4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
26 * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
28 * Copyright (c) 2019 Datto Inc.
29 * Copyright (c) 2019, 2023, Klara Inc.
30 * Copyright (c) 2019, Allan Jude
31 * Copyright (c) 2022 Hewlett Packard Enterprise Development LP.
32 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
36 #include <sys/dmu_impl.h>
37 #include <sys/dmu_tx.h>
39 #include <sys/dnode.h>
40 #include <sys/zfs_context.h>
41 #include <sys/dmu_objset.h>
42 #include <sys/dmu_traverse.h>
43 #include <sys/dsl_dataset.h>
44 #include <sys/dsl_dir.h>
45 #include <sys/dsl_pool.h>
46 #include <sys/dsl_synctask.h>
47 #include <sys/dsl_prop.h>
48 #include <sys/dmu_zfetch.h>
49 #include <sys/zfs_ioctl.h>
51 #include <sys/zio_checksum.h>
52 #include <sys/zio_compress.h>
54 #include <sys/zfeature.h>
57 #include <sys/trace_zfs.h>
58 #include <sys/zfs_racct.h>
59 #include <sys/zfs_rlock.h>
61 #include <sys/vmsystm.h>
62 #include <sys/zfs_znode.h>
66 * Enable/disable nopwrite feature.
68 static int zfs_nopwrite_enabled
= 1;
71 * Tunable to control percentage of dirtied L1 blocks from frees allowed into
72 * one TXG. After this threshold is crossed, additional dirty blocks from frees
73 * will wait until the next TXG.
74 * A value of zero will disable this throttle.
76 static uint_t zfs_per_txg_dirty_frees_percent
= 30;
79 * Enable/disable forcing txg sync when dirty checking for holes with lseek().
80 * By default this is enabled to ensure accurate hole reporting, it can result
81 * in a significant performance penalty for lseek(SEEK_HOLE) heavy workloads.
82 * Disabling this option will result in holes never being reported in dirty
83 * files which is always safe.
85 static int zfs_dmu_offset_next_sync
= 1;
88 * Limit the amount we can prefetch with one call to this amount. This
89 * helps to limit the amount of memory that can be used by prefetching.
90 * Larger objects should be prefetched a bit at a time.
93 uint_t dmu_prefetch_max
= 8 * 1024 * 1024;
95 uint_t dmu_prefetch_max
= 8 * SPA_MAXBLOCKSIZE
;
99 * Override copies= for dedup state objects. 0 means the traditional behaviour
100 * (ie the default for the containing objset ie 3 for the MOS).
102 uint_t dmu_ddt_copies
= 0;
104 const dmu_object_type_info_t dmu_ot
[DMU_OT_NUMTYPES
] = {
105 {DMU_BSWAP_UINT8
, TRUE
, FALSE
, FALSE
, "unallocated" },
106 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "object directory" },
107 {DMU_BSWAP_UINT64
, TRUE
, TRUE
, FALSE
, "object array" },
108 {DMU_BSWAP_UINT8
, TRUE
, FALSE
, FALSE
, "packed nvlist" },
109 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "packed nvlist size" },
110 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "bpobj" },
111 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "bpobj header" },
112 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "SPA space map header" },
113 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "SPA space map" },
114 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, TRUE
, "ZIL intent log" },
115 {DMU_BSWAP_DNODE
, TRUE
, FALSE
, TRUE
, "DMU dnode" },
116 {DMU_BSWAP_OBJSET
, TRUE
, TRUE
, FALSE
, "DMU objset" },
117 {DMU_BSWAP_UINT64
, TRUE
, TRUE
, FALSE
, "DSL directory" },
118 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "DSL directory child map"},
119 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "DSL dataset snap map" },
120 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "DSL props" },
121 {DMU_BSWAP_UINT64
, TRUE
, TRUE
, FALSE
, "DSL dataset" },
122 {DMU_BSWAP_ZNODE
, TRUE
, FALSE
, FALSE
, "ZFS znode" },
123 {DMU_BSWAP_OLDACL
, TRUE
, FALSE
, TRUE
, "ZFS V0 ACL" },
124 {DMU_BSWAP_UINT8
, FALSE
, FALSE
, TRUE
, "ZFS plain file" },
125 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, TRUE
, "ZFS directory" },
126 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "ZFS master node" },
127 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, TRUE
, "ZFS delete queue" },
128 {DMU_BSWAP_UINT8
, FALSE
, FALSE
, TRUE
, "zvol object" },
129 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "zvol prop" },
130 {DMU_BSWAP_UINT8
, FALSE
, FALSE
, TRUE
, "other uint8[]" },
131 {DMU_BSWAP_UINT64
, FALSE
, FALSE
, TRUE
, "other uint64[]" },
132 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "other ZAP" },
133 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "persistent error log" },
134 {DMU_BSWAP_UINT8
, TRUE
, FALSE
, FALSE
, "SPA history" },
135 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "SPA history offsets" },
136 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "Pool properties" },
137 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "DSL permissions" },
138 {DMU_BSWAP_ACL
, TRUE
, FALSE
, TRUE
, "ZFS ACL" },
139 {DMU_BSWAP_UINT8
, TRUE
, FALSE
, TRUE
, "ZFS SYSACL" },
140 {DMU_BSWAP_UINT8
, TRUE
, FALSE
, TRUE
, "FUID table" },
141 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "FUID table size" },
142 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "DSL dataset next clones"},
143 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "scan work queue" },
144 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, TRUE
, "ZFS user/group/project used" },
145 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, TRUE
, "ZFS user/group/project quota"},
146 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "snapshot refcount tags"},
147 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "DDT ZAP algorithm" },
148 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "DDT statistics" },
149 {DMU_BSWAP_UINT8
, TRUE
, FALSE
, TRUE
, "System attributes" },
150 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, TRUE
, "SA master node" },
151 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, TRUE
, "SA attr registration" },
152 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, TRUE
, "SA attr layouts" },
153 {DMU_BSWAP_ZAP
, TRUE
, FALSE
, FALSE
, "scan translations" },
154 {DMU_BSWAP_UINT8
, FALSE
, FALSE
, TRUE
, "deduplicated block" },
155 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "DSL deadlist map" },
156 {DMU_BSWAP_UINT64
, TRUE
, TRUE
, FALSE
, "DSL deadlist map hdr" },
157 {DMU_BSWAP_ZAP
, TRUE
, TRUE
, FALSE
, "DSL dir clones" },
158 {DMU_BSWAP_UINT64
, TRUE
, FALSE
, FALSE
, "bpobj subobj" }
161 dmu_object_byteswap_info_t dmu_ot_byteswap
[DMU_BSWAP_NUMFUNCS
] = {
162 { byteswap_uint8_array
, "uint8" },
163 { byteswap_uint16_array
, "uint16" },
164 { byteswap_uint32_array
, "uint32" },
165 { byteswap_uint64_array
, "uint64" },
166 { zap_byteswap
, "zap" },
167 { dnode_buf_byteswap
, "dnode" },
168 { dmu_objset_byteswap
, "objset" },
169 { zfs_znode_byteswap
, "znode" },
170 { zfs_oldacl_byteswap
, "oldacl" },
171 { zfs_acl_byteswap
, "acl" }
175 dmu_buf_hold_noread_by_dnode(dnode_t
*dn
, uint64_t offset
,
176 const void *tag
, dmu_buf_t
**dbp
)
181 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
182 blkid
= dbuf_whichblock(dn
, 0, offset
);
183 db
= dbuf_hold(dn
, blkid
, tag
);
184 rw_exit(&dn
->dn_struct_rwlock
);
188 return (SET_ERROR(EIO
));
196 dmu_buf_hold_noread(objset_t
*os
, uint64_t object
, uint64_t offset
,
197 const void *tag
, dmu_buf_t
**dbp
)
204 err
= dnode_hold(os
, object
, FTAG
, &dn
);
207 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
208 blkid
= dbuf_whichblock(dn
, 0, offset
);
209 db
= dbuf_hold(dn
, blkid
, tag
);
210 rw_exit(&dn
->dn_struct_rwlock
);
211 dnode_rele(dn
, FTAG
);
215 return (SET_ERROR(EIO
));
223 dmu_buf_hold_by_dnode(dnode_t
*dn
, uint64_t offset
,
224 const void *tag
, dmu_buf_t
**dbp
, int flags
)
227 int db_flags
= DB_RF_CANFAIL
;
229 if (flags
& DMU_READ_NO_PREFETCH
)
230 db_flags
|= DB_RF_NOPREFETCH
;
231 if (flags
& DMU_READ_NO_DECRYPT
)
232 db_flags
|= DB_RF_NO_DECRYPT
;
234 err
= dmu_buf_hold_noread_by_dnode(dn
, offset
, tag
, dbp
);
236 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)(*dbp
);
237 err
= dbuf_read(db
, NULL
, db_flags
);
248 dmu_buf_hold(objset_t
*os
, uint64_t object
, uint64_t offset
,
249 const void *tag
, dmu_buf_t
**dbp
, int flags
)
252 int db_flags
= DB_RF_CANFAIL
;
254 if (flags
& DMU_READ_NO_PREFETCH
)
255 db_flags
|= DB_RF_NOPREFETCH
;
256 if (flags
& DMU_READ_NO_DECRYPT
)
257 db_flags
|= DB_RF_NO_DECRYPT
;
259 err
= dmu_buf_hold_noread(os
, object
, offset
, tag
, dbp
);
261 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)(*dbp
);
262 err
= dbuf_read(db
, NULL
, db_flags
);
275 return (DN_OLD_MAX_BONUSLEN
);
279 dmu_set_bonus(dmu_buf_t
*db_fake
, int newsize
, dmu_tx_t
*tx
)
281 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
285 if (newsize
< 0 || newsize
> db_fake
->db_size
)
286 return (SET_ERROR(EINVAL
));
291 if (dn
->dn_bonus
!= db
) {
292 error
= SET_ERROR(EINVAL
);
294 dnode_setbonuslen(dn
, newsize
, tx
);
303 dmu_set_bonustype(dmu_buf_t
*db_fake
, dmu_object_type_t type
, dmu_tx_t
*tx
)
305 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
309 if (!DMU_OT_IS_VALID(type
))
310 return (SET_ERROR(EINVAL
));
315 if (dn
->dn_bonus
!= db
) {
316 error
= SET_ERROR(EINVAL
);
318 dnode_setbonus_type(dn
, type
, tx
);
327 dmu_get_bonustype(dmu_buf_t
*db_fake
)
329 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
330 dmu_object_type_t type
;
333 type
= DB_DNODE(db
)->dn_bonustype
;
340 dmu_rm_spill(objset_t
*os
, uint64_t object
, dmu_tx_t
*tx
)
345 error
= dnode_hold(os
, object
, FTAG
, &dn
);
346 dbuf_rm_spill(dn
, tx
);
347 rw_enter(&dn
->dn_struct_rwlock
, RW_WRITER
);
348 dnode_rm_spill(dn
, tx
);
349 rw_exit(&dn
->dn_struct_rwlock
);
350 dnode_rele(dn
, FTAG
);
355 * Lookup and hold the bonus buffer for the provided dnode. If the dnode
356 * has not yet been allocated a new bonus dbuf a will be allocated.
357 * Returns ENOENT, EIO, or 0.
359 int dmu_bonus_hold_by_dnode(dnode_t
*dn
, const void *tag
, dmu_buf_t
**dbp
,
364 uint32_t db_flags
= DB_RF_MUST_SUCCEED
;
366 if (flags
& DMU_READ_NO_PREFETCH
)
367 db_flags
|= DB_RF_NOPREFETCH
;
368 if (flags
& DMU_READ_NO_DECRYPT
)
369 db_flags
|= DB_RF_NO_DECRYPT
;
371 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
372 if (dn
->dn_bonus
== NULL
) {
373 if (!rw_tryupgrade(&dn
->dn_struct_rwlock
)) {
374 rw_exit(&dn
->dn_struct_rwlock
);
375 rw_enter(&dn
->dn_struct_rwlock
, RW_WRITER
);
377 if (dn
->dn_bonus
== NULL
)
378 dbuf_create_bonus(dn
);
382 /* as long as the bonus buf is held, the dnode will be held */
383 if (zfs_refcount_add(&db
->db_holds
, tag
) == 1) {
384 VERIFY(dnode_add_ref(dn
, db
));
385 atomic_inc_32(&dn
->dn_dbufs_count
);
389 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
390 * hold and incrementing the dbuf count to ensure that dnode_move() sees
391 * a dnode hold for every dbuf.
393 rw_exit(&dn
->dn_struct_rwlock
);
395 error
= dbuf_read(db
, NULL
, db_flags
);
397 dnode_evict_bonus(dn
);
408 dmu_bonus_hold(objset_t
*os
, uint64_t object
, const void *tag
, dmu_buf_t
**dbp
)
413 error
= dnode_hold(os
, object
, FTAG
, &dn
);
417 error
= dmu_bonus_hold_by_dnode(dn
, tag
, dbp
, DMU_READ_NO_PREFETCH
);
418 dnode_rele(dn
, FTAG
);
424 * returns ENOENT, EIO, or 0.
426 * This interface will allocate a blank spill dbuf when a spill blk
427 * doesn't already exist on the dnode.
429 * if you only want to find an already existing spill db, then
430 * dmu_spill_hold_existing() should be used.
433 dmu_spill_hold_by_dnode(dnode_t
*dn
, uint32_t flags
, const void *tag
,
436 dmu_buf_impl_t
*db
= NULL
;
439 if ((flags
& DB_RF_HAVESTRUCT
) == 0)
440 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
442 db
= dbuf_hold(dn
, DMU_SPILL_BLKID
, tag
);
444 if ((flags
& DB_RF_HAVESTRUCT
) == 0)
445 rw_exit(&dn
->dn_struct_rwlock
);
449 return (SET_ERROR(EIO
));
451 err
= dbuf_read(db
, NULL
, flags
);
462 dmu_spill_hold_existing(dmu_buf_t
*bonus
, const void *tag
, dmu_buf_t
**dbp
)
464 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)bonus
;
471 if (spa_version(dn
->dn_objset
->os_spa
) < SPA_VERSION_SA
) {
472 err
= SET_ERROR(EINVAL
);
474 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
476 if (!dn
->dn_have_spill
) {
477 err
= SET_ERROR(ENOENT
);
479 err
= dmu_spill_hold_by_dnode(dn
,
480 DB_RF_HAVESTRUCT
| DB_RF_CANFAIL
, tag
, dbp
);
483 rw_exit(&dn
->dn_struct_rwlock
);
491 dmu_spill_hold_by_bonus(dmu_buf_t
*bonus
, uint32_t flags
, const void *tag
,
494 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)bonus
;
496 uint32_t db_flags
= DB_RF_CANFAIL
;
498 if (flags
& DMU_READ_NO_DECRYPT
)
499 db_flags
|= DB_RF_NO_DECRYPT
;
502 err
= dmu_spill_hold_by_dnode(DB_DNODE(db
), db_flags
, tag
, dbp
);
509 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
510 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
511 * and can induce severe lock contention when writing to several files
512 * whose dnodes are in the same block.
515 dmu_buf_hold_array_by_dnode(dnode_t
*dn
, uint64_t offset
, uint64_t length
,
516 boolean_t read
, const void *tag
, int *numbufsp
, dmu_buf_t
***dbpp
,
520 zstream_t
*zs
= NULL
;
521 uint64_t blkid
, nblks
, i
;
525 boolean_t missed
= B_FALSE
;
527 ASSERT(!read
|| length
<= DMU_MAX_ACCESS
);
530 * Note: We directly notify the prefetch code of this read, so that
531 * we can tell it about the multi-block read. dbuf_read() only knows
532 * about the one block it is accessing.
534 dbuf_flags
= DB_RF_CANFAIL
| DB_RF_NEVERWAIT
| DB_RF_HAVESTRUCT
|
537 if ((flags
& DMU_READ_NO_DECRYPT
) != 0)
538 dbuf_flags
|= DB_RF_NO_DECRYPT
;
540 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
541 if (dn
->dn_datablkshift
) {
542 int blkshift
= dn
->dn_datablkshift
;
543 nblks
= (P2ROUNDUP(offset
+ length
, 1ULL << blkshift
) -
544 P2ALIGN_TYPED(offset
, 1ULL << blkshift
, uint64_t))
547 if (offset
+ length
> dn
->dn_datablksz
) {
548 zfs_panic_recover("zfs: accessing past end of object "
549 "%llx/%llx (size=%u access=%llu+%llu)",
550 (longlong_t
)dn
->dn_objset
->
551 os_dsl_dataset
->ds_object
,
552 (longlong_t
)dn
->dn_object
, dn
->dn_datablksz
,
553 (longlong_t
)offset
, (longlong_t
)length
);
554 rw_exit(&dn
->dn_struct_rwlock
);
555 return (SET_ERROR(EIO
));
559 dbp
= kmem_zalloc(sizeof (dmu_buf_t
*) * nblks
, KM_SLEEP
);
562 zio
= zio_root(dn
->dn_objset
->os_spa
, NULL
, NULL
,
564 blkid
= dbuf_whichblock(dn
, 0, offset
);
565 if ((flags
& DMU_READ_NO_PREFETCH
) == 0) {
567 * Prepare the zfetch before initiating the demand reads, so
568 * that if multiple threads block on same indirect block, we
569 * base predictions on the original less racy request order.
571 zs
= dmu_zfetch_prepare(&dn
->dn_zfetch
, blkid
, nblks
, read
,
574 for (i
= 0; i
< nblks
; i
++) {
575 dmu_buf_impl_t
*db
= dbuf_hold(dn
, blkid
+ i
, tag
);
578 dmu_zfetch_run(&dn
->dn_zfetch
, zs
, missed
,
581 rw_exit(&dn
->dn_struct_rwlock
);
582 dmu_buf_rele_array(dbp
, nblks
, tag
);
585 return (SET_ERROR(EIO
));
589 * Initiate async demand data read.
590 * We check the db_state after calling dbuf_read() because
591 * (1) dbuf_read() may change the state to CACHED due to a
592 * hit in the ARC, and (2) on a cache miss, a child will
593 * have been added to "zio" but not yet completed, so the
594 * state will not yet be CACHED.
597 if (i
== nblks
- 1 && blkid
+ i
< dn
->dn_maxblkid
&&
598 offset
+ length
< db
->db
.db_offset
+
600 if (offset
<= db
->db
.db_offset
)
601 dbuf_flags
|= DB_RF_PARTIAL_FIRST
;
603 dbuf_flags
|= DB_RF_PARTIAL_MORE
;
605 (void) dbuf_read(db
, zio
, dbuf_flags
);
606 if (db
->db_state
!= DB_CACHED
)
613 * If we are doing O_DIRECT we still hold the dbufs, even for reads,
614 * but we do not issue any reads here. We do not want to account for
615 * writes in this case.
617 * O_DIRECT write/read accounting takes place in
618 * dmu_{write/read}_abd().
620 if (!read
&& ((flags
& DMU_DIRECTIO
) == 0))
621 zfs_racct_write(dn
->dn_objset
->os_spa
, length
, nblks
, flags
);
624 dmu_zfetch_run(&dn
->dn_zfetch
, zs
, missed
, B_TRUE
);
625 rw_exit(&dn
->dn_struct_rwlock
);
628 /* wait for async read i/o */
631 dmu_buf_rele_array(dbp
, nblks
, tag
);
635 /* wait for other io to complete */
636 for (i
= 0; i
< nblks
; i
++) {
637 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)dbp
[i
];
638 mutex_enter(&db
->db_mtx
);
639 while (db
->db_state
== DB_READ
||
640 db
->db_state
== DB_FILL
)
641 cv_wait(&db
->db_changed
, &db
->db_mtx
);
642 if (db
->db_state
== DB_UNCACHED
)
643 err
= SET_ERROR(EIO
);
644 mutex_exit(&db
->db_mtx
);
646 dmu_buf_rele_array(dbp
, nblks
, tag
);
658 dmu_buf_hold_array(objset_t
*os
, uint64_t object
, uint64_t offset
,
659 uint64_t length
, int read
, const void *tag
, int *numbufsp
,
665 err
= dnode_hold(os
, object
, FTAG
, &dn
);
669 err
= dmu_buf_hold_array_by_dnode(dn
, offset
, length
, read
, tag
,
670 numbufsp
, dbpp
, DMU_READ_PREFETCH
);
672 dnode_rele(dn
, FTAG
);
678 dmu_buf_hold_array_by_bonus(dmu_buf_t
*db_fake
, uint64_t offset
,
679 uint64_t length
, boolean_t read
, const void *tag
, int *numbufsp
,
682 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
686 err
= dmu_buf_hold_array_by_dnode(DB_DNODE(db
), offset
, length
, read
,
687 tag
, numbufsp
, dbpp
, DMU_READ_PREFETCH
);
694 dmu_buf_rele_array(dmu_buf_t
**dbp_fake
, int numbufs
, const void *tag
)
697 dmu_buf_impl_t
**dbp
= (dmu_buf_impl_t
**)dbp_fake
;
702 for (i
= 0; i
< numbufs
; i
++) {
704 dbuf_rele(dbp
[i
], tag
);
707 kmem_free(dbp
, sizeof (dmu_buf_t
*) * numbufs
);
711 * Issue prefetch I/Os for the given blocks. If level is greater than 0, the
712 * indirect blocks prefetched will be those that point to the blocks containing
713 * the data starting at offset, and continuing to offset + len. If the range
714 * is too long, prefetch the first dmu_prefetch_max bytes as requested, while
715 * for the rest only a higher level, also fitting within dmu_prefetch_max. It
716 * should primarily help random reads, since for long sequential reads there is
717 * a speculative prefetcher.
719 * Note that if the indirect blocks above the blocks being prefetched are not
720 * in cache, they will be asynchronously read in. Dnode read by dnode_hold()
721 * is currently synchronous.
724 dmu_prefetch(objset_t
*os
, uint64_t object
, int64_t level
, uint64_t offset
,
725 uint64_t len
, zio_priority_t pri
)
729 if (dmu_prefetch_max
== 0 || len
== 0) {
730 dmu_prefetch_dnode(os
, object
, pri
);
734 if (dnode_hold(os
, object
, FTAG
, &dn
) != 0)
737 dmu_prefetch_by_dnode(dn
, level
, offset
, len
, pri
);
739 dnode_rele(dn
, FTAG
);
743 dmu_prefetch_by_dnode(dnode_t
*dn
, int64_t level
, uint64_t offset
,
744 uint64_t len
, zio_priority_t pri
)
746 int64_t level2
= level
;
747 uint64_t start
, end
, start2
, end2
;
750 * Depending on len we may do two prefetches: blocks [start, end) at
751 * level, and following blocks [start2, end2) at higher level2.
753 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
754 if (dn
->dn_datablkshift
!= 0) {
756 * The object has multiple blocks. Calculate the full range
757 * of blocks [start, end2) and then split it into two parts,
758 * so that the first [start, end) fits into dmu_prefetch_max.
760 start
= dbuf_whichblock(dn
, level
, offset
);
761 end2
= dbuf_whichblock(dn
, level
, offset
+ len
- 1) + 1;
762 uint8_t ibs
= dn
->dn_indblkshift
;
763 uint8_t bs
= (level
== 0) ? dn
->dn_datablkshift
: ibs
;
764 uint_t limit
= P2ROUNDUP(dmu_prefetch_max
, 1 << bs
) >> bs
;
765 start2
= end
= MIN(end2
, start
+ limit
);
768 * Find level2 where [start2, end2) fits into dmu_prefetch_max.
770 uint8_t ibps
= ibs
- SPA_BLKPTRSHIFT
;
771 limit
= P2ROUNDUP(dmu_prefetch_max
, 1 << ibs
) >> ibs
;
774 start2
= P2ROUNDUP(start2
, 1 << ibps
) >> ibps
;
775 end2
= P2ROUNDUP(end2
, 1 << ibps
) >> ibps
;
776 } while (end2
- start2
> limit
);
778 /* There is only one block. Prefetch it or nothing. */
779 start
= start2
= end2
= 0;
780 end
= start
+ (level
== 0 && offset
< dn
->dn_datablksz
);
783 for (uint64_t i
= start
; i
< end
; i
++)
784 dbuf_prefetch(dn
, level
, i
, pri
, 0);
785 for (uint64_t i
= start2
; i
< end2
; i
++)
786 dbuf_prefetch(dn
, level2
, i
, pri
, 0);
787 rw_exit(&dn
->dn_struct_rwlock
);
793 uint64_t dpa_pending_io
;
794 } dmu_prefetch_arg_t
;
797 dmu_prefetch_done(void *arg
, uint64_t level
, uint64_t blkid
, boolean_t issued
)
799 (void) level
; (void) blkid
; (void)issued
;
800 dmu_prefetch_arg_t
*dpa
= arg
;
804 mutex_enter(&dpa
->dpa_lock
);
805 ASSERT3U(dpa
->dpa_pending_io
, >, 0);
806 if (--dpa
->dpa_pending_io
== 0)
807 cv_broadcast(&dpa
->dpa_cv
);
808 mutex_exit(&dpa
->dpa_lock
);
812 dmu_prefetch_wait_by_dnode(dnode_t
*dn
, uint64_t offset
, uint64_t len
)
814 dmu_prefetch_arg_t dpa
;
816 mutex_init(&dpa
.dpa_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
817 cv_init(&dpa
.dpa_cv
, NULL
, CV_DEFAULT
, NULL
);
819 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
821 uint64_t start
= dbuf_whichblock(dn
, 0, offset
);
822 uint64_t end
= dbuf_whichblock(dn
, 0, offset
+ len
- 1) + 1;
823 dpa
.dpa_pending_io
= end
- start
;
825 for (uint64_t blk
= start
; blk
< end
; blk
++) {
826 (void) dbuf_prefetch_impl(dn
, 0, blk
, ZIO_PRIORITY_ASYNC_READ
,
827 0, dmu_prefetch_done
, &dpa
);
830 rw_exit(&dn
->dn_struct_rwlock
);
832 /* wait for prefetch L0 reads to finish */
833 mutex_enter(&dpa
.dpa_lock
);
834 while (dpa
.dpa_pending_io
> 0) {
835 cv_wait(&dpa
.dpa_cv
, &dpa
.dpa_lock
);
838 mutex_exit(&dpa
.dpa_lock
);
840 mutex_destroy(&dpa
.dpa_lock
);
841 cv_destroy(&dpa
.dpa_cv
);
845 * Issue prefetch I/Os for the given L0 block range and wait for the I/O
846 * to complete. This does not enforce dmu_prefetch_max and will prefetch
847 * the entire range. The blocks are read from disk into the ARC but no
848 * decompression occurs (i.e., the dbuf cache is not required).
851 dmu_prefetch_wait(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
)
856 err
= dnode_hold(os
, object
, FTAG
, &dn
);
861 * Chunk the requests (16 indirects worth) so that we can be interrupted
864 if (dn
->dn_indblkshift
) {
865 uint64_t nbps
= bp_span_in_blocks(dn
->dn_indblkshift
, 1);
866 chunksize
= (nbps
* 16) << dn
->dn_datablkshift
;
868 chunksize
= dn
->dn_datablksz
;
872 uint64_t mylen
= MIN(size
, chunksize
);
874 dmu_prefetch_wait_by_dnode(dn
, offset
, mylen
);
880 err
= SET_ERROR(EINTR
);
885 dnode_rele(dn
, FTAG
);
891 * Issue prefetch I/Os for the given object's dnode.
894 dmu_prefetch_dnode(objset_t
*os
, uint64_t object
, zio_priority_t pri
)
896 if (object
== 0 || object
>= DN_MAX_OBJECT
)
899 dnode_t
*dn
= DMU_META_DNODE(os
);
900 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
901 uint64_t blkid
= dbuf_whichblock(dn
, 0, object
* sizeof (dnode_phys_t
));
902 dbuf_prefetch(dn
, 0, blkid
, pri
, 0);
903 rw_exit(&dn
->dn_struct_rwlock
);
907 * Get the next "chunk" of file data to free. We traverse the file from
908 * the end so that the file gets shorter over time (if we crash in the
909 * middle, this will leave us in a better state). We find allocated file
910 * data by simply searching the allocated level 1 indirects.
912 * On input, *start should be the first offset that does not need to be
913 * freed (e.g. "offset + length"). On return, *start will be the first
914 * offset that should be freed and l1blks is set to the number of level 1
915 * indirect blocks found within the chunk.
918 get_next_chunk(dnode_t
*dn
, uint64_t *start
, uint64_t minimum
, uint64_t *l1blks
)
921 uint64_t maxblks
= DMU_MAX_ACCESS
>> (dn
->dn_indblkshift
+ 1);
922 /* bytes of data covered by a level-1 indirect block */
923 uint64_t iblkrange
= (uint64_t)dn
->dn_datablksz
*
924 EPB(dn
->dn_indblkshift
, SPA_BLKPTRSHIFT
);
926 ASSERT3U(minimum
, <=, *start
);
928 /* dn_nlevels == 1 means we don't have any L1 blocks */
929 if (dn
->dn_nlevels
<= 1) {
936 * Check if we can free the entire range assuming that all of the
937 * L1 blocks in this range have data. If we can, we use this
938 * worst case value as an estimate so we can avoid having to look
939 * at the object's actual data.
941 uint64_t total_l1blks
=
942 (roundup(*start
, iblkrange
) - (minimum
/ iblkrange
* iblkrange
)) /
944 if (total_l1blks
<= maxblks
) {
945 *l1blks
= total_l1blks
;
949 ASSERT(ISP2(iblkrange
));
951 for (blks
= 0; *start
> minimum
&& blks
< maxblks
; blks
++) {
955 * dnode_next_offset(BACKWARDS) will find an allocated L1
956 * indirect block at or before the input offset. We must
957 * decrement *start so that it is at the end of the region
962 err
= dnode_next_offset(dn
,
963 DNODE_FIND_BACKWARDS
, start
, 2, 1, 0);
965 /* if there are no indirect blocks before start, we are done */
969 } else if (err
!= 0) {
974 /* set start to the beginning of this L1 indirect */
975 *start
= P2ALIGN_TYPED(*start
, iblkrange
, uint64_t);
977 if (*start
< minimum
)
985 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
986 * otherwise return false.
987 * Used below in dmu_free_long_range_impl() to enable abort when unmounting
990 dmu_objset_zfs_unmounting(objset_t
*os
)
993 if (dmu_objset_type(os
) == DMU_OST_ZFS
)
994 return (zfs_get_vfs_flag_unmounted(os
));
1002 dmu_free_long_range_impl(objset_t
*os
, dnode_t
*dn
, uint64_t offset
,
1005 uint64_t object_size
;
1007 uint64_t dirty_frees_threshold
;
1008 dsl_pool_t
*dp
= dmu_objset_pool(os
);
1011 return (SET_ERROR(EINVAL
));
1013 object_size
= (dn
->dn_maxblkid
+ 1) * dn
->dn_datablksz
;
1014 if (offset
>= object_size
)
1017 if (zfs_per_txg_dirty_frees_percent
<= 100)
1018 dirty_frees_threshold
=
1019 zfs_per_txg_dirty_frees_percent
* zfs_dirty_data_max
/ 100;
1021 dirty_frees_threshold
= zfs_dirty_data_max
/ 20;
1023 if (length
== DMU_OBJECT_END
|| offset
+ length
> object_size
)
1024 length
= object_size
- offset
;
1026 while (length
!= 0) {
1027 uint64_t chunk_end
, chunk_begin
, chunk_len
;
1031 if (dmu_objset_zfs_unmounting(dn
->dn_objset
))
1032 return (SET_ERROR(EINTR
));
1034 chunk_end
= chunk_begin
= offset
+ length
;
1036 /* move chunk_begin backwards to the beginning of this chunk */
1037 err
= get_next_chunk(dn
, &chunk_begin
, offset
, &l1blks
);
1040 ASSERT3U(chunk_begin
, >=, offset
);
1041 ASSERT3U(chunk_begin
, <=, chunk_end
);
1043 chunk_len
= chunk_end
- chunk_begin
;
1045 tx
= dmu_tx_create(os
);
1046 dmu_tx_hold_free(tx
, dn
->dn_object
, chunk_begin
, chunk_len
);
1049 * Mark this transaction as typically resulting in a net
1050 * reduction in space used.
1052 dmu_tx_mark_netfree(tx
);
1053 err
= dmu_tx_assign(tx
, TXG_WAIT
);
1059 uint64_t txg
= dmu_tx_get_txg(tx
);
1061 mutex_enter(&dp
->dp_lock
);
1062 uint64_t long_free_dirty
=
1063 dp
->dp_long_free_dirty_pertxg
[txg
& TXG_MASK
];
1064 mutex_exit(&dp
->dp_lock
);
1067 * To avoid filling up a TXG with just frees, wait for
1068 * the next TXG to open before freeing more chunks if
1069 * we have reached the threshold of frees.
1071 if (dirty_frees_threshold
!= 0 &&
1072 long_free_dirty
>= dirty_frees_threshold
) {
1073 DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay
);
1075 txg_wait_open(dp
, 0, B_TRUE
);
1080 * In order to prevent unnecessary write throttling, for each
1081 * TXG, we track the cumulative size of L1 blocks being dirtied
1082 * in dnode_free_range() below. We compare this number to a
1083 * tunable threshold, past which we prevent new L1 dirty freeing
1084 * blocks from being added into the open TXG. See
1085 * dmu_free_long_range_impl() for details. The threshold
1086 * prevents write throttle activation due to dirty freeing L1
1087 * blocks taking up a large percentage of zfs_dirty_data_max.
1089 mutex_enter(&dp
->dp_lock
);
1090 dp
->dp_long_free_dirty_pertxg
[txg
& TXG_MASK
] +=
1091 l1blks
<< dn
->dn_indblkshift
;
1092 mutex_exit(&dp
->dp_lock
);
1093 DTRACE_PROBE3(free__long__range
,
1094 uint64_t, long_free_dirty
, uint64_t, chunk_len
,
1096 dnode_free_range(dn
, chunk_begin
, chunk_len
, tx
);
1100 length
-= chunk_len
;
1106 dmu_free_long_range(objset_t
*os
, uint64_t object
,
1107 uint64_t offset
, uint64_t length
)
1112 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1115 err
= dmu_free_long_range_impl(os
, dn
, offset
, length
);
1118 * It is important to zero out the maxblkid when freeing the entire
1119 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
1120 * will take the fast path, and (b) dnode_reallocate() can verify
1121 * that the entire file has been freed.
1123 if (err
== 0 && offset
== 0 && length
== DMU_OBJECT_END
)
1124 dn
->dn_maxblkid
= 0;
1126 dnode_rele(dn
, FTAG
);
1131 dmu_free_long_object(objset_t
*os
, uint64_t object
)
1136 err
= dmu_free_long_range(os
, object
, 0, DMU_OBJECT_END
);
1140 tx
= dmu_tx_create(os
);
1141 dmu_tx_hold_bonus(tx
, object
);
1142 dmu_tx_hold_free(tx
, object
, 0, DMU_OBJECT_END
);
1143 dmu_tx_mark_netfree(tx
);
1144 err
= dmu_tx_assign(tx
, TXG_WAIT
);
1146 err
= dmu_object_free(os
, object
, tx
);
1156 dmu_free_range(objset_t
*os
, uint64_t object
, uint64_t offset
,
1157 uint64_t size
, dmu_tx_t
*tx
)
1160 int err
= dnode_hold(os
, object
, FTAG
, &dn
);
1163 ASSERT(offset
< UINT64_MAX
);
1164 ASSERT(size
== DMU_OBJECT_END
|| size
<= UINT64_MAX
- offset
);
1165 dnode_free_range(dn
, offset
, size
, tx
);
1166 dnode_rele(dn
, FTAG
);
1171 dmu_read_impl(dnode_t
*dn
, uint64_t offset
, uint64_t size
,
1172 void *buf
, uint32_t flags
)
1175 int numbufs
, err
= 0;
1178 * Deal with odd block sizes, where there can't be data past the first
1179 * block. If we ever do the tail block optimization, we will need to
1180 * handle that here as well.
1182 if (dn
->dn_maxblkid
== 0) {
1183 uint64_t newsz
= offset
> dn
->dn_datablksz
? 0 :
1184 MIN(size
, dn
->dn_datablksz
- offset
);
1185 memset((char *)buf
+ newsz
, 0, size
- newsz
);
1192 /* Allow Direct I/O when requested and properly aligned */
1193 if ((flags
& DMU_DIRECTIO
) && zfs_dio_page_aligned(buf
) &&
1194 zfs_dio_aligned(offset
, size
, PAGESIZE
)) {
1195 abd_t
*data
= abd_get_from_buf(buf
, size
);
1196 err
= dmu_read_abd(dn
, offset
, size
, data
, flags
);
1202 uint64_t mylen
= MIN(size
, DMU_MAX_ACCESS
/ 2);
1206 * NB: we could do this block-at-a-time, but it's nice
1207 * to be reading in parallel.
1209 err
= dmu_buf_hold_array_by_dnode(dn
, offset
, mylen
,
1210 TRUE
, FTAG
, &numbufs
, &dbp
, flags
);
1214 for (i
= 0; i
< numbufs
; i
++) {
1217 dmu_buf_t
*db
= dbp
[i
];
1221 bufoff
= offset
- db
->db_offset
;
1222 tocpy
= MIN(db
->db_size
- bufoff
, size
);
1224 (void) memcpy(buf
, (char *)db
->db_data
+ bufoff
, tocpy
);
1228 buf
= (char *)buf
+ tocpy
;
1230 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1236 dmu_read(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
,
1237 void *buf
, uint32_t flags
)
1242 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1246 err
= dmu_read_impl(dn
, offset
, size
, buf
, flags
);
1247 dnode_rele(dn
, FTAG
);
1252 dmu_read_by_dnode(dnode_t
*dn
, uint64_t offset
, uint64_t size
, void *buf
,
1255 return (dmu_read_impl(dn
, offset
, size
, buf
, flags
));
1259 dmu_write_impl(dmu_buf_t
**dbp
, int numbufs
, uint64_t offset
, uint64_t size
,
1260 const void *buf
, dmu_tx_t
*tx
)
1264 for (i
= 0; i
< numbufs
; i
++) {
1267 dmu_buf_t
*db
= dbp
[i
];
1271 bufoff
= offset
- db
->db_offset
;
1272 tocpy
= MIN(db
->db_size
- bufoff
, size
);
1274 ASSERT(i
== 0 || i
== numbufs
-1 || tocpy
== db
->db_size
);
1276 if (tocpy
== db
->db_size
)
1277 dmu_buf_will_fill(db
, tx
, B_FALSE
);
1279 dmu_buf_will_dirty(db
, tx
);
1281 (void) memcpy((char *)db
->db_data
+ bufoff
, buf
, tocpy
);
1283 if (tocpy
== db
->db_size
)
1284 dmu_buf_fill_done(db
, tx
, B_FALSE
);
1288 buf
= (char *)buf
+ tocpy
;
1293 dmu_write(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
,
1294 const void *buf
, dmu_tx_t
*tx
)
1302 VERIFY0(dmu_buf_hold_array(os
, object
, offset
, size
,
1303 FALSE
, FTAG
, &numbufs
, &dbp
));
1304 dmu_write_impl(dbp
, numbufs
, offset
, size
, buf
, tx
);
1305 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1309 * This interface is not used internally by ZFS but is provided for
1310 * use by Lustre which is built on the DMU interfaces.
1313 dmu_write_by_dnode_flags(dnode_t
*dn
, uint64_t offset
, uint64_t size
,
1314 const void *buf
, dmu_tx_t
*tx
, uint32_t flags
)
1323 /* Allow Direct I/O when requested and properly aligned */
1324 if ((flags
& DMU_DIRECTIO
) && zfs_dio_page_aligned((void *)buf
) &&
1325 zfs_dio_aligned(offset
, size
, dn
->dn_datablksz
)) {
1326 abd_t
*data
= abd_get_from_buf((void *)buf
, size
);
1327 error
= dmu_write_abd(dn
, offset
, size
, data
, DMU_DIRECTIO
, tx
);
1332 VERIFY0(dmu_buf_hold_array_by_dnode(dn
, offset
, size
,
1333 FALSE
, FTAG
, &numbufs
, &dbp
, DMU_READ_PREFETCH
));
1334 dmu_write_impl(dbp
, numbufs
, offset
, size
, buf
, tx
);
1335 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1340 dmu_write_by_dnode(dnode_t
*dn
, uint64_t offset
, uint64_t size
,
1341 const void *buf
, dmu_tx_t
*tx
)
1343 return (dmu_write_by_dnode_flags(dn
, offset
, size
, buf
, tx
, 0));
1347 dmu_prealloc(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
,
1356 VERIFY(0 == dmu_buf_hold_array(os
, object
, offset
, size
,
1357 FALSE
, FTAG
, &numbufs
, &dbp
));
1359 for (i
= 0; i
< numbufs
; i
++) {
1360 dmu_buf_t
*db
= dbp
[i
];
1362 dmu_buf_will_not_fill(db
, tx
);
1364 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1368 dmu_write_embedded(objset_t
*os
, uint64_t object
, uint64_t offset
,
1369 void *data
, uint8_t etype
, uint8_t comp
, int uncompressed_size
,
1370 int compressed_size
, int byteorder
, dmu_tx_t
*tx
)
1374 ASSERT3U(etype
, <, NUM_BP_EMBEDDED_TYPES
);
1375 ASSERT3U(comp
, <, ZIO_COMPRESS_FUNCTIONS
);
1376 VERIFY0(dmu_buf_hold_noread(os
, object
, offset
,
1379 dmu_buf_write_embedded(db
,
1380 data
, (bp_embedded_type_t
)etype
, (enum zio_compress
)comp
,
1381 uncompressed_size
, compressed_size
, byteorder
, tx
);
1383 dmu_buf_rele(db
, FTAG
);
1387 dmu_redact(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
,
1393 VERIFY0(dmu_buf_hold_array(os
, object
, offset
, size
, FALSE
, FTAG
,
1395 for (i
= 0; i
< numbufs
; i
++)
1396 dmu_buf_redact(dbp
[i
], tx
);
1397 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1402 dmu_read_uio_dnode(dnode_t
*dn
, zfs_uio_t
*uio
, uint64_t size
)
1405 int numbufs
, i
, err
;
1407 if (uio
->uio_extflg
& UIO_DIRECT
)
1408 return (dmu_read_uio_direct(dn
, uio
, size
));
1411 * NB: we could do this block-at-a-time, but it's nice
1412 * to be reading in parallel.
1414 err
= dmu_buf_hold_array_by_dnode(dn
, zfs_uio_offset(uio
), size
,
1415 TRUE
, FTAG
, &numbufs
, &dbp
, 0);
1419 for (i
= 0; i
< numbufs
; i
++) {
1422 dmu_buf_t
*db
= dbp
[i
];
1426 bufoff
= zfs_uio_offset(uio
) - db
->db_offset
;
1427 tocpy
= MIN(db
->db_size
- bufoff
, size
);
1429 err
= zfs_uio_fault_move((char *)db
->db_data
+ bufoff
, tocpy
,
1437 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1443 * Read 'size' bytes into the uio buffer.
1444 * From object zdb->db_object.
1445 * Starting at zfs_uio_offset(uio).
1447 * If the caller already has a dbuf in the target object
1448 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1449 * because we don't have to find the dnode_t for the object.
1452 dmu_read_uio_dbuf(dmu_buf_t
*zdb
, zfs_uio_t
*uio
, uint64_t size
)
1454 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)zdb
;
1461 err
= dmu_read_uio_dnode(DB_DNODE(db
), uio
, size
);
1468 * Read 'size' bytes into the uio buffer.
1469 * From the specified object
1470 * Starting at offset zfs_uio_offset(uio).
1473 dmu_read_uio(objset_t
*os
, uint64_t object
, zfs_uio_t
*uio
, uint64_t size
)
1481 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1485 err
= dmu_read_uio_dnode(dn
, uio
, size
);
1487 dnode_rele(dn
, FTAG
);
1493 dmu_write_uio_dnode(dnode_t
*dn
, zfs_uio_t
*uio
, uint64_t size
, dmu_tx_t
*tx
)
1498 uint64_t write_size
;
1504 * We only allow Direct I/O writes to happen if we are block
1505 * sized aligned. Otherwise, we pass the write off to the ARC.
1507 if ((uio
->uio_extflg
& UIO_DIRECT
) &&
1508 (write_size
>= dn
->dn_datablksz
)) {
1509 if (zfs_dio_aligned(zfs_uio_offset(uio
), write_size
,
1510 dn
->dn_datablksz
)) {
1511 return (dmu_write_uio_direct(dn
, uio
, size
, tx
));
1512 } else if (write_size
> dn
->dn_datablksz
&&
1513 zfs_dio_offset_aligned(zfs_uio_offset(uio
),
1514 dn
->dn_datablksz
)) {
1516 dn
->dn_datablksz
* (write_size
/ dn
->dn_datablksz
);
1517 err
= dmu_write_uio_direct(dn
, uio
, write_size
, tx
);
1526 P2PHASE(zfs_uio_offset(uio
), dn
->dn_datablksz
);
1530 err
= dmu_buf_hold_array_by_dnode(dn
, zfs_uio_offset(uio
), write_size
,
1531 FALSE
, FTAG
, &numbufs
, &dbp
, DMU_READ_PREFETCH
);
1535 for (int i
= 0; i
< numbufs
; i
++) {
1538 dmu_buf_t
*db
= dbp
[i
];
1540 ASSERT(write_size
> 0);
1542 offset_t off
= zfs_uio_offset(uio
);
1543 bufoff
= off
- db
->db_offset
;
1544 tocpy
= MIN(db
->db_size
- bufoff
, write_size
);
1546 ASSERT(i
== 0 || i
== numbufs
-1 || tocpy
== db
->db_size
);
1548 if (tocpy
== db
->db_size
)
1549 dmu_buf_will_fill(db
, tx
, B_TRUE
);
1551 dmu_buf_will_dirty(db
, tx
);
1553 err
= zfs_uio_fault_move((char *)db
->db_data
+ bufoff
,
1554 tocpy
, UIO_WRITE
, uio
);
1556 if (tocpy
== db
->db_size
&& dmu_buf_fill_done(db
, tx
, err
)) {
1557 /* The fill was reverted. Undo any uio progress. */
1558 zfs_uio_advance(uio
, off
- zfs_uio_offset(uio
));
1564 write_size
-= tocpy
;
1568 IMPLY(err
== 0, write_size
== 0);
1570 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1572 if ((uio
->uio_extflg
& UIO_DIRECT
) && size
> 0) {
1580 * Write 'size' bytes from the uio buffer.
1581 * To object zdb->db_object.
1582 * Starting at offset zfs_uio_offset(uio).
1584 * If the caller already has a dbuf in the target object
1585 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1586 * because we don't have to find the dnode_t for the object.
1589 dmu_write_uio_dbuf(dmu_buf_t
*zdb
, zfs_uio_t
*uio
, uint64_t size
,
1592 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)zdb
;
1599 err
= dmu_write_uio_dnode(DB_DNODE(db
), uio
, size
, tx
);
1606 * Write 'size' bytes from the uio buffer.
1607 * To the specified object.
1608 * Starting at offset zfs_uio_offset(uio).
1611 dmu_write_uio(objset_t
*os
, uint64_t object
, zfs_uio_t
*uio
, uint64_t size
,
1620 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1624 err
= dmu_write_uio_dnode(dn
, uio
, size
, tx
);
1626 dnode_rele(dn
, FTAG
);
1630 #endif /* _KERNEL */
1633 dmu_cached_bps(spa_t
*spa
, blkptr_t
*bps
, uint_t nbps
,
1634 uint64_t *l1sz
, uint64_t *l2sz
)
1641 for (size_t blk_off
= 0; blk_off
< nbps
; blk_off
++) {
1642 blkptr_t
*bp
= &bps
[blk_off
];
1647 cached_flags
= arc_cached(spa
, bp
);
1648 if (cached_flags
== 0)
1651 if ((cached_flags
& (ARC_CACHED_IN_L1
| ARC_CACHED_IN_L2
)) ==
1653 *l2sz
+= BP_GET_LSIZE(bp
);
1655 *l1sz
+= BP_GET_LSIZE(bp
);
1660 * Estimate DMU object cached size.
1663 dmu_object_cached_size(objset_t
*os
, uint64_t object
,
1664 uint64_t *l1sz
, uint64_t *l2sz
)
1667 dmu_object_info_t doi
;
1672 if (dnode_hold(os
, object
, FTAG
, &dn
) != 0)
1675 if (dn
->dn_nlevels
< 2) {
1676 dnode_rele(dn
, FTAG
);
1680 dmu_object_info_from_dnode(dn
, &doi
);
1682 for (uint64_t off
= 0; off
< doi
.doi_max_offset
;
1683 off
+= dmu_prefetch_max
) {
1684 /* dbuf_read doesn't prefetch L1 blocks. */
1685 dmu_prefetch_by_dnode(dn
, 1, off
,
1686 dmu_prefetch_max
, ZIO_PRIORITY_SYNC_READ
);
1690 * Hold all valid L1 blocks, asking ARC the status of each BP
1691 * contained in each such L1 block.
1693 uint_t nbps
= bp_span_in_blocks(dn
->dn_indblkshift
, 1);
1694 uint64_t l1blks
= 1 + (dn
->dn_maxblkid
/ nbps
);
1696 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
1697 for (uint64_t blk
= 0; blk
< l1blks
; blk
++) {
1698 dmu_buf_impl_t
*db
= NULL
;
1702 * On interrupt, get out, and bubble up EINTR
1709 * If we get an i/o error here, the L1 can't be read,
1710 * and nothing under it could be cached, so we just
1711 * continue. Ignoring the error from dbuf_hold_impl
1712 * or from dbuf_read is then a reasonable choice.
1714 err
= dbuf_hold_impl(dn
, 1, blk
, B_TRUE
, B_FALSE
, FTAG
, &db
);
1717 * ignore error and continue
1723 err
= dbuf_read(db
, NULL
, DB_RF_CANFAIL
);
1725 dmu_cached_bps(dmu_objset_spa(os
), db
->db
.db_data
,
1729 * error may be ignored, and we continue
1732 dbuf_rele(db
, FTAG
);
1734 rw_exit(&dn
->dn_struct_rwlock
);
1736 dnode_rele(dn
, FTAG
);
1741 * Allocate a loaned anonymous arc buffer.
1744 dmu_request_arcbuf(dmu_buf_t
*handle
, int size
)
1746 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)handle
;
1748 return (arc_loan_buf(db
->db_objset
->os_spa
, B_FALSE
, size
));
1752 * Free a loaned arc buffer.
1755 dmu_return_arcbuf(arc_buf_t
*buf
)
1757 arc_return_buf(buf
, FTAG
);
1758 arc_buf_destroy(buf
, FTAG
);
1762 * A "lightweight" write is faster than a regular write (e.g.
1763 * dmu_write_by_dnode() or dmu_assign_arcbuf_by_dnode()), because it avoids the
1764 * CPU cost of creating a dmu_buf_impl_t and arc_buf_[hdr_]_t. However, the
1765 * data can not be read or overwritten until the transaction's txg has been
1766 * synced. This makes it appropriate for workloads that are known to be
1767 * (temporarily) write-only, like "zfs receive".
1769 * A single block is written, starting at the specified offset in bytes. If
1770 * the call is successful, it returns 0 and the provided abd has been
1771 * consumed (the caller should not free it).
1774 dmu_lightweight_write_by_dnode(dnode_t
*dn
, uint64_t offset
, abd_t
*abd
,
1775 const zio_prop_t
*zp
, zio_flag_t flags
, dmu_tx_t
*tx
)
1777 dbuf_dirty_record_t
*dr
=
1778 dbuf_dirty_lightweight(dn
, dbuf_whichblock(dn
, 0, offset
), tx
);
1780 return (SET_ERROR(EIO
));
1781 dr
->dt
.dll
.dr_abd
= abd
;
1782 dr
->dt
.dll
.dr_props
= *zp
;
1783 dr
->dt
.dll
.dr_flags
= flags
;
1788 * When possible directly assign passed loaned arc buffer to a dbuf.
1789 * If this is not possible copy the contents of passed arc buf via
1793 dmu_assign_arcbuf_by_dnode(dnode_t
*dn
, uint64_t offset
, arc_buf_t
*buf
,
1797 objset_t
*os
= dn
->dn_objset
;
1798 uint64_t object
= dn
->dn_object
;
1799 uint32_t blksz
= (uint32_t)arc_buf_lsize(buf
);
1802 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
1803 blkid
= dbuf_whichblock(dn
, 0, offset
);
1804 db
= dbuf_hold(dn
, blkid
, FTAG
);
1805 rw_exit(&dn
->dn_struct_rwlock
);
1807 return (SET_ERROR(EIO
));
1810 * We can only assign if the offset is aligned and the arc buf is the
1811 * same size as the dbuf.
1813 if (offset
== db
->db
.db_offset
&& blksz
== db
->db
.db_size
) {
1814 zfs_racct_write(os
->os_spa
, blksz
, 1, 0);
1815 dbuf_assign_arcbuf(db
, buf
, tx
);
1816 dbuf_rele(db
, FTAG
);
1818 /* compressed bufs must always be assignable to their dbuf */
1819 ASSERT3U(arc_get_compression(buf
), ==, ZIO_COMPRESS_OFF
);
1820 ASSERT(!(buf
->b_flags
& ARC_BUF_FLAG_COMPRESSED
));
1822 dbuf_rele(db
, FTAG
);
1823 dmu_write(os
, object
, offset
, blksz
, buf
->b_data
, tx
);
1824 dmu_return_arcbuf(buf
);
1831 dmu_assign_arcbuf_by_dbuf(dmu_buf_t
*handle
, uint64_t offset
, arc_buf_t
*buf
,
1835 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)handle
;
1838 err
= dmu_assign_arcbuf_by_dnode(DB_DNODE(db
), offset
, buf
, tx
);
1845 dmu_sync_ready(zio_t
*zio
, arc_buf_t
*buf
, void *varg
)
1848 dmu_sync_arg_t
*dsa
= varg
;
1850 if (zio
->io_error
== 0) {
1851 dbuf_dirty_record_t
*dr
= dsa
->dsa_dr
;
1852 blkptr_t
*bp
= zio
->io_bp
;
1854 if (BP_IS_HOLE(bp
)) {
1855 dmu_buf_t
*db
= NULL
;
1857 db
= &(dr
->dr_dbuf
->db
);
1859 db
= dsa
->dsa_zgd
->zgd_db
;
1861 * A block of zeros may compress to a hole, but the
1862 * block size still needs to be known for replay.
1864 BP_SET_LSIZE(bp
, db
->db_size
);
1865 } else if (!BP_IS_EMBEDDED(bp
)) {
1866 ASSERT(BP_GET_LEVEL(bp
) == 0);
1873 dmu_sync_late_arrival_ready(zio_t
*zio
)
1875 dmu_sync_ready(zio
, NULL
, zio
->io_private
);
1879 dmu_sync_done(zio_t
*zio
, arc_buf_t
*buf
, void *varg
)
1882 dmu_sync_arg_t
*dsa
= varg
;
1883 dbuf_dirty_record_t
*dr
= dsa
->dsa_dr
;
1884 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
1885 zgd_t
*zgd
= dsa
->dsa_zgd
;
1888 * Record the vdev(s) backing this blkptr so they can be flushed after
1889 * the writes for the lwb have completed.
1891 if (zgd
&& zio
->io_error
== 0) {
1892 zil_lwb_add_block(zgd
->zgd_lwb
, zgd
->zgd_bp
);
1895 mutex_enter(&db
->db_mtx
);
1896 ASSERT(dr
->dt
.dl
.dr_override_state
== DR_IN_DMU_SYNC
);
1897 if (zio
->io_error
== 0) {
1898 dr
->dt
.dl
.dr_nopwrite
= !!(zio
->io_flags
& ZIO_FLAG_NOPWRITE
);
1899 if (dr
->dt
.dl
.dr_nopwrite
) {
1900 blkptr_t
*bp
= zio
->io_bp
;
1901 blkptr_t
*bp_orig
= &zio
->io_bp_orig
;
1902 uint8_t chksum
= BP_GET_CHECKSUM(bp_orig
);
1904 ASSERT(BP_EQUAL(bp
, bp_orig
));
1905 VERIFY(BP_EQUAL(bp
, db
->db_blkptr
));
1906 ASSERT(zio
->io_prop
.zp_compress
!= ZIO_COMPRESS_OFF
);
1907 VERIFY(zio_checksum_table
[chksum
].ci_flags
&
1908 ZCHECKSUM_FLAG_NOPWRITE
);
1910 dr
->dt
.dl
.dr_overridden_by
= *zio
->io_bp
;
1911 dr
->dt
.dl
.dr_override_state
= DR_OVERRIDDEN
;
1912 dr
->dt
.dl
.dr_copies
= zio
->io_prop
.zp_copies
;
1915 * Old style holes are filled with all zeros, whereas
1916 * new-style holes maintain their lsize, type, level,
1917 * and birth time (see zio_write_compress). While we
1918 * need to reset the BP_SET_LSIZE() call that happened
1919 * in dmu_sync_ready for old style holes, we do *not*
1920 * want to wipe out the information contained in new
1921 * style holes. Thus, only zero out the block pointer if
1922 * it's an old style hole.
1924 if (BP_IS_HOLE(&dr
->dt
.dl
.dr_overridden_by
) &&
1925 BP_GET_LOGICAL_BIRTH(&dr
->dt
.dl
.dr_overridden_by
) == 0)
1926 BP_ZERO(&dr
->dt
.dl
.dr_overridden_by
);
1928 dr
->dt
.dl
.dr_override_state
= DR_NOT_OVERRIDDEN
;
1931 cv_broadcast(&db
->db_changed
);
1932 mutex_exit(&db
->db_mtx
);
1935 dsa
->dsa_done(dsa
->dsa_zgd
, zio
->io_error
);
1937 kmem_free(dsa
, sizeof (*dsa
));
1941 dmu_sync_late_arrival_done(zio_t
*zio
)
1943 blkptr_t
*bp
= zio
->io_bp
;
1944 dmu_sync_arg_t
*dsa
= zio
->io_private
;
1945 zgd_t
*zgd
= dsa
->dsa_zgd
;
1947 if (zio
->io_error
== 0) {
1949 * Record the vdev(s) backing this blkptr so they can be
1950 * flushed after the writes for the lwb have completed.
1952 zil_lwb_add_block(zgd
->zgd_lwb
, zgd
->zgd_bp
);
1954 if (!BP_IS_HOLE(bp
)) {
1955 blkptr_t
*bp_orig __maybe_unused
= &zio
->io_bp_orig
;
1956 ASSERT(!(zio
->io_flags
& ZIO_FLAG_NOPWRITE
));
1957 ASSERT(BP_IS_HOLE(bp_orig
) || !BP_EQUAL(bp
, bp_orig
));
1958 ASSERT(BP_GET_LOGICAL_BIRTH(zio
->io_bp
) == zio
->io_txg
);
1959 ASSERT(zio
->io_txg
> spa_syncing_txg(zio
->io_spa
));
1960 zio_free(zio
->io_spa
, zio
->io_txg
, zio
->io_bp
);
1964 dmu_tx_commit(dsa
->dsa_tx
);
1966 dsa
->dsa_done(dsa
->dsa_zgd
, zio
->io_error
);
1968 abd_free(zio
->io_abd
);
1969 kmem_free(dsa
, sizeof (*dsa
));
1973 dmu_sync_late_arrival(zio_t
*pio
, objset_t
*os
, dmu_sync_cb_t
*done
, zgd_t
*zgd
,
1974 zio_prop_t
*zp
, zbookmark_phys_t
*zb
)
1976 dmu_sync_arg_t
*dsa
;
1980 error
= dbuf_read((dmu_buf_impl_t
*)zgd
->zgd_db
, NULL
,
1981 DB_RF_CANFAIL
| DB_RF_NOPREFETCH
);
1985 tx
= dmu_tx_create(os
);
1986 dmu_tx_hold_space(tx
, zgd
->zgd_db
->db_size
);
1988 * This transaction does not produce any dirty data or log blocks, so
1989 * it should not be throttled. All other cases wait for TXG sync, by
1990 * which time the log block we are writing will be obsolete, so we can
1991 * skip waiting and just return error here instead.
1993 if (dmu_tx_assign(tx
, TXG_NOWAIT
| TXG_NOTHROTTLE
) != 0) {
1995 /* Make zl_get_data do txg_waited_synced() */
1996 return (SET_ERROR(EIO
));
2000 * In order to prevent the zgd's lwb from being free'd prior to
2001 * dmu_sync_late_arrival_done() being called, we have to ensure
2002 * the lwb's "max txg" takes this tx's txg into account.
2004 zil_lwb_add_txg(zgd
->zgd_lwb
, dmu_tx_get_txg(tx
));
2006 dsa
= kmem_alloc(sizeof (dmu_sync_arg_t
), KM_SLEEP
);
2008 dsa
->dsa_done
= done
;
2013 * Since we are currently syncing this txg, it's nontrivial to
2014 * determine what BP to nopwrite against, so we disable nopwrite.
2016 * When syncing, the db_blkptr is initially the BP of the previous
2017 * txg. We can not nopwrite against it because it will be changed
2018 * (this is similar to the non-late-arrival case where the dbuf is
2019 * dirty in a future txg).
2021 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
2022 * We can not nopwrite against it because although the BP will not
2023 * (typically) be changed, the data has not yet been persisted to this
2026 * Finally, when dbuf_write_done() is called, it is theoretically
2027 * possible to always nopwrite, because the data that was written in
2028 * this txg is the same data that we are trying to write. However we
2029 * would need to check that this dbuf is not dirty in any future
2030 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
2031 * don't nopwrite in this case.
2033 zp
->zp_nopwrite
= B_FALSE
;
2035 zio_nowait(zio_write(pio
, os
->os_spa
, dmu_tx_get_txg(tx
), zgd
->zgd_bp
,
2036 abd_get_from_buf(zgd
->zgd_db
->db_data
, zgd
->zgd_db
->db_size
),
2037 zgd
->zgd_db
->db_size
, zgd
->zgd_db
->db_size
, zp
,
2038 dmu_sync_late_arrival_ready
, NULL
, dmu_sync_late_arrival_done
,
2039 dsa
, ZIO_PRIORITY_SYNC_WRITE
, ZIO_FLAG_CANFAIL
, zb
));
2045 * Intent log support: sync the block associated with db to disk.
2046 * N.B. and XXX: the caller is responsible for making sure that the
2047 * data isn't changing while dmu_sync() is writing it.
2051 * EEXIST: this txg has already been synced, so there's nothing to do.
2052 * The caller should not log the write.
2054 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
2055 * The caller should not log the write.
2057 * EALREADY: this block is already in the process of being synced.
2058 * The caller should track its progress (somehow).
2060 * EIO: could not do the I/O.
2061 * The caller should do a txg_wait_synced().
2063 * 0: the I/O has been initiated.
2064 * The caller should log this blkptr in the done callback.
2065 * It is possible that the I/O will fail, in which case
2066 * the error will be reported to the done callback and
2067 * propagated to pio from zio_done().
2070 dmu_sync(zio_t
*pio
, uint64_t txg
, dmu_sync_cb_t
*done
, zgd_t
*zgd
)
2072 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)zgd
->zgd_db
;
2073 objset_t
*os
= db
->db_objset
;
2074 dsl_dataset_t
*ds
= os
->os_dsl_dataset
;
2075 dbuf_dirty_record_t
*dr
, *dr_next
;
2076 dmu_sync_arg_t
*dsa
;
2077 zbookmark_phys_t zb
;
2080 ASSERT(pio
!= NULL
);
2083 SET_BOOKMARK(&zb
, ds
->ds_object
,
2084 db
->db
.db_object
, db
->db_level
, db
->db_blkid
);
2087 dmu_write_policy(os
, DB_DNODE(db
), db
->db_level
, WP_DMU_SYNC
, &zp
);
2091 * If we're frozen (running ziltest), we always need to generate a bp.
2093 if (txg
> spa_freeze_txg(os
->os_spa
))
2094 return (dmu_sync_late_arrival(pio
, os
, done
, zgd
, &zp
, &zb
));
2097 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
2098 * and us. If we determine that this txg is not yet syncing,
2099 * but it begins to sync a moment later, that's OK because the
2100 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
2102 mutex_enter(&db
->db_mtx
);
2104 if (txg
<= spa_last_synced_txg(os
->os_spa
)) {
2106 * This txg has already synced. There's nothing to do.
2108 mutex_exit(&db
->db_mtx
);
2109 return (SET_ERROR(EEXIST
));
2112 if (txg
<= spa_syncing_txg(os
->os_spa
)) {
2114 * This txg is currently syncing, so we can't mess with
2115 * the dirty record anymore; just write a new log block.
2117 mutex_exit(&db
->db_mtx
);
2118 return (dmu_sync_late_arrival(pio
, os
, done
, zgd
, &zp
, &zb
));
2121 dr
= dbuf_find_dirty_eq(db
, txg
);
2125 * There's no dr for this dbuf, so it must have been freed.
2126 * There's no need to log writes to freed blocks, so we're done.
2128 mutex_exit(&db
->db_mtx
);
2129 return (SET_ERROR(ENOENT
));
2132 dr_next
= list_next(&db
->db_dirty_records
, dr
);
2133 ASSERT(dr_next
== NULL
|| dr_next
->dr_txg
< txg
);
2135 if (db
->db_blkptr
!= NULL
) {
2137 * We need to fill in zgd_bp with the current blkptr so that
2138 * the nopwrite code can check if we're writing the same
2139 * data that's already on disk. We can only nopwrite if we
2140 * are sure that after making the copy, db_blkptr will not
2141 * change until our i/o completes. We ensure this by
2142 * holding the db_mtx, and only allowing nopwrite if the
2143 * block is not already dirty (see below). This is verified
2144 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
2147 *zgd
->zgd_bp
= *db
->db_blkptr
;
2151 * Assume the on-disk data is X, the current syncing data (in
2152 * txg - 1) is Y, and the current in-memory data is Z (currently
2155 * We usually want to perform a nopwrite if X and Z are the
2156 * same. However, if Y is different (i.e. the BP is going to
2157 * change before this write takes effect), then a nopwrite will
2158 * be incorrect - we would override with X, which could have
2159 * been freed when Y was written.
2161 * (Note that this is not a concern when we are nop-writing from
2162 * syncing context, because X and Y must be identical, because
2163 * all previous txgs have been synced.)
2165 * Therefore, we disable nopwrite if the current BP could change
2166 * before this TXG. There are two ways it could change: by
2167 * being dirty (dr_next is non-NULL), or by being freed
2168 * (dnode_block_freed()). This behavior is verified by
2169 * zio_done(), which VERIFYs that the override BP is identical
2170 * to the on-disk BP.
2172 if (dr_next
!= NULL
) {
2173 zp
.zp_nopwrite
= B_FALSE
;
2176 if (dnode_block_freed(DB_DNODE(db
), db
->db_blkid
))
2177 zp
.zp_nopwrite
= B_FALSE
;
2181 ASSERT(dr
->dr_txg
== txg
);
2182 if (dr
->dt
.dl
.dr_override_state
== DR_IN_DMU_SYNC
||
2183 dr
->dt
.dl
.dr_override_state
== DR_OVERRIDDEN
) {
2185 * We have already issued a sync write for this buffer,
2186 * or this buffer has already been synced. It could not
2187 * have been dirtied since, or we would have cleared the state.
2189 mutex_exit(&db
->db_mtx
);
2190 return (SET_ERROR(EALREADY
));
2193 ASSERT(dr
->dt
.dl
.dr_override_state
== DR_NOT_OVERRIDDEN
);
2194 dr
->dt
.dl
.dr_override_state
= DR_IN_DMU_SYNC
;
2195 mutex_exit(&db
->db_mtx
);
2197 dsa
= kmem_alloc(sizeof (dmu_sync_arg_t
), KM_SLEEP
);
2199 dsa
->dsa_done
= done
;
2203 zio_nowait(arc_write(pio
, os
->os_spa
, txg
, zgd
->zgd_bp
,
2204 dr
->dt
.dl
.dr_data
, !DBUF_IS_CACHEABLE(db
),
2205 dbuf_is_l2cacheable(db
, NULL
), &zp
, dmu_sync_ready
, NULL
,
2206 dmu_sync_done
, dsa
, ZIO_PRIORITY_SYNC_WRITE
, ZIO_FLAG_CANFAIL
,
2213 dmu_object_set_nlevels(objset_t
*os
, uint64_t object
, int nlevels
, dmu_tx_t
*tx
)
2218 err
= dnode_hold(os
, object
, FTAG
, &dn
);
2221 err
= dnode_set_nlevels(dn
, nlevels
, tx
);
2222 dnode_rele(dn
, FTAG
);
2227 dmu_object_set_blocksize(objset_t
*os
, uint64_t object
, uint64_t size
, int ibs
,
2233 err
= dnode_hold(os
, object
, FTAG
, &dn
);
2236 err
= dnode_set_blksz(dn
, size
, ibs
, tx
);
2237 dnode_rele(dn
, FTAG
);
2242 dmu_object_set_maxblkid(objset_t
*os
, uint64_t object
, uint64_t maxblkid
,
2248 err
= dnode_hold(os
, object
, FTAG
, &dn
);
2251 rw_enter(&dn
->dn_struct_rwlock
, RW_WRITER
);
2252 dnode_new_blkid(dn
, maxblkid
, tx
, B_FALSE
, B_TRUE
);
2253 rw_exit(&dn
->dn_struct_rwlock
);
2254 dnode_rele(dn
, FTAG
);
2259 dmu_object_set_checksum(objset_t
*os
, uint64_t object
, uint8_t checksum
,
2265 * Send streams include each object's checksum function. This
2266 * check ensures that the receiving system can understand the
2267 * checksum function transmitted.
2269 ASSERT3U(checksum
, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS
);
2271 VERIFY0(dnode_hold(os
, object
, FTAG
, &dn
));
2272 ASSERT3U(checksum
, <, ZIO_CHECKSUM_FUNCTIONS
);
2273 dn
->dn_checksum
= checksum
;
2274 dnode_setdirty(dn
, tx
);
2275 dnode_rele(dn
, FTAG
);
2279 dmu_object_set_compress(objset_t
*os
, uint64_t object
, uint8_t compress
,
2285 * Send streams include each object's compression function. This
2286 * check ensures that the receiving system can understand the
2287 * compression function transmitted.
2289 ASSERT3U(compress
, <, ZIO_COMPRESS_LEGACY_FUNCTIONS
);
2291 VERIFY0(dnode_hold(os
, object
, FTAG
, &dn
));
2292 dn
->dn_compress
= compress
;
2293 dnode_setdirty(dn
, tx
);
2294 dnode_rele(dn
, FTAG
);
2298 * When the "redundant_metadata" property is set to "most", only indirect
2299 * blocks of this level and higher will have an additional ditto block.
2301 static const int zfs_redundant_metadata_most_ditto_level
= 2;
2304 dmu_write_policy(objset_t
*os
, dnode_t
*dn
, int level
, int wp
, zio_prop_t
*zp
)
2306 dmu_object_type_t type
= dn
? dn
->dn_type
: DMU_OT_OBJSET
;
2307 boolean_t ismd
= (level
> 0 || DMU_OT_IS_METADATA(type
) ||
2309 enum zio_checksum checksum
= os
->os_checksum
;
2310 enum zio_compress compress
= os
->os_compress
;
2311 uint8_t complevel
= os
->os_complevel
;
2312 enum zio_checksum dedup_checksum
= os
->os_dedup_checksum
;
2313 boolean_t dedup
= B_FALSE
;
2314 boolean_t nopwrite
= B_FALSE
;
2315 boolean_t dedup_verify
= os
->os_dedup_verify
;
2316 boolean_t encrypt
= B_FALSE
;
2317 int copies
= os
->os_copies
;
2320 * We maintain different write policies for each of the following
2323 * 2. preallocated blocks (i.e. level-0 blocks of a dump device)
2324 * 3. all other level 0 blocks
2328 * XXX -- we should design a compression algorithm
2329 * that specializes in arrays of bps.
2331 compress
= zio_compress_select(os
->os_spa
,
2332 ZIO_COMPRESS_ON
, ZIO_COMPRESS_ON
);
2335 * Metadata always gets checksummed. If the data
2336 * checksum is multi-bit correctable, and it's not a
2337 * ZBT-style checksum, then it's suitable for metadata
2338 * as well. Otherwise, the metadata checksum defaults
2341 if (!(zio_checksum_table
[checksum
].ci_flags
&
2342 ZCHECKSUM_FLAG_METADATA
) ||
2343 (zio_checksum_table
[checksum
].ci_flags
&
2344 ZCHECKSUM_FLAG_EMBEDDED
))
2345 checksum
= ZIO_CHECKSUM_FLETCHER_4
;
2347 switch (os
->os_redundant_metadata
) {
2348 case ZFS_REDUNDANT_METADATA_ALL
:
2351 case ZFS_REDUNDANT_METADATA_MOST
:
2352 if (level
>= zfs_redundant_metadata_most_ditto_level
||
2353 DMU_OT_IS_METADATA(type
) || (wp
& WP_SPILL
))
2356 case ZFS_REDUNDANT_METADATA_SOME
:
2357 if (DMU_OT_IS_CRITICAL(type
))
2360 case ZFS_REDUNDANT_METADATA_NONE
:
2364 if (dmu_ddt_copies
> 0) {
2366 * If this tuneable is set, and this is a write for a
2367 * dedup entry store (zap or log), then we treat it
2368 * something like ZFS_REDUNDANT_METADATA_MOST on a
2369 * regular dataset: this many copies, and one more for
2370 * "higher" indirect blocks. This specific exception is
2371 * necessary because dedup objects are stored in the
2372 * MOS, which always has the highest possible copies.
2374 dmu_object_type_t stype
=
2375 dn
? dn
->dn_storage_type
: DMU_OT_NONE
;
2376 if (stype
== DMU_OT_NONE
)
2378 if (stype
== DMU_OT_DDT_ZAP
) {
2379 copies
= dmu_ddt_copies
;
2381 zfs_redundant_metadata_most_ditto_level
)
2385 } else if (wp
& WP_NOFILL
) {
2389 * If we're writing preallocated blocks, we aren't actually
2390 * writing them so don't set any policy properties. These
2391 * blocks are currently only used by an external subsystem
2392 * outside of zfs (i.e. dump) and not written by the zio
2395 compress
= ZIO_COMPRESS_OFF
;
2396 checksum
= ZIO_CHECKSUM_OFF
;
2398 compress
= zio_compress_select(os
->os_spa
, dn
->dn_compress
,
2400 complevel
= zio_complevel_select(os
->os_spa
, compress
,
2401 complevel
, complevel
);
2403 checksum
= (dedup_checksum
== ZIO_CHECKSUM_OFF
) ?
2404 zio_checksum_select(dn
->dn_checksum
, checksum
) :
2408 * Determine dedup setting. If we are in dmu_sync(),
2409 * we won't actually dedup now because that's all
2410 * done in syncing context; but we do want to use the
2411 * dedup checksum. If the checksum is not strong
2412 * enough to ensure unique signatures, force
2415 if (dedup_checksum
!= ZIO_CHECKSUM_OFF
) {
2416 dedup
= (wp
& WP_DMU_SYNC
) ? B_FALSE
: B_TRUE
;
2417 if (!(zio_checksum_table
[checksum
].ci_flags
&
2418 ZCHECKSUM_FLAG_DEDUP
))
2419 dedup_verify
= B_TRUE
;
2423 * Enable nopwrite if we have secure enough checksum
2424 * algorithm (see comment in zio_nop_write) and
2425 * compression is enabled. We don't enable nopwrite if
2426 * dedup is enabled as the two features are mutually
2429 nopwrite
= (!dedup
&& (zio_checksum_table
[checksum
].ci_flags
&
2430 ZCHECKSUM_FLAG_NOPWRITE
) &&
2431 compress
!= ZIO_COMPRESS_OFF
&& zfs_nopwrite_enabled
);
2435 * All objects in an encrypted objset are protected from modification
2436 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2437 * in the bp, so we cannot use all copies. Encrypted objects are also
2438 * not subject to nopwrite since writing the same data will still
2439 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2440 * to avoid ambiguity in the dedup code since the DDT does not store
2443 if (os
->os_encrypted
&& (wp
& WP_NOFILL
) == 0) {
2446 if (DMU_OT_IS_ENCRYPTED(type
)) {
2447 copies
= MIN(copies
, SPA_DVAS_PER_BP
- 1);
2454 (type
== DMU_OT_DNODE
|| type
== DMU_OT_OBJSET
)) {
2455 compress
= ZIO_COMPRESS_EMPTY
;
2459 zp
->zp_compress
= compress
;
2460 zp
->zp_complevel
= complevel
;
2461 zp
->zp_checksum
= checksum
;
2462 zp
->zp_type
= (wp
& WP_SPILL
) ? dn
->dn_bonustype
: type
;
2463 zp
->zp_level
= level
;
2464 zp
->zp_copies
= MIN(copies
, spa_max_replication(os
->os_spa
));
2465 zp
->zp_dedup
= dedup
;
2466 zp
->zp_dedup_verify
= dedup
&& dedup_verify
;
2467 zp
->zp_nopwrite
= nopwrite
;
2468 zp
->zp_encrypt
= encrypt
;
2469 zp
->zp_byteorder
= ZFS_HOST_BYTEORDER
;
2470 zp
->zp_direct_write
= (wp
& WP_DIRECT_WR
) ? B_TRUE
: B_FALSE
;
2471 memset(zp
->zp_salt
, 0, ZIO_DATA_SALT_LEN
);
2472 memset(zp
->zp_iv
, 0, ZIO_DATA_IV_LEN
);
2473 memset(zp
->zp_mac
, 0, ZIO_DATA_MAC_LEN
);
2474 zp
->zp_zpl_smallblk
= DMU_OT_IS_FILE(zp
->zp_type
) ?
2475 os
->os_zpl_special_smallblock
: 0;
2476 zp
->zp_storage_type
= dn
? dn
->dn_storage_type
: DMU_OT_NONE
;
2478 ASSERT3U(zp
->zp_compress
, !=, ZIO_COMPRESS_INHERIT
);
2482 * Reports the location of data and holes in an object. In order to
2483 * accurately report holes all dirty data must be synced to disk. This
2484 * causes extremely poor performance when seeking for holes in a dirty file.
2485 * As a compromise, only provide hole data when the dnode is clean. When
2486 * a dnode is dirty report the dnode as having no holes by returning EBUSY
2487 * which is always safe to do.
2490 dmu_offset_next(objset_t
*os
, uint64_t object
, boolean_t hole
, uint64_t *off
)
2493 int restarted
= 0, err
;
2496 err
= dnode_hold(os
, object
, FTAG
, &dn
);
2500 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
2502 if (dnode_is_dirty(dn
)) {
2504 * If the zfs_dmu_offset_next_sync module option is enabled
2505 * then hole reporting has been requested. Dirty dnodes
2506 * must be synced to disk to accurately report holes.
2508 * Provided a RL_READER rangelock spanning 0-UINT64_MAX is
2509 * held by the caller only a single restart will be required.
2510 * We tolerate callers which do not hold the rangelock by
2511 * returning EBUSY and not reporting holes after one restart.
2513 if (zfs_dmu_offset_next_sync
) {
2514 rw_exit(&dn
->dn_struct_rwlock
);
2515 dnode_rele(dn
, FTAG
);
2518 return (SET_ERROR(EBUSY
));
2520 txg_wait_synced(dmu_objset_pool(os
), 0);
2525 err
= SET_ERROR(EBUSY
);
2527 err
= dnode_next_offset(dn
, DNODE_FIND_HAVELOCK
|
2528 (hole
? DNODE_FIND_HOLE
: 0), off
, 1, 1, 0);
2531 rw_exit(&dn
->dn_struct_rwlock
);
2532 dnode_rele(dn
, FTAG
);
2538 dmu_read_l0_bps(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t length
,
2539 blkptr_t
*bps
, size_t *nbpsp
)
2541 dmu_buf_t
**dbp
, *dbuf
;
2546 error
= dmu_buf_hold_array(os
, object
, offset
, length
, FALSE
, FTAG
,
2549 if (error
== ESRCH
) {
2550 error
= SET_ERROR(ENXIO
);
2555 ASSERT3U(numbufs
, <=, *nbpsp
);
2557 for (int i
= 0; i
< numbufs
; i
++) {
2559 db
= (dmu_buf_impl_t
*)dbuf
;
2561 mutex_enter(&db
->db_mtx
);
2563 if (!list_is_empty(&db
->db_dirty_records
)) {
2564 dbuf_dirty_record_t
*dr
;
2566 dr
= list_head(&db
->db_dirty_records
);
2567 if (dr
->dt
.dl
.dr_brtwrite
) {
2569 * This is very special case where we clone a
2570 * block and in the same transaction group we
2571 * read its BP (most likely to clone the clone).
2573 bp
= &dr
->dt
.dl
.dr_overridden_by
;
2576 * The block was modified in the same
2577 * transaction group.
2579 mutex_exit(&db
->db_mtx
);
2580 error
= SET_ERROR(EAGAIN
);
2587 mutex_exit(&db
->db_mtx
);
2591 * The file size was increased, but the block was never
2592 * written, otherwise we would either have the block
2593 * pointer or the dirty record and would not get here.
2594 * It is effectively a hole, so report it as such.
2600 * Make sure we clone only data blocks.
2602 if (BP_IS_METADATA(bp
) && !BP_IS_HOLE(bp
)) {
2603 error
= SET_ERROR(EINVAL
);
2608 * If the block was allocated in transaction group that is not
2609 * yet synced, we could clone it, but we couldn't write this
2610 * operation into ZIL, or it may be impossible to replay, since
2611 * the block may appear not yet allocated at that point.
2613 if (BP_GET_BIRTH(bp
) > spa_freeze_txg(os
->os_spa
)) {
2614 error
= SET_ERROR(EINVAL
);
2617 if (BP_GET_BIRTH(bp
) > spa_last_synced_txg(os
->os_spa
)) {
2618 error
= SET_ERROR(EAGAIN
);
2627 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
2633 dmu_brt_clone(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t length
,
2634 dmu_tx_t
*tx
, const blkptr_t
*bps
, size_t nbps
)
2637 dmu_buf_t
**dbp
, *dbuf
;
2639 struct dirty_leaf
*dl
;
2640 dbuf_dirty_record_t
*dr
;
2642 int error
= 0, i
, numbufs
;
2646 VERIFY0(dmu_buf_hold_array(os
, object
, offset
, length
, FALSE
, FTAG
,
2648 ASSERT3U(nbps
, ==, numbufs
);
2651 * Before we start cloning make sure that the dbufs sizes match new BPs
2652 * sizes. If they don't, that's a no-go, as we are not able to shrink
2655 for (i
= 0; i
< numbufs
; i
++) {
2657 db
= (dmu_buf_impl_t
*)dbuf
;
2660 ASSERT0(db
->db_level
);
2661 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
2662 ASSERT(db
->db_blkid
!= DMU_SPILL_BLKID
);
2664 if (!BP_IS_HOLE(bp
) && BP_GET_LSIZE(bp
) != dbuf
->db_size
) {
2665 error
= SET_ERROR(EXDEV
);
2670 for (i
= 0; i
< numbufs
; i
++) {
2672 db
= (dmu_buf_impl_t
*)dbuf
;
2675 ASSERT0(db
->db_level
);
2676 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
2677 ASSERT(db
->db_blkid
!= DMU_SPILL_BLKID
);
2678 ASSERT(BP_IS_HOLE(bp
) || dbuf
->db_size
== BP_GET_LSIZE(bp
));
2680 dmu_buf_will_clone_or_dio(dbuf
, tx
);
2682 mutex_enter(&db
->db_mtx
);
2684 dr
= list_head(&db
->db_dirty_records
);
2686 ASSERT3U(dr
->dr_txg
, ==, tx
->tx_txg
);
2688 dl
->dr_overridden_by
= *bp
;
2689 if (!BP_IS_HOLE(bp
) || BP_GET_LOGICAL_BIRTH(bp
) != 0) {
2690 if (!BP_IS_EMBEDDED(bp
)) {
2691 BP_SET_BIRTH(&dl
->dr_overridden_by
, dr
->dr_txg
,
2694 BP_SET_LOGICAL_BIRTH(&dl
->dr_overridden_by
,
2698 dl
->dr_brtwrite
= B_TRUE
;
2699 dl
->dr_override_state
= DR_OVERRIDDEN
;
2701 mutex_exit(&db
->db_mtx
);
2704 * When data in embedded into BP there is no need to create
2705 * BRT entry as there is no data block. Just copy the BP as
2706 * it contains the data.
2708 if (!BP_IS_HOLE(bp
) && !BP_IS_EMBEDDED(bp
)) {
2709 brt_pending_add(spa
, bp
, tx
);
2713 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
2719 __dmu_object_info_from_dnode(dnode_t
*dn
, dmu_object_info_t
*doi
)
2721 dnode_phys_t
*dnp
= dn
->dn_phys
;
2723 doi
->doi_data_block_size
= dn
->dn_datablksz
;
2724 doi
->doi_metadata_block_size
= dn
->dn_indblkshift
?
2725 1ULL << dn
->dn_indblkshift
: 0;
2726 doi
->doi_type
= dn
->dn_type
;
2727 doi
->doi_bonus_type
= dn
->dn_bonustype
;
2728 doi
->doi_bonus_size
= dn
->dn_bonuslen
;
2729 doi
->doi_dnodesize
= dn
->dn_num_slots
<< DNODE_SHIFT
;
2730 doi
->doi_indirection
= dn
->dn_nlevels
;
2731 doi
->doi_checksum
= dn
->dn_checksum
;
2732 doi
->doi_compress
= dn
->dn_compress
;
2733 doi
->doi_nblkptr
= dn
->dn_nblkptr
;
2734 doi
->doi_physical_blocks_512
= (DN_USED_BYTES(dnp
) + 256) >> 9;
2735 doi
->doi_max_offset
= (dn
->dn_maxblkid
+ 1) * dn
->dn_datablksz
;
2736 doi
->doi_fill_count
= 0;
2737 for (int i
= 0; i
< dnp
->dn_nblkptr
; i
++)
2738 doi
->doi_fill_count
+= BP_GET_FILL(&dnp
->dn_blkptr
[i
]);
2742 dmu_object_info_from_dnode(dnode_t
*dn
, dmu_object_info_t
*doi
)
2744 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
2745 mutex_enter(&dn
->dn_mtx
);
2747 __dmu_object_info_from_dnode(dn
, doi
);
2749 mutex_exit(&dn
->dn_mtx
);
2750 rw_exit(&dn
->dn_struct_rwlock
);
2754 * Get information on a DMU object.
2755 * If doi is NULL, just indicates whether the object exists.
2758 dmu_object_info(objset_t
*os
, uint64_t object
, dmu_object_info_t
*doi
)
2761 int err
= dnode_hold(os
, object
, FTAG
, &dn
);
2767 dmu_object_info_from_dnode(dn
, doi
);
2769 dnode_rele(dn
, FTAG
);
2774 * As above, but faster; can be used when you have a held dbuf in hand.
2777 dmu_object_info_from_db(dmu_buf_t
*db_fake
, dmu_object_info_t
*doi
)
2779 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2782 dmu_object_info_from_dnode(DB_DNODE(db
), doi
);
2787 * Faster still when you only care about the size.
2790 dmu_object_size_from_db(dmu_buf_t
*db_fake
, uint32_t *blksize
,
2791 u_longlong_t
*nblk512
)
2793 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2799 *blksize
= dn
->dn_datablksz
;
2800 /* add in number of slots used for the dnode itself */
2801 *nblk512
= ((DN_USED_BYTES(dn
->dn_phys
) + SPA_MINBLOCKSIZE
/2) >>
2802 SPA_MINBLOCKSHIFT
) + dn
->dn_num_slots
;
2807 dmu_object_dnsize_from_db(dmu_buf_t
*db_fake
, int *dnsize
)
2809 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2812 *dnsize
= DB_DNODE(db
)->dn_num_slots
<< DNODE_SHIFT
;
2817 byteswap_uint64_array(void *vbuf
, size_t size
)
2819 uint64_t *buf
= vbuf
;
2820 size_t count
= size
>> 3;
2823 ASSERT((size
& 7) == 0);
2825 for (i
= 0; i
< count
; i
++)
2826 buf
[i
] = BSWAP_64(buf
[i
]);
2830 byteswap_uint32_array(void *vbuf
, size_t size
)
2832 uint32_t *buf
= vbuf
;
2833 size_t count
= size
>> 2;
2836 ASSERT((size
& 3) == 0);
2838 for (i
= 0; i
< count
; i
++)
2839 buf
[i
] = BSWAP_32(buf
[i
]);
2843 byteswap_uint16_array(void *vbuf
, size_t size
)
2845 uint16_t *buf
= vbuf
;
2846 size_t count
= size
>> 1;
2849 ASSERT((size
& 1) == 0);
2851 for (i
= 0; i
< count
; i
++)
2852 buf
[i
] = BSWAP_16(buf
[i
]);
2856 byteswap_uint8_array(void *vbuf
, size_t size
)
2858 (void) vbuf
, (void) size
;
2879 arc_fini(); /* arc depends on l2arc, so arc must go first */
2891 EXPORT_SYMBOL(dmu_bonus_hold
);
2892 EXPORT_SYMBOL(dmu_bonus_hold_by_dnode
);
2893 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus
);
2894 EXPORT_SYMBOL(dmu_buf_rele_array
);
2895 EXPORT_SYMBOL(dmu_prefetch
);
2896 EXPORT_SYMBOL(dmu_prefetch_by_dnode
);
2897 EXPORT_SYMBOL(dmu_prefetch_dnode
);
2898 EXPORT_SYMBOL(dmu_free_range
);
2899 EXPORT_SYMBOL(dmu_free_long_range
);
2900 EXPORT_SYMBOL(dmu_free_long_object
);
2901 EXPORT_SYMBOL(dmu_read
);
2902 EXPORT_SYMBOL(dmu_read_by_dnode
);
2903 EXPORT_SYMBOL(dmu_read_uio
);
2904 EXPORT_SYMBOL(dmu_read_uio_dbuf
);
2905 EXPORT_SYMBOL(dmu_read_uio_dnode
);
2906 EXPORT_SYMBOL(dmu_write
);
2907 EXPORT_SYMBOL(dmu_write_by_dnode
);
2908 EXPORT_SYMBOL(dmu_write_by_dnode_flags
);
2909 EXPORT_SYMBOL(dmu_write_uio
);
2910 EXPORT_SYMBOL(dmu_write_uio_dbuf
);
2911 EXPORT_SYMBOL(dmu_write_uio_dnode
);
2912 EXPORT_SYMBOL(dmu_prealloc
);
2913 EXPORT_SYMBOL(dmu_object_info
);
2914 EXPORT_SYMBOL(dmu_object_info_from_dnode
);
2915 EXPORT_SYMBOL(dmu_object_info_from_db
);
2916 EXPORT_SYMBOL(dmu_object_size_from_db
);
2917 EXPORT_SYMBOL(dmu_object_dnsize_from_db
);
2918 EXPORT_SYMBOL(dmu_object_set_nlevels
);
2919 EXPORT_SYMBOL(dmu_object_set_blocksize
);
2920 EXPORT_SYMBOL(dmu_object_set_maxblkid
);
2921 EXPORT_SYMBOL(dmu_object_set_checksum
);
2922 EXPORT_SYMBOL(dmu_object_set_compress
);
2923 EXPORT_SYMBOL(dmu_offset_next
);
2924 EXPORT_SYMBOL(dmu_write_policy
);
2925 EXPORT_SYMBOL(dmu_sync
);
2926 EXPORT_SYMBOL(dmu_request_arcbuf
);
2927 EXPORT_SYMBOL(dmu_return_arcbuf
);
2928 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode
);
2929 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf
);
2930 EXPORT_SYMBOL(dmu_buf_hold
);
2931 EXPORT_SYMBOL(dmu_ot
);
2933 ZFS_MODULE_PARAM(zfs
, zfs_
, nopwrite_enabled
, INT
, ZMOD_RW
,
2934 "Enable NOP writes");
2936 ZFS_MODULE_PARAM(zfs
, zfs_
, per_txg_dirty_frees_percent
, UINT
, ZMOD_RW
,
2937 "Percentage of dirtied blocks from frees in one TXG");
2939 ZFS_MODULE_PARAM(zfs
, zfs_
, dmu_offset_next_sync
, INT
, ZMOD_RW
,
2940 "Enable forcing txg sync to find holes");
2943 ZFS_MODULE_PARAM(zfs
, , dmu_prefetch_max
, UINT
, ZMOD_RW
,
2944 "Limit one prefetch call to this size");
2947 ZFS_MODULE_PARAM(zfs
, , dmu_ddt_copies
, UINT
, ZMOD_RW
,
2948 "Override copies= for dedup objects");