4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2017, Intel Corporation.
26 * Copyright (c) 2019, Klara Inc.
27 * Copyright (c) 2019, Allan Jude
28 * Copyright (c) 2021, Datto, Inc.
31 #include <sys/sysmacros.h>
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
36 #include <sys/spa_impl.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/vdev_trim.h>
39 #include <sys/zio_impl.h>
40 #include <sys/zio_compress.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/dmu_objset.h>
45 #include <sys/blkptr.h>
46 #include <sys/zfeature.h>
47 #include <sys/dsl_scan.h>
48 #include <sys/metaslab_impl.h>
50 #include <sys/trace_zfs.h>
52 #include <sys/dsl_crypt.h>
56 * ==========================================================================
57 * I/O type descriptions
58 * ==========================================================================
60 const char *const zio_type_name
[ZIO_TYPES
] = {
62 * Note: Linux kernel thread name length is limited
63 * so these names will differ from upstream open zfs.
65 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim"
68 int zio_dva_throttle_enabled
= B_TRUE
;
69 static int zio_deadman_log_all
= B_FALSE
;
72 * ==========================================================================
74 * ==========================================================================
76 static kmem_cache_t
*zio_cache
;
77 static kmem_cache_t
*zio_link_cache
;
78 kmem_cache_t
*zio_buf_cache
[SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
];
79 kmem_cache_t
*zio_data_buf_cache
[SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
];
80 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
81 static uint64_t zio_buf_cache_allocs
[SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
];
82 static uint64_t zio_buf_cache_frees
[SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
];
85 /* Mark IOs as "slow" if they take longer than 30 seconds */
86 static uint_t zio_slow_io_ms
= (30 * MILLISEC
);
88 #define BP_SPANB(indblkshift, level) \
89 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
90 #define COMPARE_META_LEVEL 0x80000000ul
92 * The following actions directly effect the spa's sync-to-convergence logic.
93 * The values below define the sync pass when we start performing the action.
94 * Care should be taken when changing these values as they directly impact
95 * spa_sync() performance. Tuning these values may introduce subtle performance
96 * pathologies and should only be done in the context of performance analysis.
97 * These tunables will eventually be removed and replaced with #defines once
98 * enough analysis has been done to determine optimal values.
100 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
101 * regular blocks are not deferred.
103 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
104 * compression (including of metadata). In practice, we don't have this
105 * many sync passes, so this has no effect.
107 * The original intent was that disabling compression would help the sync
108 * passes to converge. However, in practice disabling compression increases
109 * the average number of sync passes, because when we turn compression off, a
110 * lot of block's size will change and thus we have to re-allocate (not
111 * overwrite) them. It also increases the number of 128KB allocations (e.g.
112 * for indirect blocks and spacemaps) because these will not be compressed.
113 * The 128K allocations are especially detrimental to performance on highly
114 * fragmented systems, which may have very few free segments of this size,
115 * and may need to load new metaslabs to satisfy 128K allocations.
118 /* defer frees starting in this pass */
119 uint_t zfs_sync_pass_deferred_free
= 2;
121 /* don't compress starting in this pass */
122 static uint_t zfs_sync_pass_dont_compress
= 8;
124 /* rewrite new bps starting in this pass */
125 static uint_t zfs_sync_pass_rewrite
= 2;
128 * An allocating zio is one that either currently has the DVA allocate
129 * stage set or will have it later in its lifetime.
131 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
134 * Enable smaller cores by excluding metadata
135 * allocations as well.
137 int zio_exclude_metadata
= 0;
138 static int zio_requeue_io_start_cut_in_line
= 1;
141 static const int zio_buf_debug_limit
= 16384;
143 static const int zio_buf_debug_limit
= 0;
146 static inline void __zio_execute(zio_t
*zio
);
148 static void zio_taskq_dispatch(zio_t
*, zio_taskq_type_t
, boolean_t
);
155 zio_cache
= kmem_cache_create("zio_cache",
156 sizeof (zio_t
), 0, NULL
, NULL
, NULL
, NULL
, NULL
, 0);
157 zio_link_cache
= kmem_cache_create("zio_link_cache",
158 sizeof (zio_link_t
), 0, NULL
, NULL
, NULL
, NULL
, NULL
, 0);
161 * For small buffers, we want a cache for each multiple of
162 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache
163 * for each quarter-power of 2.
165 for (c
= 0; c
< SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
; c
++) {
166 size_t size
= (c
+ 1) << SPA_MINBLOCKSHIFT
;
169 size_t data_cflags
, cflags
;
171 data_cflags
= KMC_NODEBUG
;
172 cflags
= (zio_exclude_metadata
|| size
> zio_buf_debug_limit
) ?
180 * If we are using watchpoints, put each buffer on its own page,
181 * to eliminate the performance overhead of trapping to the
182 * kernel when modifying a non-watched buffer that shares the
183 * page with a watched buffer.
185 if (arc_watch
&& !IS_P2ALIGNED(size
, PAGESIZE
))
188 * Here's the problem - on 4K native devices in userland on
189 * Linux using O_DIRECT, buffers must be 4K aligned or I/O
190 * will fail with EINVAL, causing zdb (and others) to coredump.
191 * Since userland probably doesn't need optimized buffer caches,
192 * we just force 4K alignment on everything.
194 align
= 8 * SPA_MINBLOCKSIZE
;
196 if (size
< PAGESIZE
) {
197 align
= SPA_MINBLOCKSIZE
;
198 } else if (IS_P2ALIGNED(size
, p2
>> 2)) {
205 if (cflags
== data_cflags
) {
207 * Resulting kmem caches would be identical.
208 * Save memory by creating only one.
210 (void) snprintf(name
, sizeof (name
),
211 "zio_buf_comb_%lu", (ulong_t
)size
);
212 zio_buf_cache
[c
] = kmem_cache_create(name
,
213 size
, align
, NULL
, NULL
, NULL
, NULL
, NULL
,
215 zio_data_buf_cache
[c
] = zio_buf_cache
[c
];
218 (void) snprintf(name
, sizeof (name
), "zio_buf_%lu",
220 zio_buf_cache
[c
] = kmem_cache_create(name
, size
,
221 align
, NULL
, NULL
, NULL
, NULL
, NULL
, cflags
);
223 (void) snprintf(name
, sizeof (name
), "zio_data_buf_%lu",
225 zio_data_buf_cache
[c
] = kmem_cache_create(name
, size
,
226 align
, NULL
, NULL
, NULL
, NULL
, NULL
, data_cflags
);
231 ASSERT(zio_buf_cache
[c
] != NULL
);
232 if (zio_buf_cache
[c
- 1] == NULL
)
233 zio_buf_cache
[c
- 1] = zio_buf_cache
[c
];
235 ASSERT(zio_data_buf_cache
[c
] != NULL
);
236 if (zio_data_buf_cache
[c
- 1] == NULL
)
237 zio_data_buf_cache
[c
- 1] = zio_data_buf_cache
[c
];
248 size_t n
= SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
;
250 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
251 for (size_t i
= 0; i
< n
; i
++) {
252 if (zio_buf_cache_allocs
[i
] != zio_buf_cache_frees
[i
])
253 (void) printf("zio_fini: [%d] %llu != %llu\n",
254 (int)((i
+ 1) << SPA_MINBLOCKSHIFT
),
255 (long long unsigned)zio_buf_cache_allocs
[i
],
256 (long long unsigned)zio_buf_cache_frees
[i
]);
261 * The same kmem cache can show up multiple times in both zio_buf_cache
262 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to
265 for (size_t i
= 0; i
< n
; i
++) {
266 kmem_cache_t
*cache
= zio_buf_cache
[i
];
269 for (size_t j
= i
; j
< n
; j
++) {
270 if (cache
== zio_buf_cache
[j
])
271 zio_buf_cache
[j
] = NULL
;
272 if (cache
== zio_data_buf_cache
[j
])
273 zio_data_buf_cache
[j
] = NULL
;
275 kmem_cache_destroy(cache
);
278 for (size_t i
= 0; i
< n
; i
++) {
279 kmem_cache_t
*cache
= zio_data_buf_cache
[i
];
282 for (size_t j
= i
; j
< n
; j
++) {
283 if (cache
== zio_data_buf_cache
[j
])
284 zio_data_buf_cache
[j
] = NULL
;
286 kmem_cache_destroy(cache
);
289 for (size_t i
= 0; i
< n
; i
++) {
290 VERIFY3P(zio_buf_cache
[i
], ==, NULL
);
291 VERIFY3P(zio_data_buf_cache
[i
], ==, NULL
);
294 kmem_cache_destroy(zio_link_cache
);
295 kmem_cache_destroy(zio_cache
);
303 * ==========================================================================
304 * Allocate and free I/O buffers
305 * ==========================================================================
309 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
310 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
311 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
312 * excess / transient data in-core during a crashdump.
315 zio_buf_alloc(size_t size
)
317 size_t c
= (size
- 1) >> SPA_MINBLOCKSHIFT
;
319 VERIFY3U(c
, <, SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
);
320 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
321 atomic_add_64(&zio_buf_cache_allocs
[c
], 1);
324 return (kmem_cache_alloc(zio_buf_cache
[c
], KM_PUSHPAGE
));
328 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
329 * crashdump if the kernel panics. This exists so that we will limit the amount
330 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
331 * of kernel heap dumped to disk when the kernel panics)
334 zio_data_buf_alloc(size_t size
)
336 size_t c
= (size
- 1) >> SPA_MINBLOCKSHIFT
;
338 VERIFY3U(c
, <, SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
);
340 return (kmem_cache_alloc(zio_data_buf_cache
[c
], KM_PUSHPAGE
));
344 zio_buf_free(void *buf
, size_t size
)
346 size_t c
= (size
- 1) >> SPA_MINBLOCKSHIFT
;
348 VERIFY3U(c
, <, SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
);
349 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
350 atomic_add_64(&zio_buf_cache_frees
[c
], 1);
353 kmem_cache_free(zio_buf_cache
[c
], buf
);
357 zio_data_buf_free(void *buf
, size_t size
)
359 size_t c
= (size
- 1) >> SPA_MINBLOCKSHIFT
;
361 VERIFY3U(c
, <, SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
);
363 kmem_cache_free(zio_data_buf_cache
[c
], buf
);
367 zio_abd_free(void *abd
, size_t size
)
370 abd_free((abd_t
*)abd
);
374 * ==========================================================================
375 * Push and pop I/O transform buffers
376 * ==========================================================================
379 zio_push_transform(zio_t
*zio
, abd_t
*data
, uint64_t size
, uint64_t bufsize
,
380 zio_transform_func_t
*transform
)
382 zio_transform_t
*zt
= kmem_alloc(sizeof (zio_transform_t
), KM_SLEEP
);
384 zt
->zt_orig_abd
= zio
->io_abd
;
385 zt
->zt_orig_size
= zio
->io_size
;
386 zt
->zt_bufsize
= bufsize
;
387 zt
->zt_transform
= transform
;
389 zt
->zt_next
= zio
->io_transform_stack
;
390 zio
->io_transform_stack
= zt
;
397 zio_pop_transforms(zio_t
*zio
)
401 while ((zt
= zio
->io_transform_stack
) != NULL
) {
402 if (zt
->zt_transform
!= NULL
)
403 zt
->zt_transform(zio
,
404 zt
->zt_orig_abd
, zt
->zt_orig_size
);
406 if (zt
->zt_bufsize
!= 0)
407 abd_free(zio
->io_abd
);
409 zio
->io_abd
= zt
->zt_orig_abd
;
410 zio
->io_size
= zt
->zt_orig_size
;
411 zio
->io_transform_stack
= zt
->zt_next
;
413 kmem_free(zt
, sizeof (zio_transform_t
));
418 * ==========================================================================
419 * I/O transform callbacks for subblocks, decompression, and decryption
420 * ==========================================================================
423 zio_subblock(zio_t
*zio
, abd_t
*data
, uint64_t size
)
425 ASSERT(zio
->io_size
> size
);
427 if (zio
->io_type
== ZIO_TYPE_READ
)
428 abd_copy(data
, zio
->io_abd
, size
);
432 zio_decompress(zio_t
*zio
, abd_t
*data
, uint64_t size
)
434 if (zio
->io_error
== 0) {
435 void *tmp
= abd_borrow_buf(data
, size
);
436 int ret
= zio_decompress_data(BP_GET_COMPRESS(zio
->io_bp
),
437 zio
->io_abd
, tmp
, zio
->io_size
, size
,
438 &zio
->io_prop
.zp_complevel
);
439 abd_return_buf_copy(data
, tmp
, size
);
441 if (zio_injection_enabled
&& ret
== 0)
442 ret
= zio_handle_fault_injection(zio
, EINVAL
);
445 zio
->io_error
= SET_ERROR(EIO
);
450 zio_decrypt(zio_t
*zio
, abd_t
*data
, uint64_t size
)
454 blkptr_t
*bp
= zio
->io_bp
;
455 spa_t
*spa
= zio
->io_spa
;
456 uint64_t dsobj
= zio
->io_bookmark
.zb_objset
;
457 uint64_t lsize
= BP_GET_LSIZE(bp
);
458 dmu_object_type_t ot
= BP_GET_TYPE(bp
);
459 uint8_t salt
[ZIO_DATA_SALT_LEN
];
460 uint8_t iv
[ZIO_DATA_IV_LEN
];
461 uint8_t mac
[ZIO_DATA_MAC_LEN
];
462 boolean_t no_crypt
= B_FALSE
;
464 ASSERT(BP_USES_CRYPT(bp
));
465 ASSERT3U(size
, !=, 0);
467 if (zio
->io_error
!= 0)
471 * Verify the cksum of MACs stored in an indirect bp. It will always
472 * be possible to verify this since it does not require an encryption
475 if (BP_HAS_INDIRECT_MAC_CKSUM(bp
)) {
476 zio_crypt_decode_mac_bp(bp
, mac
);
478 if (BP_GET_COMPRESS(bp
) != ZIO_COMPRESS_OFF
) {
480 * We haven't decompressed the data yet, but
481 * zio_crypt_do_indirect_mac_checksum() requires
482 * decompressed data to be able to parse out the MACs
483 * from the indirect block. We decompress it now and
484 * throw away the result after we are finished.
486 tmp
= zio_buf_alloc(lsize
);
487 ret
= zio_decompress_data(BP_GET_COMPRESS(bp
),
488 zio
->io_abd
, tmp
, zio
->io_size
, lsize
,
489 &zio
->io_prop
.zp_complevel
);
491 ret
= SET_ERROR(EIO
);
494 ret
= zio_crypt_do_indirect_mac_checksum(B_FALSE
,
495 tmp
, lsize
, BP_SHOULD_BYTESWAP(bp
), mac
);
496 zio_buf_free(tmp
, lsize
);
498 ret
= zio_crypt_do_indirect_mac_checksum_abd(B_FALSE
,
499 zio
->io_abd
, size
, BP_SHOULD_BYTESWAP(bp
), mac
);
501 abd_copy(data
, zio
->io_abd
, size
);
503 if (zio_injection_enabled
&& ot
!= DMU_OT_DNODE
&& ret
== 0) {
504 ret
= zio_handle_decrypt_injection(spa
,
505 &zio
->io_bookmark
, ot
, ECKSUM
);
514 * If this is an authenticated block, just check the MAC. It would be
515 * nice to separate this out into its own flag, but for the moment
516 * enum zio_flag is out of bits.
518 if (BP_IS_AUTHENTICATED(bp
)) {
519 if (ot
== DMU_OT_OBJSET
) {
520 ret
= spa_do_crypt_objset_mac_abd(B_FALSE
, spa
,
521 dsobj
, zio
->io_abd
, size
, BP_SHOULD_BYTESWAP(bp
));
523 zio_crypt_decode_mac_bp(bp
, mac
);
524 ret
= spa_do_crypt_mac_abd(B_FALSE
, spa
, dsobj
,
525 zio
->io_abd
, size
, mac
);
526 if (zio_injection_enabled
&& ret
== 0) {
527 ret
= zio_handle_decrypt_injection(spa
,
528 &zio
->io_bookmark
, ot
, ECKSUM
);
531 abd_copy(data
, zio
->io_abd
, size
);
539 zio_crypt_decode_params_bp(bp
, salt
, iv
);
541 if (ot
== DMU_OT_INTENT_LOG
) {
542 tmp
= abd_borrow_buf_copy(zio
->io_abd
, sizeof (zil_chain_t
));
543 zio_crypt_decode_mac_zil(tmp
, mac
);
544 abd_return_buf(zio
->io_abd
, tmp
, sizeof (zil_chain_t
));
546 zio_crypt_decode_mac_bp(bp
, mac
);
549 ret
= spa_do_crypt_abd(B_FALSE
, spa
, &zio
->io_bookmark
, BP_GET_TYPE(bp
),
550 BP_GET_DEDUP(bp
), BP_SHOULD_BYTESWAP(bp
), salt
, iv
, mac
, size
, data
,
551 zio
->io_abd
, &no_crypt
);
553 abd_copy(data
, zio
->io_abd
, size
);
561 /* assert that the key was found unless this was speculative */
562 ASSERT(ret
!= EACCES
|| (zio
->io_flags
& ZIO_FLAG_SPECULATIVE
));
565 * If there was a decryption / authentication error return EIO as
566 * the io_error. If this was not a speculative zio, create an ereport.
569 zio
->io_error
= SET_ERROR(EIO
);
570 if ((zio
->io_flags
& ZIO_FLAG_SPECULATIVE
) == 0) {
571 spa_log_error(spa
, &zio
->io_bookmark
);
572 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION
,
573 spa
, NULL
, &zio
->io_bookmark
, zio
, 0);
581 * ==========================================================================
582 * I/O parent/child relationships and pipeline interlocks
583 * ==========================================================================
586 zio_walk_parents(zio_t
*cio
, zio_link_t
**zl
)
588 list_t
*pl
= &cio
->io_parent_list
;
590 *zl
= (*zl
== NULL
) ? list_head(pl
) : list_next(pl
, *zl
);
594 ASSERT((*zl
)->zl_child
== cio
);
595 return ((*zl
)->zl_parent
);
599 zio_walk_children(zio_t
*pio
, zio_link_t
**zl
)
601 list_t
*cl
= &pio
->io_child_list
;
603 ASSERT(MUTEX_HELD(&pio
->io_lock
));
605 *zl
= (*zl
== NULL
) ? list_head(cl
) : list_next(cl
, *zl
);
609 ASSERT((*zl
)->zl_parent
== pio
);
610 return ((*zl
)->zl_child
);
614 zio_unique_parent(zio_t
*cio
)
616 zio_link_t
*zl
= NULL
;
617 zio_t
*pio
= zio_walk_parents(cio
, &zl
);
619 VERIFY3P(zio_walk_parents(cio
, &zl
), ==, NULL
);
624 zio_add_child(zio_t
*pio
, zio_t
*cio
)
626 zio_link_t
*zl
= kmem_cache_alloc(zio_link_cache
, KM_SLEEP
);
629 * Logical I/Os can have logical, gang, or vdev children.
630 * Gang I/Os can have gang or vdev children.
631 * Vdev I/Os can only have vdev children.
632 * The following ASSERT captures all of these constraints.
634 ASSERT3S(cio
->io_child_type
, <=, pio
->io_child_type
);
639 mutex_enter(&pio
->io_lock
);
640 mutex_enter(&cio
->io_lock
);
642 ASSERT(pio
->io_state
[ZIO_WAIT_DONE
] == 0);
644 for (int w
= 0; w
< ZIO_WAIT_TYPES
; w
++)
645 pio
->io_children
[cio
->io_child_type
][w
] += !cio
->io_state
[w
];
647 list_insert_head(&pio
->io_child_list
, zl
);
648 list_insert_head(&cio
->io_parent_list
, zl
);
650 pio
->io_child_count
++;
651 cio
->io_parent_count
++;
653 mutex_exit(&cio
->io_lock
);
654 mutex_exit(&pio
->io_lock
);
658 zio_remove_child(zio_t
*pio
, zio_t
*cio
, zio_link_t
*zl
)
660 ASSERT(zl
->zl_parent
== pio
);
661 ASSERT(zl
->zl_child
== cio
);
663 mutex_enter(&pio
->io_lock
);
664 mutex_enter(&cio
->io_lock
);
666 list_remove(&pio
->io_child_list
, zl
);
667 list_remove(&cio
->io_parent_list
, zl
);
669 pio
->io_child_count
--;
670 cio
->io_parent_count
--;
672 mutex_exit(&cio
->io_lock
);
673 mutex_exit(&pio
->io_lock
);
674 kmem_cache_free(zio_link_cache
, zl
);
678 zio_wait_for_children(zio_t
*zio
, uint8_t childbits
, enum zio_wait_type wait
)
680 boolean_t waiting
= B_FALSE
;
682 mutex_enter(&zio
->io_lock
);
683 ASSERT(zio
->io_stall
== NULL
);
684 for (int c
= 0; c
< ZIO_CHILD_TYPES
; c
++) {
685 if (!(ZIO_CHILD_BIT_IS_SET(childbits
, c
)))
688 uint64_t *countp
= &zio
->io_children
[c
][wait
];
691 ASSERT3U(zio
->io_stage
, !=, ZIO_STAGE_OPEN
);
692 zio
->io_stall
= countp
;
697 mutex_exit(&zio
->io_lock
);
701 __attribute__((always_inline
))
703 zio_notify_parent(zio_t
*pio
, zio_t
*zio
, enum zio_wait_type wait
,
704 zio_t
**next_to_executep
)
706 uint64_t *countp
= &pio
->io_children
[zio
->io_child_type
][wait
];
707 int *errorp
= &pio
->io_child_error
[zio
->io_child_type
];
709 mutex_enter(&pio
->io_lock
);
710 if (zio
->io_error
&& !(zio
->io_flags
& ZIO_FLAG_DONT_PROPAGATE
))
711 *errorp
= zio_worst_error(*errorp
, zio
->io_error
);
712 pio
->io_reexecute
|= zio
->io_reexecute
;
713 ASSERT3U(*countp
, >, 0);
717 if (*countp
== 0 && pio
->io_stall
== countp
) {
718 zio_taskq_type_t type
=
719 pio
->io_stage
< ZIO_STAGE_VDEV_IO_START
? ZIO_TASKQ_ISSUE
:
721 pio
->io_stall
= NULL
;
722 mutex_exit(&pio
->io_lock
);
725 * If we can tell the caller to execute this parent next, do
726 * so. Otherwise dispatch the parent zio as its own task.
728 * Having the caller execute the parent when possible reduces
729 * locking on the zio taskq's, reduces context switch
730 * overhead, and has no recursion penalty. Note that one
731 * read from disk typically causes at least 3 zio's: a
732 * zio_null(), the logical zio_read(), and then a physical
733 * zio. When the physical ZIO completes, we are able to call
734 * zio_done() on all 3 of these zio's from one invocation of
735 * zio_execute() by returning the parent back to
736 * zio_execute(). Since the parent isn't executed until this
737 * thread returns back to zio_execute(), the caller should do
740 * In other cases, dispatching the parent prevents
741 * overflowing the stack when we have deeply nested
742 * parent-child relationships, as we do with the "mega zio"
743 * of writes for spa_sync(), and the chain of ZIL blocks.
745 if (next_to_executep
!= NULL
&& *next_to_executep
== NULL
) {
746 *next_to_executep
= pio
;
748 zio_taskq_dispatch(pio
, type
, B_FALSE
);
751 mutex_exit(&pio
->io_lock
);
756 zio_inherit_child_errors(zio_t
*zio
, enum zio_child c
)
758 if (zio
->io_child_error
[c
] != 0 && zio
->io_error
== 0)
759 zio
->io_error
= zio
->io_child_error
[c
];
763 zio_bookmark_compare(const void *x1
, const void *x2
)
765 const zio_t
*z1
= x1
;
766 const zio_t
*z2
= x2
;
768 if (z1
->io_bookmark
.zb_objset
< z2
->io_bookmark
.zb_objset
)
770 if (z1
->io_bookmark
.zb_objset
> z2
->io_bookmark
.zb_objset
)
773 if (z1
->io_bookmark
.zb_object
< z2
->io_bookmark
.zb_object
)
775 if (z1
->io_bookmark
.zb_object
> z2
->io_bookmark
.zb_object
)
778 if (z1
->io_bookmark
.zb_level
< z2
->io_bookmark
.zb_level
)
780 if (z1
->io_bookmark
.zb_level
> z2
->io_bookmark
.zb_level
)
783 if (z1
->io_bookmark
.zb_blkid
< z2
->io_bookmark
.zb_blkid
)
785 if (z1
->io_bookmark
.zb_blkid
> z2
->io_bookmark
.zb_blkid
)
797 * ==========================================================================
798 * Create the various types of I/O (read, write, free, etc)
799 * ==========================================================================
802 zio_create(zio_t
*pio
, spa_t
*spa
, uint64_t txg
, const blkptr_t
*bp
,
803 abd_t
*data
, uint64_t lsize
, uint64_t psize
, zio_done_func_t
*done
,
804 void *private, zio_type_t type
, zio_priority_t priority
,
805 enum zio_flag flags
, vdev_t
*vd
, uint64_t offset
,
806 const zbookmark_phys_t
*zb
, enum zio_stage stage
,
807 enum zio_stage pipeline
)
811 IMPLY(type
!= ZIO_TYPE_TRIM
, psize
<= SPA_MAXBLOCKSIZE
);
812 ASSERT(P2PHASE(psize
, SPA_MINBLOCKSIZE
) == 0);
813 ASSERT(P2PHASE(offset
, SPA_MINBLOCKSIZE
) == 0);
815 ASSERT(!vd
|| spa_config_held(spa
, SCL_STATE_ALL
, RW_READER
));
816 ASSERT(!bp
|| !(flags
& ZIO_FLAG_CONFIG_WRITER
));
817 ASSERT(vd
|| stage
== ZIO_STAGE_OPEN
);
819 IMPLY(lsize
!= psize
, (flags
& ZIO_FLAG_RAW_COMPRESS
) != 0);
821 zio
= kmem_cache_alloc(zio_cache
, KM_SLEEP
);
822 memset(zio
, 0, sizeof (zio_t
));
824 mutex_init(&zio
->io_lock
, NULL
, MUTEX_NOLOCKDEP
, NULL
);
825 cv_init(&zio
->io_cv
, NULL
, CV_DEFAULT
, NULL
);
827 list_create(&zio
->io_parent_list
, sizeof (zio_link_t
),
828 offsetof(zio_link_t
, zl_parent_node
));
829 list_create(&zio
->io_child_list
, sizeof (zio_link_t
),
830 offsetof(zio_link_t
, zl_child_node
));
831 metaslab_trace_init(&zio
->io_alloc_list
);
834 zio
->io_child_type
= ZIO_CHILD_VDEV
;
835 else if (flags
& ZIO_FLAG_GANG_CHILD
)
836 zio
->io_child_type
= ZIO_CHILD_GANG
;
837 else if (flags
& ZIO_FLAG_DDT_CHILD
)
838 zio
->io_child_type
= ZIO_CHILD_DDT
;
840 zio
->io_child_type
= ZIO_CHILD_LOGICAL
;
843 zio
->io_bp
= (blkptr_t
*)bp
;
844 zio
->io_bp_copy
= *bp
;
845 zio
->io_bp_orig
= *bp
;
846 if (type
!= ZIO_TYPE_WRITE
||
847 zio
->io_child_type
== ZIO_CHILD_DDT
)
848 zio
->io_bp
= &zio
->io_bp_copy
; /* so caller can free */
849 if (zio
->io_child_type
== ZIO_CHILD_LOGICAL
)
850 zio
->io_logical
= zio
;
851 if (zio
->io_child_type
> ZIO_CHILD_GANG
&& BP_IS_GANG(bp
))
852 pipeline
|= ZIO_GANG_STAGES
;
858 zio
->io_private
= private;
860 zio
->io_priority
= priority
;
862 zio
->io_offset
= offset
;
863 zio
->io_orig_abd
= zio
->io_abd
= data
;
864 zio
->io_orig_size
= zio
->io_size
= psize
;
865 zio
->io_lsize
= lsize
;
866 zio
->io_orig_flags
= zio
->io_flags
= flags
;
867 zio
->io_orig_stage
= zio
->io_stage
= stage
;
868 zio
->io_orig_pipeline
= zio
->io_pipeline
= pipeline
;
869 zio
->io_pipeline_trace
= ZIO_STAGE_OPEN
;
871 zio
->io_state
[ZIO_WAIT_READY
] = (stage
>= ZIO_STAGE_READY
);
872 zio
->io_state
[ZIO_WAIT_DONE
] = (stage
>= ZIO_STAGE_DONE
);
875 zio
->io_bookmark
= *zb
;
878 zio
->io_metaslab_class
= pio
->io_metaslab_class
;
879 if (zio
->io_logical
== NULL
)
880 zio
->io_logical
= pio
->io_logical
;
881 if (zio
->io_child_type
== ZIO_CHILD_GANG
)
882 zio
->io_gang_leader
= pio
->io_gang_leader
;
883 zio_add_child(pio
, zio
);
886 taskq_init_ent(&zio
->io_tqent
);
892 zio_destroy(zio_t
*zio
)
894 metaslab_trace_fini(&zio
->io_alloc_list
);
895 list_destroy(&zio
->io_parent_list
);
896 list_destroy(&zio
->io_child_list
);
897 mutex_destroy(&zio
->io_lock
);
898 cv_destroy(&zio
->io_cv
);
899 kmem_cache_free(zio_cache
, zio
);
903 zio_null(zio_t
*pio
, spa_t
*spa
, vdev_t
*vd
, zio_done_func_t
*done
,
904 void *private, enum zio_flag flags
)
908 zio
= zio_create(pio
, spa
, 0, NULL
, NULL
, 0, 0, done
, private,
909 ZIO_TYPE_NULL
, ZIO_PRIORITY_NOW
, flags
, vd
, 0, NULL
,
910 ZIO_STAGE_OPEN
, ZIO_INTERLOCK_PIPELINE
);
916 zio_root(spa_t
*spa
, zio_done_func_t
*done
, void *private, enum zio_flag flags
)
918 return (zio_null(NULL
, spa
, NULL
, done
, private, flags
));
922 zfs_blkptr_verify_log(spa_t
*spa
, const blkptr_t
*bp
,
923 enum blk_verify_flag blk_verify
, const char *fmt
, ...)
929 (void) vsnprintf(buf
, sizeof (buf
), fmt
, adx
);
932 switch (blk_verify
) {
933 case BLK_VERIFY_HALT
:
934 dprintf_bp(bp
, "blkptr at %p dprintf_bp():", bp
);
935 zfs_panic_recover("%s: %s", spa_name(spa
), buf
);
938 zfs_dbgmsg("%s: %s", spa_name(spa
), buf
);
940 case BLK_VERIFY_ONLY
:
948 * Verify the block pointer fields contain reasonable values. This means
949 * it only contains known object types, checksum/compression identifiers,
950 * block sizes within the maximum allowed limits, valid DVAs, etc.
952 * If everything checks out B_TRUE is returned. The zfs_blkptr_verify
953 * argument controls the behavior when an invalid field is detected.
955 * Modes for zfs_blkptr_verify:
956 * 1) BLK_VERIFY_ONLY (evaluate the block)
957 * 2) BLK_VERIFY_LOG (evaluate the block and log problems)
958 * 3) BLK_VERIFY_HALT (call zfs_panic_recover on error)
961 zfs_blkptr_verify(spa_t
*spa
, const blkptr_t
*bp
, boolean_t config_held
,
962 enum blk_verify_flag blk_verify
)
966 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp
))) {
967 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
968 "blkptr at %p has invalid TYPE %llu",
969 bp
, (longlong_t
)BP_GET_TYPE(bp
));
971 if (BP_GET_CHECKSUM(bp
) >= ZIO_CHECKSUM_FUNCTIONS
) {
972 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
973 "blkptr at %p has invalid CHECKSUM %llu",
974 bp
, (longlong_t
)BP_GET_CHECKSUM(bp
));
976 if (BP_GET_COMPRESS(bp
) >= ZIO_COMPRESS_FUNCTIONS
) {
977 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
978 "blkptr at %p has invalid COMPRESS %llu",
979 bp
, (longlong_t
)BP_GET_COMPRESS(bp
));
981 if (BP_GET_LSIZE(bp
) > SPA_MAXBLOCKSIZE
) {
982 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
983 "blkptr at %p has invalid LSIZE %llu",
984 bp
, (longlong_t
)BP_GET_LSIZE(bp
));
986 if (BP_GET_PSIZE(bp
) > SPA_MAXBLOCKSIZE
) {
987 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
988 "blkptr at %p has invalid PSIZE %llu",
989 bp
, (longlong_t
)BP_GET_PSIZE(bp
));
992 if (BP_IS_EMBEDDED(bp
)) {
993 if (BPE_GET_ETYPE(bp
) >= NUM_BP_EMBEDDED_TYPES
) {
994 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
995 "blkptr at %p has invalid ETYPE %llu",
996 bp
, (longlong_t
)BPE_GET_ETYPE(bp
));
1001 * Do not verify individual DVAs if the config is not trusted. This
1002 * will be done once the zio is executed in vdev_mirror_map_alloc.
1004 if (!spa
->spa_trust_config
)
1005 return (errors
== 0);
1008 spa_config_enter(spa
, SCL_VDEV
, bp
, RW_READER
);
1010 ASSERT(spa_config_held(spa
, SCL_VDEV
, RW_WRITER
));
1012 * Pool-specific checks.
1014 * Note: it would be nice to verify that the blk_birth and
1015 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze()
1016 * allows the birth time of log blocks (and dmu_sync()-ed blocks
1017 * that are in the log) to be arbitrarily large.
1019 for (int i
= 0; i
< BP_GET_NDVAS(bp
); i
++) {
1020 const dva_t
*dva
= &bp
->blk_dva
[i
];
1021 uint64_t vdevid
= DVA_GET_VDEV(dva
);
1023 if (vdevid
>= spa
->spa_root_vdev
->vdev_children
) {
1024 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
1025 "blkptr at %p DVA %u has invalid VDEV %llu",
1026 bp
, i
, (longlong_t
)vdevid
);
1029 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[vdevid
];
1031 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
1032 "blkptr at %p DVA %u has invalid VDEV %llu",
1033 bp
, i
, (longlong_t
)vdevid
);
1036 if (vd
->vdev_ops
== &vdev_hole_ops
) {
1037 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
1038 "blkptr at %p DVA %u has hole VDEV %llu",
1039 bp
, i
, (longlong_t
)vdevid
);
1042 if (vd
->vdev_ops
== &vdev_missing_ops
) {
1044 * "missing" vdevs are valid during import, but we
1045 * don't have their detailed info (e.g. asize), so
1046 * we can't perform any more checks on them.
1050 uint64_t offset
= DVA_GET_OFFSET(dva
);
1051 uint64_t asize
= DVA_GET_ASIZE(dva
);
1052 if (DVA_GET_GANG(dva
))
1053 asize
= vdev_gang_header_asize(vd
);
1054 if (offset
+ asize
> vd
->vdev_asize
) {
1055 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
1056 "blkptr at %p DVA %u has invalid OFFSET %llu",
1057 bp
, i
, (longlong_t
)offset
);
1061 dprintf_bp(bp
, "blkptr at %p dprintf_bp():", bp
);
1063 spa_config_exit(spa
, SCL_VDEV
, bp
);
1065 return (errors
== 0);
1069 zfs_dva_valid(spa_t
*spa
, const dva_t
*dva
, const blkptr_t
*bp
)
1072 uint64_t vdevid
= DVA_GET_VDEV(dva
);
1074 if (vdevid
>= spa
->spa_root_vdev
->vdev_children
)
1077 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[vdevid
];
1081 if (vd
->vdev_ops
== &vdev_hole_ops
)
1084 if (vd
->vdev_ops
== &vdev_missing_ops
) {
1088 uint64_t offset
= DVA_GET_OFFSET(dva
);
1089 uint64_t asize
= DVA_GET_ASIZE(dva
);
1091 if (DVA_GET_GANG(dva
))
1092 asize
= vdev_gang_header_asize(vd
);
1093 if (offset
+ asize
> vd
->vdev_asize
)
1100 zio_read(zio_t
*pio
, spa_t
*spa
, const blkptr_t
*bp
,
1101 abd_t
*data
, uint64_t size
, zio_done_func_t
*done
, void *private,
1102 zio_priority_t priority
, enum zio_flag flags
, const zbookmark_phys_t
*zb
)
1106 zio
= zio_create(pio
, spa
, BP_PHYSICAL_BIRTH(bp
), bp
,
1107 data
, size
, size
, done
, private,
1108 ZIO_TYPE_READ
, priority
, flags
, NULL
, 0, zb
,
1109 ZIO_STAGE_OPEN
, (flags
& ZIO_FLAG_DDT_CHILD
) ?
1110 ZIO_DDT_CHILD_READ_PIPELINE
: ZIO_READ_PIPELINE
);
1116 zio_write(zio_t
*pio
, spa_t
*spa
, uint64_t txg
, blkptr_t
*bp
,
1117 abd_t
*data
, uint64_t lsize
, uint64_t psize
, const zio_prop_t
*zp
,
1118 zio_done_func_t
*ready
, zio_done_func_t
*children_ready
,
1119 zio_done_func_t
*physdone
, zio_done_func_t
*done
,
1120 void *private, zio_priority_t priority
, enum zio_flag flags
,
1121 const zbookmark_phys_t
*zb
)
1125 ASSERT(zp
->zp_checksum
>= ZIO_CHECKSUM_OFF
&&
1126 zp
->zp_checksum
< ZIO_CHECKSUM_FUNCTIONS
&&
1127 zp
->zp_compress
>= ZIO_COMPRESS_OFF
&&
1128 zp
->zp_compress
< ZIO_COMPRESS_FUNCTIONS
&&
1129 DMU_OT_IS_VALID(zp
->zp_type
) &&
1130 zp
->zp_level
< 32 &&
1131 zp
->zp_copies
> 0 &&
1132 zp
->zp_copies
<= spa_max_replication(spa
));
1134 zio
= zio_create(pio
, spa
, txg
, bp
, data
, lsize
, psize
, done
, private,
1135 ZIO_TYPE_WRITE
, priority
, flags
, NULL
, 0, zb
,
1136 ZIO_STAGE_OPEN
, (flags
& ZIO_FLAG_DDT_CHILD
) ?
1137 ZIO_DDT_CHILD_WRITE_PIPELINE
: ZIO_WRITE_PIPELINE
);
1139 zio
->io_ready
= ready
;
1140 zio
->io_children_ready
= children_ready
;
1141 zio
->io_physdone
= physdone
;
1145 * Data can be NULL if we are going to call zio_write_override() to
1146 * provide the already-allocated BP. But we may need the data to
1147 * verify a dedup hit (if requested). In this case, don't try to
1148 * dedup (just take the already-allocated BP verbatim). Encrypted
1149 * dedup blocks need data as well so we also disable dedup in this
1153 (zio
->io_prop
.zp_dedup_verify
|| zio
->io_prop
.zp_encrypt
)) {
1154 zio
->io_prop
.zp_dedup
= zio
->io_prop
.zp_dedup_verify
= B_FALSE
;
1161 zio_rewrite(zio_t
*pio
, spa_t
*spa
, uint64_t txg
, blkptr_t
*bp
, abd_t
*data
,
1162 uint64_t size
, zio_done_func_t
*done
, void *private,
1163 zio_priority_t priority
, enum zio_flag flags
, zbookmark_phys_t
*zb
)
1167 zio
= zio_create(pio
, spa
, txg
, bp
, data
, size
, size
, done
, private,
1168 ZIO_TYPE_WRITE
, priority
, flags
| ZIO_FLAG_IO_REWRITE
, NULL
, 0, zb
,
1169 ZIO_STAGE_OPEN
, ZIO_REWRITE_PIPELINE
);
1175 zio_write_override(zio_t
*zio
, blkptr_t
*bp
, int copies
, boolean_t nopwrite
)
1177 ASSERT(zio
->io_type
== ZIO_TYPE_WRITE
);
1178 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
1179 ASSERT(zio
->io_stage
== ZIO_STAGE_OPEN
);
1180 ASSERT(zio
->io_txg
== spa_syncing_txg(zio
->io_spa
));
1183 * We must reset the io_prop to match the values that existed
1184 * when the bp was first written by dmu_sync() keeping in mind
1185 * that nopwrite and dedup are mutually exclusive.
1187 zio
->io_prop
.zp_dedup
= nopwrite
? B_FALSE
: zio
->io_prop
.zp_dedup
;
1188 zio
->io_prop
.zp_nopwrite
= nopwrite
;
1189 zio
->io_prop
.zp_copies
= copies
;
1190 zio
->io_bp_override
= bp
;
1194 zio_free(spa_t
*spa
, uint64_t txg
, const blkptr_t
*bp
)
1197 (void) zfs_blkptr_verify(spa
, bp
, B_FALSE
, BLK_VERIFY_HALT
);
1200 * The check for EMBEDDED is a performance optimization. We
1201 * process the free here (by ignoring it) rather than
1202 * putting it on the list and then processing it in zio_free_sync().
1204 if (BP_IS_EMBEDDED(bp
))
1208 * Frees that are for the currently-syncing txg, are not going to be
1209 * deferred, and which will not need to do a read (i.e. not GANG or
1210 * DEDUP), can be processed immediately. Otherwise, put them on the
1211 * in-memory list for later processing.
1213 * Note that we only defer frees after zfs_sync_pass_deferred_free
1214 * when the log space map feature is disabled. [see relevant comment
1215 * in spa_sync_iterate_to_convergence()]
1217 if (BP_IS_GANG(bp
) ||
1219 txg
!= spa
->spa_syncing_txg
||
1220 (spa_sync_pass(spa
) >= zfs_sync_pass_deferred_free
&&
1221 !spa_feature_is_active(spa
, SPA_FEATURE_LOG_SPACEMAP
))) {
1222 metaslab_check_free(spa
, bp
);
1223 bplist_append(&spa
->spa_free_bplist
[txg
& TXG_MASK
], bp
);
1225 VERIFY3P(zio_free_sync(NULL
, spa
, txg
, bp
, 0), ==, NULL
);
1230 * To improve performance, this function may return NULL if we were able
1231 * to do the free immediately. This avoids the cost of creating a zio
1232 * (and linking it to the parent, etc).
1235 zio_free_sync(zio_t
*pio
, spa_t
*spa
, uint64_t txg
, const blkptr_t
*bp
,
1236 enum zio_flag flags
)
1238 ASSERT(!BP_IS_HOLE(bp
));
1239 ASSERT(spa_syncing_txg(spa
) == txg
);
1241 if (BP_IS_EMBEDDED(bp
))
1244 metaslab_check_free(spa
, bp
);
1246 dsl_scan_freed(spa
, bp
);
1248 if (BP_IS_GANG(bp
) || BP_GET_DEDUP(bp
)) {
1250 * GANG and DEDUP blocks can induce a read (for the gang block
1251 * header, or the DDT), so issue them asynchronously so that
1252 * this thread is not tied up.
1254 enum zio_stage stage
=
1255 ZIO_FREE_PIPELINE
| ZIO_STAGE_ISSUE_ASYNC
;
1257 return (zio_create(pio
, spa
, txg
, bp
, NULL
, BP_GET_PSIZE(bp
),
1258 BP_GET_PSIZE(bp
), NULL
, NULL
,
1259 ZIO_TYPE_FREE
, ZIO_PRIORITY_NOW
,
1260 flags
, NULL
, 0, NULL
, ZIO_STAGE_OPEN
, stage
));
1262 metaslab_free(spa
, bp
, txg
, B_FALSE
);
1268 zio_claim(zio_t
*pio
, spa_t
*spa
, uint64_t txg
, const blkptr_t
*bp
,
1269 zio_done_func_t
*done
, void *private, enum zio_flag flags
)
1273 (void) zfs_blkptr_verify(spa
, bp
, flags
& ZIO_FLAG_CONFIG_WRITER
,
1276 if (BP_IS_EMBEDDED(bp
))
1277 return (zio_null(pio
, spa
, NULL
, NULL
, NULL
, 0));
1280 * A claim is an allocation of a specific block. Claims are needed
1281 * to support immediate writes in the intent log. The issue is that
1282 * immediate writes contain committed data, but in a txg that was
1283 * *not* committed. Upon opening the pool after an unclean shutdown,
1284 * the intent log claims all blocks that contain immediate write data
1285 * so that the SPA knows they're in use.
1287 * All claims *must* be resolved in the first txg -- before the SPA
1288 * starts allocating blocks -- so that nothing is allocated twice.
1289 * If txg == 0 we just verify that the block is claimable.
1291 ASSERT3U(spa
->spa_uberblock
.ub_rootbp
.blk_birth
, <,
1292 spa_min_claim_txg(spa
));
1293 ASSERT(txg
== spa_min_claim_txg(spa
) || txg
== 0);
1294 ASSERT(!BP_GET_DEDUP(bp
) || !spa_writeable(spa
)); /* zdb(8) */
1296 zio
= zio_create(pio
, spa
, txg
, bp
, NULL
, BP_GET_PSIZE(bp
),
1297 BP_GET_PSIZE(bp
), done
, private, ZIO_TYPE_CLAIM
, ZIO_PRIORITY_NOW
,
1298 flags
, NULL
, 0, NULL
, ZIO_STAGE_OPEN
, ZIO_CLAIM_PIPELINE
);
1299 ASSERT0(zio
->io_queued_timestamp
);
1305 zio_ioctl(zio_t
*pio
, spa_t
*spa
, vdev_t
*vd
, int cmd
,
1306 zio_done_func_t
*done
, void *private, enum zio_flag flags
)
1311 if (vd
->vdev_children
== 0) {
1312 zio
= zio_create(pio
, spa
, 0, NULL
, NULL
, 0, 0, done
, private,
1313 ZIO_TYPE_IOCTL
, ZIO_PRIORITY_NOW
, flags
, vd
, 0, NULL
,
1314 ZIO_STAGE_OPEN
, ZIO_IOCTL_PIPELINE
);
1318 zio
= zio_null(pio
, spa
, NULL
, NULL
, NULL
, flags
);
1320 for (c
= 0; c
< vd
->vdev_children
; c
++)
1321 zio_nowait(zio_ioctl(zio
, spa
, vd
->vdev_child
[c
], cmd
,
1322 done
, private, flags
));
1329 zio_trim(zio_t
*pio
, vdev_t
*vd
, uint64_t offset
, uint64_t size
,
1330 zio_done_func_t
*done
, void *private, zio_priority_t priority
,
1331 enum zio_flag flags
, enum trim_flag trim_flags
)
1335 ASSERT0(vd
->vdev_children
);
1336 ASSERT0(P2PHASE(offset
, 1ULL << vd
->vdev_ashift
));
1337 ASSERT0(P2PHASE(size
, 1ULL << vd
->vdev_ashift
));
1338 ASSERT3U(size
, !=, 0);
1340 zio
= zio_create(pio
, vd
->vdev_spa
, 0, NULL
, NULL
, size
, size
, done
,
1341 private, ZIO_TYPE_TRIM
, priority
, flags
| ZIO_FLAG_PHYSICAL
,
1342 vd
, offset
, NULL
, ZIO_STAGE_OPEN
, ZIO_TRIM_PIPELINE
);
1343 zio
->io_trim_flags
= trim_flags
;
1349 zio_read_phys(zio_t
*pio
, vdev_t
*vd
, uint64_t offset
, uint64_t size
,
1350 abd_t
*data
, int checksum
, zio_done_func_t
*done
, void *private,
1351 zio_priority_t priority
, enum zio_flag flags
, boolean_t labels
)
1355 ASSERT(vd
->vdev_children
== 0);
1356 ASSERT(!labels
|| offset
+ size
<= VDEV_LABEL_START_SIZE
||
1357 offset
>= vd
->vdev_psize
- VDEV_LABEL_END_SIZE
);
1358 ASSERT3U(offset
+ size
, <=, vd
->vdev_psize
);
1360 zio
= zio_create(pio
, vd
->vdev_spa
, 0, NULL
, data
, size
, size
, done
,
1361 private, ZIO_TYPE_READ
, priority
, flags
| ZIO_FLAG_PHYSICAL
, vd
,
1362 offset
, NULL
, ZIO_STAGE_OPEN
, ZIO_READ_PHYS_PIPELINE
);
1364 zio
->io_prop
.zp_checksum
= checksum
;
1370 zio_write_phys(zio_t
*pio
, vdev_t
*vd
, uint64_t offset
, uint64_t size
,
1371 abd_t
*data
, int checksum
, zio_done_func_t
*done
, void *private,
1372 zio_priority_t priority
, enum zio_flag flags
, boolean_t labels
)
1376 ASSERT(vd
->vdev_children
== 0);
1377 ASSERT(!labels
|| offset
+ size
<= VDEV_LABEL_START_SIZE
||
1378 offset
>= vd
->vdev_psize
- VDEV_LABEL_END_SIZE
);
1379 ASSERT3U(offset
+ size
, <=, vd
->vdev_psize
);
1381 zio
= zio_create(pio
, vd
->vdev_spa
, 0, NULL
, data
, size
, size
, done
,
1382 private, ZIO_TYPE_WRITE
, priority
, flags
| ZIO_FLAG_PHYSICAL
, vd
,
1383 offset
, NULL
, ZIO_STAGE_OPEN
, ZIO_WRITE_PHYS_PIPELINE
);
1385 zio
->io_prop
.zp_checksum
= checksum
;
1387 if (zio_checksum_table
[checksum
].ci_flags
& ZCHECKSUM_FLAG_EMBEDDED
) {
1389 * zec checksums are necessarily destructive -- they modify
1390 * the end of the write buffer to hold the verifier/checksum.
1391 * Therefore, we must make a local copy in case the data is
1392 * being written to multiple places in parallel.
1394 abd_t
*wbuf
= abd_alloc_sametype(data
, size
);
1395 abd_copy(wbuf
, data
, size
);
1397 zio_push_transform(zio
, wbuf
, size
, size
, NULL
);
1404 * Create a child I/O to do some work for us.
1407 zio_vdev_child_io(zio_t
*pio
, blkptr_t
*bp
, vdev_t
*vd
, uint64_t offset
,
1408 abd_t
*data
, uint64_t size
, int type
, zio_priority_t priority
,
1409 enum zio_flag flags
, zio_done_func_t
*done
, void *private)
1411 enum zio_stage pipeline
= ZIO_VDEV_CHILD_PIPELINE
;
1415 * vdev child I/Os do not propagate their error to the parent.
1416 * Therefore, for correct operation the caller *must* check for
1417 * and handle the error in the child i/o's done callback.
1418 * The only exceptions are i/os that we don't care about
1419 * (OPTIONAL or REPAIR).
1421 ASSERT((flags
& ZIO_FLAG_OPTIONAL
) || (flags
& ZIO_FLAG_IO_REPAIR
) ||
1424 if (type
== ZIO_TYPE_READ
&& bp
!= NULL
) {
1426 * If we have the bp, then the child should perform the
1427 * checksum and the parent need not. This pushes error
1428 * detection as close to the leaves as possible and
1429 * eliminates redundant checksums in the interior nodes.
1431 pipeline
|= ZIO_STAGE_CHECKSUM_VERIFY
;
1432 pio
->io_pipeline
&= ~ZIO_STAGE_CHECKSUM_VERIFY
;
1435 if (vd
->vdev_ops
->vdev_op_leaf
) {
1436 ASSERT0(vd
->vdev_children
);
1437 offset
+= VDEV_LABEL_START_SIZE
;
1440 flags
|= ZIO_VDEV_CHILD_FLAGS(pio
);
1443 * If we've decided to do a repair, the write is not speculative --
1444 * even if the original read was.
1446 if (flags
& ZIO_FLAG_IO_REPAIR
)
1447 flags
&= ~ZIO_FLAG_SPECULATIVE
;
1450 * If we're creating a child I/O that is not associated with a
1451 * top-level vdev, then the child zio is not an allocating I/O.
1452 * If this is a retried I/O then we ignore it since we will
1453 * have already processed the original allocating I/O.
1455 if (flags
& ZIO_FLAG_IO_ALLOCATING
&&
1456 (vd
!= vd
->vdev_top
|| (flags
& ZIO_FLAG_IO_RETRY
))) {
1457 ASSERT(pio
->io_metaslab_class
!= NULL
);
1458 ASSERT(pio
->io_metaslab_class
->mc_alloc_throttle_enabled
);
1459 ASSERT(type
== ZIO_TYPE_WRITE
);
1460 ASSERT(priority
== ZIO_PRIORITY_ASYNC_WRITE
);
1461 ASSERT(!(flags
& ZIO_FLAG_IO_REPAIR
));
1462 ASSERT(!(pio
->io_flags
& ZIO_FLAG_IO_REWRITE
) ||
1463 pio
->io_child_type
== ZIO_CHILD_GANG
);
1465 flags
&= ~ZIO_FLAG_IO_ALLOCATING
;
1469 zio
= zio_create(pio
, pio
->io_spa
, pio
->io_txg
, bp
, data
, size
, size
,
1470 done
, private, type
, priority
, flags
, vd
, offset
, &pio
->io_bookmark
,
1471 ZIO_STAGE_VDEV_IO_START
>> 1, pipeline
);
1472 ASSERT3U(zio
->io_child_type
, ==, ZIO_CHILD_VDEV
);
1474 zio
->io_physdone
= pio
->io_physdone
;
1475 if (vd
->vdev_ops
->vdev_op_leaf
&& zio
->io_logical
!= NULL
)
1476 zio
->io_logical
->io_phys_children
++;
1482 zio_vdev_delegated_io(vdev_t
*vd
, uint64_t offset
, abd_t
*data
, uint64_t size
,
1483 zio_type_t type
, zio_priority_t priority
, enum zio_flag flags
,
1484 zio_done_func_t
*done
, void *private)
1488 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
1490 zio
= zio_create(NULL
, vd
->vdev_spa
, 0, NULL
,
1491 data
, size
, size
, done
, private, type
, priority
,
1492 flags
| ZIO_FLAG_CANFAIL
| ZIO_FLAG_DONT_RETRY
| ZIO_FLAG_DELEGATED
,
1494 ZIO_STAGE_VDEV_IO_START
>> 1, ZIO_VDEV_CHILD_PIPELINE
);
1500 zio_flush(zio_t
*zio
, vdev_t
*vd
)
1502 zio_nowait(zio_ioctl(zio
, zio
->io_spa
, vd
, DKIOCFLUSHWRITECACHE
,
1504 ZIO_FLAG_CANFAIL
| ZIO_FLAG_DONT_PROPAGATE
| ZIO_FLAG_DONT_RETRY
));
1508 zio_shrink(zio_t
*zio
, uint64_t size
)
1510 ASSERT3P(zio
->io_executor
, ==, NULL
);
1511 ASSERT3U(zio
->io_orig_size
, ==, zio
->io_size
);
1512 ASSERT3U(size
, <=, zio
->io_size
);
1515 * We don't shrink for raidz because of problems with the
1516 * reconstruction when reading back less than the block size.
1517 * Note, BP_IS_RAIDZ() assumes no compression.
1519 ASSERT(BP_GET_COMPRESS(zio
->io_bp
) == ZIO_COMPRESS_OFF
);
1520 if (!BP_IS_RAIDZ(zio
->io_bp
)) {
1521 /* we are not doing a raw write */
1522 ASSERT3U(zio
->io_size
, ==, zio
->io_lsize
);
1523 zio
->io_orig_size
= zio
->io_size
= zio
->io_lsize
= size
;
1528 * ==========================================================================
1529 * Prepare to read and write logical blocks
1530 * ==========================================================================
1534 zio_read_bp_init(zio_t
*zio
)
1536 blkptr_t
*bp
= zio
->io_bp
;
1538 BP_IS_EMBEDDED(bp
) ? BPE_GET_PSIZE(bp
) : BP_GET_PSIZE(bp
);
1540 ASSERT3P(zio
->io_bp
, ==, &zio
->io_bp_copy
);
1542 if (BP_GET_COMPRESS(bp
) != ZIO_COMPRESS_OFF
&&
1543 zio
->io_child_type
== ZIO_CHILD_LOGICAL
&&
1544 !(zio
->io_flags
& ZIO_FLAG_RAW_COMPRESS
)) {
1545 zio_push_transform(zio
, abd_alloc_sametype(zio
->io_abd
, psize
),
1546 psize
, psize
, zio_decompress
);
1549 if (((BP_IS_PROTECTED(bp
) && !(zio
->io_flags
& ZIO_FLAG_RAW_ENCRYPT
)) ||
1550 BP_HAS_INDIRECT_MAC_CKSUM(bp
)) &&
1551 zio
->io_child_type
== ZIO_CHILD_LOGICAL
) {
1552 zio_push_transform(zio
, abd_alloc_sametype(zio
->io_abd
, psize
),
1553 psize
, psize
, zio_decrypt
);
1556 if (BP_IS_EMBEDDED(bp
) && BPE_GET_ETYPE(bp
) == BP_EMBEDDED_TYPE_DATA
) {
1557 int psize
= BPE_GET_PSIZE(bp
);
1558 void *data
= abd_borrow_buf(zio
->io_abd
, psize
);
1560 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
1561 decode_embedded_bp_compressed(bp
, data
);
1562 abd_return_buf_copy(zio
->io_abd
, data
, psize
);
1564 ASSERT(!BP_IS_EMBEDDED(bp
));
1565 ASSERT3P(zio
->io_bp
, ==, &zio
->io_bp_copy
);
1568 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp
)) && BP_GET_LEVEL(bp
) == 0)
1569 zio
->io_flags
|= ZIO_FLAG_DONT_CACHE
;
1571 if (BP_GET_TYPE(bp
) == DMU_OT_DDT_ZAP
)
1572 zio
->io_flags
|= ZIO_FLAG_DONT_CACHE
;
1574 if (BP_GET_DEDUP(bp
) && zio
->io_child_type
== ZIO_CHILD_LOGICAL
)
1575 zio
->io_pipeline
= ZIO_DDT_READ_PIPELINE
;
1581 zio_write_bp_init(zio_t
*zio
)
1583 if (!IO_IS_ALLOCATING(zio
))
1586 ASSERT(zio
->io_child_type
!= ZIO_CHILD_DDT
);
1588 if (zio
->io_bp_override
) {
1589 blkptr_t
*bp
= zio
->io_bp
;
1590 zio_prop_t
*zp
= &zio
->io_prop
;
1592 ASSERT(bp
->blk_birth
!= zio
->io_txg
);
1593 ASSERT(BP_GET_DEDUP(zio
->io_bp_override
) == 0);
1595 *bp
= *zio
->io_bp_override
;
1596 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
1598 if (BP_IS_EMBEDDED(bp
))
1602 * If we've been overridden and nopwrite is set then
1603 * set the flag accordingly to indicate that a nopwrite
1604 * has already occurred.
1606 if (!BP_IS_HOLE(bp
) && zp
->zp_nopwrite
) {
1607 ASSERT(!zp
->zp_dedup
);
1608 ASSERT3U(BP_GET_CHECKSUM(bp
), ==, zp
->zp_checksum
);
1609 zio
->io_flags
|= ZIO_FLAG_NOPWRITE
;
1613 ASSERT(!zp
->zp_nopwrite
);
1615 if (BP_IS_HOLE(bp
) || !zp
->zp_dedup
)
1618 ASSERT((zio_checksum_table
[zp
->zp_checksum
].ci_flags
&
1619 ZCHECKSUM_FLAG_DEDUP
) || zp
->zp_dedup_verify
);
1621 if (BP_GET_CHECKSUM(bp
) == zp
->zp_checksum
&&
1623 BP_SET_DEDUP(bp
, 1);
1624 zio
->io_pipeline
|= ZIO_STAGE_DDT_WRITE
;
1629 * We were unable to handle this as an override bp, treat
1630 * it as a regular write I/O.
1632 zio
->io_bp_override
= NULL
;
1633 *bp
= zio
->io_bp_orig
;
1634 zio
->io_pipeline
= zio
->io_orig_pipeline
;
1641 zio_write_compress(zio_t
*zio
)
1643 spa_t
*spa
= zio
->io_spa
;
1644 zio_prop_t
*zp
= &zio
->io_prop
;
1645 enum zio_compress compress
= zp
->zp_compress
;
1646 blkptr_t
*bp
= zio
->io_bp
;
1647 uint64_t lsize
= zio
->io_lsize
;
1648 uint64_t psize
= zio
->io_size
;
1652 * If our children haven't all reached the ready stage,
1653 * wait for them and then repeat this pipeline stage.
1655 if (zio_wait_for_children(zio
, ZIO_CHILD_LOGICAL_BIT
|
1656 ZIO_CHILD_GANG_BIT
, ZIO_WAIT_READY
)) {
1660 if (!IO_IS_ALLOCATING(zio
))
1663 if (zio
->io_children_ready
!= NULL
) {
1665 * Now that all our children are ready, run the callback
1666 * associated with this zio in case it wants to modify the
1667 * data to be written.
1669 ASSERT3U(zp
->zp_level
, >, 0);
1670 zio
->io_children_ready(zio
);
1673 ASSERT(zio
->io_child_type
!= ZIO_CHILD_DDT
);
1674 ASSERT(zio
->io_bp_override
== NULL
);
1676 if (!BP_IS_HOLE(bp
) && bp
->blk_birth
== zio
->io_txg
) {
1678 * We're rewriting an existing block, which means we're
1679 * working on behalf of spa_sync(). For spa_sync() to
1680 * converge, it must eventually be the case that we don't
1681 * have to allocate new blocks. But compression changes
1682 * the blocksize, which forces a reallocate, and makes
1683 * convergence take longer. Therefore, after the first
1684 * few passes, stop compressing to ensure convergence.
1686 pass
= spa_sync_pass(spa
);
1688 ASSERT(zio
->io_txg
== spa_syncing_txg(spa
));
1689 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
1690 ASSERT(!BP_GET_DEDUP(bp
));
1692 if (pass
>= zfs_sync_pass_dont_compress
)
1693 compress
= ZIO_COMPRESS_OFF
;
1695 /* Make sure someone doesn't change their mind on overwrites */
1696 ASSERT(BP_IS_EMBEDDED(bp
) || MIN(zp
->zp_copies
+ BP_IS_GANG(bp
),
1697 spa_max_replication(spa
)) == BP_GET_NDVAS(bp
));
1700 /* If it's a compressed write that is not raw, compress the buffer. */
1701 if (compress
!= ZIO_COMPRESS_OFF
&&
1702 !(zio
->io_flags
& ZIO_FLAG_RAW_COMPRESS
)) {
1703 void *cbuf
= zio_buf_alloc(lsize
);
1704 psize
= zio_compress_data(compress
, zio
->io_abd
, cbuf
, lsize
,
1706 if (psize
== 0 || psize
>= lsize
) {
1707 compress
= ZIO_COMPRESS_OFF
;
1708 zio_buf_free(cbuf
, lsize
);
1709 } else if (!zp
->zp_dedup
&& !zp
->zp_encrypt
&&
1710 psize
<= BPE_PAYLOAD_SIZE
&&
1711 zp
->zp_level
== 0 && !DMU_OT_HAS_FILL(zp
->zp_type
) &&
1712 spa_feature_is_enabled(spa
, SPA_FEATURE_EMBEDDED_DATA
)) {
1713 encode_embedded_bp_compressed(bp
,
1714 cbuf
, compress
, lsize
, psize
);
1715 BPE_SET_ETYPE(bp
, BP_EMBEDDED_TYPE_DATA
);
1716 BP_SET_TYPE(bp
, zio
->io_prop
.zp_type
);
1717 BP_SET_LEVEL(bp
, zio
->io_prop
.zp_level
);
1718 zio_buf_free(cbuf
, lsize
);
1719 bp
->blk_birth
= zio
->io_txg
;
1720 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
1721 ASSERT(spa_feature_is_active(spa
,
1722 SPA_FEATURE_EMBEDDED_DATA
));
1726 * Round compressed size up to the minimum allocation
1727 * size of the smallest-ashift device, and zero the
1728 * tail. This ensures that the compressed size of the
1729 * BP (and thus compressratio property) are correct,
1730 * in that we charge for the padding used to fill out
1733 ASSERT3U(spa
->spa_min_alloc
, >=, SPA_MINBLOCKSHIFT
);
1734 size_t rounded
= (size_t)roundup(psize
,
1735 spa
->spa_min_alloc
);
1736 if (rounded
>= lsize
) {
1737 compress
= ZIO_COMPRESS_OFF
;
1738 zio_buf_free(cbuf
, lsize
);
1741 abd_t
*cdata
= abd_get_from_buf(cbuf
, lsize
);
1742 abd_take_ownership_of_buf(cdata
, B_TRUE
);
1743 abd_zero_off(cdata
, psize
, rounded
- psize
);
1745 zio_push_transform(zio
, cdata
,
1746 psize
, lsize
, NULL
);
1751 * We were unable to handle this as an override bp, treat
1752 * it as a regular write I/O.
1754 zio
->io_bp_override
= NULL
;
1755 *bp
= zio
->io_bp_orig
;
1756 zio
->io_pipeline
= zio
->io_orig_pipeline
;
1758 } else if ((zio
->io_flags
& ZIO_FLAG_RAW_ENCRYPT
) != 0 &&
1759 zp
->zp_type
== DMU_OT_DNODE
) {
1761 * The DMU actually relies on the zio layer's compression
1762 * to free metadnode blocks that have had all contained
1763 * dnodes freed. As a result, even when doing a raw
1764 * receive, we must check whether the block can be compressed
1767 psize
= zio_compress_data(ZIO_COMPRESS_EMPTY
,
1768 zio
->io_abd
, NULL
, lsize
, zp
->zp_complevel
);
1769 if (psize
== 0 || psize
>= lsize
)
1770 compress
= ZIO_COMPRESS_OFF
;
1771 } else if (zio
->io_flags
& ZIO_FLAG_RAW_COMPRESS
&&
1772 !(zio
->io_flags
& ZIO_FLAG_RAW_ENCRYPT
)) {
1774 * If we are raw receiving an encrypted dataset we should not
1775 * take this codepath because it will change the on-disk block
1776 * and decryption will fail.
1778 size_t rounded
= MIN((size_t)roundup(psize
,
1779 spa
->spa_min_alloc
), lsize
);
1781 if (rounded
!= psize
) {
1782 abd_t
*cdata
= abd_alloc_linear(rounded
, B_TRUE
);
1783 abd_zero_off(cdata
, psize
, rounded
- psize
);
1784 abd_copy_off(cdata
, zio
->io_abd
, 0, 0, psize
);
1786 zio_push_transform(zio
, cdata
,
1787 psize
, rounded
, NULL
);
1790 ASSERT3U(psize
, !=, 0);
1794 * The final pass of spa_sync() must be all rewrites, but the first
1795 * few passes offer a trade-off: allocating blocks defers convergence,
1796 * but newly allocated blocks are sequential, so they can be written
1797 * to disk faster. Therefore, we allow the first few passes of
1798 * spa_sync() to allocate new blocks, but force rewrites after that.
1799 * There should only be a handful of blocks after pass 1 in any case.
1801 if (!BP_IS_HOLE(bp
) && bp
->blk_birth
== zio
->io_txg
&&
1802 BP_GET_PSIZE(bp
) == psize
&&
1803 pass
>= zfs_sync_pass_rewrite
) {
1804 VERIFY3U(psize
, !=, 0);
1805 enum zio_stage gang_stages
= zio
->io_pipeline
& ZIO_GANG_STAGES
;
1807 zio
->io_pipeline
= ZIO_REWRITE_PIPELINE
| gang_stages
;
1808 zio
->io_flags
|= ZIO_FLAG_IO_REWRITE
;
1811 zio
->io_pipeline
= ZIO_WRITE_PIPELINE
;
1815 if (zio
->io_bp_orig
.blk_birth
!= 0 &&
1816 spa_feature_is_active(spa
, SPA_FEATURE_HOLE_BIRTH
)) {
1817 BP_SET_LSIZE(bp
, lsize
);
1818 BP_SET_TYPE(bp
, zp
->zp_type
);
1819 BP_SET_LEVEL(bp
, zp
->zp_level
);
1820 BP_SET_BIRTH(bp
, zio
->io_txg
, 0);
1822 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
1824 ASSERT(zp
->zp_checksum
!= ZIO_CHECKSUM_GANG_HEADER
);
1825 BP_SET_LSIZE(bp
, lsize
);
1826 BP_SET_TYPE(bp
, zp
->zp_type
);
1827 BP_SET_LEVEL(bp
, zp
->zp_level
);
1828 BP_SET_PSIZE(bp
, psize
);
1829 BP_SET_COMPRESS(bp
, compress
);
1830 BP_SET_CHECKSUM(bp
, zp
->zp_checksum
);
1831 BP_SET_DEDUP(bp
, zp
->zp_dedup
);
1832 BP_SET_BYTEORDER(bp
, ZFS_HOST_BYTEORDER
);
1834 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
1835 ASSERT(!(zio
->io_flags
& ZIO_FLAG_IO_REWRITE
));
1836 ASSERT(!zp
->zp_encrypt
||
1837 DMU_OT_IS_ENCRYPTED(zp
->zp_type
));
1838 zio
->io_pipeline
= ZIO_DDT_WRITE_PIPELINE
;
1840 if (zp
->zp_nopwrite
) {
1841 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
1842 ASSERT(!(zio
->io_flags
& ZIO_FLAG_IO_REWRITE
));
1843 zio
->io_pipeline
|= ZIO_STAGE_NOP_WRITE
;
1850 zio_free_bp_init(zio_t
*zio
)
1852 blkptr_t
*bp
= zio
->io_bp
;
1854 if (zio
->io_child_type
== ZIO_CHILD_LOGICAL
) {
1855 if (BP_GET_DEDUP(bp
))
1856 zio
->io_pipeline
= ZIO_DDT_FREE_PIPELINE
;
1859 ASSERT3P(zio
->io_bp
, ==, &zio
->io_bp_copy
);
1865 * ==========================================================================
1866 * Execute the I/O pipeline
1867 * ==========================================================================
1871 zio_taskq_dispatch(zio_t
*zio
, zio_taskq_type_t q
, boolean_t cutinline
)
1873 spa_t
*spa
= zio
->io_spa
;
1874 zio_type_t t
= zio
->io_type
;
1875 int flags
= (cutinline
? TQ_FRONT
: 0);
1878 * If we're a config writer or a probe, the normal issue and
1879 * interrupt threads may all be blocked waiting for the config lock.
1880 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1882 if (zio
->io_flags
& (ZIO_FLAG_CONFIG_WRITER
| ZIO_FLAG_PROBE
))
1886 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1888 if (t
== ZIO_TYPE_WRITE
&& zio
->io_vd
&& zio
->io_vd
->vdev_aux
)
1892 * If this is a high priority I/O, then use the high priority taskq if
1895 if ((zio
->io_priority
== ZIO_PRIORITY_NOW
||
1896 zio
->io_priority
== ZIO_PRIORITY_SYNC_WRITE
) &&
1897 spa
->spa_zio_taskq
[t
][q
+ 1].stqs_count
!= 0)
1900 ASSERT3U(q
, <, ZIO_TASKQ_TYPES
);
1903 * NB: We are assuming that the zio can only be dispatched
1904 * to a single taskq at a time. It would be a grievous error
1905 * to dispatch the zio to another taskq at the same time.
1907 ASSERT(taskq_empty_ent(&zio
->io_tqent
));
1908 spa_taskq_dispatch_ent(spa
, t
, q
, zio_execute
, zio
, flags
,
1913 zio_taskq_member(zio_t
*zio
, zio_taskq_type_t q
)
1915 spa_t
*spa
= zio
->io_spa
;
1917 taskq_t
*tq
= taskq_of_curthread();
1919 for (zio_type_t t
= 0; t
< ZIO_TYPES
; t
++) {
1920 spa_taskqs_t
*tqs
= &spa
->spa_zio_taskq
[t
][q
];
1922 for (i
= 0; i
< tqs
->stqs_count
; i
++) {
1923 if (tqs
->stqs_taskq
[i
] == tq
)
1932 zio_issue_async(zio_t
*zio
)
1934 zio_taskq_dispatch(zio
, ZIO_TASKQ_ISSUE
, B_FALSE
);
1940 zio_interrupt(void *zio
)
1942 zio_taskq_dispatch(zio
, ZIO_TASKQ_INTERRUPT
, B_FALSE
);
1946 zio_delay_interrupt(zio_t
*zio
)
1949 * The timeout_generic() function isn't defined in userspace, so
1950 * rather than trying to implement the function, the zio delay
1951 * functionality has been disabled for userspace builds.
1956 * If io_target_timestamp is zero, then no delay has been registered
1957 * for this IO, thus jump to the end of this function and "skip" the
1958 * delay; issuing it directly to the zio layer.
1960 if (zio
->io_target_timestamp
!= 0) {
1961 hrtime_t now
= gethrtime();
1963 if (now
>= zio
->io_target_timestamp
) {
1965 * This IO has already taken longer than the target
1966 * delay to complete, so we don't want to delay it
1967 * any longer; we "miss" the delay and issue it
1968 * directly to the zio layer. This is likely due to
1969 * the target latency being set to a value less than
1970 * the underlying hardware can satisfy (e.g. delay
1971 * set to 1ms, but the disks take 10ms to complete an
1975 DTRACE_PROBE2(zio__delay__miss
, zio_t
*, zio
,
1981 hrtime_t diff
= zio
->io_target_timestamp
- now
;
1982 clock_t expire_at_tick
= ddi_get_lbolt() +
1985 DTRACE_PROBE3(zio__delay__hit
, zio_t
*, zio
,
1986 hrtime_t
, now
, hrtime_t
, diff
);
1988 if (NSEC_TO_TICK(diff
) == 0) {
1989 /* Our delay is less than a jiffy - just spin */
1990 zfs_sleep_until(zio
->io_target_timestamp
);
1994 * Use taskq_dispatch_delay() in the place of
1995 * OpenZFS's timeout_generic().
1997 tid
= taskq_dispatch_delay(system_taskq
,
1998 zio_interrupt
, zio
, TQ_NOSLEEP
,
2000 if (tid
== TASKQID_INVALID
) {
2002 * Couldn't allocate a task. Just
2003 * finish the zio without a delay.
2012 DTRACE_PROBE1(zio__delay__skip
, zio_t
*, zio
);
2017 zio_deadman_impl(zio_t
*pio
, int ziodepth
)
2019 zio_t
*cio
, *cio_next
;
2020 zio_link_t
*zl
= NULL
;
2021 vdev_t
*vd
= pio
->io_vd
;
2023 if (zio_deadman_log_all
|| (vd
!= NULL
&& vd
->vdev_ops
->vdev_op_leaf
)) {
2024 vdev_queue_t
*vq
= vd
? &vd
->vdev_queue
: NULL
;
2025 zbookmark_phys_t
*zb
= &pio
->io_bookmark
;
2026 uint64_t delta
= gethrtime() - pio
->io_timestamp
;
2027 uint64_t failmode
= spa_get_deadman_failmode(pio
->io_spa
);
2029 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
2030 "delta=%llu queued=%llu io=%llu "
2032 "last=%llu type=%d "
2033 "priority=%d flags=0x%x stage=0x%x "
2034 "pipeline=0x%x pipeline-trace=0x%x "
2035 "objset=%llu object=%llu "
2036 "level=%llu blkid=%llu "
2037 "offset=%llu size=%llu "
2039 ziodepth
, pio
, pio
->io_timestamp
,
2040 (u_longlong_t
)delta
, pio
->io_delta
, pio
->io_delay
,
2041 vd
? vd
->vdev_path
: "NULL",
2042 vq
? vq
->vq_io_complete_ts
: 0, pio
->io_type
,
2043 pio
->io_priority
, pio
->io_flags
, pio
->io_stage
,
2044 pio
->io_pipeline
, pio
->io_pipeline_trace
,
2045 (u_longlong_t
)zb
->zb_objset
, (u_longlong_t
)zb
->zb_object
,
2046 (u_longlong_t
)zb
->zb_level
, (u_longlong_t
)zb
->zb_blkid
,
2047 (u_longlong_t
)pio
->io_offset
, (u_longlong_t
)pio
->io_size
,
2049 (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN
,
2050 pio
->io_spa
, vd
, zb
, pio
, 0);
2052 if (failmode
== ZIO_FAILURE_MODE_CONTINUE
&&
2053 taskq_empty_ent(&pio
->io_tqent
)) {
2058 mutex_enter(&pio
->io_lock
);
2059 for (cio
= zio_walk_children(pio
, &zl
); cio
!= NULL
; cio
= cio_next
) {
2060 cio_next
= zio_walk_children(pio
, &zl
);
2061 zio_deadman_impl(cio
, ziodepth
+ 1);
2063 mutex_exit(&pio
->io_lock
);
2067 * Log the critical information describing this zio and all of its children
2068 * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2071 zio_deadman(zio_t
*pio
, const char *tag
)
2073 spa_t
*spa
= pio
->io_spa
;
2074 char *name
= spa_name(spa
);
2076 if (!zfs_deadman_enabled
|| spa_suspended(spa
))
2079 zio_deadman_impl(pio
, 0);
2081 switch (spa_get_deadman_failmode(spa
)) {
2082 case ZIO_FAILURE_MODE_WAIT
:
2083 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag
, name
);
2086 case ZIO_FAILURE_MODE_CONTINUE
:
2087 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag
, name
);
2090 case ZIO_FAILURE_MODE_PANIC
:
2091 fm_panic("%s determined I/O to pool '%s' is hung.", tag
, name
);
2097 * Execute the I/O pipeline until one of the following occurs:
2098 * (1) the I/O completes; (2) the pipeline stalls waiting for
2099 * dependent child I/Os; (3) the I/O issues, so we're waiting
2100 * for an I/O completion interrupt; (4) the I/O is delegated by
2101 * vdev-level caching or aggregation; (5) the I/O is deferred
2102 * due to vdev-level queueing; (6) the I/O is handed off to
2103 * another thread. In all cases, the pipeline stops whenever
2104 * there's no CPU work; it never burns a thread in cv_wait_io().
2106 * There's no locking on io_stage because there's no legitimate way
2107 * for multiple threads to be attempting to process the same I/O.
2109 static zio_pipe_stage_t
*zio_pipeline
[];
2112 * zio_execute() is a wrapper around the static function
2113 * __zio_execute() so that we can force __zio_execute() to be
2114 * inlined. This reduces stack overhead which is important
2115 * because __zio_execute() is called recursively in several zio
2116 * code paths. zio_execute() itself cannot be inlined because
2117 * it is externally visible.
2120 zio_execute(void *zio
)
2122 fstrans_cookie_t cookie
;
2124 cookie
= spl_fstrans_mark();
2126 spl_fstrans_unmark(cookie
);
2130 * Used to determine if in the current context the stack is sized large
2131 * enough to allow zio_execute() to be called recursively. A minimum
2132 * stack size of 16K is required to avoid needing to re-dispatch the zio.
2135 zio_execute_stack_check(zio_t
*zio
)
2137 #if !defined(HAVE_LARGE_STACKS)
2138 dsl_pool_t
*dp
= spa_get_dsl(zio
->io_spa
);
2140 /* Executing in txg_sync_thread() context. */
2141 if (dp
&& curthread
== dp
->dp_tx
.tx_sync_thread
)
2144 /* Pool initialization outside of zio_taskq context. */
2145 if (dp
&& spa_is_initializing(dp
->dp_spa
) &&
2146 !zio_taskq_member(zio
, ZIO_TASKQ_ISSUE
) &&
2147 !zio_taskq_member(zio
, ZIO_TASKQ_ISSUE_HIGH
))
2151 #endif /* HAVE_LARGE_STACKS */
2156 __attribute__((always_inline
))
2158 __zio_execute(zio_t
*zio
)
2160 ASSERT3U(zio
->io_queued_timestamp
, >, 0);
2162 while (zio
->io_stage
< ZIO_STAGE_DONE
) {
2163 enum zio_stage pipeline
= zio
->io_pipeline
;
2164 enum zio_stage stage
= zio
->io_stage
;
2166 zio
->io_executor
= curthread
;
2168 ASSERT(!MUTEX_HELD(&zio
->io_lock
));
2169 ASSERT(ISP2(stage
));
2170 ASSERT(zio
->io_stall
== NULL
);
2174 } while ((stage
& pipeline
) == 0);
2176 ASSERT(stage
<= ZIO_STAGE_DONE
);
2179 * If we are in interrupt context and this pipeline stage
2180 * will grab a config lock that is held across I/O,
2181 * or may wait for an I/O that needs an interrupt thread
2182 * to complete, issue async to avoid deadlock.
2184 * For VDEV_IO_START, we cut in line so that the io will
2185 * be sent to disk promptly.
2187 if ((stage
& ZIO_BLOCKING_STAGES
) && zio
->io_vd
== NULL
&&
2188 zio_taskq_member(zio
, ZIO_TASKQ_INTERRUPT
)) {
2189 boolean_t cut
= (stage
== ZIO_STAGE_VDEV_IO_START
) ?
2190 zio_requeue_io_start_cut_in_line
: B_FALSE
;
2191 zio_taskq_dispatch(zio
, ZIO_TASKQ_ISSUE
, cut
);
2196 * If the current context doesn't have large enough stacks
2197 * the zio must be issued asynchronously to prevent overflow.
2199 if (zio_execute_stack_check(zio
)) {
2200 boolean_t cut
= (stage
== ZIO_STAGE_VDEV_IO_START
) ?
2201 zio_requeue_io_start_cut_in_line
: B_FALSE
;
2202 zio_taskq_dispatch(zio
, ZIO_TASKQ_ISSUE
, cut
);
2206 zio
->io_stage
= stage
;
2207 zio
->io_pipeline_trace
|= zio
->io_stage
;
2210 * The zio pipeline stage returns the next zio to execute
2211 * (typically the same as this one), or NULL if we should
2214 zio
= zio_pipeline
[highbit64(stage
) - 1](zio
);
2223 * ==========================================================================
2224 * Initiate I/O, either sync or async
2225 * ==========================================================================
2228 zio_wait(zio_t
*zio
)
2231 * Some routines, like zio_free_sync(), may return a NULL zio
2232 * to avoid the performance overhead of creating and then destroying
2233 * an unneeded zio. For the callers' simplicity, we accept a NULL
2234 * zio and ignore it.
2239 long timeout
= MSEC_TO_TICK(zfs_deadman_ziotime_ms
);
2242 ASSERT3S(zio
->io_stage
, ==, ZIO_STAGE_OPEN
);
2243 ASSERT3P(zio
->io_executor
, ==, NULL
);
2245 zio
->io_waiter
= curthread
;
2246 ASSERT0(zio
->io_queued_timestamp
);
2247 zio
->io_queued_timestamp
= gethrtime();
2251 mutex_enter(&zio
->io_lock
);
2252 while (zio
->io_executor
!= NULL
) {
2253 error
= cv_timedwait_io(&zio
->io_cv
, &zio
->io_lock
,
2254 ddi_get_lbolt() + timeout
);
2256 if (zfs_deadman_enabled
&& error
== -1 &&
2257 gethrtime() - zio
->io_queued_timestamp
>
2258 spa_deadman_ziotime(zio
->io_spa
)) {
2259 mutex_exit(&zio
->io_lock
);
2260 timeout
= MSEC_TO_TICK(zfs_deadman_checktime_ms
);
2261 zio_deadman(zio
, FTAG
);
2262 mutex_enter(&zio
->io_lock
);
2265 mutex_exit(&zio
->io_lock
);
2267 error
= zio
->io_error
;
2274 zio_nowait(zio_t
*zio
)
2277 * See comment in zio_wait().
2282 ASSERT3P(zio
->io_executor
, ==, NULL
);
2284 if (zio
->io_child_type
== ZIO_CHILD_LOGICAL
&&
2285 zio_unique_parent(zio
) == NULL
) {
2289 * This is a logical async I/O with no parent to wait for it.
2290 * We add it to the spa_async_root_zio "Godfather" I/O which
2291 * will ensure they complete prior to unloading the pool.
2293 spa_t
*spa
= zio
->io_spa
;
2294 pio
= spa
->spa_async_zio_root
[CPU_SEQID_UNSTABLE
];
2296 zio_add_child(pio
, zio
);
2299 ASSERT0(zio
->io_queued_timestamp
);
2300 zio
->io_queued_timestamp
= gethrtime();
2305 * ==========================================================================
2306 * Reexecute, cancel, or suspend/resume failed I/O
2307 * ==========================================================================
2311 zio_reexecute(void *arg
)
2314 zio_t
*cio
, *cio_next
;
2316 ASSERT(pio
->io_child_type
== ZIO_CHILD_LOGICAL
);
2317 ASSERT(pio
->io_orig_stage
== ZIO_STAGE_OPEN
);
2318 ASSERT(pio
->io_gang_leader
== NULL
);
2319 ASSERT(pio
->io_gang_tree
== NULL
);
2321 pio
->io_flags
= pio
->io_orig_flags
;
2322 pio
->io_stage
= pio
->io_orig_stage
;
2323 pio
->io_pipeline
= pio
->io_orig_pipeline
;
2324 pio
->io_reexecute
= 0;
2325 pio
->io_flags
|= ZIO_FLAG_REEXECUTED
;
2326 pio
->io_pipeline_trace
= 0;
2328 for (int w
= 0; w
< ZIO_WAIT_TYPES
; w
++)
2329 pio
->io_state
[w
] = 0;
2330 for (int c
= 0; c
< ZIO_CHILD_TYPES
; c
++)
2331 pio
->io_child_error
[c
] = 0;
2333 if (IO_IS_ALLOCATING(pio
))
2334 BP_ZERO(pio
->io_bp
);
2337 * As we reexecute pio's children, new children could be created.
2338 * New children go to the head of pio's io_child_list, however,
2339 * so we will (correctly) not reexecute them. The key is that
2340 * the remainder of pio's io_child_list, from 'cio_next' onward,
2341 * cannot be affected by any side effects of reexecuting 'cio'.
2343 zio_link_t
*zl
= NULL
;
2344 mutex_enter(&pio
->io_lock
);
2345 for (cio
= zio_walk_children(pio
, &zl
); cio
!= NULL
; cio
= cio_next
) {
2346 cio_next
= zio_walk_children(pio
, &zl
);
2347 for (int w
= 0; w
< ZIO_WAIT_TYPES
; w
++)
2348 pio
->io_children
[cio
->io_child_type
][w
]++;
2349 mutex_exit(&pio
->io_lock
);
2351 mutex_enter(&pio
->io_lock
);
2353 mutex_exit(&pio
->io_lock
);
2356 * Now that all children have been reexecuted, execute the parent.
2357 * We don't reexecute "The Godfather" I/O here as it's the
2358 * responsibility of the caller to wait on it.
2360 if (!(pio
->io_flags
& ZIO_FLAG_GODFATHER
)) {
2361 pio
->io_queued_timestamp
= gethrtime();
2367 zio_suspend(spa_t
*spa
, zio_t
*zio
, zio_suspend_reason_t reason
)
2369 if (spa_get_failmode(spa
) == ZIO_FAILURE_MODE_PANIC
)
2370 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2371 "failure and the failure mode property for this pool "
2372 "is set to panic.", spa_name(spa
));
2374 cmn_err(CE_WARN
, "Pool '%s' has encountered an uncorrectable I/O "
2375 "failure and has been suspended.\n", spa_name(spa
));
2377 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE
, spa
, NULL
,
2380 mutex_enter(&spa
->spa_suspend_lock
);
2382 if (spa
->spa_suspend_zio_root
== NULL
)
2383 spa
->spa_suspend_zio_root
= zio_root(spa
, NULL
, NULL
,
2384 ZIO_FLAG_CANFAIL
| ZIO_FLAG_SPECULATIVE
|
2385 ZIO_FLAG_GODFATHER
);
2387 spa
->spa_suspended
= reason
;
2390 ASSERT(!(zio
->io_flags
& ZIO_FLAG_GODFATHER
));
2391 ASSERT(zio
!= spa
->spa_suspend_zio_root
);
2392 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
2393 ASSERT(zio_unique_parent(zio
) == NULL
);
2394 ASSERT(zio
->io_stage
== ZIO_STAGE_DONE
);
2395 zio_add_child(spa
->spa_suspend_zio_root
, zio
);
2398 mutex_exit(&spa
->spa_suspend_lock
);
2402 zio_resume(spa_t
*spa
)
2407 * Reexecute all previously suspended i/o.
2409 mutex_enter(&spa
->spa_suspend_lock
);
2410 spa
->spa_suspended
= ZIO_SUSPEND_NONE
;
2411 cv_broadcast(&spa
->spa_suspend_cv
);
2412 pio
= spa
->spa_suspend_zio_root
;
2413 spa
->spa_suspend_zio_root
= NULL
;
2414 mutex_exit(&spa
->spa_suspend_lock
);
2420 return (zio_wait(pio
));
2424 zio_resume_wait(spa_t
*spa
)
2426 mutex_enter(&spa
->spa_suspend_lock
);
2427 while (spa_suspended(spa
))
2428 cv_wait(&spa
->spa_suspend_cv
, &spa
->spa_suspend_lock
);
2429 mutex_exit(&spa
->spa_suspend_lock
);
2433 * ==========================================================================
2436 * A gang block is a collection of small blocks that looks to the DMU
2437 * like one large block. When zio_dva_allocate() cannot find a block
2438 * of the requested size, due to either severe fragmentation or the pool
2439 * being nearly full, it calls zio_write_gang_block() to construct the
2440 * block from smaller fragments.
2442 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2443 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
2444 * an indirect block: it's an array of block pointers. It consumes
2445 * only one sector and hence is allocatable regardless of fragmentation.
2446 * The gang header's bps point to its gang members, which hold the data.
2448 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2449 * as the verifier to ensure uniqueness of the SHA256 checksum.
2450 * Critically, the gang block bp's blk_cksum is the checksum of the data,
2451 * not the gang header. This ensures that data block signatures (needed for
2452 * deduplication) are independent of how the block is physically stored.
2454 * Gang blocks can be nested: a gang member may itself be a gang block.
2455 * Thus every gang block is a tree in which root and all interior nodes are
2456 * gang headers, and the leaves are normal blocks that contain user data.
2457 * The root of the gang tree is called the gang leader.
2459 * To perform any operation (read, rewrite, free, claim) on a gang block,
2460 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2461 * in the io_gang_tree field of the original logical i/o by recursively
2462 * reading the gang leader and all gang headers below it. This yields
2463 * an in-core tree containing the contents of every gang header and the
2464 * bps for every constituent of the gang block.
2466 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2467 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
2468 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2469 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2470 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2471 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
2472 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2473 * of the gang header plus zio_checksum_compute() of the data to update the
2474 * gang header's blk_cksum as described above.
2476 * The two-phase assemble/issue model solves the problem of partial failure --
2477 * what if you'd freed part of a gang block but then couldn't read the
2478 * gang header for another part? Assembling the entire gang tree first
2479 * ensures that all the necessary gang header I/O has succeeded before
2480 * starting the actual work of free, claim, or write. Once the gang tree
2481 * is assembled, free and claim are in-memory operations that cannot fail.
2483 * In the event that a gang write fails, zio_dva_unallocate() walks the
2484 * gang tree to immediately free (i.e. insert back into the space map)
2485 * everything we've allocated. This ensures that we don't get ENOSPC
2486 * errors during repeated suspend/resume cycles due to a flaky device.
2488 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
2489 * the gang tree, we won't modify the block, so we can safely defer the free
2490 * (knowing that the block is still intact). If we *can* assemble the gang
2491 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2492 * each constituent bp and we can allocate a new block on the next sync pass.
2494 * In all cases, the gang tree allows complete recovery from partial failure.
2495 * ==========================================================================
2499 zio_gang_issue_func_done(zio_t
*zio
)
2501 abd_free(zio
->io_abd
);
2505 zio_read_gang(zio_t
*pio
, blkptr_t
*bp
, zio_gang_node_t
*gn
, abd_t
*data
,
2511 return (zio_read(pio
, pio
->io_spa
, bp
, abd_get_offset(data
, offset
),
2512 BP_GET_PSIZE(bp
), zio_gang_issue_func_done
,
2513 NULL
, pio
->io_priority
, ZIO_GANG_CHILD_FLAGS(pio
),
2514 &pio
->io_bookmark
));
2518 zio_rewrite_gang(zio_t
*pio
, blkptr_t
*bp
, zio_gang_node_t
*gn
, abd_t
*data
,
2525 abd_get_from_buf(gn
->gn_gbh
, SPA_GANGBLOCKSIZE
);
2526 zio
= zio_rewrite(pio
, pio
->io_spa
, pio
->io_txg
, bp
,
2527 gbh_abd
, SPA_GANGBLOCKSIZE
, zio_gang_issue_func_done
, NULL
,
2528 pio
->io_priority
, ZIO_GANG_CHILD_FLAGS(pio
),
2531 * As we rewrite each gang header, the pipeline will compute
2532 * a new gang block header checksum for it; but no one will
2533 * compute a new data checksum, so we do that here. The one
2534 * exception is the gang leader: the pipeline already computed
2535 * its data checksum because that stage precedes gang assembly.
2536 * (Presently, nothing actually uses interior data checksums;
2537 * this is just good hygiene.)
2539 if (gn
!= pio
->io_gang_leader
->io_gang_tree
) {
2540 abd_t
*buf
= abd_get_offset(data
, offset
);
2542 zio_checksum_compute(zio
, BP_GET_CHECKSUM(bp
),
2543 buf
, BP_GET_PSIZE(bp
));
2548 * If we are here to damage data for testing purposes,
2549 * leave the GBH alone so that we can detect the damage.
2551 if (pio
->io_gang_leader
->io_flags
& ZIO_FLAG_INDUCE_DAMAGE
)
2552 zio
->io_pipeline
&= ~ZIO_VDEV_IO_STAGES
;
2554 zio
= zio_rewrite(pio
, pio
->io_spa
, pio
->io_txg
, bp
,
2555 abd_get_offset(data
, offset
), BP_GET_PSIZE(bp
),
2556 zio_gang_issue_func_done
, NULL
, pio
->io_priority
,
2557 ZIO_GANG_CHILD_FLAGS(pio
), &pio
->io_bookmark
);
2564 zio_free_gang(zio_t
*pio
, blkptr_t
*bp
, zio_gang_node_t
*gn
, abd_t
*data
,
2567 (void) gn
, (void) data
, (void) offset
;
2569 zio_t
*zio
= zio_free_sync(pio
, pio
->io_spa
, pio
->io_txg
, bp
,
2570 ZIO_GANG_CHILD_FLAGS(pio
));
2572 zio
= zio_null(pio
, pio
->io_spa
,
2573 NULL
, NULL
, NULL
, ZIO_GANG_CHILD_FLAGS(pio
));
2579 zio_claim_gang(zio_t
*pio
, blkptr_t
*bp
, zio_gang_node_t
*gn
, abd_t
*data
,
2582 (void) gn
, (void) data
, (void) offset
;
2583 return (zio_claim(pio
, pio
->io_spa
, pio
->io_txg
, bp
,
2584 NULL
, NULL
, ZIO_GANG_CHILD_FLAGS(pio
)));
2587 static zio_gang_issue_func_t
*zio_gang_issue_func
[ZIO_TYPES
] = {
2596 static void zio_gang_tree_assemble_done(zio_t
*zio
);
2598 static zio_gang_node_t
*
2599 zio_gang_node_alloc(zio_gang_node_t
**gnpp
)
2601 zio_gang_node_t
*gn
;
2603 ASSERT(*gnpp
== NULL
);
2605 gn
= kmem_zalloc(sizeof (*gn
), KM_SLEEP
);
2606 gn
->gn_gbh
= zio_buf_alloc(SPA_GANGBLOCKSIZE
);
2613 zio_gang_node_free(zio_gang_node_t
**gnpp
)
2615 zio_gang_node_t
*gn
= *gnpp
;
2617 for (int g
= 0; g
< SPA_GBH_NBLKPTRS
; g
++)
2618 ASSERT(gn
->gn_child
[g
] == NULL
);
2620 zio_buf_free(gn
->gn_gbh
, SPA_GANGBLOCKSIZE
);
2621 kmem_free(gn
, sizeof (*gn
));
2626 zio_gang_tree_free(zio_gang_node_t
**gnpp
)
2628 zio_gang_node_t
*gn
= *gnpp
;
2633 for (int g
= 0; g
< SPA_GBH_NBLKPTRS
; g
++)
2634 zio_gang_tree_free(&gn
->gn_child
[g
]);
2636 zio_gang_node_free(gnpp
);
2640 zio_gang_tree_assemble(zio_t
*gio
, blkptr_t
*bp
, zio_gang_node_t
**gnpp
)
2642 zio_gang_node_t
*gn
= zio_gang_node_alloc(gnpp
);
2643 abd_t
*gbh_abd
= abd_get_from_buf(gn
->gn_gbh
, SPA_GANGBLOCKSIZE
);
2645 ASSERT(gio
->io_gang_leader
== gio
);
2646 ASSERT(BP_IS_GANG(bp
));
2648 zio_nowait(zio_read(gio
, gio
->io_spa
, bp
, gbh_abd
, SPA_GANGBLOCKSIZE
,
2649 zio_gang_tree_assemble_done
, gn
, gio
->io_priority
,
2650 ZIO_GANG_CHILD_FLAGS(gio
), &gio
->io_bookmark
));
2654 zio_gang_tree_assemble_done(zio_t
*zio
)
2656 zio_t
*gio
= zio
->io_gang_leader
;
2657 zio_gang_node_t
*gn
= zio
->io_private
;
2658 blkptr_t
*bp
= zio
->io_bp
;
2660 ASSERT(gio
== zio_unique_parent(zio
));
2661 ASSERT(zio
->io_child_count
== 0);
2666 /* this ABD was created from a linear buf in zio_gang_tree_assemble */
2667 if (BP_SHOULD_BYTESWAP(bp
))
2668 byteswap_uint64_array(abd_to_buf(zio
->io_abd
), zio
->io_size
);
2670 ASSERT3P(abd_to_buf(zio
->io_abd
), ==, gn
->gn_gbh
);
2671 ASSERT(zio
->io_size
== SPA_GANGBLOCKSIZE
);
2672 ASSERT(gn
->gn_gbh
->zg_tail
.zec_magic
== ZEC_MAGIC
);
2674 abd_free(zio
->io_abd
);
2676 for (int g
= 0; g
< SPA_GBH_NBLKPTRS
; g
++) {
2677 blkptr_t
*gbp
= &gn
->gn_gbh
->zg_blkptr
[g
];
2678 if (!BP_IS_GANG(gbp
))
2680 zio_gang_tree_assemble(gio
, gbp
, &gn
->gn_child
[g
]);
2685 zio_gang_tree_issue(zio_t
*pio
, zio_gang_node_t
*gn
, blkptr_t
*bp
, abd_t
*data
,
2688 zio_t
*gio
= pio
->io_gang_leader
;
2691 ASSERT(BP_IS_GANG(bp
) == !!gn
);
2692 ASSERT(BP_GET_CHECKSUM(bp
) == BP_GET_CHECKSUM(gio
->io_bp
));
2693 ASSERT(BP_GET_LSIZE(bp
) == BP_GET_PSIZE(bp
) || gn
== gio
->io_gang_tree
);
2696 * If you're a gang header, your data is in gn->gn_gbh.
2697 * If you're a gang member, your data is in 'data' and gn == NULL.
2699 zio
= zio_gang_issue_func
[gio
->io_type
](pio
, bp
, gn
, data
, offset
);
2702 ASSERT(gn
->gn_gbh
->zg_tail
.zec_magic
== ZEC_MAGIC
);
2704 for (int g
= 0; g
< SPA_GBH_NBLKPTRS
; g
++) {
2705 blkptr_t
*gbp
= &gn
->gn_gbh
->zg_blkptr
[g
];
2706 if (BP_IS_HOLE(gbp
))
2708 zio_gang_tree_issue(zio
, gn
->gn_child
[g
], gbp
, data
,
2710 offset
+= BP_GET_PSIZE(gbp
);
2714 if (gn
== gio
->io_gang_tree
)
2715 ASSERT3U(gio
->io_size
, ==, offset
);
2722 zio_gang_assemble(zio_t
*zio
)
2724 blkptr_t
*bp
= zio
->io_bp
;
2726 ASSERT(BP_IS_GANG(bp
) && zio
->io_gang_leader
== NULL
);
2727 ASSERT(zio
->io_child_type
> ZIO_CHILD_GANG
);
2729 zio
->io_gang_leader
= zio
;
2731 zio_gang_tree_assemble(zio
, bp
, &zio
->io_gang_tree
);
2737 zio_gang_issue(zio_t
*zio
)
2739 blkptr_t
*bp
= zio
->io_bp
;
2741 if (zio_wait_for_children(zio
, ZIO_CHILD_GANG_BIT
, ZIO_WAIT_DONE
)) {
2745 ASSERT(BP_IS_GANG(bp
) && zio
->io_gang_leader
== zio
);
2746 ASSERT(zio
->io_child_type
> ZIO_CHILD_GANG
);
2748 if (zio
->io_child_error
[ZIO_CHILD_GANG
] == 0)
2749 zio_gang_tree_issue(zio
, zio
->io_gang_tree
, bp
, zio
->io_abd
,
2752 zio_gang_tree_free(&zio
->io_gang_tree
);
2754 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
2760 zio_write_gang_member_ready(zio_t
*zio
)
2762 zio_t
*pio
= zio_unique_parent(zio
);
2763 dva_t
*cdva
= zio
->io_bp
->blk_dva
;
2764 dva_t
*pdva
= pio
->io_bp
->blk_dva
;
2766 zio_t
*gio __maybe_unused
= zio
->io_gang_leader
;
2768 if (BP_IS_HOLE(zio
->io_bp
))
2771 ASSERT(BP_IS_HOLE(&zio
->io_bp_orig
));
2773 ASSERT(zio
->io_child_type
== ZIO_CHILD_GANG
);
2774 ASSERT3U(zio
->io_prop
.zp_copies
, ==, gio
->io_prop
.zp_copies
);
2775 ASSERT3U(zio
->io_prop
.zp_copies
, <=, BP_GET_NDVAS(zio
->io_bp
));
2776 ASSERT3U(pio
->io_prop
.zp_copies
, <=, BP_GET_NDVAS(pio
->io_bp
));
2777 ASSERT3U(BP_GET_NDVAS(zio
->io_bp
), <=, BP_GET_NDVAS(pio
->io_bp
));
2779 mutex_enter(&pio
->io_lock
);
2780 for (int d
= 0; d
< BP_GET_NDVAS(zio
->io_bp
); d
++) {
2781 ASSERT(DVA_GET_GANG(&pdva
[d
]));
2782 asize
= DVA_GET_ASIZE(&pdva
[d
]);
2783 asize
+= DVA_GET_ASIZE(&cdva
[d
]);
2784 DVA_SET_ASIZE(&pdva
[d
], asize
);
2786 mutex_exit(&pio
->io_lock
);
2790 zio_write_gang_done(zio_t
*zio
)
2793 * The io_abd field will be NULL for a zio with no data. The io_flags
2794 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2795 * check for it here as it is cleared in zio_ready.
2797 if (zio
->io_abd
!= NULL
)
2798 abd_free(zio
->io_abd
);
2802 zio_write_gang_block(zio_t
*pio
, metaslab_class_t
*mc
)
2804 spa_t
*spa
= pio
->io_spa
;
2805 blkptr_t
*bp
= pio
->io_bp
;
2806 zio_t
*gio
= pio
->io_gang_leader
;
2808 zio_gang_node_t
*gn
, **gnpp
;
2809 zio_gbh_phys_t
*gbh
;
2811 uint64_t txg
= pio
->io_txg
;
2812 uint64_t resid
= pio
->io_size
;
2814 int copies
= gio
->io_prop
.zp_copies
;
2818 boolean_t has_data
= !(pio
->io_flags
& ZIO_FLAG_NODATA
);
2821 * encrypted blocks need DVA[2] free so encrypted gang headers can't
2822 * have a third copy.
2824 gbh_copies
= MIN(copies
+ 1, spa_max_replication(spa
));
2825 if (gio
->io_prop
.zp_encrypt
&& gbh_copies
>= SPA_DVAS_PER_BP
)
2826 gbh_copies
= SPA_DVAS_PER_BP
- 1;
2828 int flags
= METASLAB_HINTBP_FAVOR
| METASLAB_GANG_HEADER
;
2829 if (pio
->io_flags
& ZIO_FLAG_IO_ALLOCATING
) {
2830 ASSERT(pio
->io_priority
== ZIO_PRIORITY_ASYNC_WRITE
);
2833 flags
|= METASLAB_ASYNC_ALLOC
;
2834 VERIFY(zfs_refcount_held(&mc
->mc_allocator
[pio
->io_allocator
].
2835 mca_alloc_slots
, pio
));
2838 * The logical zio has already placed a reservation for
2839 * 'copies' allocation slots but gang blocks may require
2840 * additional copies. These additional copies
2841 * (i.e. gbh_copies - copies) are guaranteed to succeed
2842 * since metaslab_class_throttle_reserve() always allows
2843 * additional reservations for gang blocks.
2845 VERIFY(metaslab_class_throttle_reserve(mc
, gbh_copies
- copies
,
2846 pio
->io_allocator
, pio
, flags
));
2849 error
= metaslab_alloc(spa
, mc
, SPA_GANGBLOCKSIZE
,
2850 bp
, gbh_copies
, txg
, pio
== gio
? NULL
: gio
->io_bp
, flags
,
2851 &pio
->io_alloc_list
, pio
, pio
->io_allocator
);
2853 if (pio
->io_flags
& ZIO_FLAG_IO_ALLOCATING
) {
2854 ASSERT(pio
->io_priority
== ZIO_PRIORITY_ASYNC_WRITE
);
2858 * If we failed to allocate the gang block header then
2859 * we remove any additional allocation reservations that
2860 * we placed here. The original reservation will
2861 * be removed when the logical I/O goes to the ready
2864 metaslab_class_throttle_unreserve(mc
,
2865 gbh_copies
- copies
, pio
->io_allocator
, pio
);
2868 pio
->io_error
= error
;
2873 gnpp
= &gio
->io_gang_tree
;
2875 gnpp
= pio
->io_private
;
2876 ASSERT(pio
->io_ready
== zio_write_gang_member_ready
);
2879 gn
= zio_gang_node_alloc(gnpp
);
2881 memset(gbh
, 0, SPA_GANGBLOCKSIZE
);
2882 gbh_abd
= abd_get_from_buf(gbh
, SPA_GANGBLOCKSIZE
);
2885 * Create the gang header.
2887 zio
= zio_rewrite(pio
, spa
, txg
, bp
, gbh_abd
, SPA_GANGBLOCKSIZE
,
2888 zio_write_gang_done
, NULL
, pio
->io_priority
,
2889 ZIO_GANG_CHILD_FLAGS(pio
), &pio
->io_bookmark
);
2892 * Create and nowait the gang children.
2894 for (int g
= 0; resid
!= 0; resid
-= lsize
, g
++) {
2895 lsize
= P2ROUNDUP(resid
/ (SPA_GBH_NBLKPTRS
- g
),
2897 ASSERT(lsize
>= SPA_MINBLOCKSIZE
&& lsize
<= resid
);
2899 zp
.zp_checksum
= gio
->io_prop
.zp_checksum
;
2900 zp
.zp_compress
= ZIO_COMPRESS_OFF
;
2901 zp
.zp_complevel
= gio
->io_prop
.zp_complevel
;
2902 zp
.zp_type
= DMU_OT_NONE
;
2904 zp
.zp_copies
= gio
->io_prop
.zp_copies
;
2905 zp
.zp_dedup
= B_FALSE
;
2906 zp
.zp_dedup_verify
= B_FALSE
;
2907 zp
.zp_nopwrite
= B_FALSE
;
2908 zp
.zp_encrypt
= gio
->io_prop
.zp_encrypt
;
2909 zp
.zp_byteorder
= gio
->io_prop
.zp_byteorder
;
2910 memset(zp
.zp_salt
, 0, ZIO_DATA_SALT_LEN
);
2911 memset(zp
.zp_iv
, 0, ZIO_DATA_IV_LEN
);
2912 memset(zp
.zp_mac
, 0, ZIO_DATA_MAC_LEN
);
2914 zio_t
*cio
= zio_write(zio
, spa
, txg
, &gbh
->zg_blkptr
[g
],
2915 has_data
? abd_get_offset(pio
->io_abd
, pio
->io_size
-
2916 resid
) : NULL
, lsize
, lsize
, &zp
,
2917 zio_write_gang_member_ready
, NULL
, NULL
,
2918 zio_write_gang_done
, &gn
->gn_child
[g
], pio
->io_priority
,
2919 ZIO_GANG_CHILD_FLAGS(pio
), &pio
->io_bookmark
);
2921 if (pio
->io_flags
& ZIO_FLAG_IO_ALLOCATING
) {
2922 ASSERT(pio
->io_priority
== ZIO_PRIORITY_ASYNC_WRITE
);
2926 * Gang children won't throttle but we should
2927 * account for their work, so reserve an allocation
2928 * slot for them here.
2930 VERIFY(metaslab_class_throttle_reserve(mc
,
2931 zp
.zp_copies
, cio
->io_allocator
, cio
, flags
));
2937 * Set pio's pipeline to just wait for zio to finish.
2939 pio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
2942 * We didn't allocate this bp, so make sure it doesn't get unmarked.
2944 pio
->io_flags
&= ~ZIO_FLAG_FASTWRITE
;
2952 * The zio_nop_write stage in the pipeline determines if allocating a
2953 * new bp is necessary. The nopwrite feature can handle writes in
2954 * either syncing or open context (i.e. zil writes) and as a result is
2955 * mutually exclusive with dedup.
2957 * By leveraging a cryptographically secure checksum, such as SHA256, we
2958 * can compare the checksums of the new data and the old to determine if
2959 * allocating a new block is required. Note that our requirements for
2960 * cryptographic strength are fairly weak: there can't be any accidental
2961 * hash collisions, but we don't need to be secure against intentional
2962 * (malicious) collisions. To trigger a nopwrite, you have to be able
2963 * to write the file to begin with, and triggering an incorrect (hash
2964 * collision) nopwrite is no worse than simply writing to the file.
2965 * That said, there are no known attacks against the checksum algorithms
2966 * used for nopwrite, assuming that the salt and the checksums
2967 * themselves remain secret.
2970 zio_nop_write(zio_t
*zio
)
2972 blkptr_t
*bp
= zio
->io_bp
;
2973 blkptr_t
*bp_orig
= &zio
->io_bp_orig
;
2974 zio_prop_t
*zp
= &zio
->io_prop
;
2976 ASSERT(BP_GET_LEVEL(bp
) == 0);
2977 ASSERT(!(zio
->io_flags
& ZIO_FLAG_IO_REWRITE
));
2978 ASSERT(zp
->zp_nopwrite
);
2979 ASSERT(!zp
->zp_dedup
);
2980 ASSERT(zio
->io_bp_override
== NULL
);
2981 ASSERT(IO_IS_ALLOCATING(zio
));
2984 * Check to see if the original bp and the new bp have matching
2985 * characteristics (i.e. same checksum, compression algorithms, etc).
2986 * If they don't then just continue with the pipeline which will
2987 * allocate a new bp.
2989 if (BP_IS_HOLE(bp_orig
) ||
2990 !(zio_checksum_table
[BP_GET_CHECKSUM(bp
)].ci_flags
&
2991 ZCHECKSUM_FLAG_NOPWRITE
) ||
2992 BP_IS_ENCRYPTED(bp
) || BP_IS_ENCRYPTED(bp_orig
) ||
2993 BP_GET_CHECKSUM(bp
) != BP_GET_CHECKSUM(bp_orig
) ||
2994 BP_GET_COMPRESS(bp
) != BP_GET_COMPRESS(bp_orig
) ||
2995 BP_GET_DEDUP(bp
) != BP_GET_DEDUP(bp_orig
) ||
2996 zp
->zp_copies
!= BP_GET_NDVAS(bp_orig
))
3000 * If the checksums match then reset the pipeline so that we
3001 * avoid allocating a new bp and issuing any I/O.
3003 if (ZIO_CHECKSUM_EQUAL(bp
->blk_cksum
, bp_orig
->blk_cksum
)) {
3004 ASSERT(zio_checksum_table
[zp
->zp_checksum
].ci_flags
&
3005 ZCHECKSUM_FLAG_NOPWRITE
);
3006 ASSERT3U(BP_GET_PSIZE(bp
), ==, BP_GET_PSIZE(bp_orig
));
3007 ASSERT3U(BP_GET_LSIZE(bp
), ==, BP_GET_LSIZE(bp_orig
));
3008 ASSERT(zp
->zp_compress
!= ZIO_COMPRESS_OFF
);
3009 ASSERT(memcmp(&bp
->blk_prop
, &bp_orig
->blk_prop
,
3010 sizeof (uint64_t)) == 0);
3013 * If we're overwriting a block that is currently on an
3014 * indirect vdev, then ignore the nopwrite request and
3015 * allow a new block to be allocated on a concrete vdev.
3017 spa_config_enter(zio
->io_spa
, SCL_VDEV
, FTAG
, RW_READER
);
3018 vdev_t
*tvd
= vdev_lookup_top(zio
->io_spa
,
3019 DVA_GET_VDEV(&bp
->blk_dva
[0]));
3020 if (tvd
->vdev_ops
== &vdev_indirect_ops
) {
3021 spa_config_exit(zio
->io_spa
, SCL_VDEV
, FTAG
);
3024 spa_config_exit(zio
->io_spa
, SCL_VDEV
, FTAG
);
3027 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
3028 zio
->io_flags
|= ZIO_FLAG_NOPWRITE
;
3035 * ==========================================================================
3037 * ==========================================================================
3040 zio_ddt_child_read_done(zio_t
*zio
)
3042 blkptr_t
*bp
= zio
->io_bp
;
3043 ddt_entry_t
*dde
= zio
->io_private
;
3045 zio_t
*pio
= zio_unique_parent(zio
);
3047 mutex_enter(&pio
->io_lock
);
3048 ddp
= ddt_phys_select(dde
, bp
);
3049 if (zio
->io_error
== 0)
3050 ddt_phys_clear(ddp
); /* this ddp doesn't need repair */
3052 if (zio
->io_error
== 0 && dde
->dde_repair_abd
== NULL
)
3053 dde
->dde_repair_abd
= zio
->io_abd
;
3055 abd_free(zio
->io_abd
);
3056 mutex_exit(&pio
->io_lock
);
3060 zio_ddt_read_start(zio_t
*zio
)
3062 blkptr_t
*bp
= zio
->io_bp
;
3064 ASSERT(BP_GET_DEDUP(bp
));
3065 ASSERT(BP_GET_PSIZE(bp
) == zio
->io_size
);
3066 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
3068 if (zio
->io_child_error
[ZIO_CHILD_DDT
]) {
3069 ddt_t
*ddt
= ddt_select(zio
->io_spa
, bp
);
3070 ddt_entry_t
*dde
= ddt_repair_start(ddt
, bp
);
3071 ddt_phys_t
*ddp
= dde
->dde_phys
;
3072 ddt_phys_t
*ddp_self
= ddt_phys_select(dde
, bp
);
3075 ASSERT(zio
->io_vsd
== NULL
);
3078 if (ddp_self
== NULL
)
3081 for (int p
= 0; p
< DDT_PHYS_TYPES
; p
++, ddp
++) {
3082 if (ddp
->ddp_phys_birth
== 0 || ddp
== ddp_self
)
3084 ddt_bp_create(ddt
->ddt_checksum
, &dde
->dde_key
, ddp
,
3086 zio_nowait(zio_read(zio
, zio
->io_spa
, &blk
,
3087 abd_alloc_for_io(zio
->io_size
, B_TRUE
),
3088 zio
->io_size
, zio_ddt_child_read_done
, dde
,
3089 zio
->io_priority
, ZIO_DDT_CHILD_FLAGS(zio
) |
3090 ZIO_FLAG_DONT_PROPAGATE
, &zio
->io_bookmark
));
3095 zio_nowait(zio_read(zio
, zio
->io_spa
, bp
,
3096 zio
->io_abd
, zio
->io_size
, NULL
, NULL
, zio
->io_priority
,
3097 ZIO_DDT_CHILD_FLAGS(zio
), &zio
->io_bookmark
));
3103 zio_ddt_read_done(zio_t
*zio
)
3105 blkptr_t
*bp
= zio
->io_bp
;
3107 if (zio_wait_for_children(zio
, ZIO_CHILD_DDT_BIT
, ZIO_WAIT_DONE
)) {
3111 ASSERT(BP_GET_DEDUP(bp
));
3112 ASSERT(BP_GET_PSIZE(bp
) == zio
->io_size
);
3113 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
3115 if (zio
->io_child_error
[ZIO_CHILD_DDT
]) {
3116 ddt_t
*ddt
= ddt_select(zio
->io_spa
, bp
);
3117 ddt_entry_t
*dde
= zio
->io_vsd
;
3119 ASSERT(spa_load_state(zio
->io_spa
) != SPA_LOAD_NONE
);
3123 zio
->io_stage
= ZIO_STAGE_DDT_READ_START
>> 1;
3124 zio_taskq_dispatch(zio
, ZIO_TASKQ_ISSUE
, B_FALSE
);
3127 if (dde
->dde_repair_abd
!= NULL
) {
3128 abd_copy(zio
->io_abd
, dde
->dde_repair_abd
,
3130 zio
->io_child_error
[ZIO_CHILD_DDT
] = 0;
3132 ddt_repair_done(ddt
, dde
);
3136 ASSERT(zio
->io_vsd
== NULL
);
3142 zio_ddt_collision(zio_t
*zio
, ddt_t
*ddt
, ddt_entry_t
*dde
)
3144 spa_t
*spa
= zio
->io_spa
;
3145 boolean_t do_raw
= !!(zio
->io_flags
& ZIO_FLAG_RAW
);
3147 ASSERT(!(zio
->io_bp_override
&& do_raw
));
3150 * Note: we compare the original data, not the transformed data,
3151 * because when zio->io_bp is an override bp, we will not have
3152 * pushed the I/O transforms. That's an important optimization
3153 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3154 * However, we should never get a raw, override zio so in these
3155 * cases we can compare the io_abd directly. This is useful because
3156 * it allows us to do dedup verification even if we don't have access
3157 * to the original data (for instance, if the encryption keys aren't
3161 for (int p
= DDT_PHYS_SINGLE
; p
<= DDT_PHYS_TRIPLE
; p
++) {
3162 zio_t
*lio
= dde
->dde_lead_zio
[p
];
3164 if (lio
!= NULL
&& do_raw
) {
3165 return (lio
->io_size
!= zio
->io_size
||
3166 abd_cmp(zio
->io_abd
, lio
->io_abd
) != 0);
3167 } else if (lio
!= NULL
) {
3168 return (lio
->io_orig_size
!= zio
->io_orig_size
||
3169 abd_cmp(zio
->io_orig_abd
, lio
->io_orig_abd
) != 0);
3173 for (int p
= DDT_PHYS_SINGLE
; p
<= DDT_PHYS_TRIPLE
; p
++) {
3174 ddt_phys_t
*ddp
= &dde
->dde_phys
[p
];
3176 if (ddp
->ddp_phys_birth
!= 0 && do_raw
) {
3177 blkptr_t blk
= *zio
->io_bp
;
3182 ddt_bp_fill(ddp
, &blk
, ddp
->ddp_phys_birth
);
3183 psize
= BP_GET_PSIZE(&blk
);
3185 if (psize
!= zio
->io_size
)
3190 tmpabd
= abd_alloc_for_io(psize
, B_TRUE
);
3192 error
= zio_wait(zio_read(NULL
, spa
, &blk
, tmpabd
,
3193 psize
, NULL
, NULL
, ZIO_PRIORITY_SYNC_READ
,
3194 ZIO_FLAG_CANFAIL
| ZIO_FLAG_SPECULATIVE
|
3195 ZIO_FLAG_RAW
, &zio
->io_bookmark
));
3198 if (abd_cmp(tmpabd
, zio
->io_abd
) != 0)
3199 error
= SET_ERROR(ENOENT
);
3204 return (error
!= 0);
3205 } else if (ddp
->ddp_phys_birth
!= 0) {
3206 arc_buf_t
*abuf
= NULL
;
3207 arc_flags_t aflags
= ARC_FLAG_WAIT
;
3208 blkptr_t blk
= *zio
->io_bp
;
3211 ddt_bp_fill(ddp
, &blk
, ddp
->ddp_phys_birth
);
3213 if (BP_GET_LSIZE(&blk
) != zio
->io_orig_size
)
3218 error
= arc_read(NULL
, spa
, &blk
,
3219 arc_getbuf_func
, &abuf
, ZIO_PRIORITY_SYNC_READ
,
3220 ZIO_FLAG_CANFAIL
| ZIO_FLAG_SPECULATIVE
,
3221 &aflags
, &zio
->io_bookmark
);
3224 if (abd_cmp_buf(zio
->io_orig_abd
, abuf
->b_data
,
3225 zio
->io_orig_size
) != 0)
3226 error
= SET_ERROR(ENOENT
);
3227 arc_buf_destroy(abuf
, &abuf
);
3231 return (error
!= 0);
3239 zio_ddt_child_write_ready(zio_t
*zio
)
3241 int p
= zio
->io_prop
.zp_copies
;
3242 ddt_t
*ddt
= ddt_select(zio
->io_spa
, zio
->io_bp
);
3243 ddt_entry_t
*dde
= zio
->io_private
;
3244 ddt_phys_t
*ddp
= &dde
->dde_phys
[p
];
3252 ASSERT(dde
->dde_lead_zio
[p
] == zio
);
3254 ddt_phys_fill(ddp
, zio
->io_bp
);
3256 zio_link_t
*zl
= NULL
;
3257 while ((pio
= zio_walk_parents(zio
, &zl
)) != NULL
)
3258 ddt_bp_fill(ddp
, pio
->io_bp
, zio
->io_txg
);
3264 zio_ddt_child_write_done(zio_t
*zio
)
3266 int p
= zio
->io_prop
.zp_copies
;
3267 ddt_t
*ddt
= ddt_select(zio
->io_spa
, zio
->io_bp
);
3268 ddt_entry_t
*dde
= zio
->io_private
;
3269 ddt_phys_t
*ddp
= &dde
->dde_phys
[p
];
3273 ASSERT(ddp
->ddp_refcnt
== 0);
3274 ASSERT(dde
->dde_lead_zio
[p
] == zio
);
3275 dde
->dde_lead_zio
[p
] = NULL
;
3277 if (zio
->io_error
== 0) {
3278 zio_link_t
*zl
= NULL
;
3279 while (zio_walk_parents(zio
, &zl
) != NULL
)
3280 ddt_phys_addref(ddp
);
3282 ddt_phys_clear(ddp
);
3289 zio_ddt_write(zio_t
*zio
)
3291 spa_t
*spa
= zio
->io_spa
;
3292 blkptr_t
*bp
= zio
->io_bp
;
3293 uint64_t txg
= zio
->io_txg
;
3294 zio_prop_t
*zp
= &zio
->io_prop
;
3295 int p
= zp
->zp_copies
;
3297 ddt_t
*ddt
= ddt_select(spa
, bp
);
3301 ASSERT(BP_GET_DEDUP(bp
));
3302 ASSERT(BP_GET_CHECKSUM(bp
) == zp
->zp_checksum
);
3303 ASSERT(BP_IS_HOLE(bp
) || zio
->io_bp_override
);
3304 ASSERT(!(zio
->io_bp_override
&& (zio
->io_flags
& ZIO_FLAG_RAW
)));
3307 dde
= ddt_lookup(ddt
, bp
, B_TRUE
);
3308 ddp
= &dde
->dde_phys
[p
];
3310 if (zp
->zp_dedup_verify
&& zio_ddt_collision(zio
, ddt
, dde
)) {
3312 * If we're using a weak checksum, upgrade to a strong checksum
3313 * and try again. If we're already using a strong checksum,
3314 * we can't resolve it, so just convert to an ordinary write.
3315 * (And automatically e-mail a paper to Nature?)
3317 if (!(zio_checksum_table
[zp
->zp_checksum
].ci_flags
&
3318 ZCHECKSUM_FLAG_DEDUP
)) {
3319 zp
->zp_checksum
= spa_dedup_checksum(spa
);
3320 zio_pop_transforms(zio
);
3321 zio
->io_stage
= ZIO_STAGE_OPEN
;
3324 zp
->zp_dedup
= B_FALSE
;
3325 BP_SET_DEDUP(bp
, B_FALSE
);
3327 ASSERT(!BP_GET_DEDUP(bp
));
3328 zio
->io_pipeline
= ZIO_WRITE_PIPELINE
;
3333 if (ddp
->ddp_phys_birth
!= 0 || dde
->dde_lead_zio
[p
] != NULL
) {
3334 if (ddp
->ddp_phys_birth
!= 0)
3335 ddt_bp_fill(ddp
, bp
, txg
);
3336 if (dde
->dde_lead_zio
[p
] != NULL
)
3337 zio_add_child(zio
, dde
->dde_lead_zio
[p
]);
3339 ddt_phys_addref(ddp
);
3340 } else if (zio
->io_bp_override
) {
3341 ASSERT(bp
->blk_birth
== txg
);
3342 ASSERT(BP_EQUAL(bp
, zio
->io_bp_override
));
3343 ddt_phys_fill(ddp
, bp
);
3344 ddt_phys_addref(ddp
);
3346 cio
= zio_write(zio
, spa
, txg
, bp
, zio
->io_orig_abd
,
3347 zio
->io_orig_size
, zio
->io_orig_size
, zp
,
3348 zio_ddt_child_write_ready
, NULL
, NULL
,
3349 zio_ddt_child_write_done
, dde
, zio
->io_priority
,
3350 ZIO_DDT_CHILD_FLAGS(zio
), &zio
->io_bookmark
);
3352 zio_push_transform(cio
, zio
->io_abd
, zio
->io_size
, 0, NULL
);
3353 dde
->dde_lead_zio
[p
] = cio
;
3363 ddt_entry_t
*freedde
; /* for debugging */
3366 zio_ddt_free(zio_t
*zio
)
3368 spa_t
*spa
= zio
->io_spa
;
3369 blkptr_t
*bp
= zio
->io_bp
;
3370 ddt_t
*ddt
= ddt_select(spa
, bp
);
3374 ASSERT(BP_GET_DEDUP(bp
));
3375 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
3378 freedde
= dde
= ddt_lookup(ddt
, bp
, B_TRUE
);
3380 ddp
= ddt_phys_select(dde
, bp
);
3382 ddt_phys_decref(ddp
);
3390 * ==========================================================================
3391 * Allocate and free blocks
3392 * ==========================================================================
3396 zio_io_to_allocate(spa_t
*spa
, int allocator
)
3400 ASSERT(MUTEX_HELD(&spa
->spa_allocs
[allocator
].spaa_lock
));
3402 zio
= avl_first(&spa
->spa_allocs
[allocator
].spaa_tree
);
3406 ASSERT(IO_IS_ALLOCATING(zio
));
3409 * Try to place a reservation for this zio. If we're unable to
3410 * reserve then we throttle.
3412 ASSERT3U(zio
->io_allocator
, ==, allocator
);
3413 if (!metaslab_class_throttle_reserve(zio
->io_metaslab_class
,
3414 zio
->io_prop
.zp_copies
, allocator
, zio
, 0)) {
3418 avl_remove(&spa
->spa_allocs
[allocator
].spaa_tree
, zio
);
3419 ASSERT3U(zio
->io_stage
, <, ZIO_STAGE_DVA_ALLOCATE
);
3425 zio_dva_throttle(zio_t
*zio
)
3427 spa_t
*spa
= zio
->io_spa
;
3429 metaslab_class_t
*mc
;
3431 /* locate an appropriate allocation class */
3432 mc
= spa_preferred_class(spa
, zio
->io_size
, zio
->io_prop
.zp_type
,
3433 zio
->io_prop
.zp_level
, zio
->io_prop
.zp_zpl_smallblk
);
3435 if (zio
->io_priority
== ZIO_PRIORITY_SYNC_WRITE
||
3436 !mc
->mc_alloc_throttle_enabled
||
3437 zio
->io_child_type
== ZIO_CHILD_GANG
||
3438 zio
->io_flags
& ZIO_FLAG_NODATA
) {
3442 ASSERT(zio
->io_type
== ZIO_TYPE_WRITE
);
3443 ASSERT(zio
->io_child_type
> ZIO_CHILD_GANG
);
3444 ASSERT3U(zio
->io_queued_timestamp
, >, 0);
3445 ASSERT(zio
->io_stage
== ZIO_STAGE_DVA_THROTTLE
);
3447 zbookmark_phys_t
*bm
= &zio
->io_bookmark
;
3449 * We want to try to use as many allocators as possible to help improve
3450 * performance, but we also want logically adjacent IOs to be physically
3451 * adjacent to improve sequential read performance. We chunk each object
3452 * into 2^20 block regions, and then hash based on the objset, object,
3453 * level, and region to accomplish both of these goals.
3455 int allocator
= (uint_t
)cityhash4(bm
->zb_objset
, bm
->zb_object
,
3456 bm
->zb_level
, bm
->zb_blkid
>> 20) % spa
->spa_alloc_count
;
3457 zio
->io_allocator
= allocator
;
3458 zio
->io_metaslab_class
= mc
;
3459 mutex_enter(&spa
->spa_allocs
[allocator
].spaa_lock
);
3460 avl_add(&spa
->spa_allocs
[allocator
].spaa_tree
, zio
);
3461 nio
= zio_io_to_allocate(spa
, allocator
);
3462 mutex_exit(&spa
->spa_allocs
[allocator
].spaa_lock
);
3467 zio_allocate_dispatch(spa_t
*spa
, int allocator
)
3471 mutex_enter(&spa
->spa_allocs
[allocator
].spaa_lock
);
3472 zio
= zio_io_to_allocate(spa
, allocator
);
3473 mutex_exit(&spa
->spa_allocs
[allocator
].spaa_lock
);
3477 ASSERT3U(zio
->io_stage
, ==, ZIO_STAGE_DVA_THROTTLE
);
3478 ASSERT0(zio
->io_error
);
3479 zio_taskq_dispatch(zio
, ZIO_TASKQ_ISSUE
, B_TRUE
);
3483 zio_dva_allocate(zio_t
*zio
)
3485 spa_t
*spa
= zio
->io_spa
;
3486 metaslab_class_t
*mc
;
3487 blkptr_t
*bp
= zio
->io_bp
;
3491 if (zio
->io_gang_leader
== NULL
) {
3492 ASSERT(zio
->io_child_type
> ZIO_CHILD_GANG
);
3493 zio
->io_gang_leader
= zio
;
3496 ASSERT(BP_IS_HOLE(bp
));
3497 ASSERT0(BP_GET_NDVAS(bp
));
3498 ASSERT3U(zio
->io_prop
.zp_copies
, >, 0);
3499 ASSERT3U(zio
->io_prop
.zp_copies
, <=, spa_max_replication(spa
));
3500 ASSERT3U(zio
->io_size
, ==, BP_GET_PSIZE(bp
));
3502 flags
|= (zio
->io_flags
& ZIO_FLAG_FASTWRITE
) ? METASLAB_FASTWRITE
: 0;
3503 if (zio
->io_flags
& ZIO_FLAG_NODATA
)
3504 flags
|= METASLAB_DONT_THROTTLE
;
3505 if (zio
->io_flags
& ZIO_FLAG_GANG_CHILD
)
3506 flags
|= METASLAB_GANG_CHILD
;
3507 if (zio
->io_priority
== ZIO_PRIORITY_ASYNC_WRITE
)
3508 flags
|= METASLAB_ASYNC_ALLOC
;
3511 * if not already chosen, locate an appropriate allocation class
3513 mc
= zio
->io_metaslab_class
;
3515 mc
= spa_preferred_class(spa
, zio
->io_size
,
3516 zio
->io_prop
.zp_type
, zio
->io_prop
.zp_level
,
3517 zio
->io_prop
.zp_zpl_smallblk
);
3518 zio
->io_metaslab_class
= mc
;
3522 * Try allocating the block in the usual metaslab class.
3523 * If that's full, allocate it in the normal class.
3524 * If that's full, allocate as a gang block,
3525 * and if all are full, the allocation fails (which shouldn't happen).
3527 * Note that we do not fall back on embedded slog (ZIL) space, to
3528 * preserve unfragmented slog space, which is critical for decent
3529 * sync write performance. If a log allocation fails, we will fall
3530 * back to spa_sync() which is abysmal for performance.
3532 error
= metaslab_alloc(spa
, mc
, zio
->io_size
, bp
,
3533 zio
->io_prop
.zp_copies
, zio
->io_txg
, NULL
, flags
,
3534 &zio
->io_alloc_list
, zio
, zio
->io_allocator
);
3537 * Fallback to normal class when an alloc class is full
3539 if (error
== ENOSPC
&& mc
!= spa_normal_class(spa
)) {
3541 * If throttling, transfer reservation over to normal class.
3542 * The io_allocator slot can remain the same even though we
3543 * are switching classes.
3545 if (mc
->mc_alloc_throttle_enabled
&&
3546 (zio
->io_flags
& ZIO_FLAG_IO_ALLOCATING
)) {
3547 metaslab_class_throttle_unreserve(mc
,
3548 zio
->io_prop
.zp_copies
, zio
->io_allocator
, zio
);
3549 zio
->io_flags
&= ~ZIO_FLAG_IO_ALLOCATING
;
3551 VERIFY(metaslab_class_throttle_reserve(
3552 spa_normal_class(spa
),
3553 zio
->io_prop
.zp_copies
, zio
->io_allocator
, zio
,
3554 flags
| METASLAB_MUST_RESERVE
));
3556 zio
->io_metaslab_class
= mc
= spa_normal_class(spa
);
3557 if (zfs_flags
& ZFS_DEBUG_METASLAB_ALLOC
) {
3558 zfs_dbgmsg("%s: metaslab allocation failure, "
3559 "trying normal class: zio %px, size %llu, error %d",
3560 spa_name(spa
), zio
, (u_longlong_t
)zio
->io_size
,
3564 error
= metaslab_alloc(spa
, mc
, zio
->io_size
, bp
,
3565 zio
->io_prop
.zp_copies
, zio
->io_txg
, NULL
, flags
,
3566 &zio
->io_alloc_list
, zio
, zio
->io_allocator
);
3569 if (error
== ENOSPC
&& zio
->io_size
> SPA_MINBLOCKSIZE
) {
3570 if (zfs_flags
& ZFS_DEBUG_METASLAB_ALLOC
) {
3571 zfs_dbgmsg("%s: metaslab allocation failure, "
3572 "trying ganging: zio %px, size %llu, error %d",
3573 spa_name(spa
), zio
, (u_longlong_t
)zio
->io_size
,
3576 return (zio_write_gang_block(zio
, mc
));
3579 if (error
!= ENOSPC
||
3580 (zfs_flags
& ZFS_DEBUG_METASLAB_ALLOC
)) {
3581 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
3582 "size %llu, error %d",
3583 spa_name(spa
), zio
, (u_longlong_t
)zio
->io_size
,
3586 zio
->io_error
= error
;
3593 zio_dva_free(zio_t
*zio
)
3595 metaslab_free(zio
->io_spa
, zio
->io_bp
, zio
->io_txg
, B_FALSE
);
3601 zio_dva_claim(zio_t
*zio
)
3605 error
= metaslab_claim(zio
->io_spa
, zio
->io_bp
, zio
->io_txg
);
3607 zio
->io_error
= error
;
3613 * Undo an allocation. This is used by zio_done() when an I/O fails
3614 * and we want to give back the block we just allocated.
3615 * This handles both normal blocks and gang blocks.
3618 zio_dva_unallocate(zio_t
*zio
, zio_gang_node_t
*gn
, blkptr_t
*bp
)
3620 ASSERT(bp
->blk_birth
== zio
->io_txg
|| BP_IS_HOLE(bp
));
3621 ASSERT(zio
->io_bp_override
== NULL
);
3623 if (!BP_IS_HOLE(bp
))
3624 metaslab_free(zio
->io_spa
, bp
, bp
->blk_birth
, B_TRUE
);
3627 for (int g
= 0; g
< SPA_GBH_NBLKPTRS
; g
++) {
3628 zio_dva_unallocate(zio
, gn
->gn_child
[g
],
3629 &gn
->gn_gbh
->zg_blkptr
[g
]);
3635 * Try to allocate an intent log block. Return 0 on success, errno on failure.
3638 zio_alloc_zil(spa_t
*spa
, objset_t
*os
, uint64_t txg
, blkptr_t
*new_bp
,
3639 uint64_t size
, boolean_t
*slog
)
3642 zio_alloc_list_t io_alloc_list
;
3644 ASSERT(txg
> spa_syncing_txg(spa
));
3646 metaslab_trace_init(&io_alloc_list
);
3649 * Block pointer fields are useful to metaslabs for stats and debugging.
3650 * Fill in the obvious ones before calling into metaslab_alloc().
3652 BP_SET_TYPE(new_bp
, DMU_OT_INTENT_LOG
);
3653 BP_SET_PSIZE(new_bp
, size
);
3654 BP_SET_LEVEL(new_bp
, 0);
3657 * When allocating a zil block, we don't have information about
3658 * the final destination of the block except the objset it's part
3659 * of, so we just hash the objset ID to pick the allocator to get
3662 int flags
= METASLAB_FASTWRITE
| METASLAB_ZIL
;
3663 int allocator
= (uint_t
)cityhash4(0, 0, 0,
3664 os
->os_dsl_dataset
->ds_object
) % spa
->spa_alloc_count
;
3665 error
= metaslab_alloc(spa
, spa_log_class(spa
), size
, new_bp
, 1,
3666 txg
, NULL
, flags
, &io_alloc_list
, NULL
, allocator
);
3667 *slog
= (error
== 0);
3669 error
= metaslab_alloc(spa
, spa_embedded_log_class(spa
), size
,
3670 new_bp
, 1, txg
, NULL
, flags
,
3671 &io_alloc_list
, NULL
, allocator
);
3674 error
= metaslab_alloc(spa
, spa_normal_class(spa
), size
,
3675 new_bp
, 1, txg
, NULL
, flags
,
3676 &io_alloc_list
, NULL
, allocator
);
3678 metaslab_trace_fini(&io_alloc_list
);
3681 BP_SET_LSIZE(new_bp
, size
);
3682 BP_SET_PSIZE(new_bp
, size
);
3683 BP_SET_COMPRESS(new_bp
, ZIO_COMPRESS_OFF
);
3684 BP_SET_CHECKSUM(new_bp
,
3685 spa_version(spa
) >= SPA_VERSION_SLIM_ZIL
3686 ? ZIO_CHECKSUM_ZILOG2
: ZIO_CHECKSUM_ZILOG
);
3687 BP_SET_TYPE(new_bp
, DMU_OT_INTENT_LOG
);
3688 BP_SET_LEVEL(new_bp
, 0);
3689 BP_SET_DEDUP(new_bp
, 0);
3690 BP_SET_BYTEORDER(new_bp
, ZFS_HOST_BYTEORDER
);
3693 * encrypted blocks will require an IV and salt. We generate
3694 * these now since we will not be rewriting the bp at
3697 if (os
->os_encrypted
) {
3698 uint8_t iv
[ZIO_DATA_IV_LEN
];
3699 uint8_t salt
[ZIO_DATA_SALT_LEN
];
3701 BP_SET_CRYPT(new_bp
, B_TRUE
);
3702 VERIFY0(spa_crypt_get_salt(spa
,
3703 dmu_objset_id(os
), salt
));
3704 VERIFY0(zio_crypt_generate_iv(iv
));
3706 zio_crypt_encode_params_bp(new_bp
, salt
, iv
);
3709 zfs_dbgmsg("%s: zil block allocation failure: "
3710 "size %llu, error %d", spa_name(spa
), (u_longlong_t
)size
,
3718 * ==========================================================================
3719 * Read and write to physical devices
3720 * ==========================================================================
3724 * Issue an I/O to the underlying vdev. Typically the issue pipeline
3725 * stops after this stage and will resume upon I/O completion.
3726 * However, there are instances where the vdev layer may need to
3727 * continue the pipeline when an I/O was not issued. Since the I/O
3728 * that was sent to the vdev layer might be different than the one
3729 * currently active in the pipeline (see vdev_queue_io()), we explicitly
3730 * force the underlying vdev layers to call either zio_execute() or
3731 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3734 zio_vdev_io_start(zio_t
*zio
)
3736 vdev_t
*vd
= zio
->io_vd
;
3738 spa_t
*spa
= zio
->io_spa
;
3742 ASSERT(zio
->io_error
== 0);
3743 ASSERT(zio
->io_child_error
[ZIO_CHILD_VDEV
] == 0);
3746 if (!(zio
->io_flags
& ZIO_FLAG_CONFIG_WRITER
))
3747 spa_config_enter(spa
, SCL_ZIO
, zio
, RW_READER
);
3750 * The mirror_ops handle multiple DVAs in a single BP.
3752 vdev_mirror_ops
.vdev_op_io_start(zio
);
3756 ASSERT3P(zio
->io_logical
, !=, zio
);
3757 if (zio
->io_type
== ZIO_TYPE_WRITE
) {
3758 ASSERT(spa
->spa_trust_config
);
3761 * Note: the code can handle other kinds of writes,
3762 * but we don't expect them.
3764 if (zio
->io_vd
->vdev_noalloc
) {
3765 ASSERT(zio
->io_flags
&
3766 (ZIO_FLAG_PHYSICAL
| ZIO_FLAG_SELF_HEAL
|
3767 ZIO_FLAG_RESILVER
| ZIO_FLAG_INDUCE_DAMAGE
));
3771 align
= 1ULL << vd
->vdev_top
->vdev_ashift
;
3773 if (!(zio
->io_flags
& ZIO_FLAG_PHYSICAL
) &&
3774 P2PHASE(zio
->io_size
, align
) != 0) {
3775 /* Transform logical writes to be a full physical block size. */
3776 uint64_t asize
= P2ROUNDUP(zio
->io_size
, align
);
3777 abd_t
*abuf
= abd_alloc_sametype(zio
->io_abd
, asize
);
3778 ASSERT(vd
== vd
->vdev_top
);
3779 if (zio
->io_type
== ZIO_TYPE_WRITE
) {
3780 abd_copy(abuf
, zio
->io_abd
, zio
->io_size
);
3781 abd_zero_off(abuf
, zio
->io_size
, asize
- zio
->io_size
);
3783 zio_push_transform(zio
, abuf
, asize
, asize
, zio_subblock
);
3787 * If this is not a physical io, make sure that it is properly aligned
3788 * before proceeding.
3790 if (!(zio
->io_flags
& ZIO_FLAG_PHYSICAL
)) {
3791 ASSERT0(P2PHASE(zio
->io_offset
, align
));
3792 ASSERT0(P2PHASE(zio
->io_size
, align
));
3795 * For physical writes, we allow 512b aligned writes and assume
3796 * the device will perform a read-modify-write as necessary.
3798 ASSERT0(P2PHASE(zio
->io_offset
, SPA_MINBLOCKSIZE
));
3799 ASSERT0(P2PHASE(zio
->io_size
, SPA_MINBLOCKSIZE
));
3802 VERIFY(zio
->io_type
!= ZIO_TYPE_WRITE
|| spa_writeable(spa
));
3805 * If this is a repair I/O, and there's no self-healing involved --
3806 * that is, we're just resilvering what we expect to resilver --
3807 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3808 * This prevents spurious resilvering.
3810 * There are a few ways that we can end up creating these spurious
3813 * 1. A resilver i/o will be issued if any DVA in the BP has a
3814 * dirty DTL. The mirror code will issue resilver writes to
3815 * each DVA, including the one(s) that are not on vdevs with dirty
3818 * 2. With nested replication, which happens when we have a
3819 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3820 * For example, given mirror(replacing(A+B), C), it's likely that
3821 * only A is out of date (it's the new device). In this case, we'll
3822 * read from C, then use the data to resilver A+B -- but we don't
3823 * actually want to resilver B, just A. The top-level mirror has no
3824 * way to know this, so instead we just discard unnecessary repairs
3825 * as we work our way down the vdev tree.
3827 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3828 * The same logic applies to any form of nested replication: ditto
3829 * + mirror, RAID-Z + replacing, etc.
3831 * However, indirect vdevs point off to other vdevs which may have
3832 * DTL's, so we never bypass them. The child i/os on concrete vdevs
3833 * will be properly bypassed instead.
3835 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from
3836 * a dRAID spare vdev. For example, when a dRAID spare is first
3837 * used, its spare blocks need to be written to but the leaf vdev's
3838 * of such blocks can have empty DTL_PARTIAL.
3840 * There seemed no clean way to allow such writes while bypassing
3841 * spurious ones. At this point, just avoid all bypassing for dRAID
3844 if ((zio
->io_flags
& ZIO_FLAG_IO_REPAIR
) &&
3845 !(zio
->io_flags
& ZIO_FLAG_SELF_HEAL
) &&
3846 zio
->io_txg
!= 0 && /* not a delegated i/o */
3847 vd
->vdev_ops
!= &vdev_indirect_ops
&&
3848 vd
->vdev_top
->vdev_ops
!= &vdev_draid_ops
&&
3849 !vdev_dtl_contains(vd
, DTL_PARTIAL
, zio
->io_txg
, 1)) {
3850 ASSERT(zio
->io_type
== ZIO_TYPE_WRITE
);
3851 zio_vdev_io_bypass(zio
);
3856 * Select the next best leaf I/O to process. Distributed spares are
3857 * excluded since they dispatch the I/O directly to a leaf vdev after
3858 * applying the dRAID mapping.
3860 if (vd
->vdev_ops
->vdev_op_leaf
&&
3861 vd
->vdev_ops
!= &vdev_draid_spare_ops
&&
3862 (zio
->io_type
== ZIO_TYPE_READ
||
3863 zio
->io_type
== ZIO_TYPE_WRITE
||
3864 zio
->io_type
== ZIO_TYPE_TRIM
)) {
3866 if (zio
->io_type
== ZIO_TYPE_READ
&& vdev_cache_read(zio
))
3869 if ((zio
= vdev_queue_io(zio
)) == NULL
)
3872 if (!vdev_accessible(vd
, zio
)) {
3873 zio
->io_error
= SET_ERROR(ENXIO
);
3877 zio
->io_delay
= gethrtime();
3880 vd
->vdev_ops
->vdev_op_io_start(zio
);
3885 zio_vdev_io_done(zio_t
*zio
)
3887 vdev_t
*vd
= zio
->io_vd
;
3888 vdev_ops_t
*ops
= vd
? vd
->vdev_ops
: &vdev_mirror_ops
;
3889 boolean_t unexpected_error
= B_FALSE
;
3891 if (zio_wait_for_children(zio
, ZIO_CHILD_VDEV_BIT
, ZIO_WAIT_DONE
)) {
3895 ASSERT(zio
->io_type
== ZIO_TYPE_READ
||
3896 zio
->io_type
== ZIO_TYPE_WRITE
|| zio
->io_type
== ZIO_TYPE_TRIM
);
3899 zio
->io_delay
= gethrtime() - zio
->io_delay
;
3901 if (vd
!= NULL
&& vd
->vdev_ops
->vdev_op_leaf
&&
3902 vd
->vdev_ops
!= &vdev_draid_spare_ops
) {
3903 vdev_queue_io_done(zio
);
3905 if (zio
->io_type
== ZIO_TYPE_WRITE
)
3906 vdev_cache_write(zio
);
3908 if (zio_injection_enabled
&& zio
->io_error
== 0)
3909 zio
->io_error
= zio_handle_device_injections(vd
, zio
,
3912 if (zio_injection_enabled
&& zio
->io_error
== 0)
3913 zio
->io_error
= zio_handle_label_injection(zio
, EIO
);
3915 if (zio
->io_error
&& zio
->io_type
!= ZIO_TYPE_TRIM
) {
3916 if (!vdev_accessible(vd
, zio
)) {
3917 zio
->io_error
= SET_ERROR(ENXIO
);
3919 unexpected_error
= B_TRUE
;
3924 ops
->vdev_op_io_done(zio
);
3926 if (unexpected_error
&& vd
->vdev_remove_wanted
== B_FALSE
)
3927 VERIFY(vdev_probe(vd
, zio
) == NULL
);
3933 * This function is used to change the priority of an existing zio that is
3934 * currently in-flight. This is used by the arc to upgrade priority in the
3935 * event that a demand read is made for a block that is currently queued
3936 * as a scrub or async read IO. Otherwise, the high priority read request
3937 * would end up having to wait for the lower priority IO.
3940 zio_change_priority(zio_t
*pio
, zio_priority_t priority
)
3942 zio_t
*cio
, *cio_next
;
3943 zio_link_t
*zl
= NULL
;
3945 ASSERT3U(priority
, <, ZIO_PRIORITY_NUM_QUEUEABLE
);
3947 if (pio
->io_vd
!= NULL
&& pio
->io_vd
->vdev_ops
->vdev_op_leaf
) {
3948 vdev_queue_change_io_priority(pio
, priority
);
3950 pio
->io_priority
= priority
;
3953 mutex_enter(&pio
->io_lock
);
3954 for (cio
= zio_walk_children(pio
, &zl
); cio
!= NULL
; cio
= cio_next
) {
3955 cio_next
= zio_walk_children(pio
, &zl
);
3956 zio_change_priority(cio
, priority
);
3958 mutex_exit(&pio
->io_lock
);
3962 * For non-raidz ZIOs, we can just copy aside the bad data read from the
3963 * disk, and use that to finish the checksum ereport later.
3966 zio_vsd_default_cksum_finish(zio_cksum_report_t
*zcr
,
3967 const abd_t
*good_buf
)
3969 /* no processing needed */
3970 zfs_ereport_finish_checksum(zcr
, good_buf
, zcr
->zcr_cbdata
, B_FALSE
);
3974 zio_vsd_default_cksum_report(zio_t
*zio
, zio_cksum_report_t
*zcr
)
3976 void *abd
= abd_alloc_sametype(zio
->io_abd
, zio
->io_size
);
3978 abd_copy(abd
, zio
->io_abd
, zio
->io_size
);
3980 zcr
->zcr_cbinfo
= zio
->io_size
;
3981 zcr
->zcr_cbdata
= abd
;
3982 zcr
->zcr_finish
= zio_vsd_default_cksum_finish
;
3983 zcr
->zcr_free
= zio_abd_free
;
3987 zio_vdev_io_assess(zio_t
*zio
)
3989 vdev_t
*vd
= zio
->io_vd
;
3991 if (zio_wait_for_children(zio
, ZIO_CHILD_VDEV_BIT
, ZIO_WAIT_DONE
)) {
3995 if (vd
== NULL
&& !(zio
->io_flags
& ZIO_FLAG_CONFIG_WRITER
))
3996 spa_config_exit(zio
->io_spa
, SCL_ZIO
, zio
);
3998 if (zio
->io_vsd
!= NULL
) {
3999 zio
->io_vsd_ops
->vsd_free(zio
);
4003 if (zio_injection_enabled
&& zio
->io_error
== 0)
4004 zio
->io_error
= zio_handle_fault_injection(zio
, EIO
);
4007 * If the I/O failed, determine whether we should attempt to retry it.
4009 * On retry, we cut in line in the issue queue, since we don't want
4010 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
4012 if (zio
->io_error
&& vd
== NULL
&&
4013 !(zio
->io_flags
& (ZIO_FLAG_DONT_RETRY
| ZIO_FLAG_IO_RETRY
))) {
4014 ASSERT(!(zio
->io_flags
& ZIO_FLAG_DONT_QUEUE
)); /* not a leaf */
4015 ASSERT(!(zio
->io_flags
& ZIO_FLAG_IO_BYPASS
)); /* not a leaf */
4017 zio
->io_flags
|= ZIO_FLAG_IO_RETRY
|
4018 ZIO_FLAG_DONT_CACHE
| ZIO_FLAG_DONT_AGGREGATE
;
4019 zio
->io_stage
= ZIO_STAGE_VDEV_IO_START
>> 1;
4020 zio_taskq_dispatch(zio
, ZIO_TASKQ_ISSUE
,
4021 zio_requeue_io_start_cut_in_line
);
4026 * If we got an error on a leaf device, convert it to ENXIO
4027 * if the device is not accessible at all.
4029 if (zio
->io_error
&& vd
!= NULL
&& vd
->vdev_ops
->vdev_op_leaf
&&
4030 !vdev_accessible(vd
, zio
))
4031 zio
->io_error
= SET_ERROR(ENXIO
);
4034 * If we can't write to an interior vdev (mirror or RAID-Z),
4035 * set vdev_cant_write so that we stop trying to allocate from it.
4037 if (zio
->io_error
== ENXIO
&& zio
->io_type
== ZIO_TYPE_WRITE
&&
4038 vd
!= NULL
&& !vd
->vdev_ops
->vdev_op_leaf
) {
4039 vdev_dbgmsg(vd
, "zio_vdev_io_assess(zio=%px) setting "
4040 "cant_write=TRUE due to write failure with ENXIO",
4042 vd
->vdev_cant_write
= B_TRUE
;
4046 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
4047 * attempts will ever succeed. In this case we set a persistent
4048 * boolean flag so that we don't bother with it in the future.
4050 if ((zio
->io_error
== ENOTSUP
|| zio
->io_error
== ENOTTY
) &&
4051 zio
->io_type
== ZIO_TYPE_IOCTL
&&
4052 zio
->io_cmd
== DKIOCFLUSHWRITECACHE
&& vd
!= NULL
)
4053 vd
->vdev_nowritecache
= B_TRUE
;
4056 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
4058 if (vd
!= NULL
&& vd
->vdev_ops
->vdev_op_leaf
&&
4059 zio
->io_physdone
!= NULL
) {
4060 ASSERT(!(zio
->io_flags
& ZIO_FLAG_DELEGATED
));
4061 ASSERT(zio
->io_child_type
== ZIO_CHILD_VDEV
);
4062 zio
->io_physdone(zio
->io_logical
);
4069 zio_vdev_io_reissue(zio_t
*zio
)
4071 ASSERT(zio
->io_stage
== ZIO_STAGE_VDEV_IO_START
);
4072 ASSERT(zio
->io_error
== 0);
4074 zio
->io_stage
>>= 1;
4078 zio_vdev_io_redone(zio_t
*zio
)
4080 ASSERT(zio
->io_stage
== ZIO_STAGE_VDEV_IO_DONE
);
4082 zio
->io_stage
>>= 1;
4086 zio_vdev_io_bypass(zio_t
*zio
)
4088 ASSERT(zio
->io_stage
== ZIO_STAGE_VDEV_IO_START
);
4089 ASSERT(zio
->io_error
== 0);
4091 zio
->io_flags
|= ZIO_FLAG_IO_BYPASS
;
4092 zio
->io_stage
= ZIO_STAGE_VDEV_IO_ASSESS
>> 1;
4096 * ==========================================================================
4097 * Encrypt and store encryption parameters
4098 * ==========================================================================
4103 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4104 * managing the storage of encryption parameters and passing them to the
4105 * lower-level encryption functions.
4108 zio_encrypt(zio_t
*zio
)
4110 zio_prop_t
*zp
= &zio
->io_prop
;
4111 spa_t
*spa
= zio
->io_spa
;
4112 blkptr_t
*bp
= zio
->io_bp
;
4113 uint64_t psize
= BP_GET_PSIZE(bp
);
4114 uint64_t dsobj
= zio
->io_bookmark
.zb_objset
;
4115 dmu_object_type_t ot
= BP_GET_TYPE(bp
);
4116 void *enc_buf
= NULL
;
4118 uint8_t salt
[ZIO_DATA_SALT_LEN
];
4119 uint8_t iv
[ZIO_DATA_IV_LEN
];
4120 uint8_t mac
[ZIO_DATA_MAC_LEN
];
4121 boolean_t no_crypt
= B_FALSE
;
4123 /* the root zio already encrypted the data */
4124 if (zio
->io_child_type
== ZIO_CHILD_GANG
)
4127 /* only ZIL blocks are re-encrypted on rewrite */
4128 if (!IO_IS_ALLOCATING(zio
) && ot
!= DMU_OT_INTENT_LOG
)
4131 if (!(zp
->zp_encrypt
|| BP_IS_ENCRYPTED(bp
))) {
4132 BP_SET_CRYPT(bp
, B_FALSE
);
4136 /* if we are doing raw encryption set the provided encryption params */
4137 if (zio
->io_flags
& ZIO_FLAG_RAW_ENCRYPT
) {
4138 ASSERT0(BP_GET_LEVEL(bp
));
4139 BP_SET_CRYPT(bp
, B_TRUE
);
4140 BP_SET_BYTEORDER(bp
, zp
->zp_byteorder
);
4141 if (ot
!= DMU_OT_OBJSET
)
4142 zio_crypt_encode_mac_bp(bp
, zp
->zp_mac
);
4144 /* dnode blocks must be written out in the provided byteorder */
4145 if (zp
->zp_byteorder
!= ZFS_HOST_BYTEORDER
&&
4146 ot
== DMU_OT_DNODE
) {
4147 void *bswap_buf
= zio_buf_alloc(psize
);
4148 abd_t
*babd
= abd_get_from_buf(bswap_buf
, psize
);
4150 ASSERT3U(BP_GET_COMPRESS(bp
), ==, ZIO_COMPRESS_OFF
);
4151 abd_copy_to_buf(bswap_buf
, zio
->io_abd
, psize
);
4152 dmu_ot_byteswap
[DMU_OT_BYTESWAP(ot
)].ob_func(bswap_buf
,
4155 abd_take_ownership_of_buf(babd
, B_TRUE
);
4156 zio_push_transform(zio
, babd
, psize
, psize
, NULL
);
4159 if (DMU_OT_IS_ENCRYPTED(ot
))
4160 zio_crypt_encode_params_bp(bp
, zp
->zp_salt
, zp
->zp_iv
);
4164 /* indirect blocks only maintain a cksum of the lower level MACs */
4165 if (BP_GET_LEVEL(bp
) > 0) {
4166 BP_SET_CRYPT(bp
, B_TRUE
);
4167 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE
,
4168 zio
->io_orig_abd
, BP_GET_LSIZE(bp
), BP_SHOULD_BYTESWAP(bp
),
4170 zio_crypt_encode_mac_bp(bp
, mac
);
4175 * Objset blocks are a special case since they have 2 256-bit MACs
4176 * embedded within them.
4178 if (ot
== DMU_OT_OBJSET
) {
4179 ASSERT0(DMU_OT_IS_ENCRYPTED(ot
));
4180 ASSERT3U(BP_GET_COMPRESS(bp
), ==, ZIO_COMPRESS_OFF
);
4181 BP_SET_CRYPT(bp
, B_TRUE
);
4182 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE
, spa
, dsobj
,
4183 zio
->io_abd
, psize
, BP_SHOULD_BYTESWAP(bp
)));
4187 /* unencrypted object types are only authenticated with a MAC */
4188 if (!DMU_OT_IS_ENCRYPTED(ot
)) {
4189 BP_SET_CRYPT(bp
, B_TRUE
);
4190 VERIFY0(spa_do_crypt_mac_abd(B_TRUE
, spa
, dsobj
,
4191 zio
->io_abd
, psize
, mac
));
4192 zio_crypt_encode_mac_bp(bp
, mac
);
4197 * Later passes of sync-to-convergence may decide to rewrite data
4198 * in place to avoid more disk reallocations. This presents a problem
4199 * for encryption because this constitutes rewriting the new data with
4200 * the same encryption key and IV. However, this only applies to blocks
4201 * in the MOS (particularly the spacemaps) and we do not encrypt the
4202 * MOS. We assert that the zio is allocating or an intent log write
4205 ASSERT(IO_IS_ALLOCATING(zio
) || ot
== DMU_OT_INTENT_LOG
);
4206 ASSERT(BP_GET_LEVEL(bp
) == 0 || ot
== DMU_OT_INTENT_LOG
);
4207 ASSERT(spa_feature_is_active(spa
, SPA_FEATURE_ENCRYPTION
));
4208 ASSERT3U(psize
, !=, 0);
4210 enc_buf
= zio_buf_alloc(psize
);
4211 eabd
= abd_get_from_buf(enc_buf
, psize
);
4212 abd_take_ownership_of_buf(eabd
, B_TRUE
);
4215 * For an explanation of what encryption parameters are stored
4216 * where, see the block comment in zio_crypt.c.
4218 if (ot
== DMU_OT_INTENT_LOG
) {
4219 zio_crypt_decode_params_bp(bp
, salt
, iv
);
4221 BP_SET_CRYPT(bp
, B_TRUE
);
4224 /* Perform the encryption. This should not fail */
4225 VERIFY0(spa_do_crypt_abd(B_TRUE
, spa
, &zio
->io_bookmark
,
4226 BP_GET_TYPE(bp
), BP_GET_DEDUP(bp
), BP_SHOULD_BYTESWAP(bp
),
4227 salt
, iv
, mac
, psize
, zio
->io_abd
, eabd
, &no_crypt
));
4229 /* encode encryption metadata into the bp */
4230 if (ot
== DMU_OT_INTENT_LOG
) {
4232 * ZIL blocks store the MAC in the embedded checksum, so the
4233 * transform must always be applied.
4235 zio_crypt_encode_mac_zil(enc_buf
, mac
);
4236 zio_push_transform(zio
, eabd
, psize
, psize
, NULL
);
4238 BP_SET_CRYPT(bp
, B_TRUE
);
4239 zio_crypt_encode_params_bp(bp
, salt
, iv
);
4240 zio_crypt_encode_mac_bp(bp
, mac
);
4243 ASSERT3U(ot
, ==, DMU_OT_DNODE
);
4246 zio_push_transform(zio
, eabd
, psize
, psize
, NULL
);
4254 * ==========================================================================
4255 * Generate and verify checksums
4256 * ==========================================================================
4259 zio_checksum_generate(zio_t
*zio
)
4261 blkptr_t
*bp
= zio
->io_bp
;
4262 enum zio_checksum checksum
;
4266 * This is zio_write_phys().
4267 * We're either generating a label checksum, or none at all.
4269 checksum
= zio
->io_prop
.zp_checksum
;
4271 if (checksum
== ZIO_CHECKSUM_OFF
)
4274 ASSERT(checksum
== ZIO_CHECKSUM_LABEL
);
4276 if (BP_IS_GANG(bp
) && zio
->io_child_type
== ZIO_CHILD_GANG
) {
4277 ASSERT(!IO_IS_ALLOCATING(zio
));
4278 checksum
= ZIO_CHECKSUM_GANG_HEADER
;
4280 checksum
= BP_GET_CHECKSUM(bp
);
4284 zio_checksum_compute(zio
, checksum
, zio
->io_abd
, zio
->io_size
);
4290 zio_checksum_verify(zio_t
*zio
)
4292 zio_bad_cksum_t info
;
4293 blkptr_t
*bp
= zio
->io_bp
;
4296 ASSERT(zio
->io_vd
!= NULL
);
4300 * This is zio_read_phys().
4301 * We're either verifying a label checksum, or nothing at all.
4303 if (zio
->io_prop
.zp_checksum
== ZIO_CHECKSUM_OFF
)
4306 ASSERT3U(zio
->io_prop
.zp_checksum
, ==, ZIO_CHECKSUM_LABEL
);
4309 if ((error
= zio_checksum_error(zio
, &info
)) != 0) {
4310 zio
->io_error
= error
;
4311 if (error
== ECKSUM
&&
4312 !(zio
->io_flags
& ZIO_FLAG_SPECULATIVE
)) {
4313 (void) zfs_ereport_start_checksum(zio
->io_spa
,
4314 zio
->io_vd
, &zio
->io_bookmark
, zio
,
4315 zio
->io_offset
, zio
->io_size
, &info
);
4316 mutex_enter(&zio
->io_vd
->vdev_stat_lock
);
4317 zio
->io_vd
->vdev_stat
.vs_checksum_errors
++;
4318 mutex_exit(&zio
->io_vd
->vdev_stat_lock
);
4326 * Called by RAID-Z to ensure we don't compute the checksum twice.
4329 zio_checksum_verified(zio_t
*zio
)
4331 zio
->io_pipeline
&= ~ZIO_STAGE_CHECKSUM_VERIFY
;
4335 * ==========================================================================
4336 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
4337 * An error of 0 indicates success. ENXIO indicates whole-device failure,
4338 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO
4339 * indicate errors that are specific to one I/O, and most likely permanent.
4340 * Any other error is presumed to be worse because we weren't expecting it.
4341 * ==========================================================================
4344 zio_worst_error(int e1
, int e2
)
4346 static int zio_error_rank
[] = { 0, ENXIO
, ECKSUM
, EIO
};
4349 for (r1
= 0; r1
< sizeof (zio_error_rank
) / sizeof (int); r1
++)
4350 if (e1
== zio_error_rank
[r1
])
4353 for (r2
= 0; r2
< sizeof (zio_error_rank
) / sizeof (int); r2
++)
4354 if (e2
== zio_error_rank
[r2
])
4357 return (r1
> r2
? e1
: e2
);
4361 * ==========================================================================
4363 * ==========================================================================
4366 zio_ready(zio_t
*zio
)
4368 blkptr_t
*bp
= zio
->io_bp
;
4369 zio_t
*pio
, *pio_next
;
4370 zio_link_t
*zl
= NULL
;
4372 if (zio_wait_for_children(zio
, ZIO_CHILD_GANG_BIT
| ZIO_CHILD_DDT_BIT
,
4377 if (zio
->io_ready
) {
4378 ASSERT(IO_IS_ALLOCATING(zio
));
4379 ASSERT(bp
->blk_birth
== zio
->io_txg
|| BP_IS_HOLE(bp
) ||
4380 (zio
->io_flags
& ZIO_FLAG_NOPWRITE
));
4381 ASSERT(zio
->io_children
[ZIO_CHILD_GANG
][ZIO_WAIT_READY
] == 0);
4386 if (bp
!= NULL
&& bp
!= &zio
->io_bp_copy
)
4387 zio
->io_bp_copy
= *bp
;
4389 if (zio
->io_error
!= 0) {
4390 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
4392 if (zio
->io_flags
& ZIO_FLAG_IO_ALLOCATING
) {
4393 ASSERT(IO_IS_ALLOCATING(zio
));
4394 ASSERT(zio
->io_priority
== ZIO_PRIORITY_ASYNC_WRITE
);
4395 ASSERT(zio
->io_metaslab_class
!= NULL
);
4398 * We were unable to allocate anything, unreserve and
4399 * issue the next I/O to allocate.
4401 metaslab_class_throttle_unreserve(
4402 zio
->io_metaslab_class
, zio
->io_prop
.zp_copies
,
4403 zio
->io_allocator
, zio
);
4404 zio_allocate_dispatch(zio
->io_spa
, zio
->io_allocator
);
4408 mutex_enter(&zio
->io_lock
);
4409 zio
->io_state
[ZIO_WAIT_READY
] = 1;
4410 pio
= zio_walk_parents(zio
, &zl
);
4411 mutex_exit(&zio
->io_lock
);
4414 * As we notify zio's parents, new parents could be added.
4415 * New parents go to the head of zio's io_parent_list, however,
4416 * so we will (correctly) not notify them. The remainder of zio's
4417 * io_parent_list, from 'pio_next' onward, cannot change because
4418 * all parents must wait for us to be done before they can be done.
4420 for (; pio
!= NULL
; pio
= pio_next
) {
4421 pio_next
= zio_walk_parents(zio
, &zl
);
4422 zio_notify_parent(pio
, zio
, ZIO_WAIT_READY
, NULL
);
4425 if (zio
->io_flags
& ZIO_FLAG_NODATA
) {
4426 if (BP_IS_GANG(bp
)) {
4427 zio
->io_flags
&= ~ZIO_FLAG_NODATA
;
4429 ASSERT((uintptr_t)zio
->io_abd
< SPA_MAXBLOCKSIZE
);
4430 zio
->io_pipeline
&= ~ZIO_VDEV_IO_STAGES
;
4434 if (zio_injection_enabled
&&
4435 zio
->io_spa
->spa_syncing_txg
== zio
->io_txg
)
4436 zio_handle_ignored_writes(zio
);
4442 * Update the allocation throttle accounting.
4445 zio_dva_throttle_done(zio_t
*zio
)
4447 zio_t
*lio __maybe_unused
= zio
->io_logical
;
4448 zio_t
*pio
= zio_unique_parent(zio
);
4449 vdev_t
*vd
= zio
->io_vd
;
4450 int flags
= METASLAB_ASYNC_ALLOC
;
4452 ASSERT3P(zio
->io_bp
, !=, NULL
);
4453 ASSERT3U(zio
->io_type
, ==, ZIO_TYPE_WRITE
);
4454 ASSERT3U(zio
->io_priority
, ==, ZIO_PRIORITY_ASYNC_WRITE
);
4455 ASSERT3U(zio
->io_child_type
, ==, ZIO_CHILD_VDEV
);
4457 ASSERT3P(vd
, ==, vd
->vdev_top
);
4458 ASSERT(zio_injection_enabled
|| !(zio
->io_flags
& ZIO_FLAG_IO_RETRY
));
4459 ASSERT(!(zio
->io_flags
& ZIO_FLAG_IO_REPAIR
));
4460 ASSERT(zio
->io_flags
& ZIO_FLAG_IO_ALLOCATING
);
4461 ASSERT(!(lio
->io_flags
& ZIO_FLAG_IO_REWRITE
));
4462 ASSERT(!(lio
->io_orig_flags
& ZIO_FLAG_NODATA
));
4465 * Parents of gang children can have two flavors -- ones that
4466 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4467 * and ones that allocated the constituent blocks. The allocation
4468 * throttle needs to know the allocating parent zio so we must find
4471 if (pio
->io_child_type
== ZIO_CHILD_GANG
) {
4473 * If our parent is a rewrite gang child then our grandparent
4474 * would have been the one that performed the allocation.
4476 if (pio
->io_flags
& ZIO_FLAG_IO_REWRITE
)
4477 pio
= zio_unique_parent(pio
);
4478 flags
|= METASLAB_GANG_CHILD
;
4481 ASSERT(IO_IS_ALLOCATING(pio
));
4482 ASSERT3P(zio
, !=, zio
->io_logical
);
4483 ASSERT(zio
->io_logical
!= NULL
);
4484 ASSERT(!(zio
->io_flags
& ZIO_FLAG_IO_REPAIR
));
4485 ASSERT0(zio
->io_flags
& ZIO_FLAG_NOPWRITE
);
4486 ASSERT(zio
->io_metaslab_class
!= NULL
);
4488 mutex_enter(&pio
->io_lock
);
4489 metaslab_group_alloc_decrement(zio
->io_spa
, vd
->vdev_id
, pio
, flags
,
4490 pio
->io_allocator
, B_TRUE
);
4491 mutex_exit(&pio
->io_lock
);
4493 metaslab_class_throttle_unreserve(zio
->io_metaslab_class
, 1,
4494 pio
->io_allocator
, pio
);
4497 * Call into the pipeline to see if there is more work that
4498 * needs to be done. If there is work to be done it will be
4499 * dispatched to another taskq thread.
4501 zio_allocate_dispatch(zio
->io_spa
, pio
->io_allocator
);
4505 zio_done(zio_t
*zio
)
4508 * Always attempt to keep stack usage minimal here since
4509 * we can be called recursively up to 19 levels deep.
4511 const uint64_t psize
= zio
->io_size
;
4512 zio_t
*pio
, *pio_next
;
4513 zio_link_t
*zl
= NULL
;
4516 * If our children haven't all completed,
4517 * wait for them and then repeat this pipeline stage.
4519 if (zio_wait_for_children(zio
, ZIO_CHILD_ALL_BITS
, ZIO_WAIT_DONE
)) {
4524 * If the allocation throttle is enabled, then update the accounting.
4525 * We only track child I/Os that are part of an allocating async
4526 * write. We must do this since the allocation is performed
4527 * by the logical I/O but the actual write is done by child I/Os.
4529 if (zio
->io_flags
& ZIO_FLAG_IO_ALLOCATING
&&
4530 zio
->io_child_type
== ZIO_CHILD_VDEV
) {
4531 ASSERT(zio
->io_metaslab_class
!= NULL
);
4532 ASSERT(zio
->io_metaslab_class
->mc_alloc_throttle_enabled
);
4533 zio_dva_throttle_done(zio
);
4537 * If the allocation throttle is enabled, verify that
4538 * we have decremented the refcounts for every I/O that was throttled.
4540 if (zio
->io_flags
& ZIO_FLAG_IO_ALLOCATING
) {
4541 ASSERT(zio
->io_type
== ZIO_TYPE_WRITE
);
4542 ASSERT(zio
->io_priority
== ZIO_PRIORITY_ASYNC_WRITE
);
4543 ASSERT(zio
->io_bp
!= NULL
);
4545 metaslab_group_alloc_verify(zio
->io_spa
, zio
->io_bp
, zio
,
4547 VERIFY(zfs_refcount_not_held(&zio
->io_metaslab_class
->
4548 mc_allocator
[zio
->io_allocator
].mca_alloc_slots
, zio
));
4552 for (int c
= 0; c
< ZIO_CHILD_TYPES
; c
++)
4553 for (int w
= 0; w
< ZIO_WAIT_TYPES
; w
++)
4554 ASSERT(zio
->io_children
[c
][w
] == 0);
4556 if (zio
->io_bp
!= NULL
&& !BP_IS_EMBEDDED(zio
->io_bp
)) {
4557 ASSERT(zio
->io_bp
->blk_pad
[0] == 0);
4558 ASSERT(zio
->io_bp
->blk_pad
[1] == 0);
4559 ASSERT(memcmp(zio
->io_bp
, &zio
->io_bp_copy
,
4560 sizeof (blkptr_t
)) == 0 ||
4561 (zio
->io_bp
== zio_unique_parent(zio
)->io_bp
));
4562 if (zio
->io_type
== ZIO_TYPE_WRITE
&& !BP_IS_HOLE(zio
->io_bp
) &&
4563 zio
->io_bp_override
== NULL
&&
4564 !(zio
->io_flags
& ZIO_FLAG_IO_REPAIR
)) {
4565 ASSERT3U(zio
->io_prop
.zp_copies
, <=,
4566 BP_GET_NDVAS(zio
->io_bp
));
4567 ASSERT(BP_COUNT_GANG(zio
->io_bp
) == 0 ||
4568 (BP_COUNT_GANG(zio
->io_bp
) ==
4569 BP_GET_NDVAS(zio
->io_bp
)));
4571 if (zio
->io_flags
& ZIO_FLAG_NOPWRITE
)
4572 VERIFY(BP_EQUAL(zio
->io_bp
, &zio
->io_bp_orig
));
4576 * If there were child vdev/gang/ddt errors, they apply to us now.
4578 zio_inherit_child_errors(zio
, ZIO_CHILD_VDEV
);
4579 zio_inherit_child_errors(zio
, ZIO_CHILD_GANG
);
4580 zio_inherit_child_errors(zio
, ZIO_CHILD_DDT
);
4583 * If the I/O on the transformed data was successful, generate any
4584 * checksum reports now while we still have the transformed data.
4586 if (zio
->io_error
== 0) {
4587 while (zio
->io_cksum_report
!= NULL
) {
4588 zio_cksum_report_t
*zcr
= zio
->io_cksum_report
;
4589 uint64_t align
= zcr
->zcr_align
;
4590 uint64_t asize
= P2ROUNDUP(psize
, align
);
4591 abd_t
*adata
= zio
->io_abd
;
4593 if (adata
!= NULL
&& asize
!= psize
) {
4594 adata
= abd_alloc(asize
, B_TRUE
);
4595 abd_copy(adata
, zio
->io_abd
, psize
);
4596 abd_zero_off(adata
, psize
, asize
- psize
);
4599 zio
->io_cksum_report
= zcr
->zcr_next
;
4600 zcr
->zcr_next
= NULL
;
4601 zcr
->zcr_finish(zcr
, adata
);
4602 zfs_ereport_free_checksum(zcr
);
4604 if (adata
!= NULL
&& asize
!= psize
)
4609 zio_pop_transforms(zio
); /* note: may set zio->io_error */
4611 vdev_stat_update(zio
, psize
);
4614 * If this I/O is attached to a particular vdev is slow, exceeding
4615 * 30 seconds to complete, post an error described the I/O delay.
4616 * We ignore these errors if the device is currently unavailable.
4618 if (zio
->io_delay
>= MSEC2NSEC(zio_slow_io_ms
)) {
4619 if (zio
->io_vd
!= NULL
&& !vdev_is_dead(zio
->io_vd
)) {
4621 * We want to only increment our slow IO counters if
4622 * the IO is valid (i.e. not if the drive is removed).
4624 * zfs_ereport_post() will also do these checks, but
4625 * it can also ratelimit and have other failures, so we
4626 * need to increment the slow_io counters independent
4629 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY
,
4630 zio
->io_spa
, zio
->io_vd
, zio
)) {
4631 mutex_enter(&zio
->io_vd
->vdev_stat_lock
);
4632 zio
->io_vd
->vdev_stat
.vs_slow_ios
++;
4633 mutex_exit(&zio
->io_vd
->vdev_stat_lock
);
4635 (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY
,
4636 zio
->io_spa
, zio
->io_vd
, &zio
->io_bookmark
,
4642 if (zio
->io_error
) {
4644 * If this I/O is attached to a particular vdev,
4645 * generate an error message describing the I/O failure
4646 * at the block level. We ignore these errors if the
4647 * device is currently unavailable.
4649 if (zio
->io_error
!= ECKSUM
&& zio
->io_vd
!= NULL
&&
4650 !vdev_is_dead(zio
->io_vd
)) {
4651 int ret
= zfs_ereport_post(FM_EREPORT_ZFS_IO
,
4652 zio
->io_spa
, zio
->io_vd
, &zio
->io_bookmark
, zio
, 0);
4653 if (ret
!= EALREADY
) {
4654 mutex_enter(&zio
->io_vd
->vdev_stat_lock
);
4655 if (zio
->io_type
== ZIO_TYPE_READ
)
4656 zio
->io_vd
->vdev_stat
.vs_read_errors
++;
4657 else if (zio
->io_type
== ZIO_TYPE_WRITE
)
4658 zio
->io_vd
->vdev_stat
.vs_write_errors
++;
4659 mutex_exit(&zio
->io_vd
->vdev_stat_lock
);
4663 if ((zio
->io_error
== EIO
|| !(zio
->io_flags
&
4664 (ZIO_FLAG_SPECULATIVE
| ZIO_FLAG_DONT_PROPAGATE
))) &&
4665 zio
== zio
->io_logical
) {
4667 * For logical I/O requests, tell the SPA to log the
4668 * error and generate a logical data ereport.
4670 spa_log_error(zio
->io_spa
, &zio
->io_bookmark
);
4671 (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA
,
4672 zio
->io_spa
, NULL
, &zio
->io_bookmark
, zio
, 0);
4676 if (zio
->io_error
&& zio
== zio
->io_logical
) {
4678 * Determine whether zio should be reexecuted. This will
4679 * propagate all the way to the root via zio_notify_parent().
4681 ASSERT(zio
->io_vd
== NULL
&& zio
->io_bp
!= NULL
);
4682 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
4684 if (IO_IS_ALLOCATING(zio
) &&
4685 !(zio
->io_flags
& ZIO_FLAG_CANFAIL
)) {
4686 if (zio
->io_error
!= ENOSPC
)
4687 zio
->io_reexecute
|= ZIO_REEXECUTE_NOW
;
4689 zio
->io_reexecute
|= ZIO_REEXECUTE_SUSPEND
;
4692 if ((zio
->io_type
== ZIO_TYPE_READ
||
4693 zio
->io_type
== ZIO_TYPE_FREE
) &&
4694 !(zio
->io_flags
& ZIO_FLAG_SCAN_THREAD
) &&
4695 zio
->io_error
== ENXIO
&&
4696 spa_load_state(zio
->io_spa
) == SPA_LOAD_NONE
&&
4697 spa_get_failmode(zio
->io_spa
) != ZIO_FAILURE_MODE_CONTINUE
)
4698 zio
->io_reexecute
|= ZIO_REEXECUTE_SUSPEND
;
4700 if (!(zio
->io_flags
& ZIO_FLAG_CANFAIL
) && !zio
->io_reexecute
)
4701 zio
->io_reexecute
|= ZIO_REEXECUTE_SUSPEND
;
4704 * Here is a possibly good place to attempt to do
4705 * either combinatorial reconstruction or error correction
4706 * based on checksums. It also might be a good place
4707 * to send out preliminary ereports before we suspend
4713 * If there were logical child errors, they apply to us now.
4714 * We defer this until now to avoid conflating logical child
4715 * errors with errors that happened to the zio itself when
4716 * updating vdev stats and reporting FMA events above.
4718 zio_inherit_child_errors(zio
, ZIO_CHILD_LOGICAL
);
4720 if ((zio
->io_error
|| zio
->io_reexecute
) &&
4721 IO_IS_ALLOCATING(zio
) && zio
->io_gang_leader
== zio
&&
4722 !(zio
->io_flags
& (ZIO_FLAG_IO_REWRITE
| ZIO_FLAG_NOPWRITE
)))
4723 zio_dva_unallocate(zio
, zio
->io_gang_tree
, zio
->io_bp
);
4725 zio_gang_tree_free(&zio
->io_gang_tree
);
4728 * Godfather I/Os should never suspend.
4730 if ((zio
->io_flags
& ZIO_FLAG_GODFATHER
) &&
4731 (zio
->io_reexecute
& ZIO_REEXECUTE_SUSPEND
))
4732 zio
->io_reexecute
&= ~ZIO_REEXECUTE_SUSPEND
;
4734 if (zio
->io_reexecute
) {
4736 * This is a logical I/O that wants to reexecute.
4738 * Reexecute is top-down. When an i/o fails, if it's not
4739 * the root, it simply notifies its parent and sticks around.
4740 * The parent, seeing that it still has children in zio_done(),
4741 * does the same. This percolates all the way up to the root.
4742 * The root i/o will reexecute or suspend the entire tree.
4744 * This approach ensures that zio_reexecute() honors
4745 * all the original i/o dependency relationships, e.g.
4746 * parents not executing until children are ready.
4748 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
4750 zio
->io_gang_leader
= NULL
;
4752 mutex_enter(&zio
->io_lock
);
4753 zio
->io_state
[ZIO_WAIT_DONE
] = 1;
4754 mutex_exit(&zio
->io_lock
);
4757 * "The Godfather" I/O monitors its children but is
4758 * not a true parent to them. It will track them through
4759 * the pipeline but severs its ties whenever they get into
4760 * trouble (e.g. suspended). This allows "The Godfather"
4761 * I/O to return status without blocking.
4764 for (pio
= zio_walk_parents(zio
, &zl
); pio
!= NULL
;
4766 zio_link_t
*remove_zl
= zl
;
4767 pio_next
= zio_walk_parents(zio
, &zl
);
4769 if ((pio
->io_flags
& ZIO_FLAG_GODFATHER
) &&
4770 (zio
->io_reexecute
& ZIO_REEXECUTE_SUSPEND
)) {
4771 zio_remove_child(pio
, zio
, remove_zl
);
4773 * This is a rare code path, so we don't
4774 * bother with "next_to_execute".
4776 zio_notify_parent(pio
, zio
, ZIO_WAIT_DONE
,
4781 if ((pio
= zio_unique_parent(zio
)) != NULL
) {
4783 * We're not a root i/o, so there's nothing to do
4784 * but notify our parent. Don't propagate errors
4785 * upward since we haven't permanently failed yet.
4787 ASSERT(!(zio
->io_flags
& ZIO_FLAG_GODFATHER
));
4788 zio
->io_flags
|= ZIO_FLAG_DONT_PROPAGATE
;
4790 * This is a rare code path, so we don't bother with
4791 * "next_to_execute".
4793 zio_notify_parent(pio
, zio
, ZIO_WAIT_DONE
, NULL
);
4794 } else if (zio
->io_reexecute
& ZIO_REEXECUTE_SUSPEND
) {
4796 * We'd fail again if we reexecuted now, so suspend
4797 * until conditions improve (e.g. device comes online).
4799 zio_suspend(zio
->io_spa
, zio
, ZIO_SUSPEND_IOERR
);
4802 * Reexecution is potentially a huge amount of work.
4803 * Hand it off to the otherwise-unused claim taskq.
4805 ASSERT(taskq_empty_ent(&zio
->io_tqent
));
4806 spa_taskq_dispatch_ent(zio
->io_spa
,
4807 ZIO_TYPE_CLAIM
, ZIO_TASKQ_ISSUE
,
4808 zio_reexecute
, zio
, 0, &zio
->io_tqent
);
4813 ASSERT(zio
->io_child_count
== 0);
4814 ASSERT(zio
->io_reexecute
== 0);
4815 ASSERT(zio
->io_error
== 0 || (zio
->io_flags
& ZIO_FLAG_CANFAIL
));
4818 * Report any checksum errors, since the I/O is complete.
4820 while (zio
->io_cksum_report
!= NULL
) {
4821 zio_cksum_report_t
*zcr
= zio
->io_cksum_report
;
4822 zio
->io_cksum_report
= zcr
->zcr_next
;
4823 zcr
->zcr_next
= NULL
;
4824 zcr
->zcr_finish(zcr
, NULL
);
4825 zfs_ereport_free_checksum(zcr
);
4828 if (zio
->io_flags
& ZIO_FLAG_FASTWRITE
&& zio
->io_bp
&&
4829 !BP_IS_HOLE(zio
->io_bp
) && !BP_IS_EMBEDDED(zio
->io_bp
) &&
4830 !(zio
->io_flags
& ZIO_FLAG_NOPWRITE
)) {
4831 metaslab_fastwrite_unmark(zio
->io_spa
, zio
->io_bp
);
4835 * It is the responsibility of the done callback to ensure that this
4836 * particular zio is no longer discoverable for adoption, and as
4837 * such, cannot acquire any new parents.
4842 mutex_enter(&zio
->io_lock
);
4843 zio
->io_state
[ZIO_WAIT_DONE
] = 1;
4844 mutex_exit(&zio
->io_lock
);
4847 * We are done executing this zio. We may want to execute a parent
4848 * next. See the comment in zio_notify_parent().
4850 zio_t
*next_to_execute
= NULL
;
4852 for (pio
= zio_walk_parents(zio
, &zl
); pio
!= NULL
; pio
= pio_next
) {
4853 zio_link_t
*remove_zl
= zl
;
4854 pio_next
= zio_walk_parents(zio
, &zl
);
4855 zio_remove_child(pio
, zio
, remove_zl
);
4856 zio_notify_parent(pio
, zio
, ZIO_WAIT_DONE
, &next_to_execute
);
4859 if (zio
->io_waiter
!= NULL
) {
4860 mutex_enter(&zio
->io_lock
);
4861 zio
->io_executor
= NULL
;
4862 cv_broadcast(&zio
->io_cv
);
4863 mutex_exit(&zio
->io_lock
);
4868 return (next_to_execute
);
4872 * ==========================================================================
4873 * I/O pipeline definition
4874 * ==========================================================================
4876 static zio_pipe_stage_t
*zio_pipeline
[] = {
4884 zio_checksum_generate
,
4900 zio_checksum_verify
,
4908 * Compare two zbookmark_phys_t's to see which we would reach first in a
4909 * pre-order traversal of the object tree.
4911 * This is simple in every case aside from the meta-dnode object. For all other
4912 * objects, we traverse them in order (object 1 before object 2, and so on).
4913 * However, all of these objects are traversed while traversing object 0, since
4914 * the data it points to is the list of objects. Thus, we need to convert to a
4915 * canonical representation so we can compare meta-dnode bookmarks to
4916 * non-meta-dnode bookmarks.
4918 * We do this by calculating "equivalents" for each field of the zbookmark.
4919 * zbookmarks outside of the meta-dnode use their own object and level, and
4920 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4921 * blocks this bookmark refers to) by multiplying their blkid by their span
4922 * (the number of L0 blocks contained within one block at their level).
4923 * zbookmarks inside the meta-dnode calculate their object equivalent
4924 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4925 * level + 1<<31 (any value larger than a level could ever be) for their level.
4926 * This causes them to always compare before a bookmark in their object
4927 * equivalent, compare appropriately to bookmarks in other objects, and to
4928 * compare appropriately to other bookmarks in the meta-dnode.
4931 zbookmark_compare(uint16_t dbss1
, uint8_t ibs1
, uint16_t dbss2
, uint8_t ibs2
,
4932 const zbookmark_phys_t
*zb1
, const zbookmark_phys_t
*zb2
)
4935 * These variables represent the "equivalent" values for the zbookmark,
4936 * after converting zbookmarks inside the meta dnode to their
4937 * normal-object equivalents.
4939 uint64_t zb1obj
, zb2obj
;
4940 uint64_t zb1L0
, zb2L0
;
4941 uint64_t zb1level
, zb2level
;
4943 if (zb1
->zb_object
== zb2
->zb_object
&&
4944 zb1
->zb_level
== zb2
->zb_level
&&
4945 zb1
->zb_blkid
== zb2
->zb_blkid
)
4948 IMPLY(zb1
->zb_level
> 0, ibs1
>= SPA_MINBLOCKSHIFT
);
4949 IMPLY(zb2
->zb_level
> 0, ibs2
>= SPA_MINBLOCKSHIFT
);
4952 * BP_SPANB calculates the span in blocks.
4954 zb1L0
= (zb1
->zb_blkid
) * BP_SPANB(ibs1
, zb1
->zb_level
);
4955 zb2L0
= (zb2
->zb_blkid
) * BP_SPANB(ibs2
, zb2
->zb_level
);
4957 if (zb1
->zb_object
== DMU_META_DNODE_OBJECT
) {
4958 zb1obj
= zb1L0
* (dbss1
<< (SPA_MINBLOCKSHIFT
- DNODE_SHIFT
));
4960 zb1level
= zb1
->zb_level
+ COMPARE_META_LEVEL
;
4962 zb1obj
= zb1
->zb_object
;
4963 zb1level
= zb1
->zb_level
;
4966 if (zb2
->zb_object
== DMU_META_DNODE_OBJECT
) {
4967 zb2obj
= zb2L0
* (dbss2
<< (SPA_MINBLOCKSHIFT
- DNODE_SHIFT
));
4969 zb2level
= zb2
->zb_level
+ COMPARE_META_LEVEL
;
4971 zb2obj
= zb2
->zb_object
;
4972 zb2level
= zb2
->zb_level
;
4975 /* Now that we have a canonical representation, do the comparison. */
4976 if (zb1obj
!= zb2obj
)
4977 return (zb1obj
< zb2obj
? -1 : 1);
4978 else if (zb1L0
!= zb2L0
)
4979 return (zb1L0
< zb2L0
? -1 : 1);
4980 else if (zb1level
!= zb2level
)
4981 return (zb1level
> zb2level
? -1 : 1);
4983 * This can (theoretically) happen if the bookmarks have the same object
4984 * and level, but different blkids, if the block sizes are not the same.
4985 * There is presently no way to change the indirect block sizes
4991 * This function checks the following: given that last_block is the place that
4992 * our traversal stopped last time, does that guarantee that we've visited
4993 * every node under subtree_root? Therefore, we can't just use the raw output
4994 * of zbookmark_compare. We have to pass in a modified version of
4995 * subtree_root; by incrementing the block id, and then checking whether
4996 * last_block is before or equal to that, we can tell whether or not having
4997 * visited last_block implies that all of subtree_root's children have been
5001 zbookmark_subtree_completed(const dnode_phys_t
*dnp
,
5002 const zbookmark_phys_t
*subtree_root
, const zbookmark_phys_t
*last_block
)
5004 zbookmark_phys_t mod_zb
= *subtree_root
;
5006 ASSERT0(last_block
->zb_level
);
5008 /* The objset_phys_t isn't before anything. */
5013 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
5014 * data block size in sectors, because that variable is only used if
5015 * the bookmark refers to a block in the meta-dnode. Since we don't
5016 * know without examining it what object it refers to, and there's no
5017 * harm in passing in this value in other cases, we always pass it in.
5019 * We pass in 0 for the indirect block size shift because zb2 must be
5020 * level 0. The indirect block size is only used to calculate the span
5021 * of the bookmark, but since the bookmark must be level 0, the span is
5022 * always 1, so the math works out.
5024 * If you make changes to how the zbookmark_compare code works, be sure
5025 * to make sure that this code still works afterwards.
5027 return (zbookmark_compare(dnp
->dn_datablkszsec
, dnp
->dn_indblkshift
,
5028 1ULL << (DNODE_BLOCK_SHIFT
- SPA_MINBLOCKSHIFT
), 0, &mod_zb
,
5033 * This function is similar to zbookmark_subtree_completed(), but returns true
5034 * if subtree_root is equal or ahead of last_block, i.e. still to be done.
5037 zbookmark_subtree_tbd(const dnode_phys_t
*dnp
,
5038 const zbookmark_phys_t
*subtree_root
, const zbookmark_phys_t
*last_block
)
5040 ASSERT0(last_block
->zb_level
);
5043 return (zbookmark_compare(dnp
->dn_datablkszsec
, dnp
->dn_indblkshift
,
5044 1ULL << (DNODE_BLOCK_SHIFT
- SPA_MINBLOCKSHIFT
), 0, subtree_root
,
5048 EXPORT_SYMBOL(zio_type_name
);
5049 EXPORT_SYMBOL(zio_buf_alloc
);
5050 EXPORT_SYMBOL(zio_data_buf_alloc
);
5051 EXPORT_SYMBOL(zio_buf_free
);
5052 EXPORT_SYMBOL(zio_data_buf_free
);
5054 ZFS_MODULE_PARAM(zfs_zio
, zio_
, slow_io_ms
, INT
, ZMOD_RW
,
5055 "Max I/O completion time (milliseconds) before marking it as slow");
5057 ZFS_MODULE_PARAM(zfs_zio
, zio_
, requeue_io_start_cut_in_line
, INT
, ZMOD_RW
,
5058 "Prioritize requeued I/O");
5060 ZFS_MODULE_PARAM(zfs
, zfs_
, sync_pass_deferred_free
, UINT
, ZMOD_RW
,
5061 "Defer frees starting in this pass");
5063 ZFS_MODULE_PARAM(zfs
, zfs_
, sync_pass_dont_compress
, UINT
, ZMOD_RW
,
5064 "Don't compress starting in this pass");
5066 ZFS_MODULE_PARAM(zfs
, zfs_
, sync_pass_rewrite
, UINT
, ZMOD_RW
,
5067 "Rewrite new bps starting in this pass");
5069 ZFS_MODULE_PARAM(zfs_zio
, zio_
, dva_throttle_enabled
, INT
, ZMOD_RW
,
5070 "Throttle block allocations in the ZIO pipeline");
5072 ZFS_MODULE_PARAM(zfs_zio
, zio_
, deadman_log_all
, INT
, ZMOD_RW
,
5073 "Log all slow ZIOs, not just those with vdevs");