FreeBSD: ignore some includes when not building kernel
[zfs.git] / cmd / zdb / zdb.c
blob2c136bacb1a81e2b73aeec70bdf32430eacb6f77
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 * Copyright 2016 Nexenta Systems, Inc.
27 * Copyright (c) 2017, 2018 Lawrence Livermore National Security, LLC.
28 * Copyright (c) 2015, 2017, Intel Corporation.
29 * Copyright (c) 2020 Datto Inc.
30 * Copyright (c) 2020, The FreeBSD Foundation [1]
32 * [1] Portions of this software were developed by Allan Jude
33 * under sponsorship from the FreeBSD Foundation.
34 * Copyright (c) 2021 Allan Jude
35 * Copyright (c) 2021 Toomas Soome <tsoome@me.com>
36 * Copyright (c) 2023, 2024, Klara Inc.
37 * Copyright (c) 2023, Rob Norris <robn@despairlabs.com>
40 #include <stdio.h>
41 #include <unistd.h>
42 #include <stdlib.h>
43 #include <ctype.h>
44 #include <getopt.h>
45 #include <openssl/evp.h>
46 #include <sys/zfs_context.h>
47 #include <sys/spa.h>
48 #include <sys/spa_impl.h>
49 #include <sys/dmu.h>
50 #include <sys/zap.h>
51 #include <sys/zap_impl.h>
52 #include <sys/fs/zfs.h>
53 #include <sys/zfs_znode.h>
54 #include <sys/zfs_sa.h>
55 #include <sys/sa.h>
56 #include <sys/sa_impl.h>
57 #include <sys/vdev.h>
58 #include <sys/vdev_impl.h>
59 #include <sys/metaslab_impl.h>
60 #include <sys/dmu_objset.h>
61 #include <sys/dsl_dir.h>
62 #include <sys/dsl_dataset.h>
63 #include <sys/dsl_pool.h>
64 #include <sys/dsl_bookmark.h>
65 #include <sys/dbuf.h>
66 #include <sys/zil.h>
67 #include <sys/zil_impl.h>
68 #include <sys/stat.h>
69 #include <sys/resource.h>
70 #include <sys/dmu_send.h>
71 #include <sys/dmu_traverse.h>
72 #include <sys/zio_checksum.h>
73 #include <sys/zio_compress.h>
74 #include <sys/zfs_fuid.h>
75 #include <sys/arc.h>
76 #include <sys/arc_impl.h>
77 #include <sys/ddt.h>
78 #include <sys/ddt_impl.h>
79 #include <sys/zfeature.h>
80 #include <sys/abd.h>
81 #include <sys/blkptr.h>
82 #include <sys/dsl_crypt.h>
83 #include <sys/dsl_scan.h>
84 #include <sys/btree.h>
85 #include <sys/brt.h>
86 #include <sys/brt_impl.h>
87 #include <zfs_comutil.h>
88 #include <sys/zstd/zstd.h>
89 #include <sys/backtrace.h>
91 #include <libnvpair.h>
92 #include <libzutil.h>
93 #include <libzfs_core.h>
95 #include <libzdb.h>
97 #include "zdb.h"
100 extern int reference_tracking_enable;
101 extern int zfs_recover;
102 extern uint_t zfs_vdev_async_read_max_active;
103 extern boolean_t spa_load_verify_dryrun;
104 extern boolean_t spa_mode_readable_spacemaps;
105 extern uint_t zfs_reconstruct_indirect_combinations_max;
106 extern uint_t zfs_btree_verify_intensity;
108 static const char cmdname[] = "zdb";
109 uint8_t dump_opt[256];
111 typedef void object_viewer_t(objset_t *, uint64_t, void *data, size_t size);
113 static uint64_t *zopt_metaslab = NULL;
114 static unsigned zopt_metaslab_args = 0;
117 static zopt_object_range_t *zopt_object_ranges = NULL;
118 static unsigned zopt_object_args = 0;
120 static int flagbits[256];
123 static uint64_t max_inflight_bytes = 256 * 1024 * 1024; /* 256MB */
124 static int leaked_objects = 0;
125 static range_tree_t *mos_refd_objs;
126 static spa_t *spa;
127 static objset_t *os;
128 static boolean_t kernel_init_done;
130 static void snprintf_blkptr_compact(char *, size_t, const blkptr_t *,
131 boolean_t);
132 static void mos_obj_refd(uint64_t);
133 static void mos_obj_refd_multiple(uint64_t);
134 static int dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t free,
135 dmu_tx_t *tx);
139 static void zdb_print_blkptr(const blkptr_t *bp, int flags);
140 static void zdb_exit(int reason);
142 typedef struct sublivelist_verify_block_refcnt {
143 /* block pointer entry in livelist being verified */
144 blkptr_t svbr_blk;
147 * Refcount gets incremented to 1 when we encounter the first
148 * FREE entry for the svfbr block pointer and a node for it
149 * is created in our ZDB verification/tracking metadata.
151 * As we encounter more FREE entries we increment this counter
152 * and similarly decrement it whenever we find the respective
153 * ALLOC entries for this block.
155 * When the refcount gets to 0 it means that all the FREE and
156 * ALLOC entries of this block have paired up and we no longer
157 * need to track it in our verification logic (e.g. the node
158 * containing this struct in our verification data structure
159 * should be freed).
161 * [refer to sublivelist_verify_blkptr() for the actual code]
163 uint32_t svbr_refcnt;
164 } sublivelist_verify_block_refcnt_t;
166 static int
167 sublivelist_block_refcnt_compare(const void *larg, const void *rarg)
169 const sublivelist_verify_block_refcnt_t *l = larg;
170 const sublivelist_verify_block_refcnt_t *r = rarg;
171 return (livelist_compare(&l->svbr_blk, &r->svbr_blk));
174 static int
175 sublivelist_verify_blkptr(void *arg, const blkptr_t *bp, boolean_t free,
176 dmu_tx_t *tx)
178 ASSERT3P(tx, ==, NULL);
179 struct sublivelist_verify *sv = arg;
180 sublivelist_verify_block_refcnt_t current = {
181 .svbr_blk = *bp,
184 * Start with 1 in case this is the first free entry.
185 * This field is not used for our B-Tree comparisons
186 * anyway.
188 .svbr_refcnt = 1,
191 zfs_btree_index_t where;
192 sublivelist_verify_block_refcnt_t *pair =
193 zfs_btree_find(&sv->sv_pair, &current, &where);
194 if (free) {
195 if (pair == NULL) {
196 /* first free entry for this block pointer */
197 zfs_btree_add(&sv->sv_pair, &current);
198 } else {
199 pair->svbr_refcnt++;
201 } else {
202 if (pair == NULL) {
203 /* block that is currently marked as allocated */
204 for (int i = 0; i < SPA_DVAS_PER_BP; i++) {
205 if (DVA_IS_EMPTY(&bp->blk_dva[i]))
206 break;
207 sublivelist_verify_block_t svb = {
208 .svb_dva = bp->blk_dva[i],
209 .svb_allocated_txg =
210 BP_GET_LOGICAL_BIRTH(bp)
213 if (zfs_btree_find(&sv->sv_leftover, &svb,
214 &where) == NULL) {
215 zfs_btree_add_idx(&sv->sv_leftover,
216 &svb, &where);
219 } else {
220 /* alloc matches a free entry */
221 pair->svbr_refcnt--;
222 if (pair->svbr_refcnt == 0) {
223 /* all allocs and frees have been matched */
224 zfs_btree_remove_idx(&sv->sv_pair, &where);
229 return (0);
232 static int
233 sublivelist_verify_func(void *args, dsl_deadlist_entry_t *dle)
235 int err;
236 struct sublivelist_verify *sv = args;
238 zfs_btree_create(&sv->sv_pair, sublivelist_block_refcnt_compare, NULL,
239 sizeof (sublivelist_verify_block_refcnt_t));
241 err = bpobj_iterate_nofree(&dle->dle_bpobj, sublivelist_verify_blkptr,
242 sv, NULL);
244 sublivelist_verify_block_refcnt_t *e;
245 zfs_btree_index_t *cookie = NULL;
246 while ((e = zfs_btree_destroy_nodes(&sv->sv_pair, &cookie)) != NULL) {
247 char blkbuf[BP_SPRINTF_LEN];
248 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf),
249 &e->svbr_blk, B_TRUE);
250 (void) printf("\tERROR: %d unmatched FREE(s): %s\n",
251 e->svbr_refcnt, blkbuf);
253 zfs_btree_destroy(&sv->sv_pair);
255 return (err);
258 static int
259 livelist_block_compare(const void *larg, const void *rarg)
261 const sublivelist_verify_block_t *l = larg;
262 const sublivelist_verify_block_t *r = rarg;
264 if (DVA_GET_VDEV(&l->svb_dva) < DVA_GET_VDEV(&r->svb_dva))
265 return (-1);
266 else if (DVA_GET_VDEV(&l->svb_dva) > DVA_GET_VDEV(&r->svb_dva))
267 return (+1);
269 if (DVA_GET_OFFSET(&l->svb_dva) < DVA_GET_OFFSET(&r->svb_dva))
270 return (-1);
271 else if (DVA_GET_OFFSET(&l->svb_dva) > DVA_GET_OFFSET(&r->svb_dva))
272 return (+1);
274 if (DVA_GET_ASIZE(&l->svb_dva) < DVA_GET_ASIZE(&r->svb_dva))
275 return (-1);
276 else if (DVA_GET_ASIZE(&l->svb_dva) > DVA_GET_ASIZE(&r->svb_dva))
277 return (+1);
279 return (0);
283 * Check for errors in a livelist while tracking all unfreed ALLOCs in the
284 * sublivelist_verify_t: sv->sv_leftover
286 static void
287 livelist_verify(dsl_deadlist_t *dl, void *arg)
289 sublivelist_verify_t *sv = arg;
290 dsl_deadlist_iterate(dl, sublivelist_verify_func, sv);
294 * Check for errors in the livelist entry and discard the intermediary
295 * data structures
297 static int
298 sublivelist_verify_lightweight(void *args, dsl_deadlist_entry_t *dle)
300 (void) args;
301 sublivelist_verify_t sv;
302 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL,
303 sizeof (sublivelist_verify_block_t));
304 int err = sublivelist_verify_func(&sv, dle);
305 zfs_btree_clear(&sv.sv_leftover);
306 zfs_btree_destroy(&sv.sv_leftover);
307 return (err);
310 typedef struct metaslab_verify {
312 * Tree containing all the leftover ALLOCs from the livelists
313 * that are part of this metaslab.
315 zfs_btree_t mv_livelist_allocs;
318 * Metaslab information.
320 uint64_t mv_vdid;
321 uint64_t mv_msid;
322 uint64_t mv_start;
323 uint64_t mv_end;
326 * What's currently allocated for this metaslab.
328 range_tree_t *mv_allocated;
329 } metaslab_verify_t;
331 typedef void ll_iter_t(dsl_deadlist_t *ll, void *arg);
333 typedef int (*zdb_log_sm_cb_t)(spa_t *spa, space_map_entry_t *sme, uint64_t txg,
334 void *arg);
336 typedef struct unflushed_iter_cb_arg {
337 spa_t *uic_spa;
338 uint64_t uic_txg;
339 void *uic_arg;
340 zdb_log_sm_cb_t uic_cb;
341 } unflushed_iter_cb_arg_t;
343 static int
344 iterate_through_spacemap_logs_cb(space_map_entry_t *sme, void *arg)
346 unflushed_iter_cb_arg_t *uic = arg;
347 return (uic->uic_cb(uic->uic_spa, sme, uic->uic_txg, uic->uic_arg));
350 static void
351 iterate_through_spacemap_logs(spa_t *spa, zdb_log_sm_cb_t cb, void *arg)
353 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
354 return;
356 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
357 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
358 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
359 space_map_t *sm = NULL;
360 VERIFY0(space_map_open(&sm, spa_meta_objset(spa),
361 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT));
363 unflushed_iter_cb_arg_t uic = {
364 .uic_spa = spa,
365 .uic_txg = sls->sls_txg,
366 .uic_arg = arg,
367 .uic_cb = cb
369 VERIFY0(space_map_iterate(sm, space_map_length(sm),
370 iterate_through_spacemap_logs_cb, &uic));
371 space_map_close(sm);
373 spa_config_exit(spa, SCL_CONFIG, FTAG);
376 static void
377 verify_livelist_allocs(metaslab_verify_t *mv, uint64_t txg,
378 uint64_t offset, uint64_t size)
380 sublivelist_verify_block_t svb = {{{0}}};
381 DVA_SET_VDEV(&svb.svb_dva, mv->mv_vdid);
382 DVA_SET_OFFSET(&svb.svb_dva, offset);
383 DVA_SET_ASIZE(&svb.svb_dva, size);
384 zfs_btree_index_t where;
385 uint64_t end_offset = offset + size;
388 * Look for an exact match for spacemap entry in the livelist entries.
389 * Then, look for other livelist entries that fall within the range
390 * of the spacemap entry as it may have been condensed
392 sublivelist_verify_block_t *found =
393 zfs_btree_find(&mv->mv_livelist_allocs, &svb, &where);
394 if (found == NULL) {
395 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where);
397 for (; found != NULL && DVA_GET_VDEV(&found->svb_dva) == mv->mv_vdid &&
398 DVA_GET_OFFSET(&found->svb_dva) < end_offset;
399 found = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) {
400 if (found->svb_allocated_txg <= txg) {
401 (void) printf("ERROR: Livelist ALLOC [%llx:%llx] "
402 "from TXG %llx FREED at TXG %llx\n",
403 (u_longlong_t)DVA_GET_OFFSET(&found->svb_dva),
404 (u_longlong_t)DVA_GET_ASIZE(&found->svb_dva),
405 (u_longlong_t)found->svb_allocated_txg,
406 (u_longlong_t)txg);
411 static int
412 metaslab_spacemap_validation_cb(space_map_entry_t *sme, void *arg)
414 metaslab_verify_t *mv = arg;
415 uint64_t offset = sme->sme_offset;
416 uint64_t size = sme->sme_run;
417 uint64_t txg = sme->sme_txg;
419 if (sme->sme_type == SM_ALLOC) {
420 if (range_tree_contains(mv->mv_allocated,
421 offset, size)) {
422 (void) printf("ERROR: DOUBLE ALLOC: "
423 "%llu [%llx:%llx] "
424 "%llu:%llu LOG_SM\n",
425 (u_longlong_t)txg, (u_longlong_t)offset,
426 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid,
427 (u_longlong_t)mv->mv_msid);
428 } else {
429 range_tree_add(mv->mv_allocated,
430 offset, size);
432 } else {
433 if (!range_tree_contains(mv->mv_allocated,
434 offset, size)) {
435 (void) printf("ERROR: DOUBLE FREE: "
436 "%llu [%llx:%llx] "
437 "%llu:%llu LOG_SM\n",
438 (u_longlong_t)txg, (u_longlong_t)offset,
439 (u_longlong_t)size, (u_longlong_t)mv->mv_vdid,
440 (u_longlong_t)mv->mv_msid);
441 } else {
442 range_tree_remove(mv->mv_allocated,
443 offset, size);
447 if (sme->sme_type != SM_ALLOC) {
449 * If something is freed in the spacemap, verify that
450 * it is not listed as allocated in the livelist.
452 verify_livelist_allocs(mv, txg, offset, size);
454 return (0);
457 static int
458 spacemap_check_sm_log_cb(spa_t *spa, space_map_entry_t *sme,
459 uint64_t txg, void *arg)
461 metaslab_verify_t *mv = arg;
462 uint64_t offset = sme->sme_offset;
463 uint64_t vdev_id = sme->sme_vdev;
465 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
467 /* skip indirect vdevs */
468 if (!vdev_is_concrete(vd))
469 return (0);
471 if (vdev_id != mv->mv_vdid)
472 return (0);
474 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
475 if (ms->ms_id != mv->mv_msid)
476 return (0);
478 if (txg < metaslab_unflushed_txg(ms))
479 return (0);
482 ASSERT3U(txg, ==, sme->sme_txg);
483 return (metaslab_spacemap_validation_cb(sme, mv));
486 static void
487 spacemap_check_sm_log(spa_t *spa, metaslab_verify_t *mv)
489 iterate_through_spacemap_logs(spa, spacemap_check_sm_log_cb, mv);
492 static void
493 spacemap_check_ms_sm(space_map_t *sm, metaslab_verify_t *mv)
495 if (sm == NULL)
496 return;
498 VERIFY0(space_map_iterate(sm, space_map_length(sm),
499 metaslab_spacemap_validation_cb, mv));
502 static void iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg);
505 * Transfer blocks from sv_leftover tree to the mv_livelist_allocs if
506 * they are part of that metaslab (mv_msid).
508 static void
509 mv_populate_livelist_allocs(metaslab_verify_t *mv, sublivelist_verify_t *sv)
511 zfs_btree_index_t where;
512 sublivelist_verify_block_t *svb;
513 ASSERT3U(zfs_btree_numnodes(&mv->mv_livelist_allocs), ==, 0);
514 for (svb = zfs_btree_first(&sv->sv_leftover, &where);
515 svb != NULL;
516 svb = zfs_btree_next(&sv->sv_leftover, &where, &where)) {
517 if (DVA_GET_VDEV(&svb->svb_dva) != mv->mv_vdid)
518 continue;
520 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start &&
521 (DVA_GET_OFFSET(&svb->svb_dva) +
522 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_start) {
523 (void) printf("ERROR: Found block that crosses "
524 "metaslab boundary: <%llu:%llx:%llx>\n",
525 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva),
526 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
527 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva));
528 continue;
531 if (DVA_GET_OFFSET(&svb->svb_dva) < mv->mv_start)
532 continue;
534 if (DVA_GET_OFFSET(&svb->svb_dva) >= mv->mv_end)
535 continue;
537 if ((DVA_GET_OFFSET(&svb->svb_dva) +
538 DVA_GET_ASIZE(&svb->svb_dva)) > mv->mv_end) {
539 (void) printf("ERROR: Found block that crosses "
540 "metaslab boundary: <%llu:%llx:%llx>\n",
541 (u_longlong_t)DVA_GET_VDEV(&svb->svb_dva),
542 (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
543 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva));
544 continue;
547 zfs_btree_add(&mv->mv_livelist_allocs, svb);
550 for (svb = zfs_btree_first(&mv->mv_livelist_allocs, &where);
551 svb != NULL;
552 svb = zfs_btree_next(&mv->mv_livelist_allocs, &where, &where)) {
553 zfs_btree_remove(&sv->sv_leftover, svb);
558 * [Livelist Check]
559 * Iterate through all the sublivelists and:
560 * - report leftover frees (**)
561 * - record leftover ALLOCs together with their TXG [see Cross Check]
563 * (**) Note: Double ALLOCs are valid in datasets that have dedup
564 * enabled. Similarly double FREEs are allowed as well but
565 * only if they pair up with a corresponding ALLOC entry once
566 * we our done with our sublivelist iteration.
568 * [Spacemap Check]
569 * for each metaslab:
570 * - iterate over spacemap and then the metaslab's entries in the
571 * spacemap log, then report any double FREEs and ALLOCs (do not
572 * blow up).
574 * [Cross Check]
575 * After finishing the Livelist Check phase and while being in the
576 * Spacemap Check phase, we find all the recorded leftover ALLOCs
577 * of the livelist check that are part of the metaslab that we are
578 * currently looking at in the Spacemap Check. We report any entries
579 * that are marked as ALLOCs in the livelists but have been actually
580 * freed (and potentially allocated again) after their TXG stamp in
581 * the spacemaps. Also report any ALLOCs from the livelists that
582 * belong to indirect vdevs (e.g. their vdev completed removal).
584 * Note that this will miss Log Spacemap entries that cancelled each other
585 * out before being flushed to the metaslab, so we are not guaranteed
586 * to match all erroneous ALLOCs.
588 static void
589 livelist_metaslab_validate(spa_t *spa)
591 (void) printf("Verifying deleted livelist entries\n");
593 sublivelist_verify_t sv;
594 zfs_btree_create(&sv.sv_leftover, livelist_block_compare, NULL,
595 sizeof (sublivelist_verify_block_t));
596 iterate_deleted_livelists(spa, livelist_verify, &sv);
598 (void) printf("Verifying metaslab entries\n");
599 vdev_t *rvd = spa->spa_root_vdev;
600 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
601 vdev_t *vd = rvd->vdev_child[c];
603 if (!vdev_is_concrete(vd))
604 continue;
606 for (uint64_t mid = 0; mid < vd->vdev_ms_count; mid++) {
607 metaslab_t *m = vd->vdev_ms[mid];
609 (void) fprintf(stderr,
610 "\rverifying concrete vdev %llu, "
611 "metaslab %llu of %llu ...",
612 (longlong_t)vd->vdev_id,
613 (longlong_t)mid,
614 (longlong_t)vd->vdev_ms_count);
616 uint64_t shift, start;
617 range_seg_type_t type =
618 metaslab_calculate_range_tree_type(vd, m,
619 &start, &shift);
620 metaslab_verify_t mv;
621 mv.mv_allocated = range_tree_create(NULL,
622 type, NULL, start, shift);
623 mv.mv_vdid = vd->vdev_id;
624 mv.mv_msid = m->ms_id;
625 mv.mv_start = m->ms_start;
626 mv.mv_end = m->ms_start + m->ms_size;
627 zfs_btree_create(&mv.mv_livelist_allocs,
628 livelist_block_compare, NULL,
629 sizeof (sublivelist_verify_block_t));
631 mv_populate_livelist_allocs(&mv, &sv);
633 spacemap_check_ms_sm(m->ms_sm, &mv);
634 spacemap_check_sm_log(spa, &mv);
636 range_tree_vacate(mv.mv_allocated, NULL, NULL);
637 range_tree_destroy(mv.mv_allocated);
638 zfs_btree_clear(&mv.mv_livelist_allocs);
639 zfs_btree_destroy(&mv.mv_livelist_allocs);
642 (void) fprintf(stderr, "\n");
645 * If there are any segments in the leftover tree after we walked
646 * through all the metaslabs in the concrete vdevs then this means
647 * that we have segments in the livelists that belong to indirect
648 * vdevs and are marked as allocated.
650 if (zfs_btree_numnodes(&sv.sv_leftover) == 0) {
651 zfs_btree_destroy(&sv.sv_leftover);
652 return;
654 (void) printf("ERROR: Found livelist blocks marked as allocated "
655 "for indirect vdevs:\n");
657 zfs_btree_index_t *where = NULL;
658 sublivelist_verify_block_t *svb;
659 while ((svb = zfs_btree_destroy_nodes(&sv.sv_leftover, &where)) !=
660 NULL) {
661 int vdev_id = DVA_GET_VDEV(&svb->svb_dva);
662 ASSERT3U(vdev_id, <, rvd->vdev_children);
663 vdev_t *vd = rvd->vdev_child[vdev_id];
664 ASSERT(!vdev_is_concrete(vd));
665 (void) printf("<%d:%llx:%llx> TXG %llx\n",
666 vdev_id, (u_longlong_t)DVA_GET_OFFSET(&svb->svb_dva),
667 (u_longlong_t)DVA_GET_ASIZE(&svb->svb_dva),
668 (u_longlong_t)svb->svb_allocated_txg);
670 (void) printf("\n");
671 zfs_btree_destroy(&sv.sv_leftover);
675 * These libumem hooks provide a reasonable set of defaults for the allocator's
676 * debugging facilities.
678 const char *
679 _umem_debug_init(void)
681 return ("default,verbose"); /* $UMEM_DEBUG setting */
684 const char *
685 _umem_logging_init(void)
687 return ("fail,contents"); /* $UMEM_LOGGING setting */
690 static void
691 usage(void)
693 (void) fprintf(stderr,
694 "Usage:\t%s [-AbcdDFGhikLMPsvXy] [-e [-V] [-p <path> ...]] "
695 "[-I <inflight I/Os>]\n"
696 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n"
697 "\t\t[-K <key>]\n"
698 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]]\n"
699 "\t%s [-AdiPv] [-e [-V] [-p <path> ...]] [-U <cache>] [-K <key>]\n"
700 "\t\t[<poolname>[/<dataset | objset id>] [<object | range> ...]\n"
701 "\t%s -B [-e [-V] [-p <path> ...]] [-I <inflight I/Os>]\n"
702 "\t\t[-o <var>=<value>]... [-t <txg>] [-U <cache>] [-x <dumpdir>]\n"
703 "\t\t[-K <key>] <poolname>/<objset id> [<backupflags>]\n"
704 "\t%s [-v] <bookmark>\n"
705 "\t%s -C [-A] [-U <cache>] [<poolname>]\n"
706 "\t%s -l [-Aqu] <device>\n"
707 "\t%s -m [-AFLPX] [-e [-V] [-p <path> ...]] [-t <txg>] "
708 "[-U <cache>]\n\t\t<poolname> [<vdev> [<metaslab> ...]]\n"
709 "\t%s -O [-K <key>] <dataset> <path>\n"
710 "\t%s -r [-K <key>] <dataset> <path> <destination>\n"
711 "\t%s -R [-A] [-e [-V] [-p <path> ...]] [-U <cache>]\n"
712 "\t\t<poolname> <vdev>:<offset>:<size>[:<flags>]\n"
713 "\t%s -E [-A] word0:word1:...:word15\n"
714 "\t%s -S [-AP] [-e [-V] [-p <path> ...]] [-U <cache>] "
715 "<poolname>\n\n",
716 cmdname, cmdname, cmdname, cmdname, cmdname, cmdname, cmdname,
717 cmdname, cmdname, cmdname, cmdname, cmdname);
719 (void) fprintf(stderr, " Dataset name must include at least one "
720 "separator character '/' or '@'\n");
721 (void) fprintf(stderr, " If dataset name is specified, only that "
722 "dataset is dumped\n");
723 (void) fprintf(stderr, " If object numbers or object number "
724 "ranges are specified, only those\n"
725 " objects or ranges are dumped.\n\n");
726 (void) fprintf(stderr,
727 " Object ranges take the form <start>:<end>[:<flags>]\n"
728 " start Starting object number\n"
729 " end Ending object number, or -1 for no upper bound\n"
730 " flags Optional flags to select object types:\n"
731 " A All objects (this is the default)\n"
732 " d ZFS directories\n"
733 " f ZFS files \n"
734 " m SPA space maps\n"
735 " z ZAPs\n"
736 " - Negate effect of next flag\n\n");
737 (void) fprintf(stderr, " Options to control amount of output:\n");
738 (void) fprintf(stderr, " -b --block-stats "
739 "block statistics\n");
740 (void) fprintf(stderr, " -B --backup "
741 "backup stream\n");
742 (void) fprintf(stderr, " -c --checksum "
743 "checksum all metadata (twice for all data) blocks\n");
744 (void) fprintf(stderr, " -C --config "
745 "config (or cachefile if alone)\n");
746 (void) fprintf(stderr, " -d --datasets "
747 "dataset(s)\n");
748 (void) fprintf(stderr, " -D --dedup-stats "
749 "dedup statistics\n");
750 (void) fprintf(stderr, " -E --embedded-block-pointer=INTEGER\n"
751 " decode and display block "
752 "from an embedded block pointer\n");
753 (void) fprintf(stderr, " -h --history "
754 "pool history\n");
755 (void) fprintf(stderr, " -i --intent-logs "
756 "intent logs\n");
757 (void) fprintf(stderr, " -l --label "
758 "read label contents\n");
759 (void) fprintf(stderr, " -k --checkpointed-state "
760 "examine the checkpointed state of the pool\n");
761 (void) fprintf(stderr, " -L --disable-leak-tracking "
762 "disable leak tracking (do not load spacemaps)\n");
763 (void) fprintf(stderr, " -m --metaslabs "
764 "metaslabs\n");
765 (void) fprintf(stderr, " -M --metaslab-groups "
766 "metaslab groups\n");
767 (void) fprintf(stderr, " -O --object-lookups "
768 "perform object lookups by path\n");
769 (void) fprintf(stderr, " -r --copy-object "
770 "copy an object by path to file\n");
771 (void) fprintf(stderr, " -R --read-block "
772 "read and display block from a device\n");
773 (void) fprintf(stderr, " -s --io-stats "
774 "report stats on zdb's I/O\n");
775 (void) fprintf(stderr, " -S --simulate-dedup "
776 "simulate dedup to measure effect\n");
777 (void) fprintf(stderr, " -v --verbose "
778 "verbose (applies to all others)\n");
779 (void) fprintf(stderr, " -y --livelist "
780 "perform livelist and metaslab validation on any livelists being "
781 "deleted\n\n");
782 (void) fprintf(stderr, " Below options are intended for use "
783 "with other options:\n");
784 (void) fprintf(stderr, " -A --ignore-assertions "
785 "ignore assertions (-A), enable panic recovery (-AA) or both "
786 "(-AAA)\n");
787 (void) fprintf(stderr, " -e --exported "
788 "pool is exported/destroyed/has altroot/not in a cachefile\n");
789 (void) fprintf(stderr, " -F --automatic-rewind "
790 "attempt automatic rewind within safe range of transaction "
791 "groups\n");
792 (void) fprintf(stderr, " -G --dump-debug-msg "
793 "dump zfs_dbgmsg buffer before exiting\n");
794 (void) fprintf(stderr, " -I --inflight=INTEGER "
795 "specify the maximum number of checksumming I/Os "
796 "[default is 200]\n");
797 (void) fprintf(stderr, " -K --key=KEY "
798 "decryption key for encrypted dataset\n");
799 (void) fprintf(stderr, " -o --option=\"OPTION=INTEGER\" "
800 "set global variable to an unsigned 32-bit integer\n");
801 (void) fprintf(stderr, " -p --path==PATH "
802 "use one or more with -e to specify path to vdev dir\n");
803 (void) fprintf(stderr, " -P --parseable "
804 "print numbers in parseable form\n");
805 (void) fprintf(stderr, " -q --skip-label "
806 "don't print label contents\n");
807 (void) fprintf(stderr, " -t --txg=INTEGER "
808 "highest txg to use when searching for uberblocks\n");
809 (void) fprintf(stderr, " -T --brt-stats "
810 "BRT statistics\n");
811 (void) fprintf(stderr, " -u --uberblock "
812 "uberblock\n");
813 (void) fprintf(stderr, " -U --cachefile=PATH "
814 "use alternate cachefile\n");
815 (void) fprintf(stderr, " -V --verbatim "
816 "do verbatim import\n");
817 (void) fprintf(stderr, " -x --dump-blocks=PATH "
818 "dump all read blocks into specified directory\n");
819 (void) fprintf(stderr, " -X --extreme-rewind "
820 "attempt extreme rewind (does not work with dataset)\n");
821 (void) fprintf(stderr, " -Y --all-reconstruction "
822 "attempt all reconstruction combinations for split blocks\n");
823 (void) fprintf(stderr, " -Z --zstd-headers "
824 "show ZSTD headers \n");
825 (void) fprintf(stderr, "Specify an option more than once (e.g. -bb) "
826 "to make only that option verbose\n");
827 (void) fprintf(stderr, "Default is to dump everything non-verbosely\n");
828 zdb_exit(1);
831 static void
832 dump_debug_buffer(void)
834 ssize_t ret __attribute__((unused));
836 if (!dump_opt['G'])
837 return;
839 * We use write() instead of printf() so that this function
840 * is safe to call from a signal handler.
842 ret = write(STDERR_FILENO, "\n", 1);
843 zfs_dbgmsg_print(STDERR_FILENO, "zdb");
846 static void sig_handler(int signo)
848 struct sigaction action;
850 libspl_backtrace(STDERR_FILENO);
851 dump_debug_buffer();
854 * Restore default action and re-raise signal so SIGSEGV and
855 * SIGABRT can trigger a core dump.
857 action.sa_handler = SIG_DFL;
858 sigemptyset(&action.sa_mask);
859 action.sa_flags = 0;
860 (void) sigaction(signo, &action, NULL);
861 raise(signo);
865 * Called for usage errors that are discovered after a call to spa_open(),
866 * dmu_bonus_hold(), or pool_match(). abort() is called for other errors.
869 static void
870 fatal(const char *fmt, ...)
872 va_list ap;
874 va_start(ap, fmt);
875 (void) fprintf(stderr, "%s: ", cmdname);
876 (void) vfprintf(stderr, fmt, ap);
877 va_end(ap);
878 (void) fprintf(stderr, "\n");
880 dump_debug_buffer();
882 zdb_exit(1);
885 static void
886 dump_packed_nvlist(objset_t *os, uint64_t object, void *data, size_t size)
888 (void) size;
889 nvlist_t *nv;
890 size_t nvsize = *(uint64_t *)data;
891 char *packed = umem_alloc(nvsize, UMEM_NOFAIL);
893 VERIFY(0 == dmu_read(os, object, 0, nvsize, packed, DMU_READ_PREFETCH));
895 VERIFY(nvlist_unpack(packed, nvsize, &nv, 0) == 0);
897 umem_free(packed, nvsize);
899 dump_nvlist(nv, 8);
901 nvlist_free(nv);
904 static void
905 dump_history_offsets(objset_t *os, uint64_t object, void *data, size_t size)
907 (void) os, (void) object, (void) size;
908 spa_history_phys_t *shp = data;
910 if (shp == NULL)
911 return;
913 (void) printf("\t\tpool_create_len = %llu\n",
914 (u_longlong_t)shp->sh_pool_create_len);
915 (void) printf("\t\tphys_max_off = %llu\n",
916 (u_longlong_t)shp->sh_phys_max_off);
917 (void) printf("\t\tbof = %llu\n",
918 (u_longlong_t)shp->sh_bof);
919 (void) printf("\t\teof = %llu\n",
920 (u_longlong_t)shp->sh_eof);
921 (void) printf("\t\trecords_lost = %llu\n",
922 (u_longlong_t)shp->sh_records_lost);
925 static void
926 zdb_nicenum(uint64_t num, char *buf, size_t buflen)
928 if (dump_opt['P'])
929 (void) snprintf(buf, buflen, "%llu", (longlong_t)num);
930 else
931 nicenum(num, buf, buflen);
934 static void
935 zdb_nicebytes(uint64_t bytes, char *buf, size_t buflen)
937 if (dump_opt['P'])
938 (void) snprintf(buf, buflen, "%llu", (longlong_t)bytes);
939 else
940 zfs_nicebytes(bytes, buf, buflen);
943 static const char histo_stars[] = "****************************************";
944 static const uint64_t histo_width = sizeof (histo_stars) - 1;
946 static void
947 dump_histogram(const uint64_t *histo, int size, int offset)
949 int i;
950 int minidx = size - 1;
951 int maxidx = 0;
952 uint64_t max = 0;
954 for (i = 0; i < size; i++) {
955 if (histo[i] == 0)
956 continue;
957 if (histo[i] > max)
958 max = histo[i];
959 if (i > maxidx)
960 maxidx = i;
961 if (i < minidx)
962 minidx = i;
965 if (max < histo_width)
966 max = histo_width;
968 for (i = minidx; i <= maxidx; i++) {
969 (void) printf("\t\t\t%3u: %6llu %s\n",
970 i + offset, (u_longlong_t)histo[i],
971 &histo_stars[(max - histo[i]) * histo_width / max]);
975 static void
976 dump_zap_stats(objset_t *os, uint64_t object)
978 int error;
979 zap_stats_t zs;
981 error = zap_get_stats(os, object, &zs);
982 if (error)
983 return;
985 if (zs.zs_ptrtbl_len == 0) {
986 ASSERT(zs.zs_num_blocks == 1);
987 (void) printf("\tmicrozap: %llu bytes, %llu entries\n",
988 (u_longlong_t)zs.zs_blocksize,
989 (u_longlong_t)zs.zs_num_entries);
990 return;
993 (void) printf("\tFat ZAP stats:\n");
995 (void) printf("\t\tPointer table:\n");
996 (void) printf("\t\t\t%llu elements\n",
997 (u_longlong_t)zs.zs_ptrtbl_len);
998 (void) printf("\t\t\tzt_blk: %llu\n",
999 (u_longlong_t)zs.zs_ptrtbl_zt_blk);
1000 (void) printf("\t\t\tzt_numblks: %llu\n",
1001 (u_longlong_t)zs.zs_ptrtbl_zt_numblks);
1002 (void) printf("\t\t\tzt_shift: %llu\n",
1003 (u_longlong_t)zs.zs_ptrtbl_zt_shift);
1004 (void) printf("\t\t\tzt_blks_copied: %llu\n",
1005 (u_longlong_t)zs.zs_ptrtbl_blks_copied);
1006 (void) printf("\t\t\tzt_nextblk: %llu\n",
1007 (u_longlong_t)zs.zs_ptrtbl_nextblk);
1009 (void) printf("\t\tZAP entries: %llu\n",
1010 (u_longlong_t)zs.zs_num_entries);
1011 (void) printf("\t\tLeaf blocks: %llu\n",
1012 (u_longlong_t)zs.zs_num_leafs);
1013 (void) printf("\t\tTotal blocks: %llu\n",
1014 (u_longlong_t)zs.zs_num_blocks);
1015 (void) printf("\t\tzap_block_type: 0x%llx\n",
1016 (u_longlong_t)zs.zs_block_type);
1017 (void) printf("\t\tzap_magic: 0x%llx\n",
1018 (u_longlong_t)zs.zs_magic);
1019 (void) printf("\t\tzap_salt: 0x%llx\n",
1020 (u_longlong_t)zs.zs_salt);
1022 (void) printf("\t\tLeafs with 2^n pointers:\n");
1023 dump_histogram(zs.zs_leafs_with_2n_pointers, ZAP_HISTOGRAM_SIZE, 0);
1025 (void) printf("\t\tBlocks with n*5 entries:\n");
1026 dump_histogram(zs.zs_blocks_with_n5_entries, ZAP_HISTOGRAM_SIZE, 0);
1028 (void) printf("\t\tBlocks n/10 full:\n");
1029 dump_histogram(zs.zs_blocks_n_tenths_full, ZAP_HISTOGRAM_SIZE, 0);
1031 (void) printf("\t\tEntries with n chunks:\n");
1032 dump_histogram(zs.zs_entries_using_n_chunks, ZAP_HISTOGRAM_SIZE, 0);
1034 (void) printf("\t\tBuckets with n entries:\n");
1035 dump_histogram(zs.zs_buckets_with_n_entries, ZAP_HISTOGRAM_SIZE, 0);
1038 static void
1039 dump_none(objset_t *os, uint64_t object, void *data, size_t size)
1041 (void) os, (void) object, (void) data, (void) size;
1044 static void
1045 dump_unknown(objset_t *os, uint64_t object, void *data, size_t size)
1047 (void) os, (void) object, (void) data, (void) size;
1048 (void) printf("\tUNKNOWN OBJECT TYPE\n");
1051 static void
1052 dump_uint8(objset_t *os, uint64_t object, void *data, size_t size)
1054 (void) os, (void) object, (void) data, (void) size;
1057 static void
1058 dump_uint64(objset_t *os, uint64_t object, void *data, size_t size)
1060 uint64_t *arr;
1061 uint64_t oursize;
1062 if (dump_opt['d'] < 6)
1063 return;
1065 if (data == NULL) {
1066 dmu_object_info_t doi;
1068 VERIFY0(dmu_object_info(os, object, &doi));
1069 size = doi.doi_max_offset;
1071 * We cap the size at 1 mebibyte here to prevent
1072 * allocation failures and nigh-infinite printing if the
1073 * object is extremely large.
1075 oursize = MIN(size, 1 << 20);
1076 arr = kmem_alloc(oursize, KM_SLEEP);
1078 int err = dmu_read(os, object, 0, oursize, arr, 0);
1079 if (err != 0) {
1080 (void) printf("got error %u from dmu_read\n", err);
1081 kmem_free(arr, oursize);
1082 return;
1084 } else {
1086 * Even though the allocation is already done in this code path,
1087 * we still cap the size to prevent excessive printing.
1089 oursize = MIN(size, 1 << 20);
1090 arr = data;
1093 if (size == 0) {
1094 if (data == NULL)
1095 kmem_free(arr, oursize);
1096 (void) printf("\t\t[]\n");
1097 return;
1100 (void) printf("\t\t[%0llx", (u_longlong_t)arr[0]);
1101 for (size_t i = 1; i * sizeof (uint64_t) < oursize; i++) {
1102 if (i % 4 != 0)
1103 (void) printf(", %0llx", (u_longlong_t)arr[i]);
1104 else
1105 (void) printf(",\n\t\t%0llx", (u_longlong_t)arr[i]);
1107 if (oursize != size)
1108 (void) printf(", ... ");
1109 (void) printf("]\n");
1111 if (data == NULL)
1112 kmem_free(arr, oursize);
1115 static void
1116 dump_zap(objset_t *os, uint64_t object, void *data, size_t size)
1118 (void) data, (void) size;
1119 zap_cursor_t zc;
1120 zap_attribute_t *attrp = zap_attribute_long_alloc();
1121 void *prop;
1122 unsigned i;
1124 dump_zap_stats(os, object);
1125 (void) printf("\n");
1127 for (zap_cursor_init(&zc, os, object);
1128 zap_cursor_retrieve(&zc, attrp) == 0;
1129 zap_cursor_advance(&zc)) {
1130 boolean_t key64 =
1131 !!(zap_getflags(zc.zc_zap) & ZAP_FLAG_UINT64_KEY);
1133 if (key64)
1134 (void) printf("\t\t0x%010lx = ",
1135 *(uint64_t *)attrp->za_name);
1136 else
1137 (void) printf("\t\t%s = ", attrp->za_name);
1139 if (attrp->za_num_integers == 0) {
1140 (void) printf("\n");
1141 continue;
1143 prop = umem_zalloc(attrp->za_num_integers *
1144 attrp->za_integer_length, UMEM_NOFAIL);
1146 if (key64)
1147 (void) zap_lookup_uint64(os, object,
1148 (const uint64_t *)attrp->za_name, 1,
1149 attrp->za_integer_length, attrp->za_num_integers,
1150 prop);
1151 else
1152 (void) zap_lookup(os, object, attrp->za_name,
1153 attrp->za_integer_length, attrp->za_num_integers,
1154 prop);
1156 if (attrp->za_integer_length == 1 && !key64) {
1157 if (strcmp(attrp->za_name,
1158 DSL_CRYPTO_KEY_MASTER_KEY) == 0 ||
1159 strcmp(attrp->za_name,
1160 DSL_CRYPTO_KEY_HMAC_KEY) == 0 ||
1161 strcmp(attrp->za_name, DSL_CRYPTO_KEY_IV) == 0 ||
1162 strcmp(attrp->za_name, DSL_CRYPTO_KEY_MAC) == 0 ||
1163 strcmp(attrp->za_name,
1164 DMU_POOL_CHECKSUM_SALT) == 0) {
1165 uint8_t *u8 = prop;
1167 for (i = 0; i < attrp->za_num_integers; i++) {
1168 (void) printf("%02x", u8[i]);
1170 } else {
1171 (void) printf("%s", (char *)prop);
1173 } else {
1174 for (i = 0; i < attrp->za_num_integers; i++) {
1175 switch (attrp->za_integer_length) {
1176 case 1:
1177 (void) printf("%u ",
1178 ((uint8_t *)prop)[i]);
1179 break;
1180 case 2:
1181 (void) printf("%u ",
1182 ((uint16_t *)prop)[i]);
1183 break;
1184 case 4:
1185 (void) printf("%u ",
1186 ((uint32_t *)prop)[i]);
1187 break;
1188 case 8:
1189 (void) printf("%lld ",
1190 (u_longlong_t)((int64_t *)prop)[i]);
1191 break;
1195 (void) printf("\n");
1196 umem_free(prop,
1197 attrp->za_num_integers * attrp->za_integer_length);
1199 zap_cursor_fini(&zc);
1200 zap_attribute_free(attrp);
1203 static void
1204 dump_bpobj(objset_t *os, uint64_t object, void *data, size_t size)
1206 bpobj_phys_t *bpop = data;
1207 uint64_t i;
1208 char bytes[32], comp[32], uncomp[32];
1210 /* make sure the output won't get truncated */
1211 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
1212 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
1213 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
1215 if (bpop == NULL)
1216 return;
1218 zdb_nicenum(bpop->bpo_bytes, bytes, sizeof (bytes));
1219 zdb_nicenum(bpop->bpo_comp, comp, sizeof (comp));
1220 zdb_nicenum(bpop->bpo_uncomp, uncomp, sizeof (uncomp));
1222 (void) printf("\t\tnum_blkptrs = %llu\n",
1223 (u_longlong_t)bpop->bpo_num_blkptrs);
1224 (void) printf("\t\tbytes = %s\n", bytes);
1225 if (size >= BPOBJ_SIZE_V1) {
1226 (void) printf("\t\tcomp = %s\n", comp);
1227 (void) printf("\t\tuncomp = %s\n", uncomp);
1229 if (size >= BPOBJ_SIZE_V2) {
1230 (void) printf("\t\tsubobjs = %llu\n",
1231 (u_longlong_t)bpop->bpo_subobjs);
1232 (void) printf("\t\tnum_subobjs = %llu\n",
1233 (u_longlong_t)bpop->bpo_num_subobjs);
1235 if (size >= sizeof (*bpop)) {
1236 (void) printf("\t\tnum_freed = %llu\n",
1237 (u_longlong_t)bpop->bpo_num_freed);
1240 if (dump_opt['d'] < 5)
1241 return;
1243 for (i = 0; i < bpop->bpo_num_blkptrs; i++) {
1244 char blkbuf[BP_SPRINTF_LEN];
1245 blkptr_t bp;
1247 int err = dmu_read(os, object,
1248 i * sizeof (bp), sizeof (bp), &bp, 0);
1249 if (err != 0) {
1250 (void) printf("got error %u from dmu_read\n", err);
1251 break;
1253 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), &bp,
1254 BP_GET_FREE(&bp));
1255 (void) printf("\t%s\n", blkbuf);
1259 static void
1260 dump_bpobj_subobjs(objset_t *os, uint64_t object, void *data, size_t size)
1262 (void) data, (void) size;
1263 dmu_object_info_t doi;
1264 int64_t i;
1266 VERIFY0(dmu_object_info(os, object, &doi));
1267 uint64_t *subobjs = kmem_alloc(doi.doi_max_offset, KM_SLEEP);
1269 int err = dmu_read(os, object, 0, doi.doi_max_offset, subobjs, 0);
1270 if (err != 0) {
1271 (void) printf("got error %u from dmu_read\n", err);
1272 kmem_free(subobjs, doi.doi_max_offset);
1273 return;
1276 int64_t last_nonzero = -1;
1277 for (i = 0; i < doi.doi_max_offset / 8; i++) {
1278 if (subobjs[i] != 0)
1279 last_nonzero = i;
1282 for (i = 0; i <= last_nonzero; i++) {
1283 (void) printf("\t%llu\n", (u_longlong_t)subobjs[i]);
1285 kmem_free(subobjs, doi.doi_max_offset);
1288 static void
1289 dump_ddt_zap(objset_t *os, uint64_t object, void *data, size_t size)
1291 (void) data, (void) size;
1292 dump_zap_stats(os, object);
1293 /* contents are printed elsewhere, properly decoded */
1296 static void
1297 dump_sa_attrs(objset_t *os, uint64_t object, void *data, size_t size)
1299 (void) data, (void) size;
1300 zap_cursor_t zc;
1301 zap_attribute_t *attrp = zap_attribute_alloc();
1303 dump_zap_stats(os, object);
1304 (void) printf("\n");
1306 for (zap_cursor_init(&zc, os, object);
1307 zap_cursor_retrieve(&zc, attrp) == 0;
1308 zap_cursor_advance(&zc)) {
1309 (void) printf("\t\t%s = ", attrp->za_name);
1310 if (attrp->za_num_integers == 0) {
1311 (void) printf("\n");
1312 continue;
1314 (void) printf(" %llx : [%d:%d:%d]\n",
1315 (u_longlong_t)attrp->za_first_integer,
1316 (int)ATTR_LENGTH(attrp->za_first_integer),
1317 (int)ATTR_BSWAP(attrp->za_first_integer),
1318 (int)ATTR_NUM(attrp->za_first_integer));
1320 zap_cursor_fini(&zc);
1321 zap_attribute_free(attrp);
1324 static void
1325 dump_sa_layouts(objset_t *os, uint64_t object, void *data, size_t size)
1327 (void) data, (void) size;
1328 zap_cursor_t zc;
1329 zap_attribute_t *attrp = zap_attribute_alloc();
1330 uint16_t *layout_attrs;
1331 unsigned i;
1333 dump_zap_stats(os, object);
1334 (void) printf("\n");
1336 for (zap_cursor_init(&zc, os, object);
1337 zap_cursor_retrieve(&zc, attrp) == 0;
1338 zap_cursor_advance(&zc)) {
1339 (void) printf("\t\t%s = [", attrp->za_name);
1340 if (attrp->za_num_integers == 0) {
1341 (void) printf("\n");
1342 continue;
1345 VERIFY(attrp->za_integer_length == 2);
1346 layout_attrs = umem_zalloc(attrp->za_num_integers *
1347 attrp->za_integer_length, UMEM_NOFAIL);
1349 VERIFY(zap_lookup(os, object, attrp->za_name,
1350 attrp->za_integer_length,
1351 attrp->za_num_integers, layout_attrs) == 0);
1353 for (i = 0; i != attrp->za_num_integers; i++)
1354 (void) printf(" %d ", (int)layout_attrs[i]);
1355 (void) printf("]\n");
1356 umem_free(layout_attrs,
1357 attrp->za_num_integers * attrp->za_integer_length);
1359 zap_cursor_fini(&zc);
1360 zap_attribute_free(attrp);
1363 static void
1364 dump_zpldir(objset_t *os, uint64_t object, void *data, size_t size)
1366 (void) data, (void) size;
1367 zap_cursor_t zc;
1368 zap_attribute_t *attrp = zap_attribute_long_alloc();
1369 const char *typenames[] = {
1370 /* 0 */ "not specified",
1371 /* 1 */ "FIFO",
1372 /* 2 */ "Character Device",
1373 /* 3 */ "3 (invalid)",
1374 /* 4 */ "Directory",
1375 /* 5 */ "5 (invalid)",
1376 /* 6 */ "Block Device",
1377 /* 7 */ "7 (invalid)",
1378 /* 8 */ "Regular File",
1379 /* 9 */ "9 (invalid)",
1380 /* 10 */ "Symbolic Link",
1381 /* 11 */ "11 (invalid)",
1382 /* 12 */ "Socket",
1383 /* 13 */ "Door",
1384 /* 14 */ "Event Port",
1385 /* 15 */ "15 (invalid)",
1388 dump_zap_stats(os, object);
1389 (void) printf("\n");
1391 for (zap_cursor_init(&zc, os, object);
1392 zap_cursor_retrieve(&zc, attrp) == 0;
1393 zap_cursor_advance(&zc)) {
1394 (void) printf("\t\t%s = %lld (type: %s)\n",
1395 attrp->za_name, ZFS_DIRENT_OBJ(attrp->za_first_integer),
1396 typenames[ZFS_DIRENT_TYPE(attrp->za_first_integer)]);
1398 zap_cursor_fini(&zc);
1399 zap_attribute_free(attrp);
1402 static int
1403 get_dtl_refcount(vdev_t *vd)
1405 int refcount = 0;
1407 if (vd->vdev_ops->vdev_op_leaf) {
1408 space_map_t *sm = vd->vdev_dtl_sm;
1410 if (sm != NULL &&
1411 sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
1412 return (1);
1413 return (0);
1416 for (unsigned c = 0; c < vd->vdev_children; c++)
1417 refcount += get_dtl_refcount(vd->vdev_child[c]);
1418 return (refcount);
1421 static int
1422 get_metaslab_refcount(vdev_t *vd)
1424 int refcount = 0;
1426 if (vd->vdev_top == vd) {
1427 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
1428 space_map_t *sm = vd->vdev_ms[m]->ms_sm;
1430 if (sm != NULL &&
1431 sm->sm_dbuf->db_size == sizeof (space_map_phys_t))
1432 refcount++;
1435 for (unsigned c = 0; c < vd->vdev_children; c++)
1436 refcount += get_metaslab_refcount(vd->vdev_child[c]);
1438 return (refcount);
1441 static int
1442 get_obsolete_refcount(vdev_t *vd)
1444 uint64_t obsolete_sm_object;
1445 int refcount = 0;
1447 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1448 if (vd->vdev_top == vd && obsolete_sm_object != 0) {
1449 dmu_object_info_t doi;
1450 VERIFY0(dmu_object_info(vd->vdev_spa->spa_meta_objset,
1451 obsolete_sm_object, &doi));
1452 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) {
1453 refcount++;
1455 } else {
1456 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
1457 ASSERT3U(obsolete_sm_object, ==, 0);
1459 for (unsigned c = 0; c < vd->vdev_children; c++) {
1460 refcount += get_obsolete_refcount(vd->vdev_child[c]);
1463 return (refcount);
1466 static int
1467 get_prev_obsolete_spacemap_refcount(spa_t *spa)
1469 uint64_t prev_obj =
1470 spa->spa_condensing_indirect_phys.scip_prev_obsolete_sm_object;
1471 if (prev_obj != 0) {
1472 dmu_object_info_t doi;
1473 VERIFY0(dmu_object_info(spa->spa_meta_objset, prev_obj, &doi));
1474 if (doi.doi_bonus_size == sizeof (space_map_phys_t)) {
1475 return (1);
1478 return (0);
1481 static int
1482 get_checkpoint_refcount(vdev_t *vd)
1484 int refcount = 0;
1486 if (vd->vdev_top == vd && vd->vdev_top_zap != 0 &&
1487 zap_contains(spa_meta_objset(vd->vdev_spa),
1488 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) == 0)
1489 refcount++;
1491 for (uint64_t c = 0; c < vd->vdev_children; c++)
1492 refcount += get_checkpoint_refcount(vd->vdev_child[c]);
1494 return (refcount);
1497 static int
1498 get_log_spacemap_refcount(spa_t *spa)
1500 return (avl_numnodes(&spa->spa_sm_logs_by_txg));
1503 static int
1504 verify_spacemap_refcounts(spa_t *spa)
1506 uint64_t expected_refcount = 0;
1507 uint64_t actual_refcount;
1509 (void) feature_get_refcount(spa,
1510 &spa_feature_table[SPA_FEATURE_SPACEMAP_HISTOGRAM],
1511 &expected_refcount);
1512 actual_refcount = get_dtl_refcount(spa->spa_root_vdev);
1513 actual_refcount += get_metaslab_refcount(spa->spa_root_vdev);
1514 actual_refcount += get_obsolete_refcount(spa->spa_root_vdev);
1515 actual_refcount += get_prev_obsolete_spacemap_refcount(spa);
1516 actual_refcount += get_checkpoint_refcount(spa->spa_root_vdev);
1517 actual_refcount += get_log_spacemap_refcount(spa);
1519 if (expected_refcount != actual_refcount) {
1520 (void) printf("space map refcount mismatch: expected %lld != "
1521 "actual %lld\n",
1522 (longlong_t)expected_refcount,
1523 (longlong_t)actual_refcount);
1524 return (2);
1526 return (0);
1529 static void
1530 dump_spacemap(objset_t *os, space_map_t *sm)
1532 const char *ddata[] = { "ALLOC", "FREE", "CONDENSE", "INVALID",
1533 "INVALID", "INVALID", "INVALID", "INVALID" };
1535 if (sm == NULL)
1536 return;
1538 (void) printf("space map object %llu:\n",
1539 (longlong_t)sm->sm_object);
1540 (void) printf(" smp_length = 0x%llx\n",
1541 (longlong_t)sm->sm_phys->smp_length);
1542 (void) printf(" smp_alloc = 0x%llx\n",
1543 (longlong_t)sm->sm_phys->smp_alloc);
1545 if (dump_opt['d'] < 6 && dump_opt['m'] < 4)
1546 return;
1549 * Print out the freelist entries in both encoded and decoded form.
1551 uint8_t mapshift = sm->sm_shift;
1552 int64_t alloc = 0;
1553 uint64_t word, entry_id = 0;
1554 for (uint64_t offset = 0; offset < space_map_length(sm);
1555 offset += sizeof (word)) {
1557 VERIFY0(dmu_read(os, space_map_object(sm), offset,
1558 sizeof (word), &word, DMU_READ_PREFETCH));
1560 if (sm_entry_is_debug(word)) {
1561 uint64_t de_txg = SM_DEBUG_TXG_DECODE(word);
1562 uint64_t de_sync_pass = SM_DEBUG_SYNCPASS_DECODE(word);
1563 if (de_txg == 0) {
1564 (void) printf(
1565 "\t [%6llu] PADDING\n",
1566 (u_longlong_t)entry_id);
1567 } else {
1568 (void) printf(
1569 "\t [%6llu] %s: txg %llu pass %llu\n",
1570 (u_longlong_t)entry_id,
1571 ddata[SM_DEBUG_ACTION_DECODE(word)],
1572 (u_longlong_t)de_txg,
1573 (u_longlong_t)de_sync_pass);
1575 entry_id++;
1576 continue;
1579 uint8_t words;
1580 char entry_type;
1581 uint64_t entry_off, entry_run, entry_vdev = SM_NO_VDEVID;
1583 if (sm_entry_is_single_word(word)) {
1584 entry_type = (SM_TYPE_DECODE(word) == SM_ALLOC) ?
1585 'A' : 'F';
1586 entry_off = (SM_OFFSET_DECODE(word) << mapshift) +
1587 sm->sm_start;
1588 entry_run = SM_RUN_DECODE(word) << mapshift;
1589 words = 1;
1590 } else {
1591 /* it is a two-word entry so we read another word */
1592 ASSERT(sm_entry_is_double_word(word));
1594 uint64_t extra_word;
1595 offset += sizeof (extra_word);
1596 VERIFY0(dmu_read(os, space_map_object(sm), offset,
1597 sizeof (extra_word), &extra_word,
1598 DMU_READ_PREFETCH));
1600 ASSERT3U(offset, <=, space_map_length(sm));
1602 entry_run = SM2_RUN_DECODE(word) << mapshift;
1603 entry_vdev = SM2_VDEV_DECODE(word);
1604 entry_type = (SM2_TYPE_DECODE(extra_word) == SM_ALLOC) ?
1605 'A' : 'F';
1606 entry_off = (SM2_OFFSET_DECODE(extra_word) <<
1607 mapshift) + sm->sm_start;
1608 words = 2;
1611 (void) printf("\t [%6llu] %c range:"
1612 " %010llx-%010llx size: %06llx vdev: %06llu words: %u\n",
1613 (u_longlong_t)entry_id,
1614 entry_type, (u_longlong_t)entry_off,
1615 (u_longlong_t)(entry_off + entry_run),
1616 (u_longlong_t)entry_run,
1617 (u_longlong_t)entry_vdev, words);
1619 if (entry_type == 'A')
1620 alloc += entry_run;
1621 else
1622 alloc -= entry_run;
1623 entry_id++;
1625 if (alloc != space_map_allocated(sm)) {
1626 (void) printf("space_map_object alloc (%lld) INCONSISTENT "
1627 "with space map summary (%lld)\n",
1628 (longlong_t)space_map_allocated(sm), (longlong_t)alloc);
1632 static void
1633 dump_metaslab_stats(metaslab_t *msp)
1635 char maxbuf[32];
1636 range_tree_t *rt = msp->ms_allocatable;
1637 zfs_btree_t *t = &msp->ms_allocatable_by_size;
1638 int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1640 /* max sure nicenum has enough space */
1641 _Static_assert(sizeof (maxbuf) >= NN_NUMBUF_SZ, "maxbuf truncated");
1643 zdb_nicenum(metaslab_largest_allocatable(msp), maxbuf, sizeof (maxbuf));
1645 (void) printf("\t %25s %10lu %7s %6s %4s %4d%%\n",
1646 "segments", zfs_btree_numnodes(t), "maxsize", maxbuf,
1647 "freepct", free_pct);
1648 (void) printf("\tIn-memory histogram:\n");
1649 dump_histogram(rt->rt_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1652 static void
1653 dump_metaslab(metaslab_t *msp)
1655 vdev_t *vd = msp->ms_group->mg_vd;
1656 spa_t *spa = vd->vdev_spa;
1657 space_map_t *sm = msp->ms_sm;
1658 char freebuf[32];
1660 zdb_nicenum(msp->ms_size - space_map_allocated(sm), freebuf,
1661 sizeof (freebuf));
1663 (void) printf(
1664 "\tmetaslab %6llu offset %12llx spacemap %6llu free %5s\n",
1665 (u_longlong_t)msp->ms_id, (u_longlong_t)msp->ms_start,
1666 (u_longlong_t)space_map_object(sm), freebuf);
1668 if (dump_opt['m'] > 2 && !dump_opt['L']) {
1669 mutex_enter(&msp->ms_lock);
1670 VERIFY0(metaslab_load(msp));
1671 range_tree_stat_verify(msp->ms_allocatable);
1672 dump_metaslab_stats(msp);
1673 metaslab_unload(msp);
1674 mutex_exit(&msp->ms_lock);
1677 if (dump_opt['m'] > 1 && sm != NULL &&
1678 spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
1680 * The space map histogram represents free space in chunks
1681 * of sm_shift (i.e. bucket 0 refers to 2^sm_shift).
1683 (void) printf("\tOn-disk histogram:\t\tfragmentation %llu\n",
1684 (u_longlong_t)msp->ms_fragmentation);
1685 dump_histogram(sm->sm_phys->smp_histogram,
1686 SPACE_MAP_HISTOGRAM_SIZE, sm->sm_shift);
1689 if (vd->vdev_ops == &vdev_draid_ops)
1690 ASSERT3U(msp->ms_size, <=, 1ULL << vd->vdev_ms_shift);
1691 else
1692 ASSERT3U(msp->ms_size, ==, 1ULL << vd->vdev_ms_shift);
1694 dump_spacemap(spa->spa_meta_objset, msp->ms_sm);
1696 if (spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
1697 (void) printf("\tFlush data:\n\tunflushed txg=%llu\n\n",
1698 (u_longlong_t)metaslab_unflushed_txg(msp));
1702 static void
1703 print_vdev_metaslab_header(vdev_t *vd)
1705 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
1706 const char *bias_str = "";
1707 if (alloc_bias == VDEV_BIAS_LOG || vd->vdev_islog) {
1708 bias_str = VDEV_ALLOC_BIAS_LOG;
1709 } else if (alloc_bias == VDEV_BIAS_SPECIAL) {
1710 bias_str = VDEV_ALLOC_BIAS_SPECIAL;
1711 } else if (alloc_bias == VDEV_BIAS_DEDUP) {
1712 bias_str = VDEV_ALLOC_BIAS_DEDUP;
1715 uint64_t ms_flush_data_obj = 0;
1716 if (vd->vdev_top_zap != 0) {
1717 int error = zap_lookup(spa_meta_objset(vd->vdev_spa),
1718 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS,
1719 sizeof (uint64_t), 1, &ms_flush_data_obj);
1720 if (error != ENOENT) {
1721 ASSERT0(error);
1725 (void) printf("\tvdev %10llu %s",
1726 (u_longlong_t)vd->vdev_id, bias_str);
1728 if (ms_flush_data_obj != 0) {
1729 (void) printf(" ms_unflushed_phys object %llu",
1730 (u_longlong_t)ms_flush_data_obj);
1733 (void) printf("\n\t%-10s%5llu %-19s %-15s %-12s\n",
1734 "metaslabs", (u_longlong_t)vd->vdev_ms_count,
1735 "offset", "spacemap", "free");
1736 (void) printf("\t%15s %19s %15s %12s\n",
1737 "---------------", "-------------------",
1738 "---------------", "------------");
1741 static void
1742 dump_metaslab_groups(spa_t *spa, boolean_t show_special)
1744 vdev_t *rvd = spa->spa_root_vdev;
1745 metaslab_class_t *mc = spa_normal_class(spa);
1746 metaslab_class_t *smc = spa_special_class(spa);
1747 uint64_t fragmentation;
1749 metaslab_class_histogram_verify(mc);
1751 for (unsigned c = 0; c < rvd->vdev_children; c++) {
1752 vdev_t *tvd = rvd->vdev_child[c];
1753 metaslab_group_t *mg = tvd->vdev_mg;
1755 if (mg == NULL || (mg->mg_class != mc &&
1756 (!show_special || mg->mg_class != smc)))
1757 continue;
1759 metaslab_group_histogram_verify(mg);
1760 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
1762 (void) printf("\tvdev %10llu\t\tmetaslabs%5llu\t\t"
1763 "fragmentation",
1764 (u_longlong_t)tvd->vdev_id,
1765 (u_longlong_t)tvd->vdev_ms_count);
1766 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
1767 (void) printf("%3s\n", "-");
1768 } else {
1769 (void) printf("%3llu%%\n",
1770 (u_longlong_t)mg->mg_fragmentation);
1772 dump_histogram(mg->mg_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1775 (void) printf("\tpool %s\tfragmentation", spa_name(spa));
1776 fragmentation = metaslab_class_fragmentation(mc);
1777 if (fragmentation == ZFS_FRAG_INVALID)
1778 (void) printf("\t%3s\n", "-");
1779 else
1780 (void) printf("\t%3llu%%\n", (u_longlong_t)fragmentation);
1781 dump_histogram(mc->mc_histogram, RANGE_TREE_HISTOGRAM_SIZE, 0);
1784 static void
1785 print_vdev_indirect(vdev_t *vd)
1787 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
1788 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1789 vdev_indirect_births_t *vib = vd->vdev_indirect_births;
1791 if (vim == NULL) {
1792 ASSERT3P(vib, ==, NULL);
1793 return;
1796 ASSERT3U(vdev_indirect_mapping_object(vim), ==,
1797 vic->vic_mapping_object);
1798 ASSERT3U(vdev_indirect_births_object(vib), ==,
1799 vic->vic_births_object);
1801 (void) printf("indirect births obj %llu:\n",
1802 (longlong_t)vic->vic_births_object);
1803 (void) printf(" vib_count = %llu\n",
1804 (longlong_t)vdev_indirect_births_count(vib));
1805 for (uint64_t i = 0; i < vdev_indirect_births_count(vib); i++) {
1806 vdev_indirect_birth_entry_phys_t *cur_vibe =
1807 &vib->vib_entries[i];
1808 (void) printf("\toffset %llx -> txg %llu\n",
1809 (longlong_t)cur_vibe->vibe_offset,
1810 (longlong_t)cur_vibe->vibe_phys_birth_txg);
1812 (void) printf("\n");
1814 (void) printf("indirect mapping obj %llu:\n",
1815 (longlong_t)vic->vic_mapping_object);
1816 (void) printf(" vim_max_offset = 0x%llx\n",
1817 (longlong_t)vdev_indirect_mapping_max_offset(vim));
1818 (void) printf(" vim_bytes_mapped = 0x%llx\n",
1819 (longlong_t)vdev_indirect_mapping_bytes_mapped(vim));
1820 (void) printf(" vim_count = %llu\n",
1821 (longlong_t)vdev_indirect_mapping_num_entries(vim));
1823 if (dump_opt['d'] <= 5 && dump_opt['m'] <= 3)
1824 return;
1826 uint32_t *counts = vdev_indirect_mapping_load_obsolete_counts(vim);
1828 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) {
1829 vdev_indirect_mapping_entry_phys_t *vimep =
1830 &vim->vim_entries[i];
1831 (void) printf("\t<%llx:%llx:%llx> -> "
1832 "<%llx:%llx:%llx> (%x obsolete)\n",
1833 (longlong_t)vd->vdev_id,
1834 (longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep),
1835 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
1836 (longlong_t)DVA_GET_VDEV(&vimep->vimep_dst),
1837 (longlong_t)DVA_GET_OFFSET(&vimep->vimep_dst),
1838 (longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
1839 counts[i]);
1841 (void) printf("\n");
1843 uint64_t obsolete_sm_object;
1844 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
1845 if (obsolete_sm_object != 0) {
1846 objset_t *mos = vd->vdev_spa->spa_meta_objset;
1847 (void) printf("obsolete space map object %llu:\n",
1848 (u_longlong_t)obsolete_sm_object);
1849 ASSERT(vd->vdev_obsolete_sm != NULL);
1850 ASSERT3U(space_map_object(vd->vdev_obsolete_sm), ==,
1851 obsolete_sm_object);
1852 dump_spacemap(mos, vd->vdev_obsolete_sm);
1853 (void) printf("\n");
1857 static void
1858 dump_metaslabs(spa_t *spa)
1860 vdev_t *vd, *rvd = spa->spa_root_vdev;
1861 uint64_t m, c = 0, children = rvd->vdev_children;
1863 (void) printf("\nMetaslabs:\n");
1865 if (!dump_opt['d'] && zopt_metaslab_args > 0) {
1866 c = zopt_metaslab[0];
1868 if (c >= children)
1869 (void) fatal("bad vdev id: %llu", (u_longlong_t)c);
1871 if (zopt_metaslab_args > 1) {
1872 vd = rvd->vdev_child[c];
1873 print_vdev_metaslab_header(vd);
1875 for (m = 1; m < zopt_metaslab_args; m++) {
1876 if (zopt_metaslab[m] < vd->vdev_ms_count)
1877 dump_metaslab(
1878 vd->vdev_ms[zopt_metaslab[m]]);
1879 else
1880 (void) fprintf(stderr, "bad metaslab "
1881 "number %llu\n",
1882 (u_longlong_t)zopt_metaslab[m]);
1884 (void) printf("\n");
1885 return;
1887 children = c + 1;
1889 for (; c < children; c++) {
1890 vd = rvd->vdev_child[c];
1891 print_vdev_metaslab_header(vd);
1893 print_vdev_indirect(vd);
1895 for (m = 0; m < vd->vdev_ms_count; m++)
1896 dump_metaslab(vd->vdev_ms[m]);
1897 (void) printf("\n");
1901 static void
1902 dump_log_spacemaps(spa_t *spa)
1904 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1905 return;
1907 (void) printf("\nLog Space Maps in Pool:\n");
1908 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
1909 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls)) {
1910 space_map_t *sm = NULL;
1911 VERIFY0(space_map_open(&sm, spa_meta_objset(spa),
1912 sls->sls_sm_obj, 0, UINT64_MAX, SPA_MINBLOCKSHIFT));
1914 (void) printf("Log Spacemap object %llu txg %llu\n",
1915 (u_longlong_t)sls->sls_sm_obj, (u_longlong_t)sls->sls_txg);
1916 dump_spacemap(spa->spa_meta_objset, sm);
1917 space_map_close(sm);
1919 (void) printf("\n");
1922 static void
1923 dump_ddt_entry(const ddt_t *ddt, const ddt_lightweight_entry_t *ddlwe,
1924 uint64_t index)
1926 const ddt_key_t *ddk = &ddlwe->ddlwe_key;
1927 char blkbuf[BP_SPRINTF_LEN];
1928 blkptr_t blk;
1929 int p;
1931 for (p = 0; p < DDT_NPHYS(ddt); p++) {
1932 const ddt_univ_phys_t *ddp = &ddlwe->ddlwe_phys;
1933 ddt_phys_variant_t v = DDT_PHYS_VARIANT(ddt, p);
1935 if (ddt_phys_birth(ddp, v) == 0)
1936 continue;
1937 ddt_bp_create(ddt->ddt_checksum, ddk, ddp, v, &blk);
1938 snprintf_blkptr(blkbuf, sizeof (blkbuf), &blk);
1939 (void) printf("index %llx refcnt %llu phys %d %s\n",
1940 (u_longlong_t)index, (u_longlong_t)ddt_phys_refcnt(ddp, v),
1941 p, blkbuf);
1945 static void
1946 dump_dedup_ratio(const ddt_stat_t *dds)
1948 double rL, rP, rD, D, dedup, compress, copies;
1950 if (dds->dds_blocks == 0)
1951 return;
1953 rL = (double)dds->dds_ref_lsize;
1954 rP = (double)dds->dds_ref_psize;
1955 rD = (double)dds->dds_ref_dsize;
1956 D = (double)dds->dds_dsize;
1958 dedup = rD / D;
1959 compress = rL / rP;
1960 copies = rD / rP;
1962 (void) printf("dedup = %.2f, compress = %.2f, copies = %.2f, "
1963 "dedup * compress / copies = %.2f\n\n",
1964 dedup, compress, copies, dedup * compress / copies);
1967 static void
1968 dump_ddt_log(ddt_t *ddt)
1970 for (int n = 0; n < 2; n++) {
1971 ddt_log_t *ddl = &ddt->ddt_log[n];
1973 uint64_t count = avl_numnodes(&ddl->ddl_tree);
1974 if (count == 0)
1975 continue;
1977 printf(DMU_POOL_DDT_LOG ": %lu log entries\n",
1978 zio_checksum_table[ddt->ddt_checksum].ci_name, n, count);
1980 if (dump_opt['D'] < 4)
1981 continue;
1983 ddt_lightweight_entry_t ddlwe;
1984 uint64_t index = 0;
1985 for (ddt_log_entry_t *ddle = avl_first(&ddl->ddl_tree);
1986 ddle; ddle = AVL_NEXT(&ddl->ddl_tree, ddle)) {
1987 DDT_LOG_ENTRY_TO_LIGHTWEIGHT(ddt, ddle, &ddlwe);
1988 dump_ddt_entry(ddt, &ddlwe, index++);
1993 static void
1994 dump_ddt(ddt_t *ddt, ddt_type_t type, ddt_class_t class)
1996 char name[DDT_NAMELEN];
1997 ddt_lightweight_entry_t ddlwe;
1998 uint64_t walk = 0;
1999 dmu_object_info_t doi;
2000 uint64_t count, dspace, mspace;
2001 int error;
2003 error = ddt_object_info(ddt, type, class, &doi);
2005 if (error == ENOENT)
2006 return;
2007 ASSERT(error == 0);
2009 error = ddt_object_count(ddt, type, class, &count);
2010 ASSERT(error == 0);
2011 if (count == 0)
2012 return;
2014 dspace = doi.doi_physical_blocks_512 << 9;
2015 mspace = doi.doi_fill_count * doi.doi_data_block_size;
2017 ddt_object_name(ddt, type, class, name);
2019 (void) printf("%s: %llu entries, size %llu on disk, %llu in core\n",
2020 name,
2021 (u_longlong_t)count,
2022 (u_longlong_t)dspace,
2023 (u_longlong_t)mspace);
2025 if (dump_opt['D'] < 3)
2026 return;
2028 zpool_dump_ddt(NULL, &ddt->ddt_histogram[type][class]);
2030 if (dump_opt['D'] < 4)
2031 return;
2033 if (dump_opt['D'] < 5 && class == DDT_CLASS_UNIQUE)
2034 return;
2036 (void) printf("%s contents:\n\n", name);
2038 while ((error = ddt_object_walk(ddt, type, class, &walk, &ddlwe)) == 0)
2039 dump_ddt_entry(ddt, &ddlwe, walk);
2041 ASSERT3U(error, ==, ENOENT);
2043 (void) printf("\n");
2046 static void
2047 dump_all_ddts(spa_t *spa)
2049 ddt_histogram_t ddh_total = {{{0}}};
2050 ddt_stat_t dds_total = {0};
2052 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
2053 ddt_t *ddt = spa->spa_ddt[c];
2054 if (!ddt || ddt->ddt_version == DDT_VERSION_UNCONFIGURED)
2055 continue;
2056 for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
2057 for (ddt_class_t class = 0; class < DDT_CLASSES;
2058 class++) {
2059 dump_ddt(ddt, type, class);
2062 dump_ddt_log(ddt);
2065 ddt_get_dedup_stats(spa, &dds_total);
2067 if (dds_total.dds_blocks == 0) {
2068 (void) printf("All DDTs are empty\n");
2069 return;
2072 (void) printf("\n");
2074 if (dump_opt['D'] > 1) {
2075 (void) printf("DDT histogram (aggregated over all DDTs):\n");
2076 ddt_get_dedup_histogram(spa, &ddh_total);
2077 zpool_dump_ddt(&dds_total, &ddh_total);
2080 dump_dedup_ratio(&dds_total);
2083 * Dump a histogram of unique class entry age
2085 if (dump_opt['D'] == 3 && getenv("ZDB_DDT_UNIQUE_AGE_HIST") != NULL) {
2086 ddt_age_histo_t histogram;
2088 (void) printf("DDT walk unique, building age histogram...\n");
2089 ddt_prune_walk(spa, 0, &histogram);
2092 * print out histogram for unique entry class birth
2094 if (histogram.dah_entries > 0) {
2095 (void) printf("%5s %9s %4s\n",
2096 "age", "blocks", "amnt");
2097 (void) printf("%5s %9s %4s\n",
2098 "-----", "---------", "----");
2099 for (int i = 0; i < HIST_BINS; i++) {
2100 (void) printf("%5d %9d %4d%%\n", 1 << i,
2101 (int)histogram.dah_age_histo[i],
2102 (int)((histogram.dah_age_histo[i] * 100) /
2103 histogram.dah_entries));
2109 static void
2110 dump_brt(spa_t *spa)
2112 if (!spa_feature_is_enabled(spa, SPA_FEATURE_BLOCK_CLONING)) {
2113 printf("BRT: unsupported on this pool\n");
2114 return;
2117 if (!spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) {
2118 printf("BRT: empty\n");
2119 return;
2122 brt_t *brt = spa->spa_brt;
2123 VERIFY(brt);
2125 char count[32], used[32], saved[32];
2126 zdb_nicebytes(brt_get_used(spa), used, sizeof (used));
2127 zdb_nicebytes(brt_get_saved(spa), saved, sizeof (saved));
2128 uint64_t ratio = brt_get_ratio(spa);
2129 printf("BRT: used %s; saved %s; ratio %llu.%02llux\n", used, saved,
2130 (u_longlong_t)(ratio / 100), (u_longlong_t)(ratio % 100));
2132 if (dump_opt['T'] < 2)
2133 return;
2135 for (uint64_t vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) {
2136 brt_vdev_t *brtvd = &brt->brt_vdevs[vdevid];
2137 if (brtvd == NULL)
2138 continue;
2140 if (!brtvd->bv_initiated) {
2141 printf("BRT: vdev %" PRIu64 ": empty\n", vdevid);
2142 continue;
2145 zdb_nicenum(brtvd->bv_totalcount, count, sizeof (count));
2146 zdb_nicebytes(brtvd->bv_usedspace, used, sizeof (used));
2147 zdb_nicebytes(brtvd->bv_savedspace, saved, sizeof (saved));
2148 printf("BRT: vdev %" PRIu64 ": refcnt %s; used %s; saved %s\n",
2149 vdevid, count, used, saved);
2152 if (dump_opt['T'] < 3)
2153 return;
2155 char dva[64];
2156 printf("\n%-16s %-10s\n", "DVA", "REFCNT");
2158 for (uint64_t vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) {
2159 brt_vdev_t *brtvd = &brt->brt_vdevs[vdevid];
2160 if (brtvd == NULL || !brtvd->bv_initiated)
2161 continue;
2163 zap_cursor_t zc;
2164 zap_attribute_t *za = zap_attribute_alloc();
2165 for (zap_cursor_init(&zc, brt->brt_mos, brtvd->bv_mos_entries);
2166 zap_cursor_retrieve(&zc, za) == 0;
2167 zap_cursor_advance(&zc)) {
2168 uint64_t refcnt;
2169 VERIFY0(zap_lookup_uint64(brt->brt_mos,
2170 brtvd->bv_mos_entries,
2171 (const uint64_t *)za->za_name, 1,
2172 za->za_integer_length, za->za_num_integers,
2173 &refcnt));
2175 uint64_t offset = *(const uint64_t *)za->za_name;
2177 snprintf(dva, sizeof (dva), "%" PRIu64 ":%llx", vdevid,
2178 (u_longlong_t)offset);
2179 printf("%-16s %-10llu\n", dva, (u_longlong_t)refcnt);
2181 zap_cursor_fini(&zc);
2182 zap_attribute_free(za);
2186 static void
2187 dump_dtl_seg(void *arg, uint64_t start, uint64_t size)
2189 char *prefix = arg;
2191 (void) printf("%s [%llu,%llu) length %llu\n",
2192 prefix,
2193 (u_longlong_t)start,
2194 (u_longlong_t)(start + size),
2195 (u_longlong_t)(size));
2198 static void
2199 dump_dtl(vdev_t *vd, int indent)
2201 spa_t *spa = vd->vdev_spa;
2202 boolean_t required;
2203 const char *name[DTL_TYPES] = { "missing", "partial", "scrub",
2204 "outage" };
2205 char prefix[256];
2207 spa_vdev_state_enter(spa, SCL_NONE);
2208 required = vdev_dtl_required(vd);
2209 (void) spa_vdev_state_exit(spa, NULL, 0);
2211 if (indent == 0)
2212 (void) printf("\nDirty time logs:\n\n");
2214 (void) printf("\t%*s%s [%s]\n", indent, "",
2215 vd->vdev_path ? vd->vdev_path :
2216 vd->vdev_parent ? vd->vdev_ops->vdev_op_type : spa_name(spa),
2217 required ? "DTL-required" : "DTL-expendable");
2219 for (int t = 0; t < DTL_TYPES; t++) {
2220 range_tree_t *rt = vd->vdev_dtl[t];
2221 if (range_tree_space(rt) == 0)
2222 continue;
2223 (void) snprintf(prefix, sizeof (prefix), "\t%*s%s",
2224 indent + 2, "", name[t]);
2225 range_tree_walk(rt, dump_dtl_seg, prefix);
2226 if (dump_opt['d'] > 5 && vd->vdev_children == 0)
2227 dump_spacemap(spa->spa_meta_objset,
2228 vd->vdev_dtl_sm);
2231 for (unsigned c = 0; c < vd->vdev_children; c++)
2232 dump_dtl(vd->vdev_child[c], indent + 4);
2235 static void
2236 dump_history(spa_t *spa)
2238 nvlist_t **events = NULL;
2239 char *buf;
2240 uint64_t resid, len, off = 0;
2241 uint_t num = 0;
2242 int error;
2243 char tbuf[30];
2245 if ((buf = malloc(SPA_OLD_MAXBLOCKSIZE)) == NULL) {
2246 (void) fprintf(stderr, "%s: unable to allocate I/O buffer\n",
2247 __func__);
2248 return;
2251 do {
2252 len = SPA_OLD_MAXBLOCKSIZE;
2254 if ((error = spa_history_get(spa, &off, &len, buf)) != 0) {
2255 (void) fprintf(stderr, "Unable to read history: "
2256 "error %d\n", error);
2257 free(buf);
2258 return;
2261 if (zpool_history_unpack(buf, len, &resid, &events, &num) != 0)
2262 break;
2264 off -= resid;
2265 } while (len != 0);
2267 (void) printf("\nHistory:\n");
2268 for (unsigned i = 0; i < num; i++) {
2269 boolean_t printed = B_FALSE;
2271 if (nvlist_exists(events[i], ZPOOL_HIST_TIME)) {
2272 time_t tsec;
2273 struct tm t;
2275 tsec = fnvlist_lookup_uint64(events[i],
2276 ZPOOL_HIST_TIME);
2277 (void) localtime_r(&tsec, &t);
2278 (void) strftime(tbuf, sizeof (tbuf), "%F.%T", &t);
2279 } else {
2280 tbuf[0] = '\0';
2283 if (nvlist_exists(events[i], ZPOOL_HIST_CMD)) {
2284 (void) printf("%s %s\n", tbuf,
2285 fnvlist_lookup_string(events[i], ZPOOL_HIST_CMD));
2286 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_EVENT)) {
2287 uint64_t ievent;
2289 ievent = fnvlist_lookup_uint64(events[i],
2290 ZPOOL_HIST_INT_EVENT);
2291 if (ievent >= ZFS_NUM_LEGACY_HISTORY_EVENTS)
2292 goto next;
2294 (void) printf(" %s [internal %s txg:%ju] %s\n",
2295 tbuf,
2296 zfs_history_event_names[ievent],
2297 fnvlist_lookup_uint64(events[i],
2298 ZPOOL_HIST_TXG),
2299 fnvlist_lookup_string(events[i],
2300 ZPOOL_HIST_INT_STR));
2301 } else if (nvlist_exists(events[i], ZPOOL_HIST_INT_NAME)) {
2302 (void) printf("%s [txg:%ju] %s", tbuf,
2303 fnvlist_lookup_uint64(events[i],
2304 ZPOOL_HIST_TXG),
2305 fnvlist_lookup_string(events[i],
2306 ZPOOL_HIST_INT_NAME));
2308 if (nvlist_exists(events[i], ZPOOL_HIST_DSNAME)) {
2309 (void) printf(" %s (%llu)",
2310 fnvlist_lookup_string(events[i],
2311 ZPOOL_HIST_DSNAME),
2312 (u_longlong_t)fnvlist_lookup_uint64(
2313 events[i],
2314 ZPOOL_HIST_DSID));
2317 (void) printf(" %s\n", fnvlist_lookup_string(events[i],
2318 ZPOOL_HIST_INT_STR));
2319 } else if (nvlist_exists(events[i], ZPOOL_HIST_IOCTL)) {
2320 (void) printf("%s ioctl %s\n", tbuf,
2321 fnvlist_lookup_string(events[i],
2322 ZPOOL_HIST_IOCTL));
2324 if (nvlist_exists(events[i], ZPOOL_HIST_INPUT_NVL)) {
2325 (void) printf(" input:\n");
2326 dump_nvlist(fnvlist_lookup_nvlist(events[i],
2327 ZPOOL_HIST_INPUT_NVL), 8);
2329 if (nvlist_exists(events[i], ZPOOL_HIST_OUTPUT_NVL)) {
2330 (void) printf(" output:\n");
2331 dump_nvlist(fnvlist_lookup_nvlist(events[i],
2332 ZPOOL_HIST_OUTPUT_NVL), 8);
2334 if (nvlist_exists(events[i], ZPOOL_HIST_ERRNO)) {
2335 (void) printf(" errno: %lld\n",
2336 (longlong_t)fnvlist_lookup_int64(events[i],
2337 ZPOOL_HIST_ERRNO));
2339 } else {
2340 goto next;
2343 printed = B_TRUE;
2344 next:
2345 if (dump_opt['h'] > 1) {
2346 if (!printed)
2347 (void) printf("unrecognized record:\n");
2348 dump_nvlist(events[i], 2);
2351 free(buf);
2354 static void
2355 dump_dnode(objset_t *os, uint64_t object, void *data, size_t size)
2357 (void) os, (void) object, (void) data, (void) size;
2360 static uint64_t
2361 blkid2offset(const dnode_phys_t *dnp, const blkptr_t *bp,
2362 const zbookmark_phys_t *zb)
2364 if (dnp == NULL) {
2365 ASSERT(zb->zb_level < 0);
2366 if (zb->zb_object == 0)
2367 return (zb->zb_blkid);
2368 return (zb->zb_blkid * BP_GET_LSIZE(bp));
2371 ASSERT(zb->zb_level >= 0);
2373 return ((zb->zb_blkid <<
2374 (zb->zb_level * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT))) *
2375 dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
2378 static void
2379 snprintf_zstd_header(spa_t *spa, char *blkbuf, size_t buflen,
2380 const blkptr_t *bp)
2382 static abd_t *pabd = NULL;
2383 void *buf;
2384 zio_t *zio;
2385 zfs_zstdhdr_t zstd_hdr;
2386 int error;
2388 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_ZSTD)
2389 return;
2391 if (BP_IS_HOLE(bp))
2392 return;
2394 if (BP_IS_EMBEDDED(bp)) {
2395 buf = malloc(SPA_MAXBLOCKSIZE);
2396 if (buf == NULL) {
2397 (void) fprintf(stderr, "out of memory\n");
2398 zdb_exit(1);
2400 decode_embedded_bp_compressed(bp, buf);
2401 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr));
2402 free(buf);
2403 zstd_hdr.c_len = BE_32(zstd_hdr.c_len);
2404 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level);
2405 (void) snprintf(blkbuf + strlen(blkbuf),
2406 buflen - strlen(blkbuf),
2407 " ZSTD:size=%u:version=%u:level=%u:EMBEDDED",
2408 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr),
2409 zfs_get_hdrlevel(&zstd_hdr));
2410 return;
2413 if (!pabd)
2414 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE);
2415 zio = zio_root(spa, NULL, NULL, 0);
2417 /* Decrypt but don't decompress so we can read the compression header */
2418 zio_nowait(zio_read(zio, spa, bp, pabd, BP_GET_PSIZE(bp), NULL, NULL,
2419 ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW_COMPRESS,
2420 NULL));
2421 error = zio_wait(zio);
2422 if (error) {
2423 (void) fprintf(stderr, "read failed: %d\n", error);
2424 return;
2426 buf = abd_borrow_buf_copy(pabd, BP_GET_LSIZE(bp));
2427 memcpy(&zstd_hdr, buf, sizeof (zstd_hdr));
2428 zstd_hdr.c_len = BE_32(zstd_hdr.c_len);
2429 zstd_hdr.raw_version_level = BE_32(zstd_hdr.raw_version_level);
2431 (void) snprintf(blkbuf + strlen(blkbuf),
2432 buflen - strlen(blkbuf),
2433 " ZSTD:size=%u:version=%u:level=%u:NORMAL",
2434 zstd_hdr.c_len, zfs_get_hdrversion(&zstd_hdr),
2435 zfs_get_hdrlevel(&zstd_hdr));
2437 abd_return_buf_copy(pabd, buf, BP_GET_LSIZE(bp));
2440 static void
2441 snprintf_blkptr_compact(char *blkbuf, size_t buflen, const blkptr_t *bp,
2442 boolean_t bp_freed)
2444 const dva_t *dva = bp->blk_dva;
2445 int ndvas = dump_opt['d'] > 5 ? BP_GET_NDVAS(bp) : 1;
2446 int i;
2448 if (dump_opt['b'] >= 6) {
2449 snprintf_blkptr(blkbuf, buflen, bp);
2450 if (bp_freed) {
2451 (void) snprintf(blkbuf + strlen(blkbuf),
2452 buflen - strlen(blkbuf), " %s", "FREE");
2454 return;
2457 if (BP_IS_EMBEDDED(bp)) {
2458 (void) sprintf(blkbuf,
2459 "EMBEDDED et=%u %llxL/%llxP B=%llu",
2460 (int)BPE_GET_ETYPE(bp),
2461 (u_longlong_t)BPE_GET_LSIZE(bp),
2462 (u_longlong_t)BPE_GET_PSIZE(bp),
2463 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp));
2464 return;
2467 blkbuf[0] = '\0';
2469 for (i = 0; i < ndvas; i++)
2470 (void) snprintf(blkbuf + strlen(blkbuf),
2471 buflen - strlen(blkbuf), "%llu:%llx:%llx ",
2472 (u_longlong_t)DVA_GET_VDEV(&dva[i]),
2473 (u_longlong_t)DVA_GET_OFFSET(&dva[i]),
2474 (u_longlong_t)DVA_GET_ASIZE(&dva[i]));
2476 if (BP_IS_HOLE(bp)) {
2477 (void) snprintf(blkbuf + strlen(blkbuf),
2478 buflen - strlen(blkbuf),
2479 "%llxL B=%llu",
2480 (u_longlong_t)BP_GET_LSIZE(bp),
2481 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp));
2482 } else {
2483 (void) snprintf(blkbuf + strlen(blkbuf),
2484 buflen - strlen(blkbuf),
2485 "%llxL/%llxP F=%llu B=%llu/%llu",
2486 (u_longlong_t)BP_GET_LSIZE(bp),
2487 (u_longlong_t)BP_GET_PSIZE(bp),
2488 (u_longlong_t)BP_GET_FILL(bp),
2489 (u_longlong_t)BP_GET_LOGICAL_BIRTH(bp),
2490 (u_longlong_t)BP_GET_BIRTH(bp));
2491 if (bp_freed)
2492 (void) snprintf(blkbuf + strlen(blkbuf),
2493 buflen - strlen(blkbuf), " %s", "FREE");
2494 (void) snprintf(blkbuf + strlen(blkbuf),
2495 buflen - strlen(blkbuf),
2496 " cksum=%016llx:%016llx:%016llx:%016llx",
2497 (u_longlong_t)bp->blk_cksum.zc_word[0],
2498 (u_longlong_t)bp->blk_cksum.zc_word[1],
2499 (u_longlong_t)bp->blk_cksum.zc_word[2],
2500 (u_longlong_t)bp->blk_cksum.zc_word[3]);
2504 static void
2505 print_indirect(spa_t *spa, blkptr_t *bp, const zbookmark_phys_t *zb,
2506 const dnode_phys_t *dnp)
2508 char blkbuf[BP_SPRINTF_LEN];
2509 int l;
2511 if (!BP_IS_EMBEDDED(bp)) {
2512 ASSERT3U(BP_GET_TYPE(bp), ==, dnp->dn_type);
2513 ASSERT3U(BP_GET_LEVEL(bp), ==, zb->zb_level);
2516 (void) printf("%16llx ", (u_longlong_t)blkid2offset(dnp, bp, zb));
2518 ASSERT(zb->zb_level >= 0);
2520 for (l = dnp->dn_nlevels - 1; l >= -1; l--) {
2521 if (l == zb->zb_level) {
2522 (void) printf("L%llx", (u_longlong_t)zb->zb_level);
2523 } else {
2524 (void) printf(" ");
2528 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, B_FALSE);
2529 if (dump_opt['Z'] && BP_GET_COMPRESS(bp) == ZIO_COMPRESS_ZSTD)
2530 snprintf_zstd_header(spa, blkbuf, sizeof (blkbuf), bp);
2531 (void) printf("%s\n", blkbuf);
2534 static int
2535 visit_indirect(spa_t *spa, const dnode_phys_t *dnp,
2536 blkptr_t *bp, const zbookmark_phys_t *zb)
2538 int err = 0;
2540 if (BP_GET_LOGICAL_BIRTH(bp) == 0)
2541 return (0);
2543 print_indirect(spa, bp, zb, dnp);
2545 if (BP_GET_LEVEL(bp) > 0 && !BP_IS_HOLE(bp)) {
2546 arc_flags_t flags = ARC_FLAG_WAIT;
2547 int i;
2548 blkptr_t *cbp;
2549 int epb = BP_GET_LSIZE(bp) >> SPA_BLKPTRSHIFT;
2550 arc_buf_t *buf;
2551 uint64_t fill = 0;
2552 ASSERT(!BP_IS_REDACTED(bp));
2554 err = arc_read(NULL, spa, bp, arc_getbuf_func, &buf,
2555 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, &flags, zb);
2556 if (err)
2557 return (err);
2558 ASSERT(buf->b_data);
2560 /* recursively visit blocks below this */
2561 cbp = buf->b_data;
2562 for (i = 0; i < epb; i++, cbp++) {
2563 zbookmark_phys_t czb;
2565 SET_BOOKMARK(&czb, zb->zb_objset, zb->zb_object,
2566 zb->zb_level - 1,
2567 zb->zb_blkid * epb + i);
2568 err = visit_indirect(spa, dnp, cbp, &czb);
2569 if (err)
2570 break;
2571 fill += BP_GET_FILL(cbp);
2573 if (!err)
2574 ASSERT3U(fill, ==, BP_GET_FILL(bp));
2575 arc_buf_destroy(buf, &buf);
2578 return (err);
2581 static void
2582 dump_indirect(dnode_t *dn)
2584 dnode_phys_t *dnp = dn->dn_phys;
2585 zbookmark_phys_t czb;
2587 (void) printf("Indirect blocks:\n");
2589 SET_BOOKMARK(&czb, dmu_objset_id(dn->dn_objset),
2590 dn->dn_object, dnp->dn_nlevels - 1, 0);
2591 for (int j = 0; j < dnp->dn_nblkptr; j++) {
2592 czb.zb_blkid = j;
2593 (void) visit_indirect(dmu_objset_spa(dn->dn_objset), dnp,
2594 &dnp->dn_blkptr[j], &czb);
2597 (void) printf("\n");
2600 static void
2601 dump_dsl_dir(objset_t *os, uint64_t object, void *data, size_t size)
2603 (void) os, (void) object;
2604 dsl_dir_phys_t *dd = data;
2605 time_t crtime;
2606 char nice[32];
2608 /* make sure nicenum has enough space */
2609 _Static_assert(sizeof (nice) >= NN_NUMBUF_SZ, "nice truncated");
2611 if (dd == NULL)
2612 return;
2614 ASSERT3U(size, >=, sizeof (dsl_dir_phys_t));
2616 crtime = dd->dd_creation_time;
2617 (void) printf("\t\tcreation_time = %s", ctime(&crtime));
2618 (void) printf("\t\thead_dataset_obj = %llu\n",
2619 (u_longlong_t)dd->dd_head_dataset_obj);
2620 (void) printf("\t\tparent_dir_obj = %llu\n",
2621 (u_longlong_t)dd->dd_parent_obj);
2622 (void) printf("\t\torigin_obj = %llu\n",
2623 (u_longlong_t)dd->dd_origin_obj);
2624 (void) printf("\t\tchild_dir_zapobj = %llu\n",
2625 (u_longlong_t)dd->dd_child_dir_zapobj);
2626 zdb_nicenum(dd->dd_used_bytes, nice, sizeof (nice));
2627 (void) printf("\t\tused_bytes = %s\n", nice);
2628 zdb_nicenum(dd->dd_compressed_bytes, nice, sizeof (nice));
2629 (void) printf("\t\tcompressed_bytes = %s\n", nice);
2630 zdb_nicenum(dd->dd_uncompressed_bytes, nice, sizeof (nice));
2631 (void) printf("\t\tuncompressed_bytes = %s\n", nice);
2632 zdb_nicenum(dd->dd_quota, nice, sizeof (nice));
2633 (void) printf("\t\tquota = %s\n", nice);
2634 zdb_nicenum(dd->dd_reserved, nice, sizeof (nice));
2635 (void) printf("\t\treserved = %s\n", nice);
2636 (void) printf("\t\tprops_zapobj = %llu\n",
2637 (u_longlong_t)dd->dd_props_zapobj);
2638 (void) printf("\t\tdeleg_zapobj = %llu\n",
2639 (u_longlong_t)dd->dd_deleg_zapobj);
2640 (void) printf("\t\tflags = %llx\n",
2641 (u_longlong_t)dd->dd_flags);
2643 #define DO(which) \
2644 zdb_nicenum(dd->dd_used_breakdown[DD_USED_ ## which], nice, \
2645 sizeof (nice)); \
2646 (void) printf("\t\tused_breakdown[" #which "] = %s\n", nice)
2647 DO(HEAD);
2648 DO(SNAP);
2649 DO(CHILD);
2650 DO(CHILD_RSRV);
2651 DO(REFRSRV);
2652 #undef DO
2653 (void) printf("\t\tclones = %llu\n",
2654 (u_longlong_t)dd->dd_clones);
2657 static void
2658 dump_dsl_dataset(objset_t *os, uint64_t object, void *data, size_t size)
2660 (void) os, (void) object;
2661 dsl_dataset_phys_t *ds = data;
2662 time_t crtime;
2663 char used[32], compressed[32], uncompressed[32], unique[32];
2664 char blkbuf[BP_SPRINTF_LEN];
2666 /* make sure nicenum has enough space */
2667 _Static_assert(sizeof (used) >= NN_NUMBUF_SZ, "used truncated");
2668 _Static_assert(sizeof (compressed) >= NN_NUMBUF_SZ,
2669 "compressed truncated");
2670 _Static_assert(sizeof (uncompressed) >= NN_NUMBUF_SZ,
2671 "uncompressed truncated");
2672 _Static_assert(sizeof (unique) >= NN_NUMBUF_SZ, "unique truncated");
2674 if (ds == NULL)
2675 return;
2677 ASSERT(size == sizeof (*ds));
2678 crtime = ds->ds_creation_time;
2679 zdb_nicenum(ds->ds_referenced_bytes, used, sizeof (used));
2680 zdb_nicenum(ds->ds_compressed_bytes, compressed, sizeof (compressed));
2681 zdb_nicenum(ds->ds_uncompressed_bytes, uncompressed,
2682 sizeof (uncompressed));
2683 zdb_nicenum(ds->ds_unique_bytes, unique, sizeof (unique));
2684 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ds->ds_bp);
2686 (void) printf("\t\tdir_obj = %llu\n",
2687 (u_longlong_t)ds->ds_dir_obj);
2688 (void) printf("\t\tprev_snap_obj = %llu\n",
2689 (u_longlong_t)ds->ds_prev_snap_obj);
2690 (void) printf("\t\tprev_snap_txg = %llu\n",
2691 (u_longlong_t)ds->ds_prev_snap_txg);
2692 (void) printf("\t\tnext_snap_obj = %llu\n",
2693 (u_longlong_t)ds->ds_next_snap_obj);
2694 (void) printf("\t\tsnapnames_zapobj = %llu\n",
2695 (u_longlong_t)ds->ds_snapnames_zapobj);
2696 (void) printf("\t\tnum_children = %llu\n",
2697 (u_longlong_t)ds->ds_num_children);
2698 (void) printf("\t\tuserrefs_obj = %llu\n",
2699 (u_longlong_t)ds->ds_userrefs_obj);
2700 (void) printf("\t\tcreation_time = %s", ctime(&crtime));
2701 (void) printf("\t\tcreation_txg = %llu\n",
2702 (u_longlong_t)ds->ds_creation_txg);
2703 (void) printf("\t\tdeadlist_obj = %llu\n",
2704 (u_longlong_t)ds->ds_deadlist_obj);
2705 (void) printf("\t\tused_bytes = %s\n", used);
2706 (void) printf("\t\tcompressed_bytes = %s\n", compressed);
2707 (void) printf("\t\tuncompressed_bytes = %s\n", uncompressed);
2708 (void) printf("\t\tunique = %s\n", unique);
2709 (void) printf("\t\tfsid_guid = %llu\n",
2710 (u_longlong_t)ds->ds_fsid_guid);
2711 (void) printf("\t\tguid = %llu\n",
2712 (u_longlong_t)ds->ds_guid);
2713 (void) printf("\t\tflags = %llx\n",
2714 (u_longlong_t)ds->ds_flags);
2715 (void) printf("\t\tnext_clones_obj = %llu\n",
2716 (u_longlong_t)ds->ds_next_clones_obj);
2717 (void) printf("\t\tprops_obj = %llu\n",
2718 (u_longlong_t)ds->ds_props_obj);
2719 (void) printf("\t\tbp = %s\n", blkbuf);
2722 static int
2723 dump_bptree_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2725 (void) arg, (void) tx;
2726 char blkbuf[BP_SPRINTF_LEN];
2728 if (BP_GET_LOGICAL_BIRTH(bp) != 0) {
2729 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
2730 (void) printf("\t%s\n", blkbuf);
2732 return (0);
2735 static void
2736 dump_bptree(objset_t *os, uint64_t obj, const char *name)
2738 char bytes[32];
2739 bptree_phys_t *bt;
2740 dmu_buf_t *db;
2742 /* make sure nicenum has enough space */
2743 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
2745 if (dump_opt['d'] < 3)
2746 return;
2748 VERIFY3U(0, ==, dmu_bonus_hold(os, obj, FTAG, &db));
2749 bt = db->db_data;
2750 zdb_nicenum(bt->bt_bytes, bytes, sizeof (bytes));
2751 (void) printf("\n %s: %llu datasets, %s\n",
2752 name, (unsigned long long)(bt->bt_end - bt->bt_begin), bytes);
2753 dmu_buf_rele(db, FTAG);
2755 if (dump_opt['d'] < 5)
2756 return;
2758 (void) printf("\n");
2760 (void) bptree_iterate(os, obj, B_FALSE, dump_bptree_cb, NULL, NULL);
2763 static int
2764 dump_bpobj_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx)
2766 (void) arg, (void) tx;
2767 char blkbuf[BP_SPRINTF_LEN];
2769 ASSERT(BP_GET_LOGICAL_BIRTH(bp) != 0);
2770 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf), bp, bp_freed);
2771 (void) printf("\t%s\n", blkbuf);
2772 return (0);
2775 static void
2776 dump_full_bpobj(bpobj_t *bpo, const char *name, int indent)
2778 char bytes[32];
2779 char comp[32];
2780 char uncomp[32];
2781 uint64_t i;
2783 /* make sure nicenum has enough space */
2784 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
2785 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
2786 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
2788 if (dump_opt['d'] < 3)
2789 return;
2791 zdb_nicenum(bpo->bpo_phys->bpo_bytes, bytes, sizeof (bytes));
2792 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) {
2793 zdb_nicenum(bpo->bpo_phys->bpo_comp, comp, sizeof (comp));
2794 zdb_nicenum(bpo->bpo_phys->bpo_uncomp, uncomp, sizeof (uncomp));
2795 if (bpo->bpo_havefreed) {
2796 (void) printf(" %*s: object %llu, %llu local "
2797 "blkptrs, %llu freed, %llu subobjs in object %llu, "
2798 "%s (%s/%s comp)\n",
2799 indent * 8, name,
2800 (u_longlong_t)bpo->bpo_object,
2801 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2802 (u_longlong_t)bpo->bpo_phys->bpo_num_freed,
2803 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs,
2804 (u_longlong_t)bpo->bpo_phys->bpo_subobjs,
2805 bytes, comp, uncomp);
2806 } else {
2807 (void) printf(" %*s: object %llu, %llu local "
2808 "blkptrs, %llu subobjs in object %llu, "
2809 "%s (%s/%s comp)\n",
2810 indent * 8, name,
2811 (u_longlong_t)bpo->bpo_object,
2812 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2813 (u_longlong_t)bpo->bpo_phys->bpo_num_subobjs,
2814 (u_longlong_t)bpo->bpo_phys->bpo_subobjs,
2815 bytes, comp, uncomp);
2818 for (i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) {
2819 uint64_t subobj;
2820 bpobj_t subbpo;
2821 int error;
2822 VERIFY0(dmu_read(bpo->bpo_os,
2823 bpo->bpo_phys->bpo_subobjs,
2824 i * sizeof (subobj), sizeof (subobj), &subobj, 0));
2825 error = bpobj_open(&subbpo, bpo->bpo_os, subobj);
2826 if (error != 0) {
2827 (void) printf("ERROR %u while trying to open "
2828 "subobj id %llu\n",
2829 error, (u_longlong_t)subobj);
2830 continue;
2832 dump_full_bpobj(&subbpo, "subobj", indent + 1);
2833 bpobj_close(&subbpo);
2835 } else {
2836 if (bpo->bpo_havefreed) {
2837 (void) printf(" %*s: object %llu, %llu blkptrs, "
2838 "%llu freed, %s\n",
2839 indent * 8, name,
2840 (u_longlong_t)bpo->bpo_object,
2841 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2842 (u_longlong_t)bpo->bpo_phys->bpo_num_freed,
2843 bytes);
2844 } else {
2845 (void) printf(" %*s: object %llu, %llu blkptrs, "
2846 "%s\n",
2847 indent * 8, name,
2848 (u_longlong_t)bpo->bpo_object,
2849 (u_longlong_t)bpo->bpo_phys->bpo_num_blkptrs,
2850 bytes);
2854 if (dump_opt['d'] < 5)
2855 return;
2858 if (indent == 0) {
2859 (void) bpobj_iterate_nofree(bpo, dump_bpobj_cb, NULL, NULL);
2860 (void) printf("\n");
2864 static int
2865 dump_bookmark(dsl_pool_t *dp, char *name, boolean_t print_redact,
2866 boolean_t print_list)
2868 int err = 0;
2869 zfs_bookmark_phys_t prop;
2870 objset_t *mos = dp->dp_spa->spa_meta_objset;
2871 err = dsl_bookmark_lookup(dp, name, NULL, &prop);
2873 if (err != 0) {
2874 return (err);
2877 (void) printf("\t#%s: ", strchr(name, '#') + 1);
2878 (void) printf("{guid: %llx creation_txg: %llu creation_time: "
2879 "%llu redaction_obj: %llu}\n", (u_longlong_t)prop.zbm_guid,
2880 (u_longlong_t)prop.zbm_creation_txg,
2881 (u_longlong_t)prop.zbm_creation_time,
2882 (u_longlong_t)prop.zbm_redaction_obj);
2884 IMPLY(print_list, print_redact);
2885 if (!print_redact || prop.zbm_redaction_obj == 0)
2886 return (0);
2888 redaction_list_t *rl;
2889 VERIFY0(dsl_redaction_list_hold_obj(dp,
2890 prop.zbm_redaction_obj, FTAG, &rl));
2892 redaction_list_phys_t *rlp = rl->rl_phys;
2893 (void) printf("\tRedacted:\n\t\tProgress: ");
2894 if (rlp->rlp_last_object != UINT64_MAX ||
2895 rlp->rlp_last_blkid != UINT64_MAX) {
2896 (void) printf("%llu %llu (incomplete)\n",
2897 (u_longlong_t)rlp->rlp_last_object,
2898 (u_longlong_t)rlp->rlp_last_blkid);
2899 } else {
2900 (void) printf("complete\n");
2902 (void) printf("\t\tSnapshots: [");
2903 for (unsigned int i = 0; i < rlp->rlp_num_snaps; i++) {
2904 if (i > 0)
2905 (void) printf(", ");
2906 (void) printf("%0llu",
2907 (u_longlong_t)rlp->rlp_snaps[i]);
2909 (void) printf("]\n\t\tLength: %llu\n",
2910 (u_longlong_t)rlp->rlp_num_entries);
2912 if (!print_list) {
2913 dsl_redaction_list_rele(rl, FTAG);
2914 return (0);
2917 if (rlp->rlp_num_entries == 0) {
2918 dsl_redaction_list_rele(rl, FTAG);
2919 (void) printf("\t\tRedaction List: []\n\n");
2920 return (0);
2923 redact_block_phys_t *rbp_buf;
2924 uint64_t size;
2925 dmu_object_info_t doi;
2927 VERIFY0(dmu_object_info(mos, prop.zbm_redaction_obj, &doi));
2928 size = doi.doi_max_offset;
2929 rbp_buf = kmem_alloc(size, KM_SLEEP);
2931 err = dmu_read(mos, prop.zbm_redaction_obj, 0, size,
2932 rbp_buf, 0);
2933 if (err != 0) {
2934 dsl_redaction_list_rele(rl, FTAG);
2935 kmem_free(rbp_buf, size);
2936 return (err);
2939 (void) printf("\t\tRedaction List: [{object: %llx, offset: "
2940 "%llx, blksz: %x, count: %llx}",
2941 (u_longlong_t)rbp_buf[0].rbp_object,
2942 (u_longlong_t)rbp_buf[0].rbp_blkid,
2943 (uint_t)(redact_block_get_size(&rbp_buf[0])),
2944 (u_longlong_t)redact_block_get_count(&rbp_buf[0]));
2946 for (size_t i = 1; i < rlp->rlp_num_entries; i++) {
2947 (void) printf(",\n\t\t{object: %llx, offset: %llx, "
2948 "blksz: %x, count: %llx}",
2949 (u_longlong_t)rbp_buf[i].rbp_object,
2950 (u_longlong_t)rbp_buf[i].rbp_blkid,
2951 (uint_t)(redact_block_get_size(&rbp_buf[i])),
2952 (u_longlong_t)redact_block_get_count(&rbp_buf[i]));
2954 dsl_redaction_list_rele(rl, FTAG);
2955 kmem_free(rbp_buf, size);
2956 (void) printf("]\n\n");
2957 return (0);
2960 static void
2961 dump_bookmarks(objset_t *os, int verbosity)
2963 zap_cursor_t zc;
2964 zap_attribute_t *attrp;
2965 dsl_dataset_t *ds = dmu_objset_ds(os);
2966 dsl_pool_t *dp = spa_get_dsl(os->os_spa);
2967 objset_t *mos = os->os_spa->spa_meta_objset;
2968 if (verbosity < 4)
2969 return;
2970 attrp = zap_attribute_alloc();
2971 dsl_pool_config_enter(dp, FTAG);
2973 for (zap_cursor_init(&zc, mos, ds->ds_bookmarks_obj);
2974 zap_cursor_retrieve(&zc, attrp) == 0;
2975 zap_cursor_advance(&zc)) {
2976 char osname[ZFS_MAX_DATASET_NAME_LEN];
2977 char buf[ZFS_MAX_DATASET_NAME_LEN];
2978 int len;
2979 dmu_objset_name(os, osname);
2980 len = snprintf(buf, sizeof (buf), "%s#%s", osname,
2981 attrp->za_name);
2982 VERIFY3S(len, <, ZFS_MAX_DATASET_NAME_LEN);
2983 (void) dump_bookmark(dp, buf, verbosity >= 5, verbosity >= 6);
2985 zap_cursor_fini(&zc);
2986 dsl_pool_config_exit(dp, FTAG);
2987 zap_attribute_free(attrp);
2990 static void
2991 bpobj_count_refd(bpobj_t *bpo)
2993 mos_obj_refd(bpo->bpo_object);
2995 if (bpo->bpo_havesubobj && bpo->bpo_phys->bpo_subobjs != 0) {
2996 mos_obj_refd(bpo->bpo_phys->bpo_subobjs);
2997 for (uint64_t i = 0; i < bpo->bpo_phys->bpo_num_subobjs; i++) {
2998 uint64_t subobj;
2999 bpobj_t subbpo;
3000 int error;
3001 VERIFY0(dmu_read(bpo->bpo_os,
3002 bpo->bpo_phys->bpo_subobjs,
3003 i * sizeof (subobj), sizeof (subobj), &subobj, 0));
3004 error = bpobj_open(&subbpo, bpo->bpo_os, subobj);
3005 if (error != 0) {
3006 (void) printf("ERROR %u while trying to open "
3007 "subobj id %llu\n",
3008 error, (u_longlong_t)subobj);
3009 continue;
3011 bpobj_count_refd(&subbpo);
3012 bpobj_close(&subbpo);
3017 static int
3018 dsl_deadlist_entry_count_refd(void *arg, dsl_deadlist_entry_t *dle)
3020 spa_t *spa = arg;
3021 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj;
3022 if (dle->dle_bpobj.bpo_object != empty_bpobj)
3023 bpobj_count_refd(&dle->dle_bpobj);
3024 return (0);
3027 static int
3028 dsl_deadlist_entry_dump(void *arg, dsl_deadlist_entry_t *dle)
3030 ASSERT(arg == NULL);
3031 if (dump_opt['d'] >= 5) {
3032 char buf[128];
3033 (void) snprintf(buf, sizeof (buf),
3034 "mintxg %llu -> obj %llu",
3035 (longlong_t)dle->dle_mintxg,
3036 (longlong_t)dle->dle_bpobj.bpo_object);
3038 dump_full_bpobj(&dle->dle_bpobj, buf, 0);
3039 } else {
3040 (void) printf("mintxg %llu -> obj %llu\n",
3041 (longlong_t)dle->dle_mintxg,
3042 (longlong_t)dle->dle_bpobj.bpo_object);
3044 return (0);
3047 static void
3048 dump_blkptr_list(dsl_deadlist_t *dl, const char *name)
3050 char bytes[32];
3051 char comp[32];
3052 char uncomp[32];
3053 char entries[32];
3054 spa_t *spa = dmu_objset_spa(dl->dl_os);
3055 uint64_t empty_bpobj = spa->spa_dsl_pool->dp_empty_bpobj;
3057 if (dl->dl_oldfmt) {
3058 if (dl->dl_bpobj.bpo_object != empty_bpobj)
3059 bpobj_count_refd(&dl->dl_bpobj);
3060 } else {
3061 mos_obj_refd(dl->dl_object);
3062 dsl_deadlist_iterate(dl, dsl_deadlist_entry_count_refd, spa);
3065 /* make sure nicenum has enough space */
3066 _Static_assert(sizeof (bytes) >= NN_NUMBUF_SZ, "bytes truncated");
3067 _Static_assert(sizeof (comp) >= NN_NUMBUF_SZ, "comp truncated");
3068 _Static_assert(sizeof (uncomp) >= NN_NUMBUF_SZ, "uncomp truncated");
3069 _Static_assert(sizeof (entries) >= NN_NUMBUF_SZ, "entries truncated");
3071 if (dump_opt['d'] < 3)
3072 return;
3074 if (dl->dl_oldfmt) {
3075 dump_full_bpobj(&dl->dl_bpobj, "old-format deadlist", 0);
3076 return;
3079 zdb_nicenum(dl->dl_phys->dl_used, bytes, sizeof (bytes));
3080 zdb_nicenum(dl->dl_phys->dl_comp, comp, sizeof (comp));
3081 zdb_nicenum(dl->dl_phys->dl_uncomp, uncomp, sizeof (uncomp));
3082 zdb_nicenum(avl_numnodes(&dl->dl_tree), entries, sizeof (entries));
3083 (void) printf("\n %s: %s (%s/%s comp), %s entries\n",
3084 name, bytes, comp, uncomp, entries);
3086 if (dump_opt['d'] < 4)
3087 return;
3089 (void) putchar('\n');
3091 dsl_deadlist_iterate(dl, dsl_deadlist_entry_dump, NULL);
3094 static int
3095 verify_dd_livelist(objset_t *os)
3097 uint64_t ll_used, used, ll_comp, comp, ll_uncomp, uncomp;
3098 dsl_pool_t *dp = spa_get_dsl(os->os_spa);
3099 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir;
3101 ASSERT(!dmu_objset_is_snapshot(os));
3102 if (!dsl_deadlist_is_open(&dd->dd_livelist))
3103 return (0);
3105 /* Iterate through the livelist to check for duplicates */
3106 dsl_deadlist_iterate(&dd->dd_livelist, sublivelist_verify_lightweight,
3107 NULL);
3109 dsl_pool_config_enter(dp, FTAG);
3110 dsl_deadlist_space(&dd->dd_livelist, &ll_used,
3111 &ll_comp, &ll_uncomp);
3113 dsl_dataset_t *origin_ds;
3114 ASSERT(dsl_pool_config_held(dp));
3115 VERIFY0(dsl_dataset_hold_obj(dp,
3116 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &origin_ds));
3117 VERIFY0(dsl_dataset_space_written(origin_ds, os->os_dsl_dataset,
3118 &used, &comp, &uncomp));
3119 dsl_dataset_rele(origin_ds, FTAG);
3120 dsl_pool_config_exit(dp, FTAG);
3122 * It's possible that the dataset's uncomp space is larger than the
3123 * livelist's because livelists do not track embedded block pointers
3125 if (used != ll_used || comp != ll_comp || uncomp < ll_uncomp) {
3126 char nice_used[32], nice_comp[32], nice_uncomp[32];
3127 (void) printf("Discrepancy in space accounting:\n");
3128 zdb_nicenum(used, nice_used, sizeof (nice_used));
3129 zdb_nicenum(comp, nice_comp, sizeof (nice_comp));
3130 zdb_nicenum(uncomp, nice_uncomp, sizeof (nice_uncomp));
3131 (void) printf("dir: used %s, comp %s, uncomp %s\n",
3132 nice_used, nice_comp, nice_uncomp);
3133 zdb_nicenum(ll_used, nice_used, sizeof (nice_used));
3134 zdb_nicenum(ll_comp, nice_comp, sizeof (nice_comp));
3135 zdb_nicenum(ll_uncomp, nice_uncomp, sizeof (nice_uncomp));
3136 (void) printf("livelist: used %s, comp %s, uncomp %s\n",
3137 nice_used, nice_comp, nice_uncomp);
3138 return (1);
3140 return (0);
3143 static char *key_material = NULL;
3145 static boolean_t
3146 zdb_derive_key(dsl_dir_t *dd, uint8_t *key_out)
3148 uint64_t keyformat, salt, iters;
3149 int i;
3150 unsigned char c;
3152 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
3153 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), sizeof (uint64_t),
3154 1, &keyformat));
3156 switch (keyformat) {
3157 case ZFS_KEYFORMAT_HEX:
3158 for (i = 0; i < WRAPPING_KEY_LEN * 2; i += 2) {
3159 if (!isxdigit(key_material[i]) ||
3160 !isxdigit(key_material[i+1]))
3161 return (B_FALSE);
3162 if (sscanf(&key_material[i], "%02hhx", &c) != 1)
3163 return (B_FALSE);
3164 key_out[i / 2] = c;
3166 break;
3168 case ZFS_KEYFORMAT_PASSPHRASE:
3169 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset,
3170 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT),
3171 sizeof (uint64_t), 1, &salt));
3172 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset,
3173 dd->dd_crypto_obj, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS),
3174 sizeof (uint64_t), 1, &iters));
3176 if (PKCS5_PBKDF2_HMAC_SHA1(key_material, strlen(key_material),
3177 ((uint8_t *)&salt), sizeof (uint64_t), iters,
3178 WRAPPING_KEY_LEN, key_out) != 1)
3179 return (B_FALSE);
3181 break;
3183 default:
3184 fatal("no support for key format %u\n",
3185 (unsigned int) keyformat);
3188 return (B_TRUE);
3191 static char encroot[ZFS_MAX_DATASET_NAME_LEN];
3192 static boolean_t key_loaded = B_FALSE;
3194 static void
3195 zdb_load_key(objset_t *os)
3197 dsl_pool_t *dp;
3198 dsl_dir_t *dd, *rdd;
3199 uint8_t key[WRAPPING_KEY_LEN];
3200 uint64_t rddobj;
3201 int err;
3203 dp = spa_get_dsl(os->os_spa);
3204 dd = os->os_dsl_dataset->ds_dir;
3206 dsl_pool_config_enter(dp, FTAG);
3207 VERIFY0(zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
3208 DSL_CRYPTO_KEY_ROOT_DDOBJ, sizeof (uint64_t), 1, &rddobj));
3209 VERIFY0(dsl_dir_hold_obj(dd->dd_pool, rddobj, NULL, FTAG, &rdd));
3210 dsl_dir_name(rdd, encroot);
3211 dsl_dir_rele(rdd, FTAG);
3213 if (!zdb_derive_key(dd, key))
3214 fatal("couldn't derive encryption key");
3216 dsl_pool_config_exit(dp, FTAG);
3218 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_UNAVAILABLE);
3220 dsl_crypto_params_t *dcp;
3221 nvlist_t *crypto_args;
3223 crypto_args = fnvlist_alloc();
3224 fnvlist_add_uint8_array(crypto_args, "wkeydata",
3225 (uint8_t *)key, WRAPPING_KEY_LEN);
3226 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
3227 NULL, crypto_args, &dcp));
3228 err = spa_keystore_load_wkey(encroot, dcp, B_FALSE);
3230 dsl_crypto_params_free(dcp, (err != 0));
3231 fnvlist_free(crypto_args);
3233 if (err != 0)
3234 fatal(
3235 "couldn't load encryption key for %s: %s",
3236 encroot, err == ZFS_ERR_CRYPTO_NOTSUP ?
3237 "crypto params not supported" : strerror(err));
3239 ASSERT3U(dsl_dataset_get_keystatus(dd), ==, ZFS_KEYSTATUS_AVAILABLE);
3241 printf("Unlocked encryption root: %s\n", encroot);
3242 key_loaded = B_TRUE;
3245 static void
3246 zdb_unload_key(void)
3248 if (!key_loaded)
3249 return;
3251 VERIFY0(spa_keystore_unload_wkey(encroot));
3252 key_loaded = B_FALSE;
3255 static avl_tree_t idx_tree;
3256 static avl_tree_t domain_tree;
3257 static boolean_t fuid_table_loaded;
3258 static objset_t *sa_os = NULL;
3259 static sa_attr_type_t *sa_attr_table = NULL;
3261 static int
3262 open_objset(const char *path, const void *tag, objset_t **osp)
3264 int err;
3265 uint64_t sa_attrs = 0;
3266 uint64_t version = 0;
3268 VERIFY3P(sa_os, ==, NULL);
3271 * We can't own an objset if it's redacted. Therefore, we do this
3272 * dance: hold the objset, then acquire a long hold on its dataset, then
3273 * release the pool (which is held as part of holding the objset).
3276 if (dump_opt['K']) {
3277 /* decryption requested, try to load keys */
3278 err = dmu_objset_hold(path, tag, osp);
3279 if (err != 0) {
3280 (void) fprintf(stderr, "failed to hold dataset "
3281 "'%s': %s\n",
3282 path, strerror(err));
3283 return (err);
3285 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag);
3286 dsl_pool_rele(dmu_objset_pool(*osp), tag);
3288 /* succeeds or dies */
3289 zdb_load_key(*osp);
3291 /* release it all */
3292 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag);
3293 dsl_dataset_rele(dmu_objset_ds(*osp), tag);
3296 int ds_hold_flags = key_loaded ? DS_HOLD_FLAG_DECRYPT : 0;
3298 err = dmu_objset_hold_flags(path, ds_hold_flags, tag, osp);
3299 if (err != 0) {
3300 (void) fprintf(stderr, "failed to hold dataset '%s': %s\n",
3301 path, strerror(err));
3302 return (err);
3304 dsl_dataset_long_hold(dmu_objset_ds(*osp), tag);
3305 dsl_pool_rele(dmu_objset_pool(*osp), tag);
3307 if (dmu_objset_type(*osp) == DMU_OST_ZFS &&
3308 (key_loaded || !(*osp)->os_encrypted)) {
3309 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZPL_VERSION_STR,
3310 8, 1, &version);
3311 if (version >= ZPL_VERSION_SA) {
3312 (void) zap_lookup(*osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS,
3313 8, 1, &sa_attrs);
3315 err = sa_setup(*osp, sa_attrs, zfs_attr_table, ZPL_END,
3316 &sa_attr_table);
3317 if (err != 0) {
3318 (void) fprintf(stderr, "sa_setup failed: %s\n",
3319 strerror(err));
3320 dsl_dataset_long_rele(dmu_objset_ds(*osp), tag);
3321 dsl_dataset_rele_flags(dmu_objset_ds(*osp),
3322 ds_hold_flags, tag);
3323 *osp = NULL;
3326 sa_os = *osp;
3328 return (err);
3331 static void
3332 close_objset(objset_t *os, const void *tag)
3334 VERIFY3P(os, ==, sa_os);
3335 if (os->os_sa != NULL)
3336 sa_tear_down(os);
3337 dsl_dataset_long_rele(dmu_objset_ds(os), tag);
3338 dsl_dataset_rele_flags(dmu_objset_ds(os),
3339 key_loaded ? DS_HOLD_FLAG_DECRYPT : 0, tag);
3340 sa_attr_table = NULL;
3341 sa_os = NULL;
3343 zdb_unload_key();
3346 static void
3347 fuid_table_destroy(void)
3349 if (fuid_table_loaded) {
3350 zfs_fuid_table_destroy(&idx_tree, &domain_tree);
3351 fuid_table_loaded = B_FALSE;
3356 * Clean up DDT internal state. ddt_lookup() adds entries to ddt_tree, which on
3357 * a live pool are normally cleaned up during ddt_sync(). We can't do that (and
3358 * wouldn't want to anyway), but if we don't clean up the presence of stuff on
3359 * ddt_tree will trip asserts in ddt_table_free(). So, we clean up ourselves.
3361 * Note that this is not a particularly efficient way to do this, but
3362 * ddt_remove() is the only public method that can do the work we need, and it
3363 * requires the right locks and etc to do the job. This is only ever called
3364 * during zdb shutdown so efficiency is not especially important.
3366 static void
3367 zdb_ddt_cleanup(spa_t *spa)
3369 for (enum zio_checksum c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
3370 ddt_t *ddt = spa->spa_ddt[c];
3371 if (!ddt)
3372 continue;
3374 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3375 ddt_enter(ddt);
3376 ddt_entry_t *dde = avl_first(&ddt->ddt_tree), *next;
3377 while (dde) {
3378 next = AVL_NEXT(&ddt->ddt_tree, dde);
3379 dde->dde_io = NULL;
3380 ddt_remove(ddt, dde);
3381 dde = next;
3383 ddt_exit(ddt);
3384 spa_config_exit(spa, SCL_CONFIG, FTAG);
3388 static void
3389 zdb_exit(int reason)
3391 if (spa != NULL)
3392 zdb_ddt_cleanup(spa);
3394 if (os != NULL) {
3395 close_objset(os, FTAG);
3396 } else if (spa != NULL) {
3397 spa_close(spa, FTAG);
3400 fuid_table_destroy();
3402 if (kernel_init_done)
3403 kernel_fini();
3405 exit(reason);
3409 * print uid or gid information.
3410 * For normal POSIX id just the id is printed in decimal format.
3411 * For CIFS files with FUID the fuid is printed in hex followed by
3412 * the domain-rid string.
3414 static void
3415 print_idstr(uint64_t id, const char *id_type)
3417 if (FUID_INDEX(id)) {
3418 const char *domain =
3419 zfs_fuid_idx_domain(&idx_tree, FUID_INDEX(id));
3420 (void) printf("\t%s %llx [%s-%d]\n", id_type,
3421 (u_longlong_t)id, domain, (int)FUID_RID(id));
3422 } else {
3423 (void) printf("\t%s %llu\n", id_type, (u_longlong_t)id);
3428 static void
3429 dump_uidgid(objset_t *os, uint64_t uid, uint64_t gid)
3431 uint32_t uid_idx, gid_idx;
3433 uid_idx = FUID_INDEX(uid);
3434 gid_idx = FUID_INDEX(gid);
3436 /* Load domain table, if not already loaded */
3437 if (!fuid_table_loaded && (uid_idx || gid_idx)) {
3438 uint64_t fuid_obj;
3440 /* first find the fuid object. It lives in the master node */
3441 VERIFY(zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES,
3442 8, 1, &fuid_obj) == 0);
3443 zfs_fuid_avl_tree_create(&idx_tree, &domain_tree);
3444 (void) zfs_fuid_table_load(os, fuid_obj,
3445 &idx_tree, &domain_tree);
3446 fuid_table_loaded = B_TRUE;
3449 print_idstr(uid, "uid");
3450 print_idstr(gid, "gid");
3453 static void
3454 dump_znode_sa_xattr(sa_handle_t *hdl)
3456 nvlist_t *sa_xattr;
3457 nvpair_t *elem = NULL;
3458 int sa_xattr_size = 0;
3459 int sa_xattr_entries = 0;
3460 int error;
3461 char *sa_xattr_packed;
3463 error = sa_size(hdl, sa_attr_table[ZPL_DXATTR], &sa_xattr_size);
3464 if (error || sa_xattr_size == 0)
3465 return;
3467 sa_xattr_packed = malloc(sa_xattr_size);
3468 if (sa_xattr_packed == NULL)
3469 return;
3471 error = sa_lookup(hdl, sa_attr_table[ZPL_DXATTR],
3472 sa_xattr_packed, sa_xattr_size);
3473 if (error) {
3474 free(sa_xattr_packed);
3475 return;
3478 error = nvlist_unpack(sa_xattr_packed, sa_xattr_size, &sa_xattr, 0);
3479 if (error) {
3480 free(sa_xattr_packed);
3481 return;
3484 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL)
3485 sa_xattr_entries++;
3487 (void) printf("\tSA xattrs: %d bytes, %d entries\n\n",
3488 sa_xattr_size, sa_xattr_entries);
3489 while ((elem = nvlist_next_nvpair(sa_xattr, elem)) != NULL) {
3490 boolean_t can_print = !dump_opt['P'];
3491 uchar_t *value;
3492 uint_t cnt, idx;
3494 (void) printf("\t\t%s = ", nvpair_name(elem));
3495 nvpair_value_byte_array(elem, &value, &cnt);
3497 for (idx = 0; idx < cnt; ++idx) {
3498 if (!isprint(value[idx])) {
3499 can_print = B_FALSE;
3500 break;
3504 for (idx = 0; idx < cnt; ++idx) {
3505 if (can_print)
3506 (void) putchar(value[idx]);
3507 else
3508 (void) printf("\\%3.3o", value[idx]);
3510 (void) putchar('\n');
3513 nvlist_free(sa_xattr);
3514 free(sa_xattr_packed);
3517 static void
3518 dump_znode_symlink(sa_handle_t *hdl)
3520 int sa_symlink_size = 0;
3521 char linktarget[MAXPATHLEN];
3522 int error;
3524 error = sa_size(hdl, sa_attr_table[ZPL_SYMLINK], &sa_symlink_size);
3525 if (error || sa_symlink_size == 0) {
3526 return;
3528 if (sa_symlink_size >= sizeof (linktarget)) {
3529 (void) printf("symlink size %d is too large\n",
3530 sa_symlink_size);
3531 return;
3533 linktarget[sa_symlink_size] = '\0';
3534 if (sa_lookup(hdl, sa_attr_table[ZPL_SYMLINK],
3535 &linktarget, sa_symlink_size) == 0)
3536 (void) printf("\ttarget %s\n", linktarget);
3539 static void
3540 dump_znode(objset_t *os, uint64_t object, void *data, size_t size)
3542 (void) data, (void) size;
3543 char path[MAXPATHLEN * 2]; /* allow for xattr and failure prefix */
3544 sa_handle_t *hdl;
3545 uint64_t xattr, rdev, gen;
3546 uint64_t uid, gid, mode, fsize, parent, links;
3547 uint64_t pflags;
3548 uint64_t acctm[2], modtm[2], chgtm[2], crtm[2];
3549 time_t z_crtime, z_atime, z_mtime, z_ctime;
3550 sa_bulk_attr_t bulk[12];
3551 int idx = 0;
3552 int error;
3554 VERIFY3P(os, ==, sa_os);
3555 if (sa_handle_get(os, object, NULL, SA_HDL_PRIVATE, &hdl)) {
3556 (void) printf("Failed to get handle for SA znode\n");
3557 return;
3560 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_UID], NULL, &uid, 8);
3561 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GID], NULL, &gid, 8);
3562 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_LINKS], NULL,
3563 &links, 8);
3564 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_GEN], NULL, &gen, 8);
3565 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MODE], NULL,
3566 &mode, 8);
3567 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_PARENT],
3568 NULL, &parent, 8);
3569 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_SIZE], NULL,
3570 &fsize, 8);
3571 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_ATIME], NULL,
3572 acctm, 16);
3573 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_MTIME], NULL,
3574 modtm, 16);
3575 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CRTIME], NULL,
3576 crtm, 16);
3577 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_CTIME], NULL,
3578 chgtm, 16);
3579 SA_ADD_BULK_ATTR(bulk, idx, sa_attr_table[ZPL_FLAGS], NULL,
3580 &pflags, 8);
3582 if (sa_bulk_lookup(hdl, bulk, idx)) {
3583 (void) sa_handle_destroy(hdl);
3584 return;
3587 z_crtime = (time_t)crtm[0];
3588 z_atime = (time_t)acctm[0];
3589 z_mtime = (time_t)modtm[0];
3590 z_ctime = (time_t)chgtm[0];
3592 if (dump_opt['d'] > 4) {
3593 error = zfs_obj_to_path(os, object, path, sizeof (path));
3594 if (error == ESTALE) {
3595 (void) snprintf(path, sizeof (path), "on delete queue");
3596 } else if (error != 0) {
3597 leaked_objects++;
3598 (void) snprintf(path, sizeof (path),
3599 "path not found, possibly leaked");
3601 (void) printf("\tpath %s\n", path);
3604 if (S_ISLNK(mode))
3605 dump_znode_symlink(hdl);
3606 dump_uidgid(os, uid, gid);
3607 (void) printf("\tatime %s", ctime(&z_atime));
3608 (void) printf("\tmtime %s", ctime(&z_mtime));
3609 (void) printf("\tctime %s", ctime(&z_ctime));
3610 (void) printf("\tcrtime %s", ctime(&z_crtime));
3611 (void) printf("\tgen %llu\n", (u_longlong_t)gen);
3612 (void) printf("\tmode %llo\n", (u_longlong_t)mode);
3613 (void) printf("\tsize %llu\n", (u_longlong_t)fsize);
3614 (void) printf("\tparent %llu\n", (u_longlong_t)parent);
3615 (void) printf("\tlinks %llu\n", (u_longlong_t)links);
3616 (void) printf("\tpflags %llx\n", (u_longlong_t)pflags);
3617 if (dmu_objset_projectquota_enabled(os) && (pflags & ZFS_PROJID)) {
3618 uint64_t projid;
3620 if (sa_lookup(hdl, sa_attr_table[ZPL_PROJID], &projid,
3621 sizeof (uint64_t)) == 0)
3622 (void) printf("\tprojid %llu\n", (u_longlong_t)projid);
3624 if (sa_lookup(hdl, sa_attr_table[ZPL_XATTR], &xattr,
3625 sizeof (uint64_t)) == 0)
3626 (void) printf("\txattr %llu\n", (u_longlong_t)xattr);
3627 if (sa_lookup(hdl, sa_attr_table[ZPL_RDEV], &rdev,
3628 sizeof (uint64_t)) == 0)
3629 (void) printf("\trdev 0x%016llx\n", (u_longlong_t)rdev);
3630 dump_znode_sa_xattr(hdl);
3631 sa_handle_destroy(hdl);
3634 static void
3635 dump_acl(objset_t *os, uint64_t object, void *data, size_t size)
3637 (void) os, (void) object, (void) data, (void) size;
3640 static void
3641 dump_dmu_objset(objset_t *os, uint64_t object, void *data, size_t size)
3643 (void) os, (void) object, (void) data, (void) size;
3646 static object_viewer_t *object_viewer[DMU_OT_NUMTYPES + 1] = {
3647 dump_none, /* unallocated */
3648 dump_zap, /* object directory */
3649 dump_uint64, /* object array */
3650 dump_none, /* packed nvlist */
3651 dump_packed_nvlist, /* packed nvlist size */
3652 dump_none, /* bpobj */
3653 dump_bpobj, /* bpobj header */
3654 dump_none, /* SPA space map header */
3655 dump_none, /* SPA space map */
3656 dump_none, /* ZIL intent log */
3657 dump_dnode, /* DMU dnode */
3658 dump_dmu_objset, /* DMU objset */
3659 dump_dsl_dir, /* DSL directory */
3660 dump_zap, /* DSL directory child map */
3661 dump_zap, /* DSL dataset snap map */
3662 dump_zap, /* DSL props */
3663 dump_dsl_dataset, /* DSL dataset */
3664 dump_znode, /* ZFS znode */
3665 dump_acl, /* ZFS V0 ACL */
3666 dump_uint8, /* ZFS plain file */
3667 dump_zpldir, /* ZFS directory */
3668 dump_zap, /* ZFS master node */
3669 dump_zap, /* ZFS delete queue */
3670 dump_uint8, /* zvol object */
3671 dump_zap, /* zvol prop */
3672 dump_uint8, /* other uint8[] */
3673 dump_uint64, /* other uint64[] */
3674 dump_zap, /* other ZAP */
3675 dump_zap, /* persistent error log */
3676 dump_uint8, /* SPA history */
3677 dump_history_offsets, /* SPA history offsets */
3678 dump_zap, /* Pool properties */
3679 dump_zap, /* DSL permissions */
3680 dump_acl, /* ZFS ACL */
3681 dump_uint8, /* ZFS SYSACL */
3682 dump_none, /* FUID nvlist */
3683 dump_packed_nvlist, /* FUID nvlist size */
3684 dump_zap, /* DSL dataset next clones */
3685 dump_zap, /* DSL scrub queue */
3686 dump_zap, /* ZFS user/group/project used */
3687 dump_zap, /* ZFS user/group/project quota */
3688 dump_zap, /* snapshot refcount tags */
3689 dump_ddt_zap, /* DDT ZAP object */
3690 dump_zap, /* DDT statistics */
3691 dump_znode, /* SA object */
3692 dump_zap, /* SA Master Node */
3693 dump_sa_attrs, /* SA attribute registration */
3694 dump_sa_layouts, /* SA attribute layouts */
3695 dump_zap, /* DSL scrub translations */
3696 dump_none, /* fake dedup BP */
3697 dump_zap, /* deadlist */
3698 dump_none, /* deadlist hdr */
3699 dump_zap, /* dsl clones */
3700 dump_bpobj_subobjs, /* bpobj subobjs */
3701 dump_unknown, /* Unknown type, must be last */
3704 static boolean_t
3705 match_object_type(dmu_object_type_t obj_type, uint64_t flags)
3707 boolean_t match = B_TRUE;
3709 switch (obj_type) {
3710 case DMU_OT_DIRECTORY_CONTENTS:
3711 if (!(flags & ZOR_FLAG_DIRECTORY))
3712 match = B_FALSE;
3713 break;
3714 case DMU_OT_PLAIN_FILE_CONTENTS:
3715 if (!(flags & ZOR_FLAG_PLAIN_FILE))
3716 match = B_FALSE;
3717 break;
3718 case DMU_OT_SPACE_MAP:
3719 if (!(flags & ZOR_FLAG_SPACE_MAP))
3720 match = B_FALSE;
3721 break;
3722 default:
3723 if (strcmp(zdb_ot_name(obj_type), "zap") == 0) {
3724 if (!(flags & ZOR_FLAG_ZAP))
3725 match = B_FALSE;
3726 break;
3730 * If all bits except some of the supported flags are
3731 * set, the user combined the all-types flag (A) with
3732 * a negated flag to exclude some types (e.g. A-f to
3733 * show all object types except plain files).
3735 if ((flags | ZOR_SUPPORTED_FLAGS) != ZOR_FLAG_ALL_TYPES)
3736 match = B_FALSE;
3738 break;
3741 return (match);
3744 static void
3745 dump_object(objset_t *os, uint64_t object, int verbosity,
3746 boolean_t *print_header, uint64_t *dnode_slots_used, uint64_t flags)
3748 dmu_buf_t *db = NULL;
3749 dmu_object_info_t doi;
3750 dnode_t *dn;
3751 boolean_t dnode_held = B_FALSE;
3752 void *bonus = NULL;
3753 size_t bsize = 0;
3754 char iblk[32], dblk[32], lsize[32], asize[32], fill[32], dnsize[32];
3755 char bonus_size[32];
3756 char aux[50];
3757 int error;
3759 /* make sure nicenum has enough space */
3760 _Static_assert(sizeof (iblk) >= NN_NUMBUF_SZ, "iblk truncated");
3761 _Static_assert(sizeof (dblk) >= NN_NUMBUF_SZ, "dblk truncated");
3762 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ, "lsize truncated");
3763 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ, "asize truncated");
3764 _Static_assert(sizeof (bonus_size) >= NN_NUMBUF_SZ,
3765 "bonus_size truncated");
3767 if (*print_header) {
3768 (void) printf("\n%10s %3s %5s %5s %5s %6s %5s %6s %s\n",
3769 "Object", "lvl", "iblk", "dblk", "dsize", "dnsize",
3770 "lsize", "%full", "type");
3771 *print_header = 0;
3774 if (object == 0) {
3775 dn = DMU_META_DNODE(os);
3776 dmu_object_info_from_dnode(dn, &doi);
3777 } else {
3779 * Encrypted datasets will have sensitive bonus buffers
3780 * encrypted. Therefore we cannot hold the bonus buffer and
3781 * must hold the dnode itself instead.
3783 error = dmu_object_info(os, object, &doi);
3784 if (error)
3785 fatal("dmu_object_info() failed, errno %u", error);
3787 if (!key_loaded && os->os_encrypted &&
3788 DMU_OT_IS_ENCRYPTED(doi.doi_bonus_type)) {
3789 error = dnode_hold(os, object, FTAG, &dn);
3790 if (error)
3791 fatal("dnode_hold() failed, errno %u", error);
3792 dnode_held = B_TRUE;
3793 } else {
3794 error = dmu_bonus_hold(os, object, FTAG, &db);
3795 if (error)
3796 fatal("dmu_bonus_hold(%llu) failed, errno %u",
3797 object, error);
3798 bonus = db->db_data;
3799 bsize = db->db_size;
3800 dn = DB_DNODE((dmu_buf_impl_t *)db);
3805 * Default to showing all object types if no flags were specified.
3807 if (flags != 0 && flags != ZOR_FLAG_ALL_TYPES &&
3808 !match_object_type(doi.doi_type, flags))
3809 goto out;
3811 if (dnode_slots_used)
3812 *dnode_slots_used = doi.doi_dnodesize / DNODE_MIN_SIZE;
3814 zdb_nicenum(doi.doi_metadata_block_size, iblk, sizeof (iblk));
3815 zdb_nicenum(doi.doi_data_block_size, dblk, sizeof (dblk));
3816 zdb_nicenum(doi.doi_max_offset, lsize, sizeof (lsize));
3817 zdb_nicenum(doi.doi_physical_blocks_512 << 9, asize, sizeof (asize));
3818 zdb_nicenum(doi.doi_bonus_size, bonus_size, sizeof (bonus_size));
3819 zdb_nicenum(doi.doi_dnodesize, dnsize, sizeof (dnsize));
3820 (void) snprintf(fill, sizeof (fill), "%6.2f", 100.0 *
3821 doi.doi_fill_count * doi.doi_data_block_size / (object == 0 ?
3822 DNODES_PER_BLOCK : 1) / doi.doi_max_offset);
3824 aux[0] = '\0';
3826 if (doi.doi_checksum != ZIO_CHECKSUM_INHERIT || verbosity >= 6) {
3827 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3828 " (K=%s)", ZDB_CHECKSUM_NAME(doi.doi_checksum));
3831 if (doi.doi_compress == ZIO_COMPRESS_INHERIT &&
3832 ZIO_COMPRESS_HASLEVEL(os->os_compress) && verbosity >= 6) {
3833 const char *compname = NULL;
3834 if (zfs_prop_index_to_string(ZFS_PROP_COMPRESSION,
3835 ZIO_COMPRESS_RAW(os->os_compress, os->os_complevel),
3836 &compname) == 0) {
3837 (void) snprintf(aux + strlen(aux),
3838 sizeof (aux) - strlen(aux), " (Z=inherit=%s)",
3839 compname);
3840 } else {
3841 (void) snprintf(aux + strlen(aux),
3842 sizeof (aux) - strlen(aux),
3843 " (Z=inherit=%s-unknown)",
3844 ZDB_COMPRESS_NAME(os->os_compress));
3846 } else if (doi.doi_compress == ZIO_COMPRESS_INHERIT && verbosity >= 6) {
3847 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3848 " (Z=inherit=%s)", ZDB_COMPRESS_NAME(os->os_compress));
3849 } else if (doi.doi_compress != ZIO_COMPRESS_INHERIT || verbosity >= 6) {
3850 (void) snprintf(aux + strlen(aux), sizeof (aux) - strlen(aux),
3851 " (Z=%s)", ZDB_COMPRESS_NAME(doi.doi_compress));
3854 (void) printf("%10lld %3u %5s %5s %5s %6s %5s %6s %s%s\n",
3855 (u_longlong_t)object, doi.doi_indirection, iblk, dblk,
3856 asize, dnsize, lsize, fill, zdb_ot_name(doi.doi_type), aux);
3858 if (doi.doi_bonus_type != DMU_OT_NONE && verbosity > 3) {
3859 (void) printf("%10s %3s %5s %5s %5s %5s %5s %6s %s\n",
3860 "", "", "", "", "", "", bonus_size, "bonus",
3861 zdb_ot_name(doi.doi_bonus_type));
3864 if (verbosity >= 4) {
3865 (void) printf("\tdnode flags: %s%s%s%s\n",
3866 (dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) ?
3867 "USED_BYTES " : "",
3868 (dn->dn_phys->dn_flags & DNODE_FLAG_USERUSED_ACCOUNTED) ?
3869 "USERUSED_ACCOUNTED " : "",
3870 (dn->dn_phys->dn_flags & DNODE_FLAG_USEROBJUSED_ACCOUNTED) ?
3871 "USEROBJUSED_ACCOUNTED " : "",
3872 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) ?
3873 "SPILL_BLKPTR" : "");
3874 (void) printf("\tdnode maxblkid: %llu\n",
3875 (longlong_t)dn->dn_phys->dn_maxblkid);
3877 if (!dnode_held) {
3878 object_viewer[ZDB_OT_TYPE(doi.doi_bonus_type)](os,
3879 object, bonus, bsize);
3880 } else {
3881 (void) printf("\t\t(bonus encrypted)\n");
3884 if (key_loaded ||
3885 (!os->os_encrypted || !DMU_OT_IS_ENCRYPTED(doi.doi_type))) {
3886 object_viewer[ZDB_OT_TYPE(doi.doi_type)](os, object,
3887 NULL, 0);
3888 } else {
3889 (void) printf("\t\t(object encrypted)\n");
3892 *print_header = B_TRUE;
3895 if (verbosity >= 5) {
3896 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
3897 char blkbuf[BP_SPRINTF_LEN];
3898 snprintf_blkptr_compact(blkbuf, sizeof (blkbuf),
3899 DN_SPILL_BLKPTR(dn->dn_phys), B_FALSE);
3900 (void) printf("\nSpill block: %s\n", blkbuf);
3902 dump_indirect(dn);
3905 if (verbosity >= 5) {
3907 * Report the list of segments that comprise the object.
3909 uint64_t start = 0;
3910 uint64_t end;
3911 uint64_t blkfill = 1;
3912 int minlvl = 1;
3914 if (dn->dn_type == DMU_OT_DNODE) {
3915 minlvl = 0;
3916 blkfill = DNODES_PER_BLOCK;
3919 for (;;) {
3920 char segsize[32];
3921 /* make sure nicenum has enough space */
3922 _Static_assert(sizeof (segsize) >= NN_NUMBUF_SZ,
3923 "segsize truncated");
3924 error = dnode_next_offset(dn,
3925 0, &start, minlvl, blkfill, 0);
3926 if (error)
3927 break;
3928 end = start;
3929 error = dnode_next_offset(dn,
3930 DNODE_FIND_HOLE, &end, minlvl, blkfill, 0);
3931 zdb_nicenum(end - start, segsize, sizeof (segsize));
3932 (void) printf("\t\tsegment [%016llx, %016llx)"
3933 " size %5s\n", (u_longlong_t)start,
3934 (u_longlong_t)end, segsize);
3935 if (error)
3936 break;
3937 start = end;
3941 out:
3942 if (db != NULL)
3943 dmu_buf_rele(db, FTAG);
3944 if (dnode_held)
3945 dnode_rele(dn, FTAG);
3948 static void
3949 count_dir_mos_objects(dsl_dir_t *dd)
3951 mos_obj_refd(dd->dd_object);
3952 mos_obj_refd(dsl_dir_phys(dd)->dd_child_dir_zapobj);
3953 mos_obj_refd(dsl_dir_phys(dd)->dd_deleg_zapobj);
3954 mos_obj_refd(dsl_dir_phys(dd)->dd_props_zapobj);
3955 mos_obj_refd(dsl_dir_phys(dd)->dd_clones);
3958 * The dd_crypto_obj can be referenced by multiple dsl_dir's.
3959 * Ignore the references after the first one.
3961 mos_obj_refd_multiple(dd->dd_crypto_obj);
3964 static void
3965 count_ds_mos_objects(dsl_dataset_t *ds)
3967 mos_obj_refd(ds->ds_object);
3968 mos_obj_refd(dsl_dataset_phys(ds)->ds_next_clones_obj);
3969 mos_obj_refd(dsl_dataset_phys(ds)->ds_props_obj);
3970 mos_obj_refd(dsl_dataset_phys(ds)->ds_userrefs_obj);
3971 mos_obj_refd(dsl_dataset_phys(ds)->ds_snapnames_zapobj);
3972 mos_obj_refd(ds->ds_bookmarks_obj);
3974 if (!dsl_dataset_is_snapshot(ds)) {
3975 count_dir_mos_objects(ds->ds_dir);
3979 static const char *const objset_types[DMU_OST_NUMTYPES] = {
3980 "NONE", "META", "ZPL", "ZVOL", "OTHER", "ANY" };
3983 * Parse a string denoting a range of object IDs of the form
3984 * <start>[:<end>[:flags]], and store the results in zor.
3985 * Return 0 on success. On error, return 1 and update the msg
3986 * pointer to point to a descriptive error message.
3988 static int
3989 parse_object_range(char *range, zopt_object_range_t *zor, const char **msg)
3991 uint64_t flags = 0;
3992 char *p, *s, *dup, *flagstr, *tmp = NULL;
3993 size_t len;
3994 int i;
3995 int rc = 0;
3997 if (strchr(range, ':') == NULL) {
3998 zor->zor_obj_start = strtoull(range, &p, 0);
3999 if (*p != '\0') {
4000 *msg = "Invalid characters in object ID";
4001 rc = 1;
4003 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start);
4004 zor->zor_obj_end = zor->zor_obj_start;
4005 return (rc);
4008 if (strchr(range, ':') == range) {
4009 *msg = "Invalid leading colon";
4010 rc = 1;
4011 return (rc);
4014 len = strlen(range);
4015 if (range[len - 1] == ':') {
4016 *msg = "Invalid trailing colon";
4017 rc = 1;
4018 return (rc);
4021 dup = strdup(range);
4022 s = strtok_r(dup, ":", &tmp);
4023 zor->zor_obj_start = strtoull(s, &p, 0);
4025 if (*p != '\0') {
4026 *msg = "Invalid characters in start object ID";
4027 rc = 1;
4028 goto out;
4031 s = strtok_r(NULL, ":", &tmp);
4032 zor->zor_obj_end = strtoull(s, &p, 0);
4034 if (*p != '\0') {
4035 *msg = "Invalid characters in end object ID";
4036 rc = 1;
4037 goto out;
4040 if (zor->zor_obj_start > zor->zor_obj_end) {
4041 *msg = "Start object ID may not exceed end object ID";
4042 rc = 1;
4043 goto out;
4046 s = strtok_r(NULL, ":", &tmp);
4047 if (s == NULL) {
4048 zor->zor_flags = ZOR_FLAG_ALL_TYPES;
4049 goto out;
4050 } else if (strtok_r(NULL, ":", &tmp) != NULL) {
4051 *msg = "Invalid colon-delimited field after flags";
4052 rc = 1;
4053 goto out;
4056 flagstr = s;
4057 for (i = 0; flagstr[i]; i++) {
4058 int bit;
4059 boolean_t negation = (flagstr[i] == '-');
4061 if (negation) {
4062 i++;
4063 if (flagstr[i] == '\0') {
4064 *msg = "Invalid trailing negation operator";
4065 rc = 1;
4066 goto out;
4069 bit = flagbits[(uchar_t)flagstr[i]];
4070 if (bit == 0) {
4071 *msg = "Invalid flag";
4072 rc = 1;
4073 goto out;
4075 if (negation)
4076 flags &= ~bit;
4077 else
4078 flags |= bit;
4080 zor->zor_flags = flags;
4082 zor->zor_obj_start = ZDB_MAP_OBJECT_ID(zor->zor_obj_start);
4083 zor->zor_obj_end = ZDB_MAP_OBJECT_ID(zor->zor_obj_end);
4085 out:
4086 free(dup);
4087 return (rc);
4090 static void
4091 dump_objset(objset_t *os)
4093 dmu_objset_stats_t dds = { 0 };
4094 uint64_t object, object_count;
4095 uint64_t refdbytes, usedobjs, scratch;
4096 char numbuf[32];
4097 char blkbuf[BP_SPRINTF_LEN + 20];
4098 char osname[ZFS_MAX_DATASET_NAME_LEN];
4099 const char *type = "UNKNOWN";
4100 int verbosity = dump_opt['d'];
4101 boolean_t print_header;
4102 unsigned i;
4103 int error;
4104 uint64_t total_slots_used = 0;
4105 uint64_t max_slot_used = 0;
4106 uint64_t dnode_slots;
4107 uint64_t obj_start;
4108 uint64_t obj_end;
4109 uint64_t flags;
4111 /* make sure nicenum has enough space */
4112 _Static_assert(sizeof (numbuf) >= NN_NUMBUF_SZ, "numbuf truncated");
4114 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
4115 dmu_objset_fast_stat(os, &dds);
4116 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
4118 print_header = B_TRUE;
4120 if (dds.dds_type < DMU_OST_NUMTYPES)
4121 type = objset_types[dds.dds_type];
4123 if (dds.dds_type == DMU_OST_META) {
4124 dds.dds_creation_txg = TXG_INITIAL;
4125 usedobjs = BP_GET_FILL(os->os_rootbp);
4126 refdbytes = dsl_dir_phys(os->os_spa->spa_dsl_pool->dp_mos_dir)->
4127 dd_used_bytes;
4128 } else {
4129 dmu_objset_space(os, &refdbytes, &scratch, &usedobjs, &scratch);
4132 ASSERT3U(usedobjs, ==, BP_GET_FILL(os->os_rootbp));
4134 zdb_nicenum(refdbytes, numbuf, sizeof (numbuf));
4136 if (verbosity >= 4) {
4137 (void) snprintf(blkbuf, sizeof (blkbuf), ", rootbp ");
4138 (void) snprintf_blkptr(blkbuf + strlen(blkbuf),
4139 sizeof (blkbuf) - strlen(blkbuf), os->os_rootbp);
4140 } else {
4141 blkbuf[0] = '\0';
4144 dmu_objset_name(os, osname);
4146 (void) printf("Dataset %s [%s], ID %llu, cr_txg %llu, "
4147 "%s, %llu objects%s%s\n",
4148 osname, type, (u_longlong_t)dmu_objset_id(os),
4149 (u_longlong_t)dds.dds_creation_txg,
4150 numbuf, (u_longlong_t)usedobjs, blkbuf,
4151 (dds.dds_inconsistent) ? " (inconsistent)" : "");
4153 for (i = 0; i < zopt_object_args; i++) {
4154 obj_start = zopt_object_ranges[i].zor_obj_start;
4155 obj_end = zopt_object_ranges[i].zor_obj_end;
4156 flags = zopt_object_ranges[i].zor_flags;
4158 object = obj_start;
4159 if (object == 0 || obj_start == obj_end)
4160 dump_object(os, object, verbosity, &print_header, NULL,
4161 flags);
4162 else
4163 object--;
4165 while ((dmu_object_next(os, &object, B_FALSE, 0) == 0) &&
4166 object <= obj_end) {
4167 dump_object(os, object, verbosity, &print_header, NULL,
4168 flags);
4172 if (zopt_object_args > 0) {
4173 (void) printf("\n");
4174 return;
4177 if (dump_opt['i'] != 0 || verbosity >= 2)
4178 dump_intent_log(dmu_objset_zil(os));
4180 if (dmu_objset_ds(os) != NULL) {
4181 dsl_dataset_t *ds = dmu_objset_ds(os);
4182 dump_blkptr_list(&ds->ds_deadlist, "Deadlist");
4183 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
4184 !dmu_objset_is_snapshot(os)) {
4185 dump_blkptr_list(&ds->ds_dir->dd_livelist, "Livelist");
4186 if (verify_dd_livelist(os) != 0)
4187 fatal("livelist is incorrect");
4190 if (dsl_dataset_remap_deadlist_exists(ds)) {
4191 (void) printf("ds_remap_deadlist:\n");
4192 dump_blkptr_list(&ds->ds_remap_deadlist, "Deadlist");
4194 count_ds_mos_objects(ds);
4197 if (dmu_objset_ds(os) != NULL)
4198 dump_bookmarks(os, verbosity);
4200 if (verbosity < 2)
4201 return;
4203 if (BP_IS_HOLE(os->os_rootbp))
4204 return;
4206 dump_object(os, 0, verbosity, &print_header, NULL, 0);
4207 object_count = 0;
4208 if (DMU_USERUSED_DNODE(os) != NULL &&
4209 DMU_USERUSED_DNODE(os)->dn_type != 0) {
4210 dump_object(os, DMU_USERUSED_OBJECT, verbosity, &print_header,
4211 NULL, 0);
4212 dump_object(os, DMU_GROUPUSED_OBJECT, verbosity, &print_header,
4213 NULL, 0);
4216 if (DMU_PROJECTUSED_DNODE(os) != NULL &&
4217 DMU_PROJECTUSED_DNODE(os)->dn_type != 0)
4218 dump_object(os, DMU_PROJECTUSED_OBJECT, verbosity,
4219 &print_header, NULL, 0);
4221 object = 0;
4222 while ((error = dmu_object_next(os, &object, B_FALSE, 0)) == 0) {
4223 dump_object(os, object, verbosity, &print_header, &dnode_slots,
4225 object_count++;
4226 total_slots_used += dnode_slots;
4227 max_slot_used = object + dnode_slots - 1;
4230 (void) printf("\n");
4232 (void) printf(" Dnode slots:\n");
4233 (void) printf("\tTotal used: %10llu\n",
4234 (u_longlong_t)total_slots_used);
4235 (void) printf("\tMax used: %10llu\n",
4236 (u_longlong_t)max_slot_used);
4237 (void) printf("\tPercent empty: %10lf\n",
4238 (double)(max_slot_used - total_slots_used)*100 /
4239 (double)max_slot_used);
4240 (void) printf("\n");
4242 if (error != ESRCH) {
4243 (void) fprintf(stderr, "dmu_object_next() = %d\n", error);
4244 abort();
4247 ASSERT3U(object_count, ==, usedobjs);
4249 if (leaked_objects != 0) {
4250 (void) printf("%d potentially leaked objects detected\n",
4251 leaked_objects);
4252 leaked_objects = 0;
4256 static void
4257 dump_uberblock(uberblock_t *ub, const char *header, const char *footer)
4259 time_t timestamp = ub->ub_timestamp;
4261 (void) printf("%s", header ? header : "");
4262 (void) printf("\tmagic = %016llx\n", (u_longlong_t)ub->ub_magic);
4263 (void) printf("\tversion = %llu\n", (u_longlong_t)ub->ub_version);
4264 (void) printf("\ttxg = %llu\n", (u_longlong_t)ub->ub_txg);
4265 (void) printf("\tguid_sum = %llu\n", (u_longlong_t)ub->ub_guid_sum);
4266 (void) printf("\ttimestamp = %llu UTC = %s",
4267 (u_longlong_t)ub->ub_timestamp, ctime(&timestamp));
4269 (void) printf("\tmmp_magic = %016llx\n",
4270 (u_longlong_t)ub->ub_mmp_magic);
4271 if (MMP_VALID(ub)) {
4272 (void) printf("\tmmp_delay = %0llu\n",
4273 (u_longlong_t)ub->ub_mmp_delay);
4274 if (MMP_SEQ_VALID(ub))
4275 (void) printf("\tmmp_seq = %u\n",
4276 (unsigned int) MMP_SEQ(ub));
4277 if (MMP_FAIL_INT_VALID(ub))
4278 (void) printf("\tmmp_fail = %u\n",
4279 (unsigned int) MMP_FAIL_INT(ub));
4280 if (MMP_INTERVAL_VALID(ub))
4281 (void) printf("\tmmp_write = %u\n",
4282 (unsigned int) MMP_INTERVAL(ub));
4283 /* After MMP_* to make summarize_uberblock_mmp cleaner */
4284 (void) printf("\tmmp_valid = %x\n",
4285 (unsigned int) ub->ub_mmp_config & 0xFF);
4288 if (dump_opt['u'] >= 4) {
4289 char blkbuf[BP_SPRINTF_LEN];
4290 snprintf_blkptr(blkbuf, sizeof (blkbuf), &ub->ub_rootbp);
4291 (void) printf("\trootbp = %s\n", blkbuf);
4293 (void) printf("\tcheckpoint_txg = %llu\n",
4294 (u_longlong_t)ub->ub_checkpoint_txg);
4296 (void) printf("\traidz_reflow state=%u off=%llu\n",
4297 (int)RRSS_GET_STATE(ub),
4298 (u_longlong_t)RRSS_GET_OFFSET(ub));
4300 (void) printf("%s", footer ? footer : "");
4303 static void
4304 dump_config(spa_t *spa)
4306 dmu_buf_t *db;
4307 size_t nvsize = 0;
4308 int error = 0;
4311 error = dmu_bonus_hold(spa->spa_meta_objset,
4312 spa->spa_config_object, FTAG, &db);
4314 if (error == 0) {
4315 nvsize = *(uint64_t *)db->db_data;
4316 dmu_buf_rele(db, FTAG);
4318 (void) printf("\nMOS Configuration:\n");
4319 dump_packed_nvlist(spa->spa_meta_objset,
4320 spa->spa_config_object, (void *)&nvsize, 1);
4321 } else {
4322 (void) fprintf(stderr, "dmu_bonus_hold(%llu) failed, errno %d",
4323 (u_longlong_t)spa->spa_config_object, error);
4327 static void
4328 dump_cachefile(const char *cachefile)
4330 int fd;
4331 struct stat64 statbuf;
4332 char *buf;
4333 nvlist_t *config;
4335 if ((fd = open64(cachefile, O_RDONLY)) < 0) {
4336 (void) printf("cannot open '%s': %s\n", cachefile,
4337 strerror(errno));
4338 zdb_exit(1);
4341 if (fstat64(fd, &statbuf) != 0) {
4342 (void) printf("failed to stat '%s': %s\n", cachefile,
4343 strerror(errno));
4344 zdb_exit(1);
4347 if ((buf = malloc(statbuf.st_size)) == NULL) {
4348 (void) fprintf(stderr, "failed to allocate %llu bytes\n",
4349 (u_longlong_t)statbuf.st_size);
4350 zdb_exit(1);
4353 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
4354 (void) fprintf(stderr, "failed to read %llu bytes\n",
4355 (u_longlong_t)statbuf.st_size);
4356 zdb_exit(1);
4359 (void) close(fd);
4361 if (nvlist_unpack(buf, statbuf.st_size, &config, 0) != 0) {
4362 (void) fprintf(stderr, "failed to unpack nvlist\n");
4363 zdb_exit(1);
4366 free(buf);
4368 dump_nvlist(config, 0);
4370 nvlist_free(config);
4374 * ZFS label nvlist stats
4376 typedef struct zdb_nvl_stats {
4377 int zns_list_count;
4378 int zns_leaf_count;
4379 size_t zns_leaf_largest;
4380 size_t zns_leaf_total;
4381 nvlist_t *zns_string;
4382 nvlist_t *zns_uint64;
4383 nvlist_t *zns_boolean;
4384 } zdb_nvl_stats_t;
4386 static void
4387 collect_nvlist_stats(nvlist_t *nvl, zdb_nvl_stats_t *stats)
4389 nvlist_t *list, **array;
4390 nvpair_t *nvp = NULL;
4391 const char *name;
4392 uint_t i, items;
4394 stats->zns_list_count++;
4396 while ((nvp = nvlist_next_nvpair(nvl, nvp)) != NULL) {
4397 name = nvpair_name(nvp);
4399 switch (nvpair_type(nvp)) {
4400 case DATA_TYPE_STRING:
4401 fnvlist_add_string(stats->zns_string, name,
4402 fnvpair_value_string(nvp));
4403 break;
4404 case DATA_TYPE_UINT64:
4405 fnvlist_add_uint64(stats->zns_uint64, name,
4406 fnvpair_value_uint64(nvp));
4407 break;
4408 case DATA_TYPE_BOOLEAN:
4409 fnvlist_add_boolean(stats->zns_boolean, name);
4410 break;
4411 case DATA_TYPE_NVLIST:
4412 if (nvpair_value_nvlist(nvp, &list) == 0)
4413 collect_nvlist_stats(list, stats);
4414 break;
4415 case DATA_TYPE_NVLIST_ARRAY:
4416 if (nvpair_value_nvlist_array(nvp, &array, &items) != 0)
4417 break;
4419 for (i = 0; i < items; i++) {
4420 collect_nvlist_stats(array[i], stats);
4422 /* collect stats on leaf vdev */
4423 if (strcmp(name, "children") == 0) {
4424 size_t size;
4426 (void) nvlist_size(array[i], &size,
4427 NV_ENCODE_XDR);
4428 stats->zns_leaf_total += size;
4429 if (size > stats->zns_leaf_largest)
4430 stats->zns_leaf_largest = size;
4431 stats->zns_leaf_count++;
4434 break;
4435 default:
4436 (void) printf("skip type %d!\n", (int)nvpair_type(nvp));
4441 static void
4442 dump_nvlist_stats(nvlist_t *nvl, size_t cap)
4444 zdb_nvl_stats_t stats = { 0 };
4445 size_t size, sum = 0, total;
4446 size_t noise;
4448 /* requires nvlist with non-unique names for stat collection */
4449 VERIFY0(nvlist_alloc(&stats.zns_string, 0, 0));
4450 VERIFY0(nvlist_alloc(&stats.zns_uint64, 0, 0));
4451 VERIFY0(nvlist_alloc(&stats.zns_boolean, 0, 0));
4452 VERIFY0(nvlist_size(stats.zns_boolean, &noise, NV_ENCODE_XDR));
4454 (void) printf("\n\nZFS Label NVList Config Stats:\n");
4456 VERIFY0(nvlist_size(nvl, &total, NV_ENCODE_XDR));
4457 (void) printf(" %d bytes used, %d bytes free (using %4.1f%%)\n\n",
4458 (int)total, (int)(cap - total), 100.0 * total / cap);
4460 collect_nvlist_stats(nvl, &stats);
4462 VERIFY0(nvlist_size(stats.zns_uint64, &size, NV_ENCODE_XDR));
4463 size -= noise;
4464 sum += size;
4465 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "integers:",
4466 (int)fnvlist_num_pairs(stats.zns_uint64),
4467 (int)size, 100.0 * size / total);
4469 VERIFY0(nvlist_size(stats.zns_string, &size, NV_ENCODE_XDR));
4470 size -= noise;
4471 sum += size;
4472 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "strings:",
4473 (int)fnvlist_num_pairs(stats.zns_string),
4474 (int)size, 100.0 * size / total);
4476 VERIFY0(nvlist_size(stats.zns_boolean, &size, NV_ENCODE_XDR));
4477 size -= noise;
4478 sum += size;
4479 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n", "booleans:",
4480 (int)fnvlist_num_pairs(stats.zns_boolean),
4481 (int)size, 100.0 * size / total);
4483 size = total - sum; /* treat remainder as nvlist overhead */
4484 (void) printf("%12s %4d %6d bytes (%5.2f%%)\n\n", "nvlists:",
4485 stats.zns_list_count, (int)size, 100.0 * size / total);
4487 if (stats.zns_leaf_count > 0) {
4488 size_t average = stats.zns_leaf_total / stats.zns_leaf_count;
4490 (void) printf("%12s %4d %6d bytes average\n", "leaf vdevs:",
4491 stats.zns_leaf_count, (int)average);
4492 (void) printf("%24d bytes largest\n",
4493 (int)stats.zns_leaf_largest);
4495 if (dump_opt['l'] >= 3 && average > 0)
4496 (void) printf(" space for %d additional leaf vdevs\n",
4497 (int)((cap - total) / average));
4499 (void) printf("\n");
4501 nvlist_free(stats.zns_string);
4502 nvlist_free(stats.zns_uint64);
4503 nvlist_free(stats.zns_boolean);
4506 typedef struct cksum_record {
4507 zio_cksum_t cksum;
4508 boolean_t labels[VDEV_LABELS];
4509 avl_node_t link;
4510 } cksum_record_t;
4512 static int
4513 cksum_record_compare(const void *x1, const void *x2)
4515 const cksum_record_t *l = (cksum_record_t *)x1;
4516 const cksum_record_t *r = (cksum_record_t *)x2;
4517 int arraysize = ARRAY_SIZE(l->cksum.zc_word);
4518 int difference = 0;
4520 for (int i = 0; i < arraysize; i++) {
4521 difference = TREE_CMP(l->cksum.zc_word[i], r->cksum.zc_word[i]);
4522 if (difference)
4523 break;
4526 return (difference);
4529 static cksum_record_t *
4530 cksum_record_alloc(zio_cksum_t *cksum, int l)
4532 cksum_record_t *rec;
4534 rec = umem_zalloc(sizeof (*rec), UMEM_NOFAIL);
4535 rec->cksum = *cksum;
4536 rec->labels[l] = B_TRUE;
4538 return (rec);
4541 static cksum_record_t *
4542 cksum_record_lookup(avl_tree_t *tree, zio_cksum_t *cksum)
4544 cksum_record_t lookup = { .cksum = *cksum };
4545 avl_index_t where;
4547 return (avl_find(tree, &lookup, &where));
4550 static cksum_record_t *
4551 cksum_record_insert(avl_tree_t *tree, zio_cksum_t *cksum, int l)
4553 cksum_record_t *rec;
4555 rec = cksum_record_lookup(tree, cksum);
4556 if (rec) {
4557 rec->labels[l] = B_TRUE;
4558 } else {
4559 rec = cksum_record_alloc(cksum, l);
4560 avl_add(tree, rec);
4563 return (rec);
4566 static int
4567 first_label(cksum_record_t *rec)
4569 for (int i = 0; i < VDEV_LABELS; i++)
4570 if (rec->labels[i])
4571 return (i);
4573 return (-1);
4576 static void
4577 print_label_numbers(const char *prefix, const cksum_record_t *rec)
4579 fputs(prefix, stdout);
4580 for (int i = 0; i < VDEV_LABELS; i++)
4581 if (rec->labels[i] == B_TRUE)
4582 printf("%d ", i);
4583 putchar('\n');
4586 #define MAX_UBERBLOCK_COUNT (VDEV_UBERBLOCK_RING >> UBERBLOCK_SHIFT)
4588 typedef struct zdb_label {
4589 vdev_label_t label;
4590 uint64_t label_offset;
4591 nvlist_t *config_nv;
4592 cksum_record_t *config;
4593 cksum_record_t *uberblocks[MAX_UBERBLOCK_COUNT];
4594 boolean_t header_printed;
4595 boolean_t read_failed;
4596 boolean_t cksum_valid;
4597 } zdb_label_t;
4599 static void
4600 print_label_header(zdb_label_t *label, int l)
4603 if (dump_opt['q'])
4604 return;
4606 if (label->header_printed == B_TRUE)
4607 return;
4609 (void) printf("------------------------------------\n");
4610 (void) printf("LABEL %d %s\n", l,
4611 label->cksum_valid ? "" : "(Bad label cksum)");
4612 (void) printf("------------------------------------\n");
4614 label->header_printed = B_TRUE;
4617 static void
4618 print_l2arc_header(void)
4620 (void) printf("------------------------------------\n");
4621 (void) printf("L2ARC device header\n");
4622 (void) printf("------------------------------------\n");
4625 static void
4626 print_l2arc_log_blocks(void)
4628 (void) printf("------------------------------------\n");
4629 (void) printf("L2ARC device log blocks\n");
4630 (void) printf("------------------------------------\n");
4633 static void
4634 dump_l2arc_log_entries(uint64_t log_entries,
4635 l2arc_log_ent_phys_t *le, uint64_t i)
4637 for (int j = 0; j < log_entries; j++) {
4638 dva_t dva = le[j].le_dva;
4639 (void) printf("lb[%4llu]\tle[%4d]\tDVA asize: %llu, "
4640 "vdev: %llu, offset: %llu\n",
4641 (u_longlong_t)i, j + 1,
4642 (u_longlong_t)DVA_GET_ASIZE(&dva),
4643 (u_longlong_t)DVA_GET_VDEV(&dva),
4644 (u_longlong_t)DVA_GET_OFFSET(&dva));
4645 (void) printf("|\t\t\t\tbirth: %llu\n",
4646 (u_longlong_t)le[j].le_birth);
4647 (void) printf("|\t\t\t\tlsize: %llu\n",
4648 (u_longlong_t)L2BLK_GET_LSIZE((&le[j])->le_prop));
4649 (void) printf("|\t\t\t\tpsize: %llu\n",
4650 (u_longlong_t)L2BLK_GET_PSIZE((&le[j])->le_prop));
4651 (void) printf("|\t\t\t\tcompr: %llu\n",
4652 (u_longlong_t)L2BLK_GET_COMPRESS((&le[j])->le_prop));
4653 (void) printf("|\t\t\t\tcomplevel: %llu\n",
4654 (u_longlong_t)(&le[j])->le_complevel);
4655 (void) printf("|\t\t\t\ttype: %llu\n",
4656 (u_longlong_t)L2BLK_GET_TYPE((&le[j])->le_prop));
4657 (void) printf("|\t\t\t\tprotected: %llu\n",
4658 (u_longlong_t)L2BLK_GET_PROTECTED((&le[j])->le_prop));
4659 (void) printf("|\t\t\t\tprefetch: %llu\n",
4660 (u_longlong_t)L2BLK_GET_PREFETCH((&le[j])->le_prop));
4661 (void) printf("|\t\t\t\taddress: %llu\n",
4662 (u_longlong_t)le[j].le_daddr);
4663 (void) printf("|\t\t\t\tARC state: %llu\n",
4664 (u_longlong_t)L2BLK_GET_STATE((&le[j])->le_prop));
4665 (void) printf("|\n");
4667 (void) printf("\n");
4670 static void
4671 dump_l2arc_log_blkptr(const l2arc_log_blkptr_t *lbps)
4673 (void) printf("|\t\tdaddr: %llu\n", (u_longlong_t)lbps->lbp_daddr);
4674 (void) printf("|\t\tpayload_asize: %llu\n",
4675 (u_longlong_t)lbps->lbp_payload_asize);
4676 (void) printf("|\t\tpayload_start: %llu\n",
4677 (u_longlong_t)lbps->lbp_payload_start);
4678 (void) printf("|\t\tlsize: %llu\n",
4679 (u_longlong_t)L2BLK_GET_LSIZE(lbps->lbp_prop));
4680 (void) printf("|\t\tasize: %llu\n",
4681 (u_longlong_t)L2BLK_GET_PSIZE(lbps->lbp_prop));
4682 (void) printf("|\t\tcompralgo: %llu\n",
4683 (u_longlong_t)L2BLK_GET_COMPRESS(lbps->lbp_prop));
4684 (void) printf("|\t\tcksumalgo: %llu\n",
4685 (u_longlong_t)L2BLK_GET_CHECKSUM(lbps->lbp_prop));
4686 (void) printf("|\n\n");
4689 static void
4690 dump_l2arc_log_blocks(int fd, const l2arc_dev_hdr_phys_t *l2dhdr,
4691 l2arc_dev_hdr_phys_t *rebuild)
4693 l2arc_log_blk_phys_t this_lb;
4694 uint64_t asize;
4695 l2arc_log_blkptr_t lbps[2];
4696 zio_cksum_t cksum;
4697 int failed = 0;
4698 l2arc_dev_t dev;
4700 if (!dump_opt['q'])
4701 print_l2arc_log_blocks();
4702 memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps));
4704 dev.l2ad_evict = l2dhdr->dh_evict;
4705 dev.l2ad_start = l2dhdr->dh_start;
4706 dev.l2ad_end = l2dhdr->dh_end;
4708 if (l2dhdr->dh_start_lbps[0].lbp_daddr == 0) {
4709 /* no log blocks to read */
4710 if (!dump_opt['q']) {
4711 (void) printf("No log blocks to read\n");
4712 (void) printf("\n");
4714 return;
4715 } else {
4716 dev.l2ad_hand = lbps[0].lbp_daddr +
4717 L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
4720 dev.l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
4722 for (;;) {
4723 if (!l2arc_log_blkptr_valid(&dev, &lbps[0]))
4724 break;
4726 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
4727 asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
4728 if (pread64(fd, &this_lb, asize, lbps[0].lbp_daddr) != asize) {
4729 if (!dump_opt['q']) {
4730 (void) printf("Error while reading next log "
4731 "block\n\n");
4733 break;
4736 fletcher_4_native_varsize(&this_lb, asize, &cksum);
4737 if (!ZIO_CHECKSUM_EQUAL(cksum, lbps[0].lbp_cksum)) {
4738 failed++;
4739 if (!dump_opt['q']) {
4740 (void) printf("Invalid cksum\n");
4741 dump_l2arc_log_blkptr(&lbps[0]);
4743 break;
4746 switch (L2BLK_GET_COMPRESS((&lbps[0])->lbp_prop)) {
4747 case ZIO_COMPRESS_OFF:
4748 break;
4749 default: {
4750 abd_t *abd = abd_alloc_linear(asize, B_TRUE);
4751 abd_copy_from_buf_off(abd, &this_lb, 0, asize);
4752 abd_t dabd;
4753 abd_get_from_buf_struct(&dabd, &this_lb,
4754 sizeof (this_lb));
4755 int err = zio_decompress_data(L2BLK_GET_COMPRESS(
4756 (&lbps[0])->lbp_prop), abd, &dabd,
4757 asize, sizeof (this_lb), NULL);
4758 abd_free(&dabd);
4759 abd_free(abd);
4760 if (err != 0) {
4761 (void) printf("L2ARC block decompression "
4762 "failed\n");
4763 goto out;
4765 break;
4769 if (this_lb.lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
4770 byteswap_uint64_array(&this_lb, sizeof (this_lb));
4771 if (this_lb.lb_magic != L2ARC_LOG_BLK_MAGIC) {
4772 if (!dump_opt['q'])
4773 (void) printf("Invalid log block magic\n\n");
4774 break;
4777 rebuild->dh_lb_count++;
4778 rebuild->dh_lb_asize += asize;
4779 if (dump_opt['l'] > 1 && !dump_opt['q']) {
4780 (void) printf("lb[%4llu]\tmagic: %llu\n",
4781 (u_longlong_t)rebuild->dh_lb_count,
4782 (u_longlong_t)this_lb.lb_magic);
4783 dump_l2arc_log_blkptr(&lbps[0]);
4786 if (dump_opt['l'] > 2 && !dump_opt['q'])
4787 dump_l2arc_log_entries(l2dhdr->dh_log_entries,
4788 this_lb.lb_entries,
4789 rebuild->dh_lb_count);
4791 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
4792 lbps[0].lbp_payload_start, dev.l2ad_evict) &&
4793 !dev.l2ad_first)
4794 break;
4796 lbps[0] = lbps[1];
4797 lbps[1] = this_lb.lb_prev_lbp;
4799 out:
4800 if (!dump_opt['q']) {
4801 (void) printf("log_blk_count:\t %llu with valid cksum\n",
4802 (u_longlong_t)rebuild->dh_lb_count);
4803 (void) printf("\t\t %d with invalid cksum\n", failed);
4804 (void) printf("log_blk_asize:\t %llu\n\n",
4805 (u_longlong_t)rebuild->dh_lb_asize);
4809 static int
4810 dump_l2arc_header(int fd)
4812 l2arc_dev_hdr_phys_t l2dhdr = {0}, rebuild = {0};
4813 int error = B_FALSE;
4815 if (pread64(fd, &l2dhdr, sizeof (l2dhdr),
4816 VDEV_LABEL_START_SIZE) != sizeof (l2dhdr)) {
4817 error = B_TRUE;
4818 } else {
4819 if (l2dhdr.dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
4820 byteswap_uint64_array(&l2dhdr, sizeof (l2dhdr));
4822 if (l2dhdr.dh_magic != L2ARC_DEV_HDR_MAGIC)
4823 error = B_TRUE;
4826 if (error) {
4827 (void) printf("L2ARC device header not found\n\n");
4828 /* Do not return an error here for backward compatibility */
4829 return (0);
4830 } else if (!dump_opt['q']) {
4831 print_l2arc_header();
4833 (void) printf(" magic: %llu\n",
4834 (u_longlong_t)l2dhdr.dh_magic);
4835 (void) printf(" version: %llu\n",
4836 (u_longlong_t)l2dhdr.dh_version);
4837 (void) printf(" pool_guid: %llu\n",
4838 (u_longlong_t)l2dhdr.dh_spa_guid);
4839 (void) printf(" flags: %llu\n",
4840 (u_longlong_t)l2dhdr.dh_flags);
4841 (void) printf(" start_lbps[0]: %llu\n",
4842 (u_longlong_t)
4843 l2dhdr.dh_start_lbps[0].lbp_daddr);
4844 (void) printf(" start_lbps[1]: %llu\n",
4845 (u_longlong_t)
4846 l2dhdr.dh_start_lbps[1].lbp_daddr);
4847 (void) printf(" log_blk_ent: %llu\n",
4848 (u_longlong_t)l2dhdr.dh_log_entries);
4849 (void) printf(" start: %llu\n",
4850 (u_longlong_t)l2dhdr.dh_start);
4851 (void) printf(" end: %llu\n",
4852 (u_longlong_t)l2dhdr.dh_end);
4853 (void) printf(" evict: %llu\n",
4854 (u_longlong_t)l2dhdr.dh_evict);
4855 (void) printf(" lb_asize_refcount: %llu\n",
4856 (u_longlong_t)l2dhdr.dh_lb_asize);
4857 (void) printf(" lb_count_refcount: %llu\n",
4858 (u_longlong_t)l2dhdr.dh_lb_count);
4859 (void) printf(" trim_action_time: %llu\n",
4860 (u_longlong_t)l2dhdr.dh_trim_action_time);
4861 (void) printf(" trim_state: %llu\n\n",
4862 (u_longlong_t)l2dhdr.dh_trim_state);
4865 dump_l2arc_log_blocks(fd, &l2dhdr, &rebuild);
4867 * The total aligned size of log blocks and the number of log blocks
4868 * reported in the header of the device may be less than what zdb
4869 * reports by dump_l2arc_log_blocks() which emulates l2arc_rebuild().
4870 * This happens because dump_l2arc_log_blocks() lacks the memory
4871 * pressure valve that l2arc_rebuild() has. Thus, if we are on a system
4872 * with low memory, l2arc_rebuild will exit prematurely and dh_lb_asize
4873 * and dh_lb_count will be lower to begin with than what exists on the
4874 * device. This is normal and zdb should not exit with an error. The
4875 * opposite case should never happen though, the values reported in the
4876 * header should never be higher than what dump_l2arc_log_blocks() and
4877 * l2arc_rebuild() report. If this happens there is a leak in the
4878 * accounting of log blocks.
4880 if (l2dhdr.dh_lb_asize > rebuild.dh_lb_asize ||
4881 l2dhdr.dh_lb_count > rebuild.dh_lb_count)
4882 return (1);
4884 return (0);
4887 static void
4888 dump_config_from_label(zdb_label_t *label, size_t buflen, int l)
4890 if (dump_opt['q'])
4891 return;
4893 if ((dump_opt['l'] < 3) && (first_label(label->config) != l))
4894 return;
4896 print_label_header(label, l);
4897 dump_nvlist(label->config_nv, 4);
4898 print_label_numbers(" labels = ", label->config);
4900 if (dump_opt['l'] >= 2)
4901 dump_nvlist_stats(label->config_nv, buflen);
4904 #define ZDB_MAX_UB_HEADER_SIZE 32
4906 static void
4907 dump_label_uberblocks(zdb_label_t *label, uint64_t ashift, int label_num)
4910 vdev_t vd;
4911 char header[ZDB_MAX_UB_HEADER_SIZE];
4913 vd.vdev_ashift = ashift;
4914 vd.vdev_top = &vd;
4916 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) {
4917 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i);
4918 uberblock_t *ub = (void *)((char *)&label->label + uoff);
4919 cksum_record_t *rec = label->uberblocks[i];
4921 if (rec == NULL) {
4922 if (dump_opt['u'] >= 2) {
4923 print_label_header(label, label_num);
4924 (void) printf(" Uberblock[%d] invalid\n", i);
4926 continue;
4929 if ((dump_opt['u'] < 3) && (first_label(rec) != label_num))
4930 continue;
4932 if ((dump_opt['u'] < 4) &&
4933 (ub->ub_mmp_magic == MMP_MAGIC) && ub->ub_mmp_delay &&
4934 (i >= VDEV_UBERBLOCK_COUNT(&vd) - MMP_BLOCKS_PER_LABEL))
4935 continue;
4937 print_label_header(label, label_num);
4938 (void) snprintf(header, ZDB_MAX_UB_HEADER_SIZE,
4939 " Uberblock[%d]\n", i);
4940 dump_uberblock(ub, header, "");
4941 print_label_numbers(" labels = ", rec);
4945 static char curpath[PATH_MAX];
4948 * Iterate through the path components, recursively passing
4949 * current one's obj and remaining path until we find the obj
4950 * for the last one.
4952 static int
4953 dump_path_impl(objset_t *os, uint64_t obj, char *name, uint64_t *retobj)
4955 int err;
4956 boolean_t header = B_TRUE;
4957 uint64_t child_obj;
4958 char *s;
4959 dmu_buf_t *db;
4960 dmu_object_info_t doi;
4962 if ((s = strchr(name, '/')) != NULL)
4963 *s = '\0';
4964 err = zap_lookup(os, obj, name, 8, 1, &child_obj);
4966 (void) strlcat(curpath, name, sizeof (curpath));
4968 if (err != 0) {
4969 (void) fprintf(stderr, "failed to lookup %s: %s\n",
4970 curpath, strerror(err));
4971 return (err);
4974 child_obj = ZFS_DIRENT_OBJ(child_obj);
4975 err = sa_buf_hold(os, child_obj, FTAG, &db);
4976 if (err != 0) {
4977 (void) fprintf(stderr,
4978 "failed to get SA dbuf for obj %llu: %s\n",
4979 (u_longlong_t)child_obj, strerror(err));
4980 return (EINVAL);
4982 dmu_object_info_from_db(db, &doi);
4983 sa_buf_rele(db, FTAG);
4985 if (doi.doi_bonus_type != DMU_OT_SA &&
4986 doi.doi_bonus_type != DMU_OT_ZNODE) {
4987 (void) fprintf(stderr, "invalid bonus type %d for obj %llu\n",
4988 doi.doi_bonus_type, (u_longlong_t)child_obj);
4989 return (EINVAL);
4992 if (dump_opt['v'] > 6) {
4993 (void) printf("obj=%llu %s type=%d bonustype=%d\n",
4994 (u_longlong_t)child_obj, curpath, doi.doi_type,
4995 doi.doi_bonus_type);
4998 (void) strlcat(curpath, "/", sizeof (curpath));
5000 switch (doi.doi_type) {
5001 case DMU_OT_DIRECTORY_CONTENTS:
5002 if (s != NULL && *(s + 1) != '\0')
5003 return (dump_path_impl(os, child_obj, s + 1, retobj));
5004 zfs_fallthrough;
5005 case DMU_OT_PLAIN_FILE_CONTENTS:
5006 if (retobj != NULL) {
5007 *retobj = child_obj;
5008 } else {
5009 dump_object(os, child_obj, dump_opt['v'], &header,
5010 NULL, 0);
5012 return (0);
5013 default:
5014 (void) fprintf(stderr, "object %llu has non-file/directory "
5015 "type %d\n", (u_longlong_t)obj, doi.doi_type);
5016 break;
5019 return (EINVAL);
5023 * Dump the blocks for the object specified by path inside the dataset.
5025 static int
5026 dump_path(char *ds, char *path, uint64_t *retobj)
5028 int err;
5029 objset_t *os;
5030 uint64_t root_obj;
5032 err = open_objset(ds, FTAG, &os);
5033 if (err != 0)
5034 return (err);
5036 err = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, &root_obj);
5037 if (err != 0) {
5038 (void) fprintf(stderr, "can't lookup root znode: %s\n",
5039 strerror(err));
5040 close_objset(os, FTAG);
5041 return (EINVAL);
5044 (void) snprintf(curpath, sizeof (curpath), "dataset=%s path=/", ds);
5046 err = dump_path_impl(os, root_obj, path, retobj);
5048 close_objset(os, FTAG);
5049 return (err);
5052 static int
5053 dump_backup_bytes(objset_t *os, void *buf, int len, void *arg)
5055 const char *p = (const char *)buf;
5056 ssize_t nwritten;
5058 (void) os;
5059 (void) arg;
5061 /* Write the data out, handling short writes and signals. */
5062 while ((nwritten = write(STDOUT_FILENO, p, len)) < len) {
5063 if (nwritten < 0) {
5064 if (errno == EINTR)
5065 continue;
5066 return (errno);
5068 p += nwritten;
5069 len -= nwritten;
5072 return (0);
5075 static void
5076 dump_backup(const char *pool, uint64_t objset_id, const char *flagstr)
5078 boolean_t embed = B_FALSE;
5079 boolean_t large_block = B_FALSE;
5080 boolean_t compress = B_FALSE;
5081 boolean_t raw = B_FALSE;
5083 const char *c;
5084 for (c = flagstr; c != NULL && *c != '\0'; c++) {
5085 switch (*c) {
5086 case 'e':
5087 embed = B_TRUE;
5088 break;
5089 case 'L':
5090 large_block = B_TRUE;
5091 break;
5092 case 'c':
5093 compress = B_TRUE;
5094 break;
5095 case 'w':
5096 raw = B_TRUE;
5097 break;
5098 default:
5099 fprintf(stderr, "dump_backup: invalid flag "
5100 "'%c'\n", *c);
5101 return;
5105 if (isatty(STDOUT_FILENO)) {
5106 fprintf(stderr, "dump_backup: stream cannot be written "
5107 "to a terminal\n");
5108 return;
5111 offset_t off = 0;
5112 dmu_send_outparams_t out = {
5113 .dso_outfunc = dump_backup_bytes,
5114 .dso_dryrun = B_FALSE,
5117 int err = dmu_send_obj(pool, objset_id, /* fromsnap */0, embed,
5118 large_block, compress, raw, /* saved */ B_FALSE, STDOUT_FILENO,
5119 &off, &out);
5120 if (err != 0) {
5121 fprintf(stderr, "dump_backup: dmu_send_obj: %s\n",
5122 strerror(err));
5123 return;
5127 static int
5128 zdb_copy_object(objset_t *os, uint64_t srcobj, char *destfile)
5130 int err = 0;
5131 uint64_t size, readsize, oursize, offset;
5132 ssize_t writesize;
5133 sa_handle_t *hdl;
5135 (void) printf("Copying object %" PRIu64 " to file %s\n", srcobj,
5136 destfile);
5138 VERIFY3P(os, ==, sa_os);
5139 if ((err = sa_handle_get(os, srcobj, NULL, SA_HDL_PRIVATE, &hdl))) {
5140 (void) printf("Failed to get handle for SA znode\n");
5141 return (err);
5143 if ((err = sa_lookup(hdl, sa_attr_table[ZPL_SIZE], &size, 8))) {
5144 (void) sa_handle_destroy(hdl);
5145 return (err);
5147 (void) sa_handle_destroy(hdl);
5149 (void) printf("Object %" PRIu64 " is %" PRIu64 " bytes\n", srcobj,
5150 size);
5151 if (size == 0) {
5152 return (EINVAL);
5155 int fd = open(destfile, O_WRONLY | O_CREAT | O_TRUNC, 0644);
5156 if (fd == -1)
5157 return (errno);
5159 * We cap the size at 1 mebibyte here to prevent
5160 * allocation failures and nigh-infinite printing if the
5161 * object is extremely large.
5163 oursize = MIN(size, 1 << 20);
5164 offset = 0;
5165 char *buf = kmem_alloc(oursize, KM_NOSLEEP);
5166 if (buf == NULL) {
5167 (void) close(fd);
5168 return (ENOMEM);
5171 while (offset < size) {
5172 readsize = MIN(size - offset, 1 << 20);
5173 err = dmu_read(os, srcobj, offset, readsize, buf, 0);
5174 if (err != 0) {
5175 (void) printf("got error %u from dmu_read\n", err);
5176 kmem_free(buf, oursize);
5177 (void) close(fd);
5178 return (err);
5180 if (dump_opt['v'] > 3) {
5181 (void) printf("Read offset=%" PRIu64 " size=%" PRIu64
5182 " error=%d\n", offset, readsize, err);
5185 writesize = write(fd, buf, readsize);
5186 if (writesize < 0) {
5187 err = errno;
5188 break;
5189 } else if (writesize != readsize) {
5190 /* Incomplete write */
5191 (void) fprintf(stderr, "Short write, only wrote %llu of"
5192 " %" PRIu64 " bytes, exiting...\n",
5193 (u_longlong_t)writesize, readsize);
5194 break;
5197 offset += readsize;
5200 (void) close(fd);
5202 if (buf != NULL)
5203 kmem_free(buf, oursize);
5205 return (err);
5208 static boolean_t
5209 label_cksum_valid(vdev_label_t *label, uint64_t offset)
5211 zio_checksum_info_t *ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL];
5212 zio_cksum_t expected_cksum;
5213 zio_cksum_t actual_cksum;
5214 zio_cksum_t verifier;
5215 zio_eck_t *eck;
5216 int byteswap;
5218 void *data = (char *)label + offsetof(vdev_label_t, vl_vdev_phys);
5219 eck = (zio_eck_t *)((char *)(data) + VDEV_PHYS_SIZE) - 1;
5221 offset += offsetof(vdev_label_t, vl_vdev_phys);
5222 ZIO_SET_CHECKSUM(&verifier, offset, 0, 0, 0);
5224 byteswap = (eck->zec_magic == BSWAP_64(ZEC_MAGIC));
5225 if (byteswap)
5226 byteswap_uint64_array(&verifier, sizeof (zio_cksum_t));
5228 expected_cksum = eck->zec_cksum;
5229 eck->zec_cksum = verifier;
5231 abd_t *abd = abd_get_from_buf(data, VDEV_PHYS_SIZE);
5232 ci->ci_func[byteswap](abd, VDEV_PHYS_SIZE, NULL, &actual_cksum);
5233 abd_free(abd);
5235 if (byteswap)
5236 byteswap_uint64_array(&expected_cksum, sizeof (zio_cksum_t));
5238 if (ZIO_CHECKSUM_EQUAL(actual_cksum, expected_cksum))
5239 return (B_TRUE);
5241 return (B_FALSE);
5244 static int
5245 dump_label(const char *dev)
5247 char path[MAXPATHLEN];
5248 zdb_label_t labels[VDEV_LABELS] = {{{{0}}}};
5249 uint64_t psize, ashift, l2cache;
5250 struct stat64 statbuf;
5251 boolean_t config_found = B_FALSE;
5252 boolean_t error = B_FALSE;
5253 boolean_t read_l2arc_header = B_FALSE;
5254 avl_tree_t config_tree;
5255 avl_tree_t uberblock_tree;
5256 void *node, *cookie;
5257 int fd;
5260 * Check if we were given absolute path and use it as is.
5261 * Otherwise if the provided vdev name doesn't point to a file,
5262 * try prepending expected disk paths and partition numbers.
5264 (void) strlcpy(path, dev, sizeof (path));
5265 if (dev[0] != '/' && stat64(path, &statbuf) != 0) {
5266 int error;
5268 error = zfs_resolve_shortname(dev, path, MAXPATHLEN);
5269 if (error == 0 && zfs_dev_is_whole_disk(path)) {
5270 if (zfs_append_partition(path, MAXPATHLEN) == -1)
5271 error = ENOENT;
5274 if (error || (stat64(path, &statbuf) != 0)) {
5275 (void) printf("failed to find device %s, try "
5276 "specifying absolute path instead\n", dev);
5277 return (1);
5281 if ((fd = open64(path, O_RDONLY)) < 0) {
5282 (void) printf("cannot open '%s': %s\n", path, strerror(errno));
5283 zdb_exit(1);
5286 if (fstat64_blk(fd, &statbuf) != 0) {
5287 (void) printf("failed to stat '%s': %s\n", path,
5288 strerror(errno));
5289 (void) close(fd);
5290 zdb_exit(1);
5293 if (S_ISBLK(statbuf.st_mode) && zfs_dev_flush(fd) != 0)
5294 (void) printf("failed to invalidate cache '%s' : %s\n", path,
5295 strerror(errno));
5297 avl_create(&config_tree, cksum_record_compare,
5298 sizeof (cksum_record_t), offsetof(cksum_record_t, link));
5299 avl_create(&uberblock_tree, cksum_record_compare,
5300 sizeof (cksum_record_t), offsetof(cksum_record_t, link));
5302 psize = statbuf.st_size;
5303 psize = P2ALIGN_TYPED(psize, sizeof (vdev_label_t), uint64_t);
5304 ashift = SPA_MINBLOCKSHIFT;
5307 * 1. Read the label from disk
5308 * 2. Verify label cksum
5309 * 3. Unpack the configuration and insert in config tree.
5310 * 4. Traverse all uberblocks and insert in uberblock tree.
5312 for (int l = 0; l < VDEV_LABELS; l++) {
5313 zdb_label_t *label = &labels[l];
5314 char *buf = label->label.vl_vdev_phys.vp_nvlist;
5315 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist);
5316 nvlist_t *config;
5317 cksum_record_t *rec;
5318 zio_cksum_t cksum;
5319 vdev_t vd;
5321 label->label_offset = vdev_label_offset(psize, l, 0);
5323 if (pread64(fd, &label->label, sizeof (label->label),
5324 label->label_offset) != sizeof (label->label)) {
5325 if (!dump_opt['q'])
5326 (void) printf("failed to read label %d\n", l);
5327 label->read_failed = B_TRUE;
5328 error = B_TRUE;
5329 continue;
5332 label->read_failed = B_FALSE;
5333 label->cksum_valid = label_cksum_valid(&label->label,
5334 label->label_offset);
5336 if (nvlist_unpack(buf, buflen, &config, 0) == 0) {
5337 nvlist_t *vdev_tree = NULL;
5338 size_t size;
5340 if ((nvlist_lookup_nvlist(config,
5341 ZPOOL_CONFIG_VDEV_TREE, &vdev_tree) != 0) ||
5342 (nvlist_lookup_uint64(vdev_tree,
5343 ZPOOL_CONFIG_ASHIFT, &ashift) != 0))
5344 ashift = SPA_MINBLOCKSHIFT;
5346 if (nvlist_size(config, &size, NV_ENCODE_XDR) != 0)
5347 size = buflen;
5349 /* If the device is a cache device read the header. */
5350 if (!read_l2arc_header) {
5351 if (nvlist_lookup_uint64(config,
5352 ZPOOL_CONFIG_POOL_STATE, &l2cache) == 0 &&
5353 l2cache == POOL_STATE_L2CACHE) {
5354 read_l2arc_header = B_TRUE;
5358 fletcher_4_native_varsize(buf, size, &cksum);
5359 rec = cksum_record_insert(&config_tree, &cksum, l);
5361 label->config = rec;
5362 label->config_nv = config;
5363 config_found = B_TRUE;
5364 } else {
5365 error = B_TRUE;
5368 vd.vdev_ashift = ashift;
5369 vd.vdev_top = &vd;
5371 for (int i = 0; i < VDEV_UBERBLOCK_COUNT(&vd); i++) {
5372 uint64_t uoff = VDEV_UBERBLOCK_OFFSET(&vd, i);
5373 uberblock_t *ub = (void *)((char *)label + uoff);
5375 if (uberblock_verify(ub))
5376 continue;
5378 fletcher_4_native_varsize(ub, sizeof (*ub), &cksum);
5379 rec = cksum_record_insert(&uberblock_tree, &cksum, l);
5381 label->uberblocks[i] = rec;
5386 * Dump the label and uberblocks.
5388 for (int l = 0; l < VDEV_LABELS; l++) {
5389 zdb_label_t *label = &labels[l];
5390 size_t buflen = sizeof (label->label.vl_vdev_phys.vp_nvlist);
5392 if (label->read_failed == B_TRUE)
5393 continue;
5395 if (label->config_nv) {
5396 dump_config_from_label(label, buflen, l);
5397 } else {
5398 if (!dump_opt['q'])
5399 (void) printf("failed to unpack label %d\n", l);
5402 if (dump_opt['u'])
5403 dump_label_uberblocks(label, ashift, l);
5405 nvlist_free(label->config_nv);
5409 * Dump the L2ARC header, if existent.
5411 if (read_l2arc_header)
5412 error |= dump_l2arc_header(fd);
5414 cookie = NULL;
5415 while ((node = avl_destroy_nodes(&config_tree, &cookie)) != NULL)
5416 umem_free(node, sizeof (cksum_record_t));
5418 cookie = NULL;
5419 while ((node = avl_destroy_nodes(&uberblock_tree, &cookie)) != NULL)
5420 umem_free(node, sizeof (cksum_record_t));
5422 avl_destroy(&config_tree);
5423 avl_destroy(&uberblock_tree);
5425 (void) close(fd);
5427 return (config_found == B_FALSE ? 2 :
5428 (error == B_TRUE ? 1 : 0));
5431 static uint64_t dataset_feature_count[SPA_FEATURES];
5432 static uint64_t global_feature_count[SPA_FEATURES];
5433 static uint64_t remap_deadlist_count = 0;
5435 static int
5436 dump_one_objset(const char *dsname, void *arg)
5438 (void) arg;
5439 int error;
5440 objset_t *os;
5441 spa_feature_t f;
5443 error = open_objset(dsname, FTAG, &os);
5444 if (error != 0)
5445 return (0);
5447 for (f = 0; f < SPA_FEATURES; f++) {
5448 if (!dsl_dataset_feature_is_active(dmu_objset_ds(os), f))
5449 continue;
5450 ASSERT(spa_feature_table[f].fi_flags &
5451 ZFEATURE_FLAG_PER_DATASET);
5452 dataset_feature_count[f]++;
5455 if (dsl_dataset_remap_deadlist_exists(dmu_objset_ds(os))) {
5456 remap_deadlist_count++;
5459 for (dsl_bookmark_node_t *dbn =
5460 avl_first(&dmu_objset_ds(os)->ds_bookmarks); dbn != NULL;
5461 dbn = AVL_NEXT(&dmu_objset_ds(os)->ds_bookmarks, dbn)) {
5462 mos_obj_refd(dbn->dbn_phys.zbm_redaction_obj);
5463 if (dbn->dbn_phys.zbm_redaction_obj != 0) {
5464 global_feature_count[
5465 SPA_FEATURE_REDACTION_BOOKMARKS]++;
5466 objset_t *mos = os->os_spa->spa_meta_objset;
5467 dnode_t *rl;
5468 VERIFY0(dnode_hold(mos,
5469 dbn->dbn_phys.zbm_redaction_obj, FTAG, &rl));
5470 if (rl->dn_have_spill) {
5471 global_feature_count[
5472 SPA_FEATURE_REDACTION_LIST_SPILL]++;
5475 if (dbn->dbn_phys.zbm_flags & ZBM_FLAG_HAS_FBN)
5476 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN]++;
5479 if (dsl_deadlist_is_open(&dmu_objset_ds(os)->ds_dir->dd_livelist) &&
5480 !dmu_objset_is_snapshot(os)) {
5481 global_feature_count[SPA_FEATURE_LIVELIST]++;
5484 dump_objset(os);
5485 close_objset(os, FTAG);
5486 fuid_table_destroy();
5487 return (0);
5491 * Block statistics.
5493 #define PSIZE_HISTO_SIZE (SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 2)
5494 typedef struct zdb_blkstats {
5495 uint64_t zb_asize;
5496 uint64_t zb_lsize;
5497 uint64_t zb_psize;
5498 uint64_t zb_count;
5499 uint64_t zb_gangs;
5500 uint64_t zb_ditto_samevdev;
5501 uint64_t zb_ditto_same_ms;
5502 uint64_t zb_psize_histogram[PSIZE_HISTO_SIZE];
5503 } zdb_blkstats_t;
5506 * Extended object types to report deferred frees and dedup auto-ditto blocks.
5508 #define ZDB_OT_DEFERRED (DMU_OT_NUMTYPES + 0)
5509 #define ZDB_OT_DITTO (DMU_OT_NUMTYPES + 1)
5510 #define ZDB_OT_OTHER (DMU_OT_NUMTYPES + 2)
5511 #define ZDB_OT_TOTAL (DMU_OT_NUMTYPES + 3)
5513 static const char *zdb_ot_extname[] = {
5514 "deferred free",
5515 "dedup ditto",
5516 "other",
5517 "Total",
5520 #define ZB_TOTAL DN_MAX_LEVELS
5521 #define SPA_MAX_FOR_16M (SPA_MAXBLOCKSHIFT+1)
5523 typedef struct zdb_brt_entry {
5524 dva_t zbre_dva;
5525 uint64_t zbre_refcount;
5526 avl_node_t zbre_node;
5527 } zdb_brt_entry_t;
5529 typedef struct zdb_cb {
5530 zdb_blkstats_t zcb_type[ZB_TOTAL + 1][ZDB_OT_TOTAL + 1];
5531 uint64_t zcb_removing_size;
5532 uint64_t zcb_checkpoint_size;
5533 uint64_t zcb_dedup_asize;
5534 uint64_t zcb_dedup_blocks;
5535 uint64_t zcb_clone_asize;
5536 uint64_t zcb_clone_blocks;
5537 uint64_t zcb_psize_count[SPA_MAX_FOR_16M];
5538 uint64_t zcb_lsize_count[SPA_MAX_FOR_16M];
5539 uint64_t zcb_asize_count[SPA_MAX_FOR_16M];
5540 uint64_t zcb_psize_len[SPA_MAX_FOR_16M];
5541 uint64_t zcb_lsize_len[SPA_MAX_FOR_16M];
5542 uint64_t zcb_asize_len[SPA_MAX_FOR_16M];
5543 uint64_t zcb_psize_total;
5544 uint64_t zcb_lsize_total;
5545 uint64_t zcb_asize_total;
5546 uint64_t zcb_embedded_blocks[NUM_BP_EMBEDDED_TYPES];
5547 uint64_t zcb_embedded_histogram[NUM_BP_EMBEDDED_TYPES]
5548 [BPE_PAYLOAD_SIZE + 1];
5549 uint64_t zcb_start;
5550 hrtime_t zcb_lastprint;
5551 uint64_t zcb_totalasize;
5552 uint64_t zcb_errors[256];
5553 int zcb_readfails;
5554 int zcb_haderrors;
5555 spa_t *zcb_spa;
5556 uint32_t **zcb_vd_obsolete_counts;
5557 avl_tree_t zcb_brt;
5558 boolean_t zcb_brt_is_active;
5559 } zdb_cb_t;
5561 /* test if two DVA offsets from same vdev are within the same metaslab */
5562 static boolean_t
5563 same_metaslab(spa_t *spa, uint64_t vdev, uint64_t off1, uint64_t off2)
5565 vdev_t *vd = vdev_lookup_top(spa, vdev);
5566 uint64_t ms_shift = vd->vdev_ms_shift;
5568 return ((off1 >> ms_shift) == (off2 >> ms_shift));
5572 * Used to simplify reporting of the histogram data.
5574 typedef struct one_histo {
5575 const char *name;
5576 uint64_t *count;
5577 uint64_t *len;
5578 uint64_t cumulative;
5579 } one_histo_t;
5582 * The number of separate histograms processed for psize, lsize and asize.
5584 #define NUM_HISTO 3
5587 * This routine will create a fixed column size output of three different
5588 * histograms showing by blocksize of 512 - 2^ SPA_MAX_FOR_16M
5589 * the count, length and cumulative length of the psize, lsize and
5590 * asize blocks.
5592 * All three types of blocks are listed on a single line
5594 * By default the table is printed in nicenumber format (e.g. 123K) but
5595 * if the '-P' parameter is specified then the full raw number (parseable)
5596 * is printed out.
5598 static void
5599 dump_size_histograms(zdb_cb_t *zcb)
5602 * A temporary buffer that allows us to convert a number into
5603 * a string using zdb_nicenumber to allow either raw or human
5604 * readable numbers to be output.
5606 char numbuf[32];
5609 * Define titles which are used in the headers of the tables
5610 * printed by this routine.
5612 const char blocksize_title1[] = "block";
5613 const char blocksize_title2[] = "size";
5614 const char count_title[] = "Count";
5615 const char length_title[] = "Size";
5616 const char cumulative_title[] = "Cum.";
5619 * Setup the histogram arrays (psize, lsize, and asize).
5621 one_histo_t parm_histo[NUM_HISTO];
5623 parm_histo[0].name = "psize";
5624 parm_histo[0].count = zcb->zcb_psize_count;
5625 parm_histo[0].len = zcb->zcb_psize_len;
5626 parm_histo[0].cumulative = 0;
5628 parm_histo[1].name = "lsize";
5629 parm_histo[1].count = zcb->zcb_lsize_count;
5630 parm_histo[1].len = zcb->zcb_lsize_len;
5631 parm_histo[1].cumulative = 0;
5633 parm_histo[2].name = "asize";
5634 parm_histo[2].count = zcb->zcb_asize_count;
5635 parm_histo[2].len = zcb->zcb_asize_len;
5636 parm_histo[2].cumulative = 0;
5639 (void) printf("\nBlock Size Histogram\n");
5641 * Print the first line titles
5643 if (dump_opt['P'])
5644 (void) printf("\n%s\t", blocksize_title1);
5645 else
5646 (void) printf("\n%7s ", blocksize_title1);
5648 for (int j = 0; j < NUM_HISTO; j++) {
5649 if (dump_opt['P']) {
5650 if (j < NUM_HISTO - 1) {
5651 (void) printf("%s\t\t\t", parm_histo[j].name);
5652 } else {
5653 /* Don't print trailing spaces */
5654 (void) printf(" %s", parm_histo[j].name);
5656 } else {
5657 if (j < NUM_HISTO - 1) {
5658 /* Left aligned strings in the output */
5659 (void) printf("%-7s ",
5660 parm_histo[j].name);
5661 } else {
5662 /* Don't print trailing spaces */
5663 (void) printf("%s", parm_histo[j].name);
5667 (void) printf("\n");
5670 * Print the second line titles
5672 if (dump_opt['P']) {
5673 (void) printf("%s\t", blocksize_title2);
5674 } else {
5675 (void) printf("%7s ", blocksize_title2);
5678 for (int i = 0; i < NUM_HISTO; i++) {
5679 if (dump_opt['P']) {
5680 (void) printf("%s\t%s\t%s\t",
5681 count_title, length_title, cumulative_title);
5682 } else {
5683 (void) printf("%7s%7s%7s",
5684 count_title, length_title, cumulative_title);
5687 (void) printf("\n");
5690 * Print the rows
5692 for (int i = SPA_MINBLOCKSHIFT; i < SPA_MAX_FOR_16M; i++) {
5695 * Print the first column showing the blocksize
5697 zdb_nicenum((1ULL << i), numbuf, sizeof (numbuf));
5699 if (dump_opt['P']) {
5700 printf("%s", numbuf);
5701 } else {
5702 printf("%7s:", numbuf);
5706 * Print the remaining set of 3 columns per size:
5707 * for psize, lsize and asize
5709 for (int j = 0; j < NUM_HISTO; j++) {
5710 parm_histo[j].cumulative += parm_histo[j].len[i];
5712 zdb_nicenum(parm_histo[j].count[i],
5713 numbuf, sizeof (numbuf));
5714 if (dump_opt['P'])
5715 (void) printf("\t%s", numbuf);
5716 else
5717 (void) printf("%7s", numbuf);
5719 zdb_nicenum(parm_histo[j].len[i],
5720 numbuf, sizeof (numbuf));
5721 if (dump_opt['P'])
5722 (void) printf("\t%s", numbuf);
5723 else
5724 (void) printf("%7s", numbuf);
5726 zdb_nicenum(parm_histo[j].cumulative,
5727 numbuf, sizeof (numbuf));
5728 if (dump_opt['P'])
5729 (void) printf("\t%s", numbuf);
5730 else
5731 (void) printf("%7s", numbuf);
5733 (void) printf("\n");
5737 static void
5738 zdb_count_block(zdb_cb_t *zcb, zilog_t *zilog, const blkptr_t *bp,
5739 dmu_object_type_t type)
5741 int i;
5743 ASSERT(type < ZDB_OT_TOTAL);
5745 if (zilog && zil_bp_tree_add(zilog, bp) != 0)
5746 return;
5749 * This flag controls if we will issue a claim for the block while
5750 * counting it, to ensure that all blocks are referenced in space maps.
5751 * We don't issue claims if we're not doing leak tracking, because it's
5752 * expensive if the user isn't interested. We also don't claim the
5753 * second or later occurences of cloned or dedup'd blocks, because we
5754 * already claimed them the first time.
5756 boolean_t do_claim = !dump_opt['L'];
5758 spa_config_enter(zcb->zcb_spa, SCL_CONFIG, FTAG, RW_READER);
5760 blkptr_t tempbp;
5761 if (BP_GET_DEDUP(bp)) {
5763 * Dedup'd blocks are special. We need to count them, so we can
5764 * later uncount them when reporting leaked space, and we must
5765 * only claim them once.
5767 * We use the existing dedup system to track what we've seen.
5768 * The first time we see a block, we do a ddt_lookup() to see
5769 * if it exists in the DDT. If we're doing leak tracking, we
5770 * claim the block at this time.
5772 * Each time we see a block, we reduce the refcount in the
5773 * entry by one, and add to the size and count of dedup'd
5774 * blocks to report at the end.
5777 ddt_t *ddt = ddt_select(zcb->zcb_spa, bp);
5779 ddt_enter(ddt);
5782 * Find the block. This will create the entry in memory, but
5783 * we'll know if that happened by its refcount.
5785 ddt_entry_t *dde = ddt_lookup(ddt, bp);
5788 * ddt_lookup() can return NULL if this block didn't exist
5789 * in the DDT and creating it would take the DDT over its
5790 * quota. Since we got the block from disk, it must exist in
5791 * the DDT, so this can't happen. However, when unique entries
5792 * are pruned, the dedup bit can be set with no corresponding
5793 * entry in the DDT.
5795 if (dde == NULL) {
5796 ddt_exit(ddt);
5797 goto skipped;
5800 /* Get the phys for this variant */
5801 ddt_phys_variant_t v = ddt_phys_select(ddt, dde, bp);
5804 * This entry may have multiple sets of DVAs. We must claim
5805 * each set the first time we see them in a real block on disk,
5806 * or count them on subsequent occurences. We don't have a
5807 * convenient way to track the first time we see each variant,
5808 * so we repurpose dde_io as a set of "seen" flag bits. We can
5809 * do this safely in zdb because it never writes, so it will
5810 * never have a writing zio for this block in that pointer.
5812 boolean_t seen = !!(((uintptr_t)dde->dde_io) & (1 << v));
5813 if (!seen)
5814 dde->dde_io =
5815 (void *)(((uintptr_t)dde->dde_io) | (1 << v));
5817 /* Consume a reference for this block. */
5818 if (ddt_phys_total_refcnt(ddt, dde->dde_phys) > 0)
5819 ddt_phys_decref(dde->dde_phys, v);
5822 * If this entry has a single flat phys, it may have been
5823 * extended with additional DVAs at some time in its life.
5824 * This block might be from before it was fully extended, and
5825 * so have fewer DVAs.
5827 * If this is the first time we've seen this block, and we
5828 * claimed it as-is, then we would miss the claim on some
5829 * number of DVAs, which would then be seen as leaked.
5831 * In all cases, if we've had fewer DVAs, then the asize would
5832 * be too small, and would lead to the pool apparently using
5833 * more space than allocated.
5835 * To handle this, we copy the canonical set of DVAs from the
5836 * entry back to the block pointer before we claim it.
5838 if (v == DDT_PHYS_FLAT) {
5839 ASSERT3U(BP_GET_BIRTH(bp), ==,
5840 ddt_phys_birth(dde->dde_phys, v));
5841 tempbp = *bp;
5842 ddt_bp_fill(dde->dde_phys, v, &tempbp,
5843 BP_GET_BIRTH(bp));
5844 bp = &tempbp;
5847 if (seen) {
5849 * The second or later time we see this block,
5850 * it's a duplicate and we count it.
5852 zcb->zcb_dedup_asize += BP_GET_ASIZE(bp);
5853 zcb->zcb_dedup_blocks++;
5855 /* Already claimed, don't do it again. */
5856 do_claim = B_FALSE;
5859 ddt_exit(ddt);
5860 } else if (zcb->zcb_brt_is_active &&
5861 brt_maybe_exists(zcb->zcb_spa, bp)) {
5863 * Cloned blocks are special. We need to count them, so we can
5864 * later uncount them when reporting leaked space, and we must
5865 * only claim them once.
5867 * To do this, we keep our own in-memory BRT. For each block
5868 * we haven't seen before, we look it up in the real BRT and
5869 * if its there, we note it and its refcount then proceed as
5870 * normal. If we see the block again, we count it as a clone
5871 * and then give it no further consideration.
5873 zdb_brt_entry_t zbre_search, *zbre;
5874 avl_index_t where;
5876 zbre_search.zbre_dva = bp->blk_dva[0];
5877 zbre = avl_find(&zcb->zcb_brt, &zbre_search, &where);
5878 if (zbre == NULL) {
5879 /* Not seen before; track it */
5880 uint64_t refcnt =
5881 brt_entry_get_refcount(zcb->zcb_spa, bp);
5882 if (refcnt > 0) {
5883 zbre = umem_zalloc(sizeof (zdb_brt_entry_t),
5884 UMEM_NOFAIL);
5885 zbre->zbre_dva = bp->blk_dva[0];
5886 zbre->zbre_refcount = refcnt;
5887 avl_insert(&zcb->zcb_brt, zbre, where);
5889 } else {
5891 * Second or later occurrence, count it and take a
5892 * refcount.
5894 zcb->zcb_clone_asize += BP_GET_ASIZE(bp);
5895 zcb->zcb_clone_blocks++;
5897 zbre->zbre_refcount--;
5898 if (zbre->zbre_refcount == 0) {
5899 avl_remove(&zcb->zcb_brt, zbre);
5900 umem_free(zbre, sizeof (zdb_brt_entry_t));
5903 /* Already claimed, don't do it again. */
5904 do_claim = B_FALSE;
5908 skipped:
5909 for (i = 0; i < 4; i++) {
5910 int l = (i < 2) ? BP_GET_LEVEL(bp) : ZB_TOTAL;
5911 int t = (i & 1) ? type : ZDB_OT_TOTAL;
5912 int equal;
5913 zdb_blkstats_t *zb = &zcb->zcb_type[l][t];
5915 zb->zb_asize += BP_GET_ASIZE(bp);
5916 zb->zb_lsize += BP_GET_LSIZE(bp);
5917 zb->zb_psize += BP_GET_PSIZE(bp);
5918 zb->zb_count++;
5921 * The histogram is only big enough to record blocks up to
5922 * SPA_OLD_MAXBLOCKSIZE; larger blocks go into the last,
5923 * "other", bucket.
5925 unsigned idx = BP_GET_PSIZE(bp) >> SPA_MINBLOCKSHIFT;
5926 idx = MIN(idx, SPA_OLD_MAXBLOCKSIZE / SPA_MINBLOCKSIZE + 1);
5927 zb->zb_psize_histogram[idx]++;
5929 zb->zb_gangs += BP_COUNT_GANG(bp);
5931 switch (BP_GET_NDVAS(bp)) {
5932 case 2:
5933 if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5934 DVA_GET_VDEV(&bp->blk_dva[1])) {
5935 zb->zb_ditto_samevdev++;
5937 if (same_metaslab(zcb->zcb_spa,
5938 DVA_GET_VDEV(&bp->blk_dva[0]),
5939 DVA_GET_OFFSET(&bp->blk_dva[0]),
5940 DVA_GET_OFFSET(&bp->blk_dva[1])))
5941 zb->zb_ditto_same_ms++;
5943 break;
5944 case 3:
5945 equal = (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5946 DVA_GET_VDEV(&bp->blk_dva[1])) +
5947 (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5948 DVA_GET_VDEV(&bp->blk_dva[2])) +
5949 (DVA_GET_VDEV(&bp->blk_dva[1]) ==
5950 DVA_GET_VDEV(&bp->blk_dva[2]));
5951 if (equal != 0) {
5952 zb->zb_ditto_samevdev++;
5954 if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5955 DVA_GET_VDEV(&bp->blk_dva[1]) &&
5956 same_metaslab(zcb->zcb_spa,
5957 DVA_GET_VDEV(&bp->blk_dva[0]),
5958 DVA_GET_OFFSET(&bp->blk_dva[0]),
5959 DVA_GET_OFFSET(&bp->blk_dva[1])))
5960 zb->zb_ditto_same_ms++;
5961 else if (DVA_GET_VDEV(&bp->blk_dva[0]) ==
5962 DVA_GET_VDEV(&bp->blk_dva[2]) &&
5963 same_metaslab(zcb->zcb_spa,
5964 DVA_GET_VDEV(&bp->blk_dva[0]),
5965 DVA_GET_OFFSET(&bp->blk_dva[0]),
5966 DVA_GET_OFFSET(&bp->blk_dva[2])))
5967 zb->zb_ditto_same_ms++;
5968 else if (DVA_GET_VDEV(&bp->blk_dva[1]) ==
5969 DVA_GET_VDEV(&bp->blk_dva[2]) &&
5970 same_metaslab(zcb->zcb_spa,
5971 DVA_GET_VDEV(&bp->blk_dva[1]),
5972 DVA_GET_OFFSET(&bp->blk_dva[1]),
5973 DVA_GET_OFFSET(&bp->blk_dva[2])))
5974 zb->zb_ditto_same_ms++;
5976 break;
5980 spa_config_exit(zcb->zcb_spa, SCL_CONFIG, FTAG);
5982 if (BP_IS_EMBEDDED(bp)) {
5983 zcb->zcb_embedded_blocks[BPE_GET_ETYPE(bp)]++;
5984 zcb->zcb_embedded_histogram[BPE_GET_ETYPE(bp)]
5985 [BPE_GET_PSIZE(bp)]++;
5986 return;
5989 * The binning histogram bins by powers of two up to
5990 * SPA_MAXBLOCKSIZE rather than creating bins for
5991 * every possible blocksize found in the pool.
5993 int bin = highbit64(BP_GET_PSIZE(bp)) - 1;
5995 zcb->zcb_psize_count[bin]++;
5996 zcb->zcb_psize_len[bin] += BP_GET_PSIZE(bp);
5997 zcb->zcb_psize_total += BP_GET_PSIZE(bp);
5999 bin = highbit64(BP_GET_LSIZE(bp)) - 1;
6001 zcb->zcb_lsize_count[bin]++;
6002 zcb->zcb_lsize_len[bin] += BP_GET_LSIZE(bp);
6003 zcb->zcb_lsize_total += BP_GET_LSIZE(bp);
6005 bin = highbit64(BP_GET_ASIZE(bp)) - 1;
6007 zcb->zcb_asize_count[bin]++;
6008 zcb->zcb_asize_len[bin] += BP_GET_ASIZE(bp);
6009 zcb->zcb_asize_total += BP_GET_ASIZE(bp);
6011 if (!do_claim)
6012 return;
6014 VERIFY0(zio_wait(zio_claim(NULL, zcb->zcb_spa,
6015 spa_min_claim_txg(zcb->zcb_spa), bp, NULL, NULL,
6016 ZIO_FLAG_CANFAIL)));
6019 static void
6020 zdb_blkptr_done(zio_t *zio)
6022 spa_t *spa = zio->io_spa;
6023 blkptr_t *bp = zio->io_bp;
6024 int ioerr = zio->io_error;
6025 zdb_cb_t *zcb = zio->io_private;
6026 zbookmark_phys_t *zb = &zio->io_bookmark;
6028 mutex_enter(&spa->spa_scrub_lock);
6029 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
6030 cv_broadcast(&spa->spa_scrub_io_cv);
6032 if (ioerr && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
6033 char blkbuf[BP_SPRINTF_LEN];
6035 zcb->zcb_haderrors = 1;
6036 zcb->zcb_errors[ioerr]++;
6038 if (dump_opt['b'] >= 2)
6039 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
6040 else
6041 blkbuf[0] = '\0';
6043 (void) printf("zdb_blkptr_cb: "
6044 "Got error %d reading "
6045 "<%llu, %llu, %lld, %llx> %s -- skipping\n",
6046 ioerr,
6047 (u_longlong_t)zb->zb_objset,
6048 (u_longlong_t)zb->zb_object,
6049 (u_longlong_t)zb->zb_level,
6050 (u_longlong_t)zb->zb_blkid,
6051 blkbuf);
6053 mutex_exit(&spa->spa_scrub_lock);
6055 abd_free(zio->io_abd);
6058 static int
6059 zdb_blkptr_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
6060 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
6062 zdb_cb_t *zcb = arg;
6063 dmu_object_type_t type;
6064 boolean_t is_metadata;
6066 if (zb->zb_level == ZB_DNODE_LEVEL)
6067 return (0);
6069 if (dump_opt['b'] >= 5 && BP_GET_LOGICAL_BIRTH(bp) > 0) {
6070 char blkbuf[BP_SPRINTF_LEN];
6071 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
6072 (void) printf("objset %llu object %llu "
6073 "level %lld offset 0x%llx %s\n",
6074 (u_longlong_t)zb->zb_objset,
6075 (u_longlong_t)zb->zb_object,
6076 (longlong_t)zb->zb_level,
6077 (u_longlong_t)blkid2offset(dnp, bp, zb),
6078 blkbuf);
6081 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp))
6082 return (0);
6084 type = BP_GET_TYPE(bp);
6086 zdb_count_block(zcb, zilog, bp,
6087 (type & DMU_OT_NEWTYPE) ? ZDB_OT_OTHER : type);
6089 is_metadata = (BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type));
6091 if (!BP_IS_EMBEDDED(bp) &&
6092 (dump_opt['c'] > 1 || (dump_opt['c'] && is_metadata))) {
6093 size_t size = BP_GET_PSIZE(bp);
6094 abd_t *abd = abd_alloc(size, B_FALSE);
6095 int flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SCRUB | ZIO_FLAG_RAW;
6097 /* If it's an intent log block, failure is expected. */
6098 if (zb->zb_level == ZB_ZIL_LEVEL)
6099 flags |= ZIO_FLAG_SPECULATIVE;
6101 mutex_enter(&spa->spa_scrub_lock);
6102 while (spa->spa_load_verify_bytes > max_inflight_bytes)
6103 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
6104 spa->spa_load_verify_bytes += size;
6105 mutex_exit(&spa->spa_scrub_lock);
6107 zio_nowait(zio_read(NULL, spa, bp, abd, size,
6108 zdb_blkptr_done, zcb, ZIO_PRIORITY_ASYNC_READ, flags, zb));
6111 zcb->zcb_readfails = 0;
6113 /* only call gethrtime() every 100 blocks */
6114 static int iters;
6115 if (++iters > 100)
6116 iters = 0;
6117 else
6118 return (0);
6120 if (dump_opt['b'] < 5 && gethrtime() > zcb->zcb_lastprint + NANOSEC) {
6121 uint64_t now = gethrtime();
6122 char buf[10];
6123 uint64_t bytes = zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL].zb_asize;
6124 uint64_t kb_per_sec =
6125 1 + bytes / (1 + ((now - zcb->zcb_start) / 1000 / 1000));
6126 uint64_t sec_remaining =
6127 (zcb->zcb_totalasize - bytes) / 1024 / kb_per_sec;
6129 /* make sure nicenum has enough space */
6130 _Static_assert(sizeof (buf) >= NN_NUMBUF_SZ, "buf truncated");
6132 zfs_nicebytes(bytes, buf, sizeof (buf));
6133 (void) fprintf(stderr,
6134 "\r%5s completed (%4"PRIu64"MB/s) "
6135 "estimated time remaining: "
6136 "%"PRIu64"hr %02"PRIu64"min %02"PRIu64"sec ",
6137 buf, kb_per_sec / 1024,
6138 sec_remaining / 60 / 60,
6139 sec_remaining / 60 % 60,
6140 sec_remaining % 60);
6142 zcb->zcb_lastprint = now;
6145 return (0);
6148 static void
6149 zdb_leak(void *arg, uint64_t start, uint64_t size)
6151 vdev_t *vd = arg;
6153 (void) printf("leaked space: vdev %llu, offset 0x%llx, size %llu\n",
6154 (u_longlong_t)vd->vdev_id, (u_longlong_t)start, (u_longlong_t)size);
6157 static metaslab_ops_t zdb_metaslab_ops = {
6158 NULL /* alloc */
6161 static int
6162 load_unflushed_svr_segs_cb(spa_t *spa, space_map_entry_t *sme,
6163 uint64_t txg, void *arg)
6165 spa_vdev_removal_t *svr = arg;
6167 uint64_t offset = sme->sme_offset;
6168 uint64_t size = sme->sme_run;
6170 /* skip vdevs we don't care about */
6171 if (sme->sme_vdev != svr->svr_vdev_id)
6172 return (0);
6174 vdev_t *vd = vdev_lookup_top(spa, sme->sme_vdev);
6175 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6176 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
6178 if (txg < metaslab_unflushed_txg(ms))
6179 return (0);
6181 if (sme->sme_type == SM_ALLOC)
6182 range_tree_add(svr->svr_allocd_segs, offset, size);
6183 else
6184 range_tree_remove(svr->svr_allocd_segs, offset, size);
6186 return (0);
6189 static void
6190 claim_segment_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
6191 uint64_t size, void *arg)
6193 (void) inner_offset, (void) arg;
6196 * This callback was called through a remap from
6197 * a device being removed. Therefore, the vdev that
6198 * this callback is applied to is a concrete
6199 * vdev.
6201 ASSERT(vdev_is_concrete(vd));
6203 VERIFY0(metaslab_claim_impl(vd, offset, size,
6204 spa_min_claim_txg(vd->vdev_spa)));
6207 static void
6208 claim_segment_cb(void *arg, uint64_t offset, uint64_t size)
6210 vdev_t *vd = arg;
6212 vdev_indirect_ops.vdev_op_remap(vd, offset, size,
6213 claim_segment_impl_cb, NULL);
6217 * After accounting for all allocated blocks that are directly referenced,
6218 * we might have missed a reference to a block from a partially complete
6219 * (and thus unused) indirect mapping object. We perform a secondary pass
6220 * through the metaslabs we have already mapped and claim the destination
6221 * blocks.
6223 static void
6224 zdb_claim_removing(spa_t *spa, zdb_cb_t *zcb)
6226 if (dump_opt['L'])
6227 return;
6229 if (spa->spa_vdev_removal == NULL)
6230 return;
6232 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6234 spa_vdev_removal_t *svr = spa->spa_vdev_removal;
6235 vdev_t *vd = vdev_lookup_top(spa, svr->svr_vdev_id);
6236 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6238 ASSERT0(range_tree_space(svr->svr_allocd_segs));
6240 range_tree_t *allocs = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
6241 for (uint64_t msi = 0; msi < vd->vdev_ms_count; msi++) {
6242 metaslab_t *msp = vd->vdev_ms[msi];
6244 ASSERT0(range_tree_space(allocs));
6245 if (msp->ms_sm != NULL)
6246 VERIFY0(space_map_load(msp->ms_sm, allocs, SM_ALLOC));
6247 range_tree_vacate(allocs, range_tree_add, svr->svr_allocd_segs);
6249 range_tree_destroy(allocs);
6251 iterate_through_spacemap_logs(spa, load_unflushed_svr_segs_cb, svr);
6254 * Clear everything past what has been synced,
6255 * because we have not allocated mappings for
6256 * it yet.
6258 range_tree_clear(svr->svr_allocd_segs,
6259 vdev_indirect_mapping_max_offset(vim),
6260 vd->vdev_asize - vdev_indirect_mapping_max_offset(vim));
6262 zcb->zcb_removing_size += range_tree_space(svr->svr_allocd_segs);
6263 range_tree_vacate(svr->svr_allocd_segs, claim_segment_cb, vd);
6265 spa_config_exit(spa, SCL_CONFIG, FTAG);
6268 static int
6269 increment_indirect_mapping_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
6270 dmu_tx_t *tx)
6272 (void) tx;
6273 zdb_cb_t *zcb = arg;
6274 spa_t *spa = zcb->zcb_spa;
6275 vdev_t *vd;
6276 const dva_t *dva = &bp->blk_dva[0];
6278 ASSERT(!bp_freed);
6279 ASSERT(!dump_opt['L']);
6280 ASSERT3U(BP_GET_NDVAS(bp), ==, 1);
6282 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6283 vd = vdev_lookup_top(zcb->zcb_spa, DVA_GET_VDEV(dva));
6284 ASSERT3P(vd, !=, NULL);
6285 spa_config_exit(spa, SCL_VDEV, FTAG);
6287 ASSERT(vd->vdev_indirect_config.vic_mapping_object != 0);
6288 ASSERT3P(zcb->zcb_vd_obsolete_counts[vd->vdev_id], !=, NULL);
6290 vdev_indirect_mapping_increment_obsolete_count(
6291 vd->vdev_indirect_mapping,
6292 DVA_GET_OFFSET(dva), DVA_GET_ASIZE(dva),
6293 zcb->zcb_vd_obsolete_counts[vd->vdev_id]);
6295 return (0);
6298 static uint32_t *
6299 zdb_load_obsolete_counts(vdev_t *vd)
6301 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6302 spa_t *spa = vd->vdev_spa;
6303 spa_condensing_indirect_phys_t *scip =
6304 &spa->spa_condensing_indirect_phys;
6305 uint64_t obsolete_sm_object;
6306 uint32_t *counts;
6308 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
6309 EQUIV(obsolete_sm_object != 0, vd->vdev_obsolete_sm != NULL);
6310 counts = vdev_indirect_mapping_load_obsolete_counts(vim);
6311 if (vd->vdev_obsolete_sm != NULL) {
6312 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts,
6313 vd->vdev_obsolete_sm);
6315 if (scip->scip_vdev == vd->vdev_id &&
6316 scip->scip_prev_obsolete_sm_object != 0) {
6317 space_map_t *prev_obsolete_sm = NULL;
6318 VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
6319 scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
6320 vdev_indirect_mapping_load_obsolete_spacemap(vim, counts,
6321 prev_obsolete_sm);
6322 space_map_close(prev_obsolete_sm);
6324 return (counts);
6327 typedef struct checkpoint_sm_exclude_entry_arg {
6328 vdev_t *cseea_vd;
6329 uint64_t cseea_checkpoint_size;
6330 } checkpoint_sm_exclude_entry_arg_t;
6332 static int
6333 checkpoint_sm_exclude_entry_cb(space_map_entry_t *sme, void *arg)
6335 checkpoint_sm_exclude_entry_arg_t *cseea = arg;
6336 vdev_t *vd = cseea->cseea_vd;
6337 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift];
6338 uint64_t end = sme->sme_offset + sme->sme_run;
6340 ASSERT(sme->sme_type == SM_FREE);
6343 * Since the vdev_checkpoint_sm exists in the vdev level
6344 * and the ms_sm space maps exist in the metaslab level,
6345 * an entry in the checkpoint space map could theoretically
6346 * cross the boundaries of the metaslab that it belongs.
6348 * In reality, because of the way that we populate and
6349 * manipulate the checkpoint's space maps currently,
6350 * there shouldn't be any entries that cross metaslabs.
6351 * Hence the assertion below.
6353 * That said, there is no fundamental requirement that
6354 * the checkpoint's space map entries should not cross
6355 * metaslab boundaries. So if needed we could add code
6356 * that handles metaslab-crossing segments in the future.
6358 VERIFY3U(sme->sme_offset, >=, ms->ms_start);
6359 VERIFY3U(end, <=, ms->ms_start + ms->ms_size);
6362 * By removing the entry from the allocated segments we
6363 * also verify that the entry is there to begin with.
6365 mutex_enter(&ms->ms_lock);
6366 range_tree_remove(ms->ms_allocatable, sme->sme_offset, sme->sme_run);
6367 mutex_exit(&ms->ms_lock);
6369 cseea->cseea_checkpoint_size += sme->sme_run;
6370 return (0);
6373 static void
6374 zdb_leak_init_vdev_exclude_checkpoint(vdev_t *vd, zdb_cb_t *zcb)
6376 spa_t *spa = vd->vdev_spa;
6377 space_map_t *checkpoint_sm = NULL;
6378 uint64_t checkpoint_sm_obj;
6381 * If there is no vdev_top_zap, we are in a pool whose
6382 * version predates the pool checkpoint feature.
6384 if (vd->vdev_top_zap == 0)
6385 return;
6388 * If there is no reference of the vdev_checkpoint_sm in
6389 * the vdev_top_zap, then one of the following scenarios
6390 * is true:
6392 * 1] There is no checkpoint
6393 * 2] There is a checkpoint, but no checkpointed blocks
6394 * have been freed yet
6395 * 3] The current vdev is indirect
6397 * In these cases we return immediately.
6399 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap,
6400 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
6401 return;
6403 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap,
6404 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1,
6405 &checkpoint_sm_obj));
6407 checkpoint_sm_exclude_entry_arg_t cseea;
6408 cseea.cseea_vd = vd;
6409 cseea.cseea_checkpoint_size = 0;
6411 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa),
6412 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift));
6414 VERIFY0(space_map_iterate(checkpoint_sm,
6415 space_map_length(checkpoint_sm),
6416 checkpoint_sm_exclude_entry_cb, &cseea));
6417 space_map_close(checkpoint_sm);
6419 zcb->zcb_checkpoint_size += cseea.cseea_checkpoint_size;
6422 static void
6423 zdb_leak_init_exclude_checkpoint(spa_t *spa, zdb_cb_t *zcb)
6425 ASSERT(!dump_opt['L']);
6427 vdev_t *rvd = spa->spa_root_vdev;
6428 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
6429 ASSERT3U(c, ==, rvd->vdev_child[c]->vdev_id);
6430 zdb_leak_init_vdev_exclude_checkpoint(rvd->vdev_child[c], zcb);
6434 static int
6435 count_unflushed_space_cb(spa_t *spa, space_map_entry_t *sme,
6436 uint64_t txg, void *arg)
6438 int64_t *ualloc_space = arg;
6440 uint64_t offset = sme->sme_offset;
6441 uint64_t vdev_id = sme->sme_vdev;
6443 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
6444 if (!vdev_is_concrete(vd))
6445 return (0);
6447 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6448 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
6450 if (txg < metaslab_unflushed_txg(ms))
6451 return (0);
6453 if (sme->sme_type == SM_ALLOC)
6454 *ualloc_space += sme->sme_run;
6455 else
6456 *ualloc_space -= sme->sme_run;
6458 return (0);
6461 static int64_t
6462 get_unflushed_alloc_space(spa_t *spa)
6464 if (dump_opt['L'])
6465 return (0);
6467 int64_t ualloc_space = 0;
6468 iterate_through_spacemap_logs(spa, count_unflushed_space_cb,
6469 &ualloc_space);
6470 return (ualloc_space);
6473 static int
6474 load_unflushed_cb(spa_t *spa, space_map_entry_t *sme, uint64_t txg, void *arg)
6476 maptype_t *uic_maptype = arg;
6478 uint64_t offset = sme->sme_offset;
6479 uint64_t size = sme->sme_run;
6480 uint64_t vdev_id = sme->sme_vdev;
6482 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
6484 /* skip indirect vdevs */
6485 if (!vdev_is_concrete(vd))
6486 return (0);
6488 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6490 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
6491 ASSERT(*uic_maptype == SM_ALLOC || *uic_maptype == SM_FREE);
6493 if (txg < metaslab_unflushed_txg(ms))
6494 return (0);
6496 if (*uic_maptype == sme->sme_type)
6497 range_tree_add(ms->ms_allocatable, offset, size);
6498 else
6499 range_tree_remove(ms->ms_allocatable, offset, size);
6501 return (0);
6504 static void
6505 load_unflushed_to_ms_allocatables(spa_t *spa, maptype_t maptype)
6507 iterate_through_spacemap_logs(spa, load_unflushed_cb, &maptype);
6510 static void
6511 load_concrete_ms_allocatable_trees(spa_t *spa, maptype_t maptype)
6513 vdev_t *rvd = spa->spa_root_vdev;
6514 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
6515 vdev_t *vd = rvd->vdev_child[i];
6517 ASSERT3U(i, ==, vd->vdev_id);
6519 if (vd->vdev_ops == &vdev_indirect_ops)
6520 continue;
6522 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6523 metaslab_t *msp = vd->vdev_ms[m];
6525 (void) fprintf(stderr,
6526 "\rloading concrete vdev %llu, "
6527 "metaslab %llu of %llu ...",
6528 (longlong_t)vd->vdev_id,
6529 (longlong_t)msp->ms_id,
6530 (longlong_t)vd->vdev_ms_count);
6532 mutex_enter(&msp->ms_lock);
6533 range_tree_vacate(msp->ms_allocatable, NULL, NULL);
6536 * We don't want to spend the CPU manipulating the
6537 * size-ordered tree, so clear the range_tree ops.
6539 msp->ms_allocatable->rt_ops = NULL;
6541 if (msp->ms_sm != NULL) {
6542 VERIFY0(space_map_load(msp->ms_sm,
6543 msp->ms_allocatable, maptype));
6545 if (!msp->ms_loaded)
6546 msp->ms_loaded = B_TRUE;
6547 mutex_exit(&msp->ms_lock);
6551 load_unflushed_to_ms_allocatables(spa, maptype);
6555 * vm_idxp is an in-out parameter which (for indirect vdevs) is the
6556 * index in vim_entries that has the first entry in this metaslab.
6557 * On return, it will be set to the first entry after this metaslab.
6559 static void
6560 load_indirect_ms_allocatable_tree(vdev_t *vd, metaslab_t *msp,
6561 uint64_t *vim_idxp)
6563 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6565 mutex_enter(&msp->ms_lock);
6566 range_tree_vacate(msp->ms_allocatable, NULL, NULL);
6569 * We don't want to spend the CPU manipulating the
6570 * size-ordered tree, so clear the range_tree ops.
6572 msp->ms_allocatable->rt_ops = NULL;
6574 for (; *vim_idxp < vdev_indirect_mapping_num_entries(vim);
6575 (*vim_idxp)++) {
6576 vdev_indirect_mapping_entry_phys_t *vimep =
6577 &vim->vim_entries[*vim_idxp];
6578 uint64_t ent_offset = DVA_MAPPING_GET_SRC_OFFSET(vimep);
6579 uint64_t ent_len = DVA_GET_ASIZE(&vimep->vimep_dst);
6580 ASSERT3U(ent_offset, >=, msp->ms_start);
6581 if (ent_offset >= msp->ms_start + msp->ms_size)
6582 break;
6585 * Mappings do not cross metaslab boundaries,
6586 * because we create them by walking the metaslabs.
6588 ASSERT3U(ent_offset + ent_len, <=,
6589 msp->ms_start + msp->ms_size);
6590 range_tree_add(msp->ms_allocatable, ent_offset, ent_len);
6593 if (!msp->ms_loaded)
6594 msp->ms_loaded = B_TRUE;
6595 mutex_exit(&msp->ms_lock);
6598 static void
6599 zdb_leak_init_prepare_indirect_vdevs(spa_t *spa, zdb_cb_t *zcb)
6601 ASSERT(!dump_opt['L']);
6603 vdev_t *rvd = spa->spa_root_vdev;
6604 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
6605 vdev_t *vd = rvd->vdev_child[c];
6607 ASSERT3U(c, ==, vd->vdev_id);
6609 if (vd->vdev_ops != &vdev_indirect_ops)
6610 continue;
6613 * Note: we don't check for mapping leaks on
6614 * removing vdevs because their ms_allocatable's
6615 * are used to look for leaks in allocated space.
6617 zcb->zcb_vd_obsolete_counts[c] = zdb_load_obsolete_counts(vd);
6620 * Normally, indirect vdevs don't have any
6621 * metaslabs. We want to set them up for
6622 * zio_claim().
6624 vdev_metaslab_group_create(vd);
6625 VERIFY0(vdev_metaslab_init(vd, 0));
6627 vdev_indirect_mapping_t *vim __maybe_unused =
6628 vd->vdev_indirect_mapping;
6629 uint64_t vim_idx = 0;
6630 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6632 (void) fprintf(stderr,
6633 "\rloading indirect vdev %llu, "
6634 "metaslab %llu of %llu ...",
6635 (longlong_t)vd->vdev_id,
6636 (longlong_t)vd->vdev_ms[m]->ms_id,
6637 (longlong_t)vd->vdev_ms_count);
6639 load_indirect_ms_allocatable_tree(vd, vd->vdev_ms[m],
6640 &vim_idx);
6642 ASSERT3U(vim_idx, ==, vdev_indirect_mapping_num_entries(vim));
6646 static void
6647 zdb_leak_init(spa_t *spa, zdb_cb_t *zcb)
6649 zcb->zcb_spa = spa;
6651 if (dump_opt['L'])
6652 return;
6654 dsl_pool_t *dp = spa->spa_dsl_pool;
6655 vdev_t *rvd = spa->spa_root_vdev;
6658 * We are going to be changing the meaning of the metaslab's
6659 * ms_allocatable. Ensure that the allocator doesn't try to
6660 * use the tree.
6662 spa->spa_normal_class->mc_ops = &zdb_metaslab_ops;
6663 spa->spa_log_class->mc_ops = &zdb_metaslab_ops;
6664 spa->spa_embedded_log_class->mc_ops = &zdb_metaslab_ops;
6666 zcb->zcb_vd_obsolete_counts =
6667 umem_zalloc(rvd->vdev_children * sizeof (uint32_t *),
6668 UMEM_NOFAIL);
6671 * For leak detection, we overload the ms_allocatable trees
6672 * to contain allocated segments instead of free segments.
6673 * As a result, we can't use the normal metaslab_load/unload
6674 * interfaces.
6676 zdb_leak_init_prepare_indirect_vdevs(spa, zcb);
6677 load_concrete_ms_allocatable_trees(spa, SM_ALLOC);
6680 * On load_concrete_ms_allocatable_trees() we loaded all the
6681 * allocated entries from the ms_sm to the ms_allocatable for
6682 * each metaslab. If the pool has a checkpoint or is in the
6683 * middle of discarding a checkpoint, some of these blocks
6684 * may have been freed but their ms_sm may not have been
6685 * updated because they are referenced by the checkpoint. In
6686 * order to avoid false-positives during leak-detection, we
6687 * go through the vdev's checkpoint space map and exclude all
6688 * its entries from their relevant ms_allocatable.
6690 * We also aggregate the space held by the checkpoint and add
6691 * it to zcb_checkpoint_size.
6693 * Note that at this point we are also verifying that all the
6694 * entries on the checkpoint_sm are marked as allocated in
6695 * the ms_sm of their relevant metaslab.
6696 * [see comment in checkpoint_sm_exclude_entry_cb()]
6698 zdb_leak_init_exclude_checkpoint(spa, zcb);
6699 ASSERT3U(zcb->zcb_checkpoint_size, ==, spa_get_checkpoint_space(spa));
6701 /* for cleaner progress output */
6702 (void) fprintf(stderr, "\n");
6704 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) {
6705 ASSERT(spa_feature_is_enabled(spa,
6706 SPA_FEATURE_DEVICE_REMOVAL));
6707 (void) bpobj_iterate_nofree(&dp->dp_obsolete_bpobj,
6708 increment_indirect_mapping_cb, zcb, NULL);
6712 static boolean_t
6713 zdb_check_for_obsolete_leaks(vdev_t *vd, zdb_cb_t *zcb)
6715 boolean_t leaks = B_FALSE;
6716 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
6717 uint64_t total_leaked = 0;
6718 boolean_t are_precise = B_FALSE;
6720 ASSERT(vim != NULL);
6722 for (uint64_t i = 0; i < vdev_indirect_mapping_num_entries(vim); i++) {
6723 vdev_indirect_mapping_entry_phys_t *vimep =
6724 &vim->vim_entries[i];
6725 uint64_t obsolete_bytes = 0;
6726 uint64_t offset = DVA_MAPPING_GET_SRC_OFFSET(vimep);
6727 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
6730 * This is not very efficient but it's easy to
6731 * verify correctness.
6733 for (uint64_t inner_offset = 0;
6734 inner_offset < DVA_GET_ASIZE(&vimep->vimep_dst);
6735 inner_offset += 1ULL << vd->vdev_ashift) {
6736 if (range_tree_contains(msp->ms_allocatable,
6737 offset + inner_offset, 1ULL << vd->vdev_ashift)) {
6738 obsolete_bytes += 1ULL << vd->vdev_ashift;
6742 int64_t bytes_leaked = obsolete_bytes -
6743 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i];
6744 ASSERT3U(DVA_GET_ASIZE(&vimep->vimep_dst), >=,
6745 zcb->zcb_vd_obsolete_counts[vd->vdev_id][i]);
6747 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
6748 if (bytes_leaked != 0 && (are_precise || dump_opt['d'] >= 5)) {
6749 (void) printf("obsolete indirect mapping count "
6750 "mismatch on %llu:%llx:%llx : %llx bytes leaked\n",
6751 (u_longlong_t)vd->vdev_id,
6752 (u_longlong_t)DVA_MAPPING_GET_SRC_OFFSET(vimep),
6753 (u_longlong_t)DVA_GET_ASIZE(&vimep->vimep_dst),
6754 (u_longlong_t)bytes_leaked);
6756 total_leaked += ABS(bytes_leaked);
6759 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
6760 if (!are_precise && total_leaked > 0) {
6761 int pct_leaked = total_leaked * 100 /
6762 vdev_indirect_mapping_bytes_mapped(vim);
6763 (void) printf("cannot verify obsolete indirect mapping "
6764 "counts of vdev %llu because precise feature was not "
6765 "enabled when it was removed: %d%% (%llx bytes) of mapping"
6766 "unreferenced\n",
6767 (u_longlong_t)vd->vdev_id, pct_leaked,
6768 (u_longlong_t)total_leaked);
6769 } else if (total_leaked > 0) {
6770 (void) printf("obsolete indirect mapping count mismatch "
6771 "for vdev %llu -- %llx total bytes mismatched\n",
6772 (u_longlong_t)vd->vdev_id,
6773 (u_longlong_t)total_leaked);
6774 leaks |= B_TRUE;
6777 vdev_indirect_mapping_free_obsolete_counts(vim,
6778 zcb->zcb_vd_obsolete_counts[vd->vdev_id]);
6779 zcb->zcb_vd_obsolete_counts[vd->vdev_id] = NULL;
6781 return (leaks);
6784 static boolean_t
6785 zdb_leak_fini(spa_t *spa, zdb_cb_t *zcb)
6787 if (dump_opt['L'])
6788 return (B_FALSE);
6790 boolean_t leaks = B_FALSE;
6791 vdev_t *rvd = spa->spa_root_vdev;
6792 for (unsigned c = 0; c < rvd->vdev_children; c++) {
6793 vdev_t *vd = rvd->vdev_child[c];
6795 if (zcb->zcb_vd_obsolete_counts[c] != NULL) {
6796 leaks |= zdb_check_for_obsolete_leaks(vd, zcb);
6799 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
6800 metaslab_t *msp = vd->vdev_ms[m];
6801 ASSERT3P(msp->ms_group, ==, (msp->ms_group->mg_class ==
6802 spa_embedded_log_class(spa)) ?
6803 vd->vdev_log_mg : vd->vdev_mg);
6806 * ms_allocatable has been overloaded
6807 * to contain allocated segments. Now that
6808 * we finished traversing all blocks, any
6809 * block that remains in the ms_allocatable
6810 * represents an allocated block that we
6811 * did not claim during the traversal.
6812 * Claimed blocks would have been removed
6813 * from the ms_allocatable. For indirect
6814 * vdevs, space remaining in the tree
6815 * represents parts of the mapping that are
6816 * not referenced, which is not a bug.
6818 if (vd->vdev_ops == &vdev_indirect_ops) {
6819 range_tree_vacate(msp->ms_allocatable,
6820 NULL, NULL);
6821 } else {
6822 range_tree_vacate(msp->ms_allocatable,
6823 zdb_leak, vd);
6825 if (msp->ms_loaded) {
6826 msp->ms_loaded = B_FALSE;
6831 umem_free(zcb->zcb_vd_obsolete_counts,
6832 rvd->vdev_children * sizeof (uint32_t *));
6833 zcb->zcb_vd_obsolete_counts = NULL;
6835 return (leaks);
6838 static int
6839 count_block_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6841 (void) tx;
6842 zdb_cb_t *zcb = arg;
6844 if (dump_opt['b'] >= 5) {
6845 char blkbuf[BP_SPRINTF_LEN];
6846 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
6847 (void) printf("[%s] %s\n",
6848 "deferred free", blkbuf);
6850 zdb_count_block(zcb, NULL, bp, ZDB_OT_DEFERRED);
6851 return (0);
6855 * Iterate over livelists which have been destroyed by the user but
6856 * are still present in the MOS, waiting to be freed
6858 static void
6859 iterate_deleted_livelists(spa_t *spa, ll_iter_t func, void *arg)
6861 objset_t *mos = spa->spa_meta_objset;
6862 uint64_t zap_obj;
6863 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
6864 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj);
6865 if (err == ENOENT)
6866 return;
6867 ASSERT0(err);
6869 zap_cursor_t zc;
6870 zap_attribute_t *attrp = zap_attribute_alloc();
6871 dsl_deadlist_t ll;
6872 /* NULL out os prior to dsl_deadlist_open in case it's garbage */
6873 ll.dl_os = NULL;
6874 for (zap_cursor_init(&zc, mos, zap_obj);
6875 zap_cursor_retrieve(&zc, attrp) == 0;
6876 (void) zap_cursor_advance(&zc)) {
6877 dsl_deadlist_open(&ll, mos, attrp->za_first_integer);
6878 func(&ll, arg);
6879 dsl_deadlist_close(&ll);
6881 zap_cursor_fini(&zc);
6882 zap_attribute_free(attrp);
6885 static int
6886 bpobj_count_block_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
6887 dmu_tx_t *tx)
6889 ASSERT(!bp_freed);
6890 return (count_block_cb(arg, bp, tx));
6893 static int
6894 livelist_entry_count_blocks_cb(void *args, dsl_deadlist_entry_t *dle)
6896 zdb_cb_t *zbc = args;
6897 bplist_t blks;
6898 bplist_create(&blks);
6899 /* determine which blocks have been alloc'd but not freed */
6900 VERIFY0(dsl_process_sub_livelist(&dle->dle_bpobj, &blks, NULL, NULL));
6901 /* count those blocks */
6902 (void) bplist_iterate(&blks, count_block_cb, zbc, NULL);
6903 bplist_destroy(&blks);
6904 return (0);
6907 static void
6908 livelist_count_blocks(dsl_deadlist_t *ll, void *arg)
6910 dsl_deadlist_iterate(ll, livelist_entry_count_blocks_cb, arg);
6914 * Count the blocks in the livelists that have been destroyed by the user
6915 * but haven't yet been freed.
6917 static void
6918 deleted_livelists_count_blocks(spa_t *spa, zdb_cb_t *zbc)
6920 iterate_deleted_livelists(spa, livelist_count_blocks, zbc);
6923 static void
6924 dump_livelist_cb(dsl_deadlist_t *ll, void *arg)
6926 ASSERT3P(arg, ==, NULL);
6927 global_feature_count[SPA_FEATURE_LIVELIST]++;
6928 dump_blkptr_list(ll, "Deleted Livelist");
6929 dsl_deadlist_iterate(ll, sublivelist_verify_lightweight, NULL);
6933 * Print out, register object references to, and increment feature counts for
6934 * livelists that have been destroyed by the user but haven't yet been freed.
6936 static void
6937 deleted_livelists_dump_mos(spa_t *spa)
6939 uint64_t zap_obj;
6940 objset_t *mos = spa->spa_meta_objset;
6941 int err = zap_lookup(mos, DMU_POOL_DIRECTORY_OBJECT,
6942 DMU_POOL_DELETED_CLONES, sizeof (uint64_t), 1, &zap_obj);
6943 if (err == ENOENT)
6944 return;
6945 mos_obj_refd(zap_obj);
6946 iterate_deleted_livelists(spa, dump_livelist_cb, NULL);
6949 static int
6950 zdb_brt_entry_compare(const void *zcn1, const void *zcn2)
6952 const dva_t *dva1 = &((const zdb_brt_entry_t *)zcn1)->zbre_dva;
6953 const dva_t *dva2 = &((const zdb_brt_entry_t *)zcn2)->zbre_dva;
6954 int cmp;
6956 cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
6957 if (cmp == 0)
6958 cmp = TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2));
6960 return (cmp);
6963 static int
6964 dump_block_stats(spa_t *spa)
6966 zdb_cb_t *zcb;
6967 zdb_blkstats_t *zb, *tzb;
6968 uint64_t norm_alloc, norm_space, total_alloc, total_found;
6969 int flags = TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
6970 TRAVERSE_NO_DECRYPT | TRAVERSE_HARD;
6971 boolean_t leaks = B_FALSE;
6972 int e, c, err;
6973 bp_embedded_type_t i;
6975 ddt_prefetch_all(spa);
6977 zcb = umem_zalloc(sizeof (zdb_cb_t), UMEM_NOFAIL);
6979 if (spa_feature_is_active(spa, SPA_FEATURE_BLOCK_CLONING)) {
6980 avl_create(&zcb->zcb_brt, zdb_brt_entry_compare,
6981 sizeof (zdb_brt_entry_t),
6982 offsetof(zdb_brt_entry_t, zbre_node));
6983 zcb->zcb_brt_is_active = B_TRUE;
6986 (void) printf("\nTraversing all blocks %s%s%s%s%s...\n\n",
6987 (dump_opt['c'] || !dump_opt['L']) ? "to verify " : "",
6988 (dump_opt['c'] == 1) ? "metadata " : "",
6989 dump_opt['c'] ? "checksums " : "",
6990 (dump_opt['c'] && !dump_opt['L']) ? "and verify " : "",
6991 !dump_opt['L'] ? "nothing leaked " : "");
6994 * When leak detection is enabled we load all space maps as SM_ALLOC
6995 * maps, then traverse the pool claiming each block we discover. If
6996 * the pool is perfectly consistent, the segment trees will be empty
6997 * when we're done. Anything left over is a leak; any block we can't
6998 * claim (because it's not part of any space map) is a double
6999 * allocation, reference to a freed block, or an unclaimed log block.
7001 * When leak detection is disabled (-L option) we still traverse the
7002 * pool claiming each block we discover, but we skip opening any space
7003 * maps.
7005 zdb_leak_init(spa, zcb);
7008 * If there's a deferred-free bplist, process that first.
7010 (void) bpobj_iterate_nofree(&spa->spa_deferred_bpobj,
7011 bpobj_count_block_cb, zcb, NULL);
7013 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
7014 (void) bpobj_iterate_nofree(&spa->spa_dsl_pool->dp_free_bpobj,
7015 bpobj_count_block_cb, zcb, NULL);
7018 zdb_claim_removing(spa, zcb);
7020 if (spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY)) {
7021 VERIFY3U(0, ==, bptree_iterate(spa->spa_meta_objset,
7022 spa->spa_dsl_pool->dp_bptree_obj, B_FALSE, count_block_cb,
7023 zcb, NULL));
7026 deleted_livelists_count_blocks(spa, zcb);
7028 if (dump_opt['c'] > 1)
7029 flags |= TRAVERSE_PREFETCH_DATA;
7031 zcb->zcb_totalasize = metaslab_class_get_alloc(spa_normal_class(spa));
7032 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_special_class(spa));
7033 zcb->zcb_totalasize += metaslab_class_get_alloc(spa_dedup_class(spa));
7034 zcb->zcb_totalasize +=
7035 metaslab_class_get_alloc(spa_embedded_log_class(spa));
7036 zcb->zcb_start = zcb->zcb_lastprint = gethrtime();
7037 err = traverse_pool(spa, 0, flags, zdb_blkptr_cb, zcb);
7040 * If we've traversed the data blocks then we need to wait for those
7041 * I/Os to complete. We leverage "The Godfather" zio to wait on
7042 * all async I/Os to complete.
7044 if (dump_opt['c']) {
7045 for (c = 0; c < max_ncpus; c++) {
7046 (void) zio_wait(spa->spa_async_zio_root[c]);
7047 spa->spa_async_zio_root[c] = zio_root(spa, NULL, NULL,
7048 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
7049 ZIO_FLAG_GODFATHER);
7052 ASSERT0(spa->spa_load_verify_bytes);
7055 * Done after zio_wait() since zcb_haderrors is modified in
7056 * zdb_blkptr_done()
7058 zcb->zcb_haderrors |= err;
7060 if (zcb->zcb_haderrors) {
7061 (void) printf("\nError counts:\n\n");
7062 (void) printf("\t%5s %s\n", "errno", "count");
7063 for (e = 0; e < 256; e++) {
7064 if (zcb->zcb_errors[e] != 0) {
7065 (void) printf("\t%5d %llu\n",
7066 e, (u_longlong_t)zcb->zcb_errors[e]);
7072 * Report any leaked segments.
7074 leaks |= zdb_leak_fini(spa, zcb);
7076 tzb = &zcb->zcb_type[ZB_TOTAL][ZDB_OT_TOTAL];
7078 norm_alloc = metaslab_class_get_alloc(spa_normal_class(spa));
7079 norm_space = metaslab_class_get_space(spa_normal_class(spa));
7081 total_alloc = norm_alloc +
7082 metaslab_class_get_alloc(spa_log_class(spa)) +
7083 metaslab_class_get_alloc(spa_embedded_log_class(spa)) +
7084 metaslab_class_get_alloc(spa_special_class(spa)) +
7085 metaslab_class_get_alloc(spa_dedup_class(spa)) +
7086 get_unflushed_alloc_space(spa);
7087 total_found =
7088 tzb->zb_asize - zcb->zcb_dedup_asize - zcb->zcb_clone_asize +
7089 zcb->zcb_removing_size + zcb->zcb_checkpoint_size;
7091 if (total_found == total_alloc && !dump_opt['L']) {
7092 (void) printf("\n\tNo leaks (block sum matches space"
7093 " maps exactly)\n");
7094 } else if (!dump_opt['L']) {
7095 (void) printf("block traversal size %llu != alloc %llu "
7096 "(%s %lld)\n",
7097 (u_longlong_t)total_found,
7098 (u_longlong_t)total_alloc,
7099 (dump_opt['L']) ? "unreachable" : "leaked",
7100 (longlong_t)(total_alloc - total_found));
7103 if (tzb->zb_count == 0) {
7104 umem_free(zcb, sizeof (zdb_cb_t));
7105 return (2);
7108 (void) printf("\n");
7109 (void) printf("\t%-16s %14llu\n", "bp count:",
7110 (u_longlong_t)tzb->zb_count);
7111 (void) printf("\t%-16s %14llu\n", "ganged count:",
7112 (longlong_t)tzb->zb_gangs);
7113 (void) printf("\t%-16s %14llu avg: %6llu\n", "bp logical:",
7114 (u_longlong_t)tzb->zb_lsize,
7115 (u_longlong_t)(tzb->zb_lsize / tzb->zb_count));
7116 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n",
7117 "bp physical:", (u_longlong_t)tzb->zb_psize,
7118 (u_longlong_t)(tzb->zb_psize / tzb->zb_count),
7119 (double)tzb->zb_lsize / tzb->zb_psize);
7120 (void) printf("\t%-16s %14llu avg: %6llu compression: %6.2f\n",
7121 "bp allocated:", (u_longlong_t)tzb->zb_asize,
7122 (u_longlong_t)(tzb->zb_asize / tzb->zb_count),
7123 (double)tzb->zb_lsize / tzb->zb_asize);
7124 (void) printf("\t%-16s %14llu ref>1: %6llu deduplication: %6.2f\n",
7125 "bp deduped:", (u_longlong_t)zcb->zcb_dedup_asize,
7126 (u_longlong_t)zcb->zcb_dedup_blocks,
7127 (double)zcb->zcb_dedup_asize / tzb->zb_asize + 1.0);
7128 (void) printf("\t%-16s %14llu count: %6llu\n",
7129 "bp cloned:", (u_longlong_t)zcb->zcb_clone_asize,
7130 (u_longlong_t)zcb->zcb_clone_blocks);
7131 (void) printf("\t%-16s %14llu used: %5.2f%%\n", "Normal class:",
7132 (u_longlong_t)norm_alloc, 100.0 * norm_alloc / norm_space);
7134 if (spa_special_class(spa)->mc_allocator[0].mca_rotor != NULL) {
7135 uint64_t alloc = metaslab_class_get_alloc(
7136 spa_special_class(spa));
7137 uint64_t space = metaslab_class_get_space(
7138 spa_special_class(spa));
7140 (void) printf("\t%-16s %14llu used: %5.2f%%\n",
7141 "Special class", (u_longlong_t)alloc,
7142 100.0 * alloc / space);
7145 if (spa_dedup_class(spa)->mc_allocator[0].mca_rotor != NULL) {
7146 uint64_t alloc = metaslab_class_get_alloc(
7147 spa_dedup_class(spa));
7148 uint64_t space = metaslab_class_get_space(
7149 spa_dedup_class(spa));
7151 (void) printf("\t%-16s %14llu used: %5.2f%%\n",
7152 "Dedup class", (u_longlong_t)alloc,
7153 100.0 * alloc / space);
7156 if (spa_embedded_log_class(spa)->mc_allocator[0].mca_rotor != NULL) {
7157 uint64_t alloc = metaslab_class_get_alloc(
7158 spa_embedded_log_class(spa));
7159 uint64_t space = metaslab_class_get_space(
7160 spa_embedded_log_class(spa));
7162 (void) printf("\t%-16s %14llu used: %5.2f%%\n",
7163 "Embedded log class", (u_longlong_t)alloc,
7164 100.0 * alloc / space);
7167 for (i = 0; i < NUM_BP_EMBEDDED_TYPES; i++) {
7168 if (zcb->zcb_embedded_blocks[i] == 0)
7169 continue;
7170 (void) printf("\n");
7171 (void) printf("\tadditional, non-pointer bps of type %u: "
7172 "%10llu\n",
7173 i, (u_longlong_t)zcb->zcb_embedded_blocks[i]);
7175 if (dump_opt['b'] >= 3) {
7176 (void) printf("\t number of (compressed) bytes: "
7177 "number of bps\n");
7178 dump_histogram(zcb->zcb_embedded_histogram[i],
7179 sizeof (zcb->zcb_embedded_histogram[i]) /
7180 sizeof (zcb->zcb_embedded_histogram[i][0]), 0);
7184 if (tzb->zb_ditto_samevdev != 0) {
7185 (void) printf("\tDittoed blocks on same vdev: %llu\n",
7186 (longlong_t)tzb->zb_ditto_samevdev);
7188 if (tzb->zb_ditto_same_ms != 0) {
7189 (void) printf("\tDittoed blocks in same metaslab: %llu\n",
7190 (longlong_t)tzb->zb_ditto_same_ms);
7193 for (uint64_t v = 0; v < spa->spa_root_vdev->vdev_children; v++) {
7194 vdev_t *vd = spa->spa_root_vdev->vdev_child[v];
7195 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
7197 if (vim == NULL) {
7198 continue;
7201 char mem[32];
7202 zdb_nicenum(vdev_indirect_mapping_num_entries(vim),
7203 mem, vdev_indirect_mapping_size(vim));
7205 (void) printf("\tindirect vdev id %llu has %llu segments "
7206 "(%s in memory)\n",
7207 (longlong_t)vd->vdev_id,
7208 (longlong_t)vdev_indirect_mapping_num_entries(vim), mem);
7211 if (dump_opt['b'] >= 2) {
7212 int l, t, level;
7213 char csize[32], lsize[32], psize[32], asize[32];
7214 char avg[32], gang[32];
7215 (void) printf("\nBlocks\tLSIZE\tPSIZE\tASIZE"
7216 "\t avg\t comp\t%%Total\tType\n");
7218 zfs_blkstat_t *mdstats = umem_zalloc(sizeof (zfs_blkstat_t),
7219 UMEM_NOFAIL);
7221 for (t = 0; t <= ZDB_OT_TOTAL; t++) {
7222 const char *typename;
7224 /* make sure nicenum has enough space */
7225 _Static_assert(sizeof (csize) >= NN_NUMBUF_SZ,
7226 "csize truncated");
7227 _Static_assert(sizeof (lsize) >= NN_NUMBUF_SZ,
7228 "lsize truncated");
7229 _Static_assert(sizeof (psize) >= NN_NUMBUF_SZ,
7230 "psize truncated");
7231 _Static_assert(sizeof (asize) >= NN_NUMBUF_SZ,
7232 "asize truncated");
7233 _Static_assert(sizeof (avg) >= NN_NUMBUF_SZ,
7234 "avg truncated");
7235 _Static_assert(sizeof (gang) >= NN_NUMBUF_SZ,
7236 "gang truncated");
7238 if (t < DMU_OT_NUMTYPES)
7239 typename = dmu_ot[t].ot_name;
7240 else
7241 typename = zdb_ot_extname[t - DMU_OT_NUMTYPES];
7243 if (zcb->zcb_type[ZB_TOTAL][t].zb_asize == 0) {
7244 (void) printf("%6s\t%5s\t%5s\t%5s"
7245 "\t%5s\t%5s\t%6s\t%s\n",
7246 "-",
7247 "-",
7248 "-",
7249 "-",
7250 "-",
7251 "-",
7252 "-",
7253 typename);
7254 continue;
7257 for (l = ZB_TOTAL - 1; l >= -1; l--) {
7258 level = (l == -1 ? ZB_TOTAL : l);
7259 zb = &zcb->zcb_type[level][t];
7261 if (zb->zb_asize == 0)
7262 continue;
7264 if (level != ZB_TOTAL && t < DMU_OT_NUMTYPES &&
7265 (level > 0 || DMU_OT_IS_METADATA(t))) {
7266 mdstats->zb_count += zb->zb_count;
7267 mdstats->zb_lsize += zb->zb_lsize;
7268 mdstats->zb_psize += zb->zb_psize;
7269 mdstats->zb_asize += zb->zb_asize;
7270 mdstats->zb_gangs += zb->zb_gangs;
7273 if (dump_opt['b'] < 3 && level != ZB_TOTAL)
7274 continue;
7276 if (level == 0 && zb->zb_asize ==
7277 zcb->zcb_type[ZB_TOTAL][t].zb_asize)
7278 continue;
7280 zdb_nicenum(zb->zb_count, csize,
7281 sizeof (csize));
7282 zdb_nicenum(zb->zb_lsize, lsize,
7283 sizeof (lsize));
7284 zdb_nicenum(zb->zb_psize, psize,
7285 sizeof (psize));
7286 zdb_nicenum(zb->zb_asize, asize,
7287 sizeof (asize));
7288 zdb_nicenum(zb->zb_asize / zb->zb_count, avg,
7289 sizeof (avg));
7290 zdb_nicenum(zb->zb_gangs, gang, sizeof (gang));
7292 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
7293 "\t%5.2f\t%6.2f\t",
7294 csize, lsize, psize, asize, avg,
7295 (double)zb->zb_lsize / zb->zb_psize,
7296 100.0 * zb->zb_asize / tzb->zb_asize);
7298 if (level == ZB_TOTAL)
7299 (void) printf("%s\n", typename);
7300 else
7301 (void) printf(" L%d %s\n",
7302 level, typename);
7304 if (dump_opt['b'] >= 3 && zb->zb_gangs > 0) {
7305 (void) printf("\t number of ganged "
7306 "blocks: %s\n", gang);
7309 if (dump_opt['b'] >= 4) {
7310 (void) printf("psize "
7311 "(in 512-byte sectors): "
7312 "number of blocks\n");
7313 dump_histogram(zb->zb_psize_histogram,
7314 PSIZE_HISTO_SIZE, 0);
7318 zdb_nicenum(mdstats->zb_count, csize,
7319 sizeof (csize));
7320 zdb_nicenum(mdstats->zb_lsize, lsize,
7321 sizeof (lsize));
7322 zdb_nicenum(mdstats->zb_psize, psize,
7323 sizeof (psize));
7324 zdb_nicenum(mdstats->zb_asize, asize,
7325 sizeof (asize));
7326 zdb_nicenum(mdstats->zb_asize / mdstats->zb_count, avg,
7327 sizeof (avg));
7328 zdb_nicenum(mdstats->zb_gangs, gang, sizeof (gang));
7330 (void) printf("%6s\t%5s\t%5s\t%5s\t%5s"
7331 "\t%5.2f\t%6.2f\t",
7332 csize, lsize, psize, asize, avg,
7333 (double)mdstats->zb_lsize / mdstats->zb_psize,
7334 100.0 * mdstats->zb_asize / tzb->zb_asize);
7335 (void) printf("%s\n", "Metadata Total");
7337 /* Output a table summarizing block sizes in the pool */
7338 if (dump_opt['b'] >= 2) {
7339 dump_size_histograms(zcb);
7342 umem_free(mdstats, sizeof (zfs_blkstat_t));
7345 (void) printf("\n");
7347 if (leaks) {
7348 umem_free(zcb, sizeof (zdb_cb_t));
7349 return (2);
7352 if (zcb->zcb_haderrors) {
7353 umem_free(zcb, sizeof (zdb_cb_t));
7354 return (3);
7357 umem_free(zcb, sizeof (zdb_cb_t));
7358 return (0);
7361 typedef struct zdb_ddt_entry {
7362 /* key must be first for ddt_key_compare */
7363 ddt_key_t zdde_key;
7364 uint64_t zdde_ref_blocks;
7365 uint64_t zdde_ref_lsize;
7366 uint64_t zdde_ref_psize;
7367 uint64_t zdde_ref_dsize;
7368 avl_node_t zdde_node;
7369 } zdb_ddt_entry_t;
7371 static int
7372 zdb_ddt_add_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
7373 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
7375 (void) zilog, (void) dnp;
7376 avl_tree_t *t = arg;
7377 avl_index_t where;
7378 zdb_ddt_entry_t *zdde, zdde_search;
7380 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
7381 BP_IS_EMBEDDED(bp))
7382 return (0);
7384 if (dump_opt['S'] > 1 && zb->zb_level == ZB_ROOT_LEVEL) {
7385 (void) printf("traversing objset %llu, %llu objects, "
7386 "%lu blocks so far\n",
7387 (u_longlong_t)zb->zb_objset,
7388 (u_longlong_t)BP_GET_FILL(bp),
7389 avl_numnodes(t));
7392 if (BP_IS_HOLE(bp) || BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_OFF ||
7393 BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp)))
7394 return (0);
7396 ddt_key_fill(&zdde_search.zdde_key, bp);
7398 zdde = avl_find(t, &zdde_search, &where);
7400 if (zdde == NULL) {
7401 zdde = umem_zalloc(sizeof (*zdde), UMEM_NOFAIL);
7402 zdde->zdde_key = zdde_search.zdde_key;
7403 avl_insert(t, zdde, where);
7406 zdde->zdde_ref_blocks += 1;
7407 zdde->zdde_ref_lsize += BP_GET_LSIZE(bp);
7408 zdde->zdde_ref_psize += BP_GET_PSIZE(bp);
7409 zdde->zdde_ref_dsize += bp_get_dsize_sync(spa, bp);
7411 return (0);
7414 static void
7415 dump_simulated_ddt(spa_t *spa)
7417 avl_tree_t t;
7418 void *cookie = NULL;
7419 zdb_ddt_entry_t *zdde;
7420 ddt_histogram_t ddh_total = {{{0}}};
7421 ddt_stat_t dds_total = {0};
7423 avl_create(&t, ddt_key_compare,
7424 sizeof (zdb_ddt_entry_t), offsetof(zdb_ddt_entry_t, zdde_node));
7426 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7428 (void) traverse_pool(spa, 0, TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
7429 TRAVERSE_NO_DECRYPT, zdb_ddt_add_cb, &t);
7431 spa_config_exit(spa, SCL_CONFIG, FTAG);
7433 while ((zdde = avl_destroy_nodes(&t, &cookie)) != NULL) {
7434 uint64_t refcnt = zdde->zdde_ref_blocks;
7435 ASSERT(refcnt != 0);
7437 ddt_stat_t *dds = &ddh_total.ddh_stat[highbit64(refcnt) - 1];
7439 dds->dds_blocks += zdde->zdde_ref_blocks / refcnt;
7440 dds->dds_lsize += zdde->zdde_ref_lsize / refcnt;
7441 dds->dds_psize += zdde->zdde_ref_psize / refcnt;
7442 dds->dds_dsize += zdde->zdde_ref_dsize / refcnt;
7444 dds->dds_ref_blocks += zdde->zdde_ref_blocks;
7445 dds->dds_ref_lsize += zdde->zdde_ref_lsize;
7446 dds->dds_ref_psize += zdde->zdde_ref_psize;
7447 dds->dds_ref_dsize += zdde->zdde_ref_dsize;
7449 umem_free(zdde, sizeof (*zdde));
7452 avl_destroy(&t);
7454 ddt_histogram_total(&dds_total, &ddh_total);
7456 (void) printf("Simulated DDT histogram:\n");
7458 zpool_dump_ddt(&dds_total, &ddh_total);
7460 dump_dedup_ratio(&dds_total);
7463 static int
7464 verify_device_removal_feature_counts(spa_t *spa)
7466 uint64_t dr_feature_refcount = 0;
7467 uint64_t oc_feature_refcount = 0;
7468 uint64_t indirect_vdev_count = 0;
7469 uint64_t precise_vdev_count = 0;
7470 uint64_t obsolete_counts_object_count = 0;
7471 uint64_t obsolete_sm_count = 0;
7472 uint64_t obsolete_counts_count = 0;
7473 uint64_t scip_count = 0;
7474 uint64_t obsolete_bpobj_count = 0;
7475 int ret = 0;
7477 spa_condensing_indirect_phys_t *scip =
7478 &spa->spa_condensing_indirect_phys;
7479 if (scip->scip_next_mapping_object != 0) {
7480 vdev_t *vd = spa->spa_root_vdev->vdev_child[scip->scip_vdev];
7481 ASSERT(scip->scip_prev_obsolete_sm_object != 0);
7482 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
7484 (void) printf("Condensing indirect vdev %llu: new mapping "
7485 "object %llu, prev obsolete sm %llu\n",
7486 (u_longlong_t)scip->scip_vdev,
7487 (u_longlong_t)scip->scip_next_mapping_object,
7488 (u_longlong_t)scip->scip_prev_obsolete_sm_object);
7489 if (scip->scip_prev_obsolete_sm_object != 0) {
7490 space_map_t *prev_obsolete_sm = NULL;
7491 VERIFY0(space_map_open(&prev_obsolete_sm,
7492 spa->spa_meta_objset,
7493 scip->scip_prev_obsolete_sm_object,
7494 0, vd->vdev_asize, 0));
7495 dump_spacemap(spa->spa_meta_objset, prev_obsolete_sm);
7496 (void) printf("\n");
7497 space_map_close(prev_obsolete_sm);
7500 scip_count += 2;
7503 for (uint64_t i = 0; i < spa->spa_root_vdev->vdev_children; i++) {
7504 vdev_t *vd = spa->spa_root_vdev->vdev_child[i];
7505 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
7507 if (vic->vic_mapping_object != 0) {
7508 ASSERT(vd->vdev_ops == &vdev_indirect_ops ||
7509 vd->vdev_removing);
7510 indirect_vdev_count++;
7512 if (vd->vdev_indirect_mapping->vim_havecounts) {
7513 obsolete_counts_count++;
7517 boolean_t are_precise;
7518 VERIFY0(vdev_obsolete_counts_are_precise(vd, &are_precise));
7519 if (are_precise) {
7520 ASSERT(vic->vic_mapping_object != 0);
7521 precise_vdev_count++;
7524 uint64_t obsolete_sm_object;
7525 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
7526 if (obsolete_sm_object != 0) {
7527 ASSERT(vic->vic_mapping_object != 0);
7528 obsolete_sm_count++;
7532 (void) feature_get_refcount(spa,
7533 &spa_feature_table[SPA_FEATURE_DEVICE_REMOVAL],
7534 &dr_feature_refcount);
7535 (void) feature_get_refcount(spa,
7536 &spa_feature_table[SPA_FEATURE_OBSOLETE_COUNTS],
7537 &oc_feature_refcount);
7539 if (dr_feature_refcount != indirect_vdev_count) {
7540 ret = 1;
7541 (void) printf("Number of indirect vdevs (%llu) " \
7542 "does not match feature count (%llu)\n",
7543 (u_longlong_t)indirect_vdev_count,
7544 (u_longlong_t)dr_feature_refcount);
7545 } else {
7546 (void) printf("Verified device_removal feature refcount " \
7547 "of %llu is correct\n",
7548 (u_longlong_t)dr_feature_refcount);
7551 if (zap_contains(spa_meta_objset(spa), DMU_POOL_DIRECTORY_OBJECT,
7552 DMU_POOL_OBSOLETE_BPOBJ) == 0) {
7553 obsolete_bpobj_count++;
7557 obsolete_counts_object_count = precise_vdev_count;
7558 obsolete_counts_object_count += obsolete_sm_count;
7559 obsolete_counts_object_count += obsolete_counts_count;
7560 obsolete_counts_object_count += scip_count;
7561 obsolete_counts_object_count += obsolete_bpobj_count;
7562 obsolete_counts_object_count += remap_deadlist_count;
7564 if (oc_feature_refcount != obsolete_counts_object_count) {
7565 ret = 1;
7566 (void) printf("Number of obsolete counts objects (%llu) " \
7567 "does not match feature count (%llu)\n",
7568 (u_longlong_t)obsolete_counts_object_count,
7569 (u_longlong_t)oc_feature_refcount);
7570 (void) printf("pv:%llu os:%llu oc:%llu sc:%llu "
7571 "ob:%llu rd:%llu\n",
7572 (u_longlong_t)precise_vdev_count,
7573 (u_longlong_t)obsolete_sm_count,
7574 (u_longlong_t)obsolete_counts_count,
7575 (u_longlong_t)scip_count,
7576 (u_longlong_t)obsolete_bpobj_count,
7577 (u_longlong_t)remap_deadlist_count);
7578 } else {
7579 (void) printf("Verified indirect_refcount feature refcount " \
7580 "of %llu is correct\n",
7581 (u_longlong_t)oc_feature_refcount);
7583 return (ret);
7586 static void
7587 zdb_set_skip_mmp(char *target)
7589 spa_t *spa;
7592 * Disable the activity check to allow examination of
7593 * active pools.
7595 mutex_enter(&spa_namespace_lock);
7596 if ((spa = spa_lookup(target)) != NULL) {
7597 spa->spa_import_flags |= ZFS_IMPORT_SKIP_MMP;
7599 mutex_exit(&spa_namespace_lock);
7602 #define BOGUS_SUFFIX "_CHECKPOINTED_UNIVERSE"
7604 * Import the checkpointed state of the pool specified by the target
7605 * parameter as readonly. The function also accepts a pool config
7606 * as an optional parameter, else it attempts to infer the config by
7607 * the name of the target pool.
7609 * Note that the checkpointed state's pool name will be the name of
7610 * the original pool with the above suffix appended to it. In addition,
7611 * if the target is not a pool name (e.g. a path to a dataset) then
7612 * the new_path parameter is populated with the updated path to
7613 * reflect the fact that we are looking into the checkpointed state.
7615 * The function returns a newly-allocated copy of the name of the
7616 * pool containing the checkpointed state. When this copy is no
7617 * longer needed it should be freed with free(3C). Same thing
7618 * applies to the new_path parameter if allocated.
7620 static char *
7621 import_checkpointed_state(char *target, nvlist_t *cfg, char **new_path)
7623 int error = 0;
7624 char *poolname, *bogus_name = NULL;
7625 boolean_t freecfg = B_FALSE;
7627 /* If the target is not a pool, the extract the pool name */
7628 char *path_start = strchr(target, '/');
7629 if (path_start != NULL) {
7630 size_t poolname_len = path_start - target;
7631 poolname = strndup(target, poolname_len);
7632 } else {
7633 poolname = target;
7636 if (cfg == NULL) {
7637 zdb_set_skip_mmp(poolname);
7638 error = spa_get_stats(poolname, &cfg, NULL, 0);
7639 if (error != 0) {
7640 fatal("Tried to read config of pool \"%s\" but "
7641 "spa_get_stats() failed with error %d\n",
7642 poolname, error);
7644 freecfg = B_TRUE;
7647 if (asprintf(&bogus_name, "%s%s", poolname, BOGUS_SUFFIX) == -1) {
7648 if (target != poolname)
7649 free(poolname);
7650 return (NULL);
7652 fnvlist_add_string(cfg, ZPOOL_CONFIG_POOL_NAME, bogus_name);
7654 error = spa_import(bogus_name, cfg, NULL,
7655 ZFS_IMPORT_MISSING_LOG | ZFS_IMPORT_CHECKPOINT |
7656 ZFS_IMPORT_SKIP_MMP);
7657 if (freecfg)
7658 nvlist_free(cfg);
7659 if (error != 0) {
7660 fatal("Tried to import pool \"%s\" but spa_import() failed "
7661 "with error %d\n", bogus_name, error);
7664 if (new_path != NULL && path_start != NULL) {
7665 if (asprintf(new_path, "%s%s", bogus_name, path_start) == -1) {
7666 free(bogus_name);
7667 if (path_start != NULL)
7668 free(poolname);
7669 return (NULL);
7673 if (target != poolname)
7674 free(poolname);
7676 return (bogus_name);
7679 typedef struct verify_checkpoint_sm_entry_cb_arg {
7680 vdev_t *vcsec_vd;
7682 /* the following fields are only used for printing progress */
7683 uint64_t vcsec_entryid;
7684 uint64_t vcsec_num_entries;
7685 } verify_checkpoint_sm_entry_cb_arg_t;
7687 #define ENTRIES_PER_PROGRESS_UPDATE 10000
7689 static int
7690 verify_checkpoint_sm_entry_cb(space_map_entry_t *sme, void *arg)
7692 verify_checkpoint_sm_entry_cb_arg_t *vcsec = arg;
7693 vdev_t *vd = vcsec->vcsec_vd;
7694 metaslab_t *ms = vd->vdev_ms[sme->sme_offset >> vd->vdev_ms_shift];
7695 uint64_t end = sme->sme_offset + sme->sme_run;
7697 ASSERT(sme->sme_type == SM_FREE);
7699 if ((vcsec->vcsec_entryid % ENTRIES_PER_PROGRESS_UPDATE) == 0) {
7700 (void) fprintf(stderr,
7701 "\rverifying vdev %llu, space map entry %llu of %llu ...",
7702 (longlong_t)vd->vdev_id,
7703 (longlong_t)vcsec->vcsec_entryid,
7704 (longlong_t)vcsec->vcsec_num_entries);
7706 vcsec->vcsec_entryid++;
7709 * See comment in checkpoint_sm_exclude_entry_cb()
7711 VERIFY3U(sme->sme_offset, >=, ms->ms_start);
7712 VERIFY3U(end, <=, ms->ms_start + ms->ms_size);
7715 * The entries in the vdev_checkpoint_sm should be marked as
7716 * allocated in the checkpointed state of the pool, therefore
7717 * their respective ms_allocateable trees should not contain them.
7719 mutex_enter(&ms->ms_lock);
7720 range_tree_verify_not_present(ms->ms_allocatable,
7721 sme->sme_offset, sme->sme_run);
7722 mutex_exit(&ms->ms_lock);
7724 return (0);
7728 * Verify that all segments in the vdev_checkpoint_sm are allocated
7729 * according to the checkpoint's ms_sm (i.e. are not in the checkpoint's
7730 * ms_allocatable).
7732 * Do so by comparing the checkpoint space maps (vdev_checkpoint_sm) of
7733 * each vdev in the current state of the pool to the metaslab space maps
7734 * (ms_sm) of the checkpointed state of the pool.
7736 * Note that the function changes the state of the ms_allocatable
7737 * trees of the current spa_t. The entries of these ms_allocatable
7738 * trees are cleared out and then repopulated from with the free
7739 * entries of their respective ms_sm space maps.
7741 static void
7742 verify_checkpoint_vdev_spacemaps(spa_t *checkpoint, spa_t *current)
7744 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev;
7745 vdev_t *current_rvd = current->spa_root_vdev;
7747 load_concrete_ms_allocatable_trees(checkpoint, SM_FREE);
7749 for (uint64_t c = 0; c < ckpoint_rvd->vdev_children; c++) {
7750 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[c];
7751 vdev_t *current_vd = current_rvd->vdev_child[c];
7753 space_map_t *checkpoint_sm = NULL;
7754 uint64_t checkpoint_sm_obj;
7756 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) {
7758 * Since we don't allow device removal in a pool
7759 * that has a checkpoint, we expect that all removed
7760 * vdevs were removed from the pool before the
7761 * checkpoint.
7763 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops);
7764 continue;
7768 * If the checkpoint space map doesn't exist, then nothing
7769 * here is checkpointed so there's nothing to verify.
7771 if (current_vd->vdev_top_zap == 0 ||
7772 zap_contains(spa_meta_objset(current),
7773 current_vd->vdev_top_zap,
7774 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
7775 continue;
7777 VERIFY0(zap_lookup(spa_meta_objset(current),
7778 current_vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
7779 sizeof (uint64_t), 1, &checkpoint_sm_obj));
7781 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(current),
7782 checkpoint_sm_obj, 0, current_vd->vdev_asize,
7783 current_vd->vdev_ashift));
7785 verify_checkpoint_sm_entry_cb_arg_t vcsec;
7786 vcsec.vcsec_vd = ckpoint_vd;
7787 vcsec.vcsec_entryid = 0;
7788 vcsec.vcsec_num_entries =
7789 space_map_length(checkpoint_sm) / sizeof (uint64_t);
7790 VERIFY0(space_map_iterate(checkpoint_sm,
7791 space_map_length(checkpoint_sm),
7792 verify_checkpoint_sm_entry_cb, &vcsec));
7793 if (dump_opt['m'] > 3)
7794 dump_spacemap(current->spa_meta_objset, checkpoint_sm);
7795 space_map_close(checkpoint_sm);
7799 * If we've added vdevs since we took the checkpoint, ensure
7800 * that their checkpoint space maps are empty.
7802 if (ckpoint_rvd->vdev_children < current_rvd->vdev_children) {
7803 for (uint64_t c = ckpoint_rvd->vdev_children;
7804 c < current_rvd->vdev_children; c++) {
7805 vdev_t *current_vd = current_rvd->vdev_child[c];
7806 VERIFY3P(current_vd->vdev_checkpoint_sm, ==, NULL);
7810 /* for cleaner progress output */
7811 (void) fprintf(stderr, "\n");
7815 * Verifies that all space that's allocated in the checkpoint is
7816 * still allocated in the current version, by checking that everything
7817 * in checkpoint's ms_allocatable (which is actually allocated, not
7818 * allocatable/free) is not present in current's ms_allocatable.
7820 * Note that the function changes the state of the ms_allocatable
7821 * trees of both spas when called. The entries of all ms_allocatable
7822 * trees are cleared out and then repopulated from their respective
7823 * ms_sm space maps. In the checkpointed state we load the allocated
7824 * entries, and in the current state we load the free entries.
7826 static void
7827 verify_checkpoint_ms_spacemaps(spa_t *checkpoint, spa_t *current)
7829 vdev_t *ckpoint_rvd = checkpoint->spa_root_vdev;
7830 vdev_t *current_rvd = current->spa_root_vdev;
7832 load_concrete_ms_allocatable_trees(checkpoint, SM_ALLOC);
7833 load_concrete_ms_allocatable_trees(current, SM_FREE);
7835 for (uint64_t i = 0; i < ckpoint_rvd->vdev_children; i++) {
7836 vdev_t *ckpoint_vd = ckpoint_rvd->vdev_child[i];
7837 vdev_t *current_vd = current_rvd->vdev_child[i];
7839 if (ckpoint_vd->vdev_ops == &vdev_indirect_ops) {
7841 * See comment in verify_checkpoint_vdev_spacemaps()
7843 ASSERT3P(current_vd->vdev_ops, ==, &vdev_indirect_ops);
7844 continue;
7847 for (uint64_t m = 0; m < ckpoint_vd->vdev_ms_count; m++) {
7848 metaslab_t *ckpoint_msp = ckpoint_vd->vdev_ms[m];
7849 metaslab_t *current_msp = current_vd->vdev_ms[m];
7851 (void) fprintf(stderr,
7852 "\rverifying vdev %llu of %llu, "
7853 "metaslab %llu of %llu ...",
7854 (longlong_t)current_vd->vdev_id,
7855 (longlong_t)current_rvd->vdev_children,
7856 (longlong_t)current_vd->vdev_ms[m]->ms_id,
7857 (longlong_t)current_vd->vdev_ms_count);
7860 * We walk through the ms_allocatable trees that
7861 * are loaded with the allocated blocks from the
7862 * ms_sm spacemaps of the checkpoint. For each
7863 * one of these ranges we ensure that none of them
7864 * exists in the ms_allocatable trees of the
7865 * current state which are loaded with the ranges
7866 * that are currently free.
7868 * This way we ensure that none of the blocks that
7869 * are part of the checkpoint were freed by mistake.
7871 range_tree_walk(ckpoint_msp->ms_allocatable,
7872 (range_tree_func_t *)range_tree_verify_not_present,
7873 current_msp->ms_allocatable);
7877 /* for cleaner progress output */
7878 (void) fprintf(stderr, "\n");
7881 static void
7882 verify_checkpoint_blocks(spa_t *spa)
7884 ASSERT(!dump_opt['L']);
7886 spa_t *checkpoint_spa;
7887 char *checkpoint_pool;
7888 int error = 0;
7891 * We import the checkpointed state of the pool (under a different
7892 * name) so we can do verification on it against the current state
7893 * of the pool.
7895 checkpoint_pool = import_checkpointed_state(spa->spa_name, NULL,
7896 NULL);
7897 ASSERT(strcmp(spa->spa_name, checkpoint_pool) != 0);
7899 error = spa_open(checkpoint_pool, &checkpoint_spa, FTAG);
7900 if (error != 0) {
7901 fatal("Tried to open pool \"%s\" but spa_open() failed with "
7902 "error %d\n", checkpoint_pool, error);
7906 * Ensure that ranges in the checkpoint space maps of each vdev
7907 * are allocated according to the checkpointed state's metaslab
7908 * space maps.
7910 verify_checkpoint_vdev_spacemaps(checkpoint_spa, spa);
7913 * Ensure that allocated ranges in the checkpoint's metaslab
7914 * space maps remain allocated in the metaslab space maps of
7915 * the current state.
7917 verify_checkpoint_ms_spacemaps(checkpoint_spa, spa);
7920 * Once we are done, we get rid of the checkpointed state.
7922 spa_close(checkpoint_spa, FTAG);
7923 free(checkpoint_pool);
7926 static void
7927 dump_leftover_checkpoint_blocks(spa_t *spa)
7929 vdev_t *rvd = spa->spa_root_vdev;
7931 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
7932 vdev_t *vd = rvd->vdev_child[i];
7934 space_map_t *checkpoint_sm = NULL;
7935 uint64_t checkpoint_sm_obj;
7937 if (vd->vdev_top_zap == 0)
7938 continue;
7940 if (zap_contains(spa_meta_objset(spa), vd->vdev_top_zap,
7941 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM) != 0)
7942 continue;
7944 VERIFY0(zap_lookup(spa_meta_objset(spa), vd->vdev_top_zap,
7945 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
7946 sizeof (uint64_t), 1, &checkpoint_sm_obj));
7948 VERIFY0(space_map_open(&checkpoint_sm, spa_meta_objset(spa),
7949 checkpoint_sm_obj, 0, vd->vdev_asize, vd->vdev_ashift));
7950 dump_spacemap(spa->spa_meta_objset, checkpoint_sm);
7951 space_map_close(checkpoint_sm);
7955 static int
7956 verify_checkpoint(spa_t *spa)
7958 uberblock_t checkpoint;
7959 int error;
7961 if (!spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT))
7962 return (0);
7964 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
7965 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
7966 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
7968 if (error == ENOENT && !dump_opt['L']) {
7970 * If the feature is active but the uberblock is missing
7971 * then we must be in the middle of discarding the
7972 * checkpoint.
7974 (void) printf("\nPartially discarded checkpoint "
7975 "state found:\n");
7976 if (dump_opt['m'] > 3)
7977 dump_leftover_checkpoint_blocks(spa);
7978 return (0);
7979 } else if (error != 0) {
7980 (void) printf("lookup error %d when looking for "
7981 "checkpointed uberblock in MOS\n", error);
7982 return (error);
7984 dump_uberblock(&checkpoint, "\nCheckpointed uberblock found:\n", "\n");
7986 if (checkpoint.ub_checkpoint_txg == 0) {
7987 (void) printf("\nub_checkpoint_txg not set in checkpointed "
7988 "uberblock\n");
7989 error = 3;
7992 if (error == 0 && !dump_opt['L'])
7993 verify_checkpoint_blocks(spa);
7995 return (error);
7998 static void
7999 mos_leaks_cb(void *arg, uint64_t start, uint64_t size)
8001 (void) arg;
8002 for (uint64_t i = start; i < size; i++) {
8003 (void) printf("MOS object %llu referenced but not allocated\n",
8004 (u_longlong_t)i);
8008 static void
8009 mos_obj_refd(uint64_t obj)
8011 if (obj != 0 && mos_refd_objs != NULL)
8012 range_tree_add(mos_refd_objs, obj, 1);
8016 * Call on a MOS object that may already have been referenced.
8018 static void
8019 mos_obj_refd_multiple(uint64_t obj)
8021 if (obj != 0 && mos_refd_objs != NULL &&
8022 !range_tree_contains(mos_refd_objs, obj, 1))
8023 range_tree_add(mos_refd_objs, obj, 1);
8026 static void
8027 mos_leak_vdev_top_zap(vdev_t *vd)
8029 uint64_t ms_flush_data_obj;
8030 int error = zap_lookup(spa_meta_objset(vd->vdev_spa),
8031 vd->vdev_top_zap, VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS,
8032 sizeof (ms_flush_data_obj), 1, &ms_flush_data_obj);
8033 if (error == ENOENT)
8034 return;
8035 ASSERT0(error);
8037 mos_obj_refd(ms_flush_data_obj);
8040 static void
8041 mos_leak_vdev(vdev_t *vd)
8043 mos_obj_refd(vd->vdev_dtl_object);
8044 mos_obj_refd(vd->vdev_ms_array);
8045 mos_obj_refd(vd->vdev_indirect_config.vic_births_object);
8046 mos_obj_refd(vd->vdev_indirect_config.vic_mapping_object);
8047 mos_obj_refd(vd->vdev_leaf_zap);
8048 if (vd->vdev_checkpoint_sm != NULL)
8049 mos_obj_refd(vd->vdev_checkpoint_sm->sm_object);
8050 if (vd->vdev_indirect_mapping != NULL) {
8051 mos_obj_refd(vd->vdev_indirect_mapping->
8052 vim_phys->vimp_counts_object);
8054 if (vd->vdev_obsolete_sm != NULL)
8055 mos_obj_refd(vd->vdev_obsolete_sm->sm_object);
8057 for (uint64_t m = 0; m < vd->vdev_ms_count; m++) {
8058 metaslab_t *ms = vd->vdev_ms[m];
8059 mos_obj_refd(space_map_object(ms->ms_sm));
8062 if (vd->vdev_root_zap != 0)
8063 mos_obj_refd(vd->vdev_root_zap);
8065 if (vd->vdev_top_zap != 0) {
8066 mos_obj_refd(vd->vdev_top_zap);
8067 mos_leak_vdev_top_zap(vd);
8070 for (uint64_t c = 0; c < vd->vdev_children; c++) {
8071 mos_leak_vdev(vd->vdev_child[c]);
8075 static void
8076 mos_leak_log_spacemaps(spa_t *spa)
8078 uint64_t spacemap_zap;
8079 int error = zap_lookup(spa_meta_objset(spa),
8080 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_LOG_SPACEMAP_ZAP,
8081 sizeof (spacemap_zap), 1, &spacemap_zap);
8082 if (error == ENOENT)
8083 return;
8084 ASSERT0(error);
8086 mos_obj_refd(spacemap_zap);
8087 for (spa_log_sm_t *sls = avl_first(&spa->spa_sm_logs_by_txg);
8088 sls; sls = AVL_NEXT(&spa->spa_sm_logs_by_txg, sls))
8089 mos_obj_refd(sls->sls_sm_obj);
8092 static void
8093 errorlog_count_refd(objset_t *mos, uint64_t errlog)
8095 zap_cursor_t zc;
8096 zap_attribute_t *za = zap_attribute_alloc();
8097 for (zap_cursor_init(&zc, mos, errlog);
8098 zap_cursor_retrieve(&zc, za) == 0;
8099 zap_cursor_advance(&zc)) {
8100 mos_obj_refd(za->za_first_integer);
8102 zap_cursor_fini(&zc);
8103 zap_attribute_free(za);
8106 static int
8107 dump_mos_leaks(spa_t *spa)
8109 int rv = 0;
8110 objset_t *mos = spa->spa_meta_objset;
8111 dsl_pool_t *dp = spa->spa_dsl_pool;
8113 /* Visit and mark all referenced objects in the MOS */
8115 mos_obj_refd(DMU_POOL_DIRECTORY_OBJECT);
8116 mos_obj_refd(spa->spa_pool_props_object);
8117 mos_obj_refd(spa->spa_config_object);
8118 mos_obj_refd(spa->spa_ddt_stat_object);
8119 mos_obj_refd(spa->spa_feat_desc_obj);
8120 mos_obj_refd(spa->spa_feat_enabled_txg_obj);
8121 mos_obj_refd(spa->spa_feat_for_read_obj);
8122 mos_obj_refd(spa->spa_feat_for_write_obj);
8123 mos_obj_refd(spa->spa_history);
8124 mos_obj_refd(spa->spa_errlog_last);
8125 mos_obj_refd(spa->spa_errlog_scrub);
8127 if (spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG)) {
8128 errorlog_count_refd(mos, spa->spa_errlog_last);
8129 errorlog_count_refd(mos, spa->spa_errlog_scrub);
8132 mos_obj_refd(spa->spa_all_vdev_zaps);
8133 mos_obj_refd(spa->spa_dsl_pool->dp_bptree_obj);
8134 mos_obj_refd(spa->spa_dsl_pool->dp_tmp_userrefs_obj);
8135 mos_obj_refd(spa->spa_dsl_pool->dp_scan->scn_phys.scn_queue_obj);
8136 bpobj_count_refd(&spa->spa_deferred_bpobj);
8137 mos_obj_refd(dp->dp_empty_bpobj);
8138 bpobj_count_refd(&dp->dp_obsolete_bpobj);
8139 bpobj_count_refd(&dp->dp_free_bpobj);
8140 mos_obj_refd(spa->spa_l2cache.sav_object);
8141 mos_obj_refd(spa->spa_spares.sav_object);
8143 if (spa->spa_syncing_log_sm != NULL)
8144 mos_obj_refd(spa->spa_syncing_log_sm->sm_object);
8145 mos_leak_log_spacemaps(spa);
8147 mos_obj_refd(spa->spa_condensing_indirect_phys.
8148 scip_next_mapping_object);
8149 mos_obj_refd(spa->spa_condensing_indirect_phys.
8150 scip_prev_obsolete_sm_object);
8151 if (spa->spa_condensing_indirect_phys.scip_next_mapping_object != 0) {
8152 vdev_indirect_mapping_t *vim =
8153 vdev_indirect_mapping_open(mos,
8154 spa->spa_condensing_indirect_phys.scip_next_mapping_object);
8155 mos_obj_refd(vim->vim_phys->vimp_counts_object);
8156 vdev_indirect_mapping_close(vim);
8158 deleted_livelists_dump_mos(spa);
8160 if (dp->dp_origin_snap != NULL) {
8161 dsl_dataset_t *ds;
8163 dsl_pool_config_enter(dp, FTAG);
8164 VERIFY0(dsl_dataset_hold_obj(dp,
8165 dsl_dataset_phys(dp->dp_origin_snap)->ds_next_snap_obj,
8166 FTAG, &ds));
8167 count_ds_mos_objects(ds);
8168 dump_blkptr_list(&ds->ds_deadlist, "Deadlist");
8169 dsl_dataset_rele(ds, FTAG);
8170 dsl_pool_config_exit(dp, FTAG);
8172 count_ds_mos_objects(dp->dp_origin_snap);
8173 dump_blkptr_list(&dp->dp_origin_snap->ds_deadlist, "Deadlist");
8175 count_dir_mos_objects(dp->dp_mos_dir);
8176 if (dp->dp_free_dir != NULL)
8177 count_dir_mos_objects(dp->dp_free_dir);
8178 if (dp->dp_leak_dir != NULL)
8179 count_dir_mos_objects(dp->dp_leak_dir);
8181 mos_leak_vdev(spa->spa_root_vdev);
8183 for (uint64_t c = 0; c < ZIO_CHECKSUM_FUNCTIONS; c++) {
8184 ddt_t *ddt = spa->spa_ddt[c];
8185 if (!ddt || ddt->ddt_version == DDT_VERSION_UNCONFIGURED)
8186 continue;
8188 /* DDT store objects */
8189 for (ddt_type_t type = 0; type < DDT_TYPES; type++) {
8190 for (ddt_class_t class = 0; class < DDT_CLASSES;
8191 class++) {
8192 mos_obj_refd(ddt->ddt_object[type][class]);
8196 /* FDT container */
8197 if (ddt->ddt_version == DDT_VERSION_FDT)
8198 mos_obj_refd(ddt->ddt_dir_object);
8200 /* FDT log objects */
8201 if (ddt->ddt_flags & DDT_FLAG_LOG) {
8202 mos_obj_refd(ddt->ddt_log[0].ddl_object);
8203 mos_obj_refd(ddt->ddt_log[1].ddl_object);
8207 if (spa->spa_brt != NULL) {
8208 brt_t *brt = spa->spa_brt;
8209 for (uint64_t vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) {
8210 brt_vdev_t *brtvd = &brt->brt_vdevs[vdevid];
8211 if (brtvd != NULL && brtvd->bv_initiated) {
8212 mos_obj_refd(brtvd->bv_mos_brtvdev);
8213 mos_obj_refd(brtvd->bv_mos_entries);
8219 * Visit all allocated objects and make sure they are referenced.
8221 uint64_t object = 0;
8222 while (dmu_object_next(mos, &object, B_FALSE, 0) == 0) {
8223 if (range_tree_contains(mos_refd_objs, object, 1)) {
8224 range_tree_remove(mos_refd_objs, object, 1);
8225 } else {
8226 dmu_object_info_t doi;
8227 const char *name;
8228 VERIFY0(dmu_object_info(mos, object, &doi));
8229 if (doi.doi_type & DMU_OT_NEWTYPE) {
8230 dmu_object_byteswap_t bswap =
8231 DMU_OT_BYTESWAP(doi.doi_type);
8232 name = dmu_ot_byteswap[bswap].ob_name;
8233 } else {
8234 name = dmu_ot[doi.doi_type].ot_name;
8237 (void) printf("MOS object %llu (%s) leaked\n",
8238 (u_longlong_t)object, name);
8239 rv = 2;
8242 (void) range_tree_walk(mos_refd_objs, mos_leaks_cb, NULL);
8243 if (!range_tree_is_empty(mos_refd_objs))
8244 rv = 2;
8245 range_tree_vacate(mos_refd_objs, NULL, NULL);
8246 range_tree_destroy(mos_refd_objs);
8247 return (rv);
8250 typedef struct log_sm_obsolete_stats_arg {
8251 uint64_t lsos_current_txg;
8253 uint64_t lsos_total_entries;
8254 uint64_t lsos_valid_entries;
8256 uint64_t lsos_sm_entries;
8257 uint64_t lsos_valid_sm_entries;
8258 } log_sm_obsolete_stats_arg_t;
8260 static int
8261 log_spacemap_obsolete_stats_cb(spa_t *spa, space_map_entry_t *sme,
8262 uint64_t txg, void *arg)
8264 log_sm_obsolete_stats_arg_t *lsos = arg;
8266 uint64_t offset = sme->sme_offset;
8267 uint64_t vdev_id = sme->sme_vdev;
8269 if (lsos->lsos_current_txg == 0) {
8270 /* this is the first log */
8271 lsos->lsos_current_txg = txg;
8272 } else if (lsos->lsos_current_txg < txg) {
8273 /* we just changed log - print stats and reset */
8274 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
8275 (u_longlong_t)lsos->lsos_valid_sm_entries,
8276 (u_longlong_t)lsos->lsos_sm_entries,
8277 (u_longlong_t)lsos->lsos_current_txg);
8278 lsos->lsos_valid_sm_entries = 0;
8279 lsos->lsos_sm_entries = 0;
8280 lsos->lsos_current_txg = txg;
8282 ASSERT3U(lsos->lsos_current_txg, ==, txg);
8284 lsos->lsos_sm_entries++;
8285 lsos->lsos_total_entries++;
8287 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
8288 if (!vdev_is_concrete(vd))
8289 return (0);
8291 metaslab_t *ms = vd->vdev_ms[offset >> vd->vdev_ms_shift];
8292 ASSERT(sme->sme_type == SM_ALLOC || sme->sme_type == SM_FREE);
8294 if (txg < metaslab_unflushed_txg(ms))
8295 return (0);
8296 lsos->lsos_valid_sm_entries++;
8297 lsos->lsos_valid_entries++;
8298 return (0);
8301 static void
8302 dump_log_spacemap_obsolete_stats(spa_t *spa)
8304 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
8305 return;
8307 log_sm_obsolete_stats_arg_t lsos = {0};
8309 (void) printf("Log Space Map Obsolete Entry Statistics:\n");
8311 iterate_through_spacemap_logs(spa,
8312 log_spacemap_obsolete_stats_cb, &lsos);
8314 /* print stats for latest log */
8315 (void) printf("%-8llu valid entries out of %-8llu - txg %llu\n",
8316 (u_longlong_t)lsos.lsos_valid_sm_entries,
8317 (u_longlong_t)lsos.lsos_sm_entries,
8318 (u_longlong_t)lsos.lsos_current_txg);
8320 (void) printf("%-8llu valid entries out of %-8llu - total\n\n",
8321 (u_longlong_t)lsos.lsos_valid_entries,
8322 (u_longlong_t)lsos.lsos_total_entries);
8325 static void
8326 dump_zpool(spa_t *spa)
8328 dsl_pool_t *dp = spa_get_dsl(spa);
8329 int rc = 0;
8331 if (dump_opt['y']) {
8332 livelist_metaslab_validate(spa);
8335 if (dump_opt['S']) {
8336 dump_simulated_ddt(spa);
8337 return;
8340 if (!dump_opt['e'] && dump_opt['C'] > 1) {
8341 (void) printf("\nCached configuration:\n");
8342 dump_nvlist(spa->spa_config, 8);
8345 if (dump_opt['C'])
8346 dump_config(spa);
8348 if (dump_opt['u'])
8349 dump_uberblock(&spa->spa_uberblock, "\nUberblock:\n", "\n");
8351 if (dump_opt['D'])
8352 dump_all_ddts(spa);
8354 if (dump_opt['T'])
8355 dump_brt(spa);
8357 if (dump_opt['d'] > 2 || dump_opt['m'])
8358 dump_metaslabs(spa);
8359 if (dump_opt['M'])
8360 dump_metaslab_groups(spa, dump_opt['M'] > 1);
8361 if (dump_opt['d'] > 2 || dump_opt['m']) {
8362 dump_log_spacemaps(spa);
8363 dump_log_spacemap_obsolete_stats(spa);
8366 if (dump_opt['d'] || dump_opt['i']) {
8367 spa_feature_t f;
8368 mos_refd_objs = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
8370 dump_objset(dp->dp_meta_objset);
8372 if (dump_opt['d'] >= 3) {
8373 dsl_pool_t *dp = spa->spa_dsl_pool;
8374 dump_full_bpobj(&spa->spa_deferred_bpobj,
8375 "Deferred frees", 0);
8376 if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
8377 dump_full_bpobj(&dp->dp_free_bpobj,
8378 "Pool snapshot frees", 0);
8380 if (bpobj_is_open(&dp->dp_obsolete_bpobj)) {
8381 ASSERT(spa_feature_is_enabled(spa,
8382 SPA_FEATURE_DEVICE_REMOVAL));
8383 dump_full_bpobj(&dp->dp_obsolete_bpobj,
8384 "Pool obsolete blocks", 0);
8387 if (spa_feature_is_active(spa,
8388 SPA_FEATURE_ASYNC_DESTROY)) {
8389 dump_bptree(spa->spa_meta_objset,
8390 dp->dp_bptree_obj,
8391 "Pool dataset frees");
8393 dump_dtl(spa->spa_root_vdev, 0);
8396 for (spa_feature_t f = 0; f < SPA_FEATURES; f++)
8397 global_feature_count[f] = UINT64_MAX;
8398 global_feature_count[SPA_FEATURE_REDACTION_BOOKMARKS] = 0;
8399 global_feature_count[SPA_FEATURE_REDACTION_LIST_SPILL] = 0;
8400 global_feature_count[SPA_FEATURE_BOOKMARK_WRITTEN] = 0;
8401 global_feature_count[SPA_FEATURE_LIVELIST] = 0;
8403 (void) dmu_objset_find(spa_name(spa), dump_one_objset,
8404 NULL, DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN);
8406 if (rc == 0 && !dump_opt['L'])
8407 rc = dump_mos_leaks(spa);
8409 for (f = 0; f < SPA_FEATURES; f++) {
8410 uint64_t refcount;
8412 uint64_t *arr;
8413 if (!(spa_feature_table[f].fi_flags &
8414 ZFEATURE_FLAG_PER_DATASET)) {
8415 if (global_feature_count[f] == UINT64_MAX)
8416 continue;
8417 if (!spa_feature_is_enabled(spa, f)) {
8418 ASSERT0(global_feature_count[f]);
8419 continue;
8421 arr = global_feature_count;
8422 } else {
8423 if (!spa_feature_is_enabled(spa, f)) {
8424 ASSERT0(dataset_feature_count[f]);
8425 continue;
8427 arr = dataset_feature_count;
8429 if (feature_get_refcount(spa, &spa_feature_table[f],
8430 &refcount) == ENOTSUP)
8431 continue;
8432 if (arr[f] != refcount) {
8433 (void) printf("%s feature refcount mismatch: "
8434 "%lld consumers != %lld refcount\n",
8435 spa_feature_table[f].fi_uname,
8436 (longlong_t)arr[f], (longlong_t)refcount);
8437 rc = 2;
8438 } else {
8439 (void) printf("Verified %s feature refcount "
8440 "of %llu is correct\n",
8441 spa_feature_table[f].fi_uname,
8442 (longlong_t)refcount);
8446 if (rc == 0)
8447 rc = verify_device_removal_feature_counts(spa);
8450 if (rc == 0 && (dump_opt['b'] || dump_opt['c']))
8451 rc = dump_block_stats(spa);
8453 if (rc == 0)
8454 rc = verify_spacemap_refcounts(spa);
8456 if (dump_opt['s'])
8457 show_pool_stats(spa);
8459 if (dump_opt['h'])
8460 dump_history(spa);
8462 if (rc == 0)
8463 rc = verify_checkpoint(spa);
8465 if (rc != 0) {
8466 dump_debug_buffer();
8467 zdb_exit(rc);
8471 #define ZDB_FLAG_CHECKSUM 0x0001
8472 #define ZDB_FLAG_DECOMPRESS 0x0002
8473 #define ZDB_FLAG_BSWAP 0x0004
8474 #define ZDB_FLAG_GBH 0x0008
8475 #define ZDB_FLAG_INDIRECT 0x0010
8476 #define ZDB_FLAG_RAW 0x0020
8477 #define ZDB_FLAG_PRINT_BLKPTR 0x0040
8478 #define ZDB_FLAG_VERBOSE 0x0080
8480 static int flagbits[256];
8481 static char flagbitstr[16];
8483 static void
8484 zdb_print_blkptr(const blkptr_t *bp, int flags)
8486 char blkbuf[BP_SPRINTF_LEN];
8488 if (flags & ZDB_FLAG_BSWAP)
8489 byteswap_uint64_array((void *)bp, sizeof (blkptr_t));
8491 snprintf_blkptr(blkbuf, sizeof (blkbuf), bp);
8492 (void) printf("%s\n", blkbuf);
8495 static void
8496 zdb_dump_indirect(blkptr_t *bp, int nbps, int flags)
8498 int i;
8500 for (i = 0; i < nbps; i++)
8501 zdb_print_blkptr(&bp[i], flags);
8504 static void
8505 zdb_dump_gbh(void *buf, int flags)
8507 zdb_dump_indirect((blkptr_t *)buf, SPA_GBH_NBLKPTRS, flags);
8510 static void
8511 zdb_dump_block_raw(void *buf, uint64_t size, int flags)
8513 if (flags & ZDB_FLAG_BSWAP)
8514 byteswap_uint64_array(buf, size);
8515 VERIFY(write(fileno(stdout), buf, size) == size);
8518 static void
8519 zdb_dump_block(char *label, void *buf, uint64_t size, int flags)
8521 uint64_t *d = (uint64_t *)buf;
8522 unsigned nwords = size / sizeof (uint64_t);
8523 int do_bswap = !!(flags & ZDB_FLAG_BSWAP);
8524 unsigned i, j;
8525 const char *hdr;
8526 char *c;
8529 if (do_bswap)
8530 hdr = " 7 6 5 4 3 2 1 0 f e d c b a 9 8";
8531 else
8532 hdr = " 0 1 2 3 4 5 6 7 8 9 a b c d e f";
8534 (void) printf("\n%s\n%6s %s 0123456789abcdef\n", label, "", hdr);
8536 #ifdef _ZFS_LITTLE_ENDIAN
8537 /* correct the endianness */
8538 do_bswap = !do_bswap;
8539 #endif
8540 for (i = 0; i < nwords; i += 2) {
8541 (void) printf("%06llx: %016llx %016llx ",
8542 (u_longlong_t)(i * sizeof (uint64_t)),
8543 (u_longlong_t)(do_bswap ? BSWAP_64(d[i]) : d[i]),
8544 (u_longlong_t)(do_bswap ? BSWAP_64(d[i + 1]) : d[i + 1]));
8546 c = (char *)&d[i];
8547 for (j = 0; j < 2 * sizeof (uint64_t); j++)
8548 (void) printf("%c", isprint(c[j]) ? c[j] : '.');
8549 (void) printf("\n");
8554 * There are two acceptable formats:
8555 * leaf_name - For example: c1t0d0 or /tmp/ztest.0a
8556 * child[.child]* - For example: 0.1.1
8558 * The second form can be used to specify arbitrary vdevs anywhere
8559 * in the hierarchy. For example, in a pool with a mirror of
8560 * RAID-Zs, you can specify either RAID-Z vdev with 0.0 or 0.1 .
8562 static vdev_t *
8563 zdb_vdev_lookup(vdev_t *vdev, const char *path)
8565 char *s, *p, *q;
8566 unsigned i;
8568 if (vdev == NULL)
8569 return (NULL);
8571 /* First, assume the x.x.x.x format */
8572 i = strtoul(path, &s, 10);
8573 if (s == path || (s && *s != '.' && *s != '\0'))
8574 goto name;
8575 if (i >= vdev->vdev_children)
8576 return (NULL);
8578 vdev = vdev->vdev_child[i];
8579 if (s && *s == '\0')
8580 return (vdev);
8581 return (zdb_vdev_lookup(vdev, s+1));
8583 name:
8584 for (i = 0; i < vdev->vdev_children; i++) {
8585 vdev_t *vc = vdev->vdev_child[i];
8587 if (vc->vdev_path == NULL) {
8588 vc = zdb_vdev_lookup(vc, path);
8589 if (vc == NULL)
8590 continue;
8591 else
8592 return (vc);
8595 p = strrchr(vc->vdev_path, '/');
8596 p = p ? p + 1 : vc->vdev_path;
8597 q = &vc->vdev_path[strlen(vc->vdev_path) - 2];
8599 if (strcmp(vc->vdev_path, path) == 0)
8600 return (vc);
8601 if (strcmp(p, path) == 0)
8602 return (vc);
8603 if (strcmp(q, "s0") == 0 && strncmp(p, path, q - p) == 0)
8604 return (vc);
8607 return (NULL);
8610 static int
8611 name_from_objset_id(spa_t *spa, uint64_t objset_id, char *outstr)
8613 dsl_dataset_t *ds;
8615 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
8616 int error = dsl_dataset_hold_obj(spa->spa_dsl_pool, objset_id,
8617 NULL, &ds);
8618 if (error != 0) {
8619 (void) fprintf(stderr, "failed to hold objset %llu: %s\n",
8620 (u_longlong_t)objset_id, strerror(error));
8621 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
8622 return (error);
8624 dsl_dataset_name(ds, outstr);
8625 dsl_dataset_rele(ds, NULL);
8626 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
8627 return (0);
8630 static boolean_t
8631 zdb_parse_block_sizes(char *sizes, uint64_t *lsize, uint64_t *psize)
8633 char *s0, *s1, *tmp = NULL;
8635 if (sizes == NULL)
8636 return (B_FALSE);
8638 s0 = strtok_r(sizes, "/", &tmp);
8639 if (s0 == NULL)
8640 return (B_FALSE);
8641 s1 = strtok_r(NULL, "/", &tmp);
8642 *lsize = strtoull(s0, NULL, 16);
8643 *psize = s1 ? strtoull(s1, NULL, 16) : *lsize;
8644 return (*lsize >= *psize && *psize > 0);
8647 #define ZIO_COMPRESS_MASK(alg) (1ULL << (ZIO_COMPRESS_##alg))
8649 static boolean_t
8650 try_decompress_block(abd_t *pabd, uint64_t lsize, uint64_t psize,
8651 int flags, int cfunc, void *lbuf, void *lbuf2)
8653 if (flags & ZDB_FLAG_VERBOSE) {
8654 (void) fprintf(stderr,
8655 "Trying %05llx -> %05llx (%s)\n",
8656 (u_longlong_t)psize,
8657 (u_longlong_t)lsize,
8658 zio_compress_table[cfunc].ci_name);
8662 * We set lbuf to all zeros and lbuf2 to all
8663 * ones, then decompress to both buffers and
8664 * compare their contents. This way we can
8665 * know if decompression filled exactly to
8666 * lsize or if it left some bytes unwritten.
8669 memset(lbuf, 0x00, lsize);
8670 memset(lbuf2, 0xff, lsize);
8672 abd_t labd, labd2;
8673 abd_get_from_buf_struct(&labd, lbuf, lsize);
8674 abd_get_from_buf_struct(&labd2, lbuf2, lsize);
8676 boolean_t ret = B_FALSE;
8677 if (zio_decompress_data(cfunc, pabd,
8678 &labd, psize, lsize, NULL) == 0 &&
8679 zio_decompress_data(cfunc, pabd,
8680 &labd2, psize, lsize, NULL) == 0 &&
8681 memcmp(lbuf, lbuf2, lsize) == 0)
8682 ret = B_TRUE;
8684 abd_free(&labd2);
8685 abd_free(&labd);
8687 return (ret);
8690 static uint64_t
8691 zdb_decompress_block(abd_t *pabd, void *buf, void *lbuf, uint64_t lsize,
8692 uint64_t psize, int flags)
8694 (void) buf;
8695 uint64_t orig_lsize = lsize;
8696 boolean_t tryzle = ((getenv("ZDB_NO_ZLE") == NULL));
8697 boolean_t found = B_FALSE;
8699 * We don't know how the data was compressed, so just try
8700 * every decompress function at every inflated blocksize.
8702 void *lbuf2 = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
8703 int cfuncs[ZIO_COMPRESS_FUNCTIONS] = { 0 };
8704 int *cfuncp = cfuncs;
8705 uint64_t maxlsize = SPA_MAXBLOCKSIZE;
8706 uint64_t mask = ZIO_COMPRESS_MASK(ON) | ZIO_COMPRESS_MASK(OFF) |
8707 ZIO_COMPRESS_MASK(INHERIT) | ZIO_COMPRESS_MASK(EMPTY) |
8708 ZIO_COMPRESS_MASK(ZLE);
8709 *cfuncp++ = ZIO_COMPRESS_LZ4;
8710 *cfuncp++ = ZIO_COMPRESS_LZJB;
8711 mask |= ZIO_COMPRESS_MASK(LZ4) | ZIO_COMPRESS_MASK(LZJB);
8713 * Every gzip level has the same decompressor, no need to
8714 * run it 9 times per bruteforce attempt.
8716 mask |= ZIO_COMPRESS_MASK(GZIP_2) | ZIO_COMPRESS_MASK(GZIP_3);
8717 mask |= ZIO_COMPRESS_MASK(GZIP_4) | ZIO_COMPRESS_MASK(GZIP_5);
8718 mask |= ZIO_COMPRESS_MASK(GZIP_6) | ZIO_COMPRESS_MASK(GZIP_7);
8719 mask |= ZIO_COMPRESS_MASK(GZIP_8) | ZIO_COMPRESS_MASK(GZIP_9);
8720 for (int c = 0; c < ZIO_COMPRESS_FUNCTIONS; c++)
8721 if (((1ULL << c) & mask) == 0)
8722 *cfuncp++ = c;
8725 * On the one hand, with SPA_MAXBLOCKSIZE at 16MB, this
8726 * could take a while and we should let the user know
8727 * we are not stuck. On the other hand, printing progress
8728 * info gets old after a while. User can specify 'v' flag
8729 * to see the progression.
8731 if (lsize == psize)
8732 lsize += SPA_MINBLOCKSIZE;
8733 else
8734 maxlsize = lsize;
8736 for (; lsize <= maxlsize; lsize += SPA_MINBLOCKSIZE) {
8737 for (cfuncp = cfuncs; *cfuncp; cfuncp++) {
8738 if (try_decompress_block(pabd, lsize, psize, flags,
8739 *cfuncp, lbuf, lbuf2)) {
8740 found = B_TRUE;
8741 break;
8744 if (*cfuncp != 0)
8745 break;
8747 if (!found && tryzle) {
8748 for (lsize = orig_lsize; lsize <= maxlsize;
8749 lsize += SPA_MINBLOCKSIZE) {
8750 if (try_decompress_block(pabd, lsize, psize, flags,
8751 ZIO_COMPRESS_ZLE, lbuf, lbuf2)) {
8752 *cfuncp = ZIO_COMPRESS_ZLE;
8753 found = B_TRUE;
8754 break;
8758 umem_free(lbuf2, SPA_MAXBLOCKSIZE);
8760 if (*cfuncp == ZIO_COMPRESS_ZLE) {
8761 printf("\nZLE decompression was selected. If you "
8762 "suspect the results are wrong,\ntry avoiding ZLE "
8763 "by setting and exporting ZDB_NO_ZLE=\"true\"\n");
8766 return (lsize > maxlsize ? -1 : lsize);
8770 * Read a block from a pool and print it out. The syntax of the
8771 * block descriptor is:
8773 * pool:vdev_specifier:offset:[lsize/]psize[:flags]
8775 * pool - The name of the pool you wish to read from
8776 * vdev_specifier - Which vdev (see comment for zdb_vdev_lookup)
8777 * offset - offset, in hex, in bytes
8778 * size - Amount of data to read, in hex, in bytes
8779 * flags - A string of characters specifying options
8780 * b: Decode a blkptr at given offset within block
8781 * c: Calculate and display checksums
8782 * d: Decompress data before dumping
8783 * e: Byteswap data before dumping
8784 * g: Display data as a gang block header
8785 * i: Display as an indirect block
8786 * r: Dump raw data to stdout
8787 * v: Verbose
8790 static void
8791 zdb_read_block(char *thing, spa_t *spa)
8793 blkptr_t blk, *bp = &blk;
8794 dva_t *dva = bp->blk_dva;
8795 int flags = 0;
8796 uint64_t offset = 0, psize = 0, lsize = 0, blkptr_offset = 0;
8797 zio_t *zio;
8798 vdev_t *vd;
8799 abd_t *pabd;
8800 void *lbuf, *buf;
8801 char *s, *p, *dup, *flagstr, *sizes, *tmp = NULL;
8802 const char *vdev, *errmsg = NULL;
8803 int i, len, error;
8804 boolean_t borrowed = B_FALSE, found = B_FALSE;
8806 dup = strdup(thing);
8807 s = strtok_r(dup, ":", &tmp);
8808 vdev = s ?: "";
8809 s = strtok_r(NULL, ":", &tmp);
8810 offset = strtoull(s ? s : "", NULL, 16);
8811 sizes = strtok_r(NULL, ":", &tmp);
8812 s = strtok_r(NULL, ":", &tmp);
8813 flagstr = strdup(s ?: "");
8815 if (!zdb_parse_block_sizes(sizes, &lsize, &psize))
8816 errmsg = "invalid size(s)";
8817 if (!IS_P2ALIGNED(psize, DEV_BSIZE) || !IS_P2ALIGNED(lsize, DEV_BSIZE))
8818 errmsg = "size must be a multiple of sector size";
8819 if (!IS_P2ALIGNED(offset, DEV_BSIZE))
8820 errmsg = "offset must be a multiple of sector size";
8821 if (errmsg) {
8822 (void) printf("Invalid block specifier: %s - %s\n",
8823 thing, errmsg);
8824 goto done;
8827 tmp = NULL;
8828 for (s = strtok_r(flagstr, ":", &tmp);
8829 s != NULL;
8830 s = strtok_r(NULL, ":", &tmp)) {
8831 len = strlen(flagstr);
8832 for (i = 0; i < len; i++) {
8833 int bit = flagbits[(uchar_t)flagstr[i]];
8835 if (bit == 0) {
8836 (void) printf("***Ignoring flag: %c\n",
8837 (uchar_t)flagstr[i]);
8838 continue;
8840 found = B_TRUE;
8841 flags |= bit;
8843 p = &flagstr[i + 1];
8844 if (*p != ':' && *p != '\0') {
8845 int j = 0, nextbit = flagbits[(uchar_t)*p];
8846 char *end, offstr[8] = { 0 };
8847 if ((bit == ZDB_FLAG_PRINT_BLKPTR) &&
8848 (nextbit == 0)) {
8849 /* look ahead to isolate the offset */
8850 while (nextbit == 0 &&
8851 strchr(flagbitstr, *p) == NULL) {
8852 offstr[j] = *p;
8853 j++;
8854 if (i + j > strlen(flagstr))
8855 break;
8856 p++;
8857 nextbit = flagbits[(uchar_t)*p];
8859 blkptr_offset = strtoull(offstr, &end,
8860 16);
8861 i += j;
8862 } else if (nextbit == 0) {
8863 (void) printf("***Ignoring flag arg:"
8864 " '%c'\n", (uchar_t)*p);
8869 if (blkptr_offset % sizeof (blkptr_t)) {
8870 printf("Block pointer offset 0x%llx "
8871 "must be divisible by 0x%x\n",
8872 (longlong_t)blkptr_offset, (int)sizeof (blkptr_t));
8873 goto done;
8875 if (found == B_FALSE && strlen(flagstr) > 0) {
8876 printf("Invalid flag arg: '%s'\n", flagstr);
8877 goto done;
8880 vd = zdb_vdev_lookup(spa->spa_root_vdev, vdev);
8881 if (vd == NULL) {
8882 (void) printf("***Invalid vdev: %s\n", vdev);
8883 goto done;
8884 } else {
8885 if (vd->vdev_path)
8886 (void) fprintf(stderr, "Found vdev: %s\n",
8887 vd->vdev_path);
8888 else
8889 (void) fprintf(stderr, "Found vdev type: %s\n",
8890 vd->vdev_ops->vdev_op_type);
8893 pabd = abd_alloc_for_io(SPA_MAXBLOCKSIZE, B_FALSE);
8894 lbuf = umem_alloc(SPA_MAXBLOCKSIZE, UMEM_NOFAIL);
8896 BP_ZERO(bp);
8898 DVA_SET_VDEV(&dva[0], vd->vdev_id);
8899 DVA_SET_OFFSET(&dva[0], offset);
8900 DVA_SET_GANG(&dva[0], !!(flags & ZDB_FLAG_GBH));
8901 DVA_SET_ASIZE(&dva[0], vdev_psize_to_asize(vd, psize));
8903 BP_SET_BIRTH(bp, TXG_INITIAL, TXG_INITIAL);
8905 BP_SET_LSIZE(bp, lsize);
8906 BP_SET_PSIZE(bp, psize);
8907 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF);
8908 BP_SET_CHECKSUM(bp, ZIO_CHECKSUM_OFF);
8909 BP_SET_TYPE(bp, DMU_OT_NONE);
8910 BP_SET_LEVEL(bp, 0);
8911 BP_SET_DEDUP(bp, 0);
8912 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
8914 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8915 zio = zio_root(spa, NULL, NULL, 0);
8917 if (vd == vd->vdev_top) {
8919 * Treat this as a normal block read.
8921 zio_nowait(zio_read(zio, spa, bp, pabd, psize, NULL, NULL,
8922 ZIO_PRIORITY_SYNC_READ,
8923 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW, NULL));
8924 } else {
8926 * Treat this as a vdev child I/O.
8928 zio_nowait(zio_vdev_child_io(zio, bp, vd, offset, pabd,
8929 psize, ZIO_TYPE_READ, ZIO_PRIORITY_SYNC_READ,
8930 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
8931 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW | ZIO_FLAG_OPTIONAL,
8932 NULL, NULL));
8935 error = zio_wait(zio);
8936 spa_config_exit(spa, SCL_STATE, FTAG);
8938 if (error) {
8939 (void) printf("Read of %s failed, error: %d\n", thing, error);
8940 goto out;
8943 uint64_t orig_lsize = lsize;
8944 buf = lbuf;
8945 if (flags & ZDB_FLAG_DECOMPRESS) {
8946 lsize = zdb_decompress_block(pabd, buf, lbuf,
8947 lsize, psize, flags);
8948 if (lsize == -1) {
8949 (void) printf("Decompress of %s failed\n", thing);
8950 goto out;
8952 } else {
8953 buf = abd_borrow_buf_copy(pabd, lsize);
8954 borrowed = B_TRUE;
8957 * Try to detect invalid block pointer. If invalid, try
8958 * decompressing.
8960 if ((flags & ZDB_FLAG_PRINT_BLKPTR || flags & ZDB_FLAG_INDIRECT) &&
8961 !(flags & ZDB_FLAG_DECOMPRESS)) {
8962 const blkptr_t *b = (const blkptr_t *)(void *)
8963 ((uintptr_t)buf + (uintptr_t)blkptr_offset);
8964 if (zfs_blkptr_verify(spa, b,
8965 BLK_CONFIG_NEEDED, BLK_VERIFY_ONLY) == B_FALSE) {
8966 abd_return_buf_copy(pabd, buf, lsize);
8967 borrowed = B_FALSE;
8968 buf = lbuf;
8969 lsize = zdb_decompress_block(pabd, buf,
8970 lbuf, lsize, psize, flags);
8971 b = (const blkptr_t *)(void *)
8972 ((uintptr_t)buf + (uintptr_t)blkptr_offset);
8973 if (lsize == -1 || zfs_blkptr_verify(spa, b,
8974 BLK_CONFIG_NEEDED, BLK_VERIFY_LOG) == B_FALSE) {
8975 printf("invalid block pointer at this DVA\n");
8976 goto out;
8981 if (flags & ZDB_FLAG_PRINT_BLKPTR)
8982 zdb_print_blkptr((blkptr_t *)(void *)
8983 ((uintptr_t)buf + (uintptr_t)blkptr_offset), flags);
8984 else if (flags & ZDB_FLAG_RAW)
8985 zdb_dump_block_raw(buf, lsize, flags);
8986 else if (flags & ZDB_FLAG_INDIRECT)
8987 zdb_dump_indirect((blkptr_t *)buf,
8988 orig_lsize / sizeof (blkptr_t), flags);
8989 else if (flags & ZDB_FLAG_GBH)
8990 zdb_dump_gbh(buf, flags);
8991 else
8992 zdb_dump_block(thing, buf, lsize, flags);
8995 * If :c was specified, iterate through the checksum table to
8996 * calculate and display each checksum for our specified
8997 * DVA and length.
8999 if ((flags & ZDB_FLAG_CHECKSUM) && !(flags & ZDB_FLAG_RAW) &&
9000 !(flags & ZDB_FLAG_GBH)) {
9001 zio_t *czio;
9002 (void) printf("\n");
9003 for (enum zio_checksum ck = ZIO_CHECKSUM_LABEL;
9004 ck < ZIO_CHECKSUM_FUNCTIONS; ck++) {
9006 if ((zio_checksum_table[ck].ci_flags &
9007 ZCHECKSUM_FLAG_EMBEDDED) ||
9008 ck == ZIO_CHECKSUM_NOPARITY) {
9009 continue;
9011 BP_SET_CHECKSUM(bp, ck);
9012 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9013 czio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
9014 if (vd == vd->vdev_top) {
9015 zio_nowait(zio_read(czio, spa, bp, pabd, psize,
9016 NULL, NULL,
9017 ZIO_PRIORITY_SYNC_READ,
9018 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
9019 ZIO_FLAG_DONT_RETRY, NULL));
9020 } else {
9021 zio_nowait(zio_vdev_child_io(czio, bp, vd,
9022 offset, pabd, psize, ZIO_TYPE_READ,
9023 ZIO_PRIORITY_SYNC_READ,
9024 ZIO_FLAG_DONT_PROPAGATE |
9025 ZIO_FLAG_DONT_RETRY |
9026 ZIO_FLAG_CANFAIL | ZIO_FLAG_RAW |
9027 ZIO_FLAG_SPECULATIVE |
9028 ZIO_FLAG_OPTIONAL, NULL, NULL));
9030 error = zio_wait(czio);
9031 if (error == 0 || error == ECKSUM) {
9032 zio_t *ck_zio = zio_null(NULL, spa, NULL,
9033 NULL, NULL, 0);
9034 ck_zio->io_offset =
9035 DVA_GET_OFFSET(&bp->blk_dva[0]);
9036 ck_zio->io_bp = bp;
9037 zio_checksum_compute(ck_zio, ck, pabd, lsize);
9038 printf(
9039 "%12s\t"
9040 "cksum=%016llx:%016llx:%016llx:%016llx\n",
9041 zio_checksum_table[ck].ci_name,
9042 (u_longlong_t)bp->blk_cksum.zc_word[0],
9043 (u_longlong_t)bp->blk_cksum.zc_word[1],
9044 (u_longlong_t)bp->blk_cksum.zc_word[2],
9045 (u_longlong_t)bp->blk_cksum.zc_word[3]);
9046 zio_wait(ck_zio);
9047 } else {
9048 printf("error %d reading block\n", error);
9050 spa_config_exit(spa, SCL_STATE, FTAG);
9054 if (borrowed)
9055 abd_return_buf_copy(pabd, buf, lsize);
9057 out:
9058 abd_free(pabd);
9059 umem_free(lbuf, SPA_MAXBLOCKSIZE);
9060 done:
9061 free(flagstr);
9062 free(dup);
9065 static void
9066 zdb_embedded_block(char *thing)
9068 blkptr_t bp = {{{{0}}}};
9069 unsigned long long *words = (void *)&bp;
9070 char *buf;
9071 int err;
9073 err = sscanf(thing, "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx:"
9074 "%llx:%llx:%llx:%llx:%llx:%llx:%llx:%llx",
9075 words + 0, words + 1, words + 2, words + 3,
9076 words + 4, words + 5, words + 6, words + 7,
9077 words + 8, words + 9, words + 10, words + 11,
9078 words + 12, words + 13, words + 14, words + 15);
9079 if (err != 16) {
9080 (void) fprintf(stderr, "invalid input format\n");
9081 zdb_exit(1);
9083 ASSERT3U(BPE_GET_LSIZE(&bp), <=, SPA_MAXBLOCKSIZE);
9084 buf = malloc(SPA_MAXBLOCKSIZE);
9085 if (buf == NULL) {
9086 (void) fprintf(stderr, "out of memory\n");
9087 zdb_exit(1);
9089 err = decode_embedded_bp(&bp, buf, BPE_GET_LSIZE(&bp));
9090 if (err != 0) {
9091 (void) fprintf(stderr, "decode failed: %u\n", err);
9092 zdb_exit(1);
9094 zdb_dump_block_raw(buf, BPE_GET_LSIZE(&bp), 0);
9095 free(buf);
9098 /* check for valid hex or decimal numeric string */
9099 static boolean_t
9100 zdb_numeric(char *str)
9102 int i = 0, len;
9104 len = strlen(str);
9105 if (len == 0)
9106 return (B_FALSE);
9107 if (strncmp(str, "0x", 2) == 0 || strncmp(str, "0X", 2) == 0)
9108 i = 2;
9109 for (; i < len; i++) {
9110 if (!isxdigit(str[i]))
9111 return (B_FALSE);
9113 return (B_TRUE);
9116 static int
9117 dummy_get_file_info(dmu_object_type_t bonustype, const void *data,
9118 zfs_file_info_t *zoi)
9120 (void) data, (void) zoi;
9122 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
9123 return (ENOENT);
9125 (void) fprintf(stderr, "dummy_get_file_info: not implemented");
9126 abort();
9130 main(int argc, char **argv)
9132 int c;
9133 int dump_all = 1;
9134 int verbose = 0;
9135 int error = 0;
9136 char **searchdirs = NULL;
9137 int nsearch = 0;
9138 char *target, *target_pool, dsname[ZFS_MAX_DATASET_NAME_LEN];
9139 nvlist_t *policy = NULL;
9140 uint64_t max_txg = UINT64_MAX;
9141 int64_t objset_id = -1;
9142 uint64_t object;
9143 int flags = ZFS_IMPORT_MISSING_LOG;
9144 int rewind = ZPOOL_NEVER_REWIND;
9145 char *spa_config_path_env, *objset_str;
9146 boolean_t target_is_spa = B_TRUE, dataset_lookup = B_FALSE;
9147 nvlist_t *cfg = NULL;
9148 struct sigaction action;
9149 boolean_t force_import = B_FALSE;
9150 boolean_t config_path_console = B_FALSE;
9151 char pbuf[MAXPATHLEN];
9153 dprintf_setup(&argc, argv);
9156 * Set up signal handlers, so if we crash due to bad on-disk data we
9157 * can get more info. Unlike ztest, we don't bail out if we can't set
9158 * up signal handlers, because zdb is very useful without them.
9160 action.sa_handler = sig_handler;
9161 sigemptyset(&action.sa_mask);
9162 action.sa_flags = 0;
9163 if (sigaction(SIGSEGV, &action, NULL) < 0) {
9164 (void) fprintf(stderr, "zdb: cannot catch SIGSEGV: %s\n",
9165 strerror(errno));
9167 if (sigaction(SIGABRT, &action, NULL) < 0) {
9168 (void) fprintf(stderr, "zdb: cannot catch SIGABRT: %s\n",
9169 strerror(errno));
9173 * If there is an environment variable SPA_CONFIG_PATH it overrides
9174 * default spa_config_path setting. If -U flag is specified it will
9175 * override this environment variable settings once again.
9177 spa_config_path_env = getenv("SPA_CONFIG_PATH");
9178 if (spa_config_path_env != NULL)
9179 spa_config_path = spa_config_path_env;
9182 * For performance reasons, we set this tunable down. We do so before
9183 * the arg parsing section so that the user can override this value if
9184 * they choose.
9186 zfs_btree_verify_intensity = 3;
9188 struct option long_options[] = {
9189 {"ignore-assertions", no_argument, NULL, 'A'},
9190 {"block-stats", no_argument, NULL, 'b'},
9191 {"backup", no_argument, NULL, 'B'},
9192 {"checksum", no_argument, NULL, 'c'},
9193 {"config", no_argument, NULL, 'C'},
9194 {"datasets", no_argument, NULL, 'd'},
9195 {"dedup-stats", no_argument, NULL, 'D'},
9196 {"exported", no_argument, NULL, 'e'},
9197 {"embedded-block-pointer", no_argument, NULL, 'E'},
9198 {"automatic-rewind", no_argument, NULL, 'F'},
9199 {"dump-debug-msg", no_argument, NULL, 'G'},
9200 {"history", no_argument, NULL, 'h'},
9201 {"intent-logs", no_argument, NULL, 'i'},
9202 {"inflight", required_argument, NULL, 'I'},
9203 {"checkpointed-state", no_argument, NULL, 'k'},
9204 {"key", required_argument, NULL, 'K'},
9205 {"label", no_argument, NULL, 'l'},
9206 {"disable-leak-tracking", no_argument, NULL, 'L'},
9207 {"metaslabs", no_argument, NULL, 'm'},
9208 {"metaslab-groups", no_argument, NULL, 'M'},
9209 {"numeric", no_argument, NULL, 'N'},
9210 {"option", required_argument, NULL, 'o'},
9211 {"object-lookups", no_argument, NULL, 'O'},
9212 {"path", required_argument, NULL, 'p'},
9213 {"parseable", no_argument, NULL, 'P'},
9214 {"skip-label", no_argument, NULL, 'q'},
9215 {"copy-object", no_argument, NULL, 'r'},
9216 {"read-block", no_argument, NULL, 'R'},
9217 {"io-stats", no_argument, NULL, 's'},
9218 {"simulate-dedup", no_argument, NULL, 'S'},
9219 {"txg", required_argument, NULL, 't'},
9220 {"brt-stats", no_argument, NULL, 'T'},
9221 {"uberblock", no_argument, NULL, 'u'},
9222 {"cachefile", required_argument, NULL, 'U'},
9223 {"verbose", no_argument, NULL, 'v'},
9224 {"verbatim", no_argument, NULL, 'V'},
9225 {"dump-blocks", required_argument, NULL, 'x'},
9226 {"extreme-rewind", no_argument, NULL, 'X'},
9227 {"all-reconstruction", no_argument, NULL, 'Y'},
9228 {"livelist", no_argument, NULL, 'y'},
9229 {"zstd-headers", no_argument, NULL, 'Z'},
9230 {0, 0, 0, 0}
9233 while ((c = getopt_long(argc, argv,
9234 "AbBcCdDeEFGhiI:kK:lLmMNo:Op:PqrRsSt:TuU:vVx:XYyZ",
9235 long_options, NULL)) != -1) {
9236 switch (c) {
9237 case 'b':
9238 case 'B':
9239 case 'c':
9240 case 'C':
9241 case 'd':
9242 case 'D':
9243 case 'E':
9244 case 'G':
9245 case 'h':
9246 case 'i':
9247 case 'l':
9248 case 'm':
9249 case 'M':
9250 case 'N':
9251 case 'O':
9252 case 'r':
9253 case 'R':
9254 case 's':
9255 case 'S':
9256 case 'T':
9257 case 'u':
9258 case 'y':
9259 case 'Z':
9260 dump_opt[c]++;
9261 dump_all = 0;
9262 break;
9263 case 'A':
9264 case 'e':
9265 case 'F':
9266 case 'k':
9267 case 'L':
9268 case 'P':
9269 case 'q':
9270 case 'X':
9271 dump_opt[c]++;
9272 break;
9273 case 'Y':
9274 zfs_reconstruct_indirect_combinations_max = INT_MAX;
9275 zfs_deadman_enabled = 0;
9276 break;
9277 /* NB: Sort single match options below. */
9278 case 'I':
9279 max_inflight_bytes = strtoull(optarg, NULL, 0);
9280 if (max_inflight_bytes == 0) {
9281 (void) fprintf(stderr, "maximum number "
9282 "of inflight bytes must be greater "
9283 "than 0\n");
9284 usage();
9286 break;
9287 case 'K':
9288 dump_opt[c]++;
9289 key_material = strdup(optarg);
9290 /* redact key material in process table */
9291 while (*optarg != '\0') { *optarg++ = '*'; }
9292 break;
9293 case 'o':
9294 error = set_global_var(optarg);
9295 if (error != 0)
9296 usage();
9297 break;
9298 case 'p':
9299 if (searchdirs == NULL) {
9300 searchdirs = umem_alloc(sizeof (char *),
9301 UMEM_NOFAIL);
9302 } else {
9303 char **tmp = umem_alloc((nsearch + 1) *
9304 sizeof (char *), UMEM_NOFAIL);
9305 memcpy(tmp, searchdirs, nsearch *
9306 sizeof (char *));
9307 umem_free(searchdirs,
9308 nsearch * sizeof (char *));
9309 searchdirs = tmp;
9311 searchdirs[nsearch++] = optarg;
9312 break;
9313 case 't':
9314 max_txg = strtoull(optarg, NULL, 0);
9315 if (max_txg < TXG_INITIAL) {
9316 (void) fprintf(stderr, "incorrect txg "
9317 "specified: %s\n", optarg);
9318 usage();
9320 break;
9321 case 'U':
9322 config_path_console = B_TRUE;
9323 spa_config_path = optarg;
9324 if (spa_config_path[0] != '/') {
9325 (void) fprintf(stderr,
9326 "cachefile must be an absolute path "
9327 "(i.e. start with a slash)\n");
9328 usage();
9330 break;
9331 case 'v':
9332 verbose++;
9333 break;
9334 case 'V':
9335 flags = ZFS_IMPORT_VERBATIM;
9336 break;
9337 case 'x':
9338 vn_dumpdir = optarg;
9339 break;
9340 default:
9341 usage();
9342 break;
9346 if (!dump_opt['e'] && searchdirs != NULL) {
9347 (void) fprintf(stderr, "-p option requires use of -e\n");
9348 usage();
9350 #if defined(_LP64)
9352 * ZDB does not typically re-read blocks; therefore limit the ARC
9353 * to 256 MB, which can be used entirely for metadata.
9355 zfs_arc_min = 2ULL << SPA_MAXBLOCKSHIFT;
9356 zfs_arc_max = 256 * 1024 * 1024;
9357 #endif
9360 * "zdb -c" uses checksum-verifying scrub i/os which are async reads.
9361 * "zdb -b" uses traversal prefetch which uses async reads.
9362 * For good performance, let several of them be active at once.
9364 zfs_vdev_async_read_max_active = 10;
9367 * Disable reference tracking for better performance.
9369 reference_tracking_enable = B_FALSE;
9372 * Do not fail spa_load when spa_load_verify fails. This is needed
9373 * to load non-idle pools.
9375 spa_load_verify_dryrun = B_TRUE;
9378 * ZDB should have ability to read spacemaps.
9380 spa_mode_readable_spacemaps = B_TRUE;
9382 if (dump_all)
9383 verbose = MAX(verbose, 1);
9385 for (c = 0; c < 256; c++) {
9386 if (dump_all && strchr("ABeEFkKlLNOPrRSXy", c) == NULL)
9387 dump_opt[c] = 1;
9388 if (dump_opt[c])
9389 dump_opt[c] += verbose;
9392 libspl_set_assert_ok((dump_opt['A'] == 1) || (dump_opt['A'] > 2));
9393 zfs_recover = (dump_opt['A'] > 1);
9395 argc -= optind;
9396 argv += optind;
9397 if (argc < 2 && dump_opt['R'])
9398 usage();
9400 target = argv[0];
9403 * Automate cachefile
9405 if (!spa_config_path_env && !config_path_console && target &&
9406 libzfs_core_init() == 0) {
9407 char *pname = strdup(target);
9408 const char *value;
9409 nvlist_t *pnvl = NULL;
9410 nvlist_t *vnvl = NULL;
9412 if (strpbrk(pname, "/@") != NULL)
9413 *strpbrk(pname, "/@") = '\0';
9415 if (pname && lzc_get_props(pname, &pnvl) == 0) {
9416 if (nvlist_lookup_nvlist(pnvl, "cachefile",
9417 &vnvl) == 0) {
9418 value = fnvlist_lookup_string(vnvl,
9419 ZPROP_VALUE);
9420 } else {
9421 value = "-";
9423 strlcpy(pbuf, value, sizeof (pbuf));
9424 if (pbuf[0] != '\0') {
9425 if (pbuf[0] == '/') {
9426 if (access(pbuf, F_OK) == 0)
9427 spa_config_path = pbuf;
9428 else
9429 force_import = B_TRUE;
9430 } else if ((strcmp(pbuf, "-") == 0 &&
9431 access(ZPOOL_CACHE, F_OK) != 0) ||
9432 strcmp(pbuf, "none") == 0) {
9433 force_import = B_TRUE;
9436 nvlist_free(vnvl);
9439 free(pname);
9440 nvlist_free(pnvl);
9441 libzfs_core_fini();
9444 dmu_objset_register_type(DMU_OST_ZFS, dummy_get_file_info);
9445 kernel_init(SPA_MODE_READ);
9446 kernel_init_done = B_TRUE;
9448 if (dump_opt['E']) {
9449 if (argc != 1)
9450 usage();
9451 zdb_embedded_block(argv[0]);
9452 error = 0;
9453 goto fini;
9456 if (argc < 1) {
9457 if (!dump_opt['e'] && dump_opt['C']) {
9458 dump_cachefile(spa_config_path);
9459 error = 0;
9460 goto fini;
9462 usage();
9465 if (dump_opt['l']) {
9466 error = dump_label(argv[0]);
9467 goto fini;
9470 if (dump_opt['X'] || dump_opt['F'])
9471 rewind = ZPOOL_DO_REWIND |
9472 (dump_opt['X'] ? ZPOOL_EXTREME_REWIND : 0);
9474 /* -N implies -d */
9475 if (dump_opt['N'] && dump_opt['d'] == 0)
9476 dump_opt['d'] = dump_opt['N'];
9478 if (nvlist_alloc(&policy, NV_UNIQUE_NAME_TYPE, 0) != 0 ||
9479 nvlist_add_uint64(policy, ZPOOL_LOAD_REQUEST_TXG, max_txg) != 0 ||
9480 nvlist_add_uint32(policy, ZPOOL_LOAD_REWIND_POLICY, rewind) != 0)
9481 fatal("internal error: %s", strerror(ENOMEM));
9483 error = 0;
9485 if (strpbrk(target, "/@") != NULL) {
9486 size_t targetlen;
9488 target_pool = strdup(target);
9489 *strpbrk(target_pool, "/@") = '\0';
9491 target_is_spa = B_FALSE;
9492 targetlen = strlen(target);
9493 if (targetlen && target[targetlen - 1] == '/')
9494 target[targetlen - 1] = '\0';
9497 * See if an objset ID was supplied (-d <pool>/<objset ID>).
9498 * To disambiguate tank/100, consider the 100 as objsetID
9499 * if -N was given, otherwise 100 is an objsetID iff
9500 * tank/100 as a named dataset fails on lookup.
9502 objset_str = strchr(target, '/');
9503 if (objset_str && strlen(objset_str) > 1 &&
9504 zdb_numeric(objset_str + 1)) {
9505 char *endptr;
9506 errno = 0;
9507 objset_str++;
9508 objset_id = strtoull(objset_str, &endptr, 0);
9509 /* dataset 0 is the same as opening the pool */
9510 if (errno == 0 && endptr != objset_str &&
9511 objset_id != 0) {
9512 if (dump_opt['N'])
9513 dataset_lookup = B_TRUE;
9515 /* normal dataset name not an objset ID */
9516 if (endptr == objset_str) {
9517 objset_id = -1;
9519 } else if (objset_str && !zdb_numeric(objset_str + 1) &&
9520 dump_opt['N']) {
9521 printf("Supply a numeric objset ID with -N\n");
9522 error = 1;
9523 goto fini;
9525 } else {
9526 target_pool = target;
9529 if (dump_opt['e'] || force_import) {
9530 importargs_t args = { 0 };
9533 * If path is not provided, search in /dev
9535 if (searchdirs == NULL) {
9536 searchdirs = umem_alloc(sizeof (char *), UMEM_NOFAIL);
9537 searchdirs[nsearch++] = (char *)ZFS_DEVDIR;
9540 args.paths = nsearch;
9541 args.path = searchdirs;
9542 args.can_be_active = B_TRUE;
9544 libpc_handle_t lpch = {
9545 .lpc_lib_handle = NULL,
9546 .lpc_ops = &libzpool_config_ops,
9547 .lpc_printerr = B_TRUE
9549 error = zpool_find_config(&lpch, target_pool, &cfg, &args);
9551 if (error == 0) {
9553 if (nvlist_add_nvlist(cfg,
9554 ZPOOL_LOAD_POLICY, policy) != 0) {
9555 fatal("can't open '%s': %s",
9556 target, strerror(ENOMEM));
9559 if (dump_opt['C'] > 1) {
9560 (void) printf("\nConfiguration for import:\n");
9561 dump_nvlist(cfg, 8);
9565 * Disable the activity check to allow examination of
9566 * active pools.
9568 error = spa_import(target_pool, cfg, NULL,
9569 flags | ZFS_IMPORT_SKIP_MMP);
9573 if (searchdirs != NULL) {
9574 umem_free(searchdirs, nsearch * sizeof (char *));
9575 searchdirs = NULL;
9579 * We need to make sure to process -O option or call
9580 * dump_path after the -e option has been processed,
9581 * which imports the pool to the namespace if it's
9582 * not in the cachefile.
9584 if (dump_opt['O']) {
9585 if (argc != 2)
9586 usage();
9587 dump_opt['v'] = verbose + 3;
9588 error = dump_path(argv[0], argv[1], NULL);
9589 goto fini;
9592 if (dump_opt['r']) {
9593 target_is_spa = B_FALSE;
9594 if (argc != 3)
9595 usage();
9596 dump_opt['v'] = verbose;
9597 error = dump_path(argv[0], argv[1], &object);
9598 if (error != 0)
9599 fatal("internal error: %s", strerror(error));
9603 * import_checkpointed_state makes the assumption that the
9604 * target pool that we pass it is already part of the spa
9605 * namespace. Because of that we need to make sure to call
9606 * it always after the -e option has been processed, which
9607 * imports the pool to the namespace if it's not in the
9608 * cachefile.
9610 char *checkpoint_pool = NULL;
9611 char *checkpoint_target = NULL;
9612 if (dump_opt['k']) {
9613 checkpoint_pool = import_checkpointed_state(target, cfg,
9614 &checkpoint_target);
9616 if (checkpoint_target != NULL)
9617 target = checkpoint_target;
9620 if (cfg != NULL) {
9621 nvlist_free(cfg);
9622 cfg = NULL;
9625 if (target_pool != target)
9626 free(target_pool);
9628 if (error == 0) {
9629 if (dump_opt['k'] && (target_is_spa || dump_opt['R'])) {
9630 ASSERT(checkpoint_pool != NULL);
9631 ASSERT(checkpoint_target == NULL);
9633 error = spa_open(checkpoint_pool, &spa, FTAG);
9634 if (error != 0) {
9635 fatal("Tried to open pool \"%s\" but "
9636 "spa_open() failed with error %d\n",
9637 checkpoint_pool, error);
9640 } else if (target_is_spa || dump_opt['R'] || dump_opt['B'] ||
9641 objset_id == 0) {
9642 zdb_set_skip_mmp(target);
9643 error = spa_open_rewind(target, &spa, FTAG, policy,
9644 NULL);
9645 if (error) {
9647 * If we're missing the log device then
9648 * try opening the pool after clearing the
9649 * log state.
9651 mutex_enter(&spa_namespace_lock);
9652 if ((spa = spa_lookup(target)) != NULL &&
9653 spa->spa_log_state == SPA_LOG_MISSING) {
9654 spa->spa_log_state = SPA_LOG_CLEAR;
9655 error = 0;
9657 mutex_exit(&spa_namespace_lock);
9659 if (!error) {
9660 error = spa_open_rewind(target, &spa,
9661 FTAG, policy, NULL);
9664 } else if (strpbrk(target, "#") != NULL) {
9665 dsl_pool_t *dp;
9666 error = dsl_pool_hold(target, FTAG, &dp);
9667 if (error != 0) {
9668 fatal("can't dump '%s': %s", target,
9669 strerror(error));
9671 error = dump_bookmark(dp, target, B_TRUE, verbose > 1);
9672 dsl_pool_rele(dp, FTAG);
9673 if (error != 0) {
9674 fatal("can't dump '%s': %s", target,
9675 strerror(error));
9677 goto fini;
9678 } else {
9679 target_pool = strdup(target);
9680 if (strpbrk(target, "/@") != NULL)
9681 *strpbrk(target_pool, "/@") = '\0';
9683 zdb_set_skip_mmp(target);
9685 * If -N was supplied, the user has indicated that
9686 * zdb -d <pool>/<objsetID> is in effect. Otherwise
9687 * we first assume that the dataset string is the
9688 * dataset name. If dmu_objset_hold fails with the
9689 * dataset string, and we have an objset_id, retry the
9690 * lookup with the objsetID.
9692 boolean_t retry = B_TRUE;
9693 retry_lookup:
9694 if (dataset_lookup == B_TRUE) {
9696 * Use the supplied id to get the name
9697 * for open_objset.
9699 error = spa_open(target_pool, &spa, FTAG);
9700 if (error == 0) {
9701 error = name_from_objset_id(spa,
9702 objset_id, dsname);
9703 spa_close(spa, FTAG);
9704 if (error == 0)
9705 target = dsname;
9708 if (error == 0) {
9709 if (objset_id > 0 && retry) {
9710 int err = dmu_objset_hold(target, FTAG,
9711 &os);
9712 if (err) {
9713 dataset_lookup = B_TRUE;
9714 retry = B_FALSE;
9715 goto retry_lookup;
9716 } else {
9717 dmu_objset_rele(os, FTAG);
9720 error = open_objset(target, FTAG, &os);
9722 if (error == 0)
9723 spa = dmu_objset_spa(os);
9724 free(target_pool);
9727 nvlist_free(policy);
9729 if (error)
9730 fatal("can't open '%s': %s", target, strerror(error));
9733 * Set the pool failure mode to panic in order to prevent the pool
9734 * from suspending. A suspended I/O will have no way to resume and
9735 * can prevent the zdb(8) command from terminating as expected.
9737 if (spa != NULL)
9738 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC;
9740 argv++;
9741 argc--;
9742 if (dump_opt['r']) {
9743 error = zdb_copy_object(os, object, argv[1]);
9744 } else if (!dump_opt['R']) {
9745 flagbits['d'] = ZOR_FLAG_DIRECTORY;
9746 flagbits['f'] = ZOR_FLAG_PLAIN_FILE;
9747 flagbits['m'] = ZOR_FLAG_SPACE_MAP;
9748 flagbits['z'] = ZOR_FLAG_ZAP;
9749 flagbits['A'] = ZOR_FLAG_ALL_TYPES;
9751 if (argc > 0 && dump_opt['d']) {
9752 zopt_object_args = argc;
9753 zopt_object_ranges = calloc(zopt_object_args,
9754 sizeof (zopt_object_range_t));
9755 for (unsigned i = 0; i < zopt_object_args; i++) {
9756 int err;
9757 const char *msg = NULL;
9759 err = parse_object_range(argv[i],
9760 &zopt_object_ranges[i], &msg);
9761 if (err != 0)
9762 fatal("Bad object or range: '%s': %s\n",
9763 argv[i], msg ?: "");
9765 } else if (argc > 0 && dump_opt['m']) {
9766 zopt_metaslab_args = argc;
9767 zopt_metaslab = calloc(zopt_metaslab_args,
9768 sizeof (uint64_t));
9769 for (unsigned i = 0; i < zopt_metaslab_args; i++) {
9770 errno = 0;
9771 zopt_metaslab[i] = strtoull(argv[i], NULL, 0);
9772 if (zopt_metaslab[i] == 0 && errno != 0)
9773 fatal("bad number %s: %s", argv[i],
9774 strerror(errno));
9777 if (dump_opt['B']) {
9778 dump_backup(target, objset_id,
9779 argc > 0 ? argv[0] : NULL);
9780 } else if (os != NULL) {
9781 dump_objset(os);
9782 } else if (zopt_object_args > 0 && !dump_opt['m']) {
9783 dump_objset(spa->spa_meta_objset);
9784 } else {
9785 dump_zpool(spa);
9787 } else {
9788 flagbits['b'] = ZDB_FLAG_PRINT_BLKPTR;
9789 flagbits['c'] = ZDB_FLAG_CHECKSUM;
9790 flagbits['d'] = ZDB_FLAG_DECOMPRESS;
9791 flagbits['e'] = ZDB_FLAG_BSWAP;
9792 flagbits['g'] = ZDB_FLAG_GBH;
9793 flagbits['i'] = ZDB_FLAG_INDIRECT;
9794 flagbits['r'] = ZDB_FLAG_RAW;
9795 flagbits['v'] = ZDB_FLAG_VERBOSE;
9797 for (int i = 0; i < argc; i++)
9798 zdb_read_block(argv[i], spa);
9801 if (dump_opt['k']) {
9802 free(checkpoint_pool);
9803 if (!target_is_spa)
9804 free(checkpoint_target);
9807 fini:
9808 if (spa != NULL)
9809 zdb_ddt_cleanup(spa);
9811 if (os != NULL) {
9812 close_objset(os, FTAG);
9813 } else if (spa != NULL) {
9814 spa_close(spa, FTAG);
9817 fuid_table_destroy();
9819 dump_debug_buffer();
9821 if (kernel_init_done)
9822 kernel_fini();
9824 return (error);