4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
28 #include <sys/dmu_impl.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/dmu_objset.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_dir.h>
34 #include <sys/dsl_pool.h>
35 #include <sys/zap_impl.h>
38 #include <sys/sa_impl.h>
39 #include <sys/zfs_context.h>
40 #include <sys/trace_zfs.h>
42 typedef void (*dmu_tx_hold_func_t
)(dmu_tx_t
*tx
, struct dnode
*dn
,
43 uint64_t arg1
, uint64_t arg2
);
45 dmu_tx_stats_t dmu_tx_stats
= {
46 { "dmu_tx_assigned", KSTAT_DATA_UINT64
},
47 { "dmu_tx_delay", KSTAT_DATA_UINT64
},
48 { "dmu_tx_error", KSTAT_DATA_UINT64
},
49 { "dmu_tx_suspended", KSTAT_DATA_UINT64
},
50 { "dmu_tx_group", KSTAT_DATA_UINT64
},
51 { "dmu_tx_memory_reserve", KSTAT_DATA_UINT64
},
52 { "dmu_tx_memory_reclaim", KSTAT_DATA_UINT64
},
53 { "dmu_tx_dirty_throttle", KSTAT_DATA_UINT64
},
54 { "dmu_tx_dirty_delay", KSTAT_DATA_UINT64
},
55 { "dmu_tx_dirty_over_max", KSTAT_DATA_UINT64
},
56 { "dmu_tx_dirty_frees_delay", KSTAT_DATA_UINT64
},
57 { "dmu_tx_wrlog_delay", KSTAT_DATA_UINT64
},
58 { "dmu_tx_quota", KSTAT_DATA_UINT64
},
61 static kstat_t
*dmu_tx_ksp
;
64 dmu_tx_create_dd(dsl_dir_t
*dd
)
66 dmu_tx_t
*tx
= kmem_zalloc(sizeof (dmu_tx_t
), KM_SLEEP
);
69 tx
->tx_pool
= dd
->dd_pool
;
70 list_create(&tx
->tx_holds
, sizeof (dmu_tx_hold_t
),
71 offsetof(dmu_tx_hold_t
, txh_node
));
72 list_create(&tx
->tx_callbacks
, sizeof (dmu_tx_callback_t
),
73 offsetof(dmu_tx_callback_t
, dcb_node
));
74 tx
->tx_start
= gethrtime();
79 dmu_tx_create(objset_t
*os
)
81 dmu_tx_t
*tx
= dmu_tx_create_dd(os
->os_dsl_dataset
->ds_dir
);
87 dmu_tx_create_assigned(struct dsl_pool
*dp
, uint64_t txg
)
89 dmu_tx_t
*tx
= dmu_tx_create_dd(NULL
);
91 TXG_VERIFY(dp
->dp_spa
, txg
);
100 dmu_tx_is_syncing(dmu_tx_t
*tx
)
102 return (tx
->tx_anyobj
);
106 dmu_tx_private_ok(dmu_tx_t
*tx
)
108 return (tx
->tx_anyobj
);
111 static dmu_tx_hold_t
*
112 dmu_tx_hold_dnode_impl(dmu_tx_t
*tx
, dnode_t
*dn
, enum dmu_tx_hold_type type
,
113 uint64_t arg1
, uint64_t arg2
)
118 (void) zfs_refcount_add(&dn
->dn_holds
, tx
);
119 if (tx
->tx_txg
!= 0) {
120 mutex_enter(&dn
->dn_mtx
);
122 * dn->dn_assigned_txg == tx->tx_txg doesn't pose a
123 * problem, but there's no way for it to happen (for
126 ASSERT(dn
->dn_assigned_txg
== 0);
127 dn
->dn_assigned_txg
= tx
->tx_txg
;
128 (void) zfs_refcount_add(&dn
->dn_tx_holds
, tx
);
129 mutex_exit(&dn
->dn_mtx
);
133 txh
= kmem_zalloc(sizeof (dmu_tx_hold_t
), KM_SLEEP
);
136 zfs_refcount_create(&txh
->txh_space_towrite
);
137 zfs_refcount_create(&txh
->txh_memory_tohold
);
138 txh
->txh_type
= type
;
139 txh
->txh_arg1
= arg1
;
140 txh
->txh_arg2
= arg2
;
141 list_insert_tail(&tx
->tx_holds
, txh
);
146 static dmu_tx_hold_t
*
147 dmu_tx_hold_object_impl(dmu_tx_t
*tx
, objset_t
*os
, uint64_t object
,
148 enum dmu_tx_hold_type type
, uint64_t arg1
, uint64_t arg2
)
154 if (object
!= DMU_NEW_OBJECT
) {
155 err
= dnode_hold(os
, object
, FTAG
, &dn
);
161 txh
= dmu_tx_hold_dnode_impl(tx
, dn
, type
, arg1
, arg2
);
163 dnode_rele(dn
, FTAG
);
168 dmu_tx_add_new_object(dmu_tx_t
*tx
, dnode_t
*dn
)
171 * If we're syncing, they can manipulate any object anyhow, and
172 * the hold on the dnode_t can cause problems.
174 if (!dmu_tx_is_syncing(tx
))
175 (void) dmu_tx_hold_dnode_impl(tx
, dn
, THT_NEWOBJECT
, 0, 0);
179 * This function reads specified data from disk. The specified data will
180 * be needed to perform the transaction -- i.e, it will be read after
181 * we do dmu_tx_assign(). There are two reasons that we read the data now
182 * (before dmu_tx_assign()):
184 * 1. Reading it now has potentially better performance. The transaction
185 * has not yet been assigned, so the TXG is not held open, and also the
186 * caller typically has less locks held when calling dmu_tx_hold_*() than
187 * after the transaction has been assigned. This reduces the lock (and txg)
188 * hold times, thus reducing lock contention.
190 * 2. It is easier for callers (primarily the ZPL) to handle i/o errors
191 * that are detected before they start making changes to the DMU state
192 * (i.e. now). Once the transaction has been assigned, and some DMU
193 * state has been changed, it can be difficult to recover from an i/o
194 * error (e.g. to undo the changes already made in memory at the DMU
195 * layer). Typically code to do so does not exist in the caller -- it
196 * assumes that the data has already been cached and thus i/o errors are
199 * It has been observed that the i/o initiated here can be a performance
200 * problem, and it appears to be optional, because we don't look at the
201 * data which is read. However, removing this read would only serve to
202 * move the work elsewhere (after the dmu_tx_assign()), where it may
203 * have a greater impact on performance (in addition to the impact on
204 * fault tolerance noted above).
207 dmu_tx_check_ioerr(zio_t
*zio
, dnode_t
*dn
, int level
, uint64_t blkid
)
212 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
213 db
= dbuf_hold_level(dn
, level
, blkid
, FTAG
);
214 rw_exit(&dn
->dn_struct_rwlock
);
216 return (SET_ERROR(EIO
));
217 err
= dbuf_read(db
, zio
, DB_RF_CANFAIL
| DB_RF_NOPREFETCH
);
223 dmu_tx_count_write(dmu_tx_hold_t
*txh
, uint64_t off
, uint64_t len
)
225 dnode_t
*dn
= txh
->txh_dnode
;
231 (void) zfs_refcount_add_many(&txh
->txh_space_towrite
, len
, FTAG
);
237 * For i/o error checking, read the blocks that will be needed
238 * to perform the write: the first and last level-0 blocks (if
239 * they are not aligned, i.e. if they are partial-block writes),
240 * and all the level-1 blocks.
242 if (dn
->dn_maxblkid
== 0) {
243 if (off
< dn
->dn_datablksz
&&
244 (off
> 0 || len
< dn
->dn_datablksz
)) {
245 err
= dmu_tx_check_ioerr(NULL
, dn
, 0, 0);
247 txh
->txh_tx
->tx_err
= err
;
251 zio_t
*zio
= zio_root(dn
->dn_objset
->os_spa
,
252 NULL
, NULL
, ZIO_FLAG_CANFAIL
);
254 /* first level-0 block */
255 uint64_t start
= off
>> dn
->dn_datablkshift
;
256 if (P2PHASE(off
, dn
->dn_datablksz
) || len
< dn
->dn_datablksz
) {
257 err
= dmu_tx_check_ioerr(zio
, dn
, 0, start
);
259 txh
->txh_tx
->tx_err
= err
;
263 /* last level-0 block */
264 uint64_t end
= (off
+ len
- 1) >> dn
->dn_datablkshift
;
265 if (end
!= start
&& end
<= dn
->dn_maxblkid
&&
266 P2PHASE(off
+ len
, dn
->dn_datablksz
)) {
267 err
= dmu_tx_check_ioerr(zio
, dn
, 0, end
);
269 txh
->txh_tx
->tx_err
= err
;
274 if (dn
->dn_nlevels
> 1) {
275 int shft
= dn
->dn_indblkshift
- SPA_BLKPTRSHIFT
;
276 for (uint64_t i
= (start
>> shft
) + 1;
277 i
< end
>> shft
; i
++) {
278 err
= dmu_tx_check_ioerr(zio
, dn
, 1, i
);
280 txh
->txh_tx
->tx_err
= err
;
287 txh
->txh_tx
->tx_err
= err
;
293 dmu_tx_count_dnode(dmu_tx_hold_t
*txh
)
295 (void) zfs_refcount_add_many(&txh
->txh_space_towrite
,
296 DNODE_MIN_SIZE
, FTAG
);
300 dmu_tx_hold_write(dmu_tx_t
*tx
, uint64_t object
, uint64_t off
, int len
)
305 ASSERT3U(len
, <=, DMU_MAX_ACCESS
);
306 ASSERT(len
== 0 || UINT64_MAX
- off
>= len
- 1);
308 txh
= dmu_tx_hold_object_impl(tx
, tx
->tx_objset
,
309 object
, THT_WRITE
, off
, len
);
311 dmu_tx_count_write(txh
, off
, len
);
312 dmu_tx_count_dnode(txh
);
317 dmu_tx_hold_write_by_dnode(dmu_tx_t
*tx
, dnode_t
*dn
, uint64_t off
, int len
)
322 ASSERT3U(len
, <=, DMU_MAX_ACCESS
);
323 ASSERT(len
== 0 || UINT64_MAX
- off
>= len
- 1);
325 txh
= dmu_tx_hold_dnode_impl(tx
, dn
, THT_WRITE
, off
, len
);
327 dmu_tx_count_write(txh
, off
, len
);
328 dmu_tx_count_dnode(txh
);
333 * This function marks the transaction as being a "net free". The end
334 * result is that refquotas will be disabled for this transaction, and
335 * this transaction will be able to use half of the pool space overhead
336 * (see dsl_pool_adjustedsize()). Therefore this function should only
337 * be called for transactions that we expect will not cause a net increase
338 * in the amount of space used (but it's OK if that is occasionally not true).
341 dmu_tx_mark_netfree(dmu_tx_t
*tx
)
343 tx
->tx_netfree
= B_TRUE
;
347 dmu_tx_hold_free_impl(dmu_tx_hold_t
*txh
, uint64_t off
, uint64_t len
)
349 dmu_tx_t
*tx
= txh
->txh_tx
;
350 dnode_t
*dn
= txh
->txh_dnode
;
353 ASSERT(tx
->tx_txg
== 0);
355 dmu_tx_count_dnode(txh
);
357 if (off
>= (dn
->dn_maxblkid
+ 1) * dn
->dn_datablksz
)
359 if (len
== DMU_OBJECT_END
)
360 len
= (dn
->dn_maxblkid
+ 1) * dn
->dn_datablksz
- off
;
362 dmu_tx_count_dnode(txh
);
365 * For i/o error checking, we read the first and last level-0
366 * blocks if they are not aligned, and all the level-1 blocks.
368 * Note: dbuf_free_range() assumes that we have not instantiated
369 * any level-0 dbufs that will be completely freed. Therefore we must
370 * exercise care to not read or count the first and last blocks
371 * if they are blocksize-aligned.
373 if (dn
->dn_datablkshift
== 0) {
374 if (off
!= 0 || len
< dn
->dn_datablksz
)
375 dmu_tx_count_write(txh
, 0, dn
->dn_datablksz
);
377 /* first block will be modified if it is not aligned */
378 if (!IS_P2ALIGNED(off
, 1 << dn
->dn_datablkshift
))
379 dmu_tx_count_write(txh
, off
, 1);
380 /* last block will be modified if it is not aligned */
381 if (!IS_P2ALIGNED(off
+ len
, 1 << dn
->dn_datablkshift
))
382 dmu_tx_count_write(txh
, off
+ len
, 1);
386 * Check level-1 blocks.
388 if (dn
->dn_nlevels
> 1) {
389 int shift
= dn
->dn_datablkshift
+ dn
->dn_indblkshift
-
391 uint64_t start
= off
>> shift
;
392 uint64_t end
= (off
+ len
) >> shift
;
394 ASSERT(dn
->dn_indblkshift
!= 0);
397 * dnode_reallocate() can result in an object with indirect
398 * blocks having an odd data block size. In this case,
399 * just check the single block.
401 if (dn
->dn_datablkshift
== 0)
404 zio_t
*zio
= zio_root(tx
->tx_pool
->dp_spa
,
405 NULL
, NULL
, ZIO_FLAG_CANFAIL
);
406 for (uint64_t i
= start
; i
<= end
; i
++) {
407 uint64_t ibyte
= i
<< shift
;
408 err
= dnode_next_offset(dn
, 0, &ibyte
, 2, 1, 0);
410 if (err
== ESRCH
|| i
> end
)
414 (void) zio_wait(zio
);
418 (void) zfs_refcount_add_many(&txh
->txh_memory_tohold
,
419 1 << dn
->dn_indblkshift
, FTAG
);
421 err
= dmu_tx_check_ioerr(zio
, dn
, 1, i
);
424 (void) zio_wait(zio
);
437 dmu_tx_hold_free(dmu_tx_t
*tx
, uint64_t object
, uint64_t off
, uint64_t len
)
441 txh
= dmu_tx_hold_object_impl(tx
, tx
->tx_objset
,
442 object
, THT_FREE
, off
, len
);
444 (void) dmu_tx_hold_free_impl(txh
, off
, len
);
448 dmu_tx_hold_free_by_dnode(dmu_tx_t
*tx
, dnode_t
*dn
, uint64_t off
, uint64_t len
)
452 txh
= dmu_tx_hold_dnode_impl(tx
, dn
, THT_FREE
, off
, len
);
454 (void) dmu_tx_hold_free_impl(txh
, off
, len
);
458 dmu_tx_hold_zap_impl(dmu_tx_hold_t
*txh
, const char *name
)
460 dmu_tx_t
*tx
= txh
->txh_tx
;
461 dnode_t
*dn
= txh
->txh_dnode
;
464 ASSERT(tx
->tx_txg
== 0);
466 dmu_tx_count_dnode(txh
);
469 * Modifying a almost-full microzap is around the worst case (128KB)
471 * If it is a fat zap, the worst case would be 7*16KB=112KB:
472 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
473 * - 4 new blocks written if adding:
474 * - 2 blocks for possibly split leaves,
475 * - 2 grown ptrtbl blocks
477 (void) zfs_refcount_add_many(&txh
->txh_space_towrite
,
478 MZAP_MAX_BLKSZ
, FTAG
);
483 ASSERT3U(DMU_OT_BYTESWAP(dn
->dn_type
), ==, DMU_BSWAP_ZAP
);
485 if (dn
->dn_maxblkid
== 0 || name
== NULL
) {
487 * This is a microzap (only one block), or we don't know
488 * the name. Check the first block for i/o errors.
490 err
= dmu_tx_check_ioerr(NULL
, dn
, 0, 0);
496 * Access the name so that we'll check for i/o errors to
497 * the leaf blocks, etc. We ignore ENOENT, as this name
500 err
= zap_lookup_by_dnode(dn
, name
, 8, 0, NULL
);
501 if (err
== EIO
|| err
== ECKSUM
|| err
== ENXIO
) {
508 dmu_tx_hold_zap(dmu_tx_t
*tx
, uint64_t object
, int add
, const char *name
)
514 txh
= dmu_tx_hold_object_impl(tx
, tx
->tx_objset
,
515 object
, THT_ZAP
, add
, (uintptr_t)name
);
517 dmu_tx_hold_zap_impl(txh
, name
);
521 dmu_tx_hold_zap_by_dnode(dmu_tx_t
*tx
, dnode_t
*dn
, int add
, const char *name
)
528 txh
= dmu_tx_hold_dnode_impl(tx
, dn
, THT_ZAP
, add
, (uintptr_t)name
);
530 dmu_tx_hold_zap_impl(txh
, name
);
534 dmu_tx_hold_bonus(dmu_tx_t
*tx
, uint64_t object
)
538 ASSERT(tx
->tx_txg
== 0);
540 txh
= dmu_tx_hold_object_impl(tx
, tx
->tx_objset
,
541 object
, THT_BONUS
, 0, 0);
543 dmu_tx_count_dnode(txh
);
547 dmu_tx_hold_bonus_by_dnode(dmu_tx_t
*tx
, dnode_t
*dn
)
553 txh
= dmu_tx_hold_dnode_impl(tx
, dn
, THT_BONUS
, 0, 0);
555 dmu_tx_count_dnode(txh
);
559 dmu_tx_hold_space(dmu_tx_t
*tx
, uint64_t space
)
563 ASSERT(tx
->tx_txg
== 0);
565 txh
= dmu_tx_hold_object_impl(tx
, tx
->tx_objset
,
566 DMU_NEW_OBJECT
, THT_SPACE
, space
, 0);
568 (void) zfs_refcount_add_many(
569 &txh
->txh_space_towrite
, space
, FTAG
);
575 dmu_tx_dirty_buf(dmu_tx_t
*tx
, dmu_buf_impl_t
*db
)
577 boolean_t match_object
= B_FALSE
;
578 boolean_t match_offset
= B_FALSE
;
581 dnode_t
*dn
= DB_DNODE(db
);
582 ASSERT(tx
->tx_txg
!= 0);
583 ASSERT(tx
->tx_objset
== NULL
|| dn
->dn_objset
== tx
->tx_objset
);
584 ASSERT3U(dn
->dn_object
, ==, db
->db
.db_object
);
591 /* XXX No checking on the meta dnode for now */
592 if (db
->db
.db_object
== DMU_META_DNODE_OBJECT
) {
597 for (dmu_tx_hold_t
*txh
= list_head(&tx
->tx_holds
); txh
!= NULL
;
598 txh
= list_next(&tx
->tx_holds
, txh
)) {
599 ASSERT3U(dn
->dn_assigned_txg
, ==, tx
->tx_txg
);
600 if (txh
->txh_dnode
== dn
&& txh
->txh_type
!= THT_NEWOBJECT
)
602 if (txh
->txh_dnode
== NULL
|| txh
->txh_dnode
== dn
) {
603 int datablkshift
= dn
->dn_datablkshift
?
604 dn
->dn_datablkshift
: SPA_MAXBLOCKSHIFT
;
605 int epbs
= dn
->dn_indblkshift
- SPA_BLKPTRSHIFT
;
606 int shift
= datablkshift
+ epbs
* db
->db_level
;
607 uint64_t beginblk
= shift
>= 64 ? 0 :
608 (txh
->txh_arg1
>> shift
);
609 uint64_t endblk
= shift
>= 64 ? 0 :
610 ((txh
->txh_arg1
+ txh
->txh_arg2
- 1) >> shift
);
611 uint64_t blkid
= db
->db_blkid
;
613 /* XXX txh_arg2 better not be zero... */
615 dprintf("found txh type %x beginblk=%llx endblk=%llx\n",
616 txh
->txh_type
, (u_longlong_t
)beginblk
,
617 (u_longlong_t
)endblk
);
619 switch (txh
->txh_type
) {
621 if (blkid
>= beginblk
&& blkid
<= endblk
)
624 * We will let this hold work for the bonus
625 * or spill buffer so that we don't need to
626 * hold it when creating a new object.
628 if (blkid
== DMU_BONUS_BLKID
||
629 blkid
== DMU_SPILL_BLKID
)
632 * They might have to increase nlevels,
633 * thus dirtying the new TLIBs. Or the
634 * might have to change the block size,
635 * thus dirying the new lvl=0 blk=0.
642 * We will dirty all the level 1 blocks in
643 * the free range and perhaps the first and
644 * last level 0 block.
646 if (blkid
>= beginblk
&& (blkid
<= endblk
||
647 txh
->txh_arg2
== DMU_OBJECT_END
))
651 if (blkid
== DMU_SPILL_BLKID
)
655 if (blkid
== DMU_BONUS_BLKID
)
665 cmn_err(CE_PANIC
, "bad txh_type %d",
669 if (match_object
&& match_offset
) {
675 panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n",
676 (u_longlong_t
)db
->db
.db_object
, db
->db_level
,
677 (u_longlong_t
)db
->db_blkid
);
682 * If we can't do 10 iops, something is wrong. Let us go ahead
683 * and hit zfs_dirty_data_max.
685 static const hrtime_t zfs_delay_max_ns
= 100 * MICROSEC
; /* 100 milliseconds */
688 * We delay transactions when we've determined that the backend storage
689 * isn't able to accommodate the rate of incoming writes.
691 * If there is already a transaction waiting, we delay relative to when
692 * that transaction finishes waiting. This way the calculated min_time
693 * is independent of the number of threads concurrently executing
696 * If we are the only waiter, wait relative to when the transaction
697 * started, rather than the current time. This credits the transaction for
698 * "time already served", e.g. reading indirect blocks.
700 * The minimum time for a transaction to take is calculated as:
701 * min_time = scale * (dirty - min) / (max - dirty)
702 * min_time is then capped at zfs_delay_max_ns.
704 * The delay has two degrees of freedom that can be adjusted via tunables.
705 * The percentage of dirty data at which we start to delay is defined by
706 * zfs_delay_min_dirty_percent. This should typically be at or above
707 * zfs_vdev_async_write_active_max_dirty_percent so that we only start to
708 * delay after writing at full speed has failed to keep up with the incoming
709 * write rate. The scale of the curve is defined by zfs_delay_scale. Roughly
710 * speaking, this variable determines the amount of delay at the midpoint of
714 * 10ms +-------------------------------------------------------------*+
730 * 2ms + (midpoint) * +
733 * | zfs_delay_scale ----------> ******** |
734 * 0 +-------------------------------------*********----------------+
735 * 0% <- zfs_dirty_data_max -> 100%
737 * Note that since the delay is added to the outstanding time remaining on the
738 * most recent transaction, the delay is effectively the inverse of IOPS.
739 * Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve
740 * was chosen such that small changes in the amount of accumulated dirty data
741 * in the first 3/4 of the curve yield relatively small differences in the
744 * The effects can be easier to understand when the amount of delay is
745 * represented on a log scale:
748 * 100ms +-------------------------------------------------------------++
757 * + zfs_delay_scale ----------> ***** +
768 * +--------------------------------------------------------------+
769 * 0% <- zfs_dirty_data_max -> 100%
771 * Note here that only as the amount of dirty data approaches its limit does
772 * the delay start to increase rapidly. The goal of a properly tuned system
773 * should be to keep the amount of dirty data out of that range by first
774 * ensuring that the appropriate limits are set for the I/O scheduler to reach
775 * optimal throughput on the backend storage, and then by changing the value
776 * of zfs_delay_scale to increase the steepness of the curve.
779 dmu_tx_delay(dmu_tx_t
*tx
, uint64_t dirty
)
781 dsl_pool_t
*dp
= tx
->tx_pool
;
782 uint64_t delay_min_bytes
, wrlog
;
783 hrtime_t wakeup
, tx_time
= 0, now
;
785 /* Calculate minimum transaction time for the dirty data amount. */
787 zfs_dirty_data_max
* zfs_delay_min_dirty_percent
/ 100;
788 if (dirty
> delay_min_bytes
) {
790 * The caller has already waited until we are under the max.
791 * We make them pass us the amount of dirty data so we don't
792 * have to handle the case of it being >= the max, which
793 * could cause a divide-by-zero if it's == the max.
795 ASSERT3U(dirty
, <, zfs_dirty_data_max
);
797 tx_time
= zfs_delay_scale
* (dirty
- delay_min_bytes
) /
798 (zfs_dirty_data_max
- dirty
);
801 /* Calculate minimum transaction time for the TX_WRITE log size. */
802 wrlog
= aggsum_upper_bound(&dp
->dp_wrlog_total
);
804 zfs_wrlog_data_max
* zfs_delay_min_dirty_percent
/ 100;
805 if (wrlog
>= zfs_wrlog_data_max
) {
806 tx_time
= zfs_delay_max_ns
;
807 } else if (wrlog
> delay_min_bytes
) {
808 tx_time
= MAX(zfs_delay_scale
* (wrlog
- delay_min_bytes
) /
809 (zfs_wrlog_data_max
- wrlog
), tx_time
);
815 tx_time
= MIN(tx_time
, zfs_delay_max_ns
);
817 if (now
> tx
->tx_start
+ tx_time
)
820 DTRACE_PROBE3(delay__mintime
, dmu_tx_t
*, tx
, uint64_t, dirty
,
823 mutex_enter(&dp
->dp_lock
);
824 wakeup
= MAX(tx
->tx_start
+ tx_time
, dp
->dp_last_wakeup
+ tx_time
);
825 dp
->dp_last_wakeup
= wakeup
;
826 mutex_exit(&dp
->dp_lock
);
828 zfs_sleep_until(wakeup
);
832 * This routine attempts to assign the transaction to a transaction group.
833 * To do so, we must determine if there is sufficient free space on disk.
835 * If this is a "netfree" transaction (i.e. we called dmu_tx_mark_netfree()
836 * on it), then it is assumed that there is sufficient free space,
837 * unless there's insufficient slop space in the pool (see the comment
838 * above spa_slop_shift in spa_misc.c).
840 * If it is not a "netfree" transaction, then if the data already on disk
841 * is over the allowed usage (e.g. quota), this will fail with EDQUOT or
842 * ENOSPC. Otherwise, if the current rough estimate of pending changes,
843 * plus the rough estimate of this transaction's changes, may exceed the
844 * allowed usage, then this will fail with ERESTART, which will cause the
845 * caller to wait for the pending changes to be written to disk (by waiting
846 * for the next TXG to open), and then check the space usage again.
848 * The rough estimate of pending changes is comprised of the sum of:
850 * - this transaction's holds' txh_space_towrite
852 * - dd_tempreserved[], which is the sum of in-flight transactions'
853 * holds' txh_space_towrite (i.e. those transactions that have called
854 * dmu_tx_assign() but not yet called dmu_tx_commit()).
856 * - dd_space_towrite[], which is the amount of dirtied dbufs.
858 * Note that all of these values are inflated by spa_get_worst_case_asize(),
859 * which means that we may get ERESTART well before we are actually in danger
860 * of running out of space, but this also mitigates any small inaccuracies
861 * in the rough estimate (e.g. txh_space_towrite doesn't take into account
862 * indirect blocks, and dd_space_towrite[] doesn't take into account changes
865 * Note that due to this algorithm, it is possible to exceed the allowed
866 * usage by one transaction. Also, as we approach the allowed usage,
867 * we will allow a very limited amount of changes into each TXG, thus
868 * decreasing performance.
871 dmu_tx_try_assign(dmu_tx_t
*tx
, uint64_t txg_how
)
873 spa_t
*spa
= tx
->tx_pool
->dp_spa
;
878 DMU_TX_STAT_BUMP(dmu_tx_error
);
882 if (spa_suspended(spa
)) {
883 DMU_TX_STAT_BUMP(dmu_tx_suspended
);
886 * If the user has indicated a blocking failure mode
887 * then return ERESTART which will block in dmu_tx_wait().
888 * Otherwise, return EIO so that an error can get
889 * propagated back to the VOP calls.
891 * Note that we always honor the txg_how flag regardless
892 * of the failuremode setting.
894 if (spa_get_failmode(spa
) == ZIO_FAILURE_MODE_CONTINUE
&&
895 !(txg_how
& TXG_WAIT
))
896 return (SET_ERROR(EIO
));
898 return (SET_ERROR(ERESTART
));
901 if (!tx
->tx_dirty_delayed
&&
902 dsl_pool_need_wrlog_delay(tx
->tx_pool
)) {
903 tx
->tx_wait_dirty
= B_TRUE
;
904 DMU_TX_STAT_BUMP(dmu_tx_wrlog_delay
);
905 return (SET_ERROR(ERESTART
));
908 if (!tx
->tx_dirty_delayed
&&
909 dsl_pool_need_dirty_delay(tx
->tx_pool
)) {
910 tx
->tx_wait_dirty
= B_TRUE
;
911 DMU_TX_STAT_BUMP(dmu_tx_dirty_delay
);
912 return (SET_ERROR(ERESTART
));
915 tx
->tx_txg
= txg_hold_open(tx
->tx_pool
, &tx
->tx_txgh
);
916 tx
->tx_needassign_txh
= NULL
;
919 * NB: No error returns are allowed after txg_hold_open, but
920 * before processing the dnode holds, due to the
921 * dmu_tx_unassign() logic.
924 uint64_t towrite
= 0;
926 for (dmu_tx_hold_t
*txh
= list_head(&tx
->tx_holds
); txh
!= NULL
;
927 txh
= list_next(&tx
->tx_holds
, txh
)) {
928 dnode_t
*dn
= txh
->txh_dnode
;
931 * This thread can't hold the dn_struct_rwlock
932 * while assigning the tx, because this can lead to
933 * deadlock. Specifically, if this dnode is already
934 * assigned to an earlier txg, this thread may need
935 * to wait for that txg to sync (the ERESTART case
936 * below). The other thread that has assigned this
937 * dnode to an earlier txg prevents this txg from
938 * syncing until its tx can complete (calling
939 * dmu_tx_commit()), but it may need to acquire the
940 * dn_struct_rwlock to do so (e.g. via
943 * Note that this thread can't hold the lock for
944 * read either, but the rwlock doesn't record
945 * enough information to make that assertion.
947 ASSERT(!RW_WRITE_HELD(&dn
->dn_struct_rwlock
));
949 mutex_enter(&dn
->dn_mtx
);
950 if (dn
->dn_assigned_txg
== tx
->tx_txg
- 1) {
951 mutex_exit(&dn
->dn_mtx
);
952 tx
->tx_needassign_txh
= txh
;
953 DMU_TX_STAT_BUMP(dmu_tx_group
);
954 return (SET_ERROR(ERESTART
));
956 if (dn
->dn_assigned_txg
== 0)
957 dn
->dn_assigned_txg
= tx
->tx_txg
;
958 ASSERT3U(dn
->dn_assigned_txg
, ==, tx
->tx_txg
);
959 (void) zfs_refcount_add(&dn
->dn_tx_holds
, tx
);
960 mutex_exit(&dn
->dn_mtx
);
962 towrite
+= zfs_refcount_count(&txh
->txh_space_towrite
);
963 tohold
+= zfs_refcount_count(&txh
->txh_memory_tohold
);
966 /* needed allocation: worst-case estimate of write space */
967 uint64_t asize
= spa_get_worst_case_asize(tx
->tx_pool
->dp_spa
, towrite
);
968 /* calculate memory footprint estimate */
969 uint64_t memory
= towrite
+ tohold
;
971 if (tx
->tx_dir
!= NULL
&& asize
!= 0) {
972 int err
= dsl_dir_tempreserve_space(tx
->tx_dir
, memory
,
973 asize
, tx
->tx_netfree
, &tx
->tx_tempreserve_cookie
, tx
);
978 DMU_TX_STAT_BUMP(dmu_tx_assigned
);
984 dmu_tx_unassign(dmu_tx_t
*tx
)
989 txg_rele_to_quiesce(&tx
->tx_txgh
);
992 * Walk the transaction's hold list, removing the hold on the
993 * associated dnode, and notifying waiters if the refcount drops to 0.
995 for (dmu_tx_hold_t
*txh
= list_head(&tx
->tx_holds
);
996 txh
&& txh
!= tx
->tx_needassign_txh
;
997 txh
= list_next(&tx
->tx_holds
, txh
)) {
998 dnode_t
*dn
= txh
->txh_dnode
;
1002 mutex_enter(&dn
->dn_mtx
);
1003 ASSERT3U(dn
->dn_assigned_txg
, ==, tx
->tx_txg
);
1005 if (zfs_refcount_remove(&dn
->dn_tx_holds
, tx
) == 0) {
1006 dn
->dn_assigned_txg
= 0;
1007 cv_broadcast(&dn
->dn_notxholds
);
1009 mutex_exit(&dn
->dn_mtx
);
1012 txg_rele_to_sync(&tx
->tx_txgh
);
1014 tx
->tx_lasttried_txg
= tx
->tx_txg
;
1019 * Assign tx to a transaction group; txg_how is a bitmask:
1021 * If TXG_WAIT is set and the currently open txg is full, this function
1022 * will wait until there's a new txg. This should be used when no locks
1023 * are being held. With this bit set, this function will only fail if
1024 * we're truly out of space (or over quota).
1026 * If TXG_WAIT is *not* set and we can't assign into the currently open
1027 * txg without blocking, this function will return immediately with
1028 * ERESTART. This should be used whenever locks are being held. On an
1029 * ERESTART error, the caller should drop all locks, call dmu_tx_wait(),
1032 * If TXG_NOTHROTTLE is set, this indicates that this tx should not be
1033 * delayed due on the ZFS Write Throttle (see comments in dsl_pool.c for
1034 * details on the throttle). This is used by the VFS operations, after
1035 * they have already called dmu_tx_wait() (though most likely on a
1038 * It is guaranteed that subsequent successful calls to dmu_tx_assign()
1039 * will assign the tx to monotonically increasing txgs. Of course this is
1040 * not strong monotonicity, because the same txg can be returned multiple
1041 * times in a row. This guarantee holds both for subsequent calls from
1042 * one thread and for multiple threads. For example, it is impossible to
1043 * observe the following sequence of events:
1047 * dmu_tx_assign(T1, ...)
1048 * 1 <- dmu_tx_get_txg(T1)
1049 * dmu_tx_assign(T2, ...)
1050 * 2 <- dmu_tx_get_txg(T2)
1051 * dmu_tx_assign(T3, ...)
1052 * 1 <- dmu_tx_get_txg(T3)
1055 dmu_tx_assign(dmu_tx_t
*tx
, uint64_t txg_how
)
1059 ASSERT(tx
->tx_txg
== 0);
1060 ASSERT0(txg_how
& ~(TXG_WAIT
| TXG_NOTHROTTLE
));
1061 ASSERT(!dsl_pool_sync_context(tx
->tx_pool
));
1063 /* If we might wait, we must not hold the config lock. */
1064 IMPLY((txg_how
& TXG_WAIT
), !dsl_pool_config_held(tx
->tx_pool
));
1066 if ((txg_how
& TXG_NOTHROTTLE
))
1067 tx
->tx_dirty_delayed
= B_TRUE
;
1069 while ((err
= dmu_tx_try_assign(tx
, txg_how
)) != 0) {
1070 dmu_tx_unassign(tx
);
1072 if (err
!= ERESTART
|| !(txg_how
& TXG_WAIT
))
1078 txg_rele_to_quiesce(&tx
->tx_txgh
);
1084 dmu_tx_wait(dmu_tx_t
*tx
)
1086 spa_t
*spa
= tx
->tx_pool
->dp_spa
;
1087 dsl_pool_t
*dp
= tx
->tx_pool
;
1090 ASSERT(tx
->tx_txg
== 0);
1091 ASSERT(!dsl_pool_config_held(tx
->tx_pool
));
1093 before
= gethrtime();
1095 if (tx
->tx_wait_dirty
) {
1099 * dmu_tx_try_assign() has determined that we need to wait
1100 * because we've consumed much or all of the dirty buffer
1103 mutex_enter(&dp
->dp_lock
);
1104 if (dp
->dp_dirty_total
>= zfs_dirty_data_max
)
1105 DMU_TX_STAT_BUMP(dmu_tx_dirty_over_max
);
1106 while (dp
->dp_dirty_total
>= zfs_dirty_data_max
)
1107 cv_wait(&dp
->dp_spaceavail_cv
, &dp
->dp_lock
);
1108 dirty
= dp
->dp_dirty_total
;
1109 mutex_exit(&dp
->dp_lock
);
1111 dmu_tx_delay(tx
, dirty
);
1113 tx
->tx_wait_dirty
= B_FALSE
;
1116 * Note: setting tx_dirty_delayed only has effect if the
1117 * caller used TX_WAIT. Otherwise they are going to
1118 * destroy this tx and try again. The common case,
1119 * zfs_write(), uses TX_WAIT.
1121 tx
->tx_dirty_delayed
= B_TRUE
;
1122 } else if (spa_suspended(spa
) || tx
->tx_lasttried_txg
== 0) {
1124 * If the pool is suspended we need to wait until it
1125 * is resumed. Note that it's possible that the pool
1126 * has become active after this thread has tried to
1127 * obtain a tx. If that's the case then tx_lasttried_txg
1128 * would not have been set.
1130 txg_wait_synced(dp
, spa_last_synced_txg(spa
) + 1);
1131 } else if (tx
->tx_needassign_txh
) {
1132 dnode_t
*dn
= tx
->tx_needassign_txh
->txh_dnode
;
1134 mutex_enter(&dn
->dn_mtx
);
1135 while (dn
->dn_assigned_txg
== tx
->tx_lasttried_txg
- 1)
1136 cv_wait(&dn
->dn_notxholds
, &dn
->dn_mtx
);
1137 mutex_exit(&dn
->dn_mtx
);
1138 tx
->tx_needassign_txh
= NULL
;
1141 * If we have a lot of dirty data just wait until we sync
1142 * out a TXG at which point we'll hopefully have synced
1143 * a portion of the changes.
1145 txg_wait_synced(dp
, spa_last_synced_txg(spa
) + 1);
1148 spa_tx_assign_add_nsecs(spa
, gethrtime() - before
);
1152 dmu_tx_destroy(dmu_tx_t
*tx
)
1156 while ((txh
= list_head(&tx
->tx_holds
)) != NULL
) {
1157 dnode_t
*dn
= txh
->txh_dnode
;
1159 list_remove(&tx
->tx_holds
, txh
);
1160 zfs_refcount_destroy_many(&txh
->txh_space_towrite
,
1161 zfs_refcount_count(&txh
->txh_space_towrite
));
1162 zfs_refcount_destroy_many(&txh
->txh_memory_tohold
,
1163 zfs_refcount_count(&txh
->txh_memory_tohold
));
1164 kmem_free(txh
, sizeof (dmu_tx_hold_t
));
1169 list_destroy(&tx
->tx_callbacks
);
1170 list_destroy(&tx
->tx_holds
);
1171 kmem_free(tx
, sizeof (dmu_tx_t
));
1175 dmu_tx_commit(dmu_tx_t
*tx
)
1177 ASSERT(tx
->tx_txg
!= 0);
1180 * Go through the transaction's hold list and remove holds on
1181 * associated dnodes, notifying waiters if no holds remain.
1183 for (dmu_tx_hold_t
*txh
= list_head(&tx
->tx_holds
); txh
!= NULL
;
1184 txh
= list_next(&tx
->tx_holds
, txh
)) {
1185 dnode_t
*dn
= txh
->txh_dnode
;
1190 mutex_enter(&dn
->dn_mtx
);
1191 ASSERT3U(dn
->dn_assigned_txg
, ==, tx
->tx_txg
);
1193 if (zfs_refcount_remove(&dn
->dn_tx_holds
, tx
) == 0) {
1194 dn
->dn_assigned_txg
= 0;
1195 cv_broadcast(&dn
->dn_notxholds
);
1197 mutex_exit(&dn
->dn_mtx
);
1200 if (tx
->tx_tempreserve_cookie
)
1201 dsl_dir_tempreserve_clear(tx
->tx_tempreserve_cookie
, tx
);
1203 if (!list_is_empty(&tx
->tx_callbacks
))
1204 txg_register_callbacks(&tx
->tx_txgh
, &tx
->tx_callbacks
);
1206 if (tx
->tx_anyobj
== FALSE
)
1207 txg_rele_to_sync(&tx
->tx_txgh
);
1213 dmu_tx_abort(dmu_tx_t
*tx
)
1215 ASSERT(tx
->tx_txg
== 0);
1218 * Call any registered callbacks with an error code.
1220 if (!list_is_empty(&tx
->tx_callbacks
))
1221 dmu_tx_do_callbacks(&tx
->tx_callbacks
, SET_ERROR(ECANCELED
));
1227 dmu_tx_get_txg(dmu_tx_t
*tx
)
1229 ASSERT(tx
->tx_txg
!= 0);
1230 return (tx
->tx_txg
);
1234 dmu_tx_pool(dmu_tx_t
*tx
)
1236 ASSERT(tx
->tx_pool
!= NULL
);
1237 return (tx
->tx_pool
);
1241 dmu_tx_callback_register(dmu_tx_t
*tx
, dmu_tx_callback_func_t
*func
, void *data
)
1243 dmu_tx_callback_t
*dcb
;
1245 dcb
= kmem_alloc(sizeof (dmu_tx_callback_t
), KM_SLEEP
);
1247 dcb
->dcb_func
= func
;
1248 dcb
->dcb_data
= data
;
1250 list_insert_tail(&tx
->tx_callbacks
, dcb
);
1254 * Call all the commit callbacks on a list, with a given error code.
1257 dmu_tx_do_callbacks(list_t
*cb_list
, int error
)
1259 dmu_tx_callback_t
*dcb
;
1261 while ((dcb
= list_tail(cb_list
)) != NULL
) {
1262 list_remove(cb_list
, dcb
);
1263 dcb
->dcb_func(dcb
->dcb_data
, error
);
1264 kmem_free(dcb
, sizeof (dmu_tx_callback_t
));
1269 * Interface to hold a bunch of attributes.
1270 * used for creating new files.
1271 * attrsize is the total size of all attributes
1272 * to be added during object creation
1274 * For updating/adding a single attribute dmu_tx_hold_sa() should be used.
1278 * hold necessary attribute name for attribute registration.
1279 * should be a very rare case where this is needed. If it does
1280 * happen it would only happen on the first write to the file system.
1283 dmu_tx_sa_registration_hold(sa_os_t
*sa
, dmu_tx_t
*tx
)
1285 if (!sa
->sa_need_attr_registration
)
1288 for (int i
= 0; i
!= sa
->sa_num_attrs
; i
++) {
1289 if (!sa
->sa_attr_table
[i
].sa_registered
) {
1290 if (sa
->sa_reg_attr_obj
)
1291 dmu_tx_hold_zap(tx
, sa
->sa_reg_attr_obj
,
1292 B_TRUE
, sa
->sa_attr_table
[i
].sa_name
);
1294 dmu_tx_hold_zap(tx
, DMU_NEW_OBJECT
,
1295 B_TRUE
, sa
->sa_attr_table
[i
].sa_name
);
1301 dmu_tx_hold_spill(dmu_tx_t
*tx
, uint64_t object
)
1305 txh
= dmu_tx_hold_object_impl(tx
, tx
->tx_objset
, object
,
1308 (void) zfs_refcount_add_many(&txh
->txh_space_towrite
,
1309 SPA_OLD_MAXBLOCKSIZE
, FTAG
);
1313 dmu_tx_hold_sa_create(dmu_tx_t
*tx
, int attrsize
)
1315 sa_os_t
*sa
= tx
->tx_objset
->os_sa
;
1317 dmu_tx_hold_bonus(tx
, DMU_NEW_OBJECT
);
1319 if (tx
->tx_objset
->os_sa
->sa_master_obj
== 0)
1322 if (tx
->tx_objset
->os_sa
->sa_layout_attr_obj
) {
1323 dmu_tx_hold_zap(tx
, sa
->sa_layout_attr_obj
, B_TRUE
, NULL
);
1325 dmu_tx_hold_zap(tx
, sa
->sa_master_obj
, B_TRUE
, SA_LAYOUTS
);
1326 dmu_tx_hold_zap(tx
, sa
->sa_master_obj
, B_TRUE
, SA_REGISTRY
);
1327 dmu_tx_hold_zap(tx
, DMU_NEW_OBJECT
, B_TRUE
, NULL
);
1328 dmu_tx_hold_zap(tx
, DMU_NEW_OBJECT
, B_TRUE
, NULL
);
1331 dmu_tx_sa_registration_hold(sa
, tx
);
1333 if (attrsize
<= DN_OLD_MAX_BONUSLEN
&& !sa
->sa_force_spill
)
1336 (void) dmu_tx_hold_object_impl(tx
, tx
->tx_objset
, DMU_NEW_OBJECT
,
1343 * dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size)
1345 * variable_size is the total size of all variable sized attributes
1346 * passed to this function. It is not the total size of all
1347 * variable size attributes that *may* exist on this object.
1350 dmu_tx_hold_sa(dmu_tx_t
*tx
, sa_handle_t
*hdl
, boolean_t may_grow
)
1353 sa_os_t
*sa
= tx
->tx_objset
->os_sa
;
1355 ASSERT(hdl
!= NULL
);
1357 object
= sa_handle_object(hdl
);
1359 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)hdl
->sa_bonus
;
1361 dmu_tx_hold_bonus_by_dnode(tx
, DB_DNODE(db
));
1364 if (tx
->tx_objset
->os_sa
->sa_master_obj
== 0)
1367 if (tx
->tx_objset
->os_sa
->sa_reg_attr_obj
== 0 ||
1368 tx
->tx_objset
->os_sa
->sa_layout_attr_obj
== 0) {
1369 dmu_tx_hold_zap(tx
, sa
->sa_master_obj
, B_TRUE
, SA_LAYOUTS
);
1370 dmu_tx_hold_zap(tx
, sa
->sa_master_obj
, B_TRUE
, SA_REGISTRY
);
1371 dmu_tx_hold_zap(tx
, DMU_NEW_OBJECT
, B_TRUE
, NULL
);
1372 dmu_tx_hold_zap(tx
, DMU_NEW_OBJECT
, B_TRUE
, NULL
);
1375 dmu_tx_sa_registration_hold(sa
, tx
);
1377 if (may_grow
&& tx
->tx_objset
->os_sa
->sa_layout_attr_obj
)
1378 dmu_tx_hold_zap(tx
, sa
->sa_layout_attr_obj
, B_TRUE
, NULL
);
1380 if (sa
->sa_force_spill
|| may_grow
|| hdl
->sa_spill
) {
1381 ASSERT(tx
->tx_txg
== 0);
1382 dmu_tx_hold_spill(tx
, object
);
1388 if (dn
->dn_have_spill
) {
1389 ASSERT(tx
->tx_txg
== 0);
1390 dmu_tx_hold_spill(tx
, object
);
1399 dmu_tx_ksp
= kstat_create("zfs", 0, "dmu_tx", "misc",
1400 KSTAT_TYPE_NAMED
, sizeof (dmu_tx_stats
) / sizeof (kstat_named_t
),
1401 KSTAT_FLAG_VIRTUAL
);
1403 if (dmu_tx_ksp
!= NULL
) {
1404 dmu_tx_ksp
->ks_data
= &dmu_tx_stats
;
1405 kstat_install(dmu_tx_ksp
);
1412 if (dmu_tx_ksp
!= NULL
) {
1413 kstat_delete(dmu_tx_ksp
);
1418 #if defined(_KERNEL)
1419 EXPORT_SYMBOL(dmu_tx_create
);
1420 EXPORT_SYMBOL(dmu_tx_hold_write
);
1421 EXPORT_SYMBOL(dmu_tx_hold_write_by_dnode
);
1422 EXPORT_SYMBOL(dmu_tx_hold_free
);
1423 EXPORT_SYMBOL(dmu_tx_hold_free_by_dnode
);
1424 EXPORT_SYMBOL(dmu_tx_hold_zap
);
1425 EXPORT_SYMBOL(dmu_tx_hold_zap_by_dnode
);
1426 EXPORT_SYMBOL(dmu_tx_hold_bonus
);
1427 EXPORT_SYMBOL(dmu_tx_hold_bonus_by_dnode
);
1428 EXPORT_SYMBOL(dmu_tx_abort
);
1429 EXPORT_SYMBOL(dmu_tx_assign
);
1430 EXPORT_SYMBOL(dmu_tx_wait
);
1431 EXPORT_SYMBOL(dmu_tx_commit
);
1432 EXPORT_SYMBOL(dmu_tx_mark_netfree
);
1433 EXPORT_SYMBOL(dmu_tx_get_txg
);
1434 EXPORT_SYMBOL(dmu_tx_callback_register
);
1435 EXPORT_SYMBOL(dmu_tx_do_callbacks
);
1436 EXPORT_SYMBOL(dmu_tx_hold_spill
);
1437 EXPORT_SYMBOL(dmu_tx_hold_sa_create
);
1438 EXPORT_SYMBOL(dmu_tx_hold_sa
);