t *
3894 grow_vdev(vdev_t *vd, void *arg)
3896 spa_t *spa __maybe_unused = vd->vdev_spa;
3897 size_t *newsize = arg;
3898 size_t fsize;
3899 int fd;
3901 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
3902 ASSERT(vd->vdev_ops->vdev_op_leaf);
3904 if ((fd = open(vd->vdev_path, O_RDWR)) == -1)
3905 return (vd);
3907 fsize = lseek(fd, 0, SEEK_END);
3908 VERIFY0(ftruncate(fd, *newsize));
3910 if (ztest_opts.zo_verbose >= 6) {
3911 (void) printf("%s grew from %lu to %lu bytes\n",
3912 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize);
3914 (void) close(fd);
3915 return (NULL);
3919 * Callback function which expands a given vdev by calling vdev_online().
3921 static vdev_t *
3922 online_vdev(vdev_t *vd, void *arg)
3924 (void) arg;
3925 spa_t *spa = vd->vdev_spa;
3926 vdev_t *tvd = vd->vdev_top;
3927 uint64_t guid = vd->vdev_guid;
3928 uint64_t generation = spa->spa_config_generation + 1;
3929 vdev_state_t newstate = VDEV_STATE_UNKNOWN;
3930 int error;
3932 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), ==, SCL_STATE);
3933 ASSERT(vd->vdev_ops->vdev_op_leaf);
3935 /* Calling vdev_online will initialize the new metaslabs */
3936 spa_config_exit(spa, SCL_STATE, spa);
3937 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate);
3938 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
3941 * If vdev_online returned an error or the underlying vdev_open
3942 * failed then we abort the expand. The only way to know that
3943 * vdev_open fails is by checking the returned newstate.
3945 if (error || newstate != VDEV_STATE_HEALTHY) {
3946 if (ztest_opts.zo_verbose >= 5) {
3947 (void) printf("Unable to expand vdev, state %u, "
3948 "error %d\n", newstate, error);
3950 return (vd);
3952 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY);
3955 * Since we dropped the lock we need to ensure that we're
3956 * still talking to the original vdev. It's possible this
3957 * vdev may have been detached/replaced while we were
3958 * trying to online it.
3960 if (generation != spa->spa_config_generation) {
3961 if (ztest_opts.zo_verbose >= 5) {
3962 (void) printf("vdev configuration has changed, "
3963 "guid %"PRIu64", state %"PRIu64", "
3964 "expected gen %"PRIu64", got gen %"PRIu64"\n",
3965 guid,
3966 tvd->vdev_state,
3967 generation,
3968 spa->spa_config_generation);
3970 return (vd);
3972 return (NULL);
3976 * Traverse the vdev tree calling the supplied function.
3977 * We continue to walk the tree until we either have walked all
3978 * children or we receive a non-NULL return from the callback.
3979 * If a NULL callback is passed, then we just return back the first
3980 * leaf vdev we encounter.
3982 static vdev_t *
3983 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg)
3985 uint_t c;
3987 if (vd->vdev_ops->vdev_op_leaf) {
3988 if (func == NULL)
3989 return (vd);
3990 else
3991 return (func(vd, arg));
3994 for (c = 0; c < vd->vdev_children; c++) {
3995 vdev_t *cvd = vd->vdev_child[c];
3996 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL)
3997 return (cvd);
3999 return (NULL);
4003 * Verify that dynamic LUN growth works as expected.
4005 void
4006 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id)
4008 (void) zd, (void) id;
4009 spa_t *spa = ztest_spa;
4010 vdev_t *vd, *tvd;
4011 metaslab_class_t *mc;
4012 metaslab_group_t *mg;
4013 size_t psize, newsize;
4014 uint64_t top;
4015 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count;
4017 mutex_enter(&ztest_checkpoint_lock);
4018 mutex_enter(&ztest_vdev_lock);
4019 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4022 * If there is a vdev removal in progress, it could complete while
4023 * we are running, in which case we would not be able to verify
4024 * that the metaslab_class space increased (because it decreases
4025 * when the device removal completes).
4027 if (ztest_device_removal_active) {
4028 spa_config_exit(spa, SCL_STATE, spa);
4029 mutex_exit(&ztest_vdev_lock);
4030 mutex_exit(&ztest_checkpoint_lock);
4031 return;
4034 top = ztest_random_vdev_top(spa, B_TRUE);
4036 tvd = spa->spa_root_vdev->vdev_child[top];
4037 mg = tvd->vdev_mg;
4038 mc = mg->mg_class;
4039 old_ms_count = tvd->vdev_ms_count;
4040 old_class_space = metaslab_class_get_space(mc);
4043 * Determine the size of the first leaf vdev associated with
4044 * our top-level device.
4046 vd = vdev_walk_tree(tvd, NULL, NULL);
4047 ASSERT3P(vd, !=, NULL);
4048 ASSERT(vd->vdev_ops->vdev_op_leaf);
4050 psize = vd->vdev_psize;
4053 * We only try to expand the vdev if it's healthy, less than 4x its
4054 * original size, and it has a valid psize.
4056 if (tvd->vdev_state != VDEV_STATE_HEALTHY ||
4057 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) {
4058 spa_config_exit(spa, SCL_STATE, spa);
4059 mutex_exit(&ztest_vdev_lock);
4060 mutex_exit(&ztest_checkpoint_lock);
4061 return;
4063 ASSERT3U(psize, >, 0);
4064 newsize = psize + MAX(psize / 8, SPA_MAXBLOCKSIZE);
4065 ASSERT3U(newsize, >, psize);
4067 if (ztest_opts.zo_verbose >= 6) {
4068 (void) printf("Expanding LUN %s from %lu to %lu\n",
4069 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize);
4073 * Growing the vdev is a two step process:
4074 * 1). expand the physical size (i.e. relabel)
4075 * 2). online the vdev to create the new metaslabs
4077 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL ||
4078 vdev_walk_tree(tvd, online_vdev, NULL) != NULL ||
4079 tvd->vdev_state != VDEV_STATE_HEALTHY) {
4080 if (ztest_opts.zo_verbose >= 5) {
4081 (void) printf("Could not expand LUN because "
4082 "the vdev configuration changed.\n");
4084 spa_config_exit(spa, SCL_STATE, spa);
4085 mutex_exit(&ztest_vdev_lock);
4086 mutex_exit(&ztest_checkpoint_lock);
4087 return;
4090 spa_config_exit(spa, SCL_STATE, spa);
4093 * Expanding the LUN will update the config asynchronously,
4094 * thus we must wait for the async thread to complete any
4095 * pending tasks before proceeding.
4097 for (;;) {
4098 boolean_t done;
4099 mutex_enter(&spa->spa_async_lock);
4100 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks);
4101 mutex_exit(&spa->spa_async_lock);
4102 if (done)
4103 break;
4104 txg_wait_synced(spa_get_dsl(spa), 0);
4105 (void) poll(NULL, 0, 100);
4108 spa_config_enter(spa, SCL_STATE, spa, RW_READER);
4110 tvd = spa->spa_root_vdev->vdev_child[top];
4111 new_ms_count = tvd->vdev_ms_count;
4112 new_class_space = metaslab_class_get_space(mc);
4114 if (tvd->vdev_mg != mg || mg->mg_class != mc) {
4115 if (ztest_opts.zo_verbose >= 5) {
4116 (void) printf("Could not verify LUN expansion due to "
4117 "intervening vdev offline or remove.\n");
4119 spa_config_exit(spa, SCL_STATE, spa);
4120 mutex_exit(&ztest_vdev_lock);
4121 mutex_exit(&ztest_checkpoint_lock);
4122 return;
4126 * Make sure we were able to grow the vdev.
4128 if (new_ms_count <= old_ms_count) {
4129 fatal(B_FALSE,
4130 "LUN expansion failed: ms_count %"PRIu64" < %"PRIu64"\n",
4131 old_ms_count, new_ms_count);
4135 * Make sure we were able to grow the pool.
4137 if (new_class_space <= old_class_space) {
4138 fatal(B_FALSE,
4139 "LUN expansion failed: class_space %"PRIu64" < %"PRIu64"\n",
4140 old_class_space, new_class_space);
4143 if (ztest_opts.zo_verbose >= 5) {
4144 char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ];
4146 nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf));
4147 nicenum(new_class_space, newnumbuf, sizeof (newnumbuf));
4148 (void) printf("%s grew from %s to %s\n",
4149 spa->spa_name, oldnumbuf, newnumbuf);
4152 spa_config_exit(spa, SCL_STATE, spa);
4153 mutex_exit(&ztest_vdev_lock);
4154 mutex_exit(&ztest_checkpoint_lock);
4158 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
4160 static void
4161 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
4163 (void) arg, (void) cr;
4166 * Create the objects common to all ztest datasets.
4168 VERIFY0(zap_create_claim(os, ZTEST_DIROBJ,
4169 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx));
4172 static int
4173 ztest_dataset_create(char *dsname)
4175 int err;
4176 uint64_t rand;
4177 dsl_crypto_params_t *dcp = NULL;
4180 * 50% of the time, we create encrypted datasets
4181 * using a random cipher suite and a hard-coded
4182 * wrapping key.
4184 rand = ztest_random(2);
4185 if (rand != 0) {
4186 nvlist_t *crypto_args = fnvlist_alloc();
4187 nvlist_t *props = fnvlist_alloc();
4189 /* slight bias towards the default cipher suite */
4190 rand = ztest_random(ZIO_CRYPT_FUNCTIONS);
4191 if (rand < ZIO_CRYPT_AES_128_CCM)
4192 rand = ZIO_CRYPT_ON;
4194 fnvlist_add_uint64(props,
4195 zfs_prop_to_name(ZFS_PROP_ENCRYPTION), rand);
4196 fnvlist_add_uint8_array(crypto_args, "wkeydata",
4197 (uint8_t *)ztest_wkeydata, WRAPPING_KEY_LEN);
4200 * These parameters aren't really used by the kernel. They
4201 * are simply stored so that userspace knows how to load
4202 * the wrapping key.
4204 fnvlist_add_uint64(props,
4205 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), ZFS_KEYFORMAT_RAW);
4206 fnvlist_add_string(props,
4207 zfs_prop_to_name(ZFS_PROP_KEYLOCATION), "prompt");
4208 fnvlist_add_uint64(props,
4209 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 0ULL);
4210 fnvlist_add_uint64(props,
4211 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 0ULL);
4213 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE, props,
4214 crypto_args, &dcp));
4217 * Cycle through all available encryption implementations
4218 * to verify interoperability.
4220 VERIFY0(gcm_impl_set("cycle"));
4221 VERIFY0(aes_impl_set("cycle"));
4223 fnvlist_free(crypto_args);
4224 fnvlist_free(props);
4227 err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, dcp,
4228 ztest_objset_create_cb, NULL);
4229 dsl_crypto_params_free(dcp, !!err);
4231 rand = ztest_random(100);
4232 if (err || rand < 80)
4233 return (err);
4235 if (ztest_opts.zo_verbose >= 5)
4236 (void) printf("Setting dataset %s to sync always\n", dsname);
4237 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC,
4238 ZFS_SYNC_ALWAYS, B_FALSE));
4241 static int
4242 ztest_objset_destroy_cb(const char *name, void *arg)
4244 (void) arg;
4245 objset_t *os;
4246 dmu_object_info_t doi;
4247 int error;
4250 * Verify that the dataset contains a directory object.
4252 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE,
4253 B_TRUE, FTAG, &os));
4254 error = dmu_object_info(os, ZTEST_DIROBJ, &doi);
4255 if (error != ENOENT) {
4256 /* We could have crashed in the middle of destroying it */
4257 ASSERT0(error);
4258 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER);
4259 ASSERT3S(doi.doi_physical_blocks_512, >=, 0);
4261 dmu_objset_disown(os, B_TRUE, FTAG);
4264 * Destroy the dataset.
4266 if (strchr(name, '@') != NULL) {
4267 error = dsl_destroy_snapshot(name, B_TRUE);
4268 if (error != ECHRNG) {
4270 * The program was executed, but encountered a runtime
4271 * error, such as insufficient slop, or a hold on the
4272 * dataset.
4274 ASSERT0(error);
4276 } else {
4277 error = dsl_destroy_head(name);
4278 if (error == ENOSPC) {
4279 /* There could be checkpoint or insufficient slop */
4280 ztest_record_enospc(FTAG);
4281 } else if (error != EBUSY) {
4282 /* There could be a hold on this dataset */
4283 ASSERT0(error);
4286 return (0);
4289 static boolean_t
4290 ztest_snapshot_create(char *osname, uint64_t id)
4292 char snapname[ZFS_MAX_DATASET_NAME_LEN];
4293 int error;
4295 (void) snprintf(snapname, sizeof (snapname), "%"PRIu64"", id);
4297 error = dmu_objset_snapshot_one(osname, snapname);
4298 if (error == ENOSPC) {
4299 ztest_record_enospc(FTAG);
4300 return (B_FALSE);
4302 if (error != 0 && error != EEXIST && error != ECHRNG) {
4303 fatal(B_FALSE, "ztest_snapshot_create(%s@%s) = %d", osname,
4304 snapname, error);
4306 return (B_TRUE);
4309 static boolean_t
4310 ztest_snapshot_destroy(char *osname, uint64_t id)
4312 char snapname[ZFS_MAX_DATASET_NAME_LEN];
4313 int error;
4315 (void) snprintf(snapname, sizeof (snapname), "%s@%"PRIu64"",
4316 osname, id);
4318 error = dsl_destroy_snapshot(snapname, B_FALSE);
4319 if (error != 0 && error != ENOENT && error != ECHRNG)
4320 fatal(B_FALSE, "ztest_snapshot_destroy(%s) = %d",
4321 snapname, error);
4322 return (B_TRUE);
4325 void
4326 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id)
4328 (void) zd;
4329 ztest_ds_t *zdtmp;
4330 int iters;
4331 int error;
4332 objset_t *os, *os2;
4333 char name[ZFS_MAX_DATASET_NAME_LEN];
4334 zilog_t *zilog;
4335 int i;
4337 zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
4339 (void) pthread_rwlock_rdlock(&ztest_name_lock);
4341 (void) snprintf(name, sizeof (name), "%s/temp_%"PRIu64"",
4342 ztest_opts.zo_pool, id);
4345 * If this dataset exists from a previous run, process its replay log
4346 * half of the time. If we don't replay it, then dsl_destroy_head()
4347 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
4349 if (ztest_random(2) == 0 &&
4350 ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
4351 B_TRUE, FTAG, &os) == 0) {
4352 ztest_zd_init(zdtmp, NULL, os);
4353 zil_replay(os, zdtmp, ztest_replay_vector);
4354 ztest_zd_fini(zdtmp);
4355 dmu_objset_disown(os, B_TRUE, FTAG);
4359 * There may be an old instance of the dataset we're about to
4360 * create lying around from a previous run. If so, destroy it
4361 * and all of its snapshots.
4363 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
4364 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
4367 * Verify that the destroyed dataset is no longer in the namespace.
4368 * It may still be present if the destroy above fails with ENOSPC.
4370 error = ztest_dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, B_TRUE,
4371 FTAG, &os);
4372 if (error == 0) {
4373 dmu_objset_disown(os, B_TRUE, FTAG);
4374 ztest_record_enospc(FTAG);
4375 goto out;
4377 VERIFY3U(ENOENT, ==, error);
4380 * Verify that we can create a new dataset.
4382 error = ztest_dataset_create(name);
4383 if (error) {
4384 if (error == ENOSPC) {
4385 ztest_record_enospc(FTAG);
4386 goto out;
4388 fatal(B_FALSE, "dmu_objset_create(%s) = %d", name, error);
4391 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, B_TRUE,
4392 FTAG, &os));
4394 ztest_zd_init(zdtmp, NULL, os);
4397 * Open the intent log for it.
4399 zilog = zil_open(os, ztest_get_data, NULL);
4402 * Put some objects in there, do a little I/O to them,
4403 * and randomly take a couple of snapshots along the way.
4405 iters = ztest_random(5);
4406 for (i = 0; i < iters; i++) {
4407 ztest_dmu_object_alloc_free(zdtmp, id);
4408 if (ztest_random(iters) == 0)
4409 (void) ztest_snapshot_create(name, i);
4413 * Verify that we cannot create an existing dataset.
4415 VERIFY3U(EEXIST, ==,
4416 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL, NULL));
4419 * Verify that we can hold an objset that is also owned.
4421 VERIFY0(dmu_objset_hold(name, FTAG, &os2));
4422 dmu_objset_rele(os2, FTAG);
4425 * Verify that we cannot own an objset that is already owned.
4427 VERIFY3U(EBUSY, ==, ztest_dmu_objset_own(name, DMU_OST_OTHER,
4428 B_FALSE, B_TRUE, FTAG, &os2));
4430 zil_close(zilog);
4431 dmu_objset_disown(os, B_TRUE, FTAG);
4432 ztest_zd_fini(zdtmp);
4433 out:
4434 (void) pthread_rwlock_unlock(&ztest_name_lock);
4436 umem_free(zdtmp, sizeof (ztest_ds_t));
4440 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
4442 void
4443 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id)
4445 (void) pthread_rwlock_rdlock(&ztest_name_lock);
4446 (void) ztest_snapshot_destroy(zd->zd_name, id);
4447 (void) ztest_snapshot_create(zd->zd_name, id);
4448 (void) pthread_rwlock_unlock(&ztest_name_lock);
4452 * Cleanup non-standard snapshots and clones.
4454 static void
4455 ztest_dsl_dataset_cleanup(char *osname, uint64_t id)
4457 char *snap1name;
4458 char *clone1name;
4459 char *snap2name;
4460 char *clone2name;
4461 char *snap3name;
4462 int error;
4464 snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4465 clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4466 snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4467 clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4468 snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4470 (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
4471 osname, id);
4472 (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
4473 osname, id);
4474 (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
4475 clone1name, id);
4476 (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
4477 osname, id);
4478 (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
4479 clone1name, id);
4481 error = dsl_destroy_head(clone2name);
4482 if (error && error != ENOENT)
4483 fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone2name, error);
4484 error = dsl_destroy_snapshot(snap3name, B_FALSE);
4485 if (error && error != ENOENT)
4486 fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4487 snap3name, error);
4488 error = dsl_destroy_snapshot(snap2name, B_FALSE);
4489 if (error && error != ENOENT)
4490 fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4491 snap2name, error);
4492 error = dsl_destroy_head(clone1name);
4493 if (error && error != ENOENT)
4494 fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clone1name, error);
4495 error = dsl_destroy_snapshot(snap1name, B_FALSE);
4496 if (error && error != ENOENT)
4497 fatal(B_FALSE, "dsl_destroy_snapshot(%s) = %d",
4498 snap1name, error);
4500 umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4501 umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4502 umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4503 umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4504 umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4508 * Verify dsl_dataset_promote handles EBUSY
4510 void
4511 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id)
4513 objset_t *os;
4514 char *snap1name;
4515 char *clone1name;
4516 char *snap2name;
4517 char *clone2name;
4518 char *snap3name;
4519 char *osname = zd->zd_name;
4520 int error;
4522 snap1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4523 clone1name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4524 snap2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4525 clone2name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4526 snap3name = umem_alloc(ZFS_MAX_DATASET_NAME_LEN, UMEM_NOFAIL);
4528 (void) pthread_rwlock_rdlock(&ztest_name_lock);
4530 ztest_dsl_dataset_cleanup(osname, id);
4532 (void) snprintf(snap1name, ZFS_MAX_DATASET_NAME_LEN, "%s@s1_%"PRIu64"",
4533 osname, id);
4534 (void) snprintf(clone1name, ZFS_MAX_DATASET_NAME_LEN, "%s/c1_%"PRIu64"",
4535 osname, id);
4536 (void) snprintf(snap2name, ZFS_MAX_DATASET_NAME_LEN, "%s@s2_%"PRIu64"",
4537 clone1name, id);
4538 (void) snprintf(clone2name, ZFS_MAX_DATASET_NAME_LEN, "%s/c2_%"PRIu64"",
4539 osname, id);
4540 (void) snprintf(snap3name, ZFS_MAX_DATASET_NAME_LEN, "%s@s3_%"PRIu64"",
4541 clone1name, id);
4543 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1);
4544 if (error && error != EEXIST) {
4545 if (error == ENOSPC) {
4546 ztest_record_enospc(FTAG);
4547 goto out;
4549 fatal(B_FALSE, "dmu_take_snapshot(%s) = %d", snap1name, error);
4552 error = dmu_objset_clone(clone1name, snap1name);
4553 if (error) {
4554 if (error == ENOSPC) {
4555 ztest_record_enospc(FTAG);
4556 goto out;
4558 fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone1name, error);
4561 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1);
4562 if (error && error != EEXIST) {
4563 if (error == ENOSPC) {
4564 ztest_record_enospc(FTAG);
4565 goto out;
4567 fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap2name, error);
4570 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1);
4571 if (error && error != EEXIST) {
4572 if (error == ENOSPC) {
4573 ztest_record_enospc(FTAG);
4574 goto out;
4576 fatal(B_FALSE, "dmu_open_snapshot(%s) = %d", snap3name, error);
4579 error = dmu_objset_clone(clone2name, snap3name);
4580 if (error) {
4581 if (error == ENOSPC) {
4582 ztest_record_enospc(FTAG);
4583 goto out;
4585 fatal(B_FALSE, "dmu_objset_create(%s) = %d", clone2name, error);
4588 error = ztest_dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, B_TRUE,
4589 FTAG, &os);
4590 if (error)
4591 fatal(B_FALSE, "dmu_objset_own(%s) = %d", snap2name, error);
4592 error = dsl_dataset_promote(clone2name, NULL);
4593 if (error == ENOSPC) {
4594 dmu_objset_disown(os, B_TRUE, FTAG);
4595 ztest_record_enospc(FTAG);
4596 goto out;
4598 if (error != EBUSY)
4599 fatal(B_FALSE, "dsl_dataset_promote(%s), %d, not EBUSY",
4600 clone2name, error);
4601 dmu_objset_disown(os, B_TRUE, FTAG);
4603 out:
4604 ztest_dsl_dataset_cleanup(osname, id);
4606 (void) pthread_rwlock_unlock(&ztest_name_lock);
4608 umem_free(snap1name, ZFS_MAX_DATASET_NAME_LEN);
4609 umem_free(clone1name, ZFS_MAX_DATASET_NAME_LEN);
4610 umem_free(snap2name, ZFS_MAX_DATASET_NAME_LEN);
4611 umem_free(clone2name, ZFS_MAX_DATASET_NAME_LEN);
4612 umem_free(snap3name, ZFS_MAX_DATASET_NAME_LEN);
4615 #undef OD_ARRAY_SIZE
4616 #define OD_ARRAY_SIZE 4
4619 * Verify that dmu_object_{alloc,free} work as expected.
4621 void
4622 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id)
4624 ztest_od_t *od;
4625 int batchsize;
4626 int size;
4627 int b;
4629 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4630 od = umem_alloc(size, UMEM_NOFAIL);
4631 batchsize = OD_ARRAY_SIZE;
4633 for (b = 0; b < batchsize; b++)
4634 ztest_od_init(od + b, id, FTAG, b, DMU_OT_UINT64_OTHER,
4635 0, 0, 0);
4638 * Destroy the previous batch of objects, create a new batch,
4639 * and do some I/O on the new objects.
4641 if (ztest_object_init(zd, od, size, B_TRUE) != 0) {
4642 zd->zd_od = NULL;
4643 umem_free(od, size);
4644 return;
4647 while (ztest_random(4 * batchsize) != 0)
4648 ztest_io(zd, od[ztest_random(batchsize)].od_object,
4649 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
4651 umem_free(od, size);
4655 * Rewind the global allocator to verify object allocation backfilling.
4657 void
4658 ztest_dmu_object_next_chunk(ztest_ds_t *zd, uint64_t id)
4660 (void) id;
4661 objset_t *os = zd->zd_os;
4662 uint_t dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
4663 uint64_t object;
4666 * Rewind the global allocator randomly back to a lower object number
4667 * to force backfilling and reclamation of recently freed dnodes.
4669 mutex_enter(&os->os_obj_lock);
4670 object = ztest_random(os->os_obj_next_chunk);
4671 os->os_obj_next_chunk = P2ALIGN(object, dnodes_per_chunk);
4672 mutex_exit(&os->os_obj_lock);
4675 #undef OD_ARRAY_SIZE
4676 #define OD_ARRAY_SIZE 2
4679 * Verify that dmu_{read,write} work as expected.
4681 void
4682 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id)
4684 int size;
4685 ztest_od_t *od;
4687 objset_t *os = zd->zd_os;
4688 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4689 od = umem_alloc(size, UMEM_NOFAIL);
4690 dmu_tx_t *tx;
4691 int freeit, error;
4692 uint64_t i, n, s, txg;
4693 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT;
4694 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
4695 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t);
4696 uint64_t regions = 997;
4697 uint64_t stride = 123456789ULL;
4698 uint64_t width = 40;
4699 int free_percent = 5;
4702 * This test uses two objects, packobj and bigobj, that are always
4703 * updated together (i.e. in the same tx) so that their contents are
4704 * in sync and can be compared. Their contents relate to each other
4705 * in a simple way: packobj is a dense array of 'bufwad' structures,
4706 * while bigobj is a sparse array of the same bufwads. Specifically,
4707 * for any index n, there are three bufwads that should be identical:
4709 * packobj, at offset n * sizeof (bufwad_t)
4710 * bigobj, at the head of the nth chunk
4711 * bigobj, at the tail of the nth chunk
4713 * The chunk size is arbitrary. It doesn't have to be a power of two,
4714 * and it doesn't have any relation to the object blocksize.
4715 * The only requirement is that it can hold at least two bufwads.
4717 * Normally, we write the bufwad to each of these locations.
4718 * However, free_percent of the time we instead write zeroes to
4719 * packobj and perform a dmu_free_range() on bigobj. By comparing
4720 * bigobj to packobj, we can verify that the DMU is correctly
4721 * tracking which parts of an object are allocated and free,
4722 * and that the contents of the allocated blocks are correct.
4726 * Read the directory info. If it's the first time, set things up.
4728 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, chunksize);
4729 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
4730 chunksize);
4732 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
4733 umem_free(od, size);
4734 return;
4737 bigobj = od[0].od_object;
4738 packobj = od[1].od_object;
4739 chunksize = od[0].od_gen;
4740 ASSERT3U(chunksize, ==, od[1].od_gen);
4743 * Prefetch a random chunk of the big object.
4744 * Our aim here is to get some async reads in flight
4745 * for blocks that we may free below; the DMU should
4746 * handle this race correctly.
4748 n = ztest_random(regions) * stride + ztest_random(width);
4749 s = 1 + ztest_random(2 * width - 1);
4750 dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize,
4751 ZIO_PRIORITY_SYNC_READ);
4754 * Pick a random index and compute the offsets into packobj and bigobj.
4756 n = ztest_random(regions) * stride + ztest_random(width);
4757 s = 1 + ztest_random(width - 1);
4759 packoff = n * sizeof (bufwad_t);
4760 packsize = s * sizeof (bufwad_t);
4762 bigoff = n * chunksize;
4763 bigsize = s * chunksize;
4765 packbuf = umem_alloc(packsize, UMEM_NOFAIL);
4766 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL);
4769 * free_percent of the time, free a range of bigobj rather than
4770 * overwriting it.
4772 freeit = (ztest_random(100) < free_percent);
4775 * Read the current contents of our objects.
4777 error = dmu_read(os, packobj, packoff, packsize, packbuf,
4778 DMU_READ_PREFETCH);
4779 ASSERT0(error);
4780 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf,
4781 DMU_READ_PREFETCH);
4782 ASSERT0(error);
4785 * Get a tx for the mods to both packobj and bigobj.
4787 tx = dmu_tx_create(os);
4789 dmu_tx_hold_write(tx, packobj, packoff, packsize);
4791 if (freeit)
4792 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize);
4793 else
4794 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
4796 /* This accounts for setting the checksum/compression. */
4797 dmu_tx_hold_bonus(tx, bigobj);
4799 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
4800 if (txg == 0) {
4801 umem_free(packbuf, packsize);
4802 umem_free(bigbuf, bigsize);
4803 umem_free(od, size);
4804 return;
4807 enum zio_checksum cksum;
4808 do {
4809 cksum = (enum zio_checksum)
4810 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM);
4811 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS);
4812 dmu_object_set_checksum(os, bigobj, cksum, tx);
4814 enum zio_compress comp;
4815 do {
4816 comp = (enum zio_compress)
4817 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION);
4818 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS);
4819 dmu_object_set_compress(os, bigobj, comp, tx);
4822 * For each index from n to n + s, verify that the existing bufwad
4823 * in packobj matches the bufwads at the head and tail of the
4824 * corresponding chunk in bigobj. Then update all three bufwads
4825 * with the new values we want to write out.
4827 for (i = 0; i < s; i++) {
4828 /* LINTED */
4829 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
4830 /* LINTED */
4831 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
4832 /* LINTED */
4833 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
4835 ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
4836 ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
4838 if (pack->bw_txg > txg)
4839 fatal(B_FALSE,
4840 "future leak: got %"PRIx64", open txg is %"PRIx64"",
4841 pack->bw_txg, txg);
4843 if (pack->bw_data != 0 && pack->bw_index != n + i)
4844 fatal(B_FALSE, "wrong index: "
4845 "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
4846 pack->bw_index, n, i);
4848 if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
4849 fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
4850 pack, bigH);
4852 if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
4853 fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
4854 pack, bigT);
4856 if (freeit) {
4857 memset(pack, 0, sizeof (bufwad_t));
4858 } else {
4859 pack->bw_index = n + i;
4860 pack->bw_txg = txg;
4861 pack->bw_data = 1 + ztest_random(-2ULL);
4863 *bigH = *pack;
4864 *bigT = *pack;
4868 * We've verified all the old bufwads, and made new ones.
4869 * Now write them out.
4871 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
4873 if (freeit) {
4874 if (ztest_opts.zo_verbose >= 7) {
4875 (void) printf("freeing offset %"PRIx64" size %"PRIx64""
4876 " txg %"PRIx64"\n",
4877 bigoff, bigsize, txg);
4879 VERIFY0(dmu_free_range(os, bigobj, bigoff, bigsize, tx));
4880 } else {
4881 if (ztest_opts.zo_verbose >= 7) {
4882 (void) printf("writing offset %"PRIx64" size %"PRIx64""
4883 " txg %"PRIx64"\n",
4884 bigoff, bigsize, txg);
4886 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx);
4889 dmu_tx_commit(tx);
4892 * Sanity check the stuff we just wrote.
4895 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
4896 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
4898 VERIFY0(dmu_read(os, packobj, packoff,
4899 packsize, packcheck, DMU_READ_PREFETCH));
4900 VERIFY0(dmu_read(os, bigobj, bigoff,
4901 bigsize, bigcheck, DMU_READ_PREFETCH));
4903 ASSERT0(memcmp(packbuf, packcheck, packsize));
4904 ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
4906 umem_free(packcheck, packsize);
4907 umem_free(bigcheck, bigsize);
4910 umem_free(packbuf, packsize);
4911 umem_free(bigbuf, bigsize);
4912 umem_free(od, size);
4915 static void
4916 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf,
4917 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg)
4919 uint64_t i;
4920 bufwad_t *pack;
4921 bufwad_t *bigH;
4922 bufwad_t *bigT;
4925 * For each index from n to n + s, verify that the existing bufwad
4926 * in packobj matches the bufwads at the head and tail of the
4927 * corresponding chunk in bigobj. Then update all three bufwads
4928 * with the new values we want to write out.
4930 for (i = 0; i < s; i++) {
4931 /* LINTED */
4932 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t));
4933 /* LINTED */
4934 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize);
4935 /* LINTED */
4936 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1;
4938 ASSERT3U((uintptr_t)bigH - (uintptr_t)bigbuf, <, bigsize);
4939 ASSERT3U((uintptr_t)bigT - (uintptr_t)bigbuf, <, bigsize);
4941 if (pack->bw_txg > txg)
4942 fatal(B_FALSE,
4943 "future leak: got %"PRIx64", open txg is %"PRIx64"",
4944 pack->bw_txg, txg);
4946 if (pack->bw_data != 0 && pack->bw_index != n + i)
4947 fatal(B_FALSE, "wrong index: "
4948 "got %"PRIx64", wanted %"PRIx64"+%"PRIx64"",
4949 pack->bw_index, n, i);
4951 if (memcmp(pack, bigH, sizeof (bufwad_t)) != 0)
4952 fatal(B_FALSE, "pack/bigH mismatch in %p/%p",
4953 pack, bigH);
4955 if (memcmp(pack, bigT, sizeof (bufwad_t)) != 0)
4956 fatal(B_FALSE, "pack/bigT mismatch in %p/%p",
4957 pack, bigT);
4959 pack->bw_index = n + i;
4960 pack->bw_txg = txg;
4961 pack->bw_data = 1 + ztest_random(-2ULL);
4963 *bigH = *pack;
4964 *bigT = *pack;
4968 #undef OD_ARRAY_SIZE
4969 #define OD_ARRAY_SIZE 2
4971 void
4972 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id)
4974 objset_t *os = zd->zd_os;
4975 ztest_od_t *od;
4976 dmu_tx_t *tx;
4977 uint64_t i;
4978 int error;
4979 int size;
4980 uint64_t n, s, txg;
4981 bufwad_t *packbuf, *bigbuf;
4982 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize;
4983 uint64_t blocksize = ztest_random_blocksize();
4984 uint64_t chunksize = blocksize;
4985 uint64_t regions = 997;
4986 uint64_t stride = 123456789ULL;
4987 uint64_t width = 9;
4988 dmu_buf_t *bonus_db;
4989 arc_buf_t **bigbuf_arcbufs;
4990 dmu_object_info_t doi;
4992 size = sizeof (ztest_od_t) * OD_ARRAY_SIZE;
4993 od = umem_alloc(size, UMEM_NOFAIL);
4996 * This test uses two objects, packobj and bigobj, that are always
4997 * updated together (i.e. in the same tx) so that their contents are
4998 * in sync and can be compared. Their contents relate to each other
4999 * in a simple way: packobj is a dense array of 'bufwad' structures,
5000 * while bigobj is a sparse array of the same bufwads. Specifically,
5001 * for any index n, there are three bufwads that should be identical:
5003 * packobj, at offset n * sizeof (bufwad_t)
5004 * bigobj, at the head of the nth chunk
5005 * bigobj, at the tail of the nth chunk
5007 * The chunk size is set equal to bigobj block size so that
5008 * dmu_assign_arcbuf_by_dbuf() can be tested for object updates.
5012 * Read the directory info. If it's the first time, set things up.
5014 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
5015 ztest_od_init(od + 1, id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, 0,
5016 chunksize);
5019 if (ztest_object_init(zd, od, size, B_FALSE) != 0) {
5020 umem_free(od, size);
5021 return;
5024 bigobj = od[0].od_object;
5025 packobj = od[1].od_object;
5026 blocksize = od[0].od_blocksize;
5027 chunksize = blocksize;
5028 ASSERT3U(chunksize, ==, od[1].od_gen);
5030 VERIFY0(dmu_object_info(os, bigobj, &doi));
5031 VERIFY(ISP2(doi.doi_data_block_size));
5032 VERIFY3U(chunksize, ==, doi.doi_data_block_size);
5033 VERIFY3U(chunksize, >=, 2 * sizeof (bufwad_t));
5036 * Pick a random index and compute the offsets into packobj and bigobj.
5038 n = ztest_random(regions) * stride + ztest_random(width);
5039 s = 1 + ztest_random(width - 1);
5041 packoff = n * sizeof (bufwad_t);
5042 packsize = s * sizeof (bufwad_t);
5044 bigoff = n * chunksize;
5045 bigsize = s * chunksize;
5047 packbuf = umem_zalloc(packsize, UMEM_NOFAIL);
5048 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL);
5050 VERIFY0(dmu_bonus_hold(os, bigobj, FTAG, &bonus_db));
5052 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL);
5055 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
5056 * Iteration 1 test zcopy to already referenced dbufs.
5057 * Iteration 2 test zcopy to dirty dbuf in the same txg.
5058 * Iteration 3 test zcopy to dbuf dirty in previous txg.
5059 * Iteration 4 test zcopy when dbuf is no longer dirty.
5060 * Iteration 5 test zcopy when it can't be done.
5061 * Iteration 6 one more zcopy write.
5063 for (i = 0; i < 7; i++) {
5064 uint64_t j;
5065 uint64_t off;
5068 * In iteration 5 (i == 5) use arcbufs
5069 * that don't match bigobj blksz to test
5070 * dmu_assign_arcbuf_by_dbuf() when it can't directly
5071 * assign an arcbuf to a dbuf.
5073 for (j = 0; j < s; j++) {
5074 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5075 bigbuf_arcbufs[j] =
5076 dmu_request_arcbuf(bonus_db, chunksize);
5077 } else {
5078 bigbuf_arcbufs[2 * j] =
5079 dmu_request_arcbuf(bonus_db, chunksize / 2);
5080 bigbuf_arcbufs[2 * j + 1] =
5081 dmu_request_arcbuf(bonus_db, chunksize / 2);
5086 * Get a tx for the mods to both packobj and bigobj.
5088 tx = dmu_tx_create(os);
5090 dmu_tx_hold_write(tx, packobj, packoff, packsize);
5091 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize);
5093 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5094 if (txg == 0) {
5095 umem_free(packbuf, packsize);
5096 umem_free(bigbuf, bigsize);
5097 for (j = 0; j < s; j++) {
5098 if (i != 5 ||
5099 chunksize < (SPA_MINBLOCKSIZE * 2)) {
5100 dmu_return_arcbuf(bigbuf_arcbufs[j]);
5101 } else {
5102 dmu_return_arcbuf(
5103 bigbuf_arcbufs[2 * j]);
5104 dmu_return_arcbuf(
5105 bigbuf_arcbufs[2 * j + 1]);
5108 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5109 umem_free(od, size);
5110 dmu_buf_rele(bonus_db, FTAG);
5111 return;
5115 * 50% of the time don't read objects in the 1st iteration to
5116 * test dmu_assign_arcbuf_by_dbuf() for the case when there are
5117 * no existing dbufs for the specified offsets.
5119 if (i != 0 || ztest_random(2) != 0) {
5120 error = dmu_read(os, packobj, packoff,
5121 packsize, packbuf, DMU_READ_PREFETCH);
5122 ASSERT0(error);
5123 error = dmu_read(os, bigobj, bigoff, bigsize,
5124 bigbuf, DMU_READ_PREFETCH);
5125 ASSERT0(error);
5127 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize,
5128 n, chunksize, txg);
5131 * We've verified all the old bufwads, and made new ones.
5132 * Now write them out.
5134 dmu_write(os, packobj, packoff, packsize, packbuf, tx);
5135 if (ztest_opts.zo_verbose >= 7) {
5136 (void) printf("writing offset %"PRIx64" size %"PRIx64""
5137 " txg %"PRIx64"\n",
5138 bigoff, bigsize, txg);
5140 for (off = bigoff, j = 0; j < s; j++, off += chunksize) {
5141 dmu_buf_t *dbt;
5142 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5143 memcpy(bigbuf_arcbufs[j]->b_data,
5144 (caddr_t)bigbuf + (off - bigoff),
5145 chunksize);
5146 } else {
5147 memcpy(bigbuf_arcbufs[2 * j]->b_data,
5148 (caddr_t)bigbuf + (off - bigoff),
5149 chunksize / 2);
5150 memcpy(bigbuf_arcbufs[2 * j + 1]->b_data,
5151 (caddr_t)bigbuf + (off - bigoff) +
5152 chunksize / 2,
5153 chunksize / 2);
5156 if (i == 1) {
5157 VERIFY(dmu_buf_hold(os, bigobj, off,
5158 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0);
5160 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) {
5161 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5162 off, bigbuf_arcbufs[j], tx));
5163 } else {
5164 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5165 off, bigbuf_arcbufs[2 * j], tx));
5166 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db,
5167 off + chunksize / 2,
5168 bigbuf_arcbufs[2 * j + 1], tx));
5170 if (i == 1) {
5171 dmu_buf_rele(dbt, FTAG);
5174 dmu_tx_commit(tx);
5177 * Sanity check the stuff we just wrote.
5180 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL);
5181 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL);
5183 VERIFY0(dmu_read(os, packobj, packoff,
5184 packsize, packcheck, DMU_READ_PREFETCH));
5185 VERIFY0(dmu_read(os, bigobj, bigoff,
5186 bigsize, bigcheck, DMU_READ_PREFETCH));
5188 ASSERT0(memcmp(packbuf, packcheck, packsize));
5189 ASSERT0(memcmp(bigbuf, bigcheck, bigsize));
5191 umem_free(packcheck, packsize);
5192 umem_free(bigcheck, bigsize);
5194 if (i == 2) {
5195 txg_wait_open(dmu_objset_pool(os), 0, B_TRUE);
5196 } else if (i == 3) {
5197 txg_wait_synced(dmu_objset_pool(os), 0);
5201 dmu_buf_rele(bonus_db, FTAG);
5202 umem_free(packbuf, packsize);
5203 umem_free(bigbuf, bigsize);
5204 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *));
5205 umem_free(od, size);
5208 void
5209 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id)
5211 (void) id;
5212 ztest_od_t *od;
5214 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5215 uint64_t offset = (1ULL << (ztest_random(20) + 43)) +
5216 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5219 * Have multiple threads write to large offsets in an object
5220 * to verify that parallel writes to an object -- even to the
5221 * same blocks within the object -- doesn't cause any trouble.
5223 ztest_od_init(od, ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
5225 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0)
5226 return;
5228 while (ztest_random(10) != 0)
5229 ztest_io(zd, od->od_object, offset);
5231 umem_free(od, sizeof (ztest_od_t));
5234 void
5235 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id)
5237 ztest_od_t *od;
5238 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) +
5239 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
5240 uint64_t count = ztest_random(20) + 1;
5241 uint64_t blocksize = ztest_random_blocksize();
5242 void *data;
5244 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5246 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0, 0);
5248 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5249 !ztest_random(2)) != 0) {
5250 umem_free(od, sizeof (ztest_od_t));
5251 return;
5254 if (ztest_truncate(zd, od->od_object, offset, count * blocksize) != 0) {
5255 umem_free(od, sizeof (ztest_od_t));
5256 return;
5259 ztest_prealloc(zd, od->od_object, offset, count * blocksize);
5261 data = umem_zalloc(blocksize, UMEM_NOFAIL);
5263 while (ztest_random(count) != 0) {
5264 uint64_t randoff = offset + (ztest_random(count) * blocksize);
5265 if (ztest_write(zd, od->od_object, randoff, blocksize,
5266 data) != 0)
5267 break;
5268 while (ztest_random(4) != 0)
5269 ztest_io(zd, od->od_object, randoff);
5272 umem_free(data, blocksize);
5273 umem_free(od, sizeof (ztest_od_t));
5277 * Verify that zap_{create,destroy,add,remove,update} work as expected.
5279 #define ZTEST_ZAP_MIN_INTS 1
5280 #define ZTEST_ZAP_MAX_INTS 4
5281 #define ZTEST_ZAP_MAX_PROPS 1000
5283 void
5284 ztest_zap(ztest_ds_t *zd, uint64_t id)
5286 objset_t *os = zd->zd_os;
5287 ztest_od_t *od;
5288 uint64_t object;
5289 uint64_t txg, last_txg;
5290 uint64_t value[ZTEST_ZAP_MAX_INTS];
5291 uint64_t zl_ints, zl_intsize, prop;
5292 int i, ints;
5293 dmu_tx_t *tx;
5294 char propname[100], txgname[100];
5295 int error;
5296 const char *const hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
5298 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5299 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5301 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5302 !ztest_random(2)) != 0)
5303 goto out;
5305 object = od->od_object;
5308 * Generate a known hash collision, and verify that
5309 * we can lookup and remove both entries.
5311 tx = dmu_tx_create(os);
5312 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5313 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5314 if (txg == 0)
5315 goto out;
5316 for (i = 0; i < 2; i++) {
5317 value[i] = i;
5318 VERIFY0(zap_add(os, object, hc[i], sizeof (uint64_t),
5319 1, &value[i], tx));
5321 for (i = 0; i < 2; i++) {
5322 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i],
5323 sizeof (uint64_t), 1, &value[i], tx));
5324 VERIFY0(
5325 zap_length(os, object, hc[i], &zl_intsize, &zl_ints));
5326 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5327 ASSERT3U(zl_ints, ==, 1);
5329 for (i = 0; i < 2; i++) {
5330 VERIFY0(zap_remove(os, object, hc[i], tx));
5332 dmu_tx_commit(tx);
5335 * Generate a bunch of random entries.
5337 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS);
5339 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5340 (void) sprintf(propname, "prop_%"PRIu64"", prop);
5341 (void) sprintf(txgname, "txg_%"PRIu64"", prop);
5342 memset(value, 0, sizeof (value));
5343 last_txg = 0;
5346 * If these zap entries already exist, validate their contents.
5348 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5349 if (error == 0) {
5350 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5351 ASSERT3U(zl_ints, ==, 1);
5353 VERIFY0(zap_lookup(os, object, txgname, zl_intsize,
5354 zl_ints, &last_txg));
5356 VERIFY0(zap_length(os, object, propname, &zl_intsize,
5357 &zl_ints));
5359 ASSERT3U(zl_intsize, ==, sizeof (uint64_t));
5360 ASSERT3U(zl_ints, ==, ints);
5362 VERIFY0(zap_lookup(os, object, propname, zl_intsize,
5363 zl_ints, value));
5365 for (i = 0; i < ints; i++) {
5366 ASSERT3U(value[i], ==, last_txg + object + i);
5368 } else {
5369 ASSERT3U(error, ==, ENOENT);
5373 * Atomically update two entries in our zap object.
5374 * The first is named txg_%llu, and contains the txg
5375 * in which the property was last updated. The second
5376 * is named prop_%llu, and the nth element of its value
5377 * should be txg + object + n.
5379 tx = dmu_tx_create(os);
5380 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5381 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5382 if (txg == 0)
5383 goto out;
5385 if (last_txg > txg)
5386 fatal(B_FALSE, "zap future leak: old %"PRIu64" new %"PRIu64"",
5387 last_txg, txg);
5389 for (i = 0; i < ints; i++)
5390 value[i] = txg + object + i;
5392 VERIFY0(zap_update(os, object, txgname, sizeof (uint64_t),
5393 1, &txg, tx));
5394 VERIFY0(zap_update(os, object, propname, sizeof (uint64_t),
5395 ints, value, tx));
5397 dmu_tx_commit(tx);
5400 * Remove a random pair of entries.
5402 prop = ztest_random(ZTEST_ZAP_MAX_PROPS);
5403 (void) sprintf(propname, "prop_%"PRIu64"", prop);
5404 (void) sprintf(txgname, "txg_%"PRIu64"", prop);
5406 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints);
5408 if (error == ENOENT)
5409 goto out;
5411 ASSERT0(error);
5413 tx = dmu_tx_create(os);
5414 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5415 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5416 if (txg == 0)
5417 goto out;
5418 VERIFY0(zap_remove(os, object, txgname, tx));
5419 VERIFY0(zap_remove(os, object, propname, tx));
5420 dmu_tx_commit(tx);
5421 out:
5422 umem_free(od, sizeof (ztest_od_t));
5426 * Test case to test the upgrading of a microzap to fatzap.
5428 void
5429 ztest_fzap(ztest_ds_t *zd, uint64_t id)
5431 objset_t *os = zd->zd_os;
5432 ztest_od_t *od;
5433 uint64_t object, txg, value;
5435 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5436 ztest_od_init(od, id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0, 0);
5438 if (ztest_object_init(zd, od, sizeof (ztest_od_t),
5439 !ztest_random(2)) != 0)
5440 goto out;
5441 object = od->od_object;
5444 * Add entries to this ZAP and make sure it spills over
5445 * and gets upgraded to a fatzap. Also, since we are adding
5446 * 2050 entries we should see ptrtbl growth and leaf-block split.
5448 for (value = 0; value < 2050; value++) {
5449 char name[ZFS_MAX_DATASET_NAME_LEN];
5450 dmu_tx_t *tx;
5451 int error;
5453 (void) snprintf(name, sizeof (name), "fzap-%"PRIu64"-%"PRIu64"",
5454 id, value);
5456 tx = dmu_tx_create(os);
5457 dmu_tx_hold_zap(tx, object, B_TRUE, name);
5458 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5459 if (txg == 0)
5460 goto out;
5461 error = zap_add(os, object, name, sizeof (uint64_t), 1,
5462 &value, tx);
5463 ASSERT(error == 0 || error == EEXIST);
5464 dmu_tx_commit(tx);
5466 out:
5467 umem_free(od, sizeof (ztest_od_t));
5470 void
5471 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id)
5473 (void) id;
5474 objset_t *os = zd->zd_os;
5475 ztest_od_t *od;
5476 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc;
5477 dmu_tx_t *tx;
5478 int i, namelen, error;
5479 int micro = ztest_random(2);
5480 char name[20], string_value[20];
5481 void *data;
5483 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5484 ztest_od_init(od, ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0, 0);
5486 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5487 umem_free(od, sizeof (ztest_od_t));
5488 return;
5491 object = od->od_object;
5494 * Generate a random name of the form 'xxx.....' where each
5495 * x is a random printable character and the dots are dots.
5496 * There are 94 such characters, and the name length goes from
5497 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
5499 namelen = ztest_random(sizeof (name) - 5) + 5 + 1;
5501 for (i = 0; i < 3; i++)
5502 name[i] = '!' + ztest_random('~' - '!' + 1);
5503 for (; i < namelen - 1; i++)
5504 name[i] = '.';
5505 name[i] = '\0';
5507 if ((namelen & 1) || micro) {
5508 wsize = sizeof (txg);
5509 wc = 1;
5510 data = &txg;
5511 } else {
5512 wsize = 1;
5513 wc = namelen;
5514 data = string_value;
5517 count = -1ULL;
5518 VERIFY0(zap_count(os, object, &count));
5519 ASSERT3S(count, !=, -1ULL);
5522 * Select an operation: length, lookup, add, update, remove.
5524 i = ztest_random(5);
5526 if (i >= 2) {
5527 tx = dmu_tx_create(os);
5528 dmu_tx_hold_zap(tx, object, B_TRUE, NULL);
5529 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG);
5530 if (txg == 0) {
5531 umem_free(od, sizeof (ztest_od_t));
5532 return;
5534 memcpy(string_value, name, namelen);
5535 } else {
5536 tx = NULL;
5537 txg = 0;
5538 memset(string_value, 0, namelen);
5541 switch (i) {
5543 case 0:
5544 error = zap_length(os, object, name, &zl_wsize, &zl_wc);
5545 if (error == 0) {
5546 ASSERT3U(wsize, ==, zl_wsize);
5547 ASSERT3U(wc, ==, zl_wc);
5548 } else {
5549 ASSERT3U(error, ==, ENOENT);
5551 break;
5553 case 1:
5554 error = zap_lookup(os, object, name, wsize, wc, data);
5555 if (error == 0) {
5556 if (data == string_value &&
5557 memcmp(name, data, namelen) != 0)
5558 fatal(B_FALSE, "name '%s' != val '%s' len %d",
5559 name, (char *)data, namelen);
5560 } else {
5561 ASSERT3U(error, ==, ENOENT);
5563 break;
5565 case 2:
5566 error = zap_add(os, object, name, wsize, wc, data, tx);
5567 ASSERT(error == 0 || error == EEXIST);
5568 break;
5570 case 3:
5571 VERIFY0(zap_update(os, object, name, wsize, wc, data, tx));
5572 break;
5574 case 4:
5575 error = zap_remove(os, object, name, tx);
5576 ASSERT(error == 0 || error == ENOENT);
5577 break;
5580 if (tx != NULL)
5581 dmu_tx_commit(tx);
5583 umem_free(od, sizeof (ztest_od_t));
5587 * Commit callback data.
5589 typedef struct ztest_cb_data {
5590 list_node_t zcd_node;
5591 uint64_t zcd_txg;
5592 int zcd_expected_err;
5593 boolean_t zcd_added;
5594 boolean_t zcd_called;
5595 spa_t *zcd_spa;
5596 } ztest_cb_data_t;
5598 /* This is the actual commit callback function */
5599 static void
5600 ztest_commit_callback(void *arg, int error)
5602 ztest_cb_data_t *data = arg;
5603 uint64_t synced_txg;
5605 VERIFY3P(data, !=, NULL);
5606 VERIFY3S(data->zcd_expected_err, ==, error);
5607 VERIFY(!data->zcd_called);
5609 synced_txg = spa_last_synced_txg(data->zcd_spa);
5610 if (data->zcd_txg > synced_txg)
5611 fatal(B_FALSE,
5612 "commit callback of txg %"PRIu64" called prematurely, "
5613 "last synced txg = %"PRIu64"\n",
5614 data->zcd_txg, synced_txg);
5616 data->zcd_called = B_TRUE;
5618 if (error == ECANCELED) {
5619 ASSERT0(data->zcd_txg);
5620 ASSERT(!data->zcd_added);
5623 * The private callback data should be destroyed here, but
5624 * since we are going to check the zcd_called field after
5625 * dmu_tx_abort(), we will destroy it there.
5627 return;
5630 ASSERT(data->zcd_added);
5631 ASSERT3U(data->zcd_txg, !=, 0);
5633 (void) mutex_enter(&zcl.zcl_callbacks_lock);
5635 /* See if this cb was called more quickly */
5636 if ((synced_txg - data->zcd_txg) < zc_min_txg_delay)
5637 zc_min_txg_delay = synced_txg - data->zcd_txg;
5639 /* Remove our callback from the list */
5640 list_remove(&zcl.zcl_callbacks, data);
5642 (void) mutex_exit(&zcl.zcl_callbacks_lock);
5644 umem_free(data, sizeof (ztest_cb_data_t));
5647 /* Allocate and initialize callback data structure */
5648 static ztest_cb_data_t *
5649 ztest_create_cb_data(objset_t *os, uint64_t txg)
5651 ztest_cb_data_t *cb_data;
5653 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL);
5655 cb_data->zcd_txg = txg;
5656 cb_data->zcd_spa = dmu_objset_spa(os);
5657 list_link_init(&cb_data->zcd_node);
5659 return (cb_data);
5663 * Commit callback test.
5665 void
5666 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id)
5668 objset_t *os = zd->zd_os;
5669 ztest_od_t *od;
5670 dmu_tx_t *tx;
5671 ztest_cb_data_t *cb_data[3], *tmp_cb;
5672 uint64_t old_txg, txg;
5673 int i, error = 0;
5675 od = umem_alloc(sizeof (ztest_od_t), UMEM_NOFAIL);
5676 ztest_od_init(od, id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
5678 if (ztest_object_init(zd, od, sizeof (ztest_od_t), B_FALSE) != 0) {
5679 umem_free(od, sizeof (ztest_od_t));
5680 return;
5683 tx = dmu_tx_create(os);
5685 cb_data[0] = ztest_create_cb_data(os, 0);
5686 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]);
5688 dmu_tx_hold_write(tx, od->od_object, 0, sizeof (uint64_t));
5690 /* Every once in a while, abort the transaction on purpose */
5691 if (ztest_random(100) == 0)
5692 error = -1;
5694 if (!error)
5695 error = dmu_tx_assign(tx, TXG_NOWAIT);
5697 txg = error ? 0 : dmu_tx_get_txg(tx);
5699 cb_data[0]->zcd_txg = txg;
5700 cb_data[1] = ztest_create_cb_data(os, txg);
5701 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]);
5703 if (error) {
5705 * It's not a strict requirement to call the registered
5706 * callbacks from inside dmu_tx_abort(), but that's what
5707 * it's supposed to happen in the current implementation
5708 * so we will check for that.
5710 for (i = 0; i < 2; i++) {
5711 cb_data[i]->zcd_expected_err = ECANCELED;
5712 VERIFY(!cb_data[i]->zcd_called);
5715 dmu_tx_abort(tx);
5717 for (i = 0; i < 2; i++) {
5718 VERIFY(cb_data[i]->zcd_called);
5719 umem_free(cb_data[i], sizeof (ztest_cb_data_t));
5722 umem_free(od, sizeof (ztest_od_t));
5723 return;
5726 cb_data[2] = ztest_create_cb_data(os, txg);
5727 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]);
5730 * Read existing data to make sure there isn't a future leak.
5732 VERIFY0(dmu_read(os, od->od_object, 0, sizeof (uint64_t),
5733 &old_txg, DMU_READ_PREFETCH));
5735 if (old_txg > txg)
5736 fatal(B_FALSE,
5737 "future leak: got %"PRIu64", open txg is %"PRIu64"",
5738 old_txg, txg);
5740 dmu_write(os, od->od_object, 0, sizeof (uint64_t), &txg, tx);
5742 (void) mutex_enter(&zcl.zcl_callbacks_lock);
5745 * Since commit callbacks don't have any ordering requirement and since
5746 * it is theoretically possible for a commit callback to be called
5747 * after an arbitrary amount of time has elapsed since its txg has been
5748 * synced, it is difficult to reliably determine whether a commit
5749 * callback hasn't been called due to high load or due to a flawed
5750 * implementation.
5752 * In practice, we will assume that if after a certain number of txgs a
5753 * commit callback hasn't been called, then most likely there's an
5754 * implementation bug..
5756 tmp_cb = list_head(&zcl.zcl_callbacks);
5757 if (tmp_cb != NULL &&
5758 tmp_cb->zcd_txg + ZTEST_COMMIT_CB_THRESH < txg) {
5759 fatal(B_FALSE,
5760 "Commit callback threshold exceeded, "
5761 "oldest txg: %"PRIu64", open txg: %"PRIu64"\n",
5762 tmp_cb->zcd_txg, txg);
5766 * Let's find the place to insert our callbacks.
5768 * Even though the list is ordered by txg, it is possible for the
5769 * insertion point to not be the end because our txg may already be
5770 * quiescing at this point and other callbacks in the open txg
5771 * (from other objsets) may have sneaked in.
5773 tmp_cb = list_tail(&zcl.zcl_callbacks);
5774 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg)
5775 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb);
5777 /* Add the 3 callbacks to the list */
5778 for (i = 0; i < 3; i++) {
5779 if (tmp_cb == NULL)
5780 list_insert_head(&zcl.zcl_callbacks, cb_data[i]);
5781 else
5782 list_insert_after(&zcl.zcl_callbacks, tmp_cb,
5783 cb_data[i]);
5785 cb_data[i]->zcd_added = B_TRUE;
5786 VERIFY(!cb_data[i]->zcd_called);
5788 tmp_cb = cb_data[i];
5791 zc_cb_counter += 3;
5793 (void) mutex_exit(&zcl.zcl_callbacks_lock);
5795 dmu_tx_commit(tx);
5797 umem_free(od, sizeof (ztest_od_t));
5801 * Visit each object in the dataset. Verify that its properties
5802 * are consistent what was stored in the block tag when it was created,
5803 * and that its unused bonus buffer space has not been overwritten.
5805 void
5806 ztest_verify_dnode_bt(ztest_ds_t *zd, uint64_t id)
5808 (void) id;
5809 objset_t *os = zd->zd_os;
5810 uint64_t obj;
5811 int err = 0;
5813 for (obj = 0; err == 0; err = dmu_object_next(os, &obj, FALSE, 0)) {
5814 ztest_block_tag_t *bt = NULL;
5815 dmu_object_info_t doi;
5816 dmu_buf_t *db;
5818 ztest_object_lock(zd, obj, RL_READER);
5819 if (dmu_bonus_hold(os, obj, FTAG, &db) != 0) {
5820 ztest_object_unlock(zd, obj);
5821 continue;
5824 dmu_object_info_from_db(db, &doi);
5825 if (doi.doi_bonus_size >= sizeof (*bt))
5826 bt = ztest_bt_bonus(db);
5828 if (bt && bt->bt_magic == BT_MAGIC) {
5829 ztest_bt_verify(bt, os, obj, doi.doi_dnodesize,
5830 bt->bt_offset, bt->bt_gen, bt->bt_txg,
5831 bt->bt_crtxg);
5832 ztest_verify_unused_bonus(db, bt, obj, os, bt->bt_gen);
5835 dmu_buf_rele(db, FTAG);
5836 ztest_object_unlock(zd, obj);
5840 void
5841 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id)
5843 (void) id;
5844 zfs_prop_t proplist[] = {
5845 ZFS_PROP_CHECKSUM,
5846 ZFS_PROP_COMPRESSION,
5847 ZFS_PROP_COPIES,
5848 ZFS_PROP_DEDUP
5851 (void) pthread_rwlock_rdlock(&ztest_name_lock);
5853 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) {
5854 int error = ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p],
5855 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2));
5856 ASSERT(error == 0 || error == ENOSPC);
5859 int error = ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_RECORDSIZE,
5860 ztest_random_blocksize(), (int)ztest_random(2));
5861 ASSERT(error == 0 || error == ENOSPC);
5863 (void) pthread_rwlock_unlock(&ztest_name_lock);
5866 void
5867 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id)
5869 (void) zd, (void) id;
5870 nvlist_t *props = NULL;
5872 (void) pthread_rwlock_rdlock(&ztest_name_lock);
5874 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_AUTOTRIM, ztest_random(2));
5876 VERIFY0(spa_prop_get(ztest_spa, &props));
5878 if (ztest_opts.zo_verbose >= 6)
5879 dump_nvlist(props, 4);
5881 fnvlist_free(props);
5883 (void) pthread_rwlock_unlock(&ztest_name_lock);
5886 static int
5887 user_release_one(const char *snapname, const char *holdname)
5889 nvlist_t *snaps, *holds;
5890 int error;
5892 snaps = fnvlist_alloc();
5893 holds = fnvlist_alloc();
5894 fnvlist_add_boolean(holds, holdname);
5895 fnvlist_add_nvlist(snaps, snapname, holds);
5896 fnvlist_free(holds);
5897 error = dsl_dataset_user_release(snaps, NULL);
5898 fnvlist_free(snaps);
5899 return (error);
5903 * Test snapshot hold/release and deferred destroy.
5905 void
5906 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id)
5908 int error;
5909 objset_t *os = zd->zd_os;
5910 objset_t *origin;
5911 char snapname[100];
5912 char fullname[100];
5913 char clonename[100];
5914 char tag[100];
5915 char osname[ZFS_MAX_DATASET_NAME_LEN];
5916 nvlist_t *holds;
5918 (void) pthread_rwlock_rdlock(&ztest_name_lock);
5920 dmu_objset_name(os, osname);
5922 (void) snprintf(snapname, sizeof (snapname), "sh1_%"PRIu64"", id);
5923 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname);
5924 (void) snprintf(clonename, sizeof (clonename), "%s/ch1_%"PRIu64"",
5925 osname, id);
5926 (void) snprintf(tag, sizeof (tag), "tag_%"PRIu64"", id);
5929 * Clean up from any previous run.
5931 error = dsl_destroy_head(clonename);
5932 if (error != ENOENT)
5933 ASSERT0(error);
5934 error = user_release_one(fullname, tag);
5935 if (error != ESRCH && error != ENOENT)
5936 ASSERT0(error);
5937 error = dsl_destroy_snapshot(fullname, B_FALSE);
5938 if (error != ENOENT)
5939 ASSERT0(error);
5942 * Create snapshot, clone it, mark snap for deferred destroy,
5943 * destroy clone, verify snap was also destroyed.
5945 error = dmu_objset_snapshot_one(osname, snapname);
5946 if (error) {
5947 if (error == ENOSPC) {
5948 ztest_record_enospc("dmu_objset_snapshot");
5949 goto out;
5951 fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
5954 error = dmu_objset_clone(clonename, fullname);
5955 if (error) {
5956 if (error == ENOSPC) {
5957 ztest_record_enospc("dmu_objset_clone");
5958 goto out;
5960 fatal(B_FALSE, "dmu_objset_clone(%s) = %d", clonename, error);
5963 error = dsl_destroy_snapshot(fullname, B_TRUE);
5964 if (error) {
5965 fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5966 fullname, error);
5969 error = dsl_destroy_head(clonename);
5970 if (error)
5971 fatal(B_FALSE, "dsl_destroy_head(%s) = %d", clonename, error);
5973 error = dmu_objset_hold(fullname, FTAG, &origin);
5974 if (error != ENOENT)
5975 fatal(B_FALSE, "dmu_objset_hold(%s) = %d", fullname, error);
5978 * Create snapshot, add temporary hold, verify that we can't
5979 * destroy a held snapshot, mark for deferred destroy,
5980 * release hold, verify snapshot was destroyed.
5982 error = dmu_objset_snapshot_one(osname, snapname);
5983 if (error) {
5984 if (error == ENOSPC) {
5985 ztest_record_enospc("dmu_objset_snapshot");
5986 goto out;
5988 fatal(B_FALSE, "dmu_objset_snapshot(%s) = %d", fullname, error);
5991 holds = fnvlist_alloc();
5992 fnvlist_add_string(holds, fullname, tag);
5993 error = dsl_dataset_user_hold(holds, 0, NULL);
5994 fnvlist_free(holds);
5996 if (error == ENOSPC) {
5997 ztest_record_enospc("dsl_dataset_user_hold");
5998 goto out;
5999 } else if (error) {
6000 fatal(B_FALSE, "dsl_dataset_user_hold(%s, %s) = %u",
6001 fullname, tag, error);
6004 error = dsl_destroy_snapshot(fullname, B_FALSE);
6005 if (error != EBUSY) {
6006 fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
6007 fullname, error);
6010 error = dsl_destroy_snapshot(fullname, B_TRUE);
6011 if (error) {
6012 fatal(B_FALSE, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
6013 fullname, error);
6016 error = user_release_one(fullname, tag);
6017 if (error)
6018 fatal(B_FALSE, "user_release_one(%s, %s) = %d",
6019 fullname, tag, error);
6021 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT);
6023 out:
6024 (void) pthread_rwlock_unlock(&ztest_name_lock);
6028 * Inject random faults into the on-disk data.
6030 void
6031 ztest_fault_inject(ztest_ds_t *zd, uint64_t id)
6033 (void) zd, (void) id;
6034 ztest_shared_t *zs = ztest_shared;
6035 spa_t *spa = ztest_spa;
6036 int fd;
6037 uint64_t offset;
6038 uint64_t leaves;
6039 uint64_t bad = 0x1990c0ffeedecadeull;
6040 uint64_t top, leaf;
6041 char *path0;
6042 char *pathrand;
6043 size_t fsize;
6044 int bshift = SPA_MAXBLOCKSHIFT + 2;
6045 int iters = 1000;
6046 int maxfaults;
6047 int mirror_save;
6048 vdev_t *vd0 = NULL;
6049 uint64_t guid0 = 0;
6050 boolean_t islog = B_FALSE;
6052 path0 = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6053 pathrand = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
6055 mutex_enter(&ztest_vdev_lock);
6058 * Device removal is in progress, fault injection must be disabled
6059 * until it completes and the pool is scrubbed. The fault injection
6060 * strategy for damaging blocks does not take in to account evacuated
6061 * blocks which may have already been damaged.
6063 if (ztest_device_removal_active) {
6064 mutex_exit(&ztest_vdev_lock);
6065 goto out;
6068 maxfaults = MAXFAULTS(zs);
6069 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raid_children;
6070 mirror_save = zs->zs_mirrors;
6071 mutex_exit(&ztest_vdev_lock);
6073 ASSERT3U(leaves, >=, 1);
6076 * While ztest is running the number of leaves will not change. This
6077 * is critical for the fault injection logic as it determines where
6078 * errors can be safely injected such that they are always repairable.
6080 * When restarting ztest a different number of leaves may be requested
6081 * which will shift the regions to be damaged. This is fine as long
6082 * as the pool has been scrubbed prior to using the new mapping.
6083 * Failure to do can result in non-repairable damage being injected.
6085 if (ztest_pool_scrubbed == B_FALSE)
6086 goto out;
6089 * Grab the name lock as reader. There are some operations
6090 * which don't like to have their vdevs changed while
6091 * they are in progress (i.e. spa_change_guid). Those
6092 * operations will have grabbed the name lock as writer.
6094 (void) pthread_rwlock_rdlock(&ztest_name_lock);
6097 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
6099 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6101 if (ztest_random(2) == 0) {
6103 * Inject errors on a normal data device or slog device.
6105 top = ztest_random_vdev_top(spa, B_TRUE);
6106 leaf = ztest_random(leaves) + zs->zs_splits;
6109 * Generate paths to the first leaf in this top-level vdev,
6110 * and to the random leaf we selected. We'll induce transient
6111 * write failures and random online/offline activity on leaf 0,
6112 * and we'll write random garbage to the randomly chosen leaf.
6114 (void) snprintf(path0, MAXPATHLEN, ztest_dev_template,
6115 ztest_opts.zo_dir, ztest_opts.zo_pool,
6116 top * leaves + zs->zs_splits);
6117 (void) snprintf(pathrand, MAXPATHLEN, ztest_dev_template,
6118 ztest_opts.zo_dir, ztest_opts.zo_pool,
6119 top * leaves + leaf);
6121 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0);
6122 if (vd0 != NULL && vd0->vdev_top->vdev_islog)
6123 islog = B_TRUE;
6126 * If the top-level vdev needs to be resilvered
6127 * then we only allow faults on the device that is
6128 * resilvering.
6130 if (vd0 != NULL && maxfaults != 1 &&
6131 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) ||
6132 vd0->vdev_resilver_txg != 0)) {
6134 * Make vd0 explicitly claim to be unreadable,
6135 * or unwritable, or reach behind its back
6136 * and close the underlying fd. We can do this if
6137 * maxfaults == 0 because we'll fail and reexecute,
6138 * and we can do it if maxfaults >= 2 because we'll
6139 * have enough redundancy. If maxfaults == 1, the
6140 * combination of this with injection of random data
6141 * corruption below exceeds the pool's fault tolerance.
6143 vdev_file_t *vf = vd0->vdev_tsd;
6145 zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
6146 (long long)vd0->vdev_id, (int)maxfaults);
6148 if (vf != NULL && ztest_random(3) == 0) {
6149 (void) close(vf->vf_file->f_fd);
6150 vf->vf_file->f_fd = -1;
6151 } else if (ztest_random(2) == 0) {
6152 vd0->vdev_cant_read = B_TRUE;
6153 } else {
6154 vd0->vdev_cant_write = B_TRUE;
6156 guid0 = vd0->vdev_guid;
6158 } else {
6160 * Inject errors on an l2cache device.
6162 spa_aux_vdev_t *sav = &spa->spa_l2cache;
6164 if (sav->sav_count == 0) {
6165 spa_config_exit(spa, SCL_STATE, FTAG);
6166 (void) pthread_rwlock_unlock(&ztest_name_lock);
6167 goto out;
6169 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)];
6170 guid0 = vd0->vdev_guid;
6171 (void) strlcpy(path0, vd0->vdev_path, MAXPATHLEN);
6172 (void) strlcpy(pathrand, vd0->vdev_path, MAXPATHLEN);
6174 leaf = 0;
6175 leaves = 1;
6176 maxfaults = INT_MAX; /* no limit on cache devices */
6179 spa_config_exit(spa, SCL_STATE, FTAG);
6180 (void) pthread_rwlock_unlock(&ztest_name_lock);
6183 * If we can tolerate two or more faults, or we're dealing
6184 * with a slog, randomly online/offline vd0.
6186 if ((maxfaults >= 2 || islog) && guid0 != 0) {
6187 if (ztest_random(10) < 6) {
6188 int flags = (ztest_random(2) == 0 ?
6189 ZFS_OFFLINE_TEMPORARY : 0);
6192 * We have to grab the zs_name_lock as writer to
6193 * prevent a race between offlining a slog and
6194 * destroying a dataset. Offlining the slog will
6195 * grab a reference on the dataset which may cause
6196 * dsl_destroy_head() to fail with EBUSY thus
6197 * leaving the dataset in an inconsistent state.
6199 if (islog)
6200 (void) pthread_rwlock_wrlock(&ztest_name_lock);
6202 VERIFY3U(vdev_offline(spa, guid0, flags), !=, EBUSY);
6204 if (islog)
6205 (void) pthread_rwlock_unlock(&ztest_name_lock);
6206 } else {
6208 * Ideally we would like to be able to randomly
6209 * call vdev_[on|off]line without holding locks
6210 * to force unpredictable failures but the side
6211 * effects of vdev_[on|off]line prevent us from
6212 * doing so. We grab the ztest_vdev_lock here to
6213 * prevent a race between injection testing and
6214 * aux_vdev removal.
6216 mutex_enter(&ztest_vdev_lock);
6217 (void) vdev_online(spa, guid0, 0, NULL);
6218 mutex_exit(&ztest_vdev_lock);
6222 if (maxfaults == 0)
6223 goto out;
6226 * We have at least single-fault tolerance, so inject data corruption.
6228 fd = open(pathrand, O_RDWR);
6230 if (fd == -1) /* we hit a gap in the device namespace */
6231 goto out;
6233 fsize = lseek(fd, 0, SEEK_END);
6235 while (--iters != 0) {
6237 * The offset must be chosen carefully to ensure that
6238 * we do not inject a given logical block with errors
6239 * on two different leaf devices, because ZFS can not
6240 * tolerate that (if maxfaults==1).
6242 * To achieve this we divide each leaf device into
6243 * chunks of size (# leaves * SPA_MAXBLOCKSIZE * 4).
6244 * Each chunk is further divided into error-injection
6245 * ranges (can accept errors) and clear ranges (we do
6246 * not inject errors in those). Each error-injection
6247 * range can accept errors only for a single leaf vdev.
6248 * Error-injection ranges are separated by clear ranges.
6250 * For example, with 3 leaves, each chunk looks like:
6251 * 0 to 32M: injection range for leaf 0
6252 * 32M to 64M: clear range - no injection allowed
6253 * 64M to 96M: injection range for leaf 1
6254 * 96M to 128M: clear range - no injection allowed
6255 * 128M to 160M: injection range for leaf 2
6256 * 160M to 192M: clear range - no injection allowed
6258 * Each clear range must be large enough such that a
6259 * single block cannot straddle it. This way a block
6260 * can't be a target in two different injection ranges
6261 * (on different leaf vdevs).
6263 offset = ztest_random(fsize / (leaves << bshift)) *
6264 (leaves << bshift) + (leaf << bshift) +
6265 (ztest_random(1ULL << (bshift - 1)) & -8ULL);
6268 * Only allow damage to the labels at one end of the vdev.
6270 * If all labels are damaged, the device will be totally
6271 * inaccessible, which will result in loss of data,
6272 * because we also damage (parts of) the other side of
6273 * the mirror/raidz.
6275 * Additionally, we will always have both an even and an
6276 * odd label, so that we can handle crashes in the
6277 * middle of vdev_config_sync().
6279 if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE)
6280 continue;
6283 * The two end labels are stored at the "end" of the disk, but
6284 * the end of the disk (vdev_psize) is aligned to
6285 * sizeof (vdev_label_t).
6287 uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t));
6288 if ((leaf & 1) == 1 &&
6289 offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE)
6290 continue;
6292 mutex_enter(&ztest_vdev_lock);
6293 if (mirror_save != zs->zs_mirrors) {
6294 mutex_exit(&ztest_vdev_lock);
6295 (void) close(fd);
6296 goto out;
6299 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad))
6300 fatal(B_TRUE,
6301 "can't inject bad word at 0x%"PRIx64" in %s",
6302 offset, pathrand);
6304 mutex_exit(&ztest_vdev_lock);
6306 if (ztest_opts.zo_verbose >= 7)
6307 (void) printf("injected bad word into %s,"
6308 " offset 0x%"PRIx64"\n", pathrand, offset);
6311 (void) close(fd);
6312 out:
6313 umem_free(path0, MAXPATHLEN);
6314 umem_free(pathrand, MAXPATHLEN);
6318 * By design ztest will never inject uncorrectable damage in to the pool.
6319 * Issue a scrub, wait for it to complete, and verify there is never any
6320 * persistent damage.
6322 * Only after a full scrub has been completed is it safe to start injecting
6323 * data corruption. See the comment in zfs_fault_inject().
6325 static int
6326 ztest_scrub_impl(spa_t *spa)
6328 int error = spa_scan(spa, POOL_SCAN_SCRUB);
6329 if (error)
6330 return (error);
6332 while (dsl_scan_scrubbing(spa_get_dsl(spa)))
6333 txg_wait_synced(spa_get_dsl(spa), 0);
6335 if (spa_approx_errlog_size(spa) > 0)
6336 return (ECKSUM);
6338 ztest_pool_scrubbed = B_TRUE;
6340 return (0);
6344 * Scrub the pool.
6346 void
6347 ztest_scrub(ztest_ds_t *zd, uint64_t id)
6349 (void) zd, (void) id;
6350 spa_t *spa = ztest_spa;
6351 int error;
6354 * Scrub in progress by device removal.
6356 if (ztest_device_removal_active)
6357 return;
6360 * Start a scrub, wait a moment, then force a restart.
6362 (void) spa_scan(spa, POOL_SCAN_SCRUB);
6363 (void) poll(NULL, 0, 100);
6365 error = ztest_scrub_impl(spa);
6366 if (error == EBUSY)
6367 error = 0;
6368 ASSERT0(error);
6372 * Change the guid for the pool.
6374 void
6375 ztest_reguid(ztest_ds_t *zd, uint64_t id)
6377 (void) zd, (void) id;
6378 spa_t *spa = ztest_spa;
6379 uint64_t orig, load;
6380 int error;
6381 ztest_shared_t *zs = ztest_shared;
6383 if (ztest_opts.zo_mmp_test)
6384 return;
6386 orig = spa_guid(spa);
6387 load = spa_load_guid(spa);
6389 (void) pthread_rwlock_wrlock(&ztest_name_lock);
6390 error = spa_change_guid(spa);
6391 zs->zs_guid = spa_guid(spa);
6392 (void) pthread_rwlock_unlock(&ztest_name_lock);
6394 if (error != 0)
6395 return;
6397 if (ztest_opts.zo_verbose >= 4) {
6398 (void) printf("Changed guid old %"PRIu64" -> %"PRIu64"\n",
6399 orig, spa_guid(spa));
6402 VERIFY3U(orig, !=, spa_guid(spa));
6403 VERIFY3U(load, ==, spa_load_guid(spa));
6406 void
6407 ztest_blake3(ztest_ds_t *zd, uint64_t id)
6409 (void) zd, (void) id;
6410 hrtime_t end = gethrtime() + NANOSEC;
6411 zio_cksum_salt_t salt;
6412 void *salt_ptr = &salt.zcs_bytes;
6413 struct abd *abd_data, *abd_meta;
6414 void *buf, *templ;
6415 int i, *ptr;
6416 uint32_t size;
6417 BLAKE3_CTX ctx;
6418 const zfs_impl_t *blake3 = zfs_impl_get_ops("blake3");
6420 size = ztest_random_blocksize();
6421 buf = umem_alloc(size, UMEM_NOFAIL);
6422 abd_data = abd_alloc(size, B_FALSE);
6423 abd_meta = abd_alloc(size, B_TRUE);
6425 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6426 *ptr = ztest_random(UINT_MAX);
6427 memset(salt_ptr, 'A', 32);
6429 abd_copy_from_buf_off(abd_data, buf, 0, size);
6430 abd_copy_from_buf_off(abd_meta, buf, 0, size);
6432 while (gethrtime() <= end) {
6433 int run_count = 100;
6434 zio_cksum_t zc_ref1, zc_ref2;
6435 zio_cksum_t zc_res1, zc_res2;
6437 void *ref1 = &zc_ref1;
6438 void *ref2 = &zc_ref2;
6439 void *res1 = &zc_res1;
6440 void *res2 = &zc_res2;
6442 /* BLAKE3_KEY_LEN = 32 */
6443 VERIFY0(blake3->setname("generic"));
6444 templ = abd_checksum_blake3_tmpl_init(&salt);
6445 Blake3_InitKeyed(&ctx, salt_ptr);
6446 Blake3_Update(&ctx, buf, size);
6447 Blake3_Final(&ctx, ref1);
6448 zc_ref2 = zc_ref1;
6449 ZIO_CHECKSUM_BSWAP(&zc_ref2);
6450 abd_checksum_blake3_tmpl_free(templ);
6452 VERIFY0(blake3->setname("cycle"));
6453 while (run_count-- > 0) {
6455 /* Test current implementation */
6456 Blake3_InitKeyed(&ctx, salt_ptr);
6457 Blake3_Update(&ctx, buf, size);
6458 Blake3_Final(&ctx, res1);
6459 zc_res2 = zc_res1;
6460 ZIO_CHECKSUM_BSWAP(&zc_res2);
6462 VERIFY0(memcmp(ref1, res1, 32));
6463 VERIFY0(memcmp(ref2, res2, 32));
6465 /* Test ABD - data */
6466 templ = abd_checksum_blake3_tmpl_init(&salt);
6467 abd_checksum_blake3_native(abd_data, size,
6468 templ, &zc_res1);
6469 abd_checksum_blake3_byteswap(abd_data, size,
6470 templ, &zc_res2);
6472 VERIFY0(memcmp(ref1, res1, 32));
6473 VERIFY0(memcmp(ref2, res2, 32));
6475 /* Test ABD - metadata */
6476 abd_checksum_blake3_native(abd_meta, size,
6477 templ, &zc_res1);
6478 abd_checksum_blake3_byteswap(abd_meta, size,
6479 templ, &zc_res2);
6480 abd_checksum_blake3_tmpl_free(templ);
6482 VERIFY0(memcmp(ref1, res1, 32));
6483 VERIFY0(memcmp(ref2, res2, 32));
6488 abd_free(abd_data);
6489 abd_free(abd_meta);
6490 umem_free(buf, size);
6493 void
6494 ztest_fletcher(ztest_ds_t *zd, uint64_t id)
6496 (void) zd, (void) id;
6497 hrtime_t end = gethrtime() + NANOSEC;
6499 while (gethrtime() <= end) {
6500 int run_count = 100;
6501 void *buf;
6502 struct abd *abd_data, *abd_meta;
6503 uint32_t size;
6504 int *ptr;
6505 int i;
6506 zio_cksum_t zc_ref;
6507 zio_cksum_t zc_ref_byteswap;
6509 size = ztest_random_blocksize();
6511 buf = umem_alloc(size, UMEM_NOFAIL);
6512 abd_data = abd_alloc(size, B_FALSE);
6513 abd_meta = abd_alloc(size, B_TRUE);
6515 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6516 *ptr = ztest_random(UINT_MAX);
6518 abd_copy_from_buf_off(abd_data, buf, 0, size);
6519 abd_copy_from_buf_off(abd_meta, buf, 0, size);
6521 VERIFY0(fletcher_4_impl_set("scalar"));
6522 fletcher_4_native(buf, size, NULL, &zc_ref);
6523 fletcher_4_byteswap(buf, size, NULL, &zc_ref_byteswap);
6525 VERIFY0(fletcher_4_impl_set("cycle"));
6526 while (run_count-- > 0) {
6527 zio_cksum_t zc;
6528 zio_cksum_t zc_byteswap;
6530 fletcher_4_byteswap(buf, size, NULL, &zc_byteswap);
6531 fletcher_4_native(buf, size, NULL, &zc);
6533 VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6534 VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6535 sizeof (zc_byteswap)));
6537 /* Test ABD - data */
6538 abd_fletcher_4_byteswap(abd_data, size, NULL,
6539 &zc_byteswap);
6540 abd_fletcher_4_native(abd_data, size, NULL, &zc);
6542 VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6543 VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6544 sizeof (zc_byteswap)));
6546 /* Test ABD - metadata */
6547 abd_fletcher_4_byteswap(abd_meta, size, NULL,
6548 &zc_byteswap);
6549 abd_fletcher_4_native(abd_meta, size, NULL, &zc);
6551 VERIFY0(memcmp(&zc, &zc_ref, sizeof (zc)));
6552 VERIFY0(memcmp(&zc_byteswap, &zc_ref_byteswap,
6553 sizeof (zc_byteswap)));
6557 umem_free(buf, size);
6558 abd_free(abd_data);
6559 abd_free(abd_meta);
6563 void
6564 ztest_fletcher_incr(ztest_ds_t *zd, uint64_t id)
6566 (void) zd, (void) id;
6567 void *buf;
6568 size_t size;
6569 int *ptr;
6570 int i;
6571 zio_cksum_t zc_ref;
6572 zio_cksum_t zc_ref_bswap;
6574 hrtime_t end = gethrtime() + NANOSEC;
6576 while (gethrtime() <= end) {
6577 int run_count = 100;
6579 size = ztest_random_blocksize();
6580 buf = umem_alloc(size, UMEM_NOFAIL);
6582 for (i = 0, ptr = buf; i < size / sizeof (*ptr); i++, ptr++)
6583 *ptr = ztest_random(UINT_MAX);
6585 VERIFY0(fletcher_4_impl_set("scalar"));
6586 fletcher_4_native(buf, size, NULL, &zc_ref);
6587 fletcher_4_byteswap(buf, size, NULL, &zc_ref_bswap);
6589 VERIFY0(fletcher_4_impl_set("cycle"));
6591 while (run_count-- > 0) {
6592 zio_cksum_t zc;
6593 zio_cksum_t zc_bswap;
6594 size_t pos = 0;
6596 ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
6597 ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
6599 while (pos < size) {
6600 size_t inc = 64 * ztest_random(size / 67);
6601 /* sometimes add few bytes to test non-simd */
6602 if (ztest_random(100) < 10)
6603 inc += P2ALIGN(ztest_random(64),
6604 sizeof (uint32_t));
6606 if (inc > (size - pos))
6607 inc = size - pos;
6609 fletcher_4_incremental_native(buf + pos, inc,
6610 &zc);
6611 fletcher_4_incremental_byteswap(buf + pos, inc,
6612 &zc_bswap);
6614 pos += inc;
6617 VERIFY3U(pos, ==, size);
6619 VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
6620 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
6623 * verify if incremental on the whole buffer is
6624 * equivalent to non-incremental version
6626 ZIO_SET_CHECKSUM(&zc, 0, 0, 0, 0);
6627 ZIO_SET_CHECKSUM(&zc_bswap, 0, 0, 0, 0);
6629 fletcher_4_incremental_native(buf, size, &zc);
6630 fletcher_4_incremental_byteswap(buf, size, &zc_bswap);
6632 VERIFY(ZIO_CHECKSUM_EQUAL(zc, zc_ref));
6633 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap, zc_ref_bswap));
6636 umem_free(buf, size);
6640 static int
6641 ztest_set_global_vars(void)
6643 for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
6644 char *kv = ztest_opts.zo_gvars[i];
6645 VERIFY3U(strlen(kv), <=, ZO_GVARS_MAX_ARGLEN);
6646 VERIFY3U(strlen(kv), >, 0);
6647 int err = set_global_var(kv);
6648 if (ztest_opts.zo_verbose > 0) {
6649 (void) printf("setting global var %s ... %s\n", kv,
6650 err ? "failed" : "ok");
6652 if (err != 0) {
6653 (void) fprintf(stderr,
6654 "failed to set global var '%s'\n", kv);
6655 return (err);
6658 return (0);
6661 static char **
6662 ztest_global_vars_to_zdb_args(void)
6664 char **args = calloc(2*ztest_opts.zo_gvars_count + 1, sizeof (char *));
6665 char **cur = args;
6666 if (args == NULL)
6667 return (NULL);
6668 for (size_t i = 0; i < ztest_opts.zo_gvars_count; i++) {
6669 *cur++ = (char *)"-o";
6670 *cur++ = ztest_opts.zo_gvars[i];
6672 ASSERT3P(cur, ==, &args[2*ztest_opts.zo_gvars_count]);
6673 *cur = NULL;
6674 return (args);
6677 /* The end of strings is indicated by a NULL element */
6678 static char *
6679 join_strings(char **strings, const char *sep)
6681 size_t totallen = 0;
6682 for (char **sp = strings; *sp != NULL; sp++) {
6683 totallen += strlen(*sp);
6684 totallen += strlen(sep);
6686 if (totallen > 0) {
6687 ASSERT(totallen >= strlen(sep));
6688 totallen -= strlen(sep);
6691 size_t buflen = totallen + 1;
6692 char *o = umem_alloc(buflen, UMEM_NOFAIL); /* trailing 0 byte */
6693 o[0] = '\0';
6694 for (char **sp = strings; *sp != NULL; sp++) {
6695 size_t would;
6696 would = strlcat(o, *sp, buflen);
6697 VERIFY3U(would, <, buflen);
6698 if (*(sp+1) == NULL) {
6699 break;
6701 would = strlcat(o, sep, buflen);
6702 VERIFY3U(would, <, buflen);
6704 ASSERT3S(strlen(o), ==, totallen);
6705 return (o);
6708 static int
6709 ztest_check_path(char *path)
6711 struct stat s;
6712 /* return true on success */
6713 return (!stat(path, &s));
6716 static void
6717 ztest_get_zdb_bin(char *bin, int len)
6719 char *zdb_path;
6721 * Try to use $ZDB and in-tree zdb path. If not successful, just
6722 * let popen to search through PATH.
6724 if ((zdb_path = getenv("ZDB"))) {
6725 strlcpy(bin, zdb_path, len); /* In env */
6726 if (!ztest_check_path(bin)) {
6727 ztest_dump_core = 0;
6728 fatal(B_TRUE, "invalid ZDB '%s'", bin);
6730 return;
6733 VERIFY3P(realpath(getexecname(), bin), !=, NULL);
6734 if (strstr(bin, ".libs/ztest")) {
6735 strstr(bin, ".libs/ztest")[0] = '\0'; /* In-tree */
6736 strcat(bin, "zdb");
6737 if (ztest_check_path(bin))
6738 return;
6740 strcpy(bin, "zdb");
6743 static vdev_t *
6744 ztest_random_concrete_vdev_leaf(vdev_t *vd)
6746 if (vd == NULL)
6747 return (NULL);
6749 if (vd->vdev_children == 0)
6750 return (vd);
6752 vdev_t *eligible[vd->vdev_children];
6753 int eligible_idx = 0, i;
6754 for (i = 0; i < vd->vdev_children; i++) {
6755 vdev_t *cvd = vd->vdev_child[i];
6756 if (cvd->vdev_top->vdev_removing)
6757 continue;
6758 if (cvd->vdev_children > 0 ||
6759 (vdev_is_concrete(cvd) && !cvd->vdev_detached)) {
6760 eligible[eligible_idx++] = cvd;
6763 VERIFY3S(eligible_idx, >, 0);
6765 uint64_t child_no = ztest_random(eligible_idx);
6766 return (ztest_random_concrete_vdev_leaf(eligible[child_no]));
6769 void
6770 ztest_initialize(ztest_ds_t *zd, uint64_t id)
6772 (void) zd, (void) id;
6773 spa_t *spa = ztest_spa;
6774 int error = 0;
6776 mutex_enter(&ztest_vdev_lock);
6778 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6780 /* Random leaf vdev */
6781 vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
6782 if (rand_vd == NULL) {
6783 spa_config_exit(spa, SCL_VDEV, FTAG);
6784 mutex_exit(&ztest_vdev_lock);
6785 return;
6789 * The random vdev we've selected may change as soon as we
6790 * drop the spa_config_lock. We create local copies of things
6791 * we're interested in.
6793 uint64_t guid = rand_vd->vdev_guid;
6794 char *path = strdup(rand_vd->vdev_path);
6795 boolean_t active = rand_vd->vdev_initialize_thread != NULL;
6797 zfs_dbgmsg("vd %px, guid %llu", rand_vd, (u_longlong_t)guid);
6798 spa_config_exit(spa, SCL_VDEV, FTAG);
6800 uint64_t cmd = ztest_random(POOL_INITIALIZE_FUNCS);
6802 nvlist_t *vdev_guids = fnvlist_alloc();
6803 nvlist_t *vdev_errlist = fnvlist_alloc();
6804 fnvlist_add_uint64(vdev_guids, path, guid);
6805 error = spa_vdev_initialize(spa, vdev_guids, cmd, vdev_errlist);
6806 fnvlist_free(vdev_guids);
6807 fnvlist_free(vdev_errlist);
6809 switch (cmd) {
6810 case POOL_INITIALIZE_CANCEL:
6811 if (ztest_opts.zo_verbose >= 4) {
6812 (void) printf("Cancel initialize %s", path);
6813 if (!active)
6814 (void) printf(" failed (no initialize active)");
6815 (void) printf("\n");
6817 break;
6818 case POOL_INITIALIZE_START:
6819 if (ztest_opts.zo_verbose >= 4) {
6820 (void) printf("Start initialize %s", path);
6821 if (active && error == 0)
6822 (void) printf(" failed (already active)");
6823 else if (error != 0)
6824 (void) printf(" failed (error %d)", error);
6825 (void) printf("\n");
6827 break;
6828 case POOL_INITIALIZE_SUSPEND:
6829 if (ztest_opts.zo_verbose >= 4) {
6830 (void) printf("Suspend initialize %s", path);
6831 if (!active)
6832 (void) printf(" failed (no initialize active)");
6833 (void) printf("\n");
6835 break;
6837 free(path);
6838 mutex_exit(&ztest_vdev_lock);
6841 void
6842 ztest_trim(ztest_ds_t *zd, uint64_t id)
6844 (void) zd, (void) id;
6845 spa_t *spa = ztest_spa;
6846 int error = 0;
6848 mutex_enter(&ztest_vdev_lock);
6850 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6852 /* Random leaf vdev */
6853 vdev_t *rand_vd = ztest_random_concrete_vdev_leaf(spa->spa_root_vdev);
6854 if (rand_vd == NULL) {
6855 spa_config_exit(spa, SCL_VDEV, FTAG);
6856 mutex_exit(&ztest_vdev_lock);
6857 return;
6861 * The random vdev we've selected may change as soon as we
6862 * drop the spa_config_lock. We create local copies of things
6863 * we're interested in.
6865 uint64_t guid = rand_vd->vdev_guid;
6866 char *path = strdup(rand_vd->vdev_path);
6867 boolean_t active = rand_vd->vdev_trim_thread != NULL;
6869 zfs_dbgmsg("vd %p, guid %llu", rand_vd, (u_longlong_t)guid);
6870 spa_config_exit(spa, SCL_VDEV, FTAG);
6872 uint64_t cmd = ztest_random(POOL_TRIM_FUNCS);
6873 uint64_t rate = 1 << ztest_random(30);
6874 boolean_t partial = (ztest_random(5) > 0);
6875 boolean_t secure = (ztest_random(5) > 0);
6877 nvlist_t *vdev_guids = fnvlist_alloc();
6878 nvlist_t *vdev_errlist = fnvlist_alloc();
6879 fnvlist_add_uint64(vdev_guids, path, guid);
6880 error = spa_vdev_trim(spa, vdev_guids, cmd, rate, partial,
6881 secure, vdev_errlist);
6882 fnvlist_free(vdev_guids);
6883 fnvlist_free(vdev_errlist);
6885 switch (cmd) {
6886 case POOL_TRIM_CANCEL:
6887 if (ztest_opts.zo_verbose >= 4) {
6888 (void) printf("Cancel TRIM %s", path);
6889 if (!active)
6890 (void) printf(" failed (no TRIM active)");
6891 (void) printf("\n");
6893 break;
6894 case POOL_TRIM_START:
6895 if (ztest_opts.zo_verbose >= 4) {
6896 (void) printf("Start TRIM %s", path);
6897 if (active && error == 0)
6898 (void) printf(" failed (already active)");
6899 else if (error != 0)
6900 (void) printf(" failed (error %d)", error);
6901 (void) printf("\n");
6903 break;
6904 case POOL_TRIM_SUSPEND:
6905 if (ztest_opts.zo_verbose >= 4) {
6906 (void) printf("Suspend TRIM %s", path);
6907 if (!active)
6908 (void) printf(" failed (no TRIM active)");
6909 (void) printf("\n");
6911 break;
6913 free(path);
6914 mutex_exit(&ztest_vdev_lock);
6918 * Verify pool integrity by running zdb.
6920 static void
6921 ztest_run_zdb(uint64_t guid)
6923 int status;
6924 char *bin;
6925 char *zdb;
6926 char *zbuf;
6927 const int len = MAXPATHLEN + MAXNAMELEN + 20;
6928 FILE *fp;
6930 bin = umem_alloc(len, UMEM_NOFAIL);
6931 zdb = umem_alloc(len, UMEM_NOFAIL);
6932 zbuf = umem_alloc(1024, UMEM_NOFAIL);
6934 ztest_get_zdb_bin(bin, len);
6936 char **set_gvars_args = ztest_global_vars_to_zdb_args();
6937 if (set_gvars_args == NULL) {
6938 fatal(B_FALSE, "Failed to allocate memory in "
6939 "ztest_global_vars_to_zdb_args(). Cannot run zdb.\n");
6941 char *set_gvars_args_joined = join_strings(set_gvars_args, " ");
6942 free(set_gvars_args);
6944 size_t would = snprintf(zdb, len,
6945 "%s -bcc%s%s -G -d -Y -e -y %s -p %s %"PRIu64,
6946 bin,
6947 ztest_opts.zo_verbose >= 3 ? "s" : "",
6948 ztest_opts.zo_verbose >= 4 ? "v" : "",
6949 set_gvars_args_joined,
6950 ztest_opts.zo_dir,
6951 guid);
6952 ASSERT3U(would, <, len);
6954 umem_free(set_gvars_args_joined, strlen(set_gvars_args_joined) + 1);
6956 if (ztest_opts.zo_verbose >= 5)
6957 (void) printf("Executing %s\n", zdb);
6959 fp = popen(zdb, "r");
6961 while (fgets(zbuf, 1024, fp) != NULL)
6962 if (ztest_opts.zo_verbose >= 3)
6963 (void) printf("%s", zbuf);
6965 status = pclose(fp);
6967 if (status == 0)
6968 goto out;
6970 ztest_dump_core = 0;
6971 if (WIFEXITED(status))
6972 fatal(B_FALSE, "'%s' exit code %d", zdb, WEXITSTATUS(status));
6973 else
6974 fatal(B_FALSE, "'%s' died with signal %d",
6975 zdb, WTERMSIG(status));
6976 out:
6977 umem_free(bin, len);
6978 umem_free(zdb, len);
6979 umem_free(zbuf, 1024);
6982 static void
6983 ztest_walk_pool_directory(const char *header)
6985 spa_t *spa = NULL;
6987 if (ztest_opts.zo_verbose >= 6)
6988 (void) puts(header);
6990 mutex_enter(&spa_namespace_lock);
6991 while ((spa = spa_next(spa)) != NULL)
6992 if (ztest_opts.zo_verbose >= 6)
6993 (void) printf("\t%s\n", spa_name(spa));
6994 mutex_exit(&spa_namespace_lock);
6997 static void
6998 ztest_spa_import_export(char *oldname, char *newname)
7000 nvlist_t *config, *newconfig;
7001 uint64_t pool_guid;
7002 spa_t *spa;
7003 int error;
7005 if (ztest_opts.zo_verbose >= 4) {
7006 (void) printf("import/export: old = %s, new = %s\n",
7007 oldname, newname);
7011 * Clean up from previous runs.
7013 (void) spa_destroy(newname);
7016 * Get the pool's configuration and guid.
7018 VERIFY0(spa_open(oldname, &spa, FTAG));
7021 * Kick off a scrub to tickle scrub/export races.
7023 if (ztest_random(2) == 0)
7024 (void) spa_scan(spa, POOL_SCAN_SCRUB);
7026 pool_guid = spa_guid(spa);
7027 spa_close(spa, FTAG);
7029 ztest_walk_pool_directory("pools before export");
7032 * Export it.
7034 VERIFY0(spa_export(oldname, &config, B_FALSE, B_FALSE));
7036 ztest_walk_pool_directory("pools after export");
7039 * Try to import it.
7041 newconfig = spa_tryimport(config);
7042 ASSERT3P(newconfig, !=, NULL);
7043 fnvlist_free(newconfig);
7046 * Import it under the new name.
7048 error = spa_import(newname, config, NULL, 0);
7049 if (error != 0) {
7050 dump_nvlist(config, 0);
7051 fatal(B_FALSE, "couldn't import pool %s as %s: error %u",
7052 oldname, newname, error);
7055 ztest_walk_pool_directory("pools after import");
7058 * Try to import it again -- should fail with EEXIST.
7060 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0));
7063 * Try to import it under a different name -- should fail with EEXIST.
7065 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0));
7068 * Verify that the pool is no longer visible under the old name.
7070 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG));
7073 * Verify that we can open and close the pool using the new name.
7075 VERIFY0(spa_open(newname, &spa, FTAG));
7076 ASSERT3U(pool_guid, ==, spa_guid(spa));
7077 spa_close(spa, FTAG);
7079 fnvlist_free(config);
7082 static void
7083 ztest_resume(spa_t *spa)
7085 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6)
7086 (void) printf("resuming from suspended state\n");
7087 spa_vdev_state_enter(spa, SCL_NONE);
7088 vdev_clear(spa, NULL);
7089 (void) spa_vdev_state_exit(spa, NULL, 0);
7090 (void) zio_resume(spa);
7093 static __attribute__((noreturn)) void
7094 ztest_resume_thread(void *arg)
7096 spa_t *spa = arg;
7098 while (!ztest_exiting) {
7099 if (spa_suspended(spa))
7100 ztest_resume(spa);
7101 (void) poll(NULL, 0, 100);
7104 * Periodically change the zfs_compressed_arc_enabled setting.
7106 if (ztest_random(10) == 0)
7107 zfs_compressed_arc_enabled = ztest_random(2);
7110 * Periodically change the zfs_abd_scatter_enabled setting.
7112 if (ztest_random(10) == 0)
7113 zfs_abd_scatter_enabled = ztest_random(2);
7116 thread_exit();
7119 static __attribute__((noreturn)) void
7120 ztest_deadman_thread(void *arg)
7122 ztest_shared_t *zs = arg;
7123 spa_t *spa = ztest_spa;
7124 hrtime_t delay, overdue, last_run = gethrtime();
7126 delay = (zs->zs_thread_stop - zs->zs_thread_start) +
7127 MSEC2NSEC(zfs_deadman_synctime_ms);
7129 while (!ztest_exiting) {
7131 * Wait for the delay timer while checking occasionally
7132 * if we should stop.
7134 if (gethrtime() < last_run + delay) {
7135 (void) poll(NULL, 0, 1000);
7136 continue;
7140 * If the pool is suspended then fail immediately. Otherwise,
7141 * check to see if the pool is making any progress. If
7142 * vdev_deadman() discovers that there hasn't been any recent
7143 * I/Os then it will end up aborting the tests.
7145 if (spa_suspended(spa) || spa->spa_root_vdev == NULL) {
7146 fatal(B_FALSE,
7147 "aborting test after %llu seconds because "
7148 "pool has transitioned to a suspended state.",
7149 (u_longlong_t)zfs_deadman_synctime_ms / 1000);
7151 vdev_deadman(spa->spa_root_vdev, FTAG);
7154 * If the process doesn't complete within a grace period of
7155 * zfs_deadman_synctime_ms over the expected finish time,
7156 * then it may be hung and is terminated.
7158 overdue = zs->zs_proc_stop + MSEC2NSEC(zfs_deadman_synctime_ms);
7159 if (gethrtime() > overdue) {
7160 fatal(B_FALSE,
7161 "aborting test after %llu seconds because "
7162 "the process is overdue for termination.",
7163 (gethrtime() - zs->zs_proc_start) / NANOSEC);
7166 (void) printf("ztest has been running for %lld seconds\n",
7167 (gethrtime() - zs->zs_proc_start) / NANOSEC);
7169 last_run = gethrtime();
7170 delay = MSEC2NSEC(zfs_deadman_checktime_ms);
7173 thread_exit();
7176 static void
7177 ztest_execute(int test, ztest_info_t *zi, uint64_t id)
7179 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets];
7180 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test);
7181 hrtime_t functime = gethrtime();
7182 int i;
7184 for (i = 0; i < zi->zi_iters; i++)
7185 zi->zi_func(zd, id);
7187 functime = gethrtime() - functime;
7189 atomic_add_64(&zc->zc_count, 1);
7190 atomic_add_64(&zc->zc_time, functime);
7192 if (ztest_opts.zo_verbose >= 4)
7193 (void) printf("%6.2f sec in %s\n",
7194 (double)functime / NANOSEC, zi->zi_funcname);
7197 static __attribute__((noreturn)) void
7198 ztest_thread(void *arg)
7200 int rand;
7201 uint64_t id = (uintptr_t)arg;
7202 ztest_shared_t *zs = ztest_shared;
7203 uint64_t call_next;
7204 hrtime_t now;
7205 ztest_info_t *zi;
7206 ztest_shared_callstate_t *zc;
7208 while ((now = gethrtime()) < zs->zs_thread_stop) {
7210 * See if it's time to force a crash.
7212 if (now > zs->zs_thread_kill)
7213 ztest_kill(zs);
7216 * If we're getting ENOSPC with some regularity, stop.
7218 if (zs->zs_enospc_count > 10)
7219 break;
7222 * Pick a random function to execute.
7224 rand = ztest_random(ZTEST_FUNCS);
7225 zi = &ztest_info[rand];
7226 zc = ZTEST_GET_SHARED_CALLSTATE(rand);
7227 call_next = zc->zc_next;
7229 if (now >= call_next &&
7230 atomic_cas_64(&zc->zc_next, call_next, call_next +
7231 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) {
7232 ztest_execute(rand, zi, id);
7236 thread_exit();
7239 static void
7240 ztest_dataset_name(char *dsname, const char *pool, int d)
7242 (void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d);
7245 static void
7246 ztest_dataset_destroy(int d)
7248 char name[ZFS_MAX_DATASET_NAME_LEN];
7249 int t;
7251 ztest_dataset_name(name, ztest_opts.zo_pool, d);
7253 if (ztest_opts.zo_verbose >= 3)
7254 (void) printf("Destroying %s to free up space\n", name);
7257 * Cleanup any non-standard clones and snapshots. In general,
7258 * ztest thread t operates on dataset (t % zopt_datasets),
7259 * so there may be more than one thing to clean up.
7261 for (t = d; t < ztest_opts.zo_threads;
7262 t += ztest_opts.zo_datasets)
7263 ztest_dsl_dataset_cleanup(name, t);
7265 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL,
7266 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
7269 static void
7270 ztest_dataset_dirobj_verify(ztest_ds_t *zd)
7272 uint64_t usedobjs, dirobjs, scratch;
7275 * ZTEST_DIROBJ is the object directory for the entire dataset.
7276 * Therefore, the number of objects in use should equal the
7277 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
7278 * If not, we have an object leak.
7280 * Note that we can only check this in ztest_dataset_open(),
7281 * when the open-context and syncing-context values agree.
7282 * That's because zap_count() returns the open-context value,
7283 * while dmu_objset_space() returns the rootbp fill count.
7285 VERIFY0(zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs));
7286 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch);
7287 ASSERT3U(dirobjs + 1, ==, usedobjs);
7290 static int
7291 ztest_dataset_open(int d)
7293 ztest_ds_t *zd = &ztest_ds[d];
7294 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq;
7295 objset_t *os;
7296 zilog_t *zilog;
7297 char name[ZFS_MAX_DATASET_NAME_LEN];
7298 int error;
7300 ztest_dataset_name(name, ztest_opts.zo_pool, d);
7302 (void) pthread_rwlock_rdlock(&ztest_name_lock);
7304 error = ztest_dataset_create(name);
7305 if (error == ENOSPC) {
7306 (void) pthread_rwlock_unlock(&ztest_name_lock);
7307 ztest_record_enospc(FTAG);
7308 return (error);
7310 ASSERT(error == 0 || error == EEXIST);
7312 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_OTHER, B_FALSE,
7313 B_TRUE, zd, &os));
7314 (void) pthread_rwlock_unlock(&ztest_name_lock);
7316 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os);
7318 zilog = zd->zd_zilog;
7320 if (zilog->zl_header->zh_claim_lr_seq != 0 &&
7321 zilog->zl_header->zh_claim_lr_seq < committed_seq)
7322 fatal(B_FALSE, "missing log records: "
7323 "claimed %"PRIu64" < committed %"PRIu64"",
7324 zilog->zl_header->zh_claim_lr_seq, committed_seq);
7326 ztest_dataset_dirobj_verify(zd);
7328 zil_replay(os, zd, ztest_replay_vector);
7330 ztest_dataset_dirobj_verify(zd);
7332 if (ztest_opts.zo_verbose >= 6)
7333 (void) printf("%s replay %"PRIu64" blocks, "
7334 "%"PRIu64" records, seq %"PRIu64"\n",
7335 zd->zd_name,
7336 zilog->zl_parse_blk_count,
7337 zilog->zl_parse_lr_count,
7338 zilog->zl_replaying_seq);
7340 zilog = zil_open(os, ztest_get_data, NULL);
7342 if (zilog->zl_replaying_seq != 0 &&
7343 zilog->zl_replaying_seq < committed_seq)
7344 fatal(B_FALSE, "missing log records: "
7345 "replayed %"PRIu64" < committed %"PRIu64"",
7346 zilog->zl_replaying_seq, committed_seq);
7348 return (0);
7351 static void
7352 ztest_dataset_close(int d)
7354 ztest_ds_t *zd = &ztest_ds[d];
7356 zil_close(zd->zd_zilog);
7357 dmu_objset_disown(zd->zd_os, B_TRUE, zd);
7359 ztest_zd_fini(zd);
7362 static int
7363 ztest_replay_zil_cb(const char *name, void *arg)
7365 (void) arg;
7366 objset_t *os;
7367 ztest_ds_t *zdtmp;
7369 VERIFY0(ztest_dmu_objset_own(name, DMU_OST_ANY, B_TRUE,
7370 B_TRUE, FTAG, &os));
7372 zdtmp = umem_alloc(sizeof (ztest_ds_t), UMEM_NOFAIL);
7374 ztest_zd_init(zdtmp, NULL, os);
7375 zil_replay(os, zdtmp, ztest_replay_vector);
7376 ztest_zd_fini(zdtmp);
7378 if (dmu_objset_zil(os)->zl_parse_lr_count != 0 &&
7379 ztest_opts.zo_verbose >= 6) {
7380 zilog_t *zilog = dmu_objset_zil(os);
7382 (void) printf("%s replay %"PRIu64" blocks, "
7383 "%"PRIu64" records, seq %"PRIu64"\n",
7384 name,
7385 zilog->zl_parse_blk_count,
7386 zilog->zl_parse_lr_count,
7387 zilog->zl_replaying_seq);
7390 umem_free(zdtmp, sizeof (ztest_ds_t));
7392 dmu_objset_disown(os, B_TRUE, FTAG);
7393 return (0);
7396 static void
7397 ztest_freeze(void)
7399 ztest_ds_t *zd = &ztest_ds[0];
7400 spa_t *spa;
7401 int numloops = 0;
7403 if (ztest_opts.zo_verbose >= 3)
7404 (void) printf("testing spa_freeze()...\n");
7406 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7407 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7408 VERIFY0(ztest_dataset_open(0));
7409 ztest_spa = spa;
7412 * Force the first log block to be transactionally allocated.
7413 * We have to do this before we freeze the pool -- otherwise
7414 * the log chain won't be anchored.
7416 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) {
7417 ztest_dmu_object_alloc_free(zd, 0);
7418 zil_commit(zd->zd_zilog, 0);
7421 txg_wait_synced(spa_get_dsl(spa), 0);
7424 * Freeze the pool. This stops spa_sync() from doing anything,
7425 * so that the only way to record changes from now on is the ZIL.
7427 spa_freeze(spa);
7430 * Because it is hard to predict how much space a write will actually
7431 * require beforehand, we leave ourselves some fudge space to write over
7432 * capacity.
7434 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2;
7437 * Run tests that generate log records but don't alter the pool config
7438 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
7439 * We do a txg_wait_synced() after each iteration to force the txg
7440 * to increase well beyond the last synced value in the uberblock.
7441 * The ZIL should be OK with that.
7443 * Run a random number of times less than zo_maxloops and ensure we do
7444 * not run out of space on the pool.
7446 while (ztest_random(10) != 0 &&
7447 numloops++ < ztest_opts.zo_maxloops &&
7448 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) {
7449 ztest_od_t od;
7450 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0, 0);
7451 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE));
7452 ztest_io(zd, od.od_object,
7453 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT);
7454 txg_wait_synced(spa_get_dsl(spa), 0);
7458 * Commit all of the changes we just generated.
7460 zil_commit(zd->zd_zilog, 0);
7461 txg_wait_synced(spa_get_dsl(spa), 0);
7464 * Close our dataset and close the pool.
7466 ztest_dataset_close(0);
7467 spa_close(spa, FTAG);
7468 kernel_fini();
7471 * Open and close the pool and dataset to induce log replay.
7473 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7474 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7475 ASSERT3U(spa_freeze_txg(spa), ==, UINT64_MAX);
7476 VERIFY0(ztest_dataset_open(0));
7477 ztest_spa = spa;
7478 txg_wait_synced(spa_get_dsl(spa), 0);
7479 ztest_dataset_close(0);
7480 ztest_reguid(NULL, 0);
7482 spa_close(spa, FTAG);
7483 kernel_fini();
7486 static void
7487 ztest_import_impl(void)
7489 importargs_t args = { 0 };
7490 nvlist_t *cfg = NULL;
7491 int nsearch = 1;
7492 char *searchdirs[nsearch];
7493 int flags = ZFS_IMPORT_MISSING_LOG;
7495 searchdirs[0] = ztest_opts.zo_dir;
7496 args.paths = nsearch;
7497 args.path = searchdirs;
7498 args.can_be_active = B_FALSE;
7500 libpc_handle_t lpch = {
7501 .lpc_lib_handle = NULL,
7502 .lpc_ops = &libzpool_config_ops,
7503 .lpc_printerr = B_TRUE
7505 VERIFY0(zpool_find_config(&lpch, ztest_opts.zo_pool, &cfg, &args));
7506 VERIFY0(spa_import(ztest_opts.zo_pool, cfg, NULL, flags));
7507 fnvlist_free(cfg);
7511 * Import a storage pool with the given name.
7513 static void
7514 ztest_import(ztest_shared_t *zs)
7516 spa_t *spa;
7518 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
7519 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
7520 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
7522 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7524 ztest_import_impl();
7526 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7527 zs->zs_metaslab_sz =
7528 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
7529 zs->zs_guid = spa_guid(spa);
7530 spa_close(spa, FTAG);
7532 kernel_fini();
7534 if (!ztest_opts.zo_mmp_test) {
7535 ztest_run_zdb(zs->zs_guid);
7536 ztest_freeze();
7537 ztest_run_zdb(zs->zs_guid);
7540 (void) pthread_rwlock_destroy(&ztest_name_lock);
7541 mutex_destroy(&ztest_vdev_lock);
7542 mutex_destroy(&ztest_checkpoint_lock);
7546 * Kick off threads to run tests on all datasets in parallel.
7548 static void
7549 ztest_run(ztest_shared_t *zs)
7551 spa_t *spa;
7552 objset_t *os;
7553 kthread_t *resume_thread, *deadman_thread;
7554 kthread_t **run_threads;
7555 uint64_t object;
7556 int error;
7557 int t, d;
7559 ztest_exiting = B_FALSE;
7562 * Initialize parent/child shared state.
7564 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
7565 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
7566 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
7568 zs->zs_thread_start = gethrtime();
7569 zs->zs_thread_stop =
7570 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC;
7571 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop);
7572 zs->zs_thread_kill = zs->zs_thread_stop;
7573 if (ztest_random(100) < ztest_opts.zo_killrate) {
7574 zs->zs_thread_kill -=
7575 ztest_random(ztest_opts.zo_passtime * NANOSEC);
7578 mutex_init(&zcl.zcl_callbacks_lock, NULL, MUTEX_DEFAULT, NULL);
7580 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t),
7581 offsetof(ztest_cb_data_t, zcd_node));
7584 * Open our pool. It may need to be imported first depending on
7585 * what tests were running when the previous pass was terminated.
7587 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7588 error = spa_open(ztest_opts.zo_pool, &spa, FTAG);
7589 if (error) {
7590 VERIFY3S(error, ==, ENOENT);
7591 ztest_import_impl();
7592 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7593 zs->zs_metaslab_sz =
7594 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
7597 metaslab_preload_limit = ztest_random(20) + 1;
7598 ztest_spa = spa;
7600 VERIFY0(vdev_raidz_impl_set("cycle"));
7602 dmu_objset_stats_t dds;
7603 VERIFY0(ztest_dmu_objset_own(ztest_opts.zo_pool,
7604 DMU_OST_ANY, B_TRUE, B_TRUE, FTAG, &os));
7605 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
7606 dmu_objset_fast_stat(os, &dds);
7607 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
7608 dmu_objset_disown(os, B_TRUE, FTAG);
7611 * Create a thread to periodically resume suspended I/O.
7613 resume_thread = thread_create(NULL, 0, ztest_resume_thread,
7614 spa, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
7617 * Create a deadman thread and set to panic if we hang.
7619 deadman_thread = thread_create(NULL, 0, ztest_deadman_thread,
7620 zs, 0, NULL, TS_RUN | TS_JOINABLE, defclsyspri);
7622 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
7625 * Verify that we can safely inquire about any object,
7626 * whether it's allocated or not. To make it interesting,
7627 * we probe a 5-wide window around each power of two.
7628 * This hits all edge cases, including zero and the max.
7630 for (t = 0; t < 64; t++) {
7631 for (d = -5; d <= 5; d++) {
7632 error = dmu_object_info(spa->spa_meta_objset,
7633 (1ULL << t) + d, NULL);
7634 ASSERT(error == 0 || error == ENOENT ||
7635 error == EINVAL);
7640 * If we got any ENOSPC errors on the previous run, destroy something.
7642 if (zs->zs_enospc_count != 0) {
7643 int d = ztest_random(ztest_opts.zo_datasets);
7644 ztest_dataset_destroy(d);
7646 zs->zs_enospc_count = 0;
7649 * If we were in the middle of ztest_device_removal() and were killed
7650 * we need to ensure the removal and scrub complete before running
7651 * any tests that check ztest_device_removal_active. The removal will
7652 * be restarted automatically when the spa is opened, but we need to
7653 * initiate the scrub manually if it is not already in progress. Note
7654 * that we always run the scrub whenever an indirect vdev exists
7655 * because we have no way of knowing for sure if ztest_device_removal()
7656 * fully completed its scrub before the pool was reimported.
7658 if (spa->spa_removing_phys.sr_state == DSS_SCANNING ||
7659 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
7660 while (spa->spa_removing_phys.sr_state == DSS_SCANNING)
7661 txg_wait_synced(spa_get_dsl(spa), 0);
7663 error = ztest_scrub_impl(spa);
7664 if (error == EBUSY)
7665 error = 0;
7666 ASSERT0(error);
7669 run_threads = umem_zalloc(ztest_opts.zo_threads * sizeof (kthread_t *),
7670 UMEM_NOFAIL);
7672 if (ztest_opts.zo_verbose >= 4)
7673 (void) printf("starting main threads...\n");
7676 * Replay all logs of all datasets in the pool. This is primarily for
7677 * temporary datasets which wouldn't otherwise get replayed, which
7678 * can trigger failures when attempting to offline a SLOG in
7679 * ztest_fault_inject().
7681 (void) dmu_objset_find(ztest_opts.zo_pool, ztest_replay_zil_cb,
7682 NULL, DS_FIND_CHILDREN);
7685 * Kick off all the tests that run in parallel.
7687 for (t = 0; t < ztest_opts.zo_threads; t++) {
7688 if (t < ztest_opts.zo_datasets && ztest_dataset_open(t) != 0) {
7689 umem_free(run_threads, ztest_opts.zo_threads *
7690 sizeof (kthread_t *));
7691 return;
7694 run_threads[t] = thread_create(NULL, 0, ztest_thread,
7695 (void *)(uintptr_t)t, 0, NULL, TS_RUN | TS_JOINABLE,
7696 defclsyspri);
7700 * Wait for all of the tests to complete.
7702 for (t = 0; t < ztest_opts.zo_threads; t++)
7703 VERIFY0(thread_join(run_threads[t]));
7706 * Close all datasets. This must be done after all the threads
7707 * are joined so we can be sure none of the datasets are in-use
7708 * by any of the threads.
7710 for (t = 0; t < ztest_opts.zo_threads; t++) {
7711 if (t < ztest_opts.zo_datasets)
7712 ztest_dataset_close(t);
7715 txg_wait_synced(spa_get_dsl(spa), 0);
7717 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
7718 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa));
7720 umem_free(run_threads, ztest_opts.zo_threads * sizeof (kthread_t *));
7722 /* Kill the resume and deadman threads */
7723 ztest_exiting = B_TRUE;
7724 VERIFY0(thread_join(resume_thread));
7725 VERIFY0(thread_join(deadman_thread));
7726 ztest_resume(spa);
7729 * Right before closing the pool, kick off a bunch of async I/O;
7730 * spa_close() should wait for it to complete.
7732 for (object = 1; object < 50; object++) {
7733 dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20,
7734 ZIO_PRIORITY_SYNC_READ);
7737 /* Verify that at least one commit cb was called in a timely fashion */
7738 if (zc_cb_counter >= ZTEST_COMMIT_CB_MIN_REG)
7739 VERIFY0(zc_min_txg_delay);
7741 spa_close(spa, FTAG);
7744 * Verify that we can loop over all pools.
7746 mutex_enter(&spa_namespace_lock);
7747 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa))
7748 if (ztest_opts.zo_verbose > 3)
7749 (void) printf("spa_next: found %s\n", spa_name(spa));
7750 mutex_exit(&spa_namespace_lock);
7753 * Verify that we can export the pool and reimport it under a
7754 * different name.
7756 if ((ztest_random(2) == 0) && !ztest_opts.zo_mmp_test) {
7757 char name[ZFS_MAX_DATASET_NAME_LEN];
7758 (void) snprintf(name, sizeof (name), "%s_import",
7759 ztest_opts.zo_pool);
7760 ztest_spa_import_export(ztest_opts.zo_pool, name);
7761 ztest_spa_import_export(name, ztest_opts.zo_pool);
7764 kernel_fini();
7766 list_destroy(&zcl.zcl_callbacks);
7767 mutex_destroy(&zcl.zcl_callbacks_lock);
7768 (void) pthread_rwlock_destroy(&ztest_name_lock);
7769 mutex_destroy(&ztest_vdev_lock);
7770 mutex_destroy(&ztest_checkpoint_lock);
7773 static void
7774 print_time(hrtime_t t, char *timebuf)
7776 hrtime_t s = t / NANOSEC;
7777 hrtime_t m = s / 60;
7778 hrtime_t h = m / 60;
7779 hrtime_t d = h / 24;
7781 s -= m * 60;
7782 m -= h * 60;
7783 h -= d * 24;
7785 timebuf[0] = '\0';
7787 if (d)
7788 (void) sprintf(timebuf,
7789 "%llud%02lluh%02llum%02llus", d, h, m, s);
7790 else if (h)
7791 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s);
7792 else if (m)
7793 (void) sprintf(timebuf, "%llum%02llus", m, s);
7794 else
7795 (void) sprintf(timebuf, "%llus", s);
7798 static nvlist_t *
7799 make_random_props(void)
7801 nvlist_t *props;
7803 props = fnvlist_alloc();
7805 if (ztest_random(2) == 0)
7806 return (props);
7808 fnvlist_add_uint64(props,
7809 zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1);
7811 return (props);
7815 * Create a storage pool with the given name and initial vdev size.
7816 * Then test spa_freeze() functionality.
7818 static void
7819 ztest_init(ztest_shared_t *zs)
7821 spa_t *spa;
7822 nvlist_t *nvroot, *props;
7823 int i;
7825 mutex_init(&ztest_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
7826 mutex_init(&ztest_checkpoint_lock, NULL, MUTEX_DEFAULT, NULL);
7827 VERIFY0(pthread_rwlock_init(&ztest_name_lock, NULL));
7829 kernel_init(SPA_MODE_READ | SPA_MODE_WRITE);
7832 * Create the storage pool.
7834 (void) spa_destroy(ztest_opts.zo_pool);
7835 ztest_shared->zs_vdev_next_leaf = 0;
7836 zs->zs_splits = 0;
7837 zs->zs_mirrors = ztest_opts.zo_mirrors;
7838 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0,
7839 NULL, ztest_opts.zo_raid_children, zs->zs_mirrors, 1);
7840 props = make_random_props();
7843 * We don't expect the pool to suspend unless maxfaults == 0,
7844 * in which case ztest_fault_inject() temporarily takes away
7845 * the only valid replica.
7847 fnvlist_add_uint64(props,
7848 zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
7849 MAXFAULTS(zs) ? ZIO_FAILURE_MODE_PANIC : ZIO_FAILURE_MODE_WAIT);
7851 for (i = 0; i < SPA_FEATURES; i++) {
7852 char *buf;
7854 if (!spa_feature_table[i].fi_zfs_mod_supported)
7855 continue;
7858 * 75% chance of using the log space map feature. We want ztest
7859 * to exercise both the code paths that use the log space map
7860 * feature and the ones that don't.
7862 if (i == SPA_FEATURE_LOG_SPACEMAP && ztest_random(4) == 0)
7863 continue;
7865 VERIFY3S(-1, !=, asprintf(&buf, "feature@%s",
7866 spa_feature_table[i].fi_uname));
7867 fnvlist_add_uint64(props, buf, 0);
7868 free(buf);
7871 VERIFY0(spa_create(ztest_opts.zo_pool, nvroot, props, NULL, NULL));
7872 fnvlist_free(nvroot);
7873 fnvlist_free(props);
7875 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG));
7876 zs->zs_metaslab_sz =
7877 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift;
7878 zs->zs_guid = spa_guid(spa);
7879 spa_close(spa, FTAG);
7881 kernel_fini();
7883 if (!ztest_opts.zo_mmp_test) {
7884 ztest_run_zdb(zs->zs_guid);
7885 ztest_freeze();
7886 ztest_run_zdb(zs->zs_guid);
7889 (void) pthread_rwlock_destroy(&ztest_name_lock);
7890 mutex_destroy(&ztest_vdev_lock);
7891 mutex_destroy(&ztest_checkpoint_lock);
7894 static void
7895 setup_data_fd(void)
7897 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX";
7899 ztest_fd_data = mkstemp(ztest_name_data);
7900 ASSERT3S(ztest_fd_data, >=, 0);
7901 (void) unlink(ztest_name_data);
7904 static int
7905 shared_data_size(ztest_shared_hdr_t *hdr)
7907 int size;
7909 size = hdr->zh_hdr_size;
7910 size += hdr->zh_opts_size;
7911 size += hdr->zh_size;
7912 size += hdr->zh_stats_size * hdr->zh_stats_count;
7913 size += hdr->zh_ds_size * hdr->zh_ds_count;
7915 return (size);
7918 static void
7919 setup_hdr(void)
7921 int size;
7922 ztest_shared_hdr_t *hdr;
7924 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
7925 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
7926 ASSERT3P(hdr, !=, MAP_FAILED);
7928 VERIFY0(ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t)));
7930 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t);
7931 hdr->zh_opts_size = sizeof (ztest_shared_opts_t);
7932 hdr->zh_size = sizeof (ztest_shared_t);
7933 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t);
7934 hdr->zh_stats_count = ZTEST_FUNCS;
7935 hdr->zh_ds_size = sizeof (ztest_shared_ds_t);
7936 hdr->zh_ds_count = ztest_opts.zo_datasets;
7938 size = shared_data_size(hdr);
7939 VERIFY0(ftruncate(ztest_fd_data, size));
7941 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
7944 static void
7945 setup_data(void)
7947 int size, offset;
7948 ztest_shared_hdr_t *hdr;
7949 uint8_t *buf;
7951 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()),
7952 PROT_READ, MAP_SHARED, ztest_fd_data, 0);
7953 ASSERT3P(hdr, !=, MAP_FAILED);
7955 size = shared_data_size(hdr);
7957 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize()));
7958 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()),
7959 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0);
7960 ASSERT3P(hdr, !=, MAP_FAILED);
7961 buf = (uint8_t *)hdr;
7963 offset = hdr->zh_hdr_size;
7964 ztest_shared_opts = (void *)&buf[offset];
7965 offset += hdr->zh_opts_size;
7966 ztest_shared = (void *)&buf[offset];
7967 offset += hdr->zh_size;
7968 ztest_shared_callstate = (void *)&buf[offset];
7969 offset += hdr->zh_stats_size * hdr->zh_stats_count;
7970 ztest_shared_ds = (void *)&buf[offset];
7973 static boolean_t
7974 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp)
7976 pid_t pid;
7977 int status;
7978 char *cmdbuf = NULL;
7980 pid = fork();
7982 if (cmd == NULL) {
7983 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
7984 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN);
7985 cmd = cmdbuf;
7988 if (pid == -1)
7989 fatal(B_TRUE, "fork failed");
7991 if (pid == 0) { /* child */
7992 char fd_data_str[12];
7994 VERIFY3S(11, >=,
7995 snprintf(fd_data_str, 12, "%d", ztest_fd_data));
7996 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1));
7998 if (libpath != NULL) {
7999 const char *curlp = getenv("LD_LIBRARY_PATH");
8000 if (curlp == NULL)
8001 VERIFY0(setenv("LD_LIBRARY_PATH", libpath, 1));
8002 else {
8003 char *newlp = NULL;
8004 VERIFY3S(-1, !=,
8005 asprintf(&newlp, "%s:%s", libpath, curlp));
8006 VERIFY0(setenv("LD_LIBRARY_PATH", newlp, 1));
8007 free(newlp);
8010 (void) execl(cmd, cmd, (char *)NULL);
8011 ztest_dump_core = B_FALSE;
8012 fatal(B_TRUE, "exec failed: %s", cmd);
8015 if (cmdbuf != NULL) {
8016 umem_free(cmdbuf, MAXPATHLEN);
8017 cmd = NULL;
8020 while (waitpid(pid, &status, 0) != pid)
8021 continue;
8022 if (statusp != NULL)
8023 *statusp = status;
8025 if (WIFEXITED(status)) {
8026 if (WEXITSTATUS(status) != 0) {
8027 (void) fprintf(stderr, "child exited with code %d\n",
8028 WEXITSTATUS(status));
8029 exit(2);
8031 return (B_FALSE);
8032 } else if (WIFSIGNALED(status)) {
8033 if (!ignorekill || WTERMSIG(status) != SIGKILL) {
8034 (void) fprintf(stderr, "child died with signal %d\n",
8035 WTERMSIG(status));
8036 exit(3);
8038 return (B_TRUE);
8039 } else {
8040 (void) fprintf(stderr, "something strange happened to child\n");
8041 exit(4);
8045 static void
8046 ztest_run_init(void)
8048 int i;
8050 ztest_shared_t *zs = ztest_shared;
8053 * Blow away any existing copy of zpool.cache
8055 (void) remove(spa_config_path);
8057 if (ztest_opts.zo_init == 0) {
8058 if (ztest_opts.zo_verbose >= 1)
8059 (void) printf("Importing pool %s\n",
8060 ztest_opts.zo_pool);
8061 ztest_import(zs);
8062 return;
8066 * Create and initialize our storage pool.
8068 for (i = 1; i <= ztest_opts.zo_init; i++) {
8069 memset(zs, 0, sizeof (*zs));
8070 if (ztest_opts.zo_verbose >= 3 &&
8071 ztest_opts.zo_init != 1) {
8072 (void) printf("ztest_init(), pass %d\n", i);
8074 ztest_init(zs);
8079 main(int argc, char **argv)
8081 int kills = 0;
8082 int iters = 0;
8083 int older = 0;
8084 int newer = 0;
8085 ztest_shared_t *zs;
8086 ztest_info_t *zi;
8087 ztest_shared_callstate_t *zc;
8088 char timebuf[100];
8089 char numbuf[NN_NUMBUF_SZ];
8090 char *cmd;
8091 boolean_t hasalt;
8092 int f, err;
8093 char *fd_data_str = getenv("ZTEST_FD_DATA");
8094 struct sigaction action;
8096 (void) setvbuf(stdout, NULL, _IOLBF, 0);
8098 dprintf_setup(&argc, argv);
8099 zfs_deadman_synctime_ms = 300000;
8100 zfs_deadman_checktime_ms = 30000;
8102 * As two-word space map entries may not come up often (especially
8103 * if pool and vdev sizes are small) we want to force at least some
8104 * of them so the feature get tested.
8106 zfs_force_some_double_word_sm_entries = B_TRUE;
8109 * Verify that even extensively damaged split blocks with many
8110 * segments can be reconstructed in a reasonable amount of time
8111 * when reconstruction is known to be possible.
8113 * Note: the lower this value is, the more damage we inflict, and
8114 * the more time ztest spends in recovering that damage. We chose
8115 * to induce damage 1/100th of the time so recovery is tested but
8116 * not so frequently that ztest doesn't get to test other code paths.
8118 zfs_reconstruct_indirect_damage_fraction = 100;
8120 action.sa_handler = sig_handler;
8121 sigemptyset(&action.sa_mask);
8122 action.sa_flags = 0;
8124 if (sigaction(SIGSEGV, &action, NULL) < 0) {
8125 (void) fprintf(stderr, "ztest: cannot catch SIGSEGV: %s.\n",
8126 strerror(errno));
8127 exit(EXIT_FAILURE);
8130 if (sigaction(SIGABRT, &action, NULL) < 0) {
8131 (void) fprintf(stderr, "ztest: cannot catch SIGABRT: %s.\n",
8132 strerror(errno));
8133 exit(EXIT_FAILURE);
8137 * Force random_get_bytes() to use /dev/urandom in order to prevent
8138 * ztest from needlessly depleting the system entropy pool.
8140 random_path = "/dev/urandom";
8141 ztest_fd_rand = open(random_path, O_RDONLY | O_CLOEXEC);
8142 ASSERT3S(ztest_fd_rand, >=, 0);
8144 if (!fd_data_str) {
8145 process_options(argc, argv);
8147 setup_data_fd();
8148 setup_hdr();
8149 setup_data();
8150 memcpy(ztest_shared_opts, &ztest_opts,
8151 sizeof (*ztest_shared_opts));
8152 } else {
8153 ztest_fd_data = atoi(fd_data_str);
8154 setup_data();
8155 memcpy(&ztest_opts, ztest_shared_opts, sizeof (ztest_opts));
8157 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count);
8159 err = ztest_set_global_vars();
8160 if (err != 0 && !fd_data_str) {
8161 /* error message done by ztest_set_global_vars */
8162 exit(EXIT_FAILURE);
8163 } else {
8164 /* children should not be spawned if setting gvars fails */
8165 VERIFY3S(err, ==, 0);
8168 /* Override location of zpool.cache */
8169 VERIFY3S(asprintf((char **)&spa_config_path, "%s/zpool.cache",
8170 ztest_opts.zo_dir), !=, -1);
8172 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t),
8173 UMEM_NOFAIL);
8174 zs = ztest_shared;
8176 if (fd_data_str) {
8177 metaslab_force_ganging = ztest_opts.zo_metaslab_force_ganging;
8178 metaslab_df_alloc_threshold =
8179 zs->zs_metaslab_df_alloc_threshold;
8181 if (zs->zs_do_init)
8182 ztest_run_init();
8183 else
8184 ztest_run(zs);
8185 exit(0);
8188 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0);
8190 if (ztest_opts.zo_verbose >= 1) {
8191 (void) printf("%"PRIu64" vdevs, %d datasets, %d threads,"
8192 "%d %s disks, %"PRIu64" seconds...\n\n",
8193 ztest_opts.zo_vdevs,
8194 ztest_opts.zo_datasets,
8195 ztest_opts.zo_threads,
8196 ztest_opts.zo_raid_children,
8197 ztest_opts.zo_raid_type,
8198 ztest_opts.zo_time);
8201 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL);
8202 (void) strlcpy(cmd, getexecname(), MAXNAMELEN);
8204 zs->zs_do_init = B_TRUE;
8205 if (strlen(ztest_opts.zo_alt_ztest) != 0) {
8206 if (ztest_opts.zo_verbose >= 1) {
8207 (void) printf("Executing older ztest for "
8208 "initialization: %s\n", ztest_opts.zo_alt_ztest);
8210 VERIFY(!exec_child(ztest_opts.zo_alt_ztest,
8211 ztest_opts.zo_alt_libpath, B_FALSE, NULL));
8212 } else {
8213 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL));
8215 zs->zs_do_init = B_FALSE;
8217 zs->zs_proc_start = gethrtime();
8218 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC;
8220 for (f = 0; f < ZTEST_FUNCS; f++) {
8221 zi = &ztest_info[f];
8222 zc = ZTEST_GET_SHARED_CALLSTATE(f);
8223 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop)
8224 zc->zc_next = UINT64_MAX;
8225 else
8226 zc->zc_next = zs->zs_proc_start +
8227 ztest_random(2 * zi->zi_interval[0] + 1);
8231 * Run the tests in a loop. These tests include fault injection
8232 * to verify that self-healing data works, and forced crashes
8233 * to verify that we never lose on-disk consistency.
8235 while (gethrtime() < zs->zs_proc_stop) {
8236 int status;
8237 boolean_t killed;
8240 * Initialize the workload counters for each function.
8242 for (f = 0; f < ZTEST_FUNCS; f++) {
8243 zc = ZTEST_GET_SHARED_CALLSTATE(f);
8244 zc->zc_count = 0;
8245 zc->zc_time = 0;
8248 /* Set the allocation switch size */
8249 zs->zs_metaslab_df_alloc_threshold =
8250 ztest_random(zs->zs_metaslab_sz / 4) + 1;
8252 if (!hasalt || ztest_random(2) == 0) {
8253 if (hasalt && ztest_opts.zo_verbose >= 1) {
8254 (void) printf("Executing newer ztest: %s\n",
8255 cmd);
8257 newer++;
8258 killed = exec_child(cmd, NULL, B_TRUE, &status);
8259 } else {
8260 if (hasalt && ztest_opts.zo_verbose >= 1) {
8261 (void) printf("Executing older ztest: %s\n",
8262 ztest_opts.zo_alt_ztest);
8264 older++;
8265 killed = exec_child(ztest_opts.zo_alt_ztest,
8266 ztest_opts.zo_alt_libpath, B_TRUE, &status);
8269 if (killed)
8270 kills++;
8271 iters++;
8273 if (ztest_opts.zo_verbose >= 1) {
8274 hrtime_t now = gethrtime();
8276 now = MIN(now, zs->zs_proc_stop);
8277 print_time(zs->zs_proc_stop - now, timebuf);
8278 nicenum(zs->zs_space, numbuf, sizeof (numbuf));
8280 (void) printf("Pass %3d, %8s, %3"PRIu64" ENOSPC, "
8281 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
8282 iters,
8283 WIFEXITED(status) ? "Complete" : "SIGKILL",
8284 zs->zs_enospc_count,
8285 100.0 * zs->zs_alloc / zs->zs_space,
8286 numbuf,
8287 100.0 * (now - zs->zs_proc_start) /
8288 (ztest_opts.zo_time * NANOSEC), timebuf);
8291 if (ztest_opts.zo_verbose >= 2) {
8292 (void) printf("\nWorkload summary:\n\n");
8293 (void) printf("%7s %9s %s\n",
8294 "Calls", "Time", "Function");
8295 (void) printf("%7s %9s %s\n",
8296 "-----", "----", "--------");
8297 for (f = 0; f < ZTEST_FUNCS; f++) {
8298 zi = &ztest_info[f];
8299 zc = ZTEST_GET_SHARED_CALLSTATE(f);
8300 print_time(zc->zc_time, timebuf);
8301 (void) printf("%7"PRIu64" %9s %s\n",
8302 zc->zc_count, timebuf,
8303 zi->zi_funcname);
8305 (void) printf("\n");
8308 if (!ztest_opts.zo_mmp_test)
8309 ztest_run_zdb(zs->zs_guid);
8312 if (ztest_opts.zo_verbose >= 1) {
8313 if (hasalt) {
8314 (void) printf("%d runs of older ztest: %s\n", older,
8315 ztest_opts.zo_alt_ztest);
8316 (void) printf("%d runs of newer ztest: %s\n", newer,
8317 cmd);
8319 (void) printf("%d killed, %d completed, %.0f%% kill rate\n",
8320 kills, iters - kills, (100.0 * kills) / MAX(1, iters));
8323 umem_free(cmd, MAXNAMELEN);
8325 return (0);