FreeBSD: Fix a pair of bugs in zfs_fhtovp()
[zfs.git] / module / zfs / zio.c
blobdce94b7b29c276959405c0ffc3f56b4a18bd33ea
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2017, Intel Corporation.
26 * Copyright (c) 2019, Klara Inc.
27 * Copyright (c) 2019, Allan Jude
28 * Copyright (c) 2021, Datto, Inc.
31 #include <sys/sysmacros.h>
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/txg.h>
36 #include <sys/spa_impl.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/vdev_trim.h>
39 #include <sys/zio_impl.h>
40 #include <sys/zio_compress.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/dmu_objset.h>
43 #include <sys/arc.h>
44 #include <sys/ddt.h>
45 #include <sys/blkptr.h>
46 #include <sys/zfeature.h>
47 #include <sys/dsl_scan.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/time.h>
50 #include <sys/trace_zfs.h>
51 #include <sys/abd.h>
52 #include <sys/dsl_crypt.h>
53 #include <cityhash.h>
56 * ==========================================================================
57 * I/O type descriptions
58 * ==========================================================================
60 const char *const zio_type_name[ZIO_TYPES] = {
62 * Note: Linux kernel thread name length is limited
63 * so these names will differ from upstream open zfs.
65 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim"
68 int zio_dva_throttle_enabled = B_TRUE;
69 static int zio_deadman_log_all = B_FALSE;
72 * ==========================================================================
73 * I/O kmem caches
74 * ==========================================================================
76 static kmem_cache_t *zio_cache;
77 static kmem_cache_t *zio_link_cache;
78 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
79 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
80 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
81 static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
82 static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
83 #endif
85 /* Mark IOs as "slow" if they take longer than 30 seconds */
86 static uint_t zio_slow_io_ms = (30 * MILLISEC);
88 #define BP_SPANB(indblkshift, level) \
89 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
90 #define COMPARE_META_LEVEL 0x80000000ul
92 * The following actions directly effect the spa's sync-to-convergence logic.
93 * The values below define the sync pass when we start performing the action.
94 * Care should be taken when changing these values as they directly impact
95 * spa_sync() performance. Tuning these values may introduce subtle performance
96 * pathologies and should only be done in the context of performance analysis.
97 * These tunables will eventually be removed and replaced with #defines once
98 * enough analysis has been done to determine optimal values.
100 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
101 * regular blocks are not deferred.
103 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
104 * compression (including of metadata). In practice, we don't have this
105 * many sync passes, so this has no effect.
107 * The original intent was that disabling compression would help the sync
108 * passes to converge. However, in practice disabling compression increases
109 * the average number of sync passes, because when we turn compression off, a
110 * lot of block's size will change and thus we have to re-allocate (not
111 * overwrite) them. It also increases the number of 128KB allocations (e.g.
112 * for indirect blocks and spacemaps) because these will not be compressed.
113 * The 128K allocations are especially detrimental to performance on highly
114 * fragmented systems, which may have very few free segments of this size,
115 * and may need to load new metaslabs to satisfy 128K allocations.
118 /* defer frees starting in this pass */
119 uint_t zfs_sync_pass_deferred_free = 2;
121 /* don't compress starting in this pass */
122 static uint_t zfs_sync_pass_dont_compress = 8;
124 /* rewrite new bps starting in this pass */
125 static uint_t zfs_sync_pass_rewrite = 2;
128 * An allocating zio is one that either currently has the DVA allocate
129 * stage set or will have it later in its lifetime.
131 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
134 * Enable smaller cores by excluding metadata
135 * allocations as well.
137 int zio_exclude_metadata = 0;
138 static int zio_requeue_io_start_cut_in_line = 1;
140 #ifdef ZFS_DEBUG
141 static const int zio_buf_debug_limit = 16384;
142 #else
143 static const int zio_buf_debug_limit = 0;
144 #endif
146 static inline void __zio_execute(zio_t *zio);
148 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
150 void
151 zio_init(void)
153 size_t c;
155 zio_cache = kmem_cache_create("zio_cache",
156 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
157 zio_link_cache = kmem_cache_create("zio_link_cache",
158 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
161 * For small buffers, we want a cache for each multiple of
162 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache
163 * for each quarter-power of 2.
165 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
166 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
167 size_t p2 = size;
168 size_t align = 0;
169 size_t data_cflags, cflags;
171 data_cflags = KMC_NODEBUG;
172 cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ?
173 KMC_NODEBUG : 0;
175 while (!ISP2(p2))
176 p2 &= p2 - 1;
178 #ifndef _KERNEL
180 * If we are using watchpoints, put each buffer on its own page,
181 * to eliminate the performance overhead of trapping to the
182 * kernel when modifying a non-watched buffer that shares the
183 * page with a watched buffer.
185 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
186 continue;
188 * Here's the problem - on 4K native devices in userland on
189 * Linux using O_DIRECT, buffers must be 4K aligned or I/O
190 * will fail with EINVAL, causing zdb (and others) to coredump.
191 * Since userland probably doesn't need optimized buffer caches,
192 * we just force 4K alignment on everything.
194 align = 8 * SPA_MINBLOCKSIZE;
195 #else
196 if (size < PAGESIZE) {
197 align = SPA_MINBLOCKSIZE;
198 } else if (IS_P2ALIGNED(size, p2 >> 2)) {
199 align = PAGESIZE;
201 #endif
203 if (align != 0) {
204 char name[36];
205 if (cflags == data_cflags) {
207 * Resulting kmem caches would be identical.
208 * Save memory by creating only one.
210 (void) snprintf(name, sizeof (name),
211 "zio_buf_comb_%lu", (ulong_t)size);
212 zio_buf_cache[c] = kmem_cache_create(name,
213 size, align, NULL, NULL, NULL, NULL, NULL,
214 cflags);
215 zio_data_buf_cache[c] = zio_buf_cache[c];
216 continue;
218 (void) snprintf(name, sizeof (name), "zio_buf_%lu",
219 (ulong_t)size);
220 zio_buf_cache[c] = kmem_cache_create(name, size,
221 align, NULL, NULL, NULL, NULL, NULL, cflags);
223 (void) snprintf(name, sizeof (name), "zio_data_buf_%lu",
224 (ulong_t)size);
225 zio_data_buf_cache[c] = kmem_cache_create(name, size,
226 align, NULL, NULL, NULL, NULL, NULL, data_cflags);
230 while (--c != 0) {
231 ASSERT(zio_buf_cache[c] != NULL);
232 if (zio_buf_cache[c - 1] == NULL)
233 zio_buf_cache[c - 1] = zio_buf_cache[c];
235 ASSERT(zio_data_buf_cache[c] != NULL);
236 if (zio_data_buf_cache[c - 1] == NULL)
237 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
240 zio_inject_init();
242 lz4_init();
245 void
246 zio_fini(void)
248 size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
250 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
251 for (size_t i = 0; i < n; i++) {
252 if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i])
253 (void) printf("zio_fini: [%d] %llu != %llu\n",
254 (int)((i + 1) << SPA_MINBLOCKSHIFT),
255 (long long unsigned)zio_buf_cache_allocs[i],
256 (long long unsigned)zio_buf_cache_frees[i]);
258 #endif
261 * The same kmem cache can show up multiple times in both zio_buf_cache
262 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to
263 * sort it out.
265 for (size_t i = 0; i < n; i++) {
266 kmem_cache_t *cache = zio_buf_cache[i];
267 if (cache == NULL)
268 continue;
269 for (size_t j = i; j < n; j++) {
270 if (cache == zio_buf_cache[j])
271 zio_buf_cache[j] = NULL;
272 if (cache == zio_data_buf_cache[j])
273 zio_data_buf_cache[j] = NULL;
275 kmem_cache_destroy(cache);
278 for (size_t i = 0; i < n; i++) {
279 kmem_cache_t *cache = zio_data_buf_cache[i];
280 if (cache == NULL)
281 continue;
282 for (size_t j = i; j < n; j++) {
283 if (cache == zio_data_buf_cache[j])
284 zio_data_buf_cache[j] = NULL;
286 kmem_cache_destroy(cache);
289 for (size_t i = 0; i < n; i++) {
290 VERIFY3P(zio_buf_cache[i], ==, NULL);
291 VERIFY3P(zio_data_buf_cache[i], ==, NULL);
294 kmem_cache_destroy(zio_link_cache);
295 kmem_cache_destroy(zio_cache);
297 zio_inject_fini();
299 lz4_fini();
303 * ==========================================================================
304 * Allocate and free I/O buffers
305 * ==========================================================================
309 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
310 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
311 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
312 * excess / transient data in-core during a crashdump.
314 void *
315 zio_buf_alloc(size_t size)
317 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
319 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
320 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
321 atomic_add_64(&zio_buf_cache_allocs[c], 1);
322 #endif
324 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
328 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
329 * crashdump if the kernel panics. This exists so that we will limit the amount
330 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
331 * of kernel heap dumped to disk when the kernel panics)
333 void *
334 zio_data_buf_alloc(size_t size)
336 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
338 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
340 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
343 void
344 zio_buf_free(void *buf, size_t size)
346 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
348 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
349 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
350 atomic_add_64(&zio_buf_cache_frees[c], 1);
351 #endif
353 kmem_cache_free(zio_buf_cache[c], buf);
356 void
357 zio_data_buf_free(void *buf, size_t size)
359 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
361 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
363 kmem_cache_free(zio_data_buf_cache[c], buf);
366 static void
367 zio_abd_free(void *abd, size_t size)
369 (void) size;
370 abd_free((abd_t *)abd);
374 * ==========================================================================
375 * Push and pop I/O transform buffers
376 * ==========================================================================
378 void
379 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
380 zio_transform_func_t *transform)
382 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
384 zt->zt_orig_abd = zio->io_abd;
385 zt->zt_orig_size = zio->io_size;
386 zt->zt_bufsize = bufsize;
387 zt->zt_transform = transform;
389 zt->zt_next = zio->io_transform_stack;
390 zio->io_transform_stack = zt;
392 zio->io_abd = data;
393 zio->io_size = size;
396 void
397 zio_pop_transforms(zio_t *zio)
399 zio_transform_t *zt;
401 while ((zt = zio->io_transform_stack) != NULL) {
402 if (zt->zt_transform != NULL)
403 zt->zt_transform(zio,
404 zt->zt_orig_abd, zt->zt_orig_size);
406 if (zt->zt_bufsize != 0)
407 abd_free(zio->io_abd);
409 zio->io_abd = zt->zt_orig_abd;
410 zio->io_size = zt->zt_orig_size;
411 zio->io_transform_stack = zt->zt_next;
413 kmem_free(zt, sizeof (zio_transform_t));
418 * ==========================================================================
419 * I/O transform callbacks for subblocks, decompression, and decryption
420 * ==========================================================================
422 static void
423 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
425 ASSERT(zio->io_size > size);
427 if (zio->io_type == ZIO_TYPE_READ)
428 abd_copy(data, zio->io_abd, size);
431 static void
432 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
434 if (zio->io_error == 0) {
435 void *tmp = abd_borrow_buf(data, size);
436 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
437 zio->io_abd, tmp, zio->io_size, size,
438 &zio->io_prop.zp_complevel);
439 abd_return_buf_copy(data, tmp, size);
441 if (zio_injection_enabled && ret == 0)
442 ret = zio_handle_fault_injection(zio, EINVAL);
444 if (ret != 0)
445 zio->io_error = SET_ERROR(EIO);
449 static void
450 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
452 int ret;
453 void *tmp;
454 blkptr_t *bp = zio->io_bp;
455 spa_t *spa = zio->io_spa;
456 uint64_t dsobj = zio->io_bookmark.zb_objset;
457 uint64_t lsize = BP_GET_LSIZE(bp);
458 dmu_object_type_t ot = BP_GET_TYPE(bp);
459 uint8_t salt[ZIO_DATA_SALT_LEN];
460 uint8_t iv[ZIO_DATA_IV_LEN];
461 uint8_t mac[ZIO_DATA_MAC_LEN];
462 boolean_t no_crypt = B_FALSE;
464 ASSERT(BP_USES_CRYPT(bp));
465 ASSERT3U(size, !=, 0);
467 if (zio->io_error != 0)
468 return;
471 * Verify the cksum of MACs stored in an indirect bp. It will always
472 * be possible to verify this since it does not require an encryption
473 * key.
475 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
476 zio_crypt_decode_mac_bp(bp, mac);
478 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
480 * We haven't decompressed the data yet, but
481 * zio_crypt_do_indirect_mac_checksum() requires
482 * decompressed data to be able to parse out the MACs
483 * from the indirect block. We decompress it now and
484 * throw away the result after we are finished.
486 tmp = zio_buf_alloc(lsize);
487 ret = zio_decompress_data(BP_GET_COMPRESS(bp),
488 zio->io_abd, tmp, zio->io_size, lsize,
489 &zio->io_prop.zp_complevel);
490 if (ret != 0) {
491 ret = SET_ERROR(EIO);
492 goto error;
494 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
495 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
496 zio_buf_free(tmp, lsize);
497 } else {
498 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
499 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
501 abd_copy(data, zio->io_abd, size);
503 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
504 ret = zio_handle_decrypt_injection(spa,
505 &zio->io_bookmark, ot, ECKSUM);
507 if (ret != 0)
508 goto error;
510 return;
514 * If this is an authenticated block, just check the MAC. It would be
515 * nice to separate this out into its own flag, but for the moment
516 * enum zio_flag is out of bits.
518 if (BP_IS_AUTHENTICATED(bp)) {
519 if (ot == DMU_OT_OBJSET) {
520 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
521 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
522 } else {
523 zio_crypt_decode_mac_bp(bp, mac);
524 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
525 zio->io_abd, size, mac);
526 if (zio_injection_enabled && ret == 0) {
527 ret = zio_handle_decrypt_injection(spa,
528 &zio->io_bookmark, ot, ECKSUM);
531 abd_copy(data, zio->io_abd, size);
533 if (ret != 0)
534 goto error;
536 return;
539 zio_crypt_decode_params_bp(bp, salt, iv);
541 if (ot == DMU_OT_INTENT_LOG) {
542 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
543 zio_crypt_decode_mac_zil(tmp, mac);
544 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
545 } else {
546 zio_crypt_decode_mac_bp(bp, mac);
549 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
550 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
551 zio->io_abd, &no_crypt);
552 if (no_crypt)
553 abd_copy(data, zio->io_abd, size);
555 if (ret != 0)
556 goto error;
558 return;
560 error:
561 /* assert that the key was found unless this was speculative */
562 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
565 * If there was a decryption / authentication error return EIO as
566 * the io_error. If this was not a speculative zio, create an ereport.
568 if (ret == ECKSUM) {
569 zio->io_error = SET_ERROR(EIO);
570 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
571 spa_log_error(spa, &zio->io_bookmark);
572 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
573 spa, NULL, &zio->io_bookmark, zio, 0);
575 } else {
576 zio->io_error = ret;
581 * ==========================================================================
582 * I/O parent/child relationships and pipeline interlocks
583 * ==========================================================================
585 zio_t *
586 zio_walk_parents(zio_t *cio, zio_link_t **zl)
588 list_t *pl = &cio->io_parent_list;
590 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
591 if (*zl == NULL)
592 return (NULL);
594 ASSERT((*zl)->zl_child == cio);
595 return ((*zl)->zl_parent);
598 zio_t *
599 zio_walk_children(zio_t *pio, zio_link_t **zl)
601 list_t *cl = &pio->io_child_list;
603 ASSERT(MUTEX_HELD(&pio->io_lock));
605 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
606 if (*zl == NULL)
607 return (NULL);
609 ASSERT((*zl)->zl_parent == pio);
610 return ((*zl)->zl_child);
613 zio_t *
614 zio_unique_parent(zio_t *cio)
616 zio_link_t *zl = NULL;
617 zio_t *pio = zio_walk_parents(cio, &zl);
619 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
620 return (pio);
623 void
624 zio_add_child(zio_t *pio, zio_t *cio)
626 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
629 * Logical I/Os can have logical, gang, or vdev children.
630 * Gang I/Os can have gang or vdev children.
631 * Vdev I/Os can only have vdev children.
632 * The following ASSERT captures all of these constraints.
634 ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
636 zl->zl_parent = pio;
637 zl->zl_child = cio;
639 mutex_enter(&pio->io_lock);
640 mutex_enter(&cio->io_lock);
642 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
644 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
645 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
647 list_insert_head(&pio->io_child_list, zl);
648 list_insert_head(&cio->io_parent_list, zl);
650 pio->io_child_count++;
651 cio->io_parent_count++;
653 mutex_exit(&cio->io_lock);
654 mutex_exit(&pio->io_lock);
657 static void
658 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
660 ASSERT(zl->zl_parent == pio);
661 ASSERT(zl->zl_child == cio);
663 mutex_enter(&pio->io_lock);
664 mutex_enter(&cio->io_lock);
666 list_remove(&pio->io_child_list, zl);
667 list_remove(&cio->io_parent_list, zl);
669 pio->io_child_count--;
670 cio->io_parent_count--;
672 mutex_exit(&cio->io_lock);
673 mutex_exit(&pio->io_lock);
674 kmem_cache_free(zio_link_cache, zl);
677 static boolean_t
678 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
680 boolean_t waiting = B_FALSE;
682 mutex_enter(&zio->io_lock);
683 ASSERT(zio->io_stall == NULL);
684 for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
685 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
686 continue;
688 uint64_t *countp = &zio->io_children[c][wait];
689 if (*countp != 0) {
690 zio->io_stage >>= 1;
691 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
692 zio->io_stall = countp;
693 waiting = B_TRUE;
694 break;
697 mutex_exit(&zio->io_lock);
698 return (waiting);
701 __attribute__((always_inline))
702 static inline void
703 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait,
704 zio_t **next_to_executep)
706 uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
707 int *errorp = &pio->io_child_error[zio->io_child_type];
709 mutex_enter(&pio->io_lock);
710 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
711 *errorp = zio_worst_error(*errorp, zio->io_error);
712 pio->io_reexecute |= zio->io_reexecute;
713 ASSERT3U(*countp, >, 0);
715 (*countp)--;
717 if (*countp == 0 && pio->io_stall == countp) {
718 zio_taskq_type_t type =
719 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
720 ZIO_TASKQ_INTERRUPT;
721 pio->io_stall = NULL;
722 mutex_exit(&pio->io_lock);
725 * If we can tell the caller to execute this parent next, do
726 * so. Otherwise dispatch the parent zio as its own task.
728 * Having the caller execute the parent when possible reduces
729 * locking on the zio taskq's, reduces context switch
730 * overhead, and has no recursion penalty. Note that one
731 * read from disk typically causes at least 3 zio's: a
732 * zio_null(), the logical zio_read(), and then a physical
733 * zio. When the physical ZIO completes, we are able to call
734 * zio_done() on all 3 of these zio's from one invocation of
735 * zio_execute() by returning the parent back to
736 * zio_execute(). Since the parent isn't executed until this
737 * thread returns back to zio_execute(), the caller should do
738 * so promptly.
740 * In other cases, dispatching the parent prevents
741 * overflowing the stack when we have deeply nested
742 * parent-child relationships, as we do with the "mega zio"
743 * of writes for spa_sync(), and the chain of ZIL blocks.
745 if (next_to_executep != NULL && *next_to_executep == NULL) {
746 *next_to_executep = pio;
747 } else {
748 zio_taskq_dispatch(pio, type, B_FALSE);
750 } else {
751 mutex_exit(&pio->io_lock);
755 static void
756 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
758 if (zio->io_child_error[c] != 0 && zio->io_error == 0)
759 zio->io_error = zio->io_child_error[c];
763 zio_bookmark_compare(const void *x1, const void *x2)
765 const zio_t *z1 = x1;
766 const zio_t *z2 = x2;
768 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
769 return (-1);
770 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
771 return (1);
773 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
774 return (-1);
775 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
776 return (1);
778 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
779 return (-1);
780 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
781 return (1);
783 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
784 return (-1);
785 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
786 return (1);
788 if (z1 < z2)
789 return (-1);
790 if (z1 > z2)
791 return (1);
793 return (0);
797 * ==========================================================================
798 * Create the various types of I/O (read, write, free, etc)
799 * ==========================================================================
801 static zio_t *
802 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
803 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
804 void *private, zio_type_t type, zio_priority_t priority,
805 enum zio_flag flags, vdev_t *vd, uint64_t offset,
806 const zbookmark_phys_t *zb, enum zio_stage stage,
807 enum zio_stage pipeline)
809 zio_t *zio;
811 IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
812 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
813 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
815 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
816 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
817 ASSERT(vd || stage == ZIO_STAGE_OPEN);
819 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
821 zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
822 memset(zio, 0, sizeof (zio_t));
824 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
825 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
827 list_create(&zio->io_parent_list, sizeof (zio_link_t),
828 offsetof(zio_link_t, zl_parent_node));
829 list_create(&zio->io_child_list, sizeof (zio_link_t),
830 offsetof(zio_link_t, zl_child_node));
831 metaslab_trace_init(&zio->io_alloc_list);
833 if (vd != NULL)
834 zio->io_child_type = ZIO_CHILD_VDEV;
835 else if (flags & ZIO_FLAG_GANG_CHILD)
836 zio->io_child_type = ZIO_CHILD_GANG;
837 else if (flags & ZIO_FLAG_DDT_CHILD)
838 zio->io_child_type = ZIO_CHILD_DDT;
839 else
840 zio->io_child_type = ZIO_CHILD_LOGICAL;
842 if (bp != NULL) {
843 zio->io_bp = (blkptr_t *)bp;
844 zio->io_bp_copy = *bp;
845 zio->io_bp_orig = *bp;
846 if (type != ZIO_TYPE_WRITE ||
847 zio->io_child_type == ZIO_CHILD_DDT)
848 zio->io_bp = &zio->io_bp_copy; /* so caller can free */
849 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
850 zio->io_logical = zio;
851 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
852 pipeline |= ZIO_GANG_STAGES;
855 zio->io_spa = spa;
856 zio->io_txg = txg;
857 zio->io_done = done;
858 zio->io_private = private;
859 zio->io_type = type;
860 zio->io_priority = priority;
861 zio->io_vd = vd;
862 zio->io_offset = offset;
863 zio->io_orig_abd = zio->io_abd = data;
864 zio->io_orig_size = zio->io_size = psize;
865 zio->io_lsize = lsize;
866 zio->io_orig_flags = zio->io_flags = flags;
867 zio->io_orig_stage = zio->io_stage = stage;
868 zio->io_orig_pipeline = zio->io_pipeline = pipeline;
869 zio->io_pipeline_trace = ZIO_STAGE_OPEN;
871 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
872 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
874 if (zb != NULL)
875 zio->io_bookmark = *zb;
877 if (pio != NULL) {
878 zio->io_metaslab_class = pio->io_metaslab_class;
879 if (zio->io_logical == NULL)
880 zio->io_logical = pio->io_logical;
881 if (zio->io_child_type == ZIO_CHILD_GANG)
882 zio->io_gang_leader = pio->io_gang_leader;
883 zio_add_child(pio, zio);
886 taskq_init_ent(&zio->io_tqent);
888 return (zio);
891 void
892 zio_destroy(zio_t *zio)
894 metaslab_trace_fini(&zio->io_alloc_list);
895 list_destroy(&zio->io_parent_list);
896 list_destroy(&zio->io_child_list);
897 mutex_destroy(&zio->io_lock);
898 cv_destroy(&zio->io_cv);
899 kmem_cache_free(zio_cache, zio);
902 zio_t *
903 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
904 void *private, enum zio_flag flags)
906 zio_t *zio;
908 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
909 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
910 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
912 return (zio);
915 zio_t *
916 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
918 return (zio_null(NULL, spa, NULL, done, private, flags));
921 static int
922 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp,
923 enum blk_verify_flag blk_verify, const char *fmt, ...)
925 va_list adx;
926 char buf[256];
928 va_start(adx, fmt);
929 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
930 va_end(adx);
932 switch (blk_verify) {
933 case BLK_VERIFY_HALT:
934 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
935 zfs_panic_recover("%s: %s", spa_name(spa), buf);
936 break;
937 case BLK_VERIFY_LOG:
938 zfs_dbgmsg("%s: %s", spa_name(spa), buf);
939 break;
940 case BLK_VERIFY_ONLY:
941 break;
944 return (1);
948 * Verify the block pointer fields contain reasonable values. This means
949 * it only contains known object types, checksum/compression identifiers,
950 * block sizes within the maximum allowed limits, valid DVAs, etc.
952 * If everything checks out B_TRUE is returned. The zfs_blkptr_verify
953 * argument controls the behavior when an invalid field is detected.
955 * Modes for zfs_blkptr_verify:
956 * 1) BLK_VERIFY_ONLY (evaluate the block)
957 * 2) BLK_VERIFY_LOG (evaluate the block and log problems)
958 * 3) BLK_VERIFY_HALT (call zfs_panic_recover on error)
960 boolean_t
961 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, boolean_t config_held,
962 enum blk_verify_flag blk_verify)
964 int errors = 0;
966 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
967 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
968 "blkptr at %p has invalid TYPE %llu",
969 bp, (longlong_t)BP_GET_TYPE(bp));
971 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS) {
972 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
973 "blkptr at %p has invalid CHECKSUM %llu",
974 bp, (longlong_t)BP_GET_CHECKSUM(bp));
976 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS) {
977 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
978 "blkptr at %p has invalid COMPRESS %llu",
979 bp, (longlong_t)BP_GET_COMPRESS(bp));
981 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
982 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
983 "blkptr at %p has invalid LSIZE %llu",
984 bp, (longlong_t)BP_GET_LSIZE(bp));
986 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
987 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
988 "blkptr at %p has invalid PSIZE %llu",
989 bp, (longlong_t)BP_GET_PSIZE(bp));
992 if (BP_IS_EMBEDDED(bp)) {
993 if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) {
994 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
995 "blkptr at %p has invalid ETYPE %llu",
996 bp, (longlong_t)BPE_GET_ETYPE(bp));
1001 * Do not verify individual DVAs if the config is not trusted. This
1002 * will be done once the zio is executed in vdev_mirror_map_alloc.
1004 if (!spa->spa_trust_config)
1005 return (errors == 0);
1007 if (!config_held)
1008 spa_config_enter(spa, SCL_VDEV, bp, RW_READER);
1009 else
1010 ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER));
1012 * Pool-specific checks.
1014 * Note: it would be nice to verify that the blk_birth and
1015 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze()
1016 * allows the birth time of log blocks (and dmu_sync()-ed blocks
1017 * that are in the log) to be arbitrarily large.
1019 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
1020 const dva_t *dva = &bp->blk_dva[i];
1021 uint64_t vdevid = DVA_GET_VDEV(dva);
1023 if (vdevid >= spa->spa_root_vdev->vdev_children) {
1024 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1025 "blkptr at %p DVA %u has invalid VDEV %llu",
1026 bp, i, (longlong_t)vdevid);
1027 continue;
1029 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1030 if (vd == NULL) {
1031 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1032 "blkptr at %p DVA %u has invalid VDEV %llu",
1033 bp, i, (longlong_t)vdevid);
1034 continue;
1036 if (vd->vdev_ops == &vdev_hole_ops) {
1037 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1038 "blkptr at %p DVA %u has hole VDEV %llu",
1039 bp, i, (longlong_t)vdevid);
1040 continue;
1042 if (vd->vdev_ops == &vdev_missing_ops) {
1044 * "missing" vdevs are valid during import, but we
1045 * don't have their detailed info (e.g. asize), so
1046 * we can't perform any more checks on them.
1048 continue;
1050 uint64_t offset = DVA_GET_OFFSET(dva);
1051 uint64_t asize = DVA_GET_ASIZE(dva);
1052 if (DVA_GET_GANG(dva))
1053 asize = vdev_gang_header_asize(vd);
1054 if (offset + asize > vd->vdev_asize) {
1055 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1056 "blkptr at %p DVA %u has invalid OFFSET %llu",
1057 bp, i, (longlong_t)offset);
1060 if (errors > 0)
1061 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
1062 if (!config_held)
1063 spa_config_exit(spa, SCL_VDEV, bp);
1065 return (errors == 0);
1068 boolean_t
1069 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
1071 (void) bp;
1072 uint64_t vdevid = DVA_GET_VDEV(dva);
1074 if (vdevid >= spa->spa_root_vdev->vdev_children)
1075 return (B_FALSE);
1077 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1078 if (vd == NULL)
1079 return (B_FALSE);
1081 if (vd->vdev_ops == &vdev_hole_ops)
1082 return (B_FALSE);
1084 if (vd->vdev_ops == &vdev_missing_ops) {
1085 return (B_FALSE);
1088 uint64_t offset = DVA_GET_OFFSET(dva);
1089 uint64_t asize = DVA_GET_ASIZE(dva);
1091 if (DVA_GET_GANG(dva))
1092 asize = vdev_gang_header_asize(vd);
1093 if (offset + asize > vd->vdev_asize)
1094 return (B_FALSE);
1096 return (B_TRUE);
1099 zio_t *
1100 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
1101 abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
1102 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
1104 zio_t *zio;
1106 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
1107 data, size, size, done, private,
1108 ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
1109 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1110 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
1112 return (zio);
1115 zio_t *
1116 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
1117 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
1118 zio_done_func_t *ready, zio_done_func_t *children_ready,
1119 zio_done_func_t *physdone, zio_done_func_t *done,
1120 void *private, zio_priority_t priority, enum zio_flag flags,
1121 const zbookmark_phys_t *zb)
1123 zio_t *zio;
1125 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
1126 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
1127 zp->zp_compress >= ZIO_COMPRESS_OFF &&
1128 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
1129 DMU_OT_IS_VALID(zp->zp_type) &&
1130 zp->zp_level < 32 &&
1131 zp->zp_copies > 0 &&
1132 zp->zp_copies <= spa_max_replication(spa));
1134 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
1135 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
1136 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1137 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
1139 zio->io_ready = ready;
1140 zio->io_children_ready = children_ready;
1141 zio->io_physdone = physdone;
1142 zio->io_prop = *zp;
1145 * Data can be NULL if we are going to call zio_write_override() to
1146 * provide the already-allocated BP. But we may need the data to
1147 * verify a dedup hit (if requested). In this case, don't try to
1148 * dedup (just take the already-allocated BP verbatim). Encrypted
1149 * dedup blocks need data as well so we also disable dedup in this
1150 * case.
1152 if (data == NULL &&
1153 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
1154 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
1157 return (zio);
1160 zio_t *
1161 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
1162 uint64_t size, zio_done_func_t *done, void *private,
1163 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
1165 zio_t *zio;
1167 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
1168 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1169 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1171 return (zio);
1174 void
1175 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
1177 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1178 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1179 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1180 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1183 * We must reset the io_prop to match the values that existed
1184 * when the bp was first written by dmu_sync() keeping in mind
1185 * that nopwrite and dedup are mutually exclusive.
1187 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1188 zio->io_prop.zp_nopwrite = nopwrite;
1189 zio->io_prop.zp_copies = copies;
1190 zio->io_bp_override = bp;
1193 void
1194 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1197 (void) zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_HALT);
1200 * The check for EMBEDDED is a performance optimization. We
1201 * process the free here (by ignoring it) rather than
1202 * putting it on the list and then processing it in zio_free_sync().
1204 if (BP_IS_EMBEDDED(bp))
1205 return;
1208 * Frees that are for the currently-syncing txg, are not going to be
1209 * deferred, and which will not need to do a read (i.e. not GANG or
1210 * DEDUP), can be processed immediately. Otherwise, put them on the
1211 * in-memory list for later processing.
1213 * Note that we only defer frees after zfs_sync_pass_deferred_free
1214 * when the log space map feature is disabled. [see relevant comment
1215 * in spa_sync_iterate_to_convergence()]
1217 if (BP_IS_GANG(bp) ||
1218 BP_GET_DEDUP(bp) ||
1219 txg != spa->spa_syncing_txg ||
1220 (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1221 !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) {
1222 metaslab_check_free(spa, bp);
1223 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1224 } else {
1225 VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL);
1230 * To improve performance, this function may return NULL if we were able
1231 * to do the free immediately. This avoids the cost of creating a zio
1232 * (and linking it to the parent, etc).
1234 zio_t *
1235 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1236 enum zio_flag flags)
1238 ASSERT(!BP_IS_HOLE(bp));
1239 ASSERT(spa_syncing_txg(spa) == txg);
1241 if (BP_IS_EMBEDDED(bp))
1242 return (NULL);
1244 metaslab_check_free(spa, bp);
1245 arc_freed(spa, bp);
1246 dsl_scan_freed(spa, bp);
1248 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) {
1250 * GANG and DEDUP blocks can induce a read (for the gang block
1251 * header, or the DDT), so issue them asynchronously so that
1252 * this thread is not tied up.
1254 enum zio_stage stage =
1255 ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC;
1257 return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1258 BP_GET_PSIZE(bp), NULL, NULL,
1259 ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1260 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage));
1261 } else {
1262 metaslab_free(spa, bp, txg, B_FALSE);
1263 return (NULL);
1267 zio_t *
1268 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1269 zio_done_func_t *done, void *private, enum zio_flag flags)
1271 zio_t *zio;
1273 (void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER,
1274 BLK_VERIFY_HALT);
1276 if (BP_IS_EMBEDDED(bp))
1277 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1280 * A claim is an allocation of a specific block. Claims are needed
1281 * to support immediate writes in the intent log. The issue is that
1282 * immediate writes contain committed data, but in a txg that was
1283 * *not* committed. Upon opening the pool after an unclean shutdown,
1284 * the intent log claims all blocks that contain immediate write data
1285 * so that the SPA knows they're in use.
1287 * All claims *must* be resolved in the first txg -- before the SPA
1288 * starts allocating blocks -- so that nothing is allocated twice.
1289 * If txg == 0 we just verify that the block is claimable.
1291 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
1292 spa_min_claim_txg(spa));
1293 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1294 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(8) */
1296 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1297 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1298 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1299 ASSERT0(zio->io_queued_timestamp);
1301 return (zio);
1304 zio_t *
1305 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1306 zio_done_func_t *done, void *private, enum zio_flag flags)
1308 zio_t *zio;
1309 int c;
1311 if (vd->vdev_children == 0) {
1312 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1313 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1314 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1316 zio->io_cmd = cmd;
1317 } else {
1318 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1320 for (c = 0; c < vd->vdev_children; c++)
1321 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1322 done, private, flags));
1325 return (zio);
1328 zio_t *
1329 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1330 zio_done_func_t *done, void *private, zio_priority_t priority,
1331 enum zio_flag flags, enum trim_flag trim_flags)
1333 zio_t *zio;
1335 ASSERT0(vd->vdev_children);
1336 ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1337 ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1338 ASSERT3U(size, !=, 0);
1340 zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1341 private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1342 vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1343 zio->io_trim_flags = trim_flags;
1345 return (zio);
1348 zio_t *
1349 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1350 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1351 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1353 zio_t *zio;
1355 ASSERT(vd->vdev_children == 0);
1356 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1357 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1358 ASSERT3U(offset + size, <=, vd->vdev_psize);
1360 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1361 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1362 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1364 zio->io_prop.zp_checksum = checksum;
1366 return (zio);
1369 zio_t *
1370 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1371 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1372 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1374 zio_t *zio;
1376 ASSERT(vd->vdev_children == 0);
1377 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1378 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1379 ASSERT3U(offset + size, <=, vd->vdev_psize);
1381 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1382 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1383 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1385 zio->io_prop.zp_checksum = checksum;
1387 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1389 * zec checksums are necessarily destructive -- they modify
1390 * the end of the write buffer to hold the verifier/checksum.
1391 * Therefore, we must make a local copy in case the data is
1392 * being written to multiple places in parallel.
1394 abd_t *wbuf = abd_alloc_sametype(data, size);
1395 abd_copy(wbuf, data, size);
1397 zio_push_transform(zio, wbuf, size, size, NULL);
1400 return (zio);
1404 * Create a child I/O to do some work for us.
1406 zio_t *
1407 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1408 abd_t *data, uint64_t size, int type, zio_priority_t priority,
1409 enum zio_flag flags, zio_done_func_t *done, void *private)
1411 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1412 zio_t *zio;
1415 * vdev child I/Os do not propagate their error to the parent.
1416 * Therefore, for correct operation the caller *must* check for
1417 * and handle the error in the child i/o's done callback.
1418 * The only exceptions are i/os that we don't care about
1419 * (OPTIONAL or REPAIR).
1421 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1422 done != NULL);
1424 if (type == ZIO_TYPE_READ && bp != NULL) {
1426 * If we have the bp, then the child should perform the
1427 * checksum and the parent need not. This pushes error
1428 * detection as close to the leaves as possible and
1429 * eliminates redundant checksums in the interior nodes.
1431 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1432 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1435 if (vd->vdev_ops->vdev_op_leaf) {
1436 ASSERT0(vd->vdev_children);
1437 offset += VDEV_LABEL_START_SIZE;
1440 flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1443 * If we've decided to do a repair, the write is not speculative --
1444 * even if the original read was.
1446 if (flags & ZIO_FLAG_IO_REPAIR)
1447 flags &= ~ZIO_FLAG_SPECULATIVE;
1450 * If we're creating a child I/O that is not associated with a
1451 * top-level vdev, then the child zio is not an allocating I/O.
1452 * If this is a retried I/O then we ignore it since we will
1453 * have already processed the original allocating I/O.
1455 if (flags & ZIO_FLAG_IO_ALLOCATING &&
1456 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1457 ASSERT(pio->io_metaslab_class != NULL);
1458 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1459 ASSERT(type == ZIO_TYPE_WRITE);
1460 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1461 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1462 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1463 pio->io_child_type == ZIO_CHILD_GANG);
1465 flags &= ~ZIO_FLAG_IO_ALLOCATING;
1469 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1470 done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1471 ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1472 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1474 zio->io_physdone = pio->io_physdone;
1475 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1476 zio->io_logical->io_phys_children++;
1478 return (zio);
1481 zio_t *
1482 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1483 zio_type_t type, zio_priority_t priority, enum zio_flag flags,
1484 zio_done_func_t *done, void *private)
1486 zio_t *zio;
1488 ASSERT(vd->vdev_ops->vdev_op_leaf);
1490 zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1491 data, size, size, done, private, type, priority,
1492 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1493 vd, offset, NULL,
1494 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1496 return (zio);
1499 void
1500 zio_flush(zio_t *zio, vdev_t *vd)
1502 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1503 NULL, NULL,
1504 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1507 void
1508 zio_shrink(zio_t *zio, uint64_t size)
1510 ASSERT3P(zio->io_executor, ==, NULL);
1511 ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1512 ASSERT3U(size, <=, zio->io_size);
1515 * We don't shrink for raidz because of problems with the
1516 * reconstruction when reading back less than the block size.
1517 * Note, BP_IS_RAIDZ() assumes no compression.
1519 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1520 if (!BP_IS_RAIDZ(zio->io_bp)) {
1521 /* we are not doing a raw write */
1522 ASSERT3U(zio->io_size, ==, zio->io_lsize);
1523 zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1528 * ==========================================================================
1529 * Prepare to read and write logical blocks
1530 * ==========================================================================
1533 static zio_t *
1534 zio_read_bp_init(zio_t *zio)
1536 blkptr_t *bp = zio->io_bp;
1537 uint64_t psize =
1538 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1540 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1542 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1543 zio->io_child_type == ZIO_CHILD_LOGICAL &&
1544 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1545 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1546 psize, psize, zio_decompress);
1549 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1550 BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1551 zio->io_child_type == ZIO_CHILD_LOGICAL) {
1552 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1553 psize, psize, zio_decrypt);
1556 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1557 int psize = BPE_GET_PSIZE(bp);
1558 void *data = abd_borrow_buf(zio->io_abd, psize);
1560 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1561 decode_embedded_bp_compressed(bp, data);
1562 abd_return_buf_copy(zio->io_abd, data, psize);
1563 } else {
1564 ASSERT(!BP_IS_EMBEDDED(bp));
1565 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1568 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1569 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1571 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1572 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1574 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1575 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1577 return (zio);
1580 static zio_t *
1581 zio_write_bp_init(zio_t *zio)
1583 if (!IO_IS_ALLOCATING(zio))
1584 return (zio);
1586 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1588 if (zio->io_bp_override) {
1589 blkptr_t *bp = zio->io_bp;
1590 zio_prop_t *zp = &zio->io_prop;
1592 ASSERT(bp->blk_birth != zio->io_txg);
1593 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1595 *bp = *zio->io_bp_override;
1596 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1598 if (BP_IS_EMBEDDED(bp))
1599 return (zio);
1602 * If we've been overridden and nopwrite is set then
1603 * set the flag accordingly to indicate that a nopwrite
1604 * has already occurred.
1606 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1607 ASSERT(!zp->zp_dedup);
1608 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1609 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1610 return (zio);
1613 ASSERT(!zp->zp_nopwrite);
1615 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1616 return (zio);
1618 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1619 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1621 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1622 !zp->zp_encrypt) {
1623 BP_SET_DEDUP(bp, 1);
1624 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1625 return (zio);
1629 * We were unable to handle this as an override bp, treat
1630 * it as a regular write I/O.
1632 zio->io_bp_override = NULL;
1633 *bp = zio->io_bp_orig;
1634 zio->io_pipeline = zio->io_orig_pipeline;
1637 return (zio);
1640 static zio_t *
1641 zio_write_compress(zio_t *zio)
1643 spa_t *spa = zio->io_spa;
1644 zio_prop_t *zp = &zio->io_prop;
1645 enum zio_compress compress = zp->zp_compress;
1646 blkptr_t *bp = zio->io_bp;
1647 uint64_t lsize = zio->io_lsize;
1648 uint64_t psize = zio->io_size;
1649 uint32_t pass = 1;
1652 * If our children haven't all reached the ready stage,
1653 * wait for them and then repeat this pipeline stage.
1655 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1656 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1657 return (NULL);
1660 if (!IO_IS_ALLOCATING(zio))
1661 return (zio);
1663 if (zio->io_children_ready != NULL) {
1665 * Now that all our children are ready, run the callback
1666 * associated with this zio in case it wants to modify the
1667 * data to be written.
1669 ASSERT3U(zp->zp_level, >, 0);
1670 zio->io_children_ready(zio);
1673 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1674 ASSERT(zio->io_bp_override == NULL);
1676 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1678 * We're rewriting an existing block, which means we're
1679 * working on behalf of spa_sync(). For spa_sync() to
1680 * converge, it must eventually be the case that we don't
1681 * have to allocate new blocks. But compression changes
1682 * the blocksize, which forces a reallocate, and makes
1683 * convergence take longer. Therefore, after the first
1684 * few passes, stop compressing to ensure convergence.
1686 pass = spa_sync_pass(spa);
1688 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1689 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1690 ASSERT(!BP_GET_DEDUP(bp));
1692 if (pass >= zfs_sync_pass_dont_compress)
1693 compress = ZIO_COMPRESS_OFF;
1695 /* Make sure someone doesn't change their mind on overwrites */
1696 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1697 spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1700 /* If it's a compressed write that is not raw, compress the buffer. */
1701 if (compress != ZIO_COMPRESS_OFF &&
1702 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1703 void *cbuf = zio_buf_alloc(lsize);
1704 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize,
1705 zp->zp_complevel);
1706 if (psize == 0 || psize >= lsize) {
1707 compress = ZIO_COMPRESS_OFF;
1708 zio_buf_free(cbuf, lsize);
1709 } else if (!zp->zp_dedup && !zp->zp_encrypt &&
1710 psize <= BPE_PAYLOAD_SIZE &&
1711 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1712 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1713 encode_embedded_bp_compressed(bp,
1714 cbuf, compress, lsize, psize);
1715 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1716 BP_SET_TYPE(bp, zio->io_prop.zp_type);
1717 BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1718 zio_buf_free(cbuf, lsize);
1719 bp->blk_birth = zio->io_txg;
1720 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1721 ASSERT(spa_feature_is_active(spa,
1722 SPA_FEATURE_EMBEDDED_DATA));
1723 return (zio);
1724 } else {
1726 * Round compressed size up to the minimum allocation
1727 * size of the smallest-ashift device, and zero the
1728 * tail. This ensures that the compressed size of the
1729 * BP (and thus compressratio property) are correct,
1730 * in that we charge for the padding used to fill out
1731 * the last sector.
1733 ASSERT3U(spa->spa_min_alloc, >=, SPA_MINBLOCKSHIFT);
1734 size_t rounded = (size_t)roundup(psize,
1735 spa->spa_min_alloc);
1736 if (rounded >= lsize) {
1737 compress = ZIO_COMPRESS_OFF;
1738 zio_buf_free(cbuf, lsize);
1739 psize = lsize;
1740 } else {
1741 abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1742 abd_take_ownership_of_buf(cdata, B_TRUE);
1743 abd_zero_off(cdata, psize, rounded - psize);
1744 psize = rounded;
1745 zio_push_transform(zio, cdata,
1746 psize, lsize, NULL);
1751 * We were unable to handle this as an override bp, treat
1752 * it as a regular write I/O.
1754 zio->io_bp_override = NULL;
1755 *bp = zio->io_bp_orig;
1756 zio->io_pipeline = zio->io_orig_pipeline;
1758 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1759 zp->zp_type == DMU_OT_DNODE) {
1761 * The DMU actually relies on the zio layer's compression
1762 * to free metadnode blocks that have had all contained
1763 * dnodes freed. As a result, even when doing a raw
1764 * receive, we must check whether the block can be compressed
1765 * to a hole.
1767 psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
1768 zio->io_abd, NULL, lsize, zp->zp_complevel);
1769 if (psize == 0 || psize >= lsize)
1770 compress = ZIO_COMPRESS_OFF;
1771 } else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS &&
1772 !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) {
1774 * If we are raw receiving an encrypted dataset we should not
1775 * take this codepath because it will change the on-disk block
1776 * and decryption will fail.
1778 size_t rounded = MIN((size_t)roundup(psize,
1779 spa->spa_min_alloc), lsize);
1781 if (rounded != psize) {
1782 abd_t *cdata = abd_alloc_linear(rounded, B_TRUE);
1783 abd_zero_off(cdata, psize, rounded - psize);
1784 abd_copy_off(cdata, zio->io_abd, 0, 0, psize);
1785 psize = rounded;
1786 zio_push_transform(zio, cdata,
1787 psize, rounded, NULL);
1789 } else {
1790 ASSERT3U(psize, !=, 0);
1794 * The final pass of spa_sync() must be all rewrites, but the first
1795 * few passes offer a trade-off: allocating blocks defers convergence,
1796 * but newly allocated blocks are sequential, so they can be written
1797 * to disk faster. Therefore, we allow the first few passes of
1798 * spa_sync() to allocate new blocks, but force rewrites after that.
1799 * There should only be a handful of blocks after pass 1 in any case.
1801 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1802 BP_GET_PSIZE(bp) == psize &&
1803 pass >= zfs_sync_pass_rewrite) {
1804 VERIFY3U(psize, !=, 0);
1805 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1807 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1808 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1809 } else {
1810 BP_ZERO(bp);
1811 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1814 if (psize == 0) {
1815 if (zio->io_bp_orig.blk_birth != 0 &&
1816 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1817 BP_SET_LSIZE(bp, lsize);
1818 BP_SET_TYPE(bp, zp->zp_type);
1819 BP_SET_LEVEL(bp, zp->zp_level);
1820 BP_SET_BIRTH(bp, zio->io_txg, 0);
1822 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1823 } else {
1824 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1825 BP_SET_LSIZE(bp, lsize);
1826 BP_SET_TYPE(bp, zp->zp_type);
1827 BP_SET_LEVEL(bp, zp->zp_level);
1828 BP_SET_PSIZE(bp, psize);
1829 BP_SET_COMPRESS(bp, compress);
1830 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1831 BP_SET_DEDUP(bp, zp->zp_dedup);
1832 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1833 if (zp->zp_dedup) {
1834 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1835 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1836 ASSERT(!zp->zp_encrypt ||
1837 DMU_OT_IS_ENCRYPTED(zp->zp_type));
1838 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1840 if (zp->zp_nopwrite) {
1841 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1842 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1843 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1846 return (zio);
1849 static zio_t *
1850 zio_free_bp_init(zio_t *zio)
1852 blkptr_t *bp = zio->io_bp;
1854 if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1855 if (BP_GET_DEDUP(bp))
1856 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1859 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1861 return (zio);
1865 * ==========================================================================
1866 * Execute the I/O pipeline
1867 * ==========================================================================
1870 static void
1871 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1873 spa_t *spa = zio->io_spa;
1874 zio_type_t t = zio->io_type;
1875 int flags = (cutinline ? TQ_FRONT : 0);
1878 * If we're a config writer or a probe, the normal issue and
1879 * interrupt threads may all be blocked waiting for the config lock.
1880 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1882 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1883 t = ZIO_TYPE_NULL;
1886 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1888 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1889 t = ZIO_TYPE_NULL;
1892 * If this is a high priority I/O, then use the high priority taskq if
1893 * available.
1895 if ((zio->io_priority == ZIO_PRIORITY_NOW ||
1896 zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) &&
1897 spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1898 q++;
1900 ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1903 * NB: We are assuming that the zio can only be dispatched
1904 * to a single taskq at a time. It would be a grievous error
1905 * to dispatch the zio to another taskq at the same time.
1907 ASSERT(taskq_empty_ent(&zio->io_tqent));
1908 spa_taskq_dispatch_ent(spa, t, q, zio_execute, zio, flags,
1909 &zio->io_tqent);
1912 static boolean_t
1913 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1915 spa_t *spa = zio->io_spa;
1917 taskq_t *tq = taskq_of_curthread();
1919 for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1920 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1921 uint_t i;
1922 for (i = 0; i < tqs->stqs_count; i++) {
1923 if (tqs->stqs_taskq[i] == tq)
1924 return (B_TRUE);
1928 return (B_FALSE);
1931 static zio_t *
1932 zio_issue_async(zio_t *zio)
1934 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1936 return (NULL);
1939 void
1940 zio_interrupt(void *zio)
1942 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1945 void
1946 zio_delay_interrupt(zio_t *zio)
1949 * The timeout_generic() function isn't defined in userspace, so
1950 * rather than trying to implement the function, the zio delay
1951 * functionality has been disabled for userspace builds.
1954 #ifdef _KERNEL
1956 * If io_target_timestamp is zero, then no delay has been registered
1957 * for this IO, thus jump to the end of this function and "skip" the
1958 * delay; issuing it directly to the zio layer.
1960 if (zio->io_target_timestamp != 0) {
1961 hrtime_t now = gethrtime();
1963 if (now >= zio->io_target_timestamp) {
1965 * This IO has already taken longer than the target
1966 * delay to complete, so we don't want to delay it
1967 * any longer; we "miss" the delay and issue it
1968 * directly to the zio layer. This is likely due to
1969 * the target latency being set to a value less than
1970 * the underlying hardware can satisfy (e.g. delay
1971 * set to 1ms, but the disks take 10ms to complete an
1972 * IO request).
1975 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1976 hrtime_t, now);
1978 zio_interrupt(zio);
1979 } else {
1980 taskqid_t tid;
1981 hrtime_t diff = zio->io_target_timestamp - now;
1982 clock_t expire_at_tick = ddi_get_lbolt() +
1983 NSEC_TO_TICK(diff);
1985 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1986 hrtime_t, now, hrtime_t, diff);
1988 if (NSEC_TO_TICK(diff) == 0) {
1989 /* Our delay is less than a jiffy - just spin */
1990 zfs_sleep_until(zio->io_target_timestamp);
1991 zio_interrupt(zio);
1992 } else {
1994 * Use taskq_dispatch_delay() in the place of
1995 * OpenZFS's timeout_generic().
1997 tid = taskq_dispatch_delay(system_taskq,
1998 zio_interrupt, zio, TQ_NOSLEEP,
1999 expire_at_tick);
2000 if (tid == TASKQID_INVALID) {
2002 * Couldn't allocate a task. Just
2003 * finish the zio without a delay.
2005 zio_interrupt(zio);
2009 return;
2011 #endif
2012 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
2013 zio_interrupt(zio);
2016 static void
2017 zio_deadman_impl(zio_t *pio, int ziodepth)
2019 zio_t *cio, *cio_next;
2020 zio_link_t *zl = NULL;
2021 vdev_t *vd = pio->io_vd;
2023 if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) {
2024 vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL;
2025 zbookmark_phys_t *zb = &pio->io_bookmark;
2026 uint64_t delta = gethrtime() - pio->io_timestamp;
2027 uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
2029 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
2030 "delta=%llu queued=%llu io=%llu "
2031 "path=%s "
2032 "last=%llu type=%d "
2033 "priority=%d flags=0x%x stage=0x%x "
2034 "pipeline=0x%x pipeline-trace=0x%x "
2035 "objset=%llu object=%llu "
2036 "level=%llu blkid=%llu "
2037 "offset=%llu size=%llu "
2038 "error=%d",
2039 ziodepth, pio, pio->io_timestamp,
2040 (u_longlong_t)delta, pio->io_delta, pio->io_delay,
2041 vd ? vd->vdev_path : "NULL",
2042 vq ? vq->vq_io_complete_ts : 0, pio->io_type,
2043 pio->io_priority, pio->io_flags, pio->io_stage,
2044 pio->io_pipeline, pio->io_pipeline_trace,
2045 (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object,
2046 (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid,
2047 (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size,
2048 pio->io_error);
2049 (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
2050 pio->io_spa, vd, zb, pio, 0);
2052 if (failmode == ZIO_FAILURE_MODE_CONTINUE &&
2053 taskq_empty_ent(&pio->io_tqent)) {
2054 zio_interrupt(pio);
2058 mutex_enter(&pio->io_lock);
2059 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2060 cio_next = zio_walk_children(pio, &zl);
2061 zio_deadman_impl(cio, ziodepth + 1);
2063 mutex_exit(&pio->io_lock);
2067 * Log the critical information describing this zio and all of its children
2068 * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2070 void
2071 zio_deadman(zio_t *pio, const char *tag)
2073 spa_t *spa = pio->io_spa;
2074 char *name = spa_name(spa);
2076 if (!zfs_deadman_enabled || spa_suspended(spa))
2077 return;
2079 zio_deadman_impl(pio, 0);
2081 switch (spa_get_deadman_failmode(spa)) {
2082 case ZIO_FAILURE_MODE_WAIT:
2083 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
2084 break;
2086 case ZIO_FAILURE_MODE_CONTINUE:
2087 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
2088 break;
2090 case ZIO_FAILURE_MODE_PANIC:
2091 fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
2092 break;
2097 * Execute the I/O pipeline until one of the following occurs:
2098 * (1) the I/O completes; (2) the pipeline stalls waiting for
2099 * dependent child I/Os; (3) the I/O issues, so we're waiting
2100 * for an I/O completion interrupt; (4) the I/O is delegated by
2101 * vdev-level caching or aggregation; (5) the I/O is deferred
2102 * due to vdev-level queueing; (6) the I/O is handed off to
2103 * another thread. In all cases, the pipeline stops whenever
2104 * there's no CPU work; it never burns a thread in cv_wait_io().
2106 * There's no locking on io_stage because there's no legitimate way
2107 * for multiple threads to be attempting to process the same I/O.
2109 static zio_pipe_stage_t *zio_pipeline[];
2112 * zio_execute() is a wrapper around the static function
2113 * __zio_execute() so that we can force __zio_execute() to be
2114 * inlined. This reduces stack overhead which is important
2115 * because __zio_execute() is called recursively in several zio
2116 * code paths. zio_execute() itself cannot be inlined because
2117 * it is externally visible.
2119 void
2120 zio_execute(void *zio)
2122 fstrans_cookie_t cookie;
2124 cookie = spl_fstrans_mark();
2125 __zio_execute(zio);
2126 spl_fstrans_unmark(cookie);
2130 * Used to determine if in the current context the stack is sized large
2131 * enough to allow zio_execute() to be called recursively. A minimum
2132 * stack size of 16K is required to avoid needing to re-dispatch the zio.
2134 static boolean_t
2135 zio_execute_stack_check(zio_t *zio)
2137 #if !defined(HAVE_LARGE_STACKS)
2138 dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
2140 /* Executing in txg_sync_thread() context. */
2141 if (dp && curthread == dp->dp_tx.tx_sync_thread)
2142 return (B_TRUE);
2144 /* Pool initialization outside of zio_taskq context. */
2145 if (dp && spa_is_initializing(dp->dp_spa) &&
2146 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
2147 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
2148 return (B_TRUE);
2149 #else
2150 (void) zio;
2151 #endif /* HAVE_LARGE_STACKS */
2153 return (B_FALSE);
2156 __attribute__((always_inline))
2157 static inline void
2158 __zio_execute(zio_t *zio)
2160 ASSERT3U(zio->io_queued_timestamp, >, 0);
2162 while (zio->io_stage < ZIO_STAGE_DONE) {
2163 enum zio_stage pipeline = zio->io_pipeline;
2164 enum zio_stage stage = zio->io_stage;
2166 zio->io_executor = curthread;
2168 ASSERT(!MUTEX_HELD(&zio->io_lock));
2169 ASSERT(ISP2(stage));
2170 ASSERT(zio->io_stall == NULL);
2172 do {
2173 stage <<= 1;
2174 } while ((stage & pipeline) == 0);
2176 ASSERT(stage <= ZIO_STAGE_DONE);
2179 * If we are in interrupt context and this pipeline stage
2180 * will grab a config lock that is held across I/O,
2181 * or may wait for an I/O that needs an interrupt thread
2182 * to complete, issue async to avoid deadlock.
2184 * For VDEV_IO_START, we cut in line so that the io will
2185 * be sent to disk promptly.
2187 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
2188 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
2189 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2190 zio_requeue_io_start_cut_in_line : B_FALSE;
2191 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2192 return;
2196 * If the current context doesn't have large enough stacks
2197 * the zio must be issued asynchronously to prevent overflow.
2199 if (zio_execute_stack_check(zio)) {
2200 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2201 zio_requeue_io_start_cut_in_line : B_FALSE;
2202 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2203 return;
2206 zio->io_stage = stage;
2207 zio->io_pipeline_trace |= zio->io_stage;
2210 * The zio pipeline stage returns the next zio to execute
2211 * (typically the same as this one), or NULL if we should
2212 * stop.
2214 zio = zio_pipeline[highbit64(stage) - 1](zio);
2216 if (zio == NULL)
2217 return;
2223 * ==========================================================================
2224 * Initiate I/O, either sync or async
2225 * ==========================================================================
2228 zio_wait(zio_t *zio)
2231 * Some routines, like zio_free_sync(), may return a NULL zio
2232 * to avoid the performance overhead of creating and then destroying
2233 * an unneeded zio. For the callers' simplicity, we accept a NULL
2234 * zio and ignore it.
2236 if (zio == NULL)
2237 return (0);
2239 long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
2240 int error;
2242 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
2243 ASSERT3P(zio->io_executor, ==, NULL);
2245 zio->io_waiter = curthread;
2246 ASSERT0(zio->io_queued_timestamp);
2247 zio->io_queued_timestamp = gethrtime();
2249 __zio_execute(zio);
2251 mutex_enter(&zio->io_lock);
2252 while (zio->io_executor != NULL) {
2253 error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
2254 ddi_get_lbolt() + timeout);
2256 if (zfs_deadman_enabled && error == -1 &&
2257 gethrtime() - zio->io_queued_timestamp >
2258 spa_deadman_ziotime(zio->io_spa)) {
2259 mutex_exit(&zio->io_lock);
2260 timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
2261 zio_deadman(zio, FTAG);
2262 mutex_enter(&zio->io_lock);
2265 mutex_exit(&zio->io_lock);
2267 error = zio->io_error;
2268 zio_destroy(zio);
2270 return (error);
2273 void
2274 zio_nowait(zio_t *zio)
2277 * See comment in zio_wait().
2279 if (zio == NULL)
2280 return;
2282 ASSERT3P(zio->io_executor, ==, NULL);
2284 if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2285 zio_unique_parent(zio) == NULL) {
2286 zio_t *pio;
2289 * This is a logical async I/O with no parent to wait for it.
2290 * We add it to the spa_async_root_zio "Godfather" I/O which
2291 * will ensure they complete prior to unloading the pool.
2293 spa_t *spa = zio->io_spa;
2294 pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE];
2296 zio_add_child(pio, zio);
2299 ASSERT0(zio->io_queued_timestamp);
2300 zio->io_queued_timestamp = gethrtime();
2301 __zio_execute(zio);
2305 * ==========================================================================
2306 * Reexecute, cancel, or suspend/resume failed I/O
2307 * ==========================================================================
2310 static void
2311 zio_reexecute(void *arg)
2313 zio_t *pio = arg;
2314 zio_t *cio, *cio_next;
2316 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2317 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2318 ASSERT(pio->io_gang_leader == NULL);
2319 ASSERT(pio->io_gang_tree == NULL);
2321 pio->io_flags = pio->io_orig_flags;
2322 pio->io_stage = pio->io_orig_stage;
2323 pio->io_pipeline = pio->io_orig_pipeline;
2324 pio->io_reexecute = 0;
2325 pio->io_flags |= ZIO_FLAG_REEXECUTED;
2326 pio->io_pipeline_trace = 0;
2327 pio->io_error = 0;
2328 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2329 pio->io_state[w] = 0;
2330 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2331 pio->io_child_error[c] = 0;
2333 if (IO_IS_ALLOCATING(pio))
2334 BP_ZERO(pio->io_bp);
2337 * As we reexecute pio's children, new children could be created.
2338 * New children go to the head of pio's io_child_list, however,
2339 * so we will (correctly) not reexecute them. The key is that
2340 * the remainder of pio's io_child_list, from 'cio_next' onward,
2341 * cannot be affected by any side effects of reexecuting 'cio'.
2343 zio_link_t *zl = NULL;
2344 mutex_enter(&pio->io_lock);
2345 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2346 cio_next = zio_walk_children(pio, &zl);
2347 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2348 pio->io_children[cio->io_child_type][w]++;
2349 mutex_exit(&pio->io_lock);
2350 zio_reexecute(cio);
2351 mutex_enter(&pio->io_lock);
2353 mutex_exit(&pio->io_lock);
2356 * Now that all children have been reexecuted, execute the parent.
2357 * We don't reexecute "The Godfather" I/O here as it's the
2358 * responsibility of the caller to wait on it.
2360 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2361 pio->io_queued_timestamp = gethrtime();
2362 __zio_execute(pio);
2366 void
2367 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2369 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2370 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2371 "failure and the failure mode property for this pool "
2372 "is set to panic.", spa_name(spa));
2374 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O "
2375 "failure and has been suspended.\n", spa_name(spa));
2377 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2378 NULL, NULL, 0);
2380 mutex_enter(&spa->spa_suspend_lock);
2382 if (spa->spa_suspend_zio_root == NULL)
2383 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2384 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2385 ZIO_FLAG_GODFATHER);
2387 spa->spa_suspended = reason;
2389 if (zio != NULL) {
2390 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2391 ASSERT(zio != spa->spa_suspend_zio_root);
2392 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2393 ASSERT(zio_unique_parent(zio) == NULL);
2394 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2395 zio_add_child(spa->spa_suspend_zio_root, zio);
2398 mutex_exit(&spa->spa_suspend_lock);
2402 zio_resume(spa_t *spa)
2404 zio_t *pio;
2407 * Reexecute all previously suspended i/o.
2409 mutex_enter(&spa->spa_suspend_lock);
2410 spa->spa_suspended = ZIO_SUSPEND_NONE;
2411 cv_broadcast(&spa->spa_suspend_cv);
2412 pio = spa->spa_suspend_zio_root;
2413 spa->spa_suspend_zio_root = NULL;
2414 mutex_exit(&spa->spa_suspend_lock);
2416 if (pio == NULL)
2417 return (0);
2419 zio_reexecute(pio);
2420 return (zio_wait(pio));
2423 void
2424 zio_resume_wait(spa_t *spa)
2426 mutex_enter(&spa->spa_suspend_lock);
2427 while (spa_suspended(spa))
2428 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2429 mutex_exit(&spa->spa_suspend_lock);
2433 * ==========================================================================
2434 * Gang blocks.
2436 * A gang block is a collection of small blocks that looks to the DMU
2437 * like one large block. When zio_dva_allocate() cannot find a block
2438 * of the requested size, due to either severe fragmentation or the pool
2439 * being nearly full, it calls zio_write_gang_block() to construct the
2440 * block from smaller fragments.
2442 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2443 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
2444 * an indirect block: it's an array of block pointers. It consumes
2445 * only one sector and hence is allocatable regardless of fragmentation.
2446 * The gang header's bps point to its gang members, which hold the data.
2448 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2449 * as the verifier to ensure uniqueness of the SHA256 checksum.
2450 * Critically, the gang block bp's blk_cksum is the checksum of the data,
2451 * not the gang header. This ensures that data block signatures (needed for
2452 * deduplication) are independent of how the block is physically stored.
2454 * Gang blocks can be nested: a gang member may itself be a gang block.
2455 * Thus every gang block is a tree in which root and all interior nodes are
2456 * gang headers, and the leaves are normal blocks that contain user data.
2457 * The root of the gang tree is called the gang leader.
2459 * To perform any operation (read, rewrite, free, claim) on a gang block,
2460 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2461 * in the io_gang_tree field of the original logical i/o by recursively
2462 * reading the gang leader and all gang headers below it. This yields
2463 * an in-core tree containing the contents of every gang header and the
2464 * bps for every constituent of the gang block.
2466 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2467 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
2468 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2469 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2470 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2471 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
2472 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2473 * of the gang header plus zio_checksum_compute() of the data to update the
2474 * gang header's blk_cksum as described above.
2476 * The two-phase assemble/issue model solves the problem of partial failure --
2477 * what if you'd freed part of a gang block but then couldn't read the
2478 * gang header for another part? Assembling the entire gang tree first
2479 * ensures that all the necessary gang header I/O has succeeded before
2480 * starting the actual work of free, claim, or write. Once the gang tree
2481 * is assembled, free and claim are in-memory operations that cannot fail.
2483 * In the event that a gang write fails, zio_dva_unallocate() walks the
2484 * gang tree to immediately free (i.e. insert back into the space map)
2485 * everything we've allocated. This ensures that we don't get ENOSPC
2486 * errors during repeated suspend/resume cycles due to a flaky device.
2488 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
2489 * the gang tree, we won't modify the block, so we can safely defer the free
2490 * (knowing that the block is still intact). If we *can* assemble the gang
2491 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2492 * each constituent bp and we can allocate a new block on the next sync pass.
2494 * In all cases, the gang tree allows complete recovery from partial failure.
2495 * ==========================================================================
2498 static void
2499 zio_gang_issue_func_done(zio_t *zio)
2501 abd_free(zio->io_abd);
2504 static zio_t *
2505 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2506 uint64_t offset)
2508 if (gn != NULL)
2509 return (pio);
2511 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2512 BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2513 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2514 &pio->io_bookmark));
2517 static zio_t *
2518 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2519 uint64_t offset)
2521 zio_t *zio;
2523 if (gn != NULL) {
2524 abd_t *gbh_abd =
2525 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2526 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2527 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2528 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2529 &pio->io_bookmark);
2531 * As we rewrite each gang header, the pipeline will compute
2532 * a new gang block header checksum for it; but no one will
2533 * compute a new data checksum, so we do that here. The one
2534 * exception is the gang leader: the pipeline already computed
2535 * its data checksum because that stage precedes gang assembly.
2536 * (Presently, nothing actually uses interior data checksums;
2537 * this is just good hygiene.)
2539 if (gn != pio->io_gang_leader->io_gang_tree) {
2540 abd_t *buf = abd_get_offset(data, offset);
2542 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2543 buf, BP_GET_PSIZE(bp));
2545 abd_free(buf);
2548 * If we are here to damage data for testing purposes,
2549 * leave the GBH alone so that we can detect the damage.
2551 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2552 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2553 } else {
2554 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2555 abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2556 zio_gang_issue_func_done, NULL, pio->io_priority,
2557 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2560 return (zio);
2563 static zio_t *
2564 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2565 uint64_t offset)
2567 (void) gn, (void) data, (void) offset;
2569 zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2570 ZIO_GANG_CHILD_FLAGS(pio));
2571 if (zio == NULL) {
2572 zio = zio_null(pio, pio->io_spa,
2573 NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio));
2575 return (zio);
2578 static zio_t *
2579 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2580 uint64_t offset)
2582 (void) gn, (void) data, (void) offset;
2583 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2584 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2587 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2588 NULL,
2589 zio_read_gang,
2590 zio_rewrite_gang,
2591 zio_free_gang,
2592 zio_claim_gang,
2593 NULL
2596 static void zio_gang_tree_assemble_done(zio_t *zio);
2598 static zio_gang_node_t *
2599 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2601 zio_gang_node_t *gn;
2603 ASSERT(*gnpp == NULL);
2605 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2606 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2607 *gnpp = gn;
2609 return (gn);
2612 static void
2613 zio_gang_node_free(zio_gang_node_t **gnpp)
2615 zio_gang_node_t *gn = *gnpp;
2617 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2618 ASSERT(gn->gn_child[g] == NULL);
2620 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2621 kmem_free(gn, sizeof (*gn));
2622 *gnpp = NULL;
2625 static void
2626 zio_gang_tree_free(zio_gang_node_t **gnpp)
2628 zio_gang_node_t *gn = *gnpp;
2630 if (gn == NULL)
2631 return;
2633 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2634 zio_gang_tree_free(&gn->gn_child[g]);
2636 zio_gang_node_free(gnpp);
2639 static void
2640 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2642 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2643 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2645 ASSERT(gio->io_gang_leader == gio);
2646 ASSERT(BP_IS_GANG(bp));
2648 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2649 zio_gang_tree_assemble_done, gn, gio->io_priority,
2650 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2653 static void
2654 zio_gang_tree_assemble_done(zio_t *zio)
2656 zio_t *gio = zio->io_gang_leader;
2657 zio_gang_node_t *gn = zio->io_private;
2658 blkptr_t *bp = zio->io_bp;
2660 ASSERT(gio == zio_unique_parent(zio));
2661 ASSERT(zio->io_child_count == 0);
2663 if (zio->io_error)
2664 return;
2666 /* this ABD was created from a linear buf in zio_gang_tree_assemble */
2667 if (BP_SHOULD_BYTESWAP(bp))
2668 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2670 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2671 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2672 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2674 abd_free(zio->io_abd);
2676 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2677 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2678 if (!BP_IS_GANG(gbp))
2679 continue;
2680 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2684 static void
2685 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2686 uint64_t offset)
2688 zio_t *gio = pio->io_gang_leader;
2689 zio_t *zio;
2691 ASSERT(BP_IS_GANG(bp) == !!gn);
2692 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2693 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2696 * If you're a gang header, your data is in gn->gn_gbh.
2697 * If you're a gang member, your data is in 'data' and gn == NULL.
2699 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2701 if (gn != NULL) {
2702 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2704 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2705 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2706 if (BP_IS_HOLE(gbp))
2707 continue;
2708 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2709 offset);
2710 offset += BP_GET_PSIZE(gbp);
2714 if (gn == gio->io_gang_tree)
2715 ASSERT3U(gio->io_size, ==, offset);
2717 if (zio != pio)
2718 zio_nowait(zio);
2721 static zio_t *
2722 zio_gang_assemble(zio_t *zio)
2724 blkptr_t *bp = zio->io_bp;
2726 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2727 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2729 zio->io_gang_leader = zio;
2731 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2733 return (zio);
2736 static zio_t *
2737 zio_gang_issue(zio_t *zio)
2739 blkptr_t *bp = zio->io_bp;
2741 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2742 return (NULL);
2745 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2746 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2748 if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2749 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2751 else
2752 zio_gang_tree_free(&zio->io_gang_tree);
2754 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2756 return (zio);
2759 static void
2760 zio_write_gang_member_ready(zio_t *zio)
2762 zio_t *pio = zio_unique_parent(zio);
2763 dva_t *cdva = zio->io_bp->blk_dva;
2764 dva_t *pdva = pio->io_bp->blk_dva;
2765 uint64_t asize;
2766 zio_t *gio __maybe_unused = zio->io_gang_leader;
2768 if (BP_IS_HOLE(zio->io_bp))
2769 return;
2771 ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2773 ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2774 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2775 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2776 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2777 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2779 mutex_enter(&pio->io_lock);
2780 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2781 ASSERT(DVA_GET_GANG(&pdva[d]));
2782 asize = DVA_GET_ASIZE(&pdva[d]);
2783 asize += DVA_GET_ASIZE(&cdva[d]);
2784 DVA_SET_ASIZE(&pdva[d], asize);
2786 mutex_exit(&pio->io_lock);
2789 static void
2790 zio_write_gang_done(zio_t *zio)
2793 * The io_abd field will be NULL for a zio with no data. The io_flags
2794 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2795 * check for it here as it is cleared in zio_ready.
2797 if (zio->io_abd != NULL)
2798 abd_free(zio->io_abd);
2801 static zio_t *
2802 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc)
2804 spa_t *spa = pio->io_spa;
2805 blkptr_t *bp = pio->io_bp;
2806 zio_t *gio = pio->io_gang_leader;
2807 zio_t *zio;
2808 zio_gang_node_t *gn, **gnpp;
2809 zio_gbh_phys_t *gbh;
2810 abd_t *gbh_abd;
2811 uint64_t txg = pio->io_txg;
2812 uint64_t resid = pio->io_size;
2813 uint64_t lsize;
2814 int copies = gio->io_prop.zp_copies;
2815 int gbh_copies;
2816 zio_prop_t zp;
2817 int error;
2818 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2821 * encrypted blocks need DVA[2] free so encrypted gang headers can't
2822 * have a third copy.
2824 gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2825 if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP)
2826 gbh_copies = SPA_DVAS_PER_BP - 1;
2828 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2829 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2830 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2831 ASSERT(has_data);
2833 flags |= METASLAB_ASYNC_ALLOC;
2834 VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator].
2835 mca_alloc_slots, pio));
2838 * The logical zio has already placed a reservation for
2839 * 'copies' allocation slots but gang blocks may require
2840 * additional copies. These additional copies
2841 * (i.e. gbh_copies - copies) are guaranteed to succeed
2842 * since metaslab_class_throttle_reserve() always allows
2843 * additional reservations for gang blocks.
2845 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2846 pio->io_allocator, pio, flags));
2849 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2850 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2851 &pio->io_alloc_list, pio, pio->io_allocator);
2852 if (error) {
2853 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2854 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2855 ASSERT(has_data);
2858 * If we failed to allocate the gang block header then
2859 * we remove any additional allocation reservations that
2860 * we placed here. The original reservation will
2861 * be removed when the logical I/O goes to the ready
2862 * stage.
2864 metaslab_class_throttle_unreserve(mc,
2865 gbh_copies - copies, pio->io_allocator, pio);
2868 pio->io_error = error;
2869 return (pio);
2872 if (pio == gio) {
2873 gnpp = &gio->io_gang_tree;
2874 } else {
2875 gnpp = pio->io_private;
2876 ASSERT(pio->io_ready == zio_write_gang_member_ready);
2879 gn = zio_gang_node_alloc(gnpp);
2880 gbh = gn->gn_gbh;
2881 memset(gbh, 0, SPA_GANGBLOCKSIZE);
2882 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2885 * Create the gang header.
2887 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2888 zio_write_gang_done, NULL, pio->io_priority,
2889 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2892 * Create and nowait the gang children.
2894 for (int g = 0; resid != 0; resid -= lsize, g++) {
2895 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2896 SPA_MINBLOCKSIZE);
2897 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2899 zp.zp_checksum = gio->io_prop.zp_checksum;
2900 zp.zp_compress = ZIO_COMPRESS_OFF;
2901 zp.zp_complevel = gio->io_prop.zp_complevel;
2902 zp.zp_type = DMU_OT_NONE;
2903 zp.zp_level = 0;
2904 zp.zp_copies = gio->io_prop.zp_copies;
2905 zp.zp_dedup = B_FALSE;
2906 zp.zp_dedup_verify = B_FALSE;
2907 zp.zp_nopwrite = B_FALSE;
2908 zp.zp_encrypt = gio->io_prop.zp_encrypt;
2909 zp.zp_byteorder = gio->io_prop.zp_byteorder;
2910 memset(zp.zp_salt, 0, ZIO_DATA_SALT_LEN);
2911 memset(zp.zp_iv, 0, ZIO_DATA_IV_LEN);
2912 memset(zp.zp_mac, 0, ZIO_DATA_MAC_LEN);
2914 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2915 has_data ? abd_get_offset(pio->io_abd, pio->io_size -
2916 resid) : NULL, lsize, lsize, &zp,
2917 zio_write_gang_member_ready, NULL, NULL,
2918 zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2919 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2921 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2922 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2923 ASSERT(has_data);
2926 * Gang children won't throttle but we should
2927 * account for their work, so reserve an allocation
2928 * slot for them here.
2930 VERIFY(metaslab_class_throttle_reserve(mc,
2931 zp.zp_copies, cio->io_allocator, cio, flags));
2933 zio_nowait(cio);
2937 * Set pio's pipeline to just wait for zio to finish.
2939 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2942 * We didn't allocate this bp, so make sure it doesn't get unmarked.
2944 pio->io_flags &= ~ZIO_FLAG_FASTWRITE;
2946 zio_nowait(zio);
2948 return (pio);
2952 * The zio_nop_write stage in the pipeline determines if allocating a
2953 * new bp is necessary. The nopwrite feature can handle writes in
2954 * either syncing or open context (i.e. zil writes) and as a result is
2955 * mutually exclusive with dedup.
2957 * By leveraging a cryptographically secure checksum, such as SHA256, we
2958 * can compare the checksums of the new data and the old to determine if
2959 * allocating a new block is required. Note that our requirements for
2960 * cryptographic strength are fairly weak: there can't be any accidental
2961 * hash collisions, but we don't need to be secure against intentional
2962 * (malicious) collisions. To trigger a nopwrite, you have to be able
2963 * to write the file to begin with, and triggering an incorrect (hash
2964 * collision) nopwrite is no worse than simply writing to the file.
2965 * That said, there are no known attacks against the checksum algorithms
2966 * used for nopwrite, assuming that the salt and the checksums
2967 * themselves remain secret.
2969 static zio_t *
2970 zio_nop_write(zio_t *zio)
2972 blkptr_t *bp = zio->io_bp;
2973 blkptr_t *bp_orig = &zio->io_bp_orig;
2974 zio_prop_t *zp = &zio->io_prop;
2976 ASSERT(BP_GET_LEVEL(bp) == 0);
2977 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2978 ASSERT(zp->zp_nopwrite);
2979 ASSERT(!zp->zp_dedup);
2980 ASSERT(zio->io_bp_override == NULL);
2981 ASSERT(IO_IS_ALLOCATING(zio));
2984 * Check to see if the original bp and the new bp have matching
2985 * characteristics (i.e. same checksum, compression algorithms, etc).
2986 * If they don't then just continue with the pipeline which will
2987 * allocate a new bp.
2989 if (BP_IS_HOLE(bp_orig) ||
2990 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2991 ZCHECKSUM_FLAG_NOPWRITE) ||
2992 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
2993 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2994 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2995 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2996 zp->zp_copies != BP_GET_NDVAS(bp_orig))
2997 return (zio);
3000 * If the checksums match then reset the pipeline so that we
3001 * avoid allocating a new bp and issuing any I/O.
3003 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
3004 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
3005 ZCHECKSUM_FLAG_NOPWRITE);
3006 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
3007 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
3008 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
3009 ASSERT(memcmp(&bp->blk_prop, &bp_orig->blk_prop,
3010 sizeof (uint64_t)) == 0);
3013 * If we're overwriting a block that is currently on an
3014 * indirect vdev, then ignore the nopwrite request and
3015 * allow a new block to be allocated on a concrete vdev.
3017 spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER);
3018 vdev_t *tvd = vdev_lookup_top(zio->io_spa,
3019 DVA_GET_VDEV(&bp->blk_dva[0]));
3020 if (tvd->vdev_ops == &vdev_indirect_ops) {
3021 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3022 return (zio);
3024 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3026 *bp = *bp_orig;
3027 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3028 zio->io_flags |= ZIO_FLAG_NOPWRITE;
3031 return (zio);
3035 * ==========================================================================
3036 * Dedup
3037 * ==========================================================================
3039 static void
3040 zio_ddt_child_read_done(zio_t *zio)
3042 blkptr_t *bp = zio->io_bp;
3043 ddt_entry_t *dde = zio->io_private;
3044 ddt_phys_t *ddp;
3045 zio_t *pio = zio_unique_parent(zio);
3047 mutex_enter(&pio->io_lock);
3048 ddp = ddt_phys_select(dde, bp);
3049 if (zio->io_error == 0)
3050 ddt_phys_clear(ddp); /* this ddp doesn't need repair */
3052 if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
3053 dde->dde_repair_abd = zio->io_abd;
3054 else
3055 abd_free(zio->io_abd);
3056 mutex_exit(&pio->io_lock);
3059 static zio_t *
3060 zio_ddt_read_start(zio_t *zio)
3062 blkptr_t *bp = zio->io_bp;
3064 ASSERT(BP_GET_DEDUP(bp));
3065 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3066 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3068 if (zio->io_child_error[ZIO_CHILD_DDT]) {
3069 ddt_t *ddt = ddt_select(zio->io_spa, bp);
3070 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
3071 ddt_phys_t *ddp = dde->dde_phys;
3072 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
3073 blkptr_t blk;
3075 ASSERT(zio->io_vsd == NULL);
3076 zio->io_vsd = dde;
3078 if (ddp_self == NULL)
3079 return (zio);
3081 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
3082 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
3083 continue;
3084 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
3085 &blk);
3086 zio_nowait(zio_read(zio, zio->io_spa, &blk,
3087 abd_alloc_for_io(zio->io_size, B_TRUE),
3088 zio->io_size, zio_ddt_child_read_done, dde,
3089 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
3090 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
3092 return (zio);
3095 zio_nowait(zio_read(zio, zio->io_spa, bp,
3096 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
3097 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
3099 return (zio);
3102 static zio_t *
3103 zio_ddt_read_done(zio_t *zio)
3105 blkptr_t *bp = zio->io_bp;
3107 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
3108 return (NULL);
3111 ASSERT(BP_GET_DEDUP(bp));
3112 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3113 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3115 if (zio->io_child_error[ZIO_CHILD_DDT]) {
3116 ddt_t *ddt = ddt_select(zio->io_spa, bp);
3117 ddt_entry_t *dde = zio->io_vsd;
3118 if (ddt == NULL) {
3119 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
3120 return (zio);
3122 if (dde == NULL) {
3123 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
3124 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
3125 return (NULL);
3127 if (dde->dde_repair_abd != NULL) {
3128 abd_copy(zio->io_abd, dde->dde_repair_abd,
3129 zio->io_size);
3130 zio->io_child_error[ZIO_CHILD_DDT] = 0;
3132 ddt_repair_done(ddt, dde);
3133 zio->io_vsd = NULL;
3136 ASSERT(zio->io_vsd == NULL);
3138 return (zio);
3141 static boolean_t
3142 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
3144 spa_t *spa = zio->io_spa;
3145 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
3147 ASSERT(!(zio->io_bp_override && do_raw));
3150 * Note: we compare the original data, not the transformed data,
3151 * because when zio->io_bp is an override bp, we will not have
3152 * pushed the I/O transforms. That's an important optimization
3153 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3154 * However, we should never get a raw, override zio so in these
3155 * cases we can compare the io_abd directly. This is useful because
3156 * it allows us to do dedup verification even if we don't have access
3157 * to the original data (for instance, if the encryption keys aren't
3158 * loaded).
3161 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3162 zio_t *lio = dde->dde_lead_zio[p];
3164 if (lio != NULL && do_raw) {
3165 return (lio->io_size != zio->io_size ||
3166 abd_cmp(zio->io_abd, lio->io_abd) != 0);
3167 } else if (lio != NULL) {
3168 return (lio->io_orig_size != zio->io_orig_size ||
3169 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
3173 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3174 ddt_phys_t *ddp = &dde->dde_phys[p];
3176 if (ddp->ddp_phys_birth != 0 && do_raw) {
3177 blkptr_t blk = *zio->io_bp;
3178 uint64_t psize;
3179 abd_t *tmpabd;
3180 int error;
3182 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3183 psize = BP_GET_PSIZE(&blk);
3185 if (psize != zio->io_size)
3186 return (B_TRUE);
3188 ddt_exit(ddt);
3190 tmpabd = abd_alloc_for_io(psize, B_TRUE);
3192 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
3193 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
3194 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3195 ZIO_FLAG_RAW, &zio->io_bookmark));
3197 if (error == 0) {
3198 if (abd_cmp(tmpabd, zio->io_abd) != 0)
3199 error = SET_ERROR(ENOENT);
3202 abd_free(tmpabd);
3203 ddt_enter(ddt);
3204 return (error != 0);
3205 } else if (ddp->ddp_phys_birth != 0) {
3206 arc_buf_t *abuf = NULL;
3207 arc_flags_t aflags = ARC_FLAG_WAIT;
3208 blkptr_t blk = *zio->io_bp;
3209 int error;
3211 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3213 if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
3214 return (B_TRUE);
3216 ddt_exit(ddt);
3218 error = arc_read(NULL, spa, &blk,
3219 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
3220 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3221 &aflags, &zio->io_bookmark);
3223 if (error == 0) {
3224 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
3225 zio->io_orig_size) != 0)
3226 error = SET_ERROR(ENOENT);
3227 arc_buf_destroy(abuf, &abuf);
3230 ddt_enter(ddt);
3231 return (error != 0);
3235 return (B_FALSE);
3238 static void
3239 zio_ddt_child_write_ready(zio_t *zio)
3241 int p = zio->io_prop.zp_copies;
3242 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3243 ddt_entry_t *dde = zio->io_private;
3244 ddt_phys_t *ddp = &dde->dde_phys[p];
3245 zio_t *pio;
3247 if (zio->io_error)
3248 return;
3250 ddt_enter(ddt);
3252 ASSERT(dde->dde_lead_zio[p] == zio);
3254 ddt_phys_fill(ddp, zio->io_bp);
3256 zio_link_t *zl = NULL;
3257 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
3258 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
3260 ddt_exit(ddt);
3263 static void
3264 zio_ddt_child_write_done(zio_t *zio)
3266 int p = zio->io_prop.zp_copies;
3267 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3268 ddt_entry_t *dde = zio->io_private;
3269 ddt_phys_t *ddp = &dde->dde_phys[p];
3271 ddt_enter(ddt);
3273 ASSERT(ddp->ddp_refcnt == 0);
3274 ASSERT(dde->dde_lead_zio[p] == zio);
3275 dde->dde_lead_zio[p] = NULL;
3277 if (zio->io_error == 0) {
3278 zio_link_t *zl = NULL;
3279 while (zio_walk_parents(zio, &zl) != NULL)
3280 ddt_phys_addref(ddp);
3281 } else {
3282 ddt_phys_clear(ddp);
3285 ddt_exit(ddt);
3288 static zio_t *
3289 zio_ddt_write(zio_t *zio)
3291 spa_t *spa = zio->io_spa;
3292 blkptr_t *bp = zio->io_bp;
3293 uint64_t txg = zio->io_txg;
3294 zio_prop_t *zp = &zio->io_prop;
3295 int p = zp->zp_copies;
3296 zio_t *cio = NULL;
3297 ddt_t *ddt = ddt_select(spa, bp);
3298 ddt_entry_t *dde;
3299 ddt_phys_t *ddp;
3301 ASSERT(BP_GET_DEDUP(bp));
3302 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3303 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3304 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3306 ddt_enter(ddt);
3307 dde = ddt_lookup(ddt, bp, B_TRUE);
3308 ddp = &dde->dde_phys[p];
3310 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3312 * If we're using a weak checksum, upgrade to a strong checksum
3313 * and try again. If we're already using a strong checksum,
3314 * we can't resolve it, so just convert to an ordinary write.
3315 * (And automatically e-mail a paper to Nature?)
3317 if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3318 ZCHECKSUM_FLAG_DEDUP)) {
3319 zp->zp_checksum = spa_dedup_checksum(spa);
3320 zio_pop_transforms(zio);
3321 zio->io_stage = ZIO_STAGE_OPEN;
3322 BP_ZERO(bp);
3323 } else {
3324 zp->zp_dedup = B_FALSE;
3325 BP_SET_DEDUP(bp, B_FALSE);
3327 ASSERT(!BP_GET_DEDUP(bp));
3328 zio->io_pipeline = ZIO_WRITE_PIPELINE;
3329 ddt_exit(ddt);
3330 return (zio);
3333 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3334 if (ddp->ddp_phys_birth != 0)
3335 ddt_bp_fill(ddp, bp, txg);
3336 if (dde->dde_lead_zio[p] != NULL)
3337 zio_add_child(zio, dde->dde_lead_zio[p]);
3338 else
3339 ddt_phys_addref(ddp);
3340 } else if (zio->io_bp_override) {
3341 ASSERT(bp->blk_birth == txg);
3342 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3343 ddt_phys_fill(ddp, bp);
3344 ddt_phys_addref(ddp);
3345 } else {
3346 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3347 zio->io_orig_size, zio->io_orig_size, zp,
3348 zio_ddt_child_write_ready, NULL, NULL,
3349 zio_ddt_child_write_done, dde, zio->io_priority,
3350 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3352 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3353 dde->dde_lead_zio[p] = cio;
3356 ddt_exit(ddt);
3358 zio_nowait(cio);
3360 return (zio);
3363 ddt_entry_t *freedde; /* for debugging */
3365 static zio_t *
3366 zio_ddt_free(zio_t *zio)
3368 spa_t *spa = zio->io_spa;
3369 blkptr_t *bp = zio->io_bp;
3370 ddt_t *ddt = ddt_select(spa, bp);
3371 ddt_entry_t *dde;
3372 ddt_phys_t *ddp;
3374 ASSERT(BP_GET_DEDUP(bp));
3375 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3377 ddt_enter(ddt);
3378 freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3379 if (dde) {
3380 ddp = ddt_phys_select(dde, bp);
3381 if (ddp)
3382 ddt_phys_decref(ddp);
3384 ddt_exit(ddt);
3386 return (zio);
3390 * ==========================================================================
3391 * Allocate and free blocks
3392 * ==========================================================================
3395 static zio_t *
3396 zio_io_to_allocate(spa_t *spa, int allocator)
3398 zio_t *zio;
3400 ASSERT(MUTEX_HELD(&spa->spa_allocs[allocator].spaa_lock));
3402 zio = avl_first(&spa->spa_allocs[allocator].spaa_tree);
3403 if (zio == NULL)
3404 return (NULL);
3406 ASSERT(IO_IS_ALLOCATING(zio));
3409 * Try to place a reservation for this zio. If we're unable to
3410 * reserve then we throttle.
3412 ASSERT3U(zio->io_allocator, ==, allocator);
3413 if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
3414 zio->io_prop.zp_copies, allocator, zio, 0)) {
3415 return (NULL);
3418 avl_remove(&spa->spa_allocs[allocator].spaa_tree, zio);
3419 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3421 return (zio);
3424 static zio_t *
3425 zio_dva_throttle(zio_t *zio)
3427 spa_t *spa = zio->io_spa;
3428 zio_t *nio;
3429 metaslab_class_t *mc;
3431 /* locate an appropriate allocation class */
3432 mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type,
3433 zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk);
3435 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3436 !mc->mc_alloc_throttle_enabled ||
3437 zio->io_child_type == ZIO_CHILD_GANG ||
3438 zio->io_flags & ZIO_FLAG_NODATA) {
3439 return (zio);
3442 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3443 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3444 ASSERT3U(zio->io_queued_timestamp, >, 0);
3445 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3447 zbookmark_phys_t *bm = &zio->io_bookmark;
3449 * We want to try to use as many allocators as possible to help improve
3450 * performance, but we also want logically adjacent IOs to be physically
3451 * adjacent to improve sequential read performance. We chunk each object
3452 * into 2^20 block regions, and then hash based on the objset, object,
3453 * level, and region to accomplish both of these goals.
3455 int allocator = (uint_t)cityhash4(bm->zb_objset, bm->zb_object,
3456 bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
3457 zio->io_allocator = allocator;
3458 zio->io_metaslab_class = mc;
3459 mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3460 avl_add(&spa->spa_allocs[allocator].spaa_tree, zio);
3461 nio = zio_io_to_allocate(spa, allocator);
3462 mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3463 return (nio);
3466 static void
3467 zio_allocate_dispatch(spa_t *spa, int allocator)
3469 zio_t *zio;
3471 mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3472 zio = zio_io_to_allocate(spa, allocator);
3473 mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3474 if (zio == NULL)
3475 return;
3477 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3478 ASSERT0(zio->io_error);
3479 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3482 static zio_t *
3483 zio_dva_allocate(zio_t *zio)
3485 spa_t *spa = zio->io_spa;
3486 metaslab_class_t *mc;
3487 blkptr_t *bp = zio->io_bp;
3488 int error;
3489 int flags = 0;
3491 if (zio->io_gang_leader == NULL) {
3492 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3493 zio->io_gang_leader = zio;
3496 ASSERT(BP_IS_HOLE(bp));
3497 ASSERT0(BP_GET_NDVAS(bp));
3498 ASSERT3U(zio->io_prop.zp_copies, >, 0);
3499 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3500 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3502 flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0;
3503 if (zio->io_flags & ZIO_FLAG_NODATA)
3504 flags |= METASLAB_DONT_THROTTLE;
3505 if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3506 flags |= METASLAB_GANG_CHILD;
3507 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3508 flags |= METASLAB_ASYNC_ALLOC;
3511 * if not already chosen, locate an appropriate allocation class
3513 mc = zio->io_metaslab_class;
3514 if (mc == NULL) {
3515 mc = spa_preferred_class(spa, zio->io_size,
3516 zio->io_prop.zp_type, zio->io_prop.zp_level,
3517 zio->io_prop.zp_zpl_smallblk);
3518 zio->io_metaslab_class = mc;
3522 * Try allocating the block in the usual metaslab class.
3523 * If that's full, allocate it in the normal class.
3524 * If that's full, allocate as a gang block,
3525 * and if all are full, the allocation fails (which shouldn't happen).
3527 * Note that we do not fall back on embedded slog (ZIL) space, to
3528 * preserve unfragmented slog space, which is critical for decent
3529 * sync write performance. If a log allocation fails, we will fall
3530 * back to spa_sync() which is abysmal for performance.
3532 error = metaslab_alloc(spa, mc, zio->io_size, bp,
3533 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3534 &zio->io_alloc_list, zio, zio->io_allocator);
3537 * Fallback to normal class when an alloc class is full
3539 if (error == ENOSPC && mc != spa_normal_class(spa)) {
3541 * If throttling, transfer reservation over to normal class.
3542 * The io_allocator slot can remain the same even though we
3543 * are switching classes.
3545 if (mc->mc_alloc_throttle_enabled &&
3546 (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
3547 metaslab_class_throttle_unreserve(mc,
3548 zio->io_prop.zp_copies, zio->io_allocator, zio);
3549 zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
3551 VERIFY(metaslab_class_throttle_reserve(
3552 spa_normal_class(spa),
3553 zio->io_prop.zp_copies, zio->io_allocator, zio,
3554 flags | METASLAB_MUST_RESERVE));
3556 zio->io_metaslab_class = mc = spa_normal_class(spa);
3557 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3558 zfs_dbgmsg("%s: metaslab allocation failure, "
3559 "trying normal class: zio %px, size %llu, error %d",
3560 spa_name(spa), zio, (u_longlong_t)zio->io_size,
3561 error);
3564 error = metaslab_alloc(spa, mc, zio->io_size, bp,
3565 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3566 &zio->io_alloc_list, zio, zio->io_allocator);
3569 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) {
3570 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3571 zfs_dbgmsg("%s: metaslab allocation failure, "
3572 "trying ganging: zio %px, size %llu, error %d",
3573 spa_name(spa), zio, (u_longlong_t)zio->io_size,
3574 error);
3576 return (zio_write_gang_block(zio, mc));
3578 if (error != 0) {
3579 if (error != ENOSPC ||
3580 (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) {
3581 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
3582 "size %llu, error %d",
3583 spa_name(spa), zio, (u_longlong_t)zio->io_size,
3584 error);
3586 zio->io_error = error;
3589 return (zio);
3592 static zio_t *
3593 zio_dva_free(zio_t *zio)
3595 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3597 return (zio);
3600 static zio_t *
3601 zio_dva_claim(zio_t *zio)
3603 int error;
3605 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3606 if (error)
3607 zio->io_error = error;
3609 return (zio);
3613 * Undo an allocation. This is used by zio_done() when an I/O fails
3614 * and we want to give back the block we just allocated.
3615 * This handles both normal blocks and gang blocks.
3617 static void
3618 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3620 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3621 ASSERT(zio->io_bp_override == NULL);
3623 if (!BP_IS_HOLE(bp))
3624 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3626 if (gn != NULL) {
3627 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3628 zio_dva_unallocate(zio, gn->gn_child[g],
3629 &gn->gn_gbh->zg_blkptr[g]);
3635 * Try to allocate an intent log block. Return 0 on success, errno on failure.
3638 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3639 uint64_t size, boolean_t *slog)
3641 int error = 1;
3642 zio_alloc_list_t io_alloc_list;
3644 ASSERT(txg > spa_syncing_txg(spa));
3646 metaslab_trace_init(&io_alloc_list);
3649 * Block pointer fields are useful to metaslabs for stats and debugging.
3650 * Fill in the obvious ones before calling into metaslab_alloc().
3652 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3653 BP_SET_PSIZE(new_bp, size);
3654 BP_SET_LEVEL(new_bp, 0);
3657 * When allocating a zil block, we don't have information about
3658 * the final destination of the block except the objset it's part
3659 * of, so we just hash the objset ID to pick the allocator to get
3660 * some parallelism.
3662 int flags = METASLAB_FASTWRITE | METASLAB_ZIL;
3663 int allocator = (uint_t)cityhash4(0, 0, 0,
3664 os->os_dsl_dataset->ds_object) % spa->spa_alloc_count;
3665 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3666 txg, NULL, flags, &io_alloc_list, NULL, allocator);
3667 *slog = (error == 0);
3668 if (error != 0) {
3669 error = metaslab_alloc(spa, spa_embedded_log_class(spa), size,
3670 new_bp, 1, txg, NULL, flags,
3671 &io_alloc_list, NULL, allocator);
3673 if (error != 0) {
3674 error = metaslab_alloc(spa, spa_normal_class(spa), size,
3675 new_bp, 1, txg, NULL, flags,
3676 &io_alloc_list, NULL, allocator);
3678 metaslab_trace_fini(&io_alloc_list);
3680 if (error == 0) {
3681 BP_SET_LSIZE(new_bp, size);
3682 BP_SET_PSIZE(new_bp, size);
3683 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3684 BP_SET_CHECKSUM(new_bp,
3685 spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3686 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3687 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3688 BP_SET_LEVEL(new_bp, 0);
3689 BP_SET_DEDUP(new_bp, 0);
3690 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3693 * encrypted blocks will require an IV and salt. We generate
3694 * these now since we will not be rewriting the bp at
3695 * rewrite time.
3697 if (os->os_encrypted) {
3698 uint8_t iv[ZIO_DATA_IV_LEN];
3699 uint8_t salt[ZIO_DATA_SALT_LEN];
3701 BP_SET_CRYPT(new_bp, B_TRUE);
3702 VERIFY0(spa_crypt_get_salt(spa,
3703 dmu_objset_id(os), salt));
3704 VERIFY0(zio_crypt_generate_iv(iv));
3706 zio_crypt_encode_params_bp(new_bp, salt, iv);
3708 } else {
3709 zfs_dbgmsg("%s: zil block allocation failure: "
3710 "size %llu, error %d", spa_name(spa), (u_longlong_t)size,
3711 error);
3714 return (error);
3718 * ==========================================================================
3719 * Read and write to physical devices
3720 * ==========================================================================
3724 * Issue an I/O to the underlying vdev. Typically the issue pipeline
3725 * stops after this stage and will resume upon I/O completion.
3726 * However, there are instances where the vdev layer may need to
3727 * continue the pipeline when an I/O was not issued. Since the I/O
3728 * that was sent to the vdev layer might be different than the one
3729 * currently active in the pipeline (see vdev_queue_io()), we explicitly
3730 * force the underlying vdev layers to call either zio_execute() or
3731 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3733 static zio_t *
3734 zio_vdev_io_start(zio_t *zio)
3736 vdev_t *vd = zio->io_vd;
3737 uint64_t align;
3738 spa_t *spa = zio->io_spa;
3740 zio->io_delay = 0;
3742 ASSERT(zio->io_error == 0);
3743 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3745 if (vd == NULL) {
3746 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3747 spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3750 * The mirror_ops handle multiple DVAs in a single BP.
3752 vdev_mirror_ops.vdev_op_io_start(zio);
3753 return (NULL);
3756 ASSERT3P(zio->io_logical, !=, zio);
3757 if (zio->io_type == ZIO_TYPE_WRITE) {
3758 ASSERT(spa->spa_trust_config);
3761 * Note: the code can handle other kinds of writes,
3762 * but we don't expect them.
3764 if (zio->io_vd->vdev_noalloc) {
3765 ASSERT(zio->io_flags &
3766 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3767 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3771 align = 1ULL << vd->vdev_top->vdev_ashift;
3773 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3774 P2PHASE(zio->io_size, align) != 0) {
3775 /* Transform logical writes to be a full physical block size. */
3776 uint64_t asize = P2ROUNDUP(zio->io_size, align);
3777 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3778 ASSERT(vd == vd->vdev_top);
3779 if (zio->io_type == ZIO_TYPE_WRITE) {
3780 abd_copy(abuf, zio->io_abd, zio->io_size);
3781 abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3783 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3787 * If this is not a physical io, make sure that it is properly aligned
3788 * before proceeding.
3790 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3791 ASSERT0(P2PHASE(zio->io_offset, align));
3792 ASSERT0(P2PHASE(zio->io_size, align));
3793 } else {
3795 * For physical writes, we allow 512b aligned writes and assume
3796 * the device will perform a read-modify-write as necessary.
3798 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3799 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3802 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3805 * If this is a repair I/O, and there's no self-healing involved --
3806 * that is, we're just resilvering what we expect to resilver --
3807 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3808 * This prevents spurious resilvering.
3810 * There are a few ways that we can end up creating these spurious
3811 * resilver i/os:
3813 * 1. A resilver i/o will be issued if any DVA in the BP has a
3814 * dirty DTL. The mirror code will issue resilver writes to
3815 * each DVA, including the one(s) that are not on vdevs with dirty
3816 * DTLs.
3818 * 2. With nested replication, which happens when we have a
3819 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3820 * For example, given mirror(replacing(A+B), C), it's likely that
3821 * only A is out of date (it's the new device). In this case, we'll
3822 * read from C, then use the data to resilver A+B -- but we don't
3823 * actually want to resilver B, just A. The top-level mirror has no
3824 * way to know this, so instead we just discard unnecessary repairs
3825 * as we work our way down the vdev tree.
3827 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3828 * The same logic applies to any form of nested replication: ditto
3829 * + mirror, RAID-Z + replacing, etc.
3831 * However, indirect vdevs point off to other vdevs which may have
3832 * DTL's, so we never bypass them. The child i/os on concrete vdevs
3833 * will be properly bypassed instead.
3835 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from
3836 * a dRAID spare vdev. For example, when a dRAID spare is first
3837 * used, its spare blocks need to be written to but the leaf vdev's
3838 * of such blocks can have empty DTL_PARTIAL.
3840 * There seemed no clean way to allow such writes while bypassing
3841 * spurious ones. At this point, just avoid all bypassing for dRAID
3842 * for correctness.
3844 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3845 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3846 zio->io_txg != 0 && /* not a delegated i/o */
3847 vd->vdev_ops != &vdev_indirect_ops &&
3848 vd->vdev_top->vdev_ops != &vdev_draid_ops &&
3849 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3850 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3851 zio_vdev_io_bypass(zio);
3852 return (zio);
3856 * Select the next best leaf I/O to process. Distributed spares are
3857 * excluded since they dispatch the I/O directly to a leaf vdev after
3858 * applying the dRAID mapping.
3860 if (vd->vdev_ops->vdev_op_leaf &&
3861 vd->vdev_ops != &vdev_draid_spare_ops &&
3862 (zio->io_type == ZIO_TYPE_READ ||
3863 zio->io_type == ZIO_TYPE_WRITE ||
3864 zio->io_type == ZIO_TYPE_TRIM)) {
3866 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3867 return (zio);
3869 if ((zio = vdev_queue_io(zio)) == NULL)
3870 return (NULL);
3872 if (!vdev_accessible(vd, zio)) {
3873 zio->io_error = SET_ERROR(ENXIO);
3874 zio_interrupt(zio);
3875 return (NULL);
3877 zio->io_delay = gethrtime();
3880 vd->vdev_ops->vdev_op_io_start(zio);
3881 return (NULL);
3884 static zio_t *
3885 zio_vdev_io_done(zio_t *zio)
3887 vdev_t *vd = zio->io_vd;
3888 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3889 boolean_t unexpected_error = B_FALSE;
3891 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3892 return (NULL);
3895 ASSERT(zio->io_type == ZIO_TYPE_READ ||
3896 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM);
3898 if (zio->io_delay)
3899 zio->io_delay = gethrtime() - zio->io_delay;
3901 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3902 vd->vdev_ops != &vdev_draid_spare_ops) {
3903 vdev_queue_io_done(zio);
3905 if (zio->io_type == ZIO_TYPE_WRITE)
3906 vdev_cache_write(zio);
3908 if (zio_injection_enabled && zio->io_error == 0)
3909 zio->io_error = zio_handle_device_injections(vd, zio,
3910 EIO, EILSEQ);
3912 if (zio_injection_enabled && zio->io_error == 0)
3913 zio->io_error = zio_handle_label_injection(zio, EIO);
3915 if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) {
3916 if (!vdev_accessible(vd, zio)) {
3917 zio->io_error = SET_ERROR(ENXIO);
3918 } else {
3919 unexpected_error = B_TRUE;
3924 ops->vdev_op_io_done(zio);
3926 if (unexpected_error && vd->vdev_remove_wanted == B_FALSE)
3927 VERIFY(vdev_probe(vd, zio) == NULL);
3929 return (zio);
3933 * This function is used to change the priority of an existing zio that is
3934 * currently in-flight. This is used by the arc to upgrade priority in the
3935 * event that a demand read is made for a block that is currently queued
3936 * as a scrub or async read IO. Otherwise, the high priority read request
3937 * would end up having to wait for the lower priority IO.
3939 void
3940 zio_change_priority(zio_t *pio, zio_priority_t priority)
3942 zio_t *cio, *cio_next;
3943 zio_link_t *zl = NULL;
3945 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
3947 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
3948 vdev_queue_change_io_priority(pio, priority);
3949 } else {
3950 pio->io_priority = priority;
3953 mutex_enter(&pio->io_lock);
3954 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
3955 cio_next = zio_walk_children(pio, &zl);
3956 zio_change_priority(cio, priority);
3958 mutex_exit(&pio->io_lock);
3962 * For non-raidz ZIOs, we can just copy aside the bad data read from the
3963 * disk, and use that to finish the checksum ereport later.
3965 static void
3966 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3967 const abd_t *good_buf)
3969 /* no processing needed */
3970 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3973 void
3974 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr)
3976 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
3978 abd_copy(abd, zio->io_abd, zio->io_size);
3980 zcr->zcr_cbinfo = zio->io_size;
3981 zcr->zcr_cbdata = abd;
3982 zcr->zcr_finish = zio_vsd_default_cksum_finish;
3983 zcr->zcr_free = zio_abd_free;
3986 static zio_t *
3987 zio_vdev_io_assess(zio_t *zio)
3989 vdev_t *vd = zio->io_vd;
3991 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3992 return (NULL);
3995 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3996 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3998 if (zio->io_vsd != NULL) {
3999 zio->io_vsd_ops->vsd_free(zio);
4000 zio->io_vsd = NULL;
4003 if (zio_injection_enabled && zio->io_error == 0)
4004 zio->io_error = zio_handle_fault_injection(zio, EIO);
4007 * If the I/O failed, determine whether we should attempt to retry it.
4009 * On retry, we cut in line in the issue queue, since we don't want
4010 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
4012 if (zio->io_error && vd == NULL &&
4013 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
4014 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
4015 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
4016 zio->io_error = 0;
4017 zio->io_flags |= ZIO_FLAG_IO_RETRY |
4018 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
4019 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
4020 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
4021 zio_requeue_io_start_cut_in_line);
4022 return (NULL);
4026 * If we got an error on a leaf device, convert it to ENXIO
4027 * if the device is not accessible at all.
4029 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4030 !vdev_accessible(vd, zio))
4031 zio->io_error = SET_ERROR(ENXIO);
4034 * If we can't write to an interior vdev (mirror or RAID-Z),
4035 * set vdev_cant_write so that we stop trying to allocate from it.
4037 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
4038 vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
4039 vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting "
4040 "cant_write=TRUE due to write failure with ENXIO",
4041 zio);
4042 vd->vdev_cant_write = B_TRUE;
4046 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
4047 * attempts will ever succeed. In this case we set a persistent
4048 * boolean flag so that we don't bother with it in the future.
4050 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
4051 zio->io_type == ZIO_TYPE_IOCTL &&
4052 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
4053 vd->vdev_nowritecache = B_TRUE;
4055 if (zio->io_error)
4056 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4058 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4059 zio->io_physdone != NULL) {
4060 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
4061 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
4062 zio->io_physdone(zio->io_logical);
4065 return (zio);
4068 void
4069 zio_vdev_io_reissue(zio_t *zio)
4071 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4072 ASSERT(zio->io_error == 0);
4074 zio->io_stage >>= 1;
4077 void
4078 zio_vdev_io_redone(zio_t *zio)
4080 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
4082 zio->io_stage >>= 1;
4085 void
4086 zio_vdev_io_bypass(zio_t *zio)
4088 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4089 ASSERT(zio->io_error == 0);
4091 zio->io_flags |= ZIO_FLAG_IO_BYPASS;
4092 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
4096 * ==========================================================================
4097 * Encrypt and store encryption parameters
4098 * ==========================================================================
4103 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4104 * managing the storage of encryption parameters and passing them to the
4105 * lower-level encryption functions.
4107 static zio_t *
4108 zio_encrypt(zio_t *zio)
4110 zio_prop_t *zp = &zio->io_prop;
4111 spa_t *spa = zio->io_spa;
4112 blkptr_t *bp = zio->io_bp;
4113 uint64_t psize = BP_GET_PSIZE(bp);
4114 uint64_t dsobj = zio->io_bookmark.zb_objset;
4115 dmu_object_type_t ot = BP_GET_TYPE(bp);
4116 void *enc_buf = NULL;
4117 abd_t *eabd = NULL;
4118 uint8_t salt[ZIO_DATA_SALT_LEN];
4119 uint8_t iv[ZIO_DATA_IV_LEN];
4120 uint8_t mac[ZIO_DATA_MAC_LEN];
4121 boolean_t no_crypt = B_FALSE;
4123 /* the root zio already encrypted the data */
4124 if (zio->io_child_type == ZIO_CHILD_GANG)
4125 return (zio);
4127 /* only ZIL blocks are re-encrypted on rewrite */
4128 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
4129 return (zio);
4131 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
4132 BP_SET_CRYPT(bp, B_FALSE);
4133 return (zio);
4136 /* if we are doing raw encryption set the provided encryption params */
4137 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
4138 ASSERT0(BP_GET_LEVEL(bp));
4139 BP_SET_CRYPT(bp, B_TRUE);
4140 BP_SET_BYTEORDER(bp, zp->zp_byteorder);
4141 if (ot != DMU_OT_OBJSET)
4142 zio_crypt_encode_mac_bp(bp, zp->zp_mac);
4144 /* dnode blocks must be written out in the provided byteorder */
4145 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
4146 ot == DMU_OT_DNODE) {
4147 void *bswap_buf = zio_buf_alloc(psize);
4148 abd_t *babd = abd_get_from_buf(bswap_buf, psize);
4150 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4151 abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
4152 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
4153 psize);
4155 abd_take_ownership_of_buf(babd, B_TRUE);
4156 zio_push_transform(zio, babd, psize, psize, NULL);
4159 if (DMU_OT_IS_ENCRYPTED(ot))
4160 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
4161 return (zio);
4164 /* indirect blocks only maintain a cksum of the lower level MACs */
4165 if (BP_GET_LEVEL(bp) > 0) {
4166 BP_SET_CRYPT(bp, B_TRUE);
4167 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
4168 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
4169 mac));
4170 zio_crypt_encode_mac_bp(bp, mac);
4171 return (zio);
4175 * Objset blocks are a special case since they have 2 256-bit MACs
4176 * embedded within them.
4178 if (ot == DMU_OT_OBJSET) {
4179 ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
4180 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4181 BP_SET_CRYPT(bp, B_TRUE);
4182 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
4183 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
4184 return (zio);
4187 /* unencrypted object types are only authenticated with a MAC */
4188 if (!DMU_OT_IS_ENCRYPTED(ot)) {
4189 BP_SET_CRYPT(bp, B_TRUE);
4190 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
4191 zio->io_abd, psize, mac));
4192 zio_crypt_encode_mac_bp(bp, mac);
4193 return (zio);
4197 * Later passes of sync-to-convergence may decide to rewrite data
4198 * in place to avoid more disk reallocations. This presents a problem
4199 * for encryption because this constitutes rewriting the new data with
4200 * the same encryption key and IV. However, this only applies to blocks
4201 * in the MOS (particularly the spacemaps) and we do not encrypt the
4202 * MOS. We assert that the zio is allocating or an intent log write
4203 * to enforce this.
4205 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
4206 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
4207 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
4208 ASSERT3U(psize, !=, 0);
4210 enc_buf = zio_buf_alloc(psize);
4211 eabd = abd_get_from_buf(enc_buf, psize);
4212 abd_take_ownership_of_buf(eabd, B_TRUE);
4215 * For an explanation of what encryption parameters are stored
4216 * where, see the block comment in zio_crypt.c.
4218 if (ot == DMU_OT_INTENT_LOG) {
4219 zio_crypt_decode_params_bp(bp, salt, iv);
4220 } else {
4221 BP_SET_CRYPT(bp, B_TRUE);
4224 /* Perform the encryption. This should not fail */
4225 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
4226 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
4227 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
4229 /* encode encryption metadata into the bp */
4230 if (ot == DMU_OT_INTENT_LOG) {
4232 * ZIL blocks store the MAC in the embedded checksum, so the
4233 * transform must always be applied.
4235 zio_crypt_encode_mac_zil(enc_buf, mac);
4236 zio_push_transform(zio, eabd, psize, psize, NULL);
4237 } else {
4238 BP_SET_CRYPT(bp, B_TRUE);
4239 zio_crypt_encode_params_bp(bp, salt, iv);
4240 zio_crypt_encode_mac_bp(bp, mac);
4242 if (no_crypt) {
4243 ASSERT3U(ot, ==, DMU_OT_DNODE);
4244 abd_free(eabd);
4245 } else {
4246 zio_push_transform(zio, eabd, psize, psize, NULL);
4250 return (zio);
4254 * ==========================================================================
4255 * Generate and verify checksums
4256 * ==========================================================================
4258 static zio_t *
4259 zio_checksum_generate(zio_t *zio)
4261 blkptr_t *bp = zio->io_bp;
4262 enum zio_checksum checksum;
4264 if (bp == NULL) {
4266 * This is zio_write_phys().
4267 * We're either generating a label checksum, or none at all.
4269 checksum = zio->io_prop.zp_checksum;
4271 if (checksum == ZIO_CHECKSUM_OFF)
4272 return (zio);
4274 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
4275 } else {
4276 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
4277 ASSERT(!IO_IS_ALLOCATING(zio));
4278 checksum = ZIO_CHECKSUM_GANG_HEADER;
4279 } else {
4280 checksum = BP_GET_CHECKSUM(bp);
4284 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
4286 return (zio);
4289 static zio_t *
4290 zio_checksum_verify(zio_t *zio)
4292 zio_bad_cksum_t info;
4293 blkptr_t *bp = zio->io_bp;
4294 int error;
4296 ASSERT(zio->io_vd != NULL);
4298 if (bp == NULL) {
4300 * This is zio_read_phys().
4301 * We're either verifying a label checksum, or nothing at all.
4303 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
4304 return (zio);
4306 ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL);
4309 if ((error = zio_checksum_error(zio, &info)) != 0) {
4310 zio->io_error = error;
4311 if (error == ECKSUM &&
4312 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
4313 (void) zfs_ereport_start_checksum(zio->io_spa,
4314 zio->io_vd, &zio->io_bookmark, zio,
4315 zio->io_offset, zio->io_size, &info);
4316 mutex_enter(&zio->io_vd->vdev_stat_lock);
4317 zio->io_vd->vdev_stat.vs_checksum_errors++;
4318 mutex_exit(&zio->io_vd->vdev_stat_lock);
4322 return (zio);
4326 * Called by RAID-Z to ensure we don't compute the checksum twice.
4328 void
4329 zio_checksum_verified(zio_t *zio)
4331 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
4335 * ==========================================================================
4336 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
4337 * An error of 0 indicates success. ENXIO indicates whole-device failure,
4338 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO
4339 * indicate errors that are specific to one I/O, and most likely permanent.
4340 * Any other error is presumed to be worse because we weren't expecting it.
4341 * ==========================================================================
4344 zio_worst_error(int e1, int e2)
4346 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
4347 int r1, r2;
4349 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
4350 if (e1 == zio_error_rank[r1])
4351 break;
4353 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
4354 if (e2 == zio_error_rank[r2])
4355 break;
4357 return (r1 > r2 ? e1 : e2);
4361 * ==========================================================================
4362 * I/O completion
4363 * ==========================================================================
4365 static zio_t *
4366 zio_ready(zio_t *zio)
4368 blkptr_t *bp = zio->io_bp;
4369 zio_t *pio, *pio_next;
4370 zio_link_t *zl = NULL;
4372 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
4373 ZIO_WAIT_READY)) {
4374 return (NULL);
4377 if (zio->io_ready) {
4378 ASSERT(IO_IS_ALLOCATING(zio));
4379 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
4380 (zio->io_flags & ZIO_FLAG_NOPWRITE));
4381 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
4383 zio->io_ready(zio);
4386 if (bp != NULL && bp != &zio->io_bp_copy)
4387 zio->io_bp_copy = *bp;
4389 if (zio->io_error != 0) {
4390 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4392 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4393 ASSERT(IO_IS_ALLOCATING(zio));
4394 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4395 ASSERT(zio->io_metaslab_class != NULL);
4398 * We were unable to allocate anything, unreserve and
4399 * issue the next I/O to allocate.
4401 metaslab_class_throttle_unreserve(
4402 zio->io_metaslab_class, zio->io_prop.zp_copies,
4403 zio->io_allocator, zio);
4404 zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
4408 mutex_enter(&zio->io_lock);
4409 zio->io_state[ZIO_WAIT_READY] = 1;
4410 pio = zio_walk_parents(zio, &zl);
4411 mutex_exit(&zio->io_lock);
4414 * As we notify zio's parents, new parents could be added.
4415 * New parents go to the head of zio's io_parent_list, however,
4416 * so we will (correctly) not notify them. The remainder of zio's
4417 * io_parent_list, from 'pio_next' onward, cannot change because
4418 * all parents must wait for us to be done before they can be done.
4420 for (; pio != NULL; pio = pio_next) {
4421 pio_next = zio_walk_parents(zio, &zl);
4422 zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL);
4425 if (zio->io_flags & ZIO_FLAG_NODATA) {
4426 if (BP_IS_GANG(bp)) {
4427 zio->io_flags &= ~ZIO_FLAG_NODATA;
4428 } else {
4429 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4430 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4434 if (zio_injection_enabled &&
4435 zio->io_spa->spa_syncing_txg == zio->io_txg)
4436 zio_handle_ignored_writes(zio);
4438 return (zio);
4442 * Update the allocation throttle accounting.
4444 static void
4445 zio_dva_throttle_done(zio_t *zio)
4447 zio_t *lio __maybe_unused = zio->io_logical;
4448 zio_t *pio = zio_unique_parent(zio);
4449 vdev_t *vd = zio->io_vd;
4450 int flags = METASLAB_ASYNC_ALLOC;
4452 ASSERT3P(zio->io_bp, !=, NULL);
4453 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4454 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4455 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4456 ASSERT(vd != NULL);
4457 ASSERT3P(vd, ==, vd->vdev_top);
4458 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
4459 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4460 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4461 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4462 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4465 * Parents of gang children can have two flavors -- ones that
4466 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4467 * and ones that allocated the constituent blocks. The allocation
4468 * throttle needs to know the allocating parent zio so we must find
4469 * it here.
4471 if (pio->io_child_type == ZIO_CHILD_GANG) {
4473 * If our parent is a rewrite gang child then our grandparent
4474 * would have been the one that performed the allocation.
4476 if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4477 pio = zio_unique_parent(pio);
4478 flags |= METASLAB_GANG_CHILD;
4481 ASSERT(IO_IS_ALLOCATING(pio));
4482 ASSERT3P(zio, !=, zio->io_logical);
4483 ASSERT(zio->io_logical != NULL);
4484 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4485 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4486 ASSERT(zio->io_metaslab_class != NULL);
4488 mutex_enter(&pio->io_lock);
4489 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
4490 pio->io_allocator, B_TRUE);
4491 mutex_exit(&pio->io_lock);
4493 metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
4494 pio->io_allocator, pio);
4497 * Call into the pipeline to see if there is more work that
4498 * needs to be done. If there is work to be done it will be
4499 * dispatched to another taskq thread.
4501 zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
4504 static zio_t *
4505 zio_done(zio_t *zio)
4508 * Always attempt to keep stack usage minimal here since
4509 * we can be called recursively up to 19 levels deep.
4511 const uint64_t psize = zio->io_size;
4512 zio_t *pio, *pio_next;
4513 zio_link_t *zl = NULL;
4516 * If our children haven't all completed,
4517 * wait for them and then repeat this pipeline stage.
4519 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4520 return (NULL);
4524 * If the allocation throttle is enabled, then update the accounting.
4525 * We only track child I/Os that are part of an allocating async
4526 * write. We must do this since the allocation is performed
4527 * by the logical I/O but the actual write is done by child I/Os.
4529 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4530 zio->io_child_type == ZIO_CHILD_VDEV) {
4531 ASSERT(zio->io_metaslab_class != NULL);
4532 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
4533 zio_dva_throttle_done(zio);
4537 * If the allocation throttle is enabled, verify that
4538 * we have decremented the refcounts for every I/O that was throttled.
4540 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4541 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4542 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4543 ASSERT(zio->io_bp != NULL);
4545 metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio,
4546 zio->io_allocator);
4547 VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class->
4548 mc_allocator[zio->io_allocator].mca_alloc_slots, zio));
4552 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4553 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4554 ASSERT(zio->io_children[c][w] == 0);
4556 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
4557 ASSERT(zio->io_bp->blk_pad[0] == 0);
4558 ASSERT(zio->io_bp->blk_pad[1] == 0);
4559 ASSERT(memcmp(zio->io_bp, &zio->io_bp_copy,
4560 sizeof (blkptr_t)) == 0 ||
4561 (zio->io_bp == zio_unique_parent(zio)->io_bp));
4562 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
4563 zio->io_bp_override == NULL &&
4564 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4565 ASSERT3U(zio->io_prop.zp_copies, <=,
4566 BP_GET_NDVAS(zio->io_bp));
4567 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
4568 (BP_COUNT_GANG(zio->io_bp) ==
4569 BP_GET_NDVAS(zio->io_bp)));
4571 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4572 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4576 * If there were child vdev/gang/ddt errors, they apply to us now.
4578 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4579 zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4580 zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4583 * If the I/O on the transformed data was successful, generate any
4584 * checksum reports now while we still have the transformed data.
4586 if (zio->io_error == 0) {
4587 while (zio->io_cksum_report != NULL) {
4588 zio_cksum_report_t *zcr = zio->io_cksum_report;
4589 uint64_t align = zcr->zcr_align;
4590 uint64_t asize = P2ROUNDUP(psize, align);
4591 abd_t *adata = zio->io_abd;
4593 if (adata != NULL && asize != psize) {
4594 adata = abd_alloc(asize, B_TRUE);
4595 abd_copy(adata, zio->io_abd, psize);
4596 abd_zero_off(adata, psize, asize - psize);
4599 zio->io_cksum_report = zcr->zcr_next;
4600 zcr->zcr_next = NULL;
4601 zcr->zcr_finish(zcr, adata);
4602 zfs_ereport_free_checksum(zcr);
4604 if (adata != NULL && asize != psize)
4605 abd_free(adata);
4609 zio_pop_transforms(zio); /* note: may set zio->io_error */
4611 vdev_stat_update(zio, psize);
4614 * If this I/O is attached to a particular vdev is slow, exceeding
4615 * 30 seconds to complete, post an error described the I/O delay.
4616 * We ignore these errors if the device is currently unavailable.
4618 if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
4619 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
4621 * We want to only increment our slow IO counters if
4622 * the IO is valid (i.e. not if the drive is removed).
4624 * zfs_ereport_post() will also do these checks, but
4625 * it can also ratelimit and have other failures, so we
4626 * need to increment the slow_io counters independent
4627 * of it.
4629 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
4630 zio->io_spa, zio->io_vd, zio)) {
4631 mutex_enter(&zio->io_vd->vdev_stat_lock);
4632 zio->io_vd->vdev_stat.vs_slow_ios++;
4633 mutex_exit(&zio->io_vd->vdev_stat_lock);
4635 (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
4636 zio->io_spa, zio->io_vd, &zio->io_bookmark,
4637 zio, 0);
4642 if (zio->io_error) {
4644 * If this I/O is attached to a particular vdev,
4645 * generate an error message describing the I/O failure
4646 * at the block level. We ignore these errors if the
4647 * device is currently unavailable.
4649 if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
4650 !vdev_is_dead(zio->io_vd)) {
4651 int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO,
4652 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
4653 if (ret != EALREADY) {
4654 mutex_enter(&zio->io_vd->vdev_stat_lock);
4655 if (zio->io_type == ZIO_TYPE_READ)
4656 zio->io_vd->vdev_stat.vs_read_errors++;
4657 else if (zio->io_type == ZIO_TYPE_WRITE)
4658 zio->io_vd->vdev_stat.vs_write_errors++;
4659 mutex_exit(&zio->io_vd->vdev_stat_lock);
4663 if ((zio->io_error == EIO || !(zio->io_flags &
4664 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4665 zio == zio->io_logical) {
4667 * For logical I/O requests, tell the SPA to log the
4668 * error and generate a logical data ereport.
4670 spa_log_error(zio->io_spa, &zio->io_bookmark);
4671 (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA,
4672 zio->io_spa, NULL, &zio->io_bookmark, zio, 0);
4676 if (zio->io_error && zio == zio->io_logical) {
4678 * Determine whether zio should be reexecuted. This will
4679 * propagate all the way to the root via zio_notify_parent().
4681 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
4682 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4684 if (IO_IS_ALLOCATING(zio) &&
4685 !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4686 if (zio->io_error != ENOSPC)
4687 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4688 else
4689 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4692 if ((zio->io_type == ZIO_TYPE_READ ||
4693 zio->io_type == ZIO_TYPE_FREE) &&
4694 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4695 zio->io_error == ENXIO &&
4696 spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
4697 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
4698 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4700 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4701 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4704 * Here is a possibly good place to attempt to do
4705 * either combinatorial reconstruction or error correction
4706 * based on checksums. It also might be a good place
4707 * to send out preliminary ereports before we suspend
4708 * processing.
4713 * If there were logical child errors, they apply to us now.
4714 * We defer this until now to avoid conflating logical child
4715 * errors with errors that happened to the zio itself when
4716 * updating vdev stats and reporting FMA events above.
4718 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4720 if ((zio->io_error || zio->io_reexecute) &&
4721 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4722 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4723 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
4725 zio_gang_tree_free(&zio->io_gang_tree);
4728 * Godfather I/Os should never suspend.
4730 if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4731 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4732 zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
4734 if (zio->io_reexecute) {
4736 * This is a logical I/O that wants to reexecute.
4738 * Reexecute is top-down. When an i/o fails, if it's not
4739 * the root, it simply notifies its parent and sticks around.
4740 * The parent, seeing that it still has children in zio_done(),
4741 * does the same. This percolates all the way up to the root.
4742 * The root i/o will reexecute or suspend the entire tree.
4744 * This approach ensures that zio_reexecute() honors
4745 * all the original i/o dependency relationships, e.g.
4746 * parents not executing until children are ready.
4748 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4750 zio->io_gang_leader = NULL;
4752 mutex_enter(&zio->io_lock);
4753 zio->io_state[ZIO_WAIT_DONE] = 1;
4754 mutex_exit(&zio->io_lock);
4757 * "The Godfather" I/O monitors its children but is
4758 * not a true parent to them. It will track them through
4759 * the pipeline but severs its ties whenever they get into
4760 * trouble (e.g. suspended). This allows "The Godfather"
4761 * I/O to return status without blocking.
4763 zl = NULL;
4764 for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4765 pio = pio_next) {
4766 zio_link_t *remove_zl = zl;
4767 pio_next = zio_walk_parents(zio, &zl);
4769 if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4770 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4771 zio_remove_child(pio, zio, remove_zl);
4773 * This is a rare code path, so we don't
4774 * bother with "next_to_execute".
4776 zio_notify_parent(pio, zio, ZIO_WAIT_DONE,
4777 NULL);
4781 if ((pio = zio_unique_parent(zio)) != NULL) {
4783 * We're not a root i/o, so there's nothing to do
4784 * but notify our parent. Don't propagate errors
4785 * upward since we haven't permanently failed yet.
4787 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4788 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4790 * This is a rare code path, so we don't bother with
4791 * "next_to_execute".
4793 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL);
4794 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4796 * We'd fail again if we reexecuted now, so suspend
4797 * until conditions improve (e.g. device comes online).
4799 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
4800 } else {
4802 * Reexecution is potentially a huge amount of work.
4803 * Hand it off to the otherwise-unused claim taskq.
4805 ASSERT(taskq_empty_ent(&zio->io_tqent));
4806 spa_taskq_dispatch_ent(zio->io_spa,
4807 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
4808 zio_reexecute, zio, 0, &zio->io_tqent);
4810 return (NULL);
4813 ASSERT(zio->io_child_count == 0);
4814 ASSERT(zio->io_reexecute == 0);
4815 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4818 * Report any checksum errors, since the I/O is complete.
4820 while (zio->io_cksum_report != NULL) {
4821 zio_cksum_report_t *zcr = zio->io_cksum_report;
4822 zio->io_cksum_report = zcr->zcr_next;
4823 zcr->zcr_next = NULL;
4824 zcr->zcr_finish(zcr, NULL);
4825 zfs_ereport_free_checksum(zcr);
4828 if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp &&
4829 !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) &&
4830 !(zio->io_flags & ZIO_FLAG_NOPWRITE)) {
4831 metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp);
4835 * It is the responsibility of the done callback to ensure that this
4836 * particular zio is no longer discoverable for adoption, and as
4837 * such, cannot acquire any new parents.
4839 if (zio->io_done)
4840 zio->io_done(zio);
4842 mutex_enter(&zio->io_lock);
4843 zio->io_state[ZIO_WAIT_DONE] = 1;
4844 mutex_exit(&zio->io_lock);
4847 * We are done executing this zio. We may want to execute a parent
4848 * next. See the comment in zio_notify_parent().
4850 zio_t *next_to_execute = NULL;
4851 zl = NULL;
4852 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4853 zio_link_t *remove_zl = zl;
4854 pio_next = zio_walk_parents(zio, &zl);
4855 zio_remove_child(pio, zio, remove_zl);
4856 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute);
4859 if (zio->io_waiter != NULL) {
4860 mutex_enter(&zio->io_lock);
4861 zio->io_executor = NULL;
4862 cv_broadcast(&zio->io_cv);
4863 mutex_exit(&zio->io_lock);
4864 } else {
4865 zio_destroy(zio);
4868 return (next_to_execute);
4872 * ==========================================================================
4873 * I/O pipeline definition
4874 * ==========================================================================
4876 static zio_pipe_stage_t *zio_pipeline[] = {
4877 NULL,
4878 zio_read_bp_init,
4879 zio_write_bp_init,
4880 zio_free_bp_init,
4881 zio_issue_async,
4882 zio_write_compress,
4883 zio_encrypt,
4884 zio_checksum_generate,
4885 zio_nop_write,
4886 zio_ddt_read_start,
4887 zio_ddt_read_done,
4888 zio_ddt_write,
4889 zio_ddt_free,
4890 zio_gang_assemble,
4891 zio_gang_issue,
4892 zio_dva_throttle,
4893 zio_dva_allocate,
4894 zio_dva_free,
4895 zio_dva_claim,
4896 zio_ready,
4897 zio_vdev_io_start,
4898 zio_vdev_io_done,
4899 zio_vdev_io_assess,
4900 zio_checksum_verify,
4901 zio_done
4908 * Compare two zbookmark_phys_t's to see which we would reach first in a
4909 * pre-order traversal of the object tree.
4911 * This is simple in every case aside from the meta-dnode object. For all other
4912 * objects, we traverse them in order (object 1 before object 2, and so on).
4913 * However, all of these objects are traversed while traversing object 0, since
4914 * the data it points to is the list of objects. Thus, we need to convert to a
4915 * canonical representation so we can compare meta-dnode bookmarks to
4916 * non-meta-dnode bookmarks.
4918 * We do this by calculating "equivalents" for each field of the zbookmark.
4919 * zbookmarks outside of the meta-dnode use their own object and level, and
4920 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4921 * blocks this bookmark refers to) by multiplying their blkid by their span
4922 * (the number of L0 blocks contained within one block at their level).
4923 * zbookmarks inside the meta-dnode calculate their object equivalent
4924 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4925 * level + 1<<31 (any value larger than a level could ever be) for their level.
4926 * This causes them to always compare before a bookmark in their object
4927 * equivalent, compare appropriately to bookmarks in other objects, and to
4928 * compare appropriately to other bookmarks in the meta-dnode.
4931 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
4932 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4935 * These variables represent the "equivalent" values for the zbookmark,
4936 * after converting zbookmarks inside the meta dnode to their
4937 * normal-object equivalents.
4939 uint64_t zb1obj, zb2obj;
4940 uint64_t zb1L0, zb2L0;
4941 uint64_t zb1level, zb2level;
4943 if (zb1->zb_object == zb2->zb_object &&
4944 zb1->zb_level == zb2->zb_level &&
4945 zb1->zb_blkid == zb2->zb_blkid)
4946 return (0);
4948 IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT);
4949 IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT);
4952 * BP_SPANB calculates the span in blocks.
4954 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
4955 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
4957 if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
4958 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4959 zb1L0 = 0;
4960 zb1level = zb1->zb_level + COMPARE_META_LEVEL;
4961 } else {
4962 zb1obj = zb1->zb_object;
4963 zb1level = zb1->zb_level;
4966 if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4967 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4968 zb2L0 = 0;
4969 zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4970 } else {
4971 zb2obj = zb2->zb_object;
4972 zb2level = zb2->zb_level;
4975 /* Now that we have a canonical representation, do the comparison. */
4976 if (zb1obj != zb2obj)
4977 return (zb1obj < zb2obj ? -1 : 1);
4978 else if (zb1L0 != zb2L0)
4979 return (zb1L0 < zb2L0 ? -1 : 1);
4980 else if (zb1level != zb2level)
4981 return (zb1level > zb2level ? -1 : 1);
4983 * This can (theoretically) happen if the bookmarks have the same object
4984 * and level, but different blkids, if the block sizes are not the same.
4985 * There is presently no way to change the indirect block sizes
4987 return (0);
4991 * This function checks the following: given that last_block is the place that
4992 * our traversal stopped last time, does that guarantee that we've visited
4993 * every node under subtree_root? Therefore, we can't just use the raw output
4994 * of zbookmark_compare. We have to pass in a modified version of
4995 * subtree_root; by incrementing the block id, and then checking whether
4996 * last_block is before or equal to that, we can tell whether or not having
4997 * visited last_block implies that all of subtree_root's children have been
4998 * visited.
5000 boolean_t
5001 zbookmark_subtree_completed(const dnode_phys_t *dnp,
5002 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5004 zbookmark_phys_t mod_zb = *subtree_root;
5005 mod_zb.zb_blkid++;
5006 ASSERT0(last_block->zb_level);
5008 /* The objset_phys_t isn't before anything. */
5009 if (dnp == NULL)
5010 return (B_FALSE);
5013 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
5014 * data block size in sectors, because that variable is only used if
5015 * the bookmark refers to a block in the meta-dnode. Since we don't
5016 * know without examining it what object it refers to, and there's no
5017 * harm in passing in this value in other cases, we always pass it in.
5019 * We pass in 0 for the indirect block size shift because zb2 must be
5020 * level 0. The indirect block size is only used to calculate the span
5021 * of the bookmark, but since the bookmark must be level 0, the span is
5022 * always 1, so the math works out.
5024 * If you make changes to how the zbookmark_compare code works, be sure
5025 * to make sure that this code still works afterwards.
5027 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5028 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
5029 last_block) <= 0);
5033 * This function is similar to zbookmark_subtree_completed(), but returns true
5034 * if subtree_root is equal or ahead of last_block, i.e. still to be done.
5036 boolean_t
5037 zbookmark_subtree_tbd(const dnode_phys_t *dnp,
5038 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5040 ASSERT0(last_block->zb_level);
5041 if (dnp == NULL)
5042 return (B_FALSE);
5043 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5044 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, subtree_root,
5045 last_block) >= 0);
5048 EXPORT_SYMBOL(zio_type_name);
5049 EXPORT_SYMBOL(zio_buf_alloc);
5050 EXPORT_SYMBOL(zio_data_buf_alloc);
5051 EXPORT_SYMBOL(zio_buf_free);
5052 EXPORT_SYMBOL(zio_data_buf_free);
5054 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW,
5055 "Max I/O completion time (milliseconds) before marking it as slow");
5057 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW,
5058 "Prioritize requeued I/O");
5060 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free, UINT, ZMOD_RW,
5061 "Defer frees starting in this pass");
5063 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, UINT, ZMOD_RW,
5064 "Don't compress starting in this pass");
5066 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, UINT, ZMOD_RW,
5067 "Rewrite new bps starting in this pass");
5069 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW,
5070 "Throttle block allocations in the ZIO pipeline");
5072 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW,
5073 "Log all slow ZIOs, not just those with vdevs");