GCC: Fixes for gcc 14 on Fedora 40
[zfs.git] / cmd / zpool / os / linux / zpool_vdev_os.c
blobf194d28c55a99cbc4de636cebfde1844db26e87e
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2016, 2017 Intel Corporation.
26 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com>.
30 * Functions to convert between a list of vdevs and an nvlist representing the
31 * configuration. Each entry in the list can be one of:
33 * Device vdevs
34 * disk=(path=..., devid=...)
35 * file=(path=...)
37 * Group vdevs
38 * raidz[1|2]=(...)
39 * mirror=(...)
41 * Hot spares
43 * While the underlying implementation supports it, group vdevs cannot contain
44 * other group vdevs. All userland verification of devices is contained within
45 * this file. If successful, the nvlist returned can be passed directly to the
46 * kernel; we've done as much verification as possible in userland.
48 * Hot spares are a special case, and passed down as an array of disk vdevs, at
49 * the same level as the root of the vdev tree.
51 * The only function exported by this file is 'make_root_vdev'. The
52 * function performs several passes:
54 * 1. Construct the vdev specification. Performs syntax validation and
55 * makes sure each device is valid.
56 * 2. Check for devices in use. Using libblkid to make sure that no
57 * devices are also in use. Some can be overridden using the 'force'
58 * flag, others cannot.
59 * 3. Check for replication errors if the 'force' flag is not specified.
60 * validates that the replication level is consistent across the
61 * entire pool.
62 * 4. Call libzfs to label any whole disks with an EFI label.
65 #include <assert.h>
66 #include <ctype.h>
67 #include <errno.h>
68 #include <fcntl.h>
69 #include <libintl.h>
70 #include <libnvpair.h>
71 #include <libzutil.h>
72 #include <limits.h>
73 #include <sys/spa.h>
74 #include <stdio.h>
75 #include <string.h>
76 #include <unistd.h>
77 #include "zpool_util.h"
78 #include <sys/zfs_context.h>
80 #include <scsi/scsi.h>
81 #include <scsi/sg.h>
82 #include <sys/efi_partition.h>
83 #include <sys/stat.h>
84 #include <sys/mntent.h>
85 #include <uuid/uuid.h>
86 #include <blkid/blkid.h>
88 typedef struct vdev_disk_db_entry
90 char id[24];
91 int sector_size;
92 } vdev_disk_db_entry_t;
95 * Database of block devices that lie about physical sector sizes. The
96 * identification string must be precisely 24 characters to avoid false
97 * negatives
99 static vdev_disk_db_entry_t vdev_disk_database[] = {
100 {"ATA ADATA SSD S396 3", 8192},
101 {"ATA APPLE SSD SM128E", 8192},
102 {"ATA APPLE SSD SM256E", 8192},
103 {"ATA APPLE SSD SM512E", 8192},
104 {"ATA APPLE SSD SM768E", 8192},
105 {"ATA C400-MTFDDAC064M", 8192},
106 {"ATA C400-MTFDDAC128M", 8192},
107 {"ATA C400-MTFDDAC256M", 8192},
108 {"ATA C400-MTFDDAC512M", 8192},
109 {"ATA Corsair Force 3 ", 8192},
110 {"ATA Corsair Force GS", 8192},
111 {"ATA INTEL SSDSA2CT04", 8192},
112 {"ATA INTEL SSDSA2BZ10", 8192},
113 {"ATA INTEL SSDSA2BZ20", 8192},
114 {"ATA INTEL SSDSA2BZ30", 8192},
115 {"ATA INTEL SSDSA2CW04", 8192},
116 {"ATA INTEL SSDSA2CW08", 8192},
117 {"ATA INTEL SSDSA2CW12", 8192},
118 {"ATA INTEL SSDSA2CW16", 8192},
119 {"ATA INTEL SSDSA2CW30", 8192},
120 {"ATA INTEL SSDSA2CW60", 8192},
121 {"ATA INTEL SSDSC2CT06", 8192},
122 {"ATA INTEL SSDSC2CT12", 8192},
123 {"ATA INTEL SSDSC2CT18", 8192},
124 {"ATA INTEL SSDSC2CT24", 8192},
125 {"ATA INTEL SSDSC2CW06", 8192},
126 {"ATA INTEL SSDSC2CW12", 8192},
127 {"ATA INTEL SSDSC2CW18", 8192},
128 {"ATA INTEL SSDSC2CW24", 8192},
129 {"ATA INTEL SSDSC2CW48", 8192},
130 {"ATA KINGSTON SH100S3", 8192},
131 {"ATA KINGSTON SH103S3", 8192},
132 {"ATA M4-CT064M4SSD2 ", 8192},
133 {"ATA M4-CT128M4SSD2 ", 8192},
134 {"ATA M4-CT256M4SSD2 ", 8192},
135 {"ATA M4-CT512M4SSD2 ", 8192},
136 {"ATA OCZ-AGILITY2 ", 8192},
137 {"ATA OCZ-AGILITY3 ", 8192},
138 {"ATA OCZ-VERTEX2 3.5 ", 8192},
139 {"ATA OCZ-VERTEX3 ", 8192},
140 {"ATA OCZ-VERTEX3 LT ", 8192},
141 {"ATA OCZ-VERTEX3 MI ", 8192},
142 {"ATA OCZ-VERTEX4 ", 8192},
143 {"ATA SAMSUNG MZ7WD120", 8192},
144 {"ATA SAMSUNG MZ7WD240", 8192},
145 {"ATA SAMSUNG MZ7WD480", 8192},
146 {"ATA SAMSUNG MZ7WD960", 8192},
147 {"ATA SAMSUNG SSD 830 ", 8192},
148 {"ATA Samsung SSD 840 ", 8192},
149 {"ATA SanDisk SSD U100", 8192},
150 {"ATA TOSHIBA THNSNH06", 8192},
151 {"ATA TOSHIBA THNSNH12", 8192},
152 {"ATA TOSHIBA THNSNH25", 8192},
153 {"ATA TOSHIBA THNSNH51", 8192},
154 {"ATA APPLE SSD TS064C", 4096},
155 {"ATA APPLE SSD TS128C", 4096},
156 {"ATA APPLE SSD TS256C", 4096},
157 {"ATA APPLE SSD TS512C", 4096},
158 {"ATA INTEL SSDSA2M040", 4096},
159 {"ATA INTEL SSDSA2M080", 4096},
160 {"ATA INTEL SSDSA2M160", 4096},
161 {"ATA INTEL SSDSC2MH12", 4096},
162 {"ATA INTEL SSDSC2MH25", 4096},
163 {"ATA OCZ CORE_SSD ", 4096},
164 {"ATA OCZ-VERTEX ", 4096},
165 {"ATA SAMSUNG MCCOE32G", 4096},
166 {"ATA SAMSUNG MCCOE64G", 4096},
167 {"ATA SAMSUNG SSD PM80", 4096},
168 /* Flash drives optimized for 4KB IOs on larger pages */
169 {"ATA INTEL SSDSC2BA10", 4096},
170 {"ATA INTEL SSDSC2BA20", 4096},
171 {"ATA INTEL SSDSC2BA40", 4096},
172 {"ATA INTEL SSDSC2BA80", 4096},
173 {"ATA INTEL SSDSC2BB08", 4096},
174 {"ATA INTEL SSDSC2BB12", 4096},
175 {"ATA INTEL SSDSC2BB16", 4096},
176 {"ATA INTEL SSDSC2BB24", 4096},
177 {"ATA INTEL SSDSC2BB30", 4096},
178 {"ATA INTEL SSDSC2BB40", 4096},
179 {"ATA INTEL SSDSC2BB48", 4096},
180 {"ATA INTEL SSDSC2BB60", 4096},
181 {"ATA INTEL SSDSC2BB80", 4096},
182 {"ATA INTEL SSDSC2BW24", 4096},
183 {"ATA INTEL SSDSC2BW48", 4096},
184 {"ATA INTEL SSDSC2BP24", 4096},
185 {"ATA INTEL SSDSC2BP48", 4096},
186 {"NA SmrtStorSDLKAE9W", 4096},
187 {"NVMe Amazon EC2 NVMe ", 4096},
188 /* Imported from Open Solaris */
189 {"ATA MARVELL SD88SA02", 4096},
190 /* Advanced format Hard drives */
191 {"ATA Hitachi HDS5C303", 4096},
192 {"ATA SAMSUNG HD204UI ", 4096},
193 {"ATA ST2000DL004 HD20", 4096},
194 {"ATA WDC WD10EARS-00M", 4096},
195 {"ATA WDC WD10EARS-00S", 4096},
196 {"ATA WDC WD10EARS-00Z", 4096},
197 {"ATA WDC WD15EARS-00M", 4096},
198 {"ATA WDC WD15EARS-00S", 4096},
199 {"ATA WDC WD15EARS-00Z", 4096},
200 {"ATA WDC WD20EARS-00M", 4096},
201 {"ATA WDC WD20EARS-00S", 4096},
202 {"ATA WDC WD20EARS-00Z", 4096},
203 {"ATA WDC WD1600BEVT-0", 4096},
204 {"ATA WDC WD2500BEVT-0", 4096},
205 {"ATA WDC WD3200BEVT-0", 4096},
206 {"ATA WDC WD5000BEVT-0", 4096},
210 #define INQ_REPLY_LEN 96
211 #define INQ_CMD_LEN 6
213 static const int vdev_disk_database_size =
214 sizeof (vdev_disk_database) / sizeof (vdev_disk_database[0]);
216 boolean_t
217 check_sector_size_database(char *path, int *sector_size)
219 unsigned char inq_buff[INQ_REPLY_LEN];
220 unsigned char sense_buffer[32];
221 unsigned char inq_cmd_blk[INQ_CMD_LEN] =
222 {INQUIRY, 0, 0, 0, INQ_REPLY_LEN, 0};
223 sg_io_hdr_t io_hdr;
224 int error;
225 int fd;
226 int i;
228 /* Prepare INQUIRY command */
229 memset(&io_hdr, 0, sizeof (sg_io_hdr_t));
230 io_hdr.interface_id = 'S';
231 io_hdr.cmd_len = sizeof (inq_cmd_blk);
232 io_hdr.mx_sb_len = sizeof (sense_buffer);
233 io_hdr.dxfer_direction = SG_DXFER_FROM_DEV;
234 io_hdr.dxfer_len = INQ_REPLY_LEN;
235 io_hdr.dxferp = inq_buff;
236 io_hdr.cmdp = inq_cmd_blk;
237 io_hdr.sbp = sense_buffer;
238 io_hdr.timeout = 10; /* 10 milliseconds is ample time */
240 if ((fd = open(path, O_RDONLY|O_DIRECT)) < 0)
241 return (B_FALSE);
243 error = ioctl(fd, SG_IO, (unsigned long) &io_hdr);
245 (void) close(fd);
247 if (error < 0)
248 return (B_FALSE);
250 if ((io_hdr.info & SG_INFO_OK_MASK) != SG_INFO_OK)
251 return (B_FALSE);
253 for (i = 0; i < vdev_disk_database_size; i++) {
254 if (memcmp(inq_buff + 8, vdev_disk_database[i].id, 24))
255 continue;
257 *sector_size = vdev_disk_database[i].sector_size;
258 return (B_TRUE);
261 return (B_FALSE);
264 static int
265 check_slice(const char *path, blkid_cache cache, int force, boolean_t isspare)
267 int err;
268 char *value;
270 /* No valid type detected device is safe to use */
271 value = blkid_get_tag_value(cache, "TYPE", path);
272 if (value == NULL)
273 return (0);
276 * If libblkid detects a ZFS device, we check the device
277 * using check_file() to see if it's safe. The one safe
278 * case is a spare device shared between multiple pools.
280 if (strcmp(value, "zfs_member") == 0) {
281 err = check_file(path, force, isspare);
282 } else {
283 if (force) {
284 err = 0;
285 } else {
286 err = -1;
287 vdev_error(gettext("%s contains a filesystem of "
288 "type '%s'\n"), path, value);
292 free(value);
294 return (err);
298 * Validate that a disk including all partitions are safe to use.
300 * For EFI labeled disks this can done relatively easily with the libefi
301 * library. The partition numbers are extracted from the label and used
302 * to generate the expected /dev/ paths. Each partition can then be
303 * checked for conflicts.
305 * For non-EFI labeled disks (MBR/EBR/etc) the same process is possible
306 * but due to the lack of a readily available libraries this scanning is
307 * not implemented. Instead only the device path as given is checked.
309 static int
310 check_disk(const char *path, blkid_cache cache, int force,
311 boolean_t isspare, boolean_t iswholedisk)
313 struct dk_gpt *vtoc;
314 char slice_path[MAXPATHLEN];
315 int err = 0;
316 int fd, i;
317 int flags = O_RDONLY|O_DIRECT;
319 if (!iswholedisk)
320 return (check_slice(path, cache, force, isspare));
322 /* only spares can be shared, other devices require exclusive access */
323 if (!isspare)
324 flags |= O_EXCL;
326 if ((fd = open(path, flags)) < 0) {
327 char *value = blkid_get_tag_value(cache, "TYPE", path);
328 (void) fprintf(stderr, gettext("%s is in use and contains "
329 "a %s filesystem.\n"), path, value ? value : "unknown");
330 free(value);
331 return (-1);
335 * Expected to fail for non-EFI labeled disks. Just check the device
336 * as given and do not attempt to detect and scan partitions.
338 err = efi_alloc_and_read(fd, &vtoc);
339 if (err) {
340 (void) close(fd);
341 return (check_slice(path, cache, force, isspare));
345 * The primary efi partition label is damaged however the secondary
346 * label at the end of the device is intact. Rather than use this
347 * label we should play it safe and treat this as a non efi device.
349 if (vtoc->efi_flags & EFI_GPT_PRIMARY_CORRUPT) {
350 efi_free(vtoc);
351 (void) close(fd);
353 if (force) {
354 /* Partitions will now be created using the backup */
355 return (0);
356 } else {
357 vdev_error(gettext("%s contains a corrupt primary "
358 "EFI label.\n"), path);
359 return (-1);
363 for (i = 0; i < vtoc->efi_nparts; i++) {
365 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED ||
366 uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
367 continue;
369 if (strncmp(path, UDISK_ROOT, strlen(UDISK_ROOT)) == 0)
370 (void) snprintf(slice_path, sizeof (slice_path),
371 "%s%s%d", path, "-part", i+1);
372 else
373 (void) snprintf(slice_path, sizeof (slice_path),
374 "%s%s%d", path, isdigit(path[strlen(path)-1]) ?
375 "p" : "", i+1);
377 err = check_slice(slice_path, cache, force, isspare);
378 if (err)
379 break;
382 efi_free(vtoc);
383 (void) close(fd);
385 return (err);
389 check_device(const char *path, boolean_t force,
390 boolean_t isspare, boolean_t iswholedisk)
392 blkid_cache cache;
393 int error;
395 error = blkid_get_cache(&cache, NULL);
396 if (error != 0) {
397 (void) fprintf(stderr, gettext("unable to access the blkid "
398 "cache.\n"));
399 return (-1);
402 error = check_disk(path, cache, force, isspare, iswholedisk);
403 blkid_put_cache(cache);
405 return (error);
408 void
409 after_zpool_upgrade(zpool_handle_t *zhp)
411 (void) zhp;
415 check_file(const char *file, boolean_t force, boolean_t isspare)
417 return (check_file_generic(file, force, isspare));
421 * Read from a sysfs file and return an allocated string. Removes
422 * the newline from the end of the string if there is one.
424 * Returns a string on success (which must be freed), or NULL on error.
426 static char *zpool_sysfs_gets(char *path)
428 int fd;
429 struct stat statbuf;
430 char *buf = NULL;
431 ssize_t count = 0;
432 fd = open(path, O_RDONLY);
433 if (fd < 0)
434 return (NULL);
436 if (fstat(fd, &statbuf) != 0) {
437 close(fd);
438 return (NULL);
441 buf = calloc(statbuf.st_size + 1, sizeof (*buf));
442 if (buf == NULL) {
443 close(fd);
444 return (NULL);
448 * Note, we can read less bytes than st_size, and that's ok. Sysfs
449 * files will report their size is 4k even if they only return a small
450 * string.
452 count = read(fd, buf, statbuf.st_size);
453 if (count < 0) {
454 /* Error doing read() or we overran the buffer */
455 close(fd);
456 free(buf);
457 return (NULL);
460 /* Remove trailing newline */
461 if (count > 0 && buf[count - 1] == '\n')
462 buf[count - 1] = 0;
464 close(fd);
466 return (buf);
470 * Write a string to a sysfs file.
472 * Returns 0 on success, non-zero otherwise.
474 static int zpool_sysfs_puts(char *path, char *str)
476 FILE *file;
478 file = fopen(path, "w");
479 if (!file) {
480 return (-1);
483 if (fputs(str, file) < 0) {
484 fclose(file);
485 return (-2);
487 fclose(file);
488 return (0);
491 /* Given a vdev nvlist_t, rescan its enclosure sysfs path */
492 static void
493 rescan_vdev_config_dev_sysfs_path(nvlist_t *vdev_nv)
495 update_vdev_config_dev_sysfs_path(vdev_nv,
496 fnvlist_lookup_string(vdev_nv, ZPOOL_CONFIG_PATH),
497 ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH);
501 * Given a power string: "on", "off", "1", or "0", return 0 if it's an
502 * off value, 1 if it's an on value, and -1 if the value is unrecognized.
504 static int zpool_power_parse_value(char *str)
506 if ((strcmp(str, "off") == 0) || (strcmp(str, "0") == 0))
507 return (0);
509 if ((strcmp(str, "on") == 0) || (strcmp(str, "1") == 0))
510 return (1);
512 return (-1);
516 * Given a vdev string return an allocated string containing the sysfs path to
517 * its power control file. Also do a check if the power control file really
518 * exists and has correct permissions.
520 * Example returned strings:
522 * /sys/class/enclosure/0:0:122:0/10/power_status
523 * /sys/bus/pci/slots/10/power
525 * Returns allocated string on success (which must be freed), NULL on failure.
527 static char *
528 zpool_power_sysfs_path(zpool_handle_t *zhp, char *vdev)
530 const char *enc_sysfs_dir = NULL;
531 char *path = NULL;
532 nvlist_t *vdev_nv = zpool_find_vdev(zhp, vdev, NULL, NULL, NULL);
534 if (vdev_nv == NULL) {
535 return (NULL);
538 /* Make sure we're getting the updated enclosure sysfs path */
539 rescan_vdev_config_dev_sysfs_path(vdev_nv);
541 if (nvlist_lookup_string(vdev_nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
542 &enc_sysfs_dir) != 0) {
543 return (NULL);
546 if (asprintf(&path, "%s/power_status", enc_sysfs_dir) == -1)
547 return (NULL);
549 if (access(path, W_OK) != 0) {
550 free(path);
551 path = NULL;
552 /* No HDD 'power_control' file, maybe it's NVMe? */
553 if (asprintf(&path, "%s/power", enc_sysfs_dir) == -1) {
554 return (NULL);
557 if (access(path, R_OK | W_OK) != 0) {
558 /* Not NVMe either */
559 free(path);
560 return (NULL);
564 return (path);
568 * Given a path to a sysfs power control file, return B_TRUE if you should use
569 * "on/off" words to control it, or B_FALSE otherwise ("0/1" to control).
571 static boolean_t
572 zpool_power_use_word(char *sysfs_path)
574 if (strcmp(&sysfs_path[strlen(sysfs_path) - strlen("power_status")],
575 "power_status") == 0) {
576 return (B_TRUE);
578 return (B_FALSE);
582 * Check the sysfs power control value for a vdev.
584 * Returns:
585 * 0 - Power is off
586 * 1 - Power is on
587 * -1 - Error or unsupported
590 zpool_power_current_state(zpool_handle_t *zhp, char *vdev)
592 char *val;
593 int rc;
595 char *path = zpool_power_sysfs_path(zhp, vdev);
596 if (path == NULL)
597 return (-1);
599 val = zpool_sysfs_gets(path);
600 if (val == NULL) {
601 free(path);
602 return (-1);
605 rc = zpool_power_parse_value(val);
606 free(val);
607 free(path);
608 return (rc);
612 * Turn on or off the slot to a device
614 * Device path is the full path to the device (like /dev/sda or /dev/sda1).
616 * Return code:
617 * 0: Success
618 * ENOTSUP: Power control not supported for OS
619 * EBADSLT: Couldn't read current power state
620 * ENOENT: No sysfs path to power control
621 * EIO: Couldn't write sysfs power value
622 * EBADE: Sysfs power value didn't change
625 zpool_power(zpool_handle_t *zhp, char *vdev, boolean_t turn_on)
627 char *sysfs_path;
628 const char *val;
629 int rc;
630 int timeout_ms;
632 rc = zpool_power_current_state(zhp, vdev);
633 if (rc == -1) {
634 return (EBADSLT);
637 /* Already correct value? */
638 if (rc == (int)turn_on)
639 return (0);
641 sysfs_path = zpool_power_sysfs_path(zhp, vdev);
642 if (sysfs_path == NULL)
643 return (ENOENT);
645 if (zpool_power_use_word(sysfs_path)) {
646 val = turn_on ? "on" : "off";
647 } else {
648 val = turn_on ? "1" : "0";
651 rc = zpool_sysfs_puts(sysfs_path, (char *)val);
653 free(sysfs_path);
654 if (rc != 0) {
655 return (EIO);
659 * Wait up to 30 seconds for sysfs power value to change after
660 * writing it.
662 timeout_ms = zpool_getenv_int("ZPOOL_POWER_ON_SLOT_TIMEOUT_MS", 30000);
663 for (int i = 0; i < MAX(1, timeout_ms / 200); i++) {
664 rc = zpool_power_current_state(zhp, vdev);
665 if (rc == (int)turn_on)
666 return (0); /* success */
668 fsleep(0.200); /* 200ms */
671 /* sysfs value never changed */
672 return (EBADE);