4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
26 * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
28 * Copyright (c) 2019 Datto Inc.
29 * Copyright (c) 2019, Klara Inc.
30 * Copyright (c) 2019, Allan Jude
34 #include <sys/dmu_impl.h>
35 #include <sys/dmu_tx.h>
37 #include <sys/dnode.h>
38 #include <sys/zfs_context.h>
39 #include <sys/dmu_objset.h>
40 #include <sys/dmu_traverse.h>
41 #include <sys/dsl_dataset.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/dsl_pool.h>
44 #include <sys/dsl_synctask.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/dmu_zfetch.h>
47 #include <sys/zfs_ioctl.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/zio_compress.h>
52 #include <sys/zfeature.h>
54 #include <sys/trace_zfs.h>
55 #include <sys/zfs_racct.h>
56 #include <sys/zfs_rlock.h>
58 #include <sys/vmsystm.h>
59 #include <sys/zfs_znode.h>
63 * Enable/disable nopwrite feature.
65 static int zfs_nopwrite_enabled
= 1;
68 * Tunable to control percentage of dirtied L1 blocks from frees allowed into
69 * one TXG. After this threshold is crossed, additional dirty blocks from frees
70 * will wait until the next TXG.
71 * A value of zero will disable this throttle.
73 static unsigned long zfs_per_txg_dirty_frees_percent
= 30;
76 * Enable/disable forcing txg sync when dirty checking for holes with lseek().
77 * By default this is enabled to ensure accurate hole reporting, it can result
78 * in a significant performance penalty for lseek(SEEK_HOLE) heavy workloads.
79 * Disabling this option will result in holes never being reported in dirty
80 * files which is always safe.
82 static int zfs_dmu_offset_next_sync
= 1;
85 * Limit the amount we can prefetch with one call to this amount. This
86 * helps to limit the amount of memory that can be used by prefetching.
87 * Larger objects should be prefetched a bit at a time.
89 uint_t dmu_prefetch_max
= 8 * SPA_MAXBLOCKSIZE
;
91 const dmu_object_type_info_t dmu_ot
[DMU_OT_NUMTYPES
] = {
92 {DMU_BSWAP_UINT8
, TRUE
, FALSE
, FALSE
, "unallocated" },
93 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "object directory" },
94 {DMU_BSWAP_UINT64
, TRUE
, TRUE
, FALSE
, "object array" },
95 {DMU_BSWAP_UINT8
, TRUE
, FALSE
, FALSE
, "packed nvlist" },
96 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "packed nvlist size" },
97 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "bpobj" },
98 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "bpobj header" },
99 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "SPA space map header" },
100 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "SPA space map" },
101 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, TRUE
, "ZIL intent log" },
102 {DMU_BSWAP_DNODE
, TRUE
, FALSE
, TRUE
, "DMU dnode" },
103 {DMU_BSWAP_OBJSET
, TRUE
, TRUE
, FALSE
, "DMU objset" },
104 {DMU_BSWAP_UINT64
, TRUE
, TRUE
, FALSE
, "DSL directory" },
105 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "DSL directory child map"},
106 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "DSL dataset snap map" },
107 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "DSL props" },
108 {DMU_BSWAP_UINT64
, TRUE
, TRUE
, FALSE
, "DSL dataset" },
109 {DMU_BSWAP_ZNODE
, TRUE
, FALSE
, FALSE
, "ZFS znode" },
110 {DMU_BSWAP_OLDACL
, TRUE
, FALSE
, TRUE
, "ZFS V0 ACL" },
111 {DMU_BSWAP_UINT8
, FALSE
, FALSE
, TRUE
, "ZFS plain file" },
112 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, TRUE
, "ZFS directory" },
113 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "ZFS master node" },
114 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, TRUE
, "ZFS delete queue" },
115 {DMU_BSWAP_UINT8
, FALSE
, FALSE
, TRUE
, "zvol object" },
116 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "zvol prop" },
117 {DMU_BSWAP_UINT8
, FALSE
, FALSE
, TRUE
, "other uint8[]" },
118 {DMU_BSWAP_UINT64
, FALSE
, FALSE
, TRUE
, "other uint64[]" },
119 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "other ZAP" },
120 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "persistent error log" },
121 {DMU_BSWAP_UINT8
, TRUE
, FALSE
, FALSE
, "SPA history" },
122 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "SPA history offsets" },
123 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "Pool properties" },
124 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "DSL permissions" },
125 {DMU_BSWAP_ACL
, TRUE
, FALSE
, TRUE
, "ZFS ACL" },
126 {DMU_BSWAP_UINT8
, TRUE
, FALSE
, TRUE
, "ZFS SYSACL" },
127 {DMU_BSWAP_UINT8
, TRUE
, FALSE
, TRUE
, "FUID table" },
128 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "FUID table size" },
129 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "DSL dataset next clones"},
130 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "scan work queue" },
131 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, TRUE
, "ZFS user/group/project used" },
132 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, TRUE
, "ZFS user/group/project quota"},
133 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "snapshot refcount tags"},
134 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "DDT ZAP algorithm" },
135 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "DDT statistics" },
136 {DMU_BSWAP_UINT8
, TRUE
, FALSE
, TRUE
, "System attributes" },
137 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, TRUE
, "SA master node" },
138 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, TRUE
, "SA attr registration" },
139 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, TRUE
, "SA attr layouts" },
140 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "scan translations" },
141 {DMU_BSWAP_UINT8
, FALSE
, FALSE
, TRUE
, "deduplicated block" },
142 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "DSL deadlist map" },
143 {DMU_BSWAP_UINT64
, TRUE
, TRUE
, FALSE
, "DSL deadlist map hdr" },
144 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "DSL dir clones" },
145 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "bpobj subobj" }
148 dmu_object_byteswap_info_t dmu_ot_byteswap
[DMU_BSWAP_NUMFUNCS
] = {
149 { byteswap_uint8_array
, "uint8" },
150 { byteswap_uint16_array
, "uint16" },
151 { byteswap_uint32_array
, "uint32" },
152 { byteswap_uint64_array
, "uint64" },
153 { zap_byteswap
, "zap" },
154 { dnode_buf_byteswap
, "dnode" },
155 { dmu_objset_byteswap
, "objset" },
156 { zfs_znode_byteswap
, "znode" },
157 { zfs_oldacl_byteswap
, "oldacl" },
158 { zfs_acl_byteswap
, "acl" }
162 dmu_buf_hold_noread_by_dnode(dnode_t
*dn
, uint64_t offset
,
163 const void *tag
, dmu_buf_t
**dbp
)
168 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
169 blkid
= dbuf_whichblock(dn
, 0, offset
);
170 db
= dbuf_hold(dn
, blkid
, tag
);
171 rw_exit(&dn
->dn_struct_rwlock
);
175 return (SET_ERROR(EIO
));
182 dmu_buf_hold_noread(objset_t
*os
, uint64_t object
, uint64_t offset
,
183 const void *tag
, dmu_buf_t
**dbp
)
190 err
= dnode_hold(os
, object
, FTAG
, &dn
);
193 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
194 blkid
= dbuf_whichblock(dn
, 0, offset
);
195 db
= dbuf_hold(dn
, blkid
, tag
);
196 rw_exit(&dn
->dn_struct_rwlock
);
197 dnode_rele(dn
, FTAG
);
201 return (SET_ERROR(EIO
));
209 dmu_buf_hold_by_dnode(dnode_t
*dn
, uint64_t offset
,
210 const void *tag
, dmu_buf_t
**dbp
, int flags
)
213 int db_flags
= DB_RF_CANFAIL
;
215 if (flags
& DMU_READ_NO_PREFETCH
)
216 db_flags
|= DB_RF_NOPREFETCH
;
217 if (flags
& DMU_READ_NO_DECRYPT
)
218 db_flags
|= DB_RF_NO_DECRYPT
;
220 err
= dmu_buf_hold_noread_by_dnode(dn
, offset
, tag
, dbp
);
222 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)(*dbp
);
223 err
= dbuf_read(db
, NULL
, db_flags
);
234 dmu_buf_hold(objset_t
*os
, uint64_t object
, uint64_t offset
,
235 const void *tag
, dmu_buf_t
**dbp
, int flags
)
238 int db_flags
= DB_RF_CANFAIL
;
240 if (flags
& DMU_READ_NO_PREFETCH
)
241 db_flags
|= DB_RF_NOPREFETCH
;
242 if (flags
& DMU_READ_NO_DECRYPT
)
243 db_flags
|= DB_RF_NO_DECRYPT
;
245 err
= dmu_buf_hold_noread(os
, object
, offset
, tag
, dbp
);
247 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)(*dbp
);
248 err
= dbuf_read(db
, NULL
, db_flags
);
261 return (DN_OLD_MAX_BONUSLEN
);
265 dmu_set_bonus(dmu_buf_t
*db_fake
, int newsize
, dmu_tx_t
*tx
)
267 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
274 if (dn
->dn_bonus
!= db
) {
275 error
= SET_ERROR(EINVAL
);
276 } else if (newsize
< 0 || newsize
> db_fake
->db_size
) {
277 error
= SET_ERROR(EINVAL
);
279 dnode_setbonuslen(dn
, newsize
, tx
);
288 dmu_set_bonustype(dmu_buf_t
*db_fake
, dmu_object_type_t type
, dmu_tx_t
*tx
)
290 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
297 if (!DMU_OT_IS_VALID(type
)) {
298 error
= SET_ERROR(EINVAL
);
299 } else if (dn
->dn_bonus
!= db
) {
300 error
= SET_ERROR(EINVAL
);
302 dnode_setbonus_type(dn
, type
, tx
);
311 dmu_get_bonustype(dmu_buf_t
*db_fake
)
313 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
315 dmu_object_type_t type
;
319 type
= dn
->dn_bonustype
;
326 dmu_rm_spill(objset_t
*os
, uint64_t object
, dmu_tx_t
*tx
)
331 error
= dnode_hold(os
, object
, FTAG
, &dn
);
332 dbuf_rm_spill(dn
, tx
);
333 rw_enter(&dn
->dn_struct_rwlock
, RW_WRITER
);
334 dnode_rm_spill(dn
, tx
);
335 rw_exit(&dn
->dn_struct_rwlock
);
336 dnode_rele(dn
, FTAG
);
341 * Lookup and hold the bonus buffer for the provided dnode. If the dnode
342 * has not yet been allocated a new bonus dbuf a will be allocated.
343 * Returns ENOENT, EIO, or 0.
345 int dmu_bonus_hold_by_dnode(dnode_t
*dn
, const void *tag
, dmu_buf_t
**dbp
,
350 uint32_t db_flags
= DB_RF_MUST_SUCCEED
;
352 if (flags
& DMU_READ_NO_PREFETCH
)
353 db_flags
|= DB_RF_NOPREFETCH
;
354 if (flags
& DMU_READ_NO_DECRYPT
)
355 db_flags
|= DB_RF_NO_DECRYPT
;
357 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
358 if (dn
->dn_bonus
== NULL
) {
359 rw_exit(&dn
->dn_struct_rwlock
);
360 rw_enter(&dn
->dn_struct_rwlock
, RW_WRITER
);
361 if (dn
->dn_bonus
== NULL
)
362 dbuf_create_bonus(dn
);
366 /* as long as the bonus buf is held, the dnode will be held */
367 if (zfs_refcount_add(&db
->db_holds
, tag
) == 1) {
368 VERIFY(dnode_add_ref(dn
, db
));
369 atomic_inc_32(&dn
->dn_dbufs_count
);
373 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
374 * hold and incrementing the dbuf count to ensure that dnode_move() sees
375 * a dnode hold for every dbuf.
377 rw_exit(&dn
->dn_struct_rwlock
);
379 error
= dbuf_read(db
, NULL
, db_flags
);
381 dnode_evict_bonus(dn
);
392 dmu_bonus_hold(objset_t
*os
, uint64_t object
, const void *tag
, dmu_buf_t
**dbp
)
397 error
= dnode_hold(os
, object
, FTAG
, &dn
);
401 error
= dmu_bonus_hold_by_dnode(dn
, tag
, dbp
, DMU_READ_NO_PREFETCH
);
402 dnode_rele(dn
, FTAG
);
408 * returns ENOENT, EIO, or 0.
410 * This interface will allocate a blank spill dbuf when a spill blk
411 * doesn't already exist on the dnode.
413 * if you only want to find an already existing spill db, then
414 * dmu_spill_hold_existing() should be used.
417 dmu_spill_hold_by_dnode(dnode_t
*dn
, uint32_t flags
, const void *tag
,
420 dmu_buf_impl_t
*db
= NULL
;
423 if ((flags
& DB_RF_HAVESTRUCT
) == 0)
424 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
426 db
= dbuf_hold(dn
, DMU_SPILL_BLKID
, tag
);
428 if ((flags
& DB_RF_HAVESTRUCT
) == 0)
429 rw_exit(&dn
->dn_struct_rwlock
);
433 return (SET_ERROR(EIO
));
435 err
= dbuf_read(db
, NULL
, flags
);
446 dmu_spill_hold_existing(dmu_buf_t
*bonus
, const void *tag
, dmu_buf_t
**dbp
)
448 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)bonus
;
455 if (spa_version(dn
->dn_objset
->os_spa
) < SPA_VERSION_SA
) {
456 err
= SET_ERROR(EINVAL
);
458 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
460 if (!dn
->dn_have_spill
) {
461 err
= SET_ERROR(ENOENT
);
463 err
= dmu_spill_hold_by_dnode(dn
,
464 DB_RF_HAVESTRUCT
| DB_RF_CANFAIL
, tag
, dbp
);
467 rw_exit(&dn
->dn_struct_rwlock
);
475 dmu_spill_hold_by_bonus(dmu_buf_t
*bonus
, uint32_t flags
, const void *tag
,
478 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)bonus
;
481 uint32_t db_flags
= DB_RF_CANFAIL
;
483 if (flags
& DMU_READ_NO_DECRYPT
)
484 db_flags
|= DB_RF_NO_DECRYPT
;
488 err
= dmu_spill_hold_by_dnode(dn
, db_flags
, tag
, dbp
);
495 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
496 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
497 * and can induce severe lock contention when writing to several files
498 * whose dnodes are in the same block.
501 dmu_buf_hold_array_by_dnode(dnode_t
*dn
, uint64_t offset
, uint64_t length
,
502 boolean_t read
, const void *tag
, int *numbufsp
, dmu_buf_t
***dbpp
,
506 zstream_t
*zs
= NULL
;
507 uint64_t blkid
, nblks
, i
;
511 boolean_t missed
= B_FALSE
;
513 ASSERT(length
<= DMU_MAX_ACCESS
);
516 * Note: We directly notify the prefetch code of this read, so that
517 * we can tell it about the multi-block read. dbuf_read() only knows
518 * about the one block it is accessing.
520 dbuf_flags
= DB_RF_CANFAIL
| DB_RF_NEVERWAIT
| DB_RF_HAVESTRUCT
|
523 if ((flags
& DMU_READ_NO_DECRYPT
) != 0)
524 dbuf_flags
|= DB_RF_NO_DECRYPT
;
526 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
527 if (dn
->dn_datablkshift
) {
528 int blkshift
= dn
->dn_datablkshift
;
529 nblks
= (P2ROUNDUP(offset
+ length
, 1ULL << blkshift
) -
530 P2ALIGN(offset
, 1ULL << blkshift
)) >> blkshift
;
532 if (offset
+ length
> dn
->dn_datablksz
) {
533 zfs_panic_recover("zfs: accessing past end of object "
534 "%llx/%llx (size=%u access=%llu+%llu)",
535 (longlong_t
)dn
->dn_objset
->
536 os_dsl_dataset
->ds_object
,
537 (longlong_t
)dn
->dn_object
, dn
->dn_datablksz
,
538 (longlong_t
)offset
, (longlong_t
)length
);
539 rw_exit(&dn
->dn_struct_rwlock
);
540 return (SET_ERROR(EIO
));
544 dbp
= kmem_zalloc(sizeof (dmu_buf_t
*) * nblks
, KM_SLEEP
);
547 zio
= zio_root(dn
->dn_objset
->os_spa
, NULL
, NULL
,
549 blkid
= dbuf_whichblock(dn
, 0, offset
);
550 if ((flags
& DMU_READ_NO_PREFETCH
) == 0 &&
551 DNODE_META_IS_CACHEABLE(dn
) && length
<= zfetch_array_rd_sz
) {
553 * Prepare the zfetch before initiating the demand reads, so
554 * that if multiple threads block on same indirect block, we
555 * base predictions on the original less racy request order.
557 zs
= dmu_zfetch_prepare(&dn
->dn_zfetch
, blkid
, nblks
,
558 read
&& DNODE_IS_CACHEABLE(dn
), B_TRUE
);
560 for (i
= 0; i
< nblks
; i
++) {
561 dmu_buf_impl_t
*db
= dbuf_hold(dn
, blkid
+ i
, tag
);
564 dmu_zfetch_run(zs
, missed
, B_TRUE
);
565 rw_exit(&dn
->dn_struct_rwlock
);
566 dmu_buf_rele_array(dbp
, nblks
, tag
);
569 return (SET_ERROR(EIO
));
573 * Initiate async demand data read.
574 * We check the db_state after calling dbuf_read() because
575 * (1) dbuf_read() may change the state to CACHED due to a
576 * hit in the ARC, and (2) on a cache miss, a child will
577 * have been added to "zio" but not yet completed, so the
578 * state will not yet be CACHED.
581 (void) dbuf_read(db
, zio
, dbuf_flags
);
582 if (db
->db_state
!= DB_CACHED
)
589 zfs_racct_write(length
, nblks
);
592 dmu_zfetch_run(zs
, missed
, B_TRUE
);
593 rw_exit(&dn
->dn_struct_rwlock
);
596 /* wait for async read i/o */
599 dmu_buf_rele_array(dbp
, nblks
, tag
);
603 /* wait for other io to complete */
604 for (i
= 0; i
< nblks
; i
++) {
605 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)dbp
[i
];
606 mutex_enter(&db
->db_mtx
);
607 while (db
->db_state
== DB_READ
||
608 db
->db_state
== DB_FILL
)
609 cv_wait(&db
->db_changed
, &db
->db_mtx
);
610 if (db
->db_state
== DB_UNCACHED
)
611 err
= SET_ERROR(EIO
);
612 mutex_exit(&db
->db_mtx
);
614 dmu_buf_rele_array(dbp
, nblks
, tag
);
626 dmu_buf_hold_array(objset_t
*os
, uint64_t object
, uint64_t offset
,
627 uint64_t length
, int read
, const void *tag
, int *numbufsp
,
633 err
= dnode_hold(os
, object
, FTAG
, &dn
);
637 err
= dmu_buf_hold_array_by_dnode(dn
, offset
, length
, read
, tag
,
638 numbufsp
, dbpp
, DMU_READ_PREFETCH
);
640 dnode_rele(dn
, FTAG
);
646 dmu_buf_hold_array_by_bonus(dmu_buf_t
*db_fake
, uint64_t offset
,
647 uint64_t length
, boolean_t read
, const void *tag
, int *numbufsp
,
650 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
656 err
= dmu_buf_hold_array_by_dnode(dn
, offset
, length
, read
, tag
,
657 numbufsp
, dbpp
, DMU_READ_PREFETCH
);
664 dmu_buf_rele_array(dmu_buf_t
**dbp_fake
, int numbufs
, const void *tag
)
667 dmu_buf_impl_t
**dbp
= (dmu_buf_impl_t
**)dbp_fake
;
672 for (i
= 0; i
< numbufs
; i
++) {
674 dbuf_rele(dbp
[i
], tag
);
677 kmem_free(dbp
, sizeof (dmu_buf_t
*) * numbufs
);
681 * Issue prefetch i/os for the given blocks. If level is greater than 0, the
682 * indirect blocks prefetched will be those that point to the blocks containing
683 * the data starting at offset, and continuing to offset + len.
685 * Note that if the indirect blocks above the blocks being prefetched are not
686 * in cache, they will be asynchronously read in.
689 dmu_prefetch(objset_t
*os
, uint64_t object
, int64_t level
, uint64_t offset
,
690 uint64_t len
, zio_priority_t pri
)
696 if (len
== 0) { /* they're interested in the bonus buffer */
697 dn
= DMU_META_DNODE(os
);
699 if (object
== 0 || object
>= DN_MAX_OBJECT
)
702 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
703 blkid
= dbuf_whichblock(dn
, level
,
704 object
* sizeof (dnode_phys_t
));
705 dbuf_prefetch(dn
, level
, blkid
, pri
, 0);
706 rw_exit(&dn
->dn_struct_rwlock
);
711 * See comment before the definition of dmu_prefetch_max.
713 len
= MIN(len
, dmu_prefetch_max
);
716 * XXX - Note, if the dnode for the requested object is not
717 * already cached, we will do a *synchronous* read in the
718 * dnode_hold() call. The same is true for any indirects.
720 err
= dnode_hold(os
, object
, FTAG
, &dn
);
725 * offset + len - 1 is the last byte we want to prefetch for, and offset
726 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the
727 * last block we want to prefetch, and dbuf_whichblock(dn, level,
728 * offset) is the first. Then the number we need to prefetch is the
731 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
732 if (level
> 0 || dn
->dn_datablkshift
!= 0) {
733 nblks
= dbuf_whichblock(dn
, level
, offset
+ len
- 1) -
734 dbuf_whichblock(dn
, level
, offset
) + 1;
736 nblks
= (offset
< dn
->dn_datablksz
);
740 blkid
= dbuf_whichblock(dn
, level
, offset
);
741 for (int i
= 0; i
< nblks
; i
++)
742 dbuf_prefetch(dn
, level
, blkid
+ i
, pri
, 0);
744 rw_exit(&dn
->dn_struct_rwlock
);
746 dnode_rele(dn
, FTAG
);
750 * Get the next "chunk" of file data to free. We traverse the file from
751 * the end so that the file gets shorter over time (if we crashes in the
752 * middle, this will leave us in a better state). We find allocated file
753 * data by simply searching the allocated level 1 indirects.
755 * On input, *start should be the first offset that does not need to be
756 * freed (e.g. "offset + length"). On return, *start will be the first
757 * offset that should be freed and l1blks is set to the number of level 1
758 * indirect blocks found within the chunk.
761 get_next_chunk(dnode_t
*dn
, uint64_t *start
, uint64_t minimum
, uint64_t *l1blks
)
764 uint64_t maxblks
= DMU_MAX_ACCESS
>> (dn
->dn_indblkshift
+ 1);
765 /* bytes of data covered by a level-1 indirect block */
766 uint64_t iblkrange
= (uint64_t)dn
->dn_datablksz
*
767 EPB(dn
->dn_indblkshift
, SPA_BLKPTRSHIFT
);
769 ASSERT3U(minimum
, <=, *start
);
772 * Check if we can free the entire range assuming that all of the
773 * L1 blocks in this range have data. If we can, we use this
774 * worst case value as an estimate so we can avoid having to look
775 * at the object's actual data.
777 uint64_t total_l1blks
=
778 (roundup(*start
, iblkrange
) - (minimum
/ iblkrange
* iblkrange
)) /
780 if (total_l1blks
<= maxblks
) {
781 *l1blks
= total_l1blks
;
785 ASSERT(ISP2(iblkrange
));
787 for (blks
= 0; *start
> minimum
&& blks
< maxblks
; blks
++) {
791 * dnode_next_offset(BACKWARDS) will find an allocated L1
792 * indirect block at or before the input offset. We must
793 * decrement *start so that it is at the end of the region
798 err
= dnode_next_offset(dn
,
799 DNODE_FIND_BACKWARDS
, start
, 2, 1, 0);
801 /* if there are no indirect blocks before start, we are done */
805 } else if (err
!= 0) {
810 /* set start to the beginning of this L1 indirect */
811 *start
= P2ALIGN(*start
, iblkrange
);
813 if (*start
< minimum
)
821 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
822 * otherwise return false.
823 * Used below in dmu_free_long_range_impl() to enable abort when unmounting
826 dmu_objset_zfs_unmounting(objset_t
*os
)
829 if (dmu_objset_type(os
) == DMU_OST_ZFS
)
830 return (zfs_get_vfs_flag_unmounted(os
));
838 dmu_free_long_range_impl(objset_t
*os
, dnode_t
*dn
, uint64_t offset
,
841 uint64_t object_size
;
843 uint64_t dirty_frees_threshold
;
844 dsl_pool_t
*dp
= dmu_objset_pool(os
);
847 return (SET_ERROR(EINVAL
));
849 object_size
= (dn
->dn_maxblkid
+ 1) * dn
->dn_datablksz
;
850 if (offset
>= object_size
)
853 if (zfs_per_txg_dirty_frees_percent
<= 100)
854 dirty_frees_threshold
=
855 zfs_per_txg_dirty_frees_percent
* zfs_dirty_data_max
/ 100;
857 dirty_frees_threshold
= zfs_dirty_data_max
/ 20;
859 if (length
== DMU_OBJECT_END
|| offset
+ length
> object_size
)
860 length
= object_size
- offset
;
862 while (length
!= 0) {
863 uint64_t chunk_end
, chunk_begin
, chunk_len
;
867 if (dmu_objset_zfs_unmounting(dn
->dn_objset
))
868 return (SET_ERROR(EINTR
));
870 chunk_end
= chunk_begin
= offset
+ length
;
872 /* move chunk_begin backwards to the beginning of this chunk */
873 err
= get_next_chunk(dn
, &chunk_begin
, offset
, &l1blks
);
876 ASSERT3U(chunk_begin
, >=, offset
);
877 ASSERT3U(chunk_begin
, <=, chunk_end
);
879 chunk_len
= chunk_end
- chunk_begin
;
881 tx
= dmu_tx_create(os
);
882 dmu_tx_hold_free(tx
, dn
->dn_object
, chunk_begin
, chunk_len
);
885 * Mark this transaction as typically resulting in a net
886 * reduction in space used.
888 dmu_tx_mark_netfree(tx
);
889 err
= dmu_tx_assign(tx
, TXG_WAIT
);
895 uint64_t txg
= dmu_tx_get_txg(tx
);
897 mutex_enter(&dp
->dp_lock
);
898 uint64_t long_free_dirty
=
899 dp
->dp_long_free_dirty_pertxg
[txg
& TXG_MASK
];
900 mutex_exit(&dp
->dp_lock
);
903 * To avoid filling up a TXG with just frees, wait for
904 * the next TXG to open before freeing more chunks if
905 * we have reached the threshold of frees.
907 if (dirty_frees_threshold
!= 0 &&
908 long_free_dirty
>= dirty_frees_threshold
) {
909 DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay
);
911 txg_wait_open(dp
, 0, B_TRUE
);
916 * In order to prevent unnecessary write throttling, for each
917 * TXG, we track the cumulative size of L1 blocks being dirtied
918 * in dnode_free_range() below. We compare this number to a
919 * tunable threshold, past which we prevent new L1 dirty freeing
920 * blocks from being added into the open TXG. See
921 * dmu_free_long_range_impl() for details. The threshold
922 * prevents write throttle activation due to dirty freeing L1
923 * blocks taking up a large percentage of zfs_dirty_data_max.
925 mutex_enter(&dp
->dp_lock
);
926 dp
->dp_long_free_dirty_pertxg
[txg
& TXG_MASK
] +=
927 l1blks
<< dn
->dn_indblkshift
;
928 mutex_exit(&dp
->dp_lock
);
929 DTRACE_PROBE3(free__long__range
,
930 uint64_t, long_free_dirty
, uint64_t, chunk_len
,
932 dnode_free_range(dn
, chunk_begin
, chunk_len
, tx
);
942 dmu_free_long_range(objset_t
*os
, uint64_t object
,
943 uint64_t offset
, uint64_t length
)
948 err
= dnode_hold(os
, object
, FTAG
, &dn
);
951 err
= dmu_free_long_range_impl(os
, dn
, offset
, length
);
954 * It is important to zero out the maxblkid when freeing the entire
955 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
956 * will take the fast path, and (b) dnode_reallocate() can verify
957 * that the entire file has been freed.
959 if (err
== 0 && offset
== 0 && length
== DMU_OBJECT_END
)
962 dnode_rele(dn
, FTAG
);
967 dmu_free_long_object(objset_t
*os
, uint64_t object
)
972 err
= dmu_free_long_range(os
, object
, 0, DMU_OBJECT_END
);
976 tx
= dmu_tx_create(os
);
977 dmu_tx_hold_bonus(tx
, object
);
978 dmu_tx_hold_free(tx
, object
, 0, DMU_OBJECT_END
);
979 dmu_tx_mark_netfree(tx
);
980 err
= dmu_tx_assign(tx
, TXG_WAIT
);
982 err
= dmu_object_free(os
, object
, tx
);
992 dmu_free_range(objset_t
*os
, uint64_t object
, uint64_t offset
,
993 uint64_t size
, dmu_tx_t
*tx
)
996 int err
= dnode_hold(os
, object
, FTAG
, &dn
);
999 ASSERT(offset
< UINT64_MAX
);
1000 ASSERT(size
== DMU_OBJECT_END
|| size
<= UINT64_MAX
- offset
);
1001 dnode_free_range(dn
, offset
, size
, tx
);
1002 dnode_rele(dn
, FTAG
);
1007 dmu_read_impl(dnode_t
*dn
, uint64_t offset
, uint64_t size
,
1008 void *buf
, uint32_t flags
)
1011 int numbufs
, err
= 0;
1014 * Deal with odd block sizes, where there can't be data past the first
1015 * block. If we ever do the tail block optimization, we will need to
1016 * handle that here as well.
1018 if (dn
->dn_maxblkid
== 0) {
1019 uint64_t newsz
= offset
> dn
->dn_datablksz
? 0 :
1020 MIN(size
, dn
->dn_datablksz
- offset
);
1021 memset((char *)buf
+ newsz
, 0, size
- newsz
);
1026 uint64_t mylen
= MIN(size
, DMU_MAX_ACCESS
/ 2);
1030 * NB: we could do this block-at-a-time, but it's nice
1031 * to be reading in parallel.
1033 err
= dmu_buf_hold_array_by_dnode(dn
, offset
, mylen
,
1034 TRUE
, FTAG
, &numbufs
, &dbp
, flags
);
1038 for (i
= 0; i
< numbufs
; i
++) {
1041 dmu_buf_t
*db
= dbp
[i
];
1045 bufoff
= offset
- db
->db_offset
;
1046 tocpy
= MIN(db
->db_size
- bufoff
, size
);
1048 (void) memcpy(buf
, (char *)db
->db_data
+ bufoff
, tocpy
);
1052 buf
= (char *)buf
+ tocpy
;
1054 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1060 dmu_read(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
,
1061 void *buf
, uint32_t flags
)
1066 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1070 err
= dmu_read_impl(dn
, offset
, size
, buf
, flags
);
1071 dnode_rele(dn
, FTAG
);
1076 dmu_read_by_dnode(dnode_t
*dn
, uint64_t offset
, uint64_t size
, void *buf
,
1079 return (dmu_read_impl(dn
, offset
, size
, buf
, flags
));
1083 dmu_write_impl(dmu_buf_t
**dbp
, int numbufs
, uint64_t offset
, uint64_t size
,
1084 const void *buf
, dmu_tx_t
*tx
)
1088 for (i
= 0; i
< numbufs
; i
++) {
1091 dmu_buf_t
*db
= dbp
[i
];
1095 bufoff
= offset
- db
->db_offset
;
1096 tocpy
= MIN(db
->db_size
- bufoff
, size
);
1098 ASSERT(i
== 0 || i
== numbufs
-1 || tocpy
== db
->db_size
);
1100 if (tocpy
== db
->db_size
)
1101 dmu_buf_will_fill(db
, tx
);
1103 dmu_buf_will_dirty(db
, tx
);
1105 (void) memcpy((char *)db
->db_data
+ bufoff
, buf
, tocpy
);
1107 if (tocpy
== db
->db_size
)
1108 dmu_buf_fill_done(db
, tx
);
1112 buf
= (char *)buf
+ tocpy
;
1117 dmu_write(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
,
1118 const void *buf
, dmu_tx_t
*tx
)
1126 VERIFY0(dmu_buf_hold_array(os
, object
, offset
, size
,
1127 FALSE
, FTAG
, &numbufs
, &dbp
));
1128 dmu_write_impl(dbp
, numbufs
, offset
, size
, buf
, tx
);
1129 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1133 * Note: Lustre is an external consumer of this interface.
1136 dmu_write_by_dnode(dnode_t
*dn
, uint64_t offset
, uint64_t size
,
1137 const void *buf
, dmu_tx_t
*tx
)
1145 VERIFY0(dmu_buf_hold_array_by_dnode(dn
, offset
, size
,
1146 FALSE
, FTAG
, &numbufs
, &dbp
, DMU_READ_PREFETCH
));
1147 dmu_write_impl(dbp
, numbufs
, offset
, size
, buf
, tx
);
1148 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1152 dmu_prealloc(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
,
1161 VERIFY(0 == dmu_buf_hold_array(os
, object
, offset
, size
,
1162 FALSE
, FTAG
, &numbufs
, &dbp
));
1164 for (i
= 0; i
< numbufs
; i
++) {
1165 dmu_buf_t
*db
= dbp
[i
];
1167 dmu_buf_will_not_fill(db
, tx
);
1169 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1173 dmu_write_embedded(objset_t
*os
, uint64_t object
, uint64_t offset
,
1174 void *data
, uint8_t etype
, uint8_t comp
, int uncompressed_size
,
1175 int compressed_size
, int byteorder
, dmu_tx_t
*tx
)
1179 ASSERT3U(etype
, <, NUM_BP_EMBEDDED_TYPES
);
1180 ASSERT3U(comp
, <, ZIO_COMPRESS_FUNCTIONS
);
1181 VERIFY0(dmu_buf_hold_noread(os
, object
, offset
,
1184 dmu_buf_write_embedded(db
,
1185 data
, (bp_embedded_type_t
)etype
, (enum zio_compress
)comp
,
1186 uncompressed_size
, compressed_size
, byteorder
, tx
);
1188 dmu_buf_rele(db
, FTAG
);
1192 dmu_redact(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
,
1198 VERIFY0(dmu_buf_hold_array(os
, object
, offset
, size
, FALSE
, FTAG
,
1200 for (i
= 0; i
< numbufs
; i
++)
1201 dmu_buf_redact(dbp
[i
], tx
);
1202 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1207 dmu_read_uio_dnode(dnode_t
*dn
, zfs_uio_t
*uio
, uint64_t size
)
1210 int numbufs
, i
, err
;
1213 * NB: we could do this block-at-a-time, but it's nice
1214 * to be reading in parallel.
1216 err
= dmu_buf_hold_array_by_dnode(dn
, zfs_uio_offset(uio
), size
,
1217 TRUE
, FTAG
, &numbufs
, &dbp
, 0);
1221 for (i
= 0; i
< numbufs
; i
++) {
1224 dmu_buf_t
*db
= dbp
[i
];
1228 bufoff
= zfs_uio_offset(uio
) - db
->db_offset
;
1229 tocpy
= MIN(db
->db_size
- bufoff
, size
);
1231 err
= zfs_uio_fault_move((char *)db
->db_data
+ bufoff
, tocpy
,
1239 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1245 * Read 'size' bytes into the uio buffer.
1246 * From object zdb->db_object.
1247 * Starting at zfs_uio_offset(uio).
1249 * If the caller already has a dbuf in the target object
1250 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1251 * because we don't have to find the dnode_t for the object.
1254 dmu_read_uio_dbuf(dmu_buf_t
*zdb
, zfs_uio_t
*uio
, uint64_t size
)
1256 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)zdb
;
1265 err
= dmu_read_uio_dnode(dn
, uio
, size
);
1272 * Read 'size' bytes into the uio buffer.
1273 * From the specified object
1274 * Starting at offset zfs_uio_offset(uio).
1277 dmu_read_uio(objset_t
*os
, uint64_t object
, zfs_uio_t
*uio
, uint64_t size
)
1285 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1289 err
= dmu_read_uio_dnode(dn
, uio
, size
);
1291 dnode_rele(dn
, FTAG
);
1297 dmu_write_uio_dnode(dnode_t
*dn
, zfs_uio_t
*uio
, uint64_t size
, dmu_tx_t
*tx
)
1304 err
= dmu_buf_hold_array_by_dnode(dn
, zfs_uio_offset(uio
), size
,
1305 FALSE
, FTAG
, &numbufs
, &dbp
, DMU_READ_PREFETCH
);
1309 for (i
= 0; i
< numbufs
; i
++) {
1312 dmu_buf_t
*db
= dbp
[i
];
1316 bufoff
= zfs_uio_offset(uio
) - db
->db_offset
;
1317 tocpy
= MIN(db
->db_size
- bufoff
, size
);
1319 ASSERT(i
== 0 || i
== numbufs
-1 || tocpy
== db
->db_size
);
1321 if (tocpy
== db
->db_size
)
1322 dmu_buf_will_fill(db
, tx
);
1324 dmu_buf_will_dirty(db
, tx
);
1327 * XXX zfs_uiomove could block forever (eg.nfs-backed
1328 * pages). There needs to be a uiolockdown() function
1329 * to lock the pages in memory, so that zfs_uiomove won't
1332 err
= zfs_uio_fault_move((char *)db
->db_data
+ bufoff
,
1333 tocpy
, UIO_WRITE
, uio
);
1335 if (tocpy
== db
->db_size
)
1336 dmu_buf_fill_done(db
, tx
);
1344 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1349 * Write 'size' bytes from the uio buffer.
1350 * To object zdb->db_object.
1351 * Starting at offset zfs_uio_offset(uio).
1353 * If the caller already has a dbuf in the target object
1354 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1355 * because we don't have to find the dnode_t for the object.
1358 dmu_write_uio_dbuf(dmu_buf_t
*zdb
, zfs_uio_t
*uio
, uint64_t size
,
1361 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)zdb
;
1370 err
= dmu_write_uio_dnode(dn
, uio
, size
, tx
);
1377 * Write 'size' bytes from the uio buffer.
1378 * To the specified object.
1379 * Starting at offset zfs_uio_offset(uio).
1382 dmu_write_uio(objset_t
*os
, uint64_t object
, zfs_uio_t
*uio
, uint64_t size
,
1391 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1395 err
= dmu_write_uio_dnode(dn
, uio
, size
, tx
);
1397 dnode_rele(dn
, FTAG
);
1401 #endif /* _KERNEL */
1404 * Allocate a loaned anonymous arc buffer.
1407 dmu_request_arcbuf(dmu_buf_t
*handle
, int size
)
1409 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)handle
;
1411 return (arc_loan_buf(db
->db_objset
->os_spa
, B_FALSE
, size
));
1415 * Free a loaned arc buffer.
1418 dmu_return_arcbuf(arc_buf_t
*buf
)
1420 arc_return_buf(buf
, FTAG
);
1421 arc_buf_destroy(buf
, FTAG
);
1425 * A "lightweight" write is faster than a regular write (e.g.
1426 * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the
1427 * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t. However, the
1428 * data can not be read or overwritten until the transaction's txg has been
1429 * synced. This makes it appropriate for workloads that are known to be
1430 * (temporarily) write-only, like "zfs receive".
1432 * A single block is written, starting at the specified offset in bytes. If
1433 * the call is successful, it returns 0 and the provided abd has been
1434 * consumed (the caller should not free it).
1437 dmu_lightweight_write_by_dnode(dnode_t
*dn
, uint64_t offset
, abd_t
*abd
,
1438 const zio_prop_t
*zp
, enum zio_flag flags
, dmu_tx_t
*tx
)
1440 dbuf_dirty_record_t
*dr
=
1441 dbuf_dirty_lightweight(dn
, dbuf_whichblock(dn
, 0, offset
), tx
);
1443 return (SET_ERROR(EIO
));
1444 dr
->dt
.dll
.dr_abd
= abd
;
1445 dr
->dt
.dll
.dr_props
= *zp
;
1446 dr
->dt
.dll
.dr_flags
= flags
;
1451 * When possible directly assign passed loaned arc buffer to a dbuf.
1452 * If this is not possible copy the contents of passed arc buf via
1456 dmu_assign_arcbuf_by_dnode(dnode_t
*dn
, uint64_t offset
, arc_buf_t
*buf
,
1460 objset_t
*os
= dn
->dn_objset
;
1461 uint64_t object
= dn
->dn_object
;
1462 uint32_t blksz
= (uint32_t)arc_buf_lsize(buf
);
1465 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
1466 blkid
= dbuf_whichblock(dn
, 0, offset
);
1467 db
= dbuf_hold(dn
, blkid
, FTAG
);
1469 return (SET_ERROR(EIO
));
1470 rw_exit(&dn
->dn_struct_rwlock
);
1473 * We can only assign if the offset is aligned and the arc buf is the
1474 * same size as the dbuf.
1476 if (offset
== db
->db
.db_offset
&& blksz
== db
->db
.db_size
) {
1477 zfs_racct_write(blksz
, 1);
1478 dbuf_assign_arcbuf(db
, buf
, tx
);
1479 dbuf_rele(db
, FTAG
);
1481 /* compressed bufs must always be assignable to their dbuf */
1482 ASSERT3U(arc_get_compression(buf
), ==, ZIO_COMPRESS_OFF
);
1483 ASSERT(!(buf
->b_flags
& ARC_BUF_FLAG_COMPRESSED
));
1485 dbuf_rele(db
, FTAG
);
1486 dmu_write(os
, object
, offset
, blksz
, buf
->b_data
, tx
);
1487 dmu_return_arcbuf(buf
);
1494 dmu_assign_arcbuf_by_dbuf(dmu_buf_t
*handle
, uint64_t offset
, arc_buf_t
*buf
,
1498 dmu_buf_impl_t
*dbuf
= (dmu_buf_impl_t
*)handle
;
1500 DB_DNODE_ENTER(dbuf
);
1501 err
= dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf
), offset
, buf
, tx
);
1502 DB_DNODE_EXIT(dbuf
);
1508 dbuf_dirty_record_t
*dsa_dr
;
1509 dmu_sync_cb_t
*dsa_done
;
1515 dmu_sync_ready(zio_t
*zio
, arc_buf_t
*buf
, void *varg
)
1518 dmu_sync_arg_t
*dsa
= varg
;
1519 dmu_buf_t
*db
= dsa
->dsa_zgd
->zgd_db
;
1520 blkptr_t
*bp
= zio
->io_bp
;
1522 if (zio
->io_error
== 0) {
1523 if (BP_IS_HOLE(bp
)) {
1525 * A block of zeros may compress to a hole, but the
1526 * block size still needs to be known for replay.
1528 BP_SET_LSIZE(bp
, db
->db_size
);
1529 } else if (!BP_IS_EMBEDDED(bp
)) {
1530 ASSERT(BP_GET_LEVEL(bp
) == 0);
1537 dmu_sync_late_arrival_ready(zio_t
*zio
)
1539 dmu_sync_ready(zio
, NULL
, zio
->io_private
);
1543 dmu_sync_done(zio_t
*zio
, arc_buf_t
*buf
, void *varg
)
1546 dmu_sync_arg_t
*dsa
= varg
;
1547 dbuf_dirty_record_t
*dr
= dsa
->dsa_dr
;
1548 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
1549 zgd_t
*zgd
= dsa
->dsa_zgd
;
1552 * Record the vdev(s) backing this blkptr so they can be flushed after
1553 * the writes for the lwb have completed.
1555 if (zio
->io_error
== 0) {
1556 zil_lwb_add_block(zgd
->zgd_lwb
, zgd
->zgd_bp
);
1559 mutex_enter(&db
->db_mtx
);
1560 ASSERT(dr
->dt
.dl
.dr_override_state
== DR_IN_DMU_SYNC
);
1561 if (zio
->io_error
== 0) {
1562 dr
->dt
.dl
.dr_nopwrite
= !!(zio
->io_flags
& ZIO_FLAG_NOPWRITE
);
1563 if (dr
->dt
.dl
.dr_nopwrite
) {
1564 blkptr_t
*bp
= zio
->io_bp
;
1565 blkptr_t
*bp_orig
= &zio
->io_bp_orig
;
1566 uint8_t chksum
= BP_GET_CHECKSUM(bp_orig
);
1568 ASSERT(BP_EQUAL(bp
, bp_orig
));
1569 VERIFY(BP_EQUAL(bp
, db
->db_blkptr
));
1570 ASSERT(zio
->io_prop
.zp_compress
!= ZIO_COMPRESS_OFF
);
1571 VERIFY(zio_checksum_table
[chksum
].ci_flags
&
1572 ZCHECKSUM_FLAG_NOPWRITE
);
1574 dr
->dt
.dl
.dr_overridden_by
= *zio
->io_bp
;
1575 dr
->dt
.dl
.dr_override_state
= DR_OVERRIDDEN
;
1576 dr
->dt
.dl
.dr_copies
= zio
->io_prop
.zp_copies
;
1579 * Old style holes are filled with all zeros, whereas
1580 * new-style holes maintain their lsize, type, level,
1581 * and birth time (see zio_write_compress). While we
1582 * need to reset the BP_SET_LSIZE() call that happened
1583 * in dmu_sync_ready for old style holes, we do *not*
1584 * want to wipe out the information contained in new
1585 * style holes. Thus, only zero out the block pointer if
1586 * it's an old style hole.
1588 if (BP_IS_HOLE(&dr
->dt
.dl
.dr_overridden_by
) &&
1589 dr
->dt
.dl
.dr_overridden_by
.blk_birth
== 0)
1590 BP_ZERO(&dr
->dt
.dl
.dr_overridden_by
);
1592 dr
->dt
.dl
.dr_override_state
= DR_NOT_OVERRIDDEN
;
1594 cv_broadcast(&db
->db_changed
);
1595 mutex_exit(&db
->db_mtx
);
1597 dsa
->dsa_done(dsa
->dsa_zgd
, zio
->io_error
);
1599 kmem_free(dsa
, sizeof (*dsa
));
1603 dmu_sync_late_arrival_done(zio_t
*zio
)
1605 blkptr_t
*bp
= zio
->io_bp
;
1606 dmu_sync_arg_t
*dsa
= zio
->io_private
;
1607 zgd_t
*zgd
= dsa
->dsa_zgd
;
1609 if (zio
->io_error
== 0) {
1611 * Record the vdev(s) backing this blkptr so they can be
1612 * flushed after the writes for the lwb have completed.
1614 zil_lwb_add_block(zgd
->zgd_lwb
, zgd
->zgd_bp
);
1616 if (!BP_IS_HOLE(bp
)) {
1617 blkptr_t
*bp_orig __maybe_unused
= &zio
->io_bp_orig
;
1618 ASSERT(!(zio
->io_flags
& ZIO_FLAG_NOPWRITE
));
1619 ASSERT(BP_IS_HOLE(bp_orig
) || !BP_EQUAL(bp
, bp_orig
));
1620 ASSERT(zio
->io_bp
->blk_birth
== zio
->io_txg
);
1621 ASSERT(zio
->io_txg
> spa_syncing_txg(zio
->io_spa
));
1622 zio_free(zio
->io_spa
, zio
->io_txg
, zio
->io_bp
);
1626 dmu_tx_commit(dsa
->dsa_tx
);
1628 dsa
->dsa_done(dsa
->dsa_zgd
, zio
->io_error
);
1630 abd_free(zio
->io_abd
);
1631 kmem_free(dsa
, sizeof (*dsa
));
1635 dmu_sync_late_arrival(zio_t
*pio
, objset_t
*os
, dmu_sync_cb_t
*done
, zgd_t
*zgd
,
1636 zio_prop_t
*zp
, zbookmark_phys_t
*zb
)
1638 dmu_sync_arg_t
*dsa
;
1641 tx
= dmu_tx_create(os
);
1642 dmu_tx_hold_space(tx
, zgd
->zgd_db
->db_size
);
1643 if (dmu_tx_assign(tx
, TXG_WAIT
) != 0) {
1645 /* Make zl_get_data do txg_waited_synced() */
1646 return (SET_ERROR(EIO
));
1650 * In order to prevent the zgd's lwb from being free'd prior to
1651 * dmu_sync_late_arrival_done() being called, we have to ensure
1652 * the lwb's "max txg" takes this tx's txg into account.
1654 zil_lwb_add_txg(zgd
->zgd_lwb
, dmu_tx_get_txg(tx
));
1656 dsa
= kmem_alloc(sizeof (dmu_sync_arg_t
), KM_SLEEP
);
1658 dsa
->dsa_done
= done
;
1663 * Since we are currently syncing this txg, it's nontrivial to
1664 * determine what BP to nopwrite against, so we disable nopwrite.
1666 * When syncing, the db_blkptr is initially the BP of the previous
1667 * txg. We can not nopwrite against it because it will be changed
1668 * (this is similar to the non-late-arrival case where the dbuf is
1669 * dirty in a future txg).
1671 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1672 * We can not nopwrite against it because although the BP will not
1673 * (typically) be changed, the data has not yet been persisted to this
1676 * Finally, when dbuf_write_done() is called, it is theoretically
1677 * possible to always nopwrite, because the data that was written in
1678 * this txg is the same data that we are trying to write. However we
1679 * would need to check that this dbuf is not dirty in any future
1680 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1681 * don't nopwrite in this case.
1683 zp
->zp_nopwrite
= B_FALSE
;
1685 zio_nowait(zio_write(pio
, os
->os_spa
, dmu_tx_get_txg(tx
), zgd
->zgd_bp
,
1686 abd_get_from_buf(zgd
->zgd_db
->db_data
, zgd
->zgd_db
->db_size
),
1687 zgd
->zgd_db
->db_size
, zgd
->zgd_db
->db_size
, zp
,
1688 dmu_sync_late_arrival_ready
, NULL
, NULL
, dmu_sync_late_arrival_done
,
1689 dsa
, ZIO_PRIORITY_SYNC_WRITE
, ZIO_FLAG_CANFAIL
, zb
));
1695 * Intent log support: sync the block associated with db to disk.
1696 * N.B. and XXX: the caller is responsible for making sure that the
1697 * data isn't changing while dmu_sync() is writing it.
1701 * EEXIST: this txg has already been synced, so there's nothing to do.
1702 * The caller should not log the write.
1704 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1705 * The caller should not log the write.
1707 * EALREADY: this block is already in the process of being synced.
1708 * The caller should track its progress (somehow).
1710 * EIO: could not do the I/O.
1711 * The caller should do a txg_wait_synced().
1713 * 0: the I/O has been initiated.
1714 * The caller should log this blkptr in the done callback.
1715 * It is possible that the I/O will fail, in which case
1716 * the error will be reported to the done callback and
1717 * propagated to pio from zio_done().
1720 dmu_sync(zio_t
*pio
, uint64_t txg
, dmu_sync_cb_t
*done
, zgd_t
*zgd
)
1722 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)zgd
->zgd_db
;
1723 objset_t
*os
= db
->db_objset
;
1724 dsl_dataset_t
*ds
= os
->os_dsl_dataset
;
1725 dbuf_dirty_record_t
*dr
, *dr_next
;
1726 dmu_sync_arg_t
*dsa
;
1727 zbookmark_phys_t zb
;
1731 ASSERT(pio
!= NULL
);
1734 SET_BOOKMARK(&zb
, ds
->ds_object
,
1735 db
->db
.db_object
, db
->db_level
, db
->db_blkid
);
1739 dmu_write_policy(os
, dn
, db
->db_level
, WP_DMU_SYNC
, &zp
);
1743 * If we're frozen (running ziltest), we always need to generate a bp.
1745 if (txg
> spa_freeze_txg(os
->os_spa
))
1746 return (dmu_sync_late_arrival(pio
, os
, done
, zgd
, &zp
, &zb
));
1749 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1750 * and us. If we determine that this txg is not yet syncing,
1751 * but it begins to sync a moment later, that's OK because the
1752 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1754 mutex_enter(&db
->db_mtx
);
1756 if (txg
<= spa_last_synced_txg(os
->os_spa
)) {
1758 * This txg has already synced. There's nothing to do.
1760 mutex_exit(&db
->db_mtx
);
1761 return (SET_ERROR(EEXIST
));
1764 if (txg
<= spa_syncing_txg(os
->os_spa
)) {
1766 * This txg is currently syncing, so we can't mess with
1767 * the dirty record anymore; just write a new log block.
1769 mutex_exit(&db
->db_mtx
);
1770 return (dmu_sync_late_arrival(pio
, os
, done
, zgd
, &zp
, &zb
));
1773 dr
= dbuf_find_dirty_eq(db
, txg
);
1777 * There's no dr for this dbuf, so it must have been freed.
1778 * There's no need to log writes to freed blocks, so we're done.
1780 mutex_exit(&db
->db_mtx
);
1781 return (SET_ERROR(ENOENT
));
1784 dr_next
= list_next(&db
->db_dirty_records
, dr
);
1785 ASSERT(dr_next
== NULL
|| dr_next
->dr_txg
< txg
);
1787 if (db
->db_blkptr
!= NULL
) {
1789 * We need to fill in zgd_bp with the current blkptr so that
1790 * the nopwrite code can check if we're writing the same
1791 * data that's already on disk. We can only nopwrite if we
1792 * are sure that after making the copy, db_blkptr will not
1793 * change until our i/o completes. We ensure this by
1794 * holding the db_mtx, and only allowing nopwrite if the
1795 * block is not already dirty (see below). This is verified
1796 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
1799 *zgd
->zgd_bp
= *db
->db_blkptr
;
1803 * Assume the on-disk data is X, the current syncing data (in
1804 * txg - 1) is Y, and the current in-memory data is Z (currently
1807 * We usually want to perform a nopwrite if X and Z are the
1808 * same. However, if Y is different (i.e. the BP is going to
1809 * change before this write takes effect), then a nopwrite will
1810 * be incorrect - we would override with X, which could have
1811 * been freed when Y was written.
1813 * (Note that this is not a concern when we are nop-writing from
1814 * syncing context, because X and Y must be identical, because
1815 * all previous txgs have been synced.)
1817 * Therefore, we disable nopwrite if the current BP could change
1818 * before this TXG. There are two ways it could change: by
1819 * being dirty (dr_next is non-NULL), or by being freed
1820 * (dnode_block_freed()). This behavior is verified by
1821 * zio_done(), which VERIFYs that the override BP is identical
1822 * to the on-disk BP.
1826 if (dr_next
!= NULL
|| dnode_block_freed(dn
, db
->db_blkid
))
1827 zp
.zp_nopwrite
= B_FALSE
;
1830 ASSERT(dr
->dr_txg
== txg
);
1831 if (dr
->dt
.dl
.dr_override_state
== DR_IN_DMU_SYNC
||
1832 dr
->dt
.dl
.dr_override_state
== DR_OVERRIDDEN
) {
1834 * We have already issued a sync write for this buffer,
1835 * or this buffer has already been synced. It could not
1836 * have been dirtied since, or we would have cleared the state.
1838 mutex_exit(&db
->db_mtx
);
1839 return (SET_ERROR(EALREADY
));
1842 ASSERT(dr
->dt
.dl
.dr_override_state
== DR_NOT_OVERRIDDEN
);
1843 dr
->dt
.dl
.dr_override_state
= DR_IN_DMU_SYNC
;
1844 mutex_exit(&db
->db_mtx
);
1846 dsa
= kmem_alloc(sizeof (dmu_sync_arg_t
), KM_SLEEP
);
1848 dsa
->dsa_done
= done
;
1852 zio_nowait(arc_write(pio
, os
->os_spa
, txg
,
1853 zgd
->zgd_bp
, dr
->dt
.dl
.dr_data
, dbuf_is_l2cacheable(db
),
1854 &zp
, dmu_sync_ready
, NULL
, NULL
, dmu_sync_done
, dsa
,
1855 ZIO_PRIORITY_SYNC_WRITE
, ZIO_FLAG_CANFAIL
, &zb
));
1861 dmu_object_set_nlevels(objset_t
*os
, uint64_t object
, int nlevels
, dmu_tx_t
*tx
)
1866 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1869 err
= dnode_set_nlevels(dn
, nlevels
, tx
);
1870 dnode_rele(dn
, FTAG
);
1875 dmu_object_set_blocksize(objset_t
*os
, uint64_t object
, uint64_t size
, int ibs
,
1881 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1884 err
= dnode_set_blksz(dn
, size
, ibs
, tx
);
1885 dnode_rele(dn
, FTAG
);
1890 dmu_object_set_maxblkid(objset_t
*os
, uint64_t object
, uint64_t maxblkid
,
1896 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1899 rw_enter(&dn
->dn_struct_rwlock
, RW_WRITER
);
1900 dnode_new_blkid(dn
, maxblkid
, tx
, B_FALSE
, B_TRUE
);
1901 rw_exit(&dn
->dn_struct_rwlock
);
1902 dnode_rele(dn
, FTAG
);
1907 dmu_object_set_checksum(objset_t
*os
, uint64_t object
, uint8_t checksum
,
1913 * Send streams include each object's checksum function. This
1914 * check ensures that the receiving system can understand the
1915 * checksum function transmitted.
1917 ASSERT3U(checksum
, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS
);
1919 VERIFY0(dnode_hold(os
, object
, FTAG
, &dn
));
1920 ASSERT3U(checksum
, <, ZIO_CHECKSUM_FUNCTIONS
);
1921 dn
->dn_checksum
= checksum
;
1922 dnode_setdirty(dn
, tx
);
1923 dnode_rele(dn
, FTAG
);
1927 dmu_object_set_compress(objset_t
*os
, uint64_t object
, uint8_t compress
,
1933 * Send streams include each object's compression function. This
1934 * check ensures that the receiving system can understand the
1935 * compression function transmitted.
1937 ASSERT3U(compress
, <, ZIO_COMPRESS_LEGACY_FUNCTIONS
);
1939 VERIFY0(dnode_hold(os
, object
, FTAG
, &dn
));
1940 dn
->dn_compress
= compress
;
1941 dnode_setdirty(dn
, tx
);
1942 dnode_rele(dn
, FTAG
);
1946 * When the "redundant_metadata" property is set to "most", only indirect
1947 * blocks of this level and higher will have an additional ditto block.
1949 static const int zfs_redundant_metadata_most_ditto_level
= 2;
1952 dmu_write_policy(objset_t
*os
, dnode_t
*dn
, int level
, int wp
, zio_prop_t
*zp
)
1954 dmu_object_type_t type
= dn
? dn
->dn_type
: DMU_OT_OBJSET
;
1955 boolean_t ismd
= (level
> 0 || DMU_OT_IS_METADATA(type
) ||
1957 enum zio_checksum checksum
= os
->os_checksum
;
1958 enum zio_compress compress
= os
->os_compress
;
1959 uint8_t complevel
= os
->os_complevel
;
1960 enum zio_checksum dedup_checksum
= os
->os_dedup_checksum
;
1961 boolean_t dedup
= B_FALSE
;
1962 boolean_t nopwrite
= B_FALSE
;
1963 boolean_t dedup_verify
= os
->os_dedup_verify
;
1964 boolean_t encrypt
= B_FALSE
;
1965 int copies
= os
->os_copies
;
1968 * We maintain different write policies for each of the following
1971 * 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1972 * 3. all other level 0 blocks
1976 * XXX -- we should design a compression algorithm
1977 * that specializes in arrays of bps.
1979 compress
= zio_compress_select(os
->os_spa
,
1980 ZIO_COMPRESS_ON
, ZIO_COMPRESS_ON
);
1983 * Metadata always gets checksummed. If the data
1984 * checksum is multi-bit correctable, and it's not a
1985 * ZBT-style checksum, then it's suitable for metadata
1986 * as well. Otherwise, the metadata checksum defaults
1989 if (!(zio_checksum_table
[checksum
].ci_flags
&
1990 ZCHECKSUM_FLAG_METADATA
) ||
1991 (zio_checksum_table
[checksum
].ci_flags
&
1992 ZCHECKSUM_FLAG_EMBEDDED
))
1993 checksum
= ZIO_CHECKSUM_FLETCHER_4
;
1995 if (os
->os_redundant_metadata
== ZFS_REDUNDANT_METADATA_ALL
||
1996 (os
->os_redundant_metadata
==
1997 ZFS_REDUNDANT_METADATA_MOST
&&
1998 (level
>= zfs_redundant_metadata_most_ditto_level
||
1999 DMU_OT_IS_METADATA(type
) || (wp
& WP_SPILL
))))
2001 } else if (wp
& WP_NOFILL
) {
2005 * If we're writing preallocated blocks, we aren't actually
2006 * writing them so don't set any policy properties. These
2007 * blocks are currently only used by an external subsystem
2008 * outside of zfs (i.e. dump) and not written by the zio
2011 compress
= ZIO_COMPRESS_OFF
;
2012 checksum
= ZIO_CHECKSUM_OFF
;
2014 compress
= zio_compress_select(os
->os_spa
, dn
->dn_compress
,
2016 complevel
= zio_complevel_select(os
->os_spa
, compress
,
2017 complevel
, complevel
);
2019 checksum
= (dedup_checksum
== ZIO_CHECKSUM_OFF
) ?
2020 zio_checksum_select(dn
->dn_checksum
, checksum
) :
2024 * Determine dedup setting. If we are in dmu_sync(),
2025 * we won't actually dedup now because that's all
2026 * done in syncing context; but we do want to use the
2027 * dedup checksum. If the checksum is not strong
2028 * enough to ensure unique signatures, force
2031 if (dedup_checksum
!= ZIO_CHECKSUM_OFF
) {
2032 dedup
= (wp
& WP_DMU_SYNC
) ? B_FALSE
: B_TRUE
;
2033 if (!(zio_checksum_table
[checksum
].ci_flags
&
2034 ZCHECKSUM_FLAG_DEDUP
))
2035 dedup_verify
= B_TRUE
;
2039 * Enable nopwrite if we have secure enough checksum
2040 * algorithm (see comment in zio_nop_write) and
2041 * compression is enabled. We don't enable nopwrite if
2042 * dedup is enabled as the two features are mutually
2045 nopwrite
= (!dedup
&& (zio_checksum_table
[checksum
].ci_flags
&
2046 ZCHECKSUM_FLAG_NOPWRITE
) &&
2047 compress
!= ZIO_COMPRESS_OFF
&& zfs_nopwrite_enabled
);
2051 * All objects in an encrypted objset are protected from modification
2052 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2053 * in the bp, so we cannot use all copies. Encrypted objects are also
2054 * not subject to nopwrite since writing the same data will still
2055 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2056 * to avoid ambiguity in the dedup code since the DDT does not store
2059 if (os
->os_encrypted
&& (wp
& WP_NOFILL
) == 0) {
2062 if (DMU_OT_IS_ENCRYPTED(type
)) {
2063 copies
= MIN(copies
, SPA_DVAS_PER_BP
- 1);
2070 (type
== DMU_OT_DNODE
|| type
== DMU_OT_OBJSET
)) {
2071 compress
= ZIO_COMPRESS_EMPTY
;
2075 zp
->zp_compress
= compress
;
2076 zp
->zp_complevel
= complevel
;
2077 zp
->zp_checksum
= checksum
;
2078 zp
->zp_type
= (wp
& WP_SPILL
) ? dn
->dn_bonustype
: type
;
2079 zp
->zp_level
= level
;
2080 zp
->zp_copies
= MIN(copies
, spa_max_replication(os
->os_spa
));
2081 zp
->zp_dedup
= dedup
;
2082 zp
->zp_dedup_verify
= dedup
&& dedup_verify
;
2083 zp
->zp_nopwrite
= nopwrite
;
2084 zp
->zp_encrypt
= encrypt
;
2085 zp
->zp_byteorder
= ZFS_HOST_BYTEORDER
;
2086 memset(zp
->zp_salt
, 0, ZIO_DATA_SALT_LEN
);
2087 memset(zp
->zp_iv
, 0, ZIO_DATA_IV_LEN
);
2088 memset(zp
->zp_mac
, 0, ZIO_DATA_MAC_LEN
);
2089 zp
->zp_zpl_smallblk
= DMU_OT_IS_FILE(zp
->zp_type
) ?
2090 os
->os_zpl_special_smallblock
: 0;
2092 ASSERT3U(zp
->zp_compress
, !=, ZIO_COMPRESS_INHERIT
);
2096 * This function is only called from zfs_holey_common() for zpl_llseek()
2097 * in order to determine the location of holes. In order to accurately
2098 * report holes all dirty data must be synced to disk. This causes extremely
2099 * poor performance when seeking for holes in a dirty file. As a compromise,
2100 * only provide hole data when the dnode is clean. When a dnode is dirty
2101 * report the dnode as having no holes which is always a safe thing to do.
2104 dmu_offset_next(objset_t
*os
, uint64_t object
, boolean_t hole
, uint64_t *off
)
2110 err
= dnode_hold(os
, object
, FTAG
, &dn
);
2114 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
2116 if (dnode_is_dirty(dn
)) {
2118 * If the zfs_dmu_offset_next_sync module option is enabled
2119 * then strict hole reporting has been requested. Dirty
2120 * dnodes must be synced to disk to accurately report all
2121 * holes. When disabled dirty dnodes are reported to not
2122 * have any holes which is always safe.
2124 * When called by zfs_holey_common() the zp->z_rangelock
2125 * is held to prevent zfs_write() and mmap writeback from
2126 * re-dirtying the dnode after txg_wait_synced().
2128 if (zfs_dmu_offset_next_sync
) {
2129 rw_exit(&dn
->dn_struct_rwlock
);
2130 dnode_rele(dn
, FTAG
);
2131 txg_wait_synced(dmu_objset_pool(os
), 0);
2135 err
= SET_ERROR(EBUSY
);
2137 err
= dnode_next_offset(dn
, DNODE_FIND_HAVELOCK
|
2138 (hole
? DNODE_FIND_HOLE
: 0), off
, 1, 1, 0);
2141 rw_exit(&dn
->dn_struct_rwlock
);
2142 dnode_rele(dn
, FTAG
);
2148 __dmu_object_info_from_dnode(dnode_t
*dn
, dmu_object_info_t
*doi
)
2150 dnode_phys_t
*dnp
= dn
->dn_phys
;
2152 doi
->doi_data_block_size
= dn
->dn_datablksz
;
2153 doi
->doi_metadata_block_size
= dn
->dn_indblkshift
?
2154 1ULL << dn
->dn_indblkshift
: 0;
2155 doi
->doi_type
= dn
->dn_type
;
2156 doi
->doi_bonus_type
= dn
->dn_bonustype
;
2157 doi
->doi_bonus_size
= dn
->dn_bonuslen
;
2158 doi
->doi_dnodesize
= dn
->dn_num_slots
<< DNODE_SHIFT
;
2159 doi
->doi_indirection
= dn
->dn_nlevels
;
2160 doi
->doi_checksum
= dn
->dn_checksum
;
2161 doi
->doi_compress
= dn
->dn_compress
;
2162 doi
->doi_nblkptr
= dn
->dn_nblkptr
;
2163 doi
->doi_physical_blocks_512
= (DN_USED_BYTES(dnp
) + 256) >> 9;
2164 doi
->doi_max_offset
= (dn
->dn_maxblkid
+ 1) * dn
->dn_datablksz
;
2165 doi
->doi_fill_count
= 0;
2166 for (int i
= 0; i
< dnp
->dn_nblkptr
; i
++)
2167 doi
->doi_fill_count
+= BP_GET_FILL(&dnp
->dn_blkptr
[i
]);
2171 dmu_object_info_from_dnode(dnode_t
*dn
, dmu_object_info_t
*doi
)
2173 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
2174 mutex_enter(&dn
->dn_mtx
);
2176 __dmu_object_info_from_dnode(dn
, doi
);
2178 mutex_exit(&dn
->dn_mtx
);
2179 rw_exit(&dn
->dn_struct_rwlock
);
2183 * Get information on a DMU object.
2184 * If doi is NULL, just indicates whether the object exists.
2187 dmu_object_info(objset_t
*os
, uint64_t object
, dmu_object_info_t
*doi
)
2190 int err
= dnode_hold(os
, object
, FTAG
, &dn
);
2196 dmu_object_info_from_dnode(dn
, doi
);
2198 dnode_rele(dn
, FTAG
);
2203 * As above, but faster; can be used when you have a held dbuf in hand.
2206 dmu_object_info_from_db(dmu_buf_t
*db_fake
, dmu_object_info_t
*doi
)
2208 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2211 dmu_object_info_from_dnode(DB_DNODE(db
), doi
);
2216 * Faster still when you only care about the size.
2219 dmu_object_size_from_db(dmu_buf_t
*db_fake
, uint32_t *blksize
,
2220 u_longlong_t
*nblk512
)
2222 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2228 *blksize
= dn
->dn_datablksz
;
2229 /* add in number of slots used for the dnode itself */
2230 *nblk512
= ((DN_USED_BYTES(dn
->dn_phys
) + SPA_MINBLOCKSIZE
/2) >>
2231 SPA_MINBLOCKSHIFT
) + dn
->dn_num_slots
;
2236 dmu_object_dnsize_from_db(dmu_buf_t
*db_fake
, int *dnsize
)
2238 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2243 *dnsize
= dn
->dn_num_slots
<< DNODE_SHIFT
;
2248 byteswap_uint64_array(void *vbuf
, size_t size
)
2250 uint64_t *buf
= vbuf
;
2251 size_t count
= size
>> 3;
2254 ASSERT((size
& 7) == 0);
2256 for (i
= 0; i
< count
; i
++)
2257 buf
[i
] = BSWAP_64(buf
[i
]);
2261 byteswap_uint32_array(void *vbuf
, size_t size
)
2263 uint32_t *buf
= vbuf
;
2264 size_t count
= size
>> 2;
2267 ASSERT((size
& 3) == 0);
2269 for (i
= 0; i
< count
; i
++)
2270 buf
[i
] = BSWAP_32(buf
[i
]);
2274 byteswap_uint16_array(void *vbuf
, size_t size
)
2276 uint16_t *buf
= vbuf
;
2277 size_t count
= size
>> 1;
2280 ASSERT((size
& 1) == 0);
2282 for (i
= 0; i
< count
; i
++)
2283 buf
[i
] = BSWAP_16(buf
[i
]);
2287 byteswap_uint8_array(void *vbuf
, size_t size
)
2289 (void) vbuf
, (void) size
;
2310 arc_fini(); /* arc depends on l2arc, so arc must go first */
2322 EXPORT_SYMBOL(dmu_bonus_hold
);
2323 EXPORT_SYMBOL(dmu_bonus_hold_by_dnode
);
2324 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus
);
2325 EXPORT_SYMBOL(dmu_buf_rele_array
);
2326 EXPORT_SYMBOL(dmu_prefetch
);
2327 EXPORT_SYMBOL(dmu_free_range
);
2328 EXPORT_SYMBOL(dmu_free_long_range
);
2329 EXPORT_SYMBOL(dmu_free_long_object
);
2330 EXPORT_SYMBOL(dmu_read
);
2331 EXPORT_SYMBOL(dmu_read_by_dnode
);
2332 EXPORT_SYMBOL(dmu_write
);
2333 EXPORT_SYMBOL(dmu_write_by_dnode
);
2334 EXPORT_SYMBOL(dmu_prealloc
);
2335 EXPORT_SYMBOL(dmu_object_info
);
2336 EXPORT_SYMBOL(dmu_object_info_from_dnode
);
2337 EXPORT_SYMBOL(dmu_object_info_from_db
);
2338 EXPORT_SYMBOL(dmu_object_size_from_db
);
2339 EXPORT_SYMBOL(dmu_object_dnsize_from_db
);
2340 EXPORT_SYMBOL(dmu_object_set_nlevels
);
2341 EXPORT_SYMBOL(dmu_object_set_blocksize
);
2342 EXPORT_SYMBOL(dmu_object_set_maxblkid
);
2343 EXPORT_SYMBOL(dmu_object_set_checksum
);
2344 EXPORT_SYMBOL(dmu_object_set_compress
);
2345 EXPORT_SYMBOL(dmu_offset_next
);
2346 EXPORT_SYMBOL(dmu_write_policy
);
2347 EXPORT_SYMBOL(dmu_sync
);
2348 EXPORT_SYMBOL(dmu_request_arcbuf
);
2349 EXPORT_SYMBOL(dmu_return_arcbuf
);
2350 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode
);
2351 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf
);
2352 EXPORT_SYMBOL(dmu_buf_hold
);
2353 EXPORT_SYMBOL(dmu_ot
);
2355 ZFS_MODULE_PARAM(zfs
, zfs_
, nopwrite_enabled
, INT
, ZMOD_RW
,
2356 "Enable NOP writes");
2358 ZFS_MODULE_PARAM(zfs
, zfs_
, per_txg_dirty_frees_percent
, ULONG
, ZMOD_RW
,
2359 "Percentage of dirtied blocks from frees in one TXG");
2361 ZFS_MODULE_PARAM(zfs
, zfs_
, dmu_offset_next_sync
, INT
, ZMOD_RW
,
2362 "Enable forcing txg sync to find holes");
2365 ZFS_MODULE_PARAM(zfs
, , dmu_prefetch_max
, UINT
, ZMOD_RW
,
2366 "Limit one prefetch call to this size");