4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
24 * Copyright 2016 Gary Mills
25 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
26 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
27 * Copyright 2019 Joyent, Inc.
30 #include <sys/dsl_scan.h>
31 #include <sys/dsl_pool.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_prop.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_synctask.h>
36 #include <sys/dnode.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dmu_objset.h>
42 #include <sys/zfs_context.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/zfs_znode.h>
45 #include <sys/spa_impl.h>
46 #include <sys/vdev_impl.h>
47 #include <sys/zil_impl.h>
48 #include <sys/zio_checksum.h>
51 #include <sys/sa_impl.h>
52 #include <sys/zfeature.h>
54 #include <sys/range_tree.h>
56 #include <sys/zfs_vfsops.h>
60 * Grand theory statement on scan queue sorting
62 * Scanning is implemented by recursively traversing all indirection levels
63 * in an object and reading all blocks referenced from said objects. This
64 * results in us approximately traversing the object from lowest logical
65 * offset to the highest. For best performance, we would want the logical
66 * blocks to be physically contiguous. However, this is frequently not the
67 * case with pools given the allocation patterns of copy-on-write filesystems.
68 * So instead, we put the I/Os into a reordering queue and issue them in a
69 * way that will most benefit physical disks (LBA-order).
73 * Ideally, we would want to scan all metadata and queue up all block I/O
74 * prior to starting to issue it, because that allows us to do an optimal
75 * sorting job. This can however consume large amounts of memory. Therefore
76 * we continuously monitor the size of the queues and constrain them to 5%
77 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
78 * limit, we clear out a few of the largest extents at the head of the queues
79 * to make room for more scanning. Hopefully, these extents will be fairly
80 * large and contiguous, allowing us to approach sequential I/O throughput
81 * even without a fully sorted tree.
83 * Metadata scanning takes place in dsl_scan_visit(), which is called from
84 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all
85 * metadata on the pool, or we need to make room in memory because our
86 * queues are too large, dsl_scan_visit() is postponed and
87 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
88 * that metadata scanning and queued I/O issuing are mutually exclusive. This
89 * allows us to provide maximum sequential I/O throughput for the majority of
90 * I/O's issued since sequential I/O performance is significantly negatively
91 * impacted if it is interleaved with random I/O.
93 * Implementation Notes
95 * One side effect of the queued scanning algorithm is that the scanning code
96 * needs to be notified whenever a block is freed. This is needed to allow
97 * the scanning code to remove these I/Os from the issuing queue. Additionally,
98 * we do not attempt to queue gang blocks to be issued sequentially since this
99 * is very hard to do and would have an extremely limited performance benefit.
100 * Instead, we simply issue gang I/Os as soon as we find them using the legacy
103 * Backwards compatibility
105 * This new algorithm is backwards compatible with the legacy on-disk data
106 * structures (and therefore does not require a new feature flag).
107 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
108 * will stop scanning metadata (in logical order) and wait for all outstanding
109 * sorted I/O to complete. Once this is done, we write out a checkpoint
110 * bookmark, indicating that we have scanned everything logically before it.
111 * If the pool is imported on a machine without the new sorting algorithm,
112 * the scan simply resumes from the last checkpoint using the legacy algorithm.
115 typedef int (scan_cb_t
)(dsl_pool_t
*, const blkptr_t
*,
116 const zbookmark_phys_t
*);
118 static scan_cb_t dsl_scan_scrub_cb
;
120 static int scan_ds_queue_compare(const void *a
, const void *b
);
121 static int scan_prefetch_queue_compare(const void *a
, const void *b
);
122 static void scan_ds_queue_clear(dsl_scan_t
*scn
);
123 static void scan_ds_prefetch_queue_clear(dsl_scan_t
*scn
);
124 static boolean_t
scan_ds_queue_contains(dsl_scan_t
*scn
, uint64_t dsobj
,
126 static void scan_ds_queue_insert(dsl_scan_t
*scn
, uint64_t dsobj
, uint64_t txg
);
127 static void scan_ds_queue_remove(dsl_scan_t
*scn
, uint64_t dsobj
);
128 static void scan_ds_queue_sync(dsl_scan_t
*scn
, dmu_tx_t
*tx
);
129 static uint64_t dsl_scan_count_data_disks(vdev_t
*vd
);
131 extern uint_t zfs_vdev_async_write_active_min_dirty_percent
;
132 static int zfs_scan_blkstats
= 0;
135 * By default zfs will check to ensure it is not over the hard memory
136 * limit before each txg. If finer-grained control of this is needed
137 * this value can be set to 1 to enable checking before scanning each
140 static int zfs_scan_strict_mem_lim
= B_FALSE
;
143 * Maximum number of parallelly executed bytes per leaf vdev. We attempt
144 * to strike a balance here between keeping the vdev queues full of I/Os
145 * at all times and not overflowing the queues to cause long latency,
146 * which would cause long txg sync times. No matter what, we will not
147 * overload the drives with I/O, since that is protected by
148 * zfs_vdev_scrub_max_active.
150 static unsigned long zfs_scan_vdev_limit
= 4 << 20;
152 static uint_t zfs_scan_issue_strategy
= 0;
154 /* don't queue & sort zios, go direct */
155 static int zfs_scan_legacy
= B_FALSE
;
156 static unsigned long zfs_scan_max_ext_gap
= 2 << 20; /* in bytes */
159 * fill_weight is non-tunable at runtime, so we copy it at module init from
160 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
161 * break queue sorting.
163 static uint_t zfs_scan_fill_weight
= 3;
164 static uint64_t fill_weight
;
166 /* See dsl_scan_should_clear() for details on the memory limit tunables */
167 static const uint64_t zfs_scan_mem_lim_min
= 16 << 20; /* bytes */
168 static const uint64_t zfs_scan_mem_lim_soft_max
= 128 << 20; /* bytes */
171 /* fraction of physmem */
172 static uint_t zfs_scan_mem_lim_fact
= 20;
174 /* fraction of mem lim above */
175 static uint_t zfs_scan_mem_lim_soft_fact
= 20;
177 /* minimum milliseconds to scrub per txg */
178 static uint_t zfs_scrub_min_time_ms
= 1000;
180 /* minimum milliseconds to obsolete per txg */
181 static uint_t zfs_obsolete_min_time_ms
= 500;
183 /* minimum milliseconds to free per txg */
184 static uint_t zfs_free_min_time_ms
= 1000;
186 /* minimum milliseconds to resilver per txg */
187 static uint_t zfs_resilver_min_time_ms
= 3000;
189 static uint_t zfs_scan_checkpoint_intval
= 7200; /* in seconds */
190 int zfs_scan_suspend_progress
= 0; /* set to prevent scans from progressing */
191 static int zfs_no_scrub_io
= B_FALSE
; /* set to disable scrub i/o */
192 static int zfs_no_scrub_prefetch
= B_FALSE
; /* set to disable scrub prefetch */
193 static const enum ddt_class zfs_scrub_ddt_class_max
= DDT_CLASS_DUPLICATE
;
194 /* max number of blocks to free in a single TXG */
195 static unsigned long zfs_async_block_max_blocks
= ULONG_MAX
;
196 /* max number of dedup blocks to free in a single TXG */
197 static unsigned long zfs_max_async_dedup_frees
= 100000;
199 /* set to disable resilver deferring */
200 static int zfs_resilver_disable_defer
= B_FALSE
;
203 * We wait a few txgs after importing a pool to begin scanning so that
204 * the import / mounting code isn't held up by scrub / resilver IO.
205 * Unfortunately, it is a bit difficult to determine exactly how long
206 * this will take since userspace will trigger fs mounts asynchronously
207 * and the kernel will create zvol minors asynchronously. As a result,
208 * the value provided here is a bit arbitrary, but represents a
209 * reasonable estimate of how many txgs it will take to finish fully
212 #define SCAN_IMPORT_WAIT_TXGS 5
214 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \
215 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
216 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
219 * Enable/disable the processing of the free_bpobj object.
221 static int zfs_free_bpobj_enabled
= 1;
223 /* the order has to match pool_scan_type */
224 static scan_cb_t
*scan_funcs
[POOL_SCAN_FUNCS
] = {
226 dsl_scan_scrub_cb
, /* POOL_SCAN_SCRUB */
227 dsl_scan_scrub_cb
, /* POOL_SCAN_RESILVER */
230 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */
238 * This controls what conditions are placed on dsl_scan_sync_state():
239 * SYNC_OPTIONAL) write out scn_phys iff scn_queues_pending == 0
240 * SYNC_MANDATORY) write out scn_phys always. scn_queues_pending must be 0.
241 * SYNC_CACHED) if scn_queues_pending == 0, write out scn_phys. Otherwise
242 * write out the scn_phys_cached version.
243 * See dsl_scan_sync_state for details.
252 * This struct represents the minimum information needed to reconstruct a
253 * zio for sequential scanning. This is useful because many of these will
254 * accumulate in the sequential IO queues before being issued, so saving
255 * memory matters here.
257 typedef struct scan_io
{
258 /* fields from blkptr_t */
259 uint64_t sio_blk_prop
;
260 uint64_t sio_phys_birth
;
262 zio_cksum_t sio_cksum
;
263 uint32_t sio_nr_dvas
;
265 /* fields from zio_t */
267 zbookmark_phys_t sio_zb
;
269 /* members for queue sorting */
271 avl_node_t sio_addr_node
; /* link into issuing queue */
272 list_node_t sio_list_node
; /* link for issuing to disk */
276 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
277 * depending on how many were in the original bp. Only the
278 * first DVA is really used for sorting and issuing purposes.
279 * The other DVAs (if provided) simply exist so that the zio
280 * layer can find additional copies to repair from in the
281 * event of an error. This array must go at the end of the
282 * struct to allow this for the variable number of elements.
287 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
288 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
289 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0])
290 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0])
291 #define SIO_GET_END_OFFSET(sio) \
292 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
293 #define SIO_GET_MUSED(sio) \
294 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
296 struct dsl_scan_io_queue
{
297 dsl_scan_t
*q_scn
; /* associated dsl_scan_t */
298 vdev_t
*q_vd
; /* top-level vdev that this queue represents */
299 zio_t
*q_zio
; /* scn_zio_root child for waiting on IO */
301 /* trees used for sorting I/Os and extents of I/Os */
302 range_tree_t
*q_exts_by_addr
;
303 zfs_btree_t q_exts_by_size
;
304 avl_tree_t q_sios_by_addr
;
305 uint64_t q_sio_memused
;
306 uint64_t q_last_ext_addr
;
308 /* members for zio rate limiting */
309 uint64_t q_maxinflight_bytes
;
310 uint64_t q_inflight_bytes
;
311 kcondvar_t q_zio_cv
; /* used under vd->vdev_scan_io_queue_lock */
313 /* per txg statistics */
314 uint64_t q_total_seg_size_this_txg
;
315 uint64_t q_segs_this_txg
;
316 uint64_t q_total_zio_size_this_txg
;
317 uint64_t q_zios_this_txg
;
320 /* private data for dsl_scan_prefetch_cb() */
321 typedef struct scan_prefetch_ctx
{
322 zfs_refcount_t spc_refcnt
; /* refcount for memory management */
323 dsl_scan_t
*spc_scn
; /* dsl_scan_t for the pool */
324 boolean_t spc_root
; /* is this prefetch for an objset? */
325 uint8_t spc_indblkshift
; /* dn_indblkshift of current dnode */
326 uint16_t spc_datablkszsec
; /* dn_idatablkszsec of current dnode */
327 } scan_prefetch_ctx_t
;
329 /* private data for dsl_scan_prefetch() */
330 typedef struct scan_prefetch_issue_ctx
{
331 avl_node_t spic_avl_node
; /* link into scn->scn_prefetch_queue */
332 scan_prefetch_ctx_t
*spic_spc
; /* spc for the callback */
333 blkptr_t spic_bp
; /* bp to prefetch */
334 zbookmark_phys_t spic_zb
; /* bookmark to prefetch */
335 } scan_prefetch_issue_ctx_t
;
337 static void scan_exec_io(dsl_pool_t
*dp
, const blkptr_t
*bp
, int zio_flags
,
338 const zbookmark_phys_t
*zb
, dsl_scan_io_queue_t
*queue
);
339 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t
*queue
,
342 static dsl_scan_io_queue_t
*scan_io_queue_create(vdev_t
*vd
);
343 static void scan_io_queues_destroy(dsl_scan_t
*scn
);
345 static kmem_cache_t
*sio_cache
[SPA_DVAS_PER_BP
];
347 /* sio->sio_nr_dvas must be set so we know which cache to free from */
349 sio_free(scan_io_t
*sio
)
351 ASSERT3U(sio
->sio_nr_dvas
, >, 0);
352 ASSERT3U(sio
->sio_nr_dvas
, <=, SPA_DVAS_PER_BP
);
354 kmem_cache_free(sio_cache
[sio
->sio_nr_dvas
- 1], sio
);
357 /* It is up to the caller to set sio->sio_nr_dvas for freeing */
359 sio_alloc(unsigned short nr_dvas
)
361 ASSERT3U(nr_dvas
, >, 0);
362 ASSERT3U(nr_dvas
, <=, SPA_DVAS_PER_BP
);
364 return (kmem_cache_alloc(sio_cache
[nr_dvas
- 1], KM_SLEEP
));
371 * This is used in ext_size_compare() to weight segments
372 * based on how sparse they are. This cannot be changed
373 * mid-scan and the tree comparison functions don't currently
374 * have a mechanism for passing additional context to the
375 * compare functions. Thus we store this value globally and
376 * we only allow it to be set at module initialization time
378 fill_weight
= zfs_scan_fill_weight
;
380 for (int i
= 0; i
< SPA_DVAS_PER_BP
; i
++) {
383 (void) snprintf(name
, sizeof (name
), "sio_cache_%d", i
);
384 sio_cache
[i
] = kmem_cache_create(name
,
385 (sizeof (scan_io_t
) + ((i
+ 1) * sizeof (dva_t
))),
386 0, NULL
, NULL
, NULL
, NULL
, NULL
, 0);
393 for (int i
= 0; i
< SPA_DVAS_PER_BP
; i
++) {
394 kmem_cache_destroy(sio_cache
[i
]);
398 static inline boolean_t
399 dsl_scan_is_running(const dsl_scan_t
*scn
)
401 return (scn
->scn_phys
.scn_state
== DSS_SCANNING
);
405 dsl_scan_resilvering(dsl_pool_t
*dp
)
407 return (dsl_scan_is_running(dp
->dp_scan
) &&
408 dp
->dp_scan
->scn_phys
.scn_func
== POOL_SCAN_RESILVER
);
412 sio2bp(const scan_io_t
*sio
, blkptr_t
*bp
)
414 memset(bp
, 0, sizeof (*bp
));
415 bp
->blk_prop
= sio
->sio_blk_prop
;
416 bp
->blk_phys_birth
= sio
->sio_phys_birth
;
417 bp
->blk_birth
= sio
->sio_birth
;
418 bp
->blk_fill
= 1; /* we always only work with data pointers */
419 bp
->blk_cksum
= sio
->sio_cksum
;
421 ASSERT3U(sio
->sio_nr_dvas
, >, 0);
422 ASSERT3U(sio
->sio_nr_dvas
, <=, SPA_DVAS_PER_BP
);
424 memcpy(bp
->blk_dva
, sio
->sio_dva
, sio
->sio_nr_dvas
* sizeof (dva_t
));
428 bp2sio(const blkptr_t
*bp
, scan_io_t
*sio
, int dva_i
)
430 sio
->sio_blk_prop
= bp
->blk_prop
;
431 sio
->sio_phys_birth
= bp
->blk_phys_birth
;
432 sio
->sio_birth
= bp
->blk_birth
;
433 sio
->sio_cksum
= bp
->blk_cksum
;
434 sio
->sio_nr_dvas
= BP_GET_NDVAS(bp
);
437 * Copy the DVAs to the sio. We need all copies of the block so
438 * that the self healing code can use the alternate copies if the
439 * first is corrupted. We want the DVA at index dva_i to be first
440 * in the sio since this is the primary one that we want to issue.
442 for (int i
= 0, j
= dva_i
; i
< sio
->sio_nr_dvas
; i
++, j
++) {
443 sio
->sio_dva
[i
] = bp
->blk_dva
[j
% sio
->sio_nr_dvas
];
448 dsl_scan_init(dsl_pool_t
*dp
, uint64_t txg
)
452 spa_t
*spa
= dp
->dp_spa
;
455 scn
= dp
->dp_scan
= kmem_zalloc(sizeof (dsl_scan_t
), KM_SLEEP
);
459 * It's possible that we're resuming a scan after a reboot so
460 * make sure that the scan_async_destroying flag is initialized
463 ASSERT(!scn
->scn_async_destroying
);
464 scn
->scn_async_destroying
= spa_feature_is_active(dp
->dp_spa
,
465 SPA_FEATURE_ASYNC_DESTROY
);
468 * Calculate the max number of in-flight bytes for pool-wide
469 * scanning operations (minimum 1MB). Limits for the issuing
470 * phase are done per top-level vdev and are handled separately.
472 scn
->scn_maxinflight_bytes
= MAX(zfs_scan_vdev_limit
*
473 dsl_scan_count_data_disks(spa
->spa_root_vdev
), 1ULL << 20);
475 avl_create(&scn
->scn_queue
, scan_ds_queue_compare
, sizeof (scan_ds_t
),
476 offsetof(scan_ds_t
, sds_node
));
477 avl_create(&scn
->scn_prefetch_queue
, scan_prefetch_queue_compare
,
478 sizeof (scan_prefetch_issue_ctx_t
),
479 offsetof(scan_prefetch_issue_ctx_t
, spic_avl_node
));
481 err
= zap_lookup(dp
->dp_meta_objset
, DMU_POOL_DIRECTORY_OBJECT
,
482 "scrub_func", sizeof (uint64_t), 1, &f
);
485 * There was an old-style scrub in progress. Restart a
486 * new-style scrub from the beginning.
488 scn
->scn_restart_txg
= txg
;
489 zfs_dbgmsg("old-style scrub was in progress for %s; "
490 "restarting new-style scrub in txg %llu",
492 (longlong_t
)scn
->scn_restart_txg
);
495 * Load the queue obj from the old location so that it
496 * can be freed by dsl_scan_done().
498 (void) zap_lookup(dp
->dp_meta_objset
, DMU_POOL_DIRECTORY_OBJECT
,
499 "scrub_queue", sizeof (uint64_t), 1,
500 &scn
->scn_phys
.scn_queue_obj
);
502 err
= zap_lookup(dp
->dp_meta_objset
, DMU_POOL_DIRECTORY_OBJECT
,
503 DMU_POOL_SCAN
, sizeof (uint64_t), SCAN_PHYS_NUMINTS
,
506 * Detect if the pool contains the signature of #2094. If it
507 * does properly update the scn->scn_phys structure and notify
508 * the administrator by setting an errata for the pool.
510 if (err
== EOVERFLOW
) {
511 uint64_t zaptmp
[SCAN_PHYS_NUMINTS
+ 1];
512 VERIFY3S(SCAN_PHYS_NUMINTS
, ==, 24);
513 VERIFY3S(offsetof(dsl_scan_phys_t
, scn_flags
), ==,
514 (23 * sizeof (uint64_t)));
516 err
= zap_lookup(dp
->dp_meta_objset
,
517 DMU_POOL_DIRECTORY_OBJECT
, DMU_POOL_SCAN
,
518 sizeof (uint64_t), SCAN_PHYS_NUMINTS
+ 1, &zaptmp
);
520 uint64_t overflow
= zaptmp
[SCAN_PHYS_NUMINTS
];
522 if (overflow
& ~DSL_SCAN_FLAGS_MASK
||
523 scn
->scn_async_destroying
) {
525 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY
;
529 memcpy(&scn
->scn_phys
, zaptmp
,
530 SCAN_PHYS_NUMINTS
* sizeof (uint64_t));
531 scn
->scn_phys
.scn_flags
= overflow
;
533 /* Required scrub already in progress. */
534 if (scn
->scn_phys
.scn_state
== DSS_FINISHED
||
535 scn
->scn_phys
.scn_state
== DSS_CANCELED
)
537 ZPOOL_ERRATA_ZOL_2094_SCRUB
;
547 * We might be restarting after a reboot, so jump the issued
548 * counter to how far we've scanned. We know we're consistent
551 scn
->scn_issued_before_pass
= scn
->scn_phys
.scn_examined
;
553 if (dsl_scan_is_running(scn
) &&
554 spa_prev_software_version(dp
->dp_spa
) < SPA_VERSION_SCAN
) {
556 * A new-type scrub was in progress on an old
557 * pool, and the pool was accessed by old
558 * software. Restart from the beginning, since
559 * the old software may have changed the pool in
562 scn
->scn_restart_txg
= txg
;
563 zfs_dbgmsg("new-style scrub for %s was modified "
564 "by old software; restarting in txg %llu",
566 (longlong_t
)scn
->scn_restart_txg
);
567 } else if (dsl_scan_resilvering(dp
)) {
569 * If a resilver is in progress and there are already
570 * errors, restart it instead of finishing this scan and
571 * then restarting it. If there haven't been any errors
572 * then remember that the incore DTL is valid.
574 if (scn
->scn_phys
.scn_errors
> 0) {
575 scn
->scn_restart_txg
= txg
;
576 zfs_dbgmsg("resilver can't excise DTL_MISSING "
577 "when finished; restarting on %s in txg "
580 (u_longlong_t
)scn
->scn_restart_txg
);
582 /* it's safe to excise DTL when finished */
583 spa
->spa_scrub_started
= B_TRUE
;
588 memcpy(&scn
->scn_phys_cached
, &scn
->scn_phys
, sizeof (scn
->scn_phys
));
590 /* reload the queue into the in-core state */
591 if (scn
->scn_phys
.scn_queue_obj
!= 0) {
595 for (zap_cursor_init(&zc
, dp
->dp_meta_objset
,
596 scn
->scn_phys
.scn_queue_obj
);
597 zap_cursor_retrieve(&zc
, &za
) == 0;
598 (void) zap_cursor_advance(&zc
)) {
599 scan_ds_queue_insert(scn
,
600 zfs_strtonum(za
.za_name
, NULL
),
601 za
.za_first_integer
);
603 zap_cursor_fini(&zc
);
606 spa_scan_stat_init(spa
);
611 dsl_scan_fini(dsl_pool_t
*dp
)
613 if (dp
->dp_scan
!= NULL
) {
614 dsl_scan_t
*scn
= dp
->dp_scan
;
616 if (scn
->scn_taskq
!= NULL
)
617 taskq_destroy(scn
->scn_taskq
);
619 scan_ds_queue_clear(scn
);
620 avl_destroy(&scn
->scn_queue
);
621 scan_ds_prefetch_queue_clear(scn
);
622 avl_destroy(&scn
->scn_prefetch_queue
);
624 kmem_free(dp
->dp_scan
, sizeof (dsl_scan_t
));
630 dsl_scan_restarting(dsl_scan_t
*scn
, dmu_tx_t
*tx
)
632 return (scn
->scn_restart_txg
!= 0 &&
633 scn
->scn_restart_txg
<= tx
->tx_txg
);
637 dsl_scan_resilver_scheduled(dsl_pool_t
*dp
)
639 return ((dp
->dp_scan
&& dp
->dp_scan
->scn_restart_txg
!= 0) ||
640 (spa_async_tasks(dp
->dp_spa
) & SPA_ASYNC_RESILVER
));
644 dsl_scan_scrubbing(const dsl_pool_t
*dp
)
646 dsl_scan_phys_t
*scn_phys
= &dp
->dp_scan
->scn_phys
;
648 return (scn_phys
->scn_state
== DSS_SCANNING
&&
649 scn_phys
->scn_func
== POOL_SCAN_SCRUB
);
653 dsl_scan_is_paused_scrub(const dsl_scan_t
*scn
)
655 return (dsl_scan_scrubbing(scn
->scn_dp
) &&
656 scn
->scn_phys
.scn_flags
& DSF_SCRUB_PAUSED
);
660 * Writes out a persistent dsl_scan_phys_t record to the pool directory.
661 * Because we can be running in the block sorting algorithm, we do not always
662 * want to write out the record, only when it is "safe" to do so. This safety
663 * condition is achieved by making sure that the sorting queues are empty
664 * (scn_queues_pending == 0). When this condition is not true, the sync'd state
665 * is inconsistent with how much actual scanning progress has been made. The
666 * kind of sync to be performed is specified by the sync_type argument. If the
667 * sync is optional, we only sync if the queues are empty. If the sync is
668 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The
669 * third possible state is a "cached" sync. This is done in response to:
670 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
671 * destroyed, so we wouldn't be able to restart scanning from it.
672 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
673 * superseded by a newer snapshot.
674 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
675 * swapped with its clone.
676 * In all cases, a cached sync simply rewrites the last record we've written,
677 * just slightly modified. For the modifications that are performed to the
678 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
679 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
682 dsl_scan_sync_state(dsl_scan_t
*scn
, dmu_tx_t
*tx
, state_sync_type_t sync_type
)
685 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
687 ASSERT(sync_type
!= SYNC_MANDATORY
|| scn
->scn_queues_pending
== 0);
688 if (scn
->scn_queues_pending
== 0) {
689 for (i
= 0; i
< spa
->spa_root_vdev
->vdev_children
; i
++) {
690 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[i
];
691 dsl_scan_io_queue_t
*q
= vd
->vdev_scan_io_queue
;
696 mutex_enter(&vd
->vdev_scan_io_queue_lock
);
697 ASSERT3P(avl_first(&q
->q_sios_by_addr
), ==, NULL
);
698 ASSERT3P(zfs_btree_first(&q
->q_exts_by_size
, NULL
), ==,
700 ASSERT3P(range_tree_first(q
->q_exts_by_addr
), ==, NULL
);
701 mutex_exit(&vd
->vdev_scan_io_queue_lock
);
704 if (scn
->scn_phys
.scn_queue_obj
!= 0)
705 scan_ds_queue_sync(scn
, tx
);
706 VERIFY0(zap_update(scn
->scn_dp
->dp_meta_objset
,
707 DMU_POOL_DIRECTORY_OBJECT
,
708 DMU_POOL_SCAN
, sizeof (uint64_t), SCAN_PHYS_NUMINTS
,
709 &scn
->scn_phys
, tx
));
710 memcpy(&scn
->scn_phys_cached
, &scn
->scn_phys
,
711 sizeof (scn
->scn_phys
));
713 if (scn
->scn_checkpointing
)
714 zfs_dbgmsg("finish scan checkpoint for %s",
717 scn
->scn_checkpointing
= B_FALSE
;
718 scn
->scn_last_checkpoint
= ddi_get_lbolt();
719 } else if (sync_type
== SYNC_CACHED
) {
720 VERIFY0(zap_update(scn
->scn_dp
->dp_meta_objset
,
721 DMU_POOL_DIRECTORY_OBJECT
,
722 DMU_POOL_SCAN
, sizeof (uint64_t), SCAN_PHYS_NUMINTS
,
723 &scn
->scn_phys_cached
, tx
));
728 dsl_scan_setup_check(void *arg
, dmu_tx_t
*tx
)
731 dsl_scan_t
*scn
= dmu_tx_pool(tx
)->dp_scan
;
732 vdev_t
*rvd
= scn
->scn_dp
->dp_spa
->spa_root_vdev
;
734 if (dsl_scan_is_running(scn
) || vdev_rebuild_active(rvd
))
735 return (SET_ERROR(EBUSY
));
741 dsl_scan_setup_sync(void *arg
, dmu_tx_t
*tx
)
743 dsl_scan_t
*scn
= dmu_tx_pool(tx
)->dp_scan
;
744 pool_scan_func_t
*funcp
= arg
;
745 dmu_object_type_t ot
= 0;
746 dsl_pool_t
*dp
= scn
->scn_dp
;
747 spa_t
*spa
= dp
->dp_spa
;
749 ASSERT(!dsl_scan_is_running(scn
));
750 ASSERT(*funcp
> POOL_SCAN_NONE
&& *funcp
< POOL_SCAN_FUNCS
);
751 memset(&scn
->scn_phys
, 0, sizeof (scn
->scn_phys
));
752 scn
->scn_phys
.scn_func
= *funcp
;
753 scn
->scn_phys
.scn_state
= DSS_SCANNING
;
754 scn
->scn_phys
.scn_min_txg
= 0;
755 scn
->scn_phys
.scn_max_txg
= tx
->tx_txg
;
756 scn
->scn_phys
.scn_ddt_class_max
= DDT_CLASSES
- 1; /* the entire DDT */
757 scn
->scn_phys
.scn_start_time
= gethrestime_sec();
758 scn
->scn_phys
.scn_errors
= 0;
759 scn
->scn_phys
.scn_to_examine
= spa
->spa_root_vdev
->vdev_stat
.vs_alloc
;
760 scn
->scn_issued_before_pass
= 0;
761 scn
->scn_restart_txg
= 0;
762 scn
->scn_done_txg
= 0;
763 scn
->scn_last_checkpoint
= 0;
764 scn
->scn_checkpointing
= B_FALSE
;
765 spa_scan_stat_init(spa
);
767 if (DSL_SCAN_IS_SCRUB_RESILVER(scn
)) {
768 scn
->scn_phys
.scn_ddt_class_max
= zfs_scrub_ddt_class_max
;
770 /* rewrite all disk labels */
771 vdev_config_dirty(spa
->spa_root_vdev
);
773 if (vdev_resilver_needed(spa
->spa_root_vdev
,
774 &scn
->scn_phys
.scn_min_txg
, &scn
->scn_phys
.scn_max_txg
)) {
775 nvlist_t
*aux
= fnvlist_alloc();
776 fnvlist_add_string(aux
, ZFS_EV_RESILVER_TYPE
,
778 spa_event_notify(spa
, NULL
, aux
,
779 ESC_ZFS_RESILVER_START
);
782 spa_event_notify(spa
, NULL
, NULL
, ESC_ZFS_SCRUB_START
);
785 spa
->spa_scrub_started
= B_TRUE
;
787 * If this is an incremental scrub, limit the DDT scrub phase
788 * to just the auto-ditto class (for correctness); the rest
789 * of the scrub should go faster using top-down pruning.
791 if (scn
->scn_phys
.scn_min_txg
> TXG_INITIAL
)
792 scn
->scn_phys
.scn_ddt_class_max
= DDT_CLASS_DITTO
;
795 * When starting a resilver clear any existing rebuild state.
796 * This is required to prevent stale rebuild status from
797 * being reported when a rebuild is run, then a resilver and
798 * finally a scrub. In which case only the scrub status
799 * should be reported by 'zpool status'.
801 if (scn
->scn_phys
.scn_func
== POOL_SCAN_RESILVER
) {
802 vdev_t
*rvd
= spa
->spa_root_vdev
;
803 for (uint64_t i
= 0; i
< rvd
->vdev_children
; i
++) {
804 vdev_t
*vd
= rvd
->vdev_child
[i
];
805 vdev_rebuild_clear_sync(
806 (void *)(uintptr_t)vd
->vdev_id
, tx
);
811 /* back to the generic stuff */
813 if (zfs_scan_blkstats
) {
814 if (dp
->dp_blkstats
== NULL
) {
816 vmem_alloc(sizeof (zfs_all_blkstats_t
), KM_SLEEP
);
818 memset(&dp
->dp_blkstats
->zab_type
, 0,
819 sizeof (dp
->dp_blkstats
->zab_type
));
821 if (dp
->dp_blkstats
) {
822 vmem_free(dp
->dp_blkstats
, sizeof (zfs_all_blkstats_t
));
823 dp
->dp_blkstats
= NULL
;
827 if (spa_version(spa
) < SPA_VERSION_DSL_SCRUB
)
828 ot
= DMU_OT_ZAP_OTHER
;
830 scn
->scn_phys
.scn_queue_obj
= zap_create(dp
->dp_meta_objset
,
831 ot
? ot
: DMU_OT_SCAN_QUEUE
, DMU_OT_NONE
, 0, tx
);
833 memcpy(&scn
->scn_phys_cached
, &scn
->scn_phys
, sizeof (scn
->scn_phys
));
835 dsl_scan_sync_state(scn
, tx
, SYNC_MANDATORY
);
837 spa_history_log_internal(spa
, "scan setup", tx
,
838 "func=%u mintxg=%llu maxtxg=%llu",
839 *funcp
, (u_longlong_t
)scn
->scn_phys
.scn_min_txg
,
840 (u_longlong_t
)scn
->scn_phys
.scn_max_txg
);
844 * Called by the ZFS_IOC_POOL_SCAN ioctl to start a scrub or resilver.
845 * Can also be called to resume a paused scrub.
848 dsl_scan(dsl_pool_t
*dp
, pool_scan_func_t func
)
850 spa_t
*spa
= dp
->dp_spa
;
851 dsl_scan_t
*scn
= dp
->dp_scan
;
854 * Purge all vdev caches and probe all devices. We do this here
855 * rather than in sync context because this requires a writer lock
856 * on the spa_config lock, which we can't do from sync context. The
857 * spa_scrub_reopen flag indicates that vdev_open() should not
858 * attempt to start another scrub.
860 spa_vdev_state_enter(spa
, SCL_NONE
);
861 spa
->spa_scrub_reopen
= B_TRUE
;
862 vdev_reopen(spa
->spa_root_vdev
);
863 spa
->spa_scrub_reopen
= B_FALSE
;
864 (void) spa_vdev_state_exit(spa
, NULL
, 0);
866 if (func
== POOL_SCAN_RESILVER
) {
867 dsl_scan_restart_resilver(spa
->spa_dsl_pool
, 0);
871 if (func
== POOL_SCAN_SCRUB
&& dsl_scan_is_paused_scrub(scn
)) {
872 /* got scrub start cmd, resume paused scrub */
873 int err
= dsl_scrub_set_pause_resume(scn
->scn_dp
,
876 spa_event_notify(spa
, NULL
, NULL
, ESC_ZFS_SCRUB_RESUME
);
877 return (SET_ERROR(ECANCELED
));
880 return (SET_ERROR(err
));
883 return (dsl_sync_task(spa_name(spa
), dsl_scan_setup_check
,
884 dsl_scan_setup_sync
, &func
, 0, ZFS_SPACE_CHECK_EXTRA_RESERVED
));
888 dsl_scan_done(dsl_scan_t
*scn
, boolean_t complete
, dmu_tx_t
*tx
)
890 static const char *old_names
[] = {
892 "scrub_ddt_bookmark",
893 "scrub_ddt_class_max",
902 dsl_pool_t
*dp
= scn
->scn_dp
;
903 spa_t
*spa
= dp
->dp_spa
;
906 /* Remove any remnants of an old-style scrub. */
907 for (i
= 0; old_names
[i
]; i
++) {
908 (void) zap_remove(dp
->dp_meta_objset
,
909 DMU_POOL_DIRECTORY_OBJECT
, old_names
[i
], tx
);
912 if (scn
->scn_phys
.scn_queue_obj
!= 0) {
913 VERIFY0(dmu_object_free(dp
->dp_meta_objset
,
914 scn
->scn_phys
.scn_queue_obj
, tx
));
915 scn
->scn_phys
.scn_queue_obj
= 0;
917 scan_ds_queue_clear(scn
);
918 scan_ds_prefetch_queue_clear(scn
);
920 scn
->scn_phys
.scn_flags
&= ~DSF_SCRUB_PAUSED
;
923 * If we were "restarted" from a stopped state, don't bother
924 * with anything else.
926 if (!dsl_scan_is_running(scn
)) {
927 ASSERT(!scn
->scn_is_sorted
);
931 if (scn
->scn_is_sorted
) {
932 scan_io_queues_destroy(scn
);
933 scn
->scn_is_sorted
= B_FALSE
;
935 if (scn
->scn_taskq
!= NULL
) {
936 taskq_destroy(scn
->scn_taskq
);
937 scn
->scn_taskq
= NULL
;
941 scn
->scn_phys
.scn_state
= complete
? DSS_FINISHED
: DSS_CANCELED
;
943 spa_notify_waiters(spa
);
945 if (dsl_scan_restarting(scn
, tx
))
946 spa_history_log_internal(spa
, "scan aborted, restarting", tx
,
947 "errors=%llu", (u_longlong_t
)spa_get_errlog_size(spa
));
949 spa_history_log_internal(spa
, "scan cancelled", tx
,
950 "errors=%llu", (u_longlong_t
)spa_get_errlog_size(spa
));
952 spa_history_log_internal(spa
, "scan done", tx
,
953 "errors=%llu", (u_longlong_t
)spa_get_errlog_size(spa
));
955 if (DSL_SCAN_IS_SCRUB_RESILVER(scn
)) {
956 spa
->spa_scrub_active
= B_FALSE
;
959 * If the scrub/resilver completed, update all DTLs to
960 * reflect this. Whether it succeeded or not, vacate
961 * all temporary scrub DTLs.
963 * As the scrub does not currently support traversing
964 * data that have been freed but are part of a checkpoint,
965 * we don't mark the scrub as done in the DTLs as faults
966 * may still exist in those vdevs.
969 !spa_feature_is_active(spa
, SPA_FEATURE_POOL_CHECKPOINT
)) {
970 vdev_dtl_reassess(spa
->spa_root_vdev
, tx
->tx_txg
,
971 scn
->scn_phys
.scn_max_txg
, B_TRUE
, B_FALSE
);
973 if (scn
->scn_phys
.scn_min_txg
) {
974 nvlist_t
*aux
= fnvlist_alloc();
975 fnvlist_add_string(aux
, ZFS_EV_RESILVER_TYPE
,
977 spa_event_notify(spa
, NULL
, aux
,
978 ESC_ZFS_RESILVER_FINISH
);
981 spa_event_notify(spa
, NULL
, NULL
,
982 ESC_ZFS_SCRUB_FINISH
);
985 vdev_dtl_reassess(spa
->spa_root_vdev
, tx
->tx_txg
,
988 spa_errlog_rotate(spa
);
991 * Don't clear flag until after vdev_dtl_reassess to ensure that
992 * DTL_MISSING will get updated when possible.
994 spa
->spa_scrub_started
= B_FALSE
;
997 * We may have finished replacing a device.
998 * Let the async thread assess this and handle the detach.
1000 spa_async_request(spa
, SPA_ASYNC_RESILVER_DONE
);
1003 * Clear any resilver_deferred flags in the config.
1004 * If there are drives that need resilvering, kick
1005 * off an asynchronous request to start resilver.
1006 * vdev_clear_resilver_deferred() may update the config
1007 * before the resilver can restart. In the event of
1008 * a crash during this period, the spa loading code
1009 * will find the drives that need to be resilvered
1010 * and start the resilver then.
1012 if (spa_feature_is_enabled(spa
, SPA_FEATURE_RESILVER_DEFER
) &&
1013 vdev_clear_resilver_deferred(spa
->spa_root_vdev
, tx
)) {
1014 spa_history_log_internal(spa
,
1015 "starting deferred resilver", tx
, "errors=%llu",
1016 (u_longlong_t
)spa_get_errlog_size(spa
));
1017 spa_async_request(spa
, SPA_ASYNC_RESILVER
);
1020 /* Clear recent error events (i.e. duplicate events tracking) */
1022 zfs_ereport_clear(spa
, NULL
);
1025 scn
->scn_phys
.scn_end_time
= gethrestime_sec();
1027 if (spa
->spa_errata
== ZPOOL_ERRATA_ZOL_2094_SCRUB
)
1028 spa
->spa_errata
= 0;
1030 ASSERT(!dsl_scan_is_running(scn
));
1034 dsl_scan_cancel_check(void *arg
, dmu_tx_t
*tx
)
1037 dsl_scan_t
*scn
= dmu_tx_pool(tx
)->dp_scan
;
1039 if (!dsl_scan_is_running(scn
))
1040 return (SET_ERROR(ENOENT
));
1045 dsl_scan_cancel_sync(void *arg
, dmu_tx_t
*tx
)
1048 dsl_scan_t
*scn
= dmu_tx_pool(tx
)->dp_scan
;
1050 dsl_scan_done(scn
, B_FALSE
, tx
);
1051 dsl_scan_sync_state(scn
, tx
, SYNC_MANDATORY
);
1052 spa_event_notify(scn
->scn_dp
->dp_spa
, NULL
, NULL
, ESC_ZFS_SCRUB_ABORT
);
1056 dsl_scan_cancel(dsl_pool_t
*dp
)
1058 return (dsl_sync_task(spa_name(dp
->dp_spa
), dsl_scan_cancel_check
,
1059 dsl_scan_cancel_sync
, NULL
, 3, ZFS_SPACE_CHECK_RESERVED
));
1063 dsl_scrub_pause_resume_check(void *arg
, dmu_tx_t
*tx
)
1065 pool_scrub_cmd_t
*cmd
= arg
;
1066 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1067 dsl_scan_t
*scn
= dp
->dp_scan
;
1069 if (*cmd
== POOL_SCRUB_PAUSE
) {
1070 /* can't pause a scrub when there is no in-progress scrub */
1071 if (!dsl_scan_scrubbing(dp
))
1072 return (SET_ERROR(ENOENT
));
1074 /* can't pause a paused scrub */
1075 if (dsl_scan_is_paused_scrub(scn
))
1076 return (SET_ERROR(EBUSY
));
1077 } else if (*cmd
!= POOL_SCRUB_NORMAL
) {
1078 return (SET_ERROR(ENOTSUP
));
1085 dsl_scrub_pause_resume_sync(void *arg
, dmu_tx_t
*tx
)
1087 pool_scrub_cmd_t
*cmd
= arg
;
1088 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1089 spa_t
*spa
= dp
->dp_spa
;
1090 dsl_scan_t
*scn
= dp
->dp_scan
;
1092 if (*cmd
== POOL_SCRUB_PAUSE
) {
1093 /* can't pause a scrub when there is no in-progress scrub */
1094 spa
->spa_scan_pass_scrub_pause
= gethrestime_sec();
1095 scn
->scn_phys
.scn_flags
|= DSF_SCRUB_PAUSED
;
1096 scn
->scn_phys_cached
.scn_flags
|= DSF_SCRUB_PAUSED
;
1097 dsl_scan_sync_state(scn
, tx
, SYNC_CACHED
);
1098 spa_event_notify(spa
, NULL
, NULL
, ESC_ZFS_SCRUB_PAUSED
);
1099 spa_notify_waiters(spa
);
1101 ASSERT3U(*cmd
, ==, POOL_SCRUB_NORMAL
);
1102 if (dsl_scan_is_paused_scrub(scn
)) {
1104 * We need to keep track of how much time we spend
1105 * paused per pass so that we can adjust the scrub rate
1106 * shown in the output of 'zpool status'
1108 spa
->spa_scan_pass_scrub_spent_paused
+=
1109 gethrestime_sec() - spa
->spa_scan_pass_scrub_pause
;
1110 spa
->spa_scan_pass_scrub_pause
= 0;
1111 scn
->scn_phys
.scn_flags
&= ~DSF_SCRUB_PAUSED
;
1112 scn
->scn_phys_cached
.scn_flags
&= ~DSF_SCRUB_PAUSED
;
1113 dsl_scan_sync_state(scn
, tx
, SYNC_CACHED
);
1119 * Set scrub pause/resume state if it makes sense to do so
1122 dsl_scrub_set_pause_resume(const dsl_pool_t
*dp
, pool_scrub_cmd_t cmd
)
1124 return (dsl_sync_task(spa_name(dp
->dp_spa
),
1125 dsl_scrub_pause_resume_check
, dsl_scrub_pause_resume_sync
, &cmd
, 3,
1126 ZFS_SPACE_CHECK_RESERVED
));
1130 /* start a new scan, or restart an existing one. */
1132 dsl_scan_restart_resilver(dsl_pool_t
*dp
, uint64_t txg
)
1136 tx
= dmu_tx_create_dd(dp
->dp_mos_dir
);
1137 VERIFY(0 == dmu_tx_assign(tx
, TXG_WAIT
));
1139 txg
= dmu_tx_get_txg(tx
);
1140 dp
->dp_scan
->scn_restart_txg
= txg
;
1143 dp
->dp_scan
->scn_restart_txg
= txg
;
1145 zfs_dbgmsg("restarting resilver for %s at txg=%llu",
1146 dp
->dp_spa
->spa_name
, (longlong_t
)txg
);
1150 dsl_free(dsl_pool_t
*dp
, uint64_t txg
, const blkptr_t
*bp
)
1152 zio_free(dp
->dp_spa
, txg
, bp
);
1156 dsl_free_sync(zio_t
*pio
, dsl_pool_t
*dp
, uint64_t txg
, const blkptr_t
*bpp
)
1158 ASSERT(dsl_pool_sync_context(dp
));
1159 zio_nowait(zio_free_sync(pio
, dp
->dp_spa
, txg
, bpp
, pio
->io_flags
));
1163 scan_ds_queue_compare(const void *a
, const void *b
)
1165 const scan_ds_t
*sds_a
= a
, *sds_b
= b
;
1167 if (sds_a
->sds_dsobj
< sds_b
->sds_dsobj
)
1169 if (sds_a
->sds_dsobj
== sds_b
->sds_dsobj
)
1175 scan_ds_queue_clear(dsl_scan_t
*scn
)
1177 void *cookie
= NULL
;
1179 while ((sds
= avl_destroy_nodes(&scn
->scn_queue
, &cookie
)) != NULL
) {
1180 kmem_free(sds
, sizeof (*sds
));
1185 scan_ds_queue_contains(dsl_scan_t
*scn
, uint64_t dsobj
, uint64_t *txg
)
1187 scan_ds_t srch
, *sds
;
1189 srch
.sds_dsobj
= dsobj
;
1190 sds
= avl_find(&scn
->scn_queue
, &srch
, NULL
);
1191 if (sds
!= NULL
&& txg
!= NULL
)
1192 *txg
= sds
->sds_txg
;
1193 return (sds
!= NULL
);
1197 scan_ds_queue_insert(dsl_scan_t
*scn
, uint64_t dsobj
, uint64_t txg
)
1202 sds
= kmem_zalloc(sizeof (*sds
), KM_SLEEP
);
1203 sds
->sds_dsobj
= dsobj
;
1206 VERIFY3P(avl_find(&scn
->scn_queue
, sds
, &where
), ==, NULL
);
1207 avl_insert(&scn
->scn_queue
, sds
, where
);
1211 scan_ds_queue_remove(dsl_scan_t
*scn
, uint64_t dsobj
)
1213 scan_ds_t srch
, *sds
;
1215 srch
.sds_dsobj
= dsobj
;
1217 sds
= avl_find(&scn
->scn_queue
, &srch
, NULL
);
1218 VERIFY(sds
!= NULL
);
1219 avl_remove(&scn
->scn_queue
, sds
);
1220 kmem_free(sds
, sizeof (*sds
));
1224 scan_ds_queue_sync(dsl_scan_t
*scn
, dmu_tx_t
*tx
)
1226 dsl_pool_t
*dp
= scn
->scn_dp
;
1227 spa_t
*spa
= dp
->dp_spa
;
1228 dmu_object_type_t ot
= (spa_version(spa
) >= SPA_VERSION_DSL_SCRUB
) ?
1229 DMU_OT_SCAN_QUEUE
: DMU_OT_ZAP_OTHER
;
1231 ASSERT0(scn
->scn_queues_pending
);
1232 ASSERT(scn
->scn_phys
.scn_queue_obj
!= 0);
1234 VERIFY0(dmu_object_free(dp
->dp_meta_objset
,
1235 scn
->scn_phys
.scn_queue_obj
, tx
));
1236 scn
->scn_phys
.scn_queue_obj
= zap_create(dp
->dp_meta_objset
, ot
,
1237 DMU_OT_NONE
, 0, tx
);
1238 for (scan_ds_t
*sds
= avl_first(&scn
->scn_queue
);
1239 sds
!= NULL
; sds
= AVL_NEXT(&scn
->scn_queue
, sds
)) {
1240 VERIFY0(zap_add_int_key(dp
->dp_meta_objset
,
1241 scn
->scn_phys
.scn_queue_obj
, sds
->sds_dsobj
,
1247 * Computes the memory limit state that we're currently in. A sorted scan
1248 * needs quite a bit of memory to hold the sorting queue, so we need to
1249 * reasonably constrain the size so it doesn't impact overall system
1250 * performance. We compute two limits:
1251 * 1) Hard memory limit: if the amount of memory used by the sorting
1252 * queues on a pool gets above this value, we stop the metadata
1253 * scanning portion and start issuing the queued up and sorted
1254 * I/Os to reduce memory usage.
1255 * This limit is calculated as a fraction of physmem (by default 5%).
1256 * We constrain the lower bound of the hard limit to an absolute
1257 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
1258 * the upper bound to 5% of the total pool size - no chance we'll
1259 * ever need that much memory, but just to keep the value in check.
1260 * 2) Soft memory limit: once we hit the hard memory limit, we start
1261 * issuing I/O to reduce queue memory usage, but we don't want to
1262 * completely empty out the queues, since we might be able to find I/Os
1263 * that will fill in the gaps of our non-sequential IOs at some point
1264 * in the future. So we stop the issuing of I/Os once the amount of
1265 * memory used drops below the soft limit (at which point we stop issuing
1266 * I/O and start scanning metadata again).
1268 * This limit is calculated by subtracting a fraction of the hard
1269 * limit from the hard limit. By default this fraction is 5%, so
1270 * the soft limit is 95% of the hard limit. We cap the size of the
1271 * difference between the hard and soft limits at an absolute
1272 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
1273 * sufficient to not cause too frequent switching between the
1274 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
1275 * worth of queues is about 1.2 GiB of on-pool data, so scanning
1276 * that should take at least a decent fraction of a second).
1279 dsl_scan_should_clear(dsl_scan_t
*scn
)
1281 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
1282 vdev_t
*rvd
= scn
->scn_dp
->dp_spa
->spa_root_vdev
;
1283 uint64_t alloc
, mlim_hard
, mlim_soft
, mused
;
1285 alloc
= metaslab_class_get_alloc(spa_normal_class(spa
));
1286 alloc
+= metaslab_class_get_alloc(spa_special_class(spa
));
1287 alloc
+= metaslab_class_get_alloc(spa_dedup_class(spa
));
1289 mlim_hard
= MAX((physmem
/ zfs_scan_mem_lim_fact
) * PAGESIZE
,
1290 zfs_scan_mem_lim_min
);
1291 mlim_hard
= MIN(mlim_hard
, alloc
/ 20);
1292 mlim_soft
= mlim_hard
- MIN(mlim_hard
/ zfs_scan_mem_lim_soft_fact
,
1293 zfs_scan_mem_lim_soft_max
);
1295 for (uint64_t i
= 0; i
< rvd
->vdev_children
; i
++) {
1296 vdev_t
*tvd
= rvd
->vdev_child
[i
];
1297 dsl_scan_io_queue_t
*queue
;
1299 mutex_enter(&tvd
->vdev_scan_io_queue_lock
);
1300 queue
= tvd
->vdev_scan_io_queue
;
1301 if (queue
!= NULL
) {
1303 * # of extents in exts_by_addr = # in exts_by_size.
1304 * B-tree efficiency is ~75%, but can be as low as 50%.
1306 mused
+= zfs_btree_numnodes(&queue
->q_exts_by_size
) *
1307 ((sizeof (range_seg_gap_t
) + sizeof (uint64_t)) *
1308 3 / 2) + queue
->q_sio_memused
;
1310 mutex_exit(&tvd
->vdev_scan_io_queue_lock
);
1313 dprintf("current scan memory usage: %llu bytes\n", (longlong_t
)mused
);
1316 ASSERT0(scn
->scn_queues_pending
);
1319 * If we are above our hard limit, we need to clear out memory.
1320 * If we are below our soft limit, we need to accumulate sequential IOs.
1321 * Otherwise, we should keep doing whatever we are currently doing.
1323 if (mused
>= mlim_hard
)
1325 else if (mused
< mlim_soft
)
1328 return (scn
->scn_clearing
);
1332 dsl_scan_check_suspend(dsl_scan_t
*scn
, const zbookmark_phys_t
*zb
)
1334 /* we never skip user/group accounting objects */
1335 if (zb
&& (int64_t)zb
->zb_object
< 0)
1338 if (scn
->scn_suspending
)
1339 return (B_TRUE
); /* we're already suspending */
1341 if (!ZB_IS_ZERO(&scn
->scn_phys
.scn_bookmark
))
1342 return (B_FALSE
); /* we're resuming */
1344 /* We only know how to resume from level-0 and objset blocks. */
1345 if (zb
&& (zb
->zb_level
!= 0 && zb
->zb_level
!= ZB_ROOT_LEVEL
))
1350 * - we have scanned for at least the minimum time (default 1 sec
1351 * for scrub, 3 sec for resilver), and either we have sufficient
1352 * dirty data that we are starting to write more quickly
1353 * (default 30%), someone is explicitly waiting for this txg
1354 * to complete, or we have used up all of the time in the txg
1355 * timeout (default 5 sec).
1357 * - the spa is shutting down because this pool is being exported
1358 * or the machine is rebooting.
1360 * - the scan queue has reached its memory use limit
1362 uint64_t curr_time_ns
= gethrtime();
1363 uint64_t scan_time_ns
= curr_time_ns
- scn
->scn_sync_start_time
;
1364 uint64_t sync_time_ns
= curr_time_ns
-
1365 scn
->scn_dp
->dp_spa
->spa_sync_starttime
;
1366 uint64_t dirty_min_bytes
= zfs_dirty_data_max
*
1367 zfs_vdev_async_write_active_min_dirty_percent
/ 100;
1368 uint_t mintime
= (scn
->scn_phys
.scn_func
== POOL_SCAN_RESILVER
) ?
1369 zfs_resilver_min_time_ms
: zfs_scrub_min_time_ms
;
1371 if ((NSEC2MSEC(scan_time_ns
) > mintime
&&
1372 (scn
->scn_dp
->dp_dirty_total
>= dirty_min_bytes
||
1373 txg_sync_waiting(scn
->scn_dp
) ||
1374 NSEC2SEC(sync_time_ns
) >= zfs_txg_timeout
)) ||
1375 spa_shutting_down(scn
->scn_dp
->dp_spa
) ||
1376 (zfs_scan_strict_mem_lim
&& dsl_scan_should_clear(scn
))) {
1377 if (zb
&& zb
->zb_level
== ZB_ROOT_LEVEL
) {
1378 dprintf("suspending at first available bookmark "
1379 "%llx/%llx/%llx/%llx\n",
1380 (longlong_t
)zb
->zb_objset
,
1381 (longlong_t
)zb
->zb_object
,
1382 (longlong_t
)zb
->zb_level
,
1383 (longlong_t
)zb
->zb_blkid
);
1384 SET_BOOKMARK(&scn
->scn_phys
.scn_bookmark
,
1385 zb
->zb_objset
, 0, 0, 0);
1386 } else if (zb
!= NULL
) {
1387 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
1388 (longlong_t
)zb
->zb_objset
,
1389 (longlong_t
)zb
->zb_object
,
1390 (longlong_t
)zb
->zb_level
,
1391 (longlong_t
)zb
->zb_blkid
);
1392 scn
->scn_phys
.scn_bookmark
= *zb
;
1395 dsl_scan_phys_t
*scnp
= &scn
->scn_phys
;
1396 dprintf("suspending at at DDT bookmark "
1397 "%llx/%llx/%llx/%llx\n",
1398 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_class
,
1399 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_type
,
1400 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_checksum
,
1401 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_cursor
);
1404 scn
->scn_suspending
= B_TRUE
;
1410 typedef struct zil_scan_arg
{
1412 zil_header_t
*zsa_zh
;
1416 dsl_scan_zil_block(zilog_t
*zilog
, const blkptr_t
*bp
, void *arg
,
1420 zil_scan_arg_t
*zsa
= arg
;
1421 dsl_pool_t
*dp
= zsa
->zsa_dp
;
1422 dsl_scan_t
*scn
= dp
->dp_scan
;
1423 zil_header_t
*zh
= zsa
->zsa_zh
;
1424 zbookmark_phys_t zb
;
1426 ASSERT(!BP_IS_REDACTED(bp
));
1427 if (BP_IS_HOLE(bp
) || bp
->blk_birth
<= scn
->scn_phys
.scn_cur_min_txg
)
1431 * One block ("stubby") can be allocated a long time ago; we
1432 * want to visit that one because it has been allocated
1433 * (on-disk) even if it hasn't been claimed (even though for
1434 * scrub there's nothing to do to it).
1436 if (claim_txg
== 0 && bp
->blk_birth
>= spa_min_claim_txg(dp
->dp_spa
))
1439 SET_BOOKMARK(&zb
, zh
->zh_log
.blk_cksum
.zc_word
[ZIL_ZC_OBJSET
],
1440 ZB_ZIL_OBJECT
, ZB_ZIL_LEVEL
, bp
->blk_cksum
.zc_word
[ZIL_ZC_SEQ
]);
1442 VERIFY(0 == scan_funcs
[scn
->scn_phys
.scn_func
](dp
, bp
, &zb
));
1447 dsl_scan_zil_record(zilog_t
*zilog
, const lr_t
*lrc
, void *arg
,
1451 if (lrc
->lrc_txtype
== TX_WRITE
) {
1452 zil_scan_arg_t
*zsa
= arg
;
1453 dsl_pool_t
*dp
= zsa
->zsa_dp
;
1454 dsl_scan_t
*scn
= dp
->dp_scan
;
1455 zil_header_t
*zh
= zsa
->zsa_zh
;
1456 const lr_write_t
*lr
= (const lr_write_t
*)lrc
;
1457 const blkptr_t
*bp
= &lr
->lr_blkptr
;
1458 zbookmark_phys_t zb
;
1460 ASSERT(!BP_IS_REDACTED(bp
));
1461 if (BP_IS_HOLE(bp
) ||
1462 bp
->blk_birth
<= scn
->scn_phys
.scn_cur_min_txg
)
1466 * birth can be < claim_txg if this record's txg is
1467 * already txg sync'ed (but this log block contains
1468 * other records that are not synced)
1470 if (claim_txg
== 0 || bp
->blk_birth
< claim_txg
)
1473 SET_BOOKMARK(&zb
, zh
->zh_log
.blk_cksum
.zc_word
[ZIL_ZC_OBJSET
],
1474 lr
->lr_foid
, ZB_ZIL_LEVEL
,
1475 lr
->lr_offset
/ BP_GET_LSIZE(bp
));
1477 VERIFY(0 == scan_funcs
[scn
->scn_phys
.scn_func
](dp
, bp
, &zb
));
1483 dsl_scan_zil(dsl_pool_t
*dp
, zil_header_t
*zh
)
1485 uint64_t claim_txg
= zh
->zh_claim_txg
;
1486 zil_scan_arg_t zsa
= { dp
, zh
};
1489 ASSERT(spa_writeable(dp
->dp_spa
));
1492 * We only want to visit blocks that have been claimed but not yet
1493 * replayed (or, in read-only mode, blocks that *would* be claimed).
1498 zilog
= zil_alloc(dp
->dp_meta_objset
, zh
);
1500 (void) zil_parse(zilog
, dsl_scan_zil_block
, dsl_scan_zil_record
, &zsa
,
1501 claim_txg
, B_FALSE
);
1507 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
1508 * here is to sort the AVL tree by the order each block will be needed.
1511 scan_prefetch_queue_compare(const void *a
, const void *b
)
1513 const scan_prefetch_issue_ctx_t
*spic_a
= a
, *spic_b
= b
;
1514 const scan_prefetch_ctx_t
*spc_a
= spic_a
->spic_spc
;
1515 const scan_prefetch_ctx_t
*spc_b
= spic_b
->spic_spc
;
1517 return (zbookmark_compare(spc_a
->spc_datablkszsec
,
1518 spc_a
->spc_indblkshift
, spc_b
->spc_datablkszsec
,
1519 spc_b
->spc_indblkshift
, &spic_a
->spic_zb
, &spic_b
->spic_zb
));
1523 scan_prefetch_ctx_rele(scan_prefetch_ctx_t
*spc
, const void *tag
)
1525 if (zfs_refcount_remove(&spc
->spc_refcnt
, tag
) == 0) {
1526 zfs_refcount_destroy(&spc
->spc_refcnt
);
1527 kmem_free(spc
, sizeof (scan_prefetch_ctx_t
));
1531 static scan_prefetch_ctx_t
*
1532 scan_prefetch_ctx_create(dsl_scan_t
*scn
, dnode_phys_t
*dnp
, const void *tag
)
1534 scan_prefetch_ctx_t
*spc
;
1536 spc
= kmem_alloc(sizeof (scan_prefetch_ctx_t
), KM_SLEEP
);
1537 zfs_refcount_create(&spc
->spc_refcnt
);
1538 zfs_refcount_add(&spc
->spc_refcnt
, tag
);
1541 spc
->spc_datablkszsec
= dnp
->dn_datablkszsec
;
1542 spc
->spc_indblkshift
= dnp
->dn_indblkshift
;
1543 spc
->spc_root
= B_FALSE
;
1545 spc
->spc_datablkszsec
= 0;
1546 spc
->spc_indblkshift
= 0;
1547 spc
->spc_root
= B_TRUE
;
1554 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t
*spc
, const void *tag
)
1556 zfs_refcount_add(&spc
->spc_refcnt
, tag
);
1560 scan_ds_prefetch_queue_clear(dsl_scan_t
*scn
)
1562 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
1563 void *cookie
= NULL
;
1564 scan_prefetch_issue_ctx_t
*spic
= NULL
;
1566 mutex_enter(&spa
->spa_scrub_lock
);
1567 while ((spic
= avl_destroy_nodes(&scn
->scn_prefetch_queue
,
1568 &cookie
)) != NULL
) {
1569 scan_prefetch_ctx_rele(spic
->spic_spc
, scn
);
1570 kmem_free(spic
, sizeof (scan_prefetch_issue_ctx_t
));
1572 mutex_exit(&spa
->spa_scrub_lock
);
1576 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t
*spc
,
1577 const zbookmark_phys_t
*zb
)
1579 zbookmark_phys_t
*last_zb
= &spc
->spc_scn
->scn_prefetch_bookmark
;
1580 dnode_phys_t tmp_dnp
;
1581 dnode_phys_t
*dnp
= (spc
->spc_root
) ? NULL
: &tmp_dnp
;
1583 if (zb
->zb_objset
!= last_zb
->zb_objset
)
1585 if ((int64_t)zb
->zb_object
< 0)
1588 tmp_dnp
.dn_datablkszsec
= spc
->spc_datablkszsec
;
1589 tmp_dnp
.dn_indblkshift
= spc
->spc_indblkshift
;
1591 if (zbookmark_subtree_completed(dnp
, zb
, last_zb
))
1598 dsl_scan_prefetch(scan_prefetch_ctx_t
*spc
, blkptr_t
*bp
, zbookmark_phys_t
*zb
)
1601 dsl_scan_t
*scn
= spc
->spc_scn
;
1602 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
1603 scan_prefetch_issue_ctx_t
*spic
;
1605 if (zfs_no_scrub_prefetch
|| BP_IS_REDACTED(bp
))
1608 if (BP_IS_HOLE(bp
) || bp
->blk_birth
<= scn
->scn_phys
.scn_cur_min_txg
||
1609 (BP_GET_LEVEL(bp
) == 0 && BP_GET_TYPE(bp
) != DMU_OT_DNODE
&&
1610 BP_GET_TYPE(bp
) != DMU_OT_OBJSET
))
1613 if (dsl_scan_check_prefetch_resume(spc
, zb
))
1616 scan_prefetch_ctx_add_ref(spc
, scn
);
1617 spic
= kmem_alloc(sizeof (scan_prefetch_issue_ctx_t
), KM_SLEEP
);
1618 spic
->spic_spc
= spc
;
1619 spic
->spic_bp
= *bp
;
1620 spic
->spic_zb
= *zb
;
1623 * Add the IO to the queue of blocks to prefetch. This allows us to
1624 * prioritize blocks that we will need first for the main traversal
1627 mutex_enter(&spa
->spa_scrub_lock
);
1628 if (avl_find(&scn
->scn_prefetch_queue
, spic
, &idx
) != NULL
) {
1629 /* this block is already queued for prefetch */
1630 kmem_free(spic
, sizeof (scan_prefetch_issue_ctx_t
));
1631 scan_prefetch_ctx_rele(spc
, scn
);
1632 mutex_exit(&spa
->spa_scrub_lock
);
1636 avl_insert(&scn
->scn_prefetch_queue
, spic
, idx
);
1637 cv_broadcast(&spa
->spa_scrub_io_cv
);
1638 mutex_exit(&spa
->spa_scrub_lock
);
1642 dsl_scan_prefetch_dnode(dsl_scan_t
*scn
, dnode_phys_t
*dnp
,
1643 uint64_t objset
, uint64_t object
)
1646 zbookmark_phys_t zb
;
1647 scan_prefetch_ctx_t
*spc
;
1649 if (dnp
->dn_nblkptr
== 0 && !(dnp
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
))
1652 SET_BOOKMARK(&zb
, objset
, object
, 0, 0);
1654 spc
= scan_prefetch_ctx_create(scn
, dnp
, FTAG
);
1656 for (i
= 0; i
< dnp
->dn_nblkptr
; i
++) {
1657 zb
.zb_level
= BP_GET_LEVEL(&dnp
->dn_blkptr
[i
]);
1659 dsl_scan_prefetch(spc
, &dnp
->dn_blkptr
[i
], &zb
);
1662 if (dnp
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
) {
1664 zb
.zb_blkid
= DMU_SPILL_BLKID
;
1665 dsl_scan_prefetch(spc
, DN_SPILL_BLKPTR(dnp
), &zb
);
1668 scan_prefetch_ctx_rele(spc
, FTAG
);
1672 dsl_scan_prefetch_cb(zio_t
*zio
, const zbookmark_phys_t
*zb
, const blkptr_t
*bp
,
1673 arc_buf_t
*buf
, void *private)
1676 scan_prefetch_ctx_t
*spc
= private;
1677 dsl_scan_t
*scn
= spc
->spc_scn
;
1678 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
1680 /* broadcast that the IO has completed for rate limiting purposes */
1681 mutex_enter(&spa
->spa_scrub_lock
);
1682 ASSERT3U(spa
->spa_scrub_inflight
, >=, BP_GET_PSIZE(bp
));
1683 spa
->spa_scrub_inflight
-= BP_GET_PSIZE(bp
);
1684 cv_broadcast(&spa
->spa_scrub_io_cv
);
1685 mutex_exit(&spa
->spa_scrub_lock
);
1687 /* if there was an error or we are done prefetching, just cleanup */
1688 if (buf
== NULL
|| scn
->scn_prefetch_stop
)
1691 if (BP_GET_LEVEL(bp
) > 0) {
1694 int epb
= BP_GET_LSIZE(bp
) >> SPA_BLKPTRSHIFT
;
1695 zbookmark_phys_t czb
;
1697 for (i
= 0, cbp
= buf
->b_data
; i
< epb
; i
++, cbp
++) {
1698 SET_BOOKMARK(&czb
, zb
->zb_objset
, zb
->zb_object
,
1699 zb
->zb_level
- 1, zb
->zb_blkid
* epb
+ i
);
1700 dsl_scan_prefetch(spc
, cbp
, &czb
);
1702 } else if (BP_GET_TYPE(bp
) == DMU_OT_DNODE
) {
1705 int epb
= BP_GET_LSIZE(bp
) >> DNODE_SHIFT
;
1707 for (i
= 0, cdnp
= buf
->b_data
; i
< epb
;
1708 i
+= cdnp
->dn_extra_slots
+ 1,
1709 cdnp
+= cdnp
->dn_extra_slots
+ 1) {
1710 dsl_scan_prefetch_dnode(scn
, cdnp
,
1711 zb
->zb_objset
, zb
->zb_blkid
* epb
+ i
);
1713 } else if (BP_GET_TYPE(bp
) == DMU_OT_OBJSET
) {
1714 objset_phys_t
*osp
= buf
->b_data
;
1716 dsl_scan_prefetch_dnode(scn
, &osp
->os_meta_dnode
,
1717 zb
->zb_objset
, DMU_META_DNODE_OBJECT
);
1719 if (OBJSET_BUF_HAS_USERUSED(buf
)) {
1720 dsl_scan_prefetch_dnode(scn
,
1721 &osp
->os_groupused_dnode
, zb
->zb_objset
,
1722 DMU_GROUPUSED_OBJECT
);
1723 dsl_scan_prefetch_dnode(scn
,
1724 &osp
->os_userused_dnode
, zb
->zb_objset
,
1725 DMU_USERUSED_OBJECT
);
1731 arc_buf_destroy(buf
, private);
1732 scan_prefetch_ctx_rele(spc
, scn
);
1736 dsl_scan_prefetch_thread(void *arg
)
1738 dsl_scan_t
*scn
= arg
;
1739 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
1740 scan_prefetch_issue_ctx_t
*spic
;
1742 /* loop until we are told to stop */
1743 while (!scn
->scn_prefetch_stop
) {
1744 arc_flags_t flags
= ARC_FLAG_NOWAIT
|
1745 ARC_FLAG_PRESCIENT_PREFETCH
| ARC_FLAG_PREFETCH
;
1746 int zio_flags
= ZIO_FLAG_CANFAIL
| ZIO_FLAG_SCAN_THREAD
;
1748 mutex_enter(&spa
->spa_scrub_lock
);
1751 * Wait until we have an IO to issue and are not above our
1752 * maximum in flight limit.
1754 while (!scn
->scn_prefetch_stop
&&
1755 (avl_numnodes(&scn
->scn_prefetch_queue
) == 0 ||
1756 spa
->spa_scrub_inflight
>= scn
->scn_maxinflight_bytes
)) {
1757 cv_wait(&spa
->spa_scrub_io_cv
, &spa
->spa_scrub_lock
);
1760 /* recheck if we should stop since we waited for the cv */
1761 if (scn
->scn_prefetch_stop
) {
1762 mutex_exit(&spa
->spa_scrub_lock
);
1766 /* remove the prefetch IO from the tree */
1767 spic
= avl_first(&scn
->scn_prefetch_queue
);
1768 spa
->spa_scrub_inflight
+= BP_GET_PSIZE(&spic
->spic_bp
);
1769 avl_remove(&scn
->scn_prefetch_queue
, spic
);
1771 mutex_exit(&spa
->spa_scrub_lock
);
1773 if (BP_IS_PROTECTED(&spic
->spic_bp
)) {
1774 ASSERT(BP_GET_TYPE(&spic
->spic_bp
) == DMU_OT_DNODE
||
1775 BP_GET_TYPE(&spic
->spic_bp
) == DMU_OT_OBJSET
);
1776 ASSERT3U(BP_GET_LEVEL(&spic
->spic_bp
), ==, 0);
1777 zio_flags
|= ZIO_FLAG_RAW
;
1780 /* issue the prefetch asynchronously */
1781 (void) arc_read(scn
->scn_zio_root
, scn
->scn_dp
->dp_spa
,
1782 &spic
->spic_bp
, dsl_scan_prefetch_cb
, spic
->spic_spc
,
1783 ZIO_PRIORITY_SCRUB
, zio_flags
, &flags
, &spic
->spic_zb
);
1785 kmem_free(spic
, sizeof (scan_prefetch_issue_ctx_t
));
1788 ASSERT(scn
->scn_prefetch_stop
);
1790 /* free any prefetches we didn't get to complete */
1791 mutex_enter(&spa
->spa_scrub_lock
);
1792 while ((spic
= avl_first(&scn
->scn_prefetch_queue
)) != NULL
) {
1793 avl_remove(&scn
->scn_prefetch_queue
, spic
);
1794 scan_prefetch_ctx_rele(spic
->spic_spc
, scn
);
1795 kmem_free(spic
, sizeof (scan_prefetch_issue_ctx_t
));
1797 ASSERT0(avl_numnodes(&scn
->scn_prefetch_queue
));
1798 mutex_exit(&spa
->spa_scrub_lock
);
1802 dsl_scan_check_resume(dsl_scan_t
*scn
, const dnode_phys_t
*dnp
,
1803 const zbookmark_phys_t
*zb
)
1806 * We never skip over user/group accounting objects (obj<0)
1808 if (!ZB_IS_ZERO(&scn
->scn_phys
.scn_bookmark
) &&
1809 (int64_t)zb
->zb_object
>= 0) {
1811 * If we already visited this bp & everything below (in
1812 * a prior txg sync), don't bother doing it again.
1814 if (zbookmark_subtree_completed(dnp
, zb
,
1815 &scn
->scn_phys
.scn_bookmark
))
1819 * If we found the block we're trying to resume from, or
1820 * we went past it, zero it out to indicate that it's OK
1821 * to start checking for suspending again.
1823 if (zbookmark_subtree_tbd(dnp
, zb
,
1824 &scn
->scn_phys
.scn_bookmark
)) {
1825 dprintf("resuming at %llx/%llx/%llx/%llx\n",
1826 (longlong_t
)zb
->zb_objset
,
1827 (longlong_t
)zb
->zb_object
,
1828 (longlong_t
)zb
->zb_level
,
1829 (longlong_t
)zb
->zb_blkid
);
1830 memset(&scn
->scn_phys
.scn_bookmark
, 0, sizeof (*zb
));
1836 static void dsl_scan_visitbp(blkptr_t
*bp
, const zbookmark_phys_t
*zb
,
1837 dnode_phys_t
*dnp
, dsl_dataset_t
*ds
, dsl_scan_t
*scn
,
1838 dmu_objset_type_t ostype
, dmu_tx_t
*tx
);
1839 inline __attribute__((always_inline
)) static void dsl_scan_visitdnode(
1840 dsl_scan_t
*, dsl_dataset_t
*ds
, dmu_objset_type_t ostype
,
1841 dnode_phys_t
*dnp
, uint64_t object
, dmu_tx_t
*tx
);
1844 * Return nonzero on i/o error.
1845 * Return new buf to write out in *bufp.
1847 inline __attribute__((always_inline
)) static int
1848 dsl_scan_recurse(dsl_scan_t
*scn
, dsl_dataset_t
*ds
, dmu_objset_type_t ostype
,
1849 dnode_phys_t
*dnp
, const blkptr_t
*bp
,
1850 const zbookmark_phys_t
*zb
, dmu_tx_t
*tx
)
1852 dsl_pool_t
*dp
= scn
->scn_dp
;
1853 spa_t
*spa
= dp
->dp_spa
;
1854 int zio_flags
= ZIO_FLAG_CANFAIL
| ZIO_FLAG_SCAN_THREAD
;
1857 ASSERT(!BP_IS_REDACTED(bp
));
1860 * There is an unlikely case of encountering dnodes with contradicting
1861 * dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created
1862 * or modified before commit 4254acb was merged. As it is not possible
1863 * to know which of the two is correct, report an error.
1866 dnp
->dn_bonuslen
> DN_MAX_BONUS_LEN(dnp
)) {
1867 scn
->scn_phys
.scn_errors
++;
1868 spa_log_error(spa
, zb
);
1869 return (SET_ERROR(EINVAL
));
1872 if (BP_GET_LEVEL(bp
) > 0) {
1873 arc_flags_t flags
= ARC_FLAG_WAIT
;
1876 int epb
= BP_GET_LSIZE(bp
) >> SPA_BLKPTRSHIFT
;
1879 err
= arc_read(NULL
, spa
, bp
, arc_getbuf_func
, &buf
,
1880 ZIO_PRIORITY_SCRUB
, zio_flags
, &flags
, zb
);
1882 scn
->scn_phys
.scn_errors
++;
1885 for (i
= 0, cbp
= buf
->b_data
; i
< epb
; i
++, cbp
++) {
1886 zbookmark_phys_t czb
;
1888 SET_BOOKMARK(&czb
, zb
->zb_objset
, zb
->zb_object
,
1890 zb
->zb_blkid
* epb
+ i
);
1891 dsl_scan_visitbp(cbp
, &czb
, dnp
,
1892 ds
, scn
, ostype
, tx
);
1894 arc_buf_destroy(buf
, &buf
);
1895 } else if (BP_GET_TYPE(bp
) == DMU_OT_DNODE
) {
1896 arc_flags_t flags
= ARC_FLAG_WAIT
;
1899 int epb
= BP_GET_LSIZE(bp
) >> DNODE_SHIFT
;
1902 if (BP_IS_PROTECTED(bp
)) {
1903 ASSERT3U(BP_GET_COMPRESS(bp
), ==, ZIO_COMPRESS_OFF
);
1904 zio_flags
|= ZIO_FLAG_RAW
;
1907 err
= arc_read(NULL
, spa
, bp
, arc_getbuf_func
, &buf
,
1908 ZIO_PRIORITY_SCRUB
, zio_flags
, &flags
, zb
);
1910 scn
->scn_phys
.scn_errors
++;
1913 for (i
= 0, cdnp
= buf
->b_data
; i
< epb
;
1914 i
+= cdnp
->dn_extra_slots
+ 1,
1915 cdnp
+= cdnp
->dn_extra_slots
+ 1) {
1916 dsl_scan_visitdnode(scn
, ds
, ostype
,
1917 cdnp
, zb
->zb_blkid
* epb
+ i
, tx
);
1920 arc_buf_destroy(buf
, &buf
);
1921 } else if (BP_GET_TYPE(bp
) == DMU_OT_OBJSET
) {
1922 arc_flags_t flags
= ARC_FLAG_WAIT
;
1926 err
= arc_read(NULL
, spa
, bp
, arc_getbuf_func
, &buf
,
1927 ZIO_PRIORITY_SCRUB
, zio_flags
, &flags
, zb
);
1929 scn
->scn_phys
.scn_errors
++;
1935 dsl_scan_visitdnode(scn
, ds
, osp
->os_type
,
1936 &osp
->os_meta_dnode
, DMU_META_DNODE_OBJECT
, tx
);
1938 if (OBJSET_BUF_HAS_USERUSED(buf
)) {
1940 * We also always visit user/group/project accounting
1941 * objects, and never skip them, even if we are
1942 * suspending. This is necessary so that the
1943 * space deltas from this txg get integrated.
1945 if (OBJSET_BUF_HAS_PROJECTUSED(buf
))
1946 dsl_scan_visitdnode(scn
, ds
, osp
->os_type
,
1947 &osp
->os_projectused_dnode
,
1948 DMU_PROJECTUSED_OBJECT
, tx
);
1949 dsl_scan_visitdnode(scn
, ds
, osp
->os_type
,
1950 &osp
->os_groupused_dnode
,
1951 DMU_GROUPUSED_OBJECT
, tx
);
1952 dsl_scan_visitdnode(scn
, ds
, osp
->os_type
,
1953 &osp
->os_userused_dnode
,
1954 DMU_USERUSED_OBJECT
, tx
);
1956 arc_buf_destroy(buf
, &buf
);
1957 } else if (!zfs_blkptr_verify(spa
, bp
, B_FALSE
, BLK_VERIFY_LOG
)) {
1959 * Sanity check the block pointer contents, this is handled
1960 * by arc_read() for the cases above.
1962 scn
->scn_phys
.scn_errors
++;
1963 spa_log_error(spa
, zb
);
1964 return (SET_ERROR(EINVAL
));
1970 inline __attribute__((always_inline
)) static void
1971 dsl_scan_visitdnode(dsl_scan_t
*scn
, dsl_dataset_t
*ds
,
1972 dmu_objset_type_t ostype
, dnode_phys_t
*dnp
,
1973 uint64_t object
, dmu_tx_t
*tx
)
1977 for (j
= 0; j
< dnp
->dn_nblkptr
; j
++) {
1978 zbookmark_phys_t czb
;
1980 SET_BOOKMARK(&czb
, ds
? ds
->ds_object
: 0, object
,
1981 dnp
->dn_nlevels
- 1, j
);
1982 dsl_scan_visitbp(&dnp
->dn_blkptr
[j
],
1983 &czb
, dnp
, ds
, scn
, ostype
, tx
);
1986 if (dnp
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
) {
1987 zbookmark_phys_t czb
;
1988 SET_BOOKMARK(&czb
, ds
? ds
->ds_object
: 0, object
,
1989 0, DMU_SPILL_BLKID
);
1990 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp
),
1991 &czb
, dnp
, ds
, scn
, ostype
, tx
);
1996 * The arguments are in this order because mdb can only print the
1997 * first 5; we want them to be useful.
2000 dsl_scan_visitbp(blkptr_t
*bp
, const zbookmark_phys_t
*zb
,
2001 dnode_phys_t
*dnp
, dsl_dataset_t
*ds
, dsl_scan_t
*scn
,
2002 dmu_objset_type_t ostype
, dmu_tx_t
*tx
)
2004 dsl_pool_t
*dp
= scn
->scn_dp
;
2005 blkptr_t
*bp_toread
= NULL
;
2007 if (dsl_scan_check_suspend(scn
, zb
))
2010 if (dsl_scan_check_resume(scn
, dnp
, zb
))
2013 scn
->scn_visited_this_txg
++;
2015 if (BP_IS_HOLE(bp
)) {
2016 scn
->scn_holes_this_txg
++;
2020 if (BP_IS_REDACTED(bp
)) {
2021 ASSERT(dsl_dataset_feature_is_active(ds
,
2022 SPA_FEATURE_REDACTED_DATASETS
));
2026 if (bp
->blk_birth
<= scn
->scn_phys
.scn_cur_min_txg
) {
2027 scn
->scn_lt_min_this_txg
++;
2031 bp_toread
= kmem_alloc(sizeof (blkptr_t
), KM_SLEEP
);
2034 if (dsl_scan_recurse(scn
, ds
, ostype
, dnp
, bp_toread
, zb
, tx
) != 0)
2038 * If dsl_scan_ddt() has already visited this block, it will have
2039 * already done any translations or scrubbing, so don't call the
2042 if (ddt_class_contains(dp
->dp_spa
,
2043 scn
->scn_phys
.scn_ddt_class_max
, bp
)) {
2044 scn
->scn_ddt_contained_this_txg
++;
2049 * If this block is from the future (after cur_max_txg), then we
2050 * are doing this on behalf of a deleted snapshot, and we will
2051 * revisit the future block on the next pass of this dataset.
2052 * Don't scan it now unless we need to because something
2053 * under it was modified.
2055 if (BP_PHYSICAL_BIRTH(bp
) > scn
->scn_phys
.scn_cur_max_txg
) {
2056 scn
->scn_gt_max_this_txg
++;
2060 scan_funcs
[scn
->scn_phys
.scn_func
](dp
, bp
, zb
);
2063 kmem_free(bp_toread
, sizeof (blkptr_t
));
2067 dsl_scan_visit_rootbp(dsl_scan_t
*scn
, dsl_dataset_t
*ds
, blkptr_t
*bp
,
2070 zbookmark_phys_t zb
;
2071 scan_prefetch_ctx_t
*spc
;
2073 SET_BOOKMARK(&zb
, ds
? ds
->ds_object
: DMU_META_OBJSET
,
2074 ZB_ROOT_OBJECT
, ZB_ROOT_LEVEL
, ZB_ROOT_BLKID
);
2076 if (ZB_IS_ZERO(&scn
->scn_phys
.scn_bookmark
)) {
2077 SET_BOOKMARK(&scn
->scn_prefetch_bookmark
,
2078 zb
.zb_objset
, 0, 0, 0);
2080 scn
->scn_prefetch_bookmark
= scn
->scn_phys
.scn_bookmark
;
2083 scn
->scn_objsets_visited_this_txg
++;
2085 spc
= scan_prefetch_ctx_create(scn
, NULL
, FTAG
);
2086 dsl_scan_prefetch(spc
, bp
, &zb
);
2087 scan_prefetch_ctx_rele(spc
, FTAG
);
2089 dsl_scan_visitbp(bp
, &zb
, NULL
, ds
, scn
, DMU_OST_NONE
, tx
);
2091 dprintf_ds(ds
, "finished scan%s", "");
2095 ds_destroyed_scn_phys(dsl_dataset_t
*ds
, dsl_scan_phys_t
*scn_phys
)
2097 if (scn_phys
->scn_bookmark
.zb_objset
== ds
->ds_object
) {
2098 if (ds
->ds_is_snapshot
) {
2101 * - scn_cur_{min,max}_txg stays the same.
2102 * - Setting the flag is not really necessary if
2103 * scn_cur_max_txg == scn_max_txg, because there
2104 * is nothing after this snapshot that we care
2105 * about. However, we set it anyway and then
2106 * ignore it when we retraverse it in
2107 * dsl_scan_visitds().
2109 scn_phys
->scn_bookmark
.zb_objset
=
2110 dsl_dataset_phys(ds
)->ds_next_snap_obj
;
2111 zfs_dbgmsg("destroying ds %llu on %s; currently "
2112 "traversing; reset zb_objset to %llu",
2113 (u_longlong_t
)ds
->ds_object
,
2114 ds
->ds_dir
->dd_pool
->dp_spa
->spa_name
,
2115 (u_longlong_t
)dsl_dataset_phys(ds
)->
2117 scn_phys
->scn_flags
|= DSF_VISIT_DS_AGAIN
;
2119 SET_BOOKMARK(&scn_phys
->scn_bookmark
,
2120 ZB_DESTROYED_OBJSET
, 0, 0, 0);
2121 zfs_dbgmsg("destroying ds %llu on %s; currently "
2122 "traversing; reset bookmark to -1,0,0,0",
2123 (u_longlong_t
)ds
->ds_object
,
2124 ds
->ds_dir
->dd_pool
->dp_spa
->spa_name
);
2130 * Invoked when a dataset is destroyed. We need to make sure that:
2132 * 1) If it is the dataset that was currently being scanned, we write
2133 * a new dsl_scan_phys_t and marking the objset reference in it
2135 * 2) Remove it from the work queue, if it was present.
2137 * If the dataset was actually a snapshot, instead of marking the dataset
2138 * as destroyed, we instead substitute the next snapshot in line.
2141 dsl_scan_ds_destroyed(dsl_dataset_t
*ds
, dmu_tx_t
*tx
)
2143 dsl_pool_t
*dp
= ds
->ds_dir
->dd_pool
;
2144 dsl_scan_t
*scn
= dp
->dp_scan
;
2147 if (!dsl_scan_is_running(scn
))
2150 ds_destroyed_scn_phys(ds
, &scn
->scn_phys
);
2151 ds_destroyed_scn_phys(ds
, &scn
->scn_phys_cached
);
2153 if (scan_ds_queue_contains(scn
, ds
->ds_object
, &mintxg
)) {
2154 scan_ds_queue_remove(scn
, ds
->ds_object
);
2155 if (ds
->ds_is_snapshot
)
2156 scan_ds_queue_insert(scn
,
2157 dsl_dataset_phys(ds
)->ds_next_snap_obj
, mintxg
);
2160 if (zap_lookup_int_key(dp
->dp_meta_objset
, scn
->scn_phys
.scn_queue_obj
,
2161 ds
->ds_object
, &mintxg
) == 0) {
2162 ASSERT3U(dsl_dataset_phys(ds
)->ds_num_children
, <=, 1);
2163 VERIFY3U(0, ==, zap_remove_int(dp
->dp_meta_objset
,
2164 scn
->scn_phys
.scn_queue_obj
, ds
->ds_object
, tx
));
2165 if (ds
->ds_is_snapshot
) {
2167 * We keep the same mintxg; it could be >
2168 * ds_creation_txg if the previous snapshot was
2171 VERIFY(zap_add_int_key(dp
->dp_meta_objset
,
2172 scn
->scn_phys
.scn_queue_obj
,
2173 dsl_dataset_phys(ds
)->ds_next_snap_obj
,
2175 zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2176 "replacing with %llu",
2177 (u_longlong_t
)ds
->ds_object
,
2178 dp
->dp_spa
->spa_name
,
2179 (u_longlong_t
)dsl_dataset_phys(ds
)->
2182 zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2184 (u_longlong_t
)ds
->ds_object
,
2185 dp
->dp_spa
->spa_name
);
2190 * dsl_scan_sync() should be called after this, and should sync
2191 * out our changed state, but just to be safe, do it here.
2193 dsl_scan_sync_state(scn
, tx
, SYNC_CACHED
);
2197 ds_snapshotted_bookmark(dsl_dataset_t
*ds
, zbookmark_phys_t
*scn_bookmark
)
2199 if (scn_bookmark
->zb_objset
== ds
->ds_object
) {
2200 scn_bookmark
->zb_objset
=
2201 dsl_dataset_phys(ds
)->ds_prev_snap_obj
;
2202 zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; "
2203 "reset zb_objset to %llu",
2204 (u_longlong_t
)ds
->ds_object
,
2205 ds
->ds_dir
->dd_pool
->dp_spa
->spa_name
,
2206 (u_longlong_t
)dsl_dataset_phys(ds
)->ds_prev_snap_obj
);
2211 * Called when a dataset is snapshotted. If we were currently traversing
2212 * this snapshot, we reset our bookmark to point at the newly created
2213 * snapshot. We also modify our work queue to remove the old snapshot and
2214 * replace with the new one.
2217 dsl_scan_ds_snapshotted(dsl_dataset_t
*ds
, dmu_tx_t
*tx
)
2219 dsl_pool_t
*dp
= ds
->ds_dir
->dd_pool
;
2220 dsl_scan_t
*scn
= dp
->dp_scan
;
2223 if (!dsl_scan_is_running(scn
))
2226 ASSERT(dsl_dataset_phys(ds
)->ds_prev_snap_obj
!= 0);
2228 ds_snapshotted_bookmark(ds
, &scn
->scn_phys
.scn_bookmark
);
2229 ds_snapshotted_bookmark(ds
, &scn
->scn_phys_cached
.scn_bookmark
);
2231 if (scan_ds_queue_contains(scn
, ds
->ds_object
, &mintxg
)) {
2232 scan_ds_queue_remove(scn
, ds
->ds_object
);
2233 scan_ds_queue_insert(scn
,
2234 dsl_dataset_phys(ds
)->ds_prev_snap_obj
, mintxg
);
2237 if (zap_lookup_int_key(dp
->dp_meta_objset
, scn
->scn_phys
.scn_queue_obj
,
2238 ds
->ds_object
, &mintxg
) == 0) {
2239 VERIFY3U(0, ==, zap_remove_int(dp
->dp_meta_objset
,
2240 scn
->scn_phys
.scn_queue_obj
, ds
->ds_object
, tx
));
2241 VERIFY(zap_add_int_key(dp
->dp_meta_objset
,
2242 scn
->scn_phys
.scn_queue_obj
,
2243 dsl_dataset_phys(ds
)->ds_prev_snap_obj
, mintxg
, tx
) == 0);
2244 zfs_dbgmsg("snapshotting ds %llu on %s; in queue; "
2245 "replacing with %llu",
2246 (u_longlong_t
)ds
->ds_object
,
2247 dp
->dp_spa
->spa_name
,
2248 (u_longlong_t
)dsl_dataset_phys(ds
)->ds_prev_snap_obj
);
2251 dsl_scan_sync_state(scn
, tx
, SYNC_CACHED
);
2255 ds_clone_swapped_bookmark(dsl_dataset_t
*ds1
, dsl_dataset_t
*ds2
,
2256 zbookmark_phys_t
*scn_bookmark
)
2258 if (scn_bookmark
->zb_objset
== ds1
->ds_object
) {
2259 scn_bookmark
->zb_objset
= ds2
->ds_object
;
2260 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2261 "reset zb_objset to %llu",
2262 (u_longlong_t
)ds1
->ds_object
,
2263 ds1
->ds_dir
->dd_pool
->dp_spa
->spa_name
,
2264 (u_longlong_t
)ds2
->ds_object
);
2265 } else if (scn_bookmark
->zb_objset
== ds2
->ds_object
) {
2266 scn_bookmark
->zb_objset
= ds1
->ds_object
;
2267 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2268 "reset zb_objset to %llu",
2269 (u_longlong_t
)ds2
->ds_object
,
2270 ds2
->ds_dir
->dd_pool
->dp_spa
->spa_name
,
2271 (u_longlong_t
)ds1
->ds_object
);
2276 * Called when an origin dataset and its clone are swapped. If we were
2277 * currently traversing the dataset, we need to switch to traversing the
2278 * newly promoted clone.
2281 dsl_scan_ds_clone_swapped(dsl_dataset_t
*ds1
, dsl_dataset_t
*ds2
, dmu_tx_t
*tx
)
2283 dsl_pool_t
*dp
= ds1
->ds_dir
->dd_pool
;
2284 dsl_scan_t
*scn
= dp
->dp_scan
;
2285 uint64_t mintxg1
, mintxg2
;
2286 boolean_t ds1_queued
, ds2_queued
;
2288 if (!dsl_scan_is_running(scn
))
2291 ds_clone_swapped_bookmark(ds1
, ds2
, &scn
->scn_phys
.scn_bookmark
);
2292 ds_clone_swapped_bookmark(ds1
, ds2
, &scn
->scn_phys_cached
.scn_bookmark
);
2295 * Handle the in-memory scan queue.
2297 ds1_queued
= scan_ds_queue_contains(scn
, ds1
->ds_object
, &mintxg1
);
2298 ds2_queued
= scan_ds_queue_contains(scn
, ds2
->ds_object
, &mintxg2
);
2300 /* Sanity checking. */
2302 ASSERT3U(mintxg1
, ==, dsl_dataset_phys(ds1
)->ds_prev_snap_txg
);
2303 ASSERT3U(mintxg1
, ==, dsl_dataset_phys(ds2
)->ds_prev_snap_txg
);
2306 ASSERT3U(mintxg2
, ==, dsl_dataset_phys(ds1
)->ds_prev_snap_txg
);
2307 ASSERT3U(mintxg2
, ==, dsl_dataset_phys(ds2
)->ds_prev_snap_txg
);
2310 if (ds1_queued
&& ds2_queued
) {
2312 * If both are queued, we don't need to do anything.
2313 * The swapping code below would not handle this case correctly,
2314 * since we can't insert ds2 if it is already there. That's
2315 * because scan_ds_queue_insert() prohibits a duplicate insert
2318 } else if (ds1_queued
) {
2319 scan_ds_queue_remove(scn
, ds1
->ds_object
);
2320 scan_ds_queue_insert(scn
, ds2
->ds_object
, mintxg1
);
2321 } else if (ds2_queued
) {
2322 scan_ds_queue_remove(scn
, ds2
->ds_object
);
2323 scan_ds_queue_insert(scn
, ds1
->ds_object
, mintxg2
);
2327 * Handle the on-disk scan queue.
2328 * The on-disk state is an out-of-date version of the in-memory state,
2329 * so the in-memory and on-disk values for ds1_queued and ds2_queued may
2330 * be different. Therefore we need to apply the swap logic to the
2331 * on-disk state independently of the in-memory state.
2333 ds1_queued
= zap_lookup_int_key(dp
->dp_meta_objset
,
2334 scn
->scn_phys
.scn_queue_obj
, ds1
->ds_object
, &mintxg1
) == 0;
2335 ds2_queued
= zap_lookup_int_key(dp
->dp_meta_objset
,
2336 scn
->scn_phys
.scn_queue_obj
, ds2
->ds_object
, &mintxg2
) == 0;
2338 /* Sanity checking. */
2340 ASSERT3U(mintxg1
, ==, dsl_dataset_phys(ds1
)->ds_prev_snap_txg
);
2341 ASSERT3U(mintxg1
, ==, dsl_dataset_phys(ds2
)->ds_prev_snap_txg
);
2344 ASSERT3U(mintxg2
, ==, dsl_dataset_phys(ds1
)->ds_prev_snap_txg
);
2345 ASSERT3U(mintxg2
, ==, dsl_dataset_phys(ds2
)->ds_prev_snap_txg
);
2348 if (ds1_queued
&& ds2_queued
) {
2350 * If both are queued, we don't need to do anything.
2351 * Alternatively, we could check for EEXIST from
2352 * zap_add_int_key() and back out to the original state, but
2353 * that would be more work than checking for this case upfront.
2355 } else if (ds1_queued
) {
2356 VERIFY3S(0, ==, zap_remove_int(dp
->dp_meta_objset
,
2357 scn
->scn_phys
.scn_queue_obj
, ds1
->ds_object
, tx
));
2358 VERIFY3S(0, ==, zap_add_int_key(dp
->dp_meta_objset
,
2359 scn
->scn_phys
.scn_queue_obj
, ds2
->ds_object
, mintxg1
, tx
));
2360 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2361 "replacing with %llu",
2362 (u_longlong_t
)ds1
->ds_object
,
2363 dp
->dp_spa
->spa_name
,
2364 (u_longlong_t
)ds2
->ds_object
);
2365 } else if (ds2_queued
) {
2366 VERIFY3S(0, ==, zap_remove_int(dp
->dp_meta_objset
,
2367 scn
->scn_phys
.scn_queue_obj
, ds2
->ds_object
, tx
));
2368 VERIFY3S(0, ==, zap_add_int_key(dp
->dp_meta_objset
,
2369 scn
->scn_phys
.scn_queue_obj
, ds1
->ds_object
, mintxg2
, tx
));
2370 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2371 "replacing with %llu",
2372 (u_longlong_t
)ds2
->ds_object
,
2373 dp
->dp_spa
->spa_name
,
2374 (u_longlong_t
)ds1
->ds_object
);
2377 dsl_scan_sync_state(scn
, tx
, SYNC_CACHED
);
2381 enqueue_clones_cb(dsl_pool_t
*dp
, dsl_dataset_t
*hds
, void *arg
)
2383 uint64_t originobj
= *(uint64_t *)arg
;
2386 dsl_scan_t
*scn
= dp
->dp_scan
;
2388 if (dsl_dir_phys(hds
->ds_dir
)->dd_origin_obj
!= originobj
)
2391 err
= dsl_dataset_hold_obj(dp
, hds
->ds_object
, FTAG
, &ds
);
2395 while (dsl_dataset_phys(ds
)->ds_prev_snap_obj
!= originobj
) {
2396 dsl_dataset_t
*prev
;
2397 err
= dsl_dataset_hold_obj(dp
,
2398 dsl_dataset_phys(ds
)->ds_prev_snap_obj
, FTAG
, &prev
);
2400 dsl_dataset_rele(ds
, FTAG
);
2405 scan_ds_queue_insert(scn
, ds
->ds_object
,
2406 dsl_dataset_phys(ds
)->ds_prev_snap_txg
);
2407 dsl_dataset_rele(ds
, FTAG
);
2412 dsl_scan_visitds(dsl_scan_t
*scn
, uint64_t dsobj
, dmu_tx_t
*tx
)
2414 dsl_pool_t
*dp
= scn
->scn_dp
;
2417 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp
, dsobj
, FTAG
, &ds
));
2419 if (scn
->scn_phys
.scn_cur_min_txg
>=
2420 scn
->scn_phys
.scn_max_txg
) {
2422 * This can happen if this snapshot was created after the
2423 * scan started, and we already completed a previous snapshot
2424 * that was created after the scan started. This snapshot
2425 * only references blocks with:
2427 * birth < our ds_creation_txg
2428 * cur_min_txg is no less than ds_creation_txg.
2429 * We have already visited these blocks.
2431 * birth > scn_max_txg
2432 * The scan requested not to visit these blocks.
2434 * Subsequent snapshots (and clones) can reference our
2435 * blocks, or blocks with even higher birth times.
2436 * Therefore we do not need to visit them either,
2437 * so we do not add them to the work queue.
2439 * Note that checking for cur_min_txg >= cur_max_txg
2440 * is not sufficient, because in that case we may need to
2441 * visit subsequent snapshots. This happens when min_txg > 0,
2442 * which raises cur_min_txg. In this case we will visit
2443 * this dataset but skip all of its blocks, because the
2444 * rootbp's birth time is < cur_min_txg. Then we will
2445 * add the next snapshots/clones to the work queue.
2447 char *dsname
= kmem_alloc(ZFS_MAX_DATASET_NAME_LEN
, KM_SLEEP
);
2448 dsl_dataset_name(ds
, dsname
);
2449 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
2450 "cur_min_txg (%llu) >= max_txg (%llu)",
2451 (longlong_t
)dsobj
, dsname
,
2452 (longlong_t
)scn
->scn_phys
.scn_cur_min_txg
,
2453 (longlong_t
)scn
->scn_phys
.scn_max_txg
);
2454 kmem_free(dsname
, MAXNAMELEN
);
2460 * Only the ZIL in the head (non-snapshot) is valid. Even though
2461 * snapshots can have ZIL block pointers (which may be the same
2462 * BP as in the head), they must be ignored. In addition, $ORIGIN
2463 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
2464 * need to look for a ZIL in it either. So we traverse the ZIL here,
2465 * rather than in scan_recurse(), because the regular snapshot
2466 * block-sharing rules don't apply to it.
2468 if (!dsl_dataset_is_snapshot(ds
) &&
2469 (dp
->dp_origin_snap
== NULL
||
2470 ds
->ds_dir
!= dp
->dp_origin_snap
->ds_dir
)) {
2472 if (dmu_objset_from_ds(ds
, &os
) != 0) {
2475 dsl_scan_zil(dp
, &os
->os_zil_header
);
2479 * Iterate over the bps in this ds.
2481 dmu_buf_will_dirty(ds
->ds_dbuf
, tx
);
2482 rrw_enter(&ds
->ds_bp_rwlock
, RW_READER
, FTAG
);
2483 dsl_scan_visit_rootbp(scn
, ds
, &dsl_dataset_phys(ds
)->ds_bp
, tx
);
2484 rrw_exit(&ds
->ds_bp_rwlock
, FTAG
);
2486 char *dsname
= kmem_alloc(ZFS_MAX_DATASET_NAME_LEN
, KM_SLEEP
);
2487 dsl_dataset_name(ds
, dsname
);
2488 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
2490 (longlong_t
)dsobj
, dsname
,
2491 (longlong_t
)scn
->scn_phys
.scn_cur_min_txg
,
2492 (longlong_t
)scn
->scn_phys
.scn_cur_max_txg
,
2493 (int)scn
->scn_suspending
);
2494 kmem_free(dsname
, ZFS_MAX_DATASET_NAME_LEN
);
2496 if (scn
->scn_suspending
)
2500 * We've finished this pass over this dataset.
2504 * If we did not completely visit this dataset, do another pass.
2506 if (scn
->scn_phys
.scn_flags
& DSF_VISIT_DS_AGAIN
) {
2507 zfs_dbgmsg("incomplete pass on %s; visiting again",
2508 dp
->dp_spa
->spa_name
);
2509 scn
->scn_phys
.scn_flags
&= ~DSF_VISIT_DS_AGAIN
;
2510 scan_ds_queue_insert(scn
, ds
->ds_object
,
2511 scn
->scn_phys
.scn_cur_max_txg
);
2516 * Add descendant datasets to work queue.
2518 if (dsl_dataset_phys(ds
)->ds_next_snap_obj
!= 0) {
2519 scan_ds_queue_insert(scn
,
2520 dsl_dataset_phys(ds
)->ds_next_snap_obj
,
2521 dsl_dataset_phys(ds
)->ds_creation_txg
);
2523 if (dsl_dataset_phys(ds
)->ds_num_children
> 1) {
2524 boolean_t usenext
= B_FALSE
;
2525 if (dsl_dataset_phys(ds
)->ds_next_clones_obj
!= 0) {
2528 * A bug in a previous version of the code could
2529 * cause upgrade_clones_cb() to not set
2530 * ds_next_snap_obj when it should, leading to a
2531 * missing entry. Therefore we can only use the
2532 * next_clones_obj when its count is correct.
2534 int err
= zap_count(dp
->dp_meta_objset
,
2535 dsl_dataset_phys(ds
)->ds_next_clones_obj
, &count
);
2537 count
== dsl_dataset_phys(ds
)->ds_num_children
- 1)
2544 for (zap_cursor_init(&zc
, dp
->dp_meta_objset
,
2545 dsl_dataset_phys(ds
)->ds_next_clones_obj
);
2546 zap_cursor_retrieve(&zc
, &za
) == 0;
2547 (void) zap_cursor_advance(&zc
)) {
2548 scan_ds_queue_insert(scn
,
2549 zfs_strtonum(za
.za_name
, NULL
),
2550 dsl_dataset_phys(ds
)->ds_creation_txg
);
2552 zap_cursor_fini(&zc
);
2554 VERIFY0(dmu_objset_find_dp(dp
, dp
->dp_root_dir_obj
,
2555 enqueue_clones_cb
, &ds
->ds_object
,
2561 dsl_dataset_rele(ds
, FTAG
);
2565 enqueue_cb(dsl_pool_t
*dp
, dsl_dataset_t
*hds
, void *arg
)
2570 dsl_scan_t
*scn
= dp
->dp_scan
;
2572 err
= dsl_dataset_hold_obj(dp
, hds
->ds_object
, FTAG
, &ds
);
2576 while (dsl_dataset_phys(ds
)->ds_prev_snap_obj
!= 0) {
2577 dsl_dataset_t
*prev
;
2578 err
= dsl_dataset_hold_obj(dp
,
2579 dsl_dataset_phys(ds
)->ds_prev_snap_obj
, FTAG
, &prev
);
2581 dsl_dataset_rele(ds
, FTAG
);
2586 * If this is a clone, we don't need to worry about it for now.
2588 if (dsl_dataset_phys(prev
)->ds_next_snap_obj
!= ds
->ds_object
) {
2589 dsl_dataset_rele(ds
, FTAG
);
2590 dsl_dataset_rele(prev
, FTAG
);
2593 dsl_dataset_rele(ds
, FTAG
);
2597 scan_ds_queue_insert(scn
, ds
->ds_object
,
2598 dsl_dataset_phys(ds
)->ds_prev_snap_txg
);
2599 dsl_dataset_rele(ds
, FTAG
);
2604 dsl_scan_ddt_entry(dsl_scan_t
*scn
, enum zio_checksum checksum
,
2605 ddt_entry_t
*dde
, dmu_tx_t
*tx
)
2608 const ddt_key_t
*ddk
= &dde
->dde_key
;
2609 ddt_phys_t
*ddp
= dde
->dde_phys
;
2611 zbookmark_phys_t zb
= { 0 };
2613 if (!dsl_scan_is_running(scn
))
2617 * This function is special because it is the only thing
2618 * that can add scan_io_t's to the vdev scan queues from
2619 * outside dsl_scan_sync(). For the most part this is ok
2620 * as long as it is called from within syncing context.
2621 * However, dsl_scan_sync() expects that no new sio's will
2622 * be added between when all the work for a scan is done
2623 * and the next txg when the scan is actually marked as
2624 * completed. This check ensures we do not issue new sio's
2625 * during this period.
2627 if (scn
->scn_done_txg
!= 0)
2630 for (int p
= 0; p
< DDT_PHYS_TYPES
; p
++, ddp
++) {
2631 if (ddp
->ddp_phys_birth
== 0 ||
2632 ddp
->ddp_phys_birth
> scn
->scn_phys
.scn_max_txg
)
2634 ddt_bp_create(checksum
, ddk
, ddp
, &bp
);
2636 scn
->scn_visited_this_txg
++;
2637 scan_funcs
[scn
->scn_phys
.scn_func
](scn
->scn_dp
, &bp
, &zb
);
2642 * Scrub/dedup interaction.
2644 * If there are N references to a deduped block, we don't want to scrub it
2645 * N times -- ideally, we should scrub it exactly once.
2647 * We leverage the fact that the dde's replication class (enum ddt_class)
2648 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
2649 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
2651 * To prevent excess scrubbing, the scrub begins by walking the DDT
2652 * to find all blocks with refcnt > 1, and scrubs each of these once.
2653 * Since there are two replication classes which contain blocks with
2654 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
2655 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
2657 * There would be nothing more to say if a block's refcnt couldn't change
2658 * during a scrub, but of course it can so we must account for changes
2659 * in a block's replication class.
2661 * Here's an example of what can occur:
2663 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
2664 * when visited during the top-down scrub phase, it will be scrubbed twice.
2665 * This negates our scrub optimization, but is otherwise harmless.
2667 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
2668 * on each visit during the top-down scrub phase, it will never be scrubbed.
2669 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
2670 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
2671 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
2672 * while a scrub is in progress, it scrubs the block right then.
2675 dsl_scan_ddt(dsl_scan_t
*scn
, dmu_tx_t
*tx
)
2677 ddt_bookmark_t
*ddb
= &scn
->scn_phys
.scn_ddt_bookmark
;
2678 ddt_entry_t dde
= {{{{0}}}};
2682 while ((error
= ddt_walk(scn
->scn_dp
->dp_spa
, ddb
, &dde
)) == 0) {
2685 if (ddb
->ddb_class
> scn
->scn_phys
.scn_ddt_class_max
)
2687 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
2688 (longlong_t
)ddb
->ddb_class
,
2689 (longlong_t
)ddb
->ddb_type
,
2690 (longlong_t
)ddb
->ddb_checksum
,
2691 (longlong_t
)ddb
->ddb_cursor
);
2693 /* There should be no pending changes to the dedup table */
2694 ddt
= scn
->scn_dp
->dp_spa
->spa_ddt
[ddb
->ddb_checksum
];
2695 ASSERT(avl_first(&ddt
->ddt_tree
) == NULL
);
2697 dsl_scan_ddt_entry(scn
, ddb
->ddb_checksum
, &dde
, tx
);
2700 if (dsl_scan_check_suspend(scn
, NULL
))
2704 zfs_dbgmsg("scanned %llu ddt entries on %s with class_max = %u; "
2705 "suspending=%u", (longlong_t
)n
, scn
->scn_dp
->dp_spa
->spa_name
,
2706 (int)scn
->scn_phys
.scn_ddt_class_max
, (int)scn
->scn_suspending
);
2708 ASSERT(error
== 0 || error
== ENOENT
);
2709 ASSERT(error
!= ENOENT
||
2710 ddb
->ddb_class
> scn
->scn_phys
.scn_ddt_class_max
);
2714 dsl_scan_ds_maxtxg(dsl_dataset_t
*ds
)
2716 uint64_t smt
= ds
->ds_dir
->dd_pool
->dp_scan
->scn_phys
.scn_max_txg
;
2717 if (ds
->ds_is_snapshot
)
2718 return (MIN(smt
, dsl_dataset_phys(ds
)->ds_creation_txg
));
2723 dsl_scan_visit(dsl_scan_t
*scn
, dmu_tx_t
*tx
)
2726 dsl_pool_t
*dp
= scn
->scn_dp
;
2728 if (scn
->scn_phys
.scn_ddt_bookmark
.ddb_class
<=
2729 scn
->scn_phys
.scn_ddt_class_max
) {
2730 scn
->scn_phys
.scn_cur_min_txg
= scn
->scn_phys
.scn_min_txg
;
2731 scn
->scn_phys
.scn_cur_max_txg
= scn
->scn_phys
.scn_max_txg
;
2732 dsl_scan_ddt(scn
, tx
);
2733 if (scn
->scn_suspending
)
2737 if (scn
->scn_phys
.scn_bookmark
.zb_objset
== DMU_META_OBJSET
) {
2738 /* First do the MOS & ORIGIN */
2740 scn
->scn_phys
.scn_cur_min_txg
= scn
->scn_phys
.scn_min_txg
;
2741 scn
->scn_phys
.scn_cur_max_txg
= scn
->scn_phys
.scn_max_txg
;
2742 dsl_scan_visit_rootbp(scn
, NULL
,
2743 &dp
->dp_meta_rootbp
, tx
);
2744 spa_set_rootblkptr(dp
->dp_spa
, &dp
->dp_meta_rootbp
);
2745 if (scn
->scn_suspending
)
2748 if (spa_version(dp
->dp_spa
) < SPA_VERSION_DSL_SCRUB
) {
2749 VERIFY0(dmu_objset_find_dp(dp
, dp
->dp_root_dir_obj
,
2750 enqueue_cb
, NULL
, DS_FIND_CHILDREN
));
2752 dsl_scan_visitds(scn
,
2753 dp
->dp_origin_snap
->ds_object
, tx
);
2755 ASSERT(!scn
->scn_suspending
);
2756 } else if (scn
->scn_phys
.scn_bookmark
.zb_objset
!=
2757 ZB_DESTROYED_OBJSET
) {
2758 uint64_t dsobj
= scn
->scn_phys
.scn_bookmark
.zb_objset
;
2760 * If we were suspended, continue from here. Note if the
2761 * ds we were suspended on was deleted, the zb_objset may
2762 * be -1, so we will skip this and find a new objset
2765 dsl_scan_visitds(scn
, dsobj
, tx
);
2766 if (scn
->scn_suspending
)
2771 * In case we suspended right at the end of the ds, zero the
2772 * bookmark so we don't think that we're still trying to resume.
2774 memset(&scn
->scn_phys
.scn_bookmark
, 0, sizeof (zbookmark_phys_t
));
2777 * Keep pulling things out of the dataset avl queue. Updates to the
2778 * persistent zap-object-as-queue happen only at checkpoints.
2780 while ((sds
= avl_first(&scn
->scn_queue
)) != NULL
) {
2782 uint64_t dsobj
= sds
->sds_dsobj
;
2783 uint64_t txg
= sds
->sds_txg
;
2785 /* dequeue and free the ds from the queue */
2786 scan_ds_queue_remove(scn
, dsobj
);
2789 /* set up min / max txg */
2790 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp
, dsobj
, FTAG
, &ds
));
2792 scn
->scn_phys
.scn_cur_min_txg
=
2793 MAX(scn
->scn_phys
.scn_min_txg
, txg
);
2795 scn
->scn_phys
.scn_cur_min_txg
=
2796 MAX(scn
->scn_phys
.scn_min_txg
,
2797 dsl_dataset_phys(ds
)->ds_prev_snap_txg
);
2799 scn
->scn_phys
.scn_cur_max_txg
= dsl_scan_ds_maxtxg(ds
);
2800 dsl_dataset_rele(ds
, FTAG
);
2802 dsl_scan_visitds(scn
, dsobj
, tx
);
2803 if (scn
->scn_suspending
)
2807 /* No more objsets to fetch, we're done */
2808 scn
->scn_phys
.scn_bookmark
.zb_objset
= ZB_DESTROYED_OBJSET
;
2809 ASSERT0(scn
->scn_suspending
);
2813 dsl_scan_count_data_disks(vdev_t
*rvd
)
2815 uint64_t i
, leaves
= 0;
2817 for (i
= 0; i
< rvd
->vdev_children
; i
++) {
2818 vdev_t
*vd
= rvd
->vdev_child
[i
];
2819 if (vd
->vdev_islog
|| vd
->vdev_isspare
|| vd
->vdev_isl2cache
)
2821 leaves
+= vdev_get_ndisks(vd
) - vdev_get_nparity(vd
);
2827 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t
*q
, const blkptr_t
*bp
)
2830 uint64_t cur_size
= 0;
2832 for (i
= 0; i
< BP_GET_NDVAS(bp
); i
++) {
2833 cur_size
+= DVA_GET_ASIZE(&bp
->blk_dva
[i
]);
2836 q
->q_total_zio_size_this_txg
+= cur_size
;
2837 q
->q_zios_this_txg
++;
2841 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t
*q
, uint64_t start
,
2844 q
->q_total_seg_size_this_txg
+= end
- start
;
2845 q
->q_segs_this_txg
++;
2849 scan_io_queue_check_suspend(dsl_scan_t
*scn
)
2851 /* See comment in dsl_scan_check_suspend() */
2852 uint64_t curr_time_ns
= gethrtime();
2853 uint64_t scan_time_ns
= curr_time_ns
- scn
->scn_sync_start_time
;
2854 uint64_t sync_time_ns
= curr_time_ns
-
2855 scn
->scn_dp
->dp_spa
->spa_sync_starttime
;
2856 uint64_t dirty_min_bytes
= zfs_dirty_data_max
*
2857 zfs_vdev_async_write_active_min_dirty_percent
/ 100;
2858 uint_t mintime
= (scn
->scn_phys
.scn_func
== POOL_SCAN_RESILVER
) ?
2859 zfs_resilver_min_time_ms
: zfs_scrub_min_time_ms
;
2861 return ((NSEC2MSEC(scan_time_ns
) > mintime
&&
2862 (scn
->scn_dp
->dp_dirty_total
>= dirty_min_bytes
||
2863 txg_sync_waiting(scn
->scn_dp
) ||
2864 NSEC2SEC(sync_time_ns
) >= zfs_txg_timeout
)) ||
2865 spa_shutting_down(scn
->scn_dp
->dp_spa
));
2869 * Given a list of scan_io_t's in io_list, this issues the I/Os out to
2870 * disk. This consumes the io_list and frees the scan_io_t's. This is
2871 * called when emptying queues, either when we're up against the memory
2872 * limit or when we have finished scanning. Returns B_TRUE if we stopped
2873 * processing the list before we finished. Any sios that were not issued
2874 * will remain in the io_list.
2877 scan_io_queue_issue(dsl_scan_io_queue_t
*queue
, list_t
*io_list
)
2879 dsl_scan_t
*scn
= queue
->q_scn
;
2881 boolean_t suspended
= B_FALSE
;
2883 while ((sio
= list_head(io_list
)) != NULL
) {
2886 if (scan_io_queue_check_suspend(scn
)) {
2892 scan_exec_io(scn
->scn_dp
, &bp
, sio
->sio_flags
,
2893 &sio
->sio_zb
, queue
);
2894 (void) list_remove_head(io_list
);
2895 scan_io_queues_update_zio_stats(queue
, &bp
);
2902 * This function removes sios from an IO queue which reside within a given
2903 * range_seg_t and inserts them (in offset order) into a list. Note that
2904 * we only ever return a maximum of 32 sios at once. If there are more sios
2905 * to process within this segment that did not make it onto the list we
2906 * return B_TRUE and otherwise B_FALSE.
2909 scan_io_queue_gather(dsl_scan_io_queue_t
*queue
, range_seg_t
*rs
, list_t
*list
)
2911 scan_io_t
*srch_sio
, *sio
, *next_sio
;
2913 uint_t num_sios
= 0;
2914 int64_t bytes_issued
= 0;
2917 ASSERT(MUTEX_HELD(&queue
->q_vd
->vdev_scan_io_queue_lock
));
2919 srch_sio
= sio_alloc(1);
2920 srch_sio
->sio_nr_dvas
= 1;
2921 SIO_SET_OFFSET(srch_sio
, rs_get_start(rs
, queue
->q_exts_by_addr
));
2924 * The exact start of the extent might not contain any matching zios,
2925 * so if that's the case, examine the next one in the tree.
2927 sio
= avl_find(&queue
->q_sios_by_addr
, srch_sio
, &idx
);
2931 sio
= avl_nearest(&queue
->q_sios_by_addr
, idx
, AVL_AFTER
);
2933 while (sio
!= NULL
&& SIO_GET_OFFSET(sio
) < rs_get_end(rs
,
2934 queue
->q_exts_by_addr
) && num_sios
<= 32) {
2935 ASSERT3U(SIO_GET_OFFSET(sio
), >=, rs_get_start(rs
,
2936 queue
->q_exts_by_addr
));
2937 ASSERT3U(SIO_GET_END_OFFSET(sio
), <=, rs_get_end(rs
,
2938 queue
->q_exts_by_addr
));
2940 next_sio
= AVL_NEXT(&queue
->q_sios_by_addr
, sio
);
2941 avl_remove(&queue
->q_sios_by_addr
, sio
);
2942 if (avl_is_empty(&queue
->q_sios_by_addr
))
2943 atomic_add_64(&queue
->q_scn
->scn_queues_pending
, -1);
2944 queue
->q_sio_memused
-= SIO_GET_MUSED(sio
);
2946 bytes_issued
+= SIO_GET_ASIZE(sio
);
2948 list_insert_tail(list
, sio
);
2953 * We limit the number of sios we process at once to 32 to avoid
2954 * biting off more than we can chew. If we didn't take everything
2955 * in the segment we update it to reflect the work we were able to
2956 * complete. Otherwise, we remove it from the range tree entirely.
2958 if (sio
!= NULL
&& SIO_GET_OFFSET(sio
) < rs_get_end(rs
,
2959 queue
->q_exts_by_addr
)) {
2960 range_tree_adjust_fill(queue
->q_exts_by_addr
, rs
,
2962 range_tree_resize_segment(queue
->q_exts_by_addr
, rs
,
2963 SIO_GET_OFFSET(sio
), rs_get_end(rs
,
2964 queue
->q_exts_by_addr
) - SIO_GET_OFFSET(sio
));
2965 queue
->q_last_ext_addr
= SIO_GET_OFFSET(sio
);
2968 uint64_t rstart
= rs_get_start(rs
, queue
->q_exts_by_addr
);
2969 uint64_t rend
= rs_get_end(rs
, queue
->q_exts_by_addr
);
2970 range_tree_remove(queue
->q_exts_by_addr
, rstart
, rend
- rstart
);
2971 queue
->q_last_ext_addr
= -1;
2977 * This is called from the queue emptying thread and selects the next
2978 * extent from which we are to issue I/Os. The behavior of this function
2979 * depends on the state of the scan, the current memory consumption and
2980 * whether or not we are performing a scan shutdown.
2981 * 1) We select extents in an elevator algorithm (LBA-order) if the scan
2982 * needs to perform a checkpoint
2983 * 2) We select the largest available extent if we are up against the
2985 * 3) Otherwise we don't select any extents.
2987 static range_seg_t
*
2988 scan_io_queue_fetch_ext(dsl_scan_io_queue_t
*queue
)
2990 dsl_scan_t
*scn
= queue
->q_scn
;
2991 range_tree_t
*rt
= queue
->q_exts_by_addr
;
2993 ASSERT(MUTEX_HELD(&queue
->q_vd
->vdev_scan_io_queue_lock
));
2994 ASSERT(scn
->scn_is_sorted
);
2996 if (!scn
->scn_checkpointing
&& !scn
->scn_clearing
)
3000 * During normal clearing, we want to issue our largest segments
3001 * first, keeping IO as sequential as possible, and leaving the
3002 * smaller extents for later with the hope that they might eventually
3003 * grow to larger sequential segments. However, when the scan is
3004 * checkpointing, no new extents will be added to the sorting queue,
3005 * so the way we are sorted now is as good as it will ever get.
3006 * In this case, we instead switch to issuing extents in LBA order.
3008 if ((zfs_scan_issue_strategy
< 1 && scn
->scn_checkpointing
) ||
3009 zfs_scan_issue_strategy
== 1)
3010 return (range_tree_first(rt
));
3013 * Try to continue previous extent if it is not completed yet. After
3014 * shrink in scan_io_queue_gather() it may no longer be the best, but
3015 * otherwise we leave shorter remnant every txg.
3018 uint64_t size
= 1ULL << rt
->rt_shift
;
3019 range_seg_t
*addr_rs
;
3020 if (queue
->q_last_ext_addr
!= -1) {
3021 start
= queue
->q_last_ext_addr
;
3022 addr_rs
= range_tree_find(rt
, start
, size
);
3023 if (addr_rs
!= NULL
)
3028 * Nothing to continue, so find new best extent.
3030 uint64_t *v
= zfs_btree_first(&queue
->q_exts_by_size
, NULL
);
3033 queue
->q_last_ext_addr
= start
= *v
<< rt
->rt_shift
;
3036 * We need to get the original entry in the by_addr tree so we can
3039 addr_rs
= range_tree_find(rt
, start
, size
);
3040 ASSERT3P(addr_rs
, !=, NULL
);
3041 ASSERT3U(rs_get_start(addr_rs
, rt
), ==, start
);
3042 ASSERT3U(rs_get_end(addr_rs
, rt
), >, start
);
3047 scan_io_queues_run_one(void *arg
)
3049 dsl_scan_io_queue_t
*queue
= arg
;
3050 kmutex_t
*q_lock
= &queue
->q_vd
->vdev_scan_io_queue_lock
;
3051 boolean_t suspended
= B_FALSE
;
3057 ASSERT(queue
->q_scn
->scn_is_sorted
);
3059 list_create(&sio_list
, sizeof (scan_io_t
),
3060 offsetof(scan_io_t
, sio_nodes
.sio_list_node
));
3061 zio
= zio_null(queue
->q_scn
->scn_zio_root
, queue
->q_scn
->scn_dp
->dp_spa
,
3062 NULL
, NULL
, NULL
, ZIO_FLAG_CANFAIL
);
3063 mutex_enter(q_lock
);
3066 /* Calculate maximum in-flight bytes for this vdev. */
3067 queue
->q_maxinflight_bytes
= MAX(1, zfs_scan_vdev_limit
*
3068 (vdev_get_ndisks(queue
->q_vd
) - vdev_get_nparity(queue
->q_vd
)));
3070 /* reset per-queue scan statistics for this txg */
3071 queue
->q_total_seg_size_this_txg
= 0;
3072 queue
->q_segs_this_txg
= 0;
3073 queue
->q_total_zio_size_this_txg
= 0;
3074 queue
->q_zios_this_txg
= 0;
3076 /* loop until we run out of time or sios */
3077 while ((rs
= scan_io_queue_fetch_ext(queue
)) != NULL
) {
3078 uint64_t seg_start
= 0, seg_end
= 0;
3079 boolean_t more_left
;
3081 ASSERT(list_is_empty(&sio_list
));
3083 /* loop while we still have sios left to process in this rs */
3085 scan_io_t
*first_sio
, *last_sio
;
3088 * We have selected which extent needs to be
3089 * processed next. Gather up the corresponding sios.
3091 more_left
= scan_io_queue_gather(queue
, rs
, &sio_list
);
3092 ASSERT(!list_is_empty(&sio_list
));
3093 first_sio
= list_head(&sio_list
);
3094 last_sio
= list_tail(&sio_list
);
3096 seg_end
= SIO_GET_END_OFFSET(last_sio
);
3098 seg_start
= SIO_GET_OFFSET(first_sio
);
3101 * Issuing sios can take a long time so drop the
3102 * queue lock. The sio queue won't be updated by
3103 * other threads since we're in syncing context so
3104 * we can be sure that our trees will remain exactly
3108 suspended
= scan_io_queue_issue(queue
, &sio_list
);
3109 mutex_enter(q_lock
);
3113 } while (more_left
);
3115 /* update statistics for debugging purposes */
3116 scan_io_queues_update_seg_stats(queue
, seg_start
, seg_end
);
3123 * If we were suspended in the middle of processing,
3124 * requeue any unfinished sios and exit.
3126 while ((sio
= list_head(&sio_list
)) != NULL
) {
3127 list_remove(&sio_list
, sio
);
3128 scan_io_queue_insert_impl(queue
, sio
);
3131 queue
->q_zio
= NULL
;
3134 list_destroy(&sio_list
);
3138 * Performs an emptying run on all scan queues in the pool. This just
3139 * punches out one thread per top-level vdev, each of which processes
3140 * only that vdev's scan queue. We can parallelize the I/O here because
3141 * we know that each queue's I/Os only affect its own top-level vdev.
3143 * This function waits for the queue runs to complete, and must be
3144 * called from dsl_scan_sync (or in general, syncing context).
3147 scan_io_queues_run(dsl_scan_t
*scn
)
3149 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
3151 ASSERT(scn
->scn_is_sorted
);
3152 ASSERT(spa_config_held(spa
, SCL_CONFIG
, RW_READER
));
3154 if (scn
->scn_queues_pending
== 0)
3157 if (scn
->scn_taskq
== NULL
) {
3158 int nthreads
= spa
->spa_root_vdev
->vdev_children
;
3161 * We need to make this taskq *always* execute as many
3162 * threads in parallel as we have top-level vdevs and no
3163 * less, otherwise strange serialization of the calls to
3164 * scan_io_queues_run_one can occur during spa_sync runs
3165 * and that significantly impacts performance.
3167 scn
->scn_taskq
= taskq_create("dsl_scan_iss", nthreads
,
3168 minclsyspri
, nthreads
, nthreads
, TASKQ_PREPOPULATE
);
3171 for (uint64_t i
= 0; i
< spa
->spa_root_vdev
->vdev_children
; i
++) {
3172 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[i
];
3174 mutex_enter(&vd
->vdev_scan_io_queue_lock
);
3175 if (vd
->vdev_scan_io_queue
!= NULL
) {
3176 VERIFY(taskq_dispatch(scn
->scn_taskq
,
3177 scan_io_queues_run_one
, vd
->vdev_scan_io_queue
,
3178 TQ_SLEEP
) != TASKQID_INVALID
);
3180 mutex_exit(&vd
->vdev_scan_io_queue_lock
);
3184 * Wait for the queues to finish issuing their IOs for this run
3185 * before we return. There may still be IOs in flight at this
3188 taskq_wait(scn
->scn_taskq
);
3192 dsl_scan_async_block_should_pause(dsl_scan_t
*scn
)
3194 uint64_t elapsed_nanosecs
;
3199 if (zfs_async_block_max_blocks
!= 0 &&
3200 scn
->scn_visited_this_txg
>= zfs_async_block_max_blocks
) {
3204 if (zfs_max_async_dedup_frees
!= 0 &&
3205 scn
->scn_dedup_frees_this_txg
>= zfs_max_async_dedup_frees
) {
3209 elapsed_nanosecs
= gethrtime() - scn
->scn_sync_start_time
;
3210 return (elapsed_nanosecs
/ NANOSEC
> zfs_txg_timeout
||
3211 (NSEC2MSEC(elapsed_nanosecs
) > scn
->scn_async_block_min_time_ms
&&
3212 txg_sync_waiting(scn
->scn_dp
)) ||
3213 spa_shutting_down(scn
->scn_dp
->dp_spa
));
3217 dsl_scan_free_block_cb(void *arg
, const blkptr_t
*bp
, dmu_tx_t
*tx
)
3219 dsl_scan_t
*scn
= arg
;
3221 if (!scn
->scn_is_bptree
||
3222 (BP_GET_LEVEL(bp
) == 0 && BP_GET_TYPE(bp
) != DMU_OT_OBJSET
)) {
3223 if (dsl_scan_async_block_should_pause(scn
))
3224 return (SET_ERROR(ERESTART
));
3227 zio_nowait(zio_free_sync(scn
->scn_zio_root
, scn
->scn_dp
->dp_spa
,
3228 dmu_tx_get_txg(tx
), bp
, 0));
3229 dsl_dir_diduse_space(tx
->tx_pool
->dp_free_dir
, DD_USED_HEAD
,
3230 -bp_get_dsize_sync(scn
->scn_dp
->dp_spa
, bp
),
3231 -BP_GET_PSIZE(bp
), -BP_GET_UCSIZE(bp
), tx
);
3232 scn
->scn_visited_this_txg
++;
3233 if (BP_GET_DEDUP(bp
))
3234 scn
->scn_dedup_frees_this_txg
++;
3239 dsl_scan_update_stats(dsl_scan_t
*scn
)
3241 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
3243 uint64_t seg_size_total
= 0, zio_size_total
= 0;
3244 uint64_t seg_count_total
= 0, zio_count_total
= 0;
3246 for (i
= 0; i
< spa
->spa_root_vdev
->vdev_children
; i
++) {
3247 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[i
];
3248 dsl_scan_io_queue_t
*queue
= vd
->vdev_scan_io_queue
;
3253 seg_size_total
+= queue
->q_total_seg_size_this_txg
;
3254 zio_size_total
+= queue
->q_total_zio_size_this_txg
;
3255 seg_count_total
+= queue
->q_segs_this_txg
;
3256 zio_count_total
+= queue
->q_zios_this_txg
;
3259 if (seg_count_total
== 0 || zio_count_total
== 0) {
3260 scn
->scn_avg_seg_size_this_txg
= 0;
3261 scn
->scn_avg_zio_size_this_txg
= 0;
3262 scn
->scn_segs_this_txg
= 0;
3263 scn
->scn_zios_this_txg
= 0;
3267 scn
->scn_avg_seg_size_this_txg
= seg_size_total
/ seg_count_total
;
3268 scn
->scn_avg_zio_size_this_txg
= zio_size_total
/ zio_count_total
;
3269 scn
->scn_segs_this_txg
= seg_count_total
;
3270 scn
->scn_zios_this_txg
= zio_count_total
;
3274 bpobj_dsl_scan_free_block_cb(void *arg
, const blkptr_t
*bp
, boolean_t bp_freed
,
3278 return (dsl_scan_free_block_cb(arg
, bp
, tx
));
3282 dsl_scan_obsolete_block_cb(void *arg
, const blkptr_t
*bp
, boolean_t bp_freed
,
3286 dsl_scan_t
*scn
= arg
;
3287 const dva_t
*dva
= &bp
->blk_dva
[0];
3289 if (dsl_scan_async_block_should_pause(scn
))
3290 return (SET_ERROR(ERESTART
));
3292 spa_vdev_indirect_mark_obsolete(scn
->scn_dp
->dp_spa
,
3293 DVA_GET_VDEV(dva
), DVA_GET_OFFSET(dva
),
3294 DVA_GET_ASIZE(dva
), tx
);
3295 scn
->scn_visited_this_txg
++;
3300 dsl_scan_active(dsl_scan_t
*scn
)
3302 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
3303 uint64_t used
= 0, comp
, uncomp
;
3304 boolean_t clones_left
;
3306 if (spa
->spa_load_state
!= SPA_LOAD_NONE
)
3308 if (spa_shutting_down(spa
))
3310 if ((dsl_scan_is_running(scn
) && !dsl_scan_is_paused_scrub(scn
)) ||
3311 (scn
->scn_async_destroying
&& !scn
->scn_async_stalled
))
3314 if (spa_version(scn
->scn_dp
->dp_spa
) >= SPA_VERSION_DEADLISTS
) {
3315 (void) bpobj_space(&scn
->scn_dp
->dp_free_bpobj
,
3316 &used
, &comp
, &uncomp
);
3318 clones_left
= spa_livelist_delete_check(spa
);
3319 return ((used
!= 0) || (clones_left
));
3323 dsl_scan_check_deferred(vdev_t
*vd
)
3325 boolean_t need_resilver
= B_FALSE
;
3327 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
3329 dsl_scan_check_deferred(vd
->vdev_child
[c
]);
3332 if (!vdev_is_concrete(vd
) || vd
->vdev_aux
||
3333 !vd
->vdev_ops
->vdev_op_leaf
)
3334 return (need_resilver
);
3336 if (!vd
->vdev_resilver_deferred
)
3337 need_resilver
= B_TRUE
;
3339 return (need_resilver
);
3343 dsl_scan_need_resilver(spa_t
*spa
, const dva_t
*dva
, size_t psize
,
3344 uint64_t phys_birth
)
3348 vd
= vdev_lookup_top(spa
, DVA_GET_VDEV(dva
));
3350 if (vd
->vdev_ops
== &vdev_indirect_ops
) {
3352 * The indirect vdev can point to multiple
3353 * vdevs. For simplicity, always create
3354 * the resilver zio_t. zio_vdev_io_start()
3355 * will bypass the child resilver i/o's if
3356 * they are on vdevs that don't have DTL's.
3361 if (DVA_GET_GANG(dva
)) {
3363 * Gang members may be spread across multiple
3364 * vdevs, so the best estimate we have is the
3365 * scrub range, which has already been checked.
3366 * XXX -- it would be better to change our
3367 * allocation policy to ensure that all
3368 * gang members reside on the same vdev.
3374 * Check if the top-level vdev must resilver this offset.
3375 * When the offset does not intersect with a dirty leaf DTL
3376 * then it may be possible to skip the resilver IO. The psize
3377 * is provided instead of asize to simplify the check for RAIDZ.
3379 if (!vdev_dtl_need_resilver(vd
, dva
, psize
, phys_birth
))
3383 * Check that this top-level vdev has a device under it which
3384 * is resilvering and is not deferred.
3386 if (!dsl_scan_check_deferred(vd
))
3393 dsl_process_async_destroys(dsl_pool_t
*dp
, dmu_tx_t
*tx
)
3395 dsl_scan_t
*scn
= dp
->dp_scan
;
3396 spa_t
*spa
= dp
->dp_spa
;
3399 if (spa_suspend_async_destroy(spa
))
3402 if (zfs_free_bpobj_enabled
&&
3403 spa_version(spa
) >= SPA_VERSION_DEADLISTS
) {
3404 scn
->scn_is_bptree
= B_FALSE
;
3405 scn
->scn_async_block_min_time_ms
= zfs_free_min_time_ms
;
3406 scn
->scn_zio_root
= zio_root(spa
, NULL
,
3407 NULL
, ZIO_FLAG_MUSTSUCCEED
);
3408 err
= bpobj_iterate(&dp
->dp_free_bpobj
,
3409 bpobj_dsl_scan_free_block_cb
, scn
, tx
);
3410 VERIFY0(zio_wait(scn
->scn_zio_root
));
3411 scn
->scn_zio_root
= NULL
;
3413 if (err
!= 0 && err
!= ERESTART
)
3414 zfs_panic_recover("error %u from bpobj_iterate()", err
);
3417 if (err
== 0 && spa_feature_is_active(spa
, SPA_FEATURE_ASYNC_DESTROY
)) {
3418 ASSERT(scn
->scn_async_destroying
);
3419 scn
->scn_is_bptree
= B_TRUE
;
3420 scn
->scn_zio_root
= zio_root(spa
, NULL
,
3421 NULL
, ZIO_FLAG_MUSTSUCCEED
);
3422 err
= bptree_iterate(dp
->dp_meta_objset
,
3423 dp
->dp_bptree_obj
, B_TRUE
, dsl_scan_free_block_cb
, scn
, tx
);
3424 VERIFY0(zio_wait(scn
->scn_zio_root
));
3425 scn
->scn_zio_root
= NULL
;
3427 if (err
== EIO
|| err
== ECKSUM
) {
3429 } else if (err
!= 0 && err
!= ERESTART
) {
3430 zfs_panic_recover("error %u from "
3431 "traverse_dataset_destroyed()", err
);
3434 if (bptree_is_empty(dp
->dp_meta_objset
, dp
->dp_bptree_obj
)) {
3435 /* finished; deactivate async destroy feature */
3436 spa_feature_decr(spa
, SPA_FEATURE_ASYNC_DESTROY
, tx
);
3437 ASSERT(!spa_feature_is_active(spa
,
3438 SPA_FEATURE_ASYNC_DESTROY
));
3439 VERIFY0(zap_remove(dp
->dp_meta_objset
,
3440 DMU_POOL_DIRECTORY_OBJECT
,
3441 DMU_POOL_BPTREE_OBJ
, tx
));
3442 VERIFY0(bptree_free(dp
->dp_meta_objset
,
3443 dp
->dp_bptree_obj
, tx
));
3444 dp
->dp_bptree_obj
= 0;
3445 scn
->scn_async_destroying
= B_FALSE
;
3446 scn
->scn_async_stalled
= B_FALSE
;
3449 * If we didn't make progress, mark the async
3450 * destroy as stalled, so that we will not initiate
3451 * a spa_sync() on its behalf. Note that we only
3452 * check this if we are not finished, because if the
3453 * bptree had no blocks for us to visit, we can
3454 * finish without "making progress".
3456 scn
->scn_async_stalled
=
3457 (scn
->scn_visited_this_txg
== 0);
3460 if (scn
->scn_visited_this_txg
) {
3461 zfs_dbgmsg("freed %llu blocks in %llums from "
3462 "free_bpobj/bptree on %s in txg %llu; err=%u",
3463 (longlong_t
)scn
->scn_visited_this_txg
,
3465 NSEC2MSEC(gethrtime() - scn
->scn_sync_start_time
),
3466 spa
->spa_name
, (longlong_t
)tx
->tx_txg
, err
);
3467 scn
->scn_visited_this_txg
= 0;
3468 scn
->scn_dedup_frees_this_txg
= 0;
3471 * Write out changes to the DDT that may be required as a
3472 * result of the blocks freed. This ensures that the DDT
3473 * is clean when a scrub/resilver runs.
3475 ddt_sync(spa
, tx
->tx_txg
);
3479 if (dp
->dp_free_dir
!= NULL
&& !scn
->scn_async_destroying
&&
3480 zfs_free_leak_on_eio
&&
3481 (dsl_dir_phys(dp
->dp_free_dir
)->dd_used_bytes
!= 0 ||
3482 dsl_dir_phys(dp
->dp_free_dir
)->dd_compressed_bytes
!= 0 ||
3483 dsl_dir_phys(dp
->dp_free_dir
)->dd_uncompressed_bytes
!= 0)) {
3485 * We have finished background destroying, but there is still
3486 * some space left in the dp_free_dir. Transfer this leaked
3487 * space to the dp_leak_dir.
3489 if (dp
->dp_leak_dir
== NULL
) {
3490 rrw_enter(&dp
->dp_config_rwlock
, RW_WRITER
, FTAG
);
3491 (void) dsl_dir_create_sync(dp
, dp
->dp_root_dir
,
3493 VERIFY0(dsl_pool_open_special_dir(dp
,
3494 LEAK_DIR_NAME
, &dp
->dp_leak_dir
));
3495 rrw_exit(&dp
->dp_config_rwlock
, FTAG
);
3497 dsl_dir_diduse_space(dp
->dp_leak_dir
, DD_USED_HEAD
,
3498 dsl_dir_phys(dp
->dp_free_dir
)->dd_used_bytes
,
3499 dsl_dir_phys(dp
->dp_free_dir
)->dd_compressed_bytes
,
3500 dsl_dir_phys(dp
->dp_free_dir
)->dd_uncompressed_bytes
, tx
);
3501 dsl_dir_diduse_space(dp
->dp_free_dir
, DD_USED_HEAD
,
3502 -dsl_dir_phys(dp
->dp_free_dir
)->dd_used_bytes
,
3503 -dsl_dir_phys(dp
->dp_free_dir
)->dd_compressed_bytes
,
3504 -dsl_dir_phys(dp
->dp_free_dir
)->dd_uncompressed_bytes
, tx
);
3507 if (dp
->dp_free_dir
!= NULL
&& !scn
->scn_async_destroying
&&
3508 !spa_livelist_delete_check(spa
)) {
3509 /* finished; verify that space accounting went to zero */
3510 ASSERT0(dsl_dir_phys(dp
->dp_free_dir
)->dd_used_bytes
);
3511 ASSERT0(dsl_dir_phys(dp
->dp_free_dir
)->dd_compressed_bytes
);
3512 ASSERT0(dsl_dir_phys(dp
->dp_free_dir
)->dd_uncompressed_bytes
);
3515 spa_notify_waiters(spa
);
3517 EQUIV(bpobj_is_open(&dp
->dp_obsolete_bpobj
),
3518 0 == zap_contains(dp
->dp_meta_objset
, DMU_POOL_DIRECTORY_OBJECT
,
3519 DMU_POOL_OBSOLETE_BPOBJ
));
3520 if (err
== 0 && bpobj_is_open(&dp
->dp_obsolete_bpobj
)) {
3521 ASSERT(spa_feature_is_active(dp
->dp_spa
,
3522 SPA_FEATURE_OBSOLETE_COUNTS
));
3524 scn
->scn_is_bptree
= B_FALSE
;
3525 scn
->scn_async_block_min_time_ms
= zfs_obsolete_min_time_ms
;
3526 err
= bpobj_iterate(&dp
->dp_obsolete_bpobj
,
3527 dsl_scan_obsolete_block_cb
, scn
, tx
);
3528 if (err
!= 0 && err
!= ERESTART
)
3529 zfs_panic_recover("error %u from bpobj_iterate()", err
);
3531 if (bpobj_is_empty(&dp
->dp_obsolete_bpobj
))
3532 dsl_pool_destroy_obsolete_bpobj(dp
, tx
);
3538 * This is the primary entry point for scans that is called from syncing
3539 * context. Scans must happen entirely during syncing context so that we
3540 * can guarantee that blocks we are currently scanning will not change out
3541 * from under us. While a scan is active, this function controls how quickly
3542 * transaction groups proceed, instead of the normal handling provided by
3543 * txg_sync_thread().
3546 dsl_scan_sync(dsl_pool_t
*dp
, dmu_tx_t
*tx
)
3549 dsl_scan_t
*scn
= dp
->dp_scan
;
3550 spa_t
*spa
= dp
->dp_spa
;
3551 state_sync_type_t sync_type
= SYNC_OPTIONAL
;
3553 if (spa
->spa_resilver_deferred
&&
3554 !spa_feature_is_active(dp
->dp_spa
, SPA_FEATURE_RESILVER_DEFER
))
3555 spa_feature_incr(spa
, SPA_FEATURE_RESILVER_DEFER
, tx
);
3558 * Check for scn_restart_txg before checking spa_load_state, so
3559 * that we can restart an old-style scan while the pool is being
3560 * imported (see dsl_scan_init). We also restart scans if there
3561 * is a deferred resilver and the user has manually disabled
3562 * deferred resilvers via the tunable.
3564 if (dsl_scan_restarting(scn
, tx
) ||
3565 (spa
->spa_resilver_deferred
&& zfs_resilver_disable_defer
)) {
3566 pool_scan_func_t func
= POOL_SCAN_SCRUB
;
3567 dsl_scan_done(scn
, B_FALSE
, tx
);
3568 if (vdev_resilver_needed(spa
->spa_root_vdev
, NULL
, NULL
))
3569 func
= POOL_SCAN_RESILVER
;
3570 zfs_dbgmsg("restarting scan func=%u on %s txg=%llu",
3571 func
, dp
->dp_spa
->spa_name
, (longlong_t
)tx
->tx_txg
);
3572 dsl_scan_setup_sync(&func
, tx
);
3576 * Only process scans in sync pass 1.
3578 if (spa_sync_pass(spa
) > 1)
3582 * If the spa is shutting down, then stop scanning. This will
3583 * ensure that the scan does not dirty any new data during the
3586 if (spa_shutting_down(spa
))
3590 * If the scan is inactive due to a stalled async destroy, try again.
3592 if (!scn
->scn_async_stalled
&& !dsl_scan_active(scn
))
3595 /* reset scan statistics */
3596 scn
->scn_visited_this_txg
= 0;
3597 scn
->scn_dedup_frees_this_txg
= 0;
3598 scn
->scn_holes_this_txg
= 0;
3599 scn
->scn_lt_min_this_txg
= 0;
3600 scn
->scn_gt_max_this_txg
= 0;
3601 scn
->scn_ddt_contained_this_txg
= 0;
3602 scn
->scn_objsets_visited_this_txg
= 0;
3603 scn
->scn_avg_seg_size_this_txg
= 0;
3604 scn
->scn_segs_this_txg
= 0;
3605 scn
->scn_avg_zio_size_this_txg
= 0;
3606 scn
->scn_zios_this_txg
= 0;
3607 scn
->scn_suspending
= B_FALSE
;
3608 scn
->scn_sync_start_time
= gethrtime();
3609 spa
->spa_scrub_active
= B_TRUE
;
3612 * First process the async destroys. If we suspend, don't do
3613 * any scrubbing or resilvering. This ensures that there are no
3614 * async destroys while we are scanning, so the scan code doesn't
3615 * have to worry about traversing it. It is also faster to free the
3616 * blocks than to scrub them.
3618 err
= dsl_process_async_destroys(dp
, tx
);
3622 if (!dsl_scan_is_running(scn
) || dsl_scan_is_paused_scrub(scn
))
3626 * Wait a few txgs after importing to begin scanning so that
3627 * we can get the pool imported quickly.
3629 if (spa
->spa_syncing_txg
< spa
->spa_first_txg
+ SCAN_IMPORT_WAIT_TXGS
)
3633 * zfs_scan_suspend_progress can be set to disable scan progress.
3634 * We don't want to spin the txg_sync thread, so we add a delay
3635 * here to simulate the time spent doing a scan. This is mostly
3636 * useful for testing and debugging.
3638 if (zfs_scan_suspend_progress
) {
3639 uint64_t scan_time_ns
= gethrtime() - scn
->scn_sync_start_time
;
3640 uint_t mintime
= (scn
->scn_phys
.scn_func
==
3641 POOL_SCAN_RESILVER
) ? zfs_resilver_min_time_ms
:
3642 zfs_scrub_min_time_ms
;
3644 while (zfs_scan_suspend_progress
&&
3645 !txg_sync_waiting(scn
->scn_dp
) &&
3646 !spa_shutting_down(scn
->scn_dp
->dp_spa
) &&
3647 NSEC2MSEC(scan_time_ns
) < mintime
) {
3649 scan_time_ns
= gethrtime() - scn
->scn_sync_start_time
;
3655 * It is possible to switch from unsorted to sorted at any time,
3656 * but afterwards the scan will remain sorted unless reloaded from
3657 * a checkpoint after a reboot.
3659 if (!zfs_scan_legacy
) {
3660 scn
->scn_is_sorted
= B_TRUE
;
3661 if (scn
->scn_last_checkpoint
== 0)
3662 scn
->scn_last_checkpoint
= ddi_get_lbolt();
3666 * For sorted scans, determine what kind of work we will be doing
3667 * this txg based on our memory limitations and whether or not we
3668 * need to perform a checkpoint.
3670 if (scn
->scn_is_sorted
) {
3672 * If we are over our checkpoint interval, set scn_clearing
3673 * so that we can begin checkpointing immediately. The
3674 * checkpoint allows us to save a consistent bookmark
3675 * representing how much data we have scrubbed so far.
3676 * Otherwise, use the memory limit to determine if we should
3677 * scan for metadata or start issue scrub IOs. We accumulate
3678 * metadata until we hit our hard memory limit at which point
3679 * we issue scrub IOs until we are at our soft memory limit.
3681 if (scn
->scn_checkpointing
||
3682 ddi_get_lbolt() - scn
->scn_last_checkpoint
>
3683 SEC_TO_TICK(zfs_scan_checkpoint_intval
)) {
3684 if (!scn
->scn_checkpointing
)
3685 zfs_dbgmsg("begin scan checkpoint for %s",
3688 scn
->scn_checkpointing
= B_TRUE
;
3689 scn
->scn_clearing
= B_TRUE
;
3691 boolean_t should_clear
= dsl_scan_should_clear(scn
);
3692 if (should_clear
&& !scn
->scn_clearing
) {
3693 zfs_dbgmsg("begin scan clearing for %s",
3695 scn
->scn_clearing
= B_TRUE
;
3696 } else if (!should_clear
&& scn
->scn_clearing
) {
3697 zfs_dbgmsg("finish scan clearing for %s",
3699 scn
->scn_clearing
= B_FALSE
;
3703 ASSERT0(scn
->scn_checkpointing
);
3704 ASSERT0(scn
->scn_clearing
);
3707 if (!scn
->scn_clearing
&& scn
->scn_done_txg
== 0) {
3708 /* Need to scan metadata for more blocks to scrub */
3709 dsl_scan_phys_t
*scnp
= &scn
->scn_phys
;
3710 taskqid_t prefetch_tqid
;
3713 * Recalculate the max number of in-flight bytes for pool-wide
3714 * scanning operations (minimum 1MB). Limits for the issuing
3715 * phase are done per top-level vdev and are handled separately.
3717 scn
->scn_maxinflight_bytes
= MAX(zfs_scan_vdev_limit
*
3718 dsl_scan_count_data_disks(spa
->spa_root_vdev
), 1ULL << 20);
3720 if (scnp
->scn_ddt_bookmark
.ddb_class
<=
3721 scnp
->scn_ddt_class_max
) {
3722 ASSERT(ZB_IS_ZERO(&scnp
->scn_bookmark
));
3723 zfs_dbgmsg("doing scan sync for %s txg %llu; "
3724 "ddt bm=%llu/%llu/%llu/%llx",
3726 (longlong_t
)tx
->tx_txg
,
3727 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_class
,
3728 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_type
,
3729 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_checksum
,
3730 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_cursor
);
3732 zfs_dbgmsg("doing scan sync for %s txg %llu; "
3733 "bm=%llu/%llu/%llu/%llu",
3735 (longlong_t
)tx
->tx_txg
,
3736 (longlong_t
)scnp
->scn_bookmark
.zb_objset
,
3737 (longlong_t
)scnp
->scn_bookmark
.zb_object
,
3738 (longlong_t
)scnp
->scn_bookmark
.zb_level
,
3739 (longlong_t
)scnp
->scn_bookmark
.zb_blkid
);
3742 scn
->scn_zio_root
= zio_root(dp
->dp_spa
, NULL
,
3743 NULL
, ZIO_FLAG_CANFAIL
);
3745 scn
->scn_prefetch_stop
= B_FALSE
;
3746 prefetch_tqid
= taskq_dispatch(dp
->dp_sync_taskq
,
3747 dsl_scan_prefetch_thread
, scn
, TQ_SLEEP
);
3748 ASSERT(prefetch_tqid
!= TASKQID_INVALID
);
3750 dsl_pool_config_enter(dp
, FTAG
);
3751 dsl_scan_visit(scn
, tx
);
3752 dsl_pool_config_exit(dp
, FTAG
);
3754 mutex_enter(&dp
->dp_spa
->spa_scrub_lock
);
3755 scn
->scn_prefetch_stop
= B_TRUE
;
3756 cv_broadcast(&spa
->spa_scrub_io_cv
);
3757 mutex_exit(&dp
->dp_spa
->spa_scrub_lock
);
3759 taskq_wait_id(dp
->dp_sync_taskq
, prefetch_tqid
);
3760 (void) zio_wait(scn
->scn_zio_root
);
3761 scn
->scn_zio_root
= NULL
;
3763 zfs_dbgmsg("scan visited %llu blocks of %s in %llums "
3764 "(%llu os's, %llu holes, %llu < mintxg, "
3765 "%llu in ddt, %llu > maxtxg)",
3766 (longlong_t
)scn
->scn_visited_this_txg
,
3768 (longlong_t
)NSEC2MSEC(gethrtime() -
3769 scn
->scn_sync_start_time
),
3770 (longlong_t
)scn
->scn_objsets_visited_this_txg
,
3771 (longlong_t
)scn
->scn_holes_this_txg
,
3772 (longlong_t
)scn
->scn_lt_min_this_txg
,
3773 (longlong_t
)scn
->scn_ddt_contained_this_txg
,
3774 (longlong_t
)scn
->scn_gt_max_this_txg
);
3776 if (!scn
->scn_suspending
) {
3777 ASSERT0(avl_numnodes(&scn
->scn_queue
));
3778 scn
->scn_done_txg
= tx
->tx_txg
+ 1;
3779 if (scn
->scn_is_sorted
) {
3780 scn
->scn_checkpointing
= B_TRUE
;
3781 scn
->scn_clearing
= B_TRUE
;
3783 zfs_dbgmsg("scan complete for %s txg %llu",
3785 (longlong_t
)tx
->tx_txg
);
3787 } else if (scn
->scn_is_sorted
&& scn
->scn_queues_pending
!= 0) {
3788 ASSERT(scn
->scn_clearing
);
3790 /* need to issue scrubbing IOs from per-vdev queues */
3791 scn
->scn_zio_root
= zio_root(dp
->dp_spa
, NULL
,
3792 NULL
, ZIO_FLAG_CANFAIL
);
3793 scan_io_queues_run(scn
);
3794 (void) zio_wait(scn
->scn_zio_root
);
3795 scn
->scn_zio_root
= NULL
;
3797 /* calculate and dprintf the current memory usage */
3798 (void) dsl_scan_should_clear(scn
);
3799 dsl_scan_update_stats(scn
);
3801 zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) "
3802 "in %llums (avg_block_size = %llu, avg_seg_size = %llu)",
3803 (longlong_t
)scn
->scn_zios_this_txg
,
3805 (longlong_t
)scn
->scn_segs_this_txg
,
3806 (longlong_t
)NSEC2MSEC(gethrtime() -
3807 scn
->scn_sync_start_time
),
3808 (longlong_t
)scn
->scn_avg_zio_size_this_txg
,
3809 (longlong_t
)scn
->scn_avg_seg_size_this_txg
);
3810 } else if (scn
->scn_done_txg
!= 0 && scn
->scn_done_txg
<= tx
->tx_txg
) {
3811 /* Finished with everything. Mark the scrub as complete */
3812 zfs_dbgmsg("scan issuing complete txg %llu for %s",
3813 (longlong_t
)tx
->tx_txg
,
3815 ASSERT3U(scn
->scn_done_txg
, !=, 0);
3816 ASSERT0(spa
->spa_scrub_inflight
);
3817 ASSERT0(scn
->scn_queues_pending
);
3818 dsl_scan_done(scn
, B_TRUE
, tx
);
3819 sync_type
= SYNC_MANDATORY
;
3822 dsl_scan_sync_state(scn
, tx
, sync_type
);
3826 count_block_issued(spa_t
*spa
, const blkptr_t
*bp
, boolean_t all
)
3829 * Don't count embedded bp's, since we already did the work of
3830 * scanning these when we scanned the containing block.
3832 if (BP_IS_EMBEDDED(bp
))
3836 * Update the spa's stats on how many bytes we have issued.
3837 * Sequential scrubs create a zio for each DVA of the bp. Each
3838 * of these will include all DVAs for repair purposes, but the
3839 * zio code will only try the first one unless there is an issue.
3840 * Therefore, we should only count the first DVA for these IOs.
3842 atomic_add_64(&spa
->spa_scan_pass_issued
,
3843 all
? BP_GET_ASIZE(bp
) : DVA_GET_ASIZE(&bp
->blk_dva
[0]));
3847 count_block(zfs_all_blkstats_t
*zab
, const blkptr_t
*bp
)
3850 * If we resume after a reboot, zab will be NULL; don't record
3851 * incomplete stats in that case.
3856 for (int i
= 0; i
< 4; i
++) {
3857 int l
= (i
< 2) ? BP_GET_LEVEL(bp
) : DN_MAX_LEVELS
;
3858 int t
= (i
& 1) ? BP_GET_TYPE(bp
) : DMU_OT_TOTAL
;
3860 if (t
& DMU_OT_NEWTYPE
)
3862 zfs_blkstat_t
*zb
= &zab
->zab_type
[l
][t
];
3866 zb
->zb_asize
+= BP_GET_ASIZE(bp
);
3867 zb
->zb_lsize
+= BP_GET_LSIZE(bp
);
3868 zb
->zb_psize
+= BP_GET_PSIZE(bp
);
3869 zb
->zb_gangs
+= BP_COUNT_GANG(bp
);
3871 switch (BP_GET_NDVAS(bp
)) {
3873 if (DVA_GET_VDEV(&bp
->blk_dva
[0]) ==
3874 DVA_GET_VDEV(&bp
->blk_dva
[1]))
3875 zb
->zb_ditto_2_of_2_samevdev
++;
3878 equal
= (DVA_GET_VDEV(&bp
->blk_dva
[0]) ==
3879 DVA_GET_VDEV(&bp
->blk_dva
[1])) +
3880 (DVA_GET_VDEV(&bp
->blk_dva
[0]) ==
3881 DVA_GET_VDEV(&bp
->blk_dva
[2])) +
3882 (DVA_GET_VDEV(&bp
->blk_dva
[1]) ==
3883 DVA_GET_VDEV(&bp
->blk_dva
[2]));
3885 zb
->zb_ditto_2_of_3_samevdev
++;
3886 else if (equal
== 3)
3887 zb
->zb_ditto_3_of_3_samevdev
++;
3894 scan_io_queue_insert_impl(dsl_scan_io_queue_t
*queue
, scan_io_t
*sio
)
3897 dsl_scan_t
*scn
= queue
->q_scn
;
3899 ASSERT(MUTEX_HELD(&queue
->q_vd
->vdev_scan_io_queue_lock
));
3901 if (unlikely(avl_is_empty(&queue
->q_sios_by_addr
)))
3902 atomic_add_64(&scn
->scn_queues_pending
, 1);
3903 if (avl_find(&queue
->q_sios_by_addr
, sio
, &idx
) != NULL
) {
3904 /* block is already scheduled for reading */
3908 avl_insert(&queue
->q_sios_by_addr
, sio
, idx
);
3909 queue
->q_sio_memused
+= SIO_GET_MUSED(sio
);
3910 range_tree_add(queue
->q_exts_by_addr
, SIO_GET_OFFSET(sio
),
3911 SIO_GET_ASIZE(sio
));
3915 * Given all the info we got from our metadata scanning process, we
3916 * construct a scan_io_t and insert it into the scan sorting queue. The
3917 * I/O must already be suitable for us to process. This is controlled
3918 * by dsl_scan_enqueue().
3921 scan_io_queue_insert(dsl_scan_io_queue_t
*queue
, const blkptr_t
*bp
, int dva_i
,
3922 int zio_flags
, const zbookmark_phys_t
*zb
)
3924 scan_io_t
*sio
= sio_alloc(BP_GET_NDVAS(bp
));
3926 ASSERT0(BP_IS_GANG(bp
));
3927 ASSERT(MUTEX_HELD(&queue
->q_vd
->vdev_scan_io_queue_lock
));
3929 bp2sio(bp
, sio
, dva_i
);
3930 sio
->sio_flags
= zio_flags
;
3933 queue
->q_last_ext_addr
= -1;
3934 scan_io_queue_insert_impl(queue
, sio
);
3938 * Given a set of I/O parameters as discovered by the metadata traversal
3939 * process, attempts to place the I/O into the sorted queues (if allowed),
3940 * or immediately executes the I/O.
3943 dsl_scan_enqueue(dsl_pool_t
*dp
, const blkptr_t
*bp
, int zio_flags
,
3944 const zbookmark_phys_t
*zb
)
3946 spa_t
*spa
= dp
->dp_spa
;
3948 ASSERT(!BP_IS_EMBEDDED(bp
));
3951 * Gang blocks are hard to issue sequentially, so we just issue them
3952 * here immediately instead of queuing them.
3954 if (!dp
->dp_scan
->scn_is_sorted
|| BP_IS_GANG(bp
)) {
3955 scan_exec_io(dp
, bp
, zio_flags
, zb
, NULL
);
3959 for (int i
= 0; i
< BP_GET_NDVAS(bp
); i
++) {
3963 dva
= bp
->blk_dva
[i
];
3964 vdev
= vdev_lookup_top(spa
, DVA_GET_VDEV(&dva
));
3965 ASSERT(vdev
!= NULL
);
3967 mutex_enter(&vdev
->vdev_scan_io_queue_lock
);
3968 if (vdev
->vdev_scan_io_queue
== NULL
)
3969 vdev
->vdev_scan_io_queue
= scan_io_queue_create(vdev
);
3970 ASSERT(dp
->dp_scan
!= NULL
);
3971 scan_io_queue_insert(vdev
->vdev_scan_io_queue
, bp
,
3973 mutex_exit(&vdev
->vdev_scan_io_queue_lock
);
3978 dsl_scan_scrub_cb(dsl_pool_t
*dp
,
3979 const blkptr_t
*bp
, const zbookmark_phys_t
*zb
)
3981 dsl_scan_t
*scn
= dp
->dp_scan
;
3982 spa_t
*spa
= dp
->dp_spa
;
3983 uint64_t phys_birth
= BP_PHYSICAL_BIRTH(bp
);
3984 size_t psize
= BP_GET_PSIZE(bp
);
3985 boolean_t needs_io
= B_FALSE
;
3986 int zio_flags
= ZIO_FLAG_SCAN_THREAD
| ZIO_FLAG_RAW
| ZIO_FLAG_CANFAIL
;
3988 count_block(dp
->dp_blkstats
, bp
);
3989 if (phys_birth
<= scn
->scn_phys
.scn_min_txg
||
3990 phys_birth
>= scn
->scn_phys
.scn_max_txg
) {
3991 count_block_issued(spa
, bp
, B_TRUE
);
3995 /* Embedded BP's have phys_birth==0, so we reject them above. */
3996 ASSERT(!BP_IS_EMBEDDED(bp
));
3998 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn
));
3999 if (scn
->scn_phys
.scn_func
== POOL_SCAN_SCRUB
) {
4000 zio_flags
|= ZIO_FLAG_SCRUB
;
4003 ASSERT3U(scn
->scn_phys
.scn_func
, ==, POOL_SCAN_RESILVER
);
4004 zio_flags
|= ZIO_FLAG_RESILVER
;
4008 /* If it's an intent log block, failure is expected. */
4009 if (zb
->zb_level
== ZB_ZIL_LEVEL
)
4010 zio_flags
|= ZIO_FLAG_SPECULATIVE
;
4012 for (int d
= 0; d
< BP_GET_NDVAS(bp
); d
++) {
4013 const dva_t
*dva
= &bp
->blk_dva
[d
];
4016 * Keep track of how much data we've examined so that
4017 * zpool(8) status can make useful progress reports.
4019 uint64_t asize
= DVA_GET_ASIZE(dva
);
4020 scn
->scn_phys
.scn_examined
+= asize
;
4021 spa
->spa_scan_pass_exam
+= asize
;
4023 /* if it's a resilver, this may not be in the target range */
4025 needs_io
= dsl_scan_need_resilver(spa
, dva
, psize
,
4029 if (needs_io
&& !zfs_no_scrub_io
) {
4030 dsl_scan_enqueue(dp
, bp
, zio_flags
, zb
);
4032 count_block_issued(spa
, bp
, B_TRUE
);
4035 /* do not relocate this block */
4040 dsl_scan_scrub_done(zio_t
*zio
)
4042 spa_t
*spa
= zio
->io_spa
;
4043 blkptr_t
*bp
= zio
->io_bp
;
4044 dsl_scan_io_queue_t
*queue
= zio
->io_private
;
4046 abd_free(zio
->io_abd
);
4048 if (queue
== NULL
) {
4049 mutex_enter(&spa
->spa_scrub_lock
);
4050 ASSERT3U(spa
->spa_scrub_inflight
, >=, BP_GET_PSIZE(bp
));
4051 spa
->spa_scrub_inflight
-= BP_GET_PSIZE(bp
);
4052 cv_broadcast(&spa
->spa_scrub_io_cv
);
4053 mutex_exit(&spa
->spa_scrub_lock
);
4055 mutex_enter(&queue
->q_vd
->vdev_scan_io_queue_lock
);
4056 ASSERT3U(queue
->q_inflight_bytes
, >=, BP_GET_PSIZE(bp
));
4057 queue
->q_inflight_bytes
-= BP_GET_PSIZE(bp
);
4058 cv_broadcast(&queue
->q_zio_cv
);
4059 mutex_exit(&queue
->q_vd
->vdev_scan_io_queue_lock
);
4062 if (zio
->io_error
&& (zio
->io_error
!= ECKSUM
||
4063 !(zio
->io_flags
& ZIO_FLAG_SPECULATIVE
))) {
4064 atomic_inc_64(&spa
->spa_dsl_pool
->dp_scan
->scn_phys
.scn_errors
);
4069 * Given a scanning zio's information, executes the zio. The zio need
4070 * not necessarily be only sortable, this function simply executes the
4071 * zio, no matter what it is. The optional queue argument allows the
4072 * caller to specify that they want per top level vdev IO rate limiting
4073 * instead of the legacy global limiting.
4076 scan_exec_io(dsl_pool_t
*dp
, const blkptr_t
*bp
, int zio_flags
,
4077 const zbookmark_phys_t
*zb
, dsl_scan_io_queue_t
*queue
)
4079 spa_t
*spa
= dp
->dp_spa
;
4080 dsl_scan_t
*scn
= dp
->dp_scan
;
4081 size_t size
= BP_GET_PSIZE(bp
);
4082 abd_t
*data
= abd_alloc_for_io(size
, B_FALSE
);
4085 if (queue
== NULL
) {
4086 ASSERT3U(scn
->scn_maxinflight_bytes
, >, 0);
4087 mutex_enter(&spa
->spa_scrub_lock
);
4088 while (spa
->spa_scrub_inflight
>= scn
->scn_maxinflight_bytes
)
4089 cv_wait(&spa
->spa_scrub_io_cv
, &spa
->spa_scrub_lock
);
4090 spa
->spa_scrub_inflight
+= BP_GET_PSIZE(bp
);
4091 mutex_exit(&spa
->spa_scrub_lock
);
4092 pio
= scn
->scn_zio_root
;
4094 kmutex_t
*q_lock
= &queue
->q_vd
->vdev_scan_io_queue_lock
;
4096 ASSERT3U(queue
->q_maxinflight_bytes
, >, 0);
4097 mutex_enter(q_lock
);
4098 while (queue
->q_inflight_bytes
>= queue
->q_maxinflight_bytes
)
4099 cv_wait(&queue
->q_zio_cv
, q_lock
);
4100 queue
->q_inflight_bytes
+= BP_GET_PSIZE(bp
);
4105 ASSERT(pio
!= NULL
);
4106 count_block_issued(spa
, bp
, queue
== NULL
);
4107 zio_nowait(zio_read(pio
, spa
, bp
, data
, size
, dsl_scan_scrub_done
,
4108 queue
, ZIO_PRIORITY_SCRUB
, zio_flags
, zb
));
4112 * This is the primary extent sorting algorithm. We balance two parameters:
4113 * 1) how many bytes of I/O are in an extent
4114 * 2) how well the extent is filled with I/O (as a fraction of its total size)
4115 * Since we allow extents to have gaps between their constituent I/Os, it's
4116 * possible to have a fairly large extent that contains the same amount of
4117 * I/O bytes than a much smaller extent, which just packs the I/O more tightly.
4118 * The algorithm sorts based on a score calculated from the extent's size,
4119 * the relative fill volume (in %) and a "fill weight" parameter that controls
4120 * the split between whether we prefer larger extents or more well populated
4123 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
4126 * 1) assume extsz = 64 MiB
4127 * 2) assume fill = 32 MiB (extent is half full)
4128 * 3) assume fill_weight = 3
4129 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
4130 * SCORE = 32M + (50 * 3 * 32M) / 100
4131 * SCORE = 32M + (4800M / 100)
4134 * | +--- final total relative fill-based score
4135 * +--------- final total fill-based score
4138 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
4139 * extents that are more completely filled (in a 3:2 ratio) vs just larger.
4140 * Note that as an optimization, we replace multiplication and division by
4141 * 100 with bitshifting by 7 (which effectively multiplies and divides by 128).
4143 * Since we do not care if one extent is only few percent better than another,
4144 * compress the score into 6 bits via binary logarithm AKA highbit64() and
4145 * put into otherwise unused due to ashift high bits of offset. This allows
4146 * to reduce q_exts_by_size B-tree elements to only 64 bits and compare them
4147 * with single operation. Plus it makes scrubs more sequential and reduces
4148 * chances that minor extent change move it within the B-tree.
4151 ext_size_compare(const void *x
, const void *y
)
4153 const uint64_t *a
= x
, *b
= y
;
4155 return (TREE_CMP(*a
, *b
));
4159 ext_size_create(range_tree_t
*rt
, void *arg
)
4162 zfs_btree_t
*size_tree
= arg
;
4164 zfs_btree_create(size_tree
, ext_size_compare
, sizeof (uint64_t));
4168 ext_size_destroy(range_tree_t
*rt
, void *arg
)
4171 zfs_btree_t
*size_tree
= arg
;
4172 ASSERT0(zfs_btree_numnodes(size_tree
));
4174 zfs_btree_destroy(size_tree
);
4178 ext_size_value(range_tree_t
*rt
, range_seg_gap_t
*rsg
)
4181 uint64_t size
= rsg
->rs_end
- rsg
->rs_start
;
4182 uint64_t score
= rsg
->rs_fill
+ ((((rsg
->rs_fill
<< 7) / size
) *
4183 fill_weight
* rsg
->rs_fill
) >> 7);
4184 ASSERT3U(rt
->rt_shift
, >=, 8);
4185 return (((uint64_t)(64 - highbit64(score
)) << 56) | rsg
->rs_start
);
4189 ext_size_add(range_tree_t
*rt
, range_seg_t
*rs
, void *arg
)
4191 zfs_btree_t
*size_tree
= arg
;
4192 ASSERT3U(rt
->rt_type
, ==, RANGE_SEG_GAP
);
4193 uint64_t v
= ext_size_value(rt
, (range_seg_gap_t
*)rs
);
4194 zfs_btree_add(size_tree
, &v
);
4198 ext_size_remove(range_tree_t
*rt
, range_seg_t
*rs
, void *arg
)
4200 zfs_btree_t
*size_tree
= arg
;
4201 ASSERT3U(rt
->rt_type
, ==, RANGE_SEG_GAP
);
4202 uint64_t v
= ext_size_value(rt
, (range_seg_gap_t
*)rs
);
4203 zfs_btree_remove(size_tree
, &v
);
4207 ext_size_vacate(range_tree_t
*rt
, void *arg
)
4209 zfs_btree_t
*size_tree
= arg
;
4210 zfs_btree_clear(size_tree
);
4211 zfs_btree_destroy(size_tree
);
4213 ext_size_create(rt
, arg
);
4216 static const range_tree_ops_t ext_size_ops
= {
4217 .rtop_create
= ext_size_create
,
4218 .rtop_destroy
= ext_size_destroy
,
4219 .rtop_add
= ext_size_add
,
4220 .rtop_remove
= ext_size_remove
,
4221 .rtop_vacate
= ext_size_vacate
4225 * Comparator for the q_sios_by_addr tree. Sorting is simply performed
4226 * based on LBA-order (from lowest to highest).
4229 sio_addr_compare(const void *x
, const void *y
)
4231 const scan_io_t
*a
= x
, *b
= y
;
4233 return (TREE_CMP(SIO_GET_OFFSET(a
), SIO_GET_OFFSET(b
)));
4236 /* IO queues are created on demand when they are needed. */
4237 static dsl_scan_io_queue_t
*
4238 scan_io_queue_create(vdev_t
*vd
)
4240 dsl_scan_t
*scn
= vd
->vdev_spa
->spa_dsl_pool
->dp_scan
;
4241 dsl_scan_io_queue_t
*q
= kmem_zalloc(sizeof (*q
), KM_SLEEP
);
4245 q
->q_sio_memused
= 0;
4246 q
->q_last_ext_addr
= -1;
4247 cv_init(&q
->q_zio_cv
, NULL
, CV_DEFAULT
, NULL
);
4248 q
->q_exts_by_addr
= range_tree_create_gap(&ext_size_ops
, RANGE_SEG_GAP
,
4249 &q
->q_exts_by_size
, 0, vd
->vdev_ashift
, zfs_scan_max_ext_gap
);
4250 avl_create(&q
->q_sios_by_addr
, sio_addr_compare
,
4251 sizeof (scan_io_t
), offsetof(scan_io_t
, sio_nodes
.sio_addr_node
));
4257 * Destroys a scan queue and all segments and scan_io_t's contained in it.
4258 * No further execution of I/O occurs, anything pending in the queue is
4259 * simply freed without being executed.
4262 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t
*queue
)
4264 dsl_scan_t
*scn
= queue
->q_scn
;
4266 void *cookie
= NULL
;
4268 ASSERT(MUTEX_HELD(&queue
->q_vd
->vdev_scan_io_queue_lock
));
4270 if (!avl_is_empty(&queue
->q_sios_by_addr
))
4271 atomic_add_64(&scn
->scn_queues_pending
, -1);
4272 while ((sio
= avl_destroy_nodes(&queue
->q_sios_by_addr
, &cookie
)) !=
4274 ASSERT(range_tree_contains(queue
->q_exts_by_addr
,
4275 SIO_GET_OFFSET(sio
), SIO_GET_ASIZE(sio
)));
4276 queue
->q_sio_memused
-= SIO_GET_MUSED(sio
);
4280 ASSERT0(queue
->q_sio_memused
);
4281 range_tree_vacate(queue
->q_exts_by_addr
, NULL
, queue
);
4282 range_tree_destroy(queue
->q_exts_by_addr
);
4283 avl_destroy(&queue
->q_sios_by_addr
);
4284 cv_destroy(&queue
->q_zio_cv
);
4286 kmem_free(queue
, sizeof (*queue
));
4290 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
4291 * called on behalf of vdev_top_transfer when creating or destroying
4292 * a mirror vdev due to zpool attach/detach.
4295 dsl_scan_io_queue_vdev_xfer(vdev_t
*svd
, vdev_t
*tvd
)
4297 mutex_enter(&svd
->vdev_scan_io_queue_lock
);
4298 mutex_enter(&tvd
->vdev_scan_io_queue_lock
);
4300 VERIFY3P(tvd
->vdev_scan_io_queue
, ==, NULL
);
4301 tvd
->vdev_scan_io_queue
= svd
->vdev_scan_io_queue
;
4302 svd
->vdev_scan_io_queue
= NULL
;
4303 if (tvd
->vdev_scan_io_queue
!= NULL
)
4304 tvd
->vdev_scan_io_queue
->q_vd
= tvd
;
4306 mutex_exit(&tvd
->vdev_scan_io_queue_lock
);
4307 mutex_exit(&svd
->vdev_scan_io_queue_lock
);
4311 scan_io_queues_destroy(dsl_scan_t
*scn
)
4313 vdev_t
*rvd
= scn
->scn_dp
->dp_spa
->spa_root_vdev
;
4315 for (uint64_t i
= 0; i
< rvd
->vdev_children
; i
++) {
4316 vdev_t
*tvd
= rvd
->vdev_child
[i
];
4318 mutex_enter(&tvd
->vdev_scan_io_queue_lock
);
4319 if (tvd
->vdev_scan_io_queue
!= NULL
)
4320 dsl_scan_io_queue_destroy(tvd
->vdev_scan_io_queue
);
4321 tvd
->vdev_scan_io_queue
= NULL
;
4322 mutex_exit(&tvd
->vdev_scan_io_queue_lock
);
4327 dsl_scan_freed_dva(spa_t
*spa
, const blkptr_t
*bp
, int dva_i
)
4329 dsl_pool_t
*dp
= spa
->spa_dsl_pool
;
4330 dsl_scan_t
*scn
= dp
->dp_scan
;
4333 dsl_scan_io_queue_t
*queue
;
4334 scan_io_t
*srch_sio
, *sio
;
4336 uint64_t start
, size
;
4338 vdev
= vdev_lookup_top(spa
, DVA_GET_VDEV(&bp
->blk_dva
[dva_i
]));
4339 ASSERT(vdev
!= NULL
);
4340 q_lock
= &vdev
->vdev_scan_io_queue_lock
;
4341 queue
= vdev
->vdev_scan_io_queue
;
4343 mutex_enter(q_lock
);
4344 if (queue
== NULL
) {
4349 srch_sio
= sio_alloc(BP_GET_NDVAS(bp
));
4350 bp2sio(bp
, srch_sio
, dva_i
);
4351 start
= SIO_GET_OFFSET(srch_sio
);
4352 size
= SIO_GET_ASIZE(srch_sio
);
4355 * We can find the zio in two states:
4356 * 1) Cold, just sitting in the queue of zio's to be issued at
4357 * some point in the future. In this case, all we do is
4358 * remove the zio from the q_sios_by_addr tree, decrement
4359 * its data volume from the containing range_seg_t and
4360 * resort the q_exts_by_size tree to reflect that the
4361 * range_seg_t has lost some of its 'fill'. We don't shorten
4362 * the range_seg_t - this is usually rare enough not to be
4363 * worth the extra hassle of trying keep track of precise
4364 * extent boundaries.
4365 * 2) Hot, where the zio is currently in-flight in
4366 * dsl_scan_issue_ios. In this case, we can't simply
4367 * reach in and stop the in-flight zio's, so we instead
4368 * block the caller. Eventually, dsl_scan_issue_ios will
4369 * be done with issuing the zio's it gathered and will
4372 sio
= avl_find(&queue
->q_sios_by_addr
, srch_sio
, &idx
);
4378 /* Got it while it was cold in the queue */
4379 ASSERT3U(start
, ==, SIO_GET_OFFSET(sio
));
4380 ASSERT3U(size
, ==, SIO_GET_ASIZE(sio
));
4381 avl_remove(&queue
->q_sios_by_addr
, sio
);
4382 if (avl_is_empty(&queue
->q_sios_by_addr
))
4383 atomic_add_64(&scn
->scn_queues_pending
, -1);
4384 queue
->q_sio_memused
-= SIO_GET_MUSED(sio
);
4386 ASSERT(range_tree_contains(queue
->q_exts_by_addr
, start
, size
));
4387 range_tree_remove_fill(queue
->q_exts_by_addr
, start
, size
);
4389 /* count the block as though we issued it */
4390 sio2bp(sio
, &tmpbp
);
4391 count_block_issued(spa
, &tmpbp
, B_FALSE
);
4399 * Callback invoked when a zio_free() zio is executing. This needs to be
4400 * intercepted to prevent the zio from deallocating a particular portion
4401 * of disk space and it then getting reallocated and written to, while we
4402 * still have it queued up for processing.
4405 dsl_scan_freed(spa_t
*spa
, const blkptr_t
*bp
)
4407 dsl_pool_t
*dp
= spa
->spa_dsl_pool
;
4408 dsl_scan_t
*scn
= dp
->dp_scan
;
4410 ASSERT(!BP_IS_EMBEDDED(bp
));
4411 ASSERT(scn
!= NULL
);
4412 if (!dsl_scan_is_running(scn
))
4415 for (int i
= 0; i
< BP_GET_NDVAS(bp
); i
++)
4416 dsl_scan_freed_dva(spa
, bp
, i
);
4420 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has
4421 * not started, start it. Otherwise, only restart if max txg in DTL range is
4422 * greater than the max txg in the current scan. If the DTL max is less than
4423 * the scan max, then the vdev has not missed any new data since the resilver
4424 * started, so a restart is not needed.
4427 dsl_scan_assess_vdev(dsl_pool_t
*dp
, vdev_t
*vd
)
4431 if (!vdev_resilver_needed(vd
, &min
, &max
))
4434 if (!dsl_scan_resilvering(dp
)) {
4435 spa_async_request(dp
->dp_spa
, SPA_ASYNC_RESILVER
);
4439 if (max
<= dp
->dp_scan
->scn_phys
.scn_max_txg
)
4442 /* restart is needed, check if it can be deferred */
4443 if (spa_feature_is_enabled(dp
->dp_spa
, SPA_FEATURE_RESILVER_DEFER
))
4444 vdev_defer_resilver(vd
);
4446 spa_async_request(dp
->dp_spa
, SPA_ASYNC_RESILVER
);
4449 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_vdev_limit
, ULONG
, ZMOD_RW
,
4450 "Max bytes in flight per leaf vdev for scrubs and resilvers");
4452 ZFS_MODULE_PARAM(zfs
, zfs_
, scrub_min_time_ms
, UINT
, ZMOD_RW
,
4453 "Min millisecs to scrub per txg");
4455 ZFS_MODULE_PARAM(zfs
, zfs_
, obsolete_min_time_ms
, UINT
, ZMOD_RW
,
4456 "Min millisecs to obsolete per txg");
4458 ZFS_MODULE_PARAM(zfs
, zfs_
, free_min_time_ms
, UINT
, ZMOD_RW
,
4459 "Min millisecs to free per txg");
4461 ZFS_MODULE_PARAM(zfs
, zfs_
, resilver_min_time_ms
, UINT
, ZMOD_RW
,
4462 "Min millisecs to resilver per txg");
4464 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_suspend_progress
, INT
, ZMOD_RW
,
4465 "Set to prevent scans from progressing");
4467 ZFS_MODULE_PARAM(zfs
, zfs_
, no_scrub_io
, INT
, ZMOD_RW
,
4468 "Set to disable scrub I/O");
4470 ZFS_MODULE_PARAM(zfs
, zfs_
, no_scrub_prefetch
, INT
, ZMOD_RW
,
4471 "Set to disable scrub prefetching");
4473 ZFS_MODULE_PARAM(zfs
, zfs_
, async_block_max_blocks
, ULONG
, ZMOD_RW
,
4474 "Max number of blocks freed in one txg");
4476 ZFS_MODULE_PARAM(zfs
, zfs_
, max_async_dedup_frees
, ULONG
, ZMOD_RW
,
4477 "Max number of dedup blocks freed in one txg");
4479 ZFS_MODULE_PARAM(zfs
, zfs_
, free_bpobj_enabled
, INT
, ZMOD_RW
,
4480 "Enable processing of the free_bpobj");
4482 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_blkstats
, INT
, ZMOD_RW
,
4483 "Enable block statistics calculation during scrub");
4485 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_mem_lim_fact
, UINT
, ZMOD_RW
,
4486 "Fraction of RAM for scan hard limit");
4488 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_issue_strategy
, UINT
, ZMOD_RW
,
4489 "IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size");
4491 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_legacy
, INT
, ZMOD_RW
,
4492 "Scrub using legacy non-sequential method");
4494 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_checkpoint_intval
, UINT
, ZMOD_RW
,
4495 "Scan progress on-disk checkpointing interval");
4497 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_max_ext_gap
, ULONG
, ZMOD_RW
,
4498 "Max gap in bytes between sequential scrub / resilver I/Os");
4500 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_mem_lim_soft_fact
, UINT
, ZMOD_RW
,
4501 "Fraction of hard limit used as soft limit");
4503 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_strict_mem_lim
, INT
, ZMOD_RW
,
4504 "Tunable to attempt to reduce lock contention");
4506 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_fill_weight
, UINT
, ZMOD_RW
,
4507 "Tunable to adjust bias towards more filled segments during scans");
4509 ZFS_MODULE_PARAM(zfs
, zfs_
, resilver_disable_defer
, INT
, ZMOD_RW
,
4510 "Process all resilvers immediately");