1 /* ELF linking support for BFD.
2 Copyright 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
27 #include "safe-ctype.h"
28 #include "libiberty.h"
31 _bfd_elf_create_got_section (bfd
*abfd
, struct bfd_link_info
*info
)
35 struct elf_link_hash_entry
*h
;
36 struct bfd_link_hash_entry
*bh
;
37 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
40 /* This function may be called more than once. */
41 s
= bfd_get_section_by_name (abfd
, ".got");
42 if (s
!= NULL
&& (s
->flags
& SEC_LINKER_CREATED
) != 0)
45 switch (bed
->s
->arch_size
)
56 bfd_set_error (bfd_error_bad_value
);
60 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
61 | SEC_LINKER_CREATED
);
63 s
= bfd_make_section (abfd
, ".got");
65 || !bfd_set_section_flags (abfd
, s
, flags
)
66 || !bfd_set_section_alignment (abfd
, s
, ptralign
))
69 if (bed
->want_got_plt
)
71 s
= bfd_make_section (abfd
, ".got.plt");
73 || !bfd_set_section_flags (abfd
, s
, flags
)
74 || !bfd_set_section_alignment (abfd
, s
, ptralign
))
78 if (bed
->want_got_sym
)
80 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
81 (or .got.plt) section. We don't do this in the linker script
82 because we don't want to define the symbol if we are not creating
83 a global offset table. */
85 if (!(_bfd_generic_link_add_one_symbol
86 (info
, abfd
, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL
, s
,
87 bed
->got_symbol_offset
, NULL
, FALSE
, bed
->collect
, &bh
)))
89 h
= (struct elf_link_hash_entry
*) bh
;
90 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
93 if (! info
->executable
94 && ! bfd_elf_link_record_dynamic_symbol (info
, h
))
97 elf_hash_table (info
)->hgot
= h
;
100 /* The first bit of the global offset table is the header. */
101 s
->_raw_size
+= bed
->got_header_size
+ bed
->got_symbol_offset
;
106 /* Create some sections which will be filled in with dynamic linking
107 information. ABFD is an input file which requires dynamic sections
108 to be created. The dynamic sections take up virtual memory space
109 when the final executable is run, so we need to create them before
110 addresses are assigned to the output sections. We work out the
111 actual contents and size of these sections later. */
114 _bfd_elf_link_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
117 register asection
*s
;
118 struct elf_link_hash_entry
*h
;
119 struct bfd_link_hash_entry
*bh
;
120 const struct elf_backend_data
*bed
;
122 if (! is_elf_hash_table (info
->hash
))
125 if (elf_hash_table (info
)->dynamic_sections_created
)
128 /* Make sure that all dynamic sections use the same input BFD. */
129 if (elf_hash_table (info
)->dynobj
== NULL
)
130 elf_hash_table (info
)->dynobj
= abfd
;
132 abfd
= elf_hash_table (info
)->dynobj
;
134 /* Note that we set the SEC_IN_MEMORY flag for all of these
136 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
137 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
);
139 /* A dynamically linked executable has a .interp section, but a
140 shared library does not. */
141 if (info
->executable
)
143 s
= bfd_make_section (abfd
, ".interp");
145 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
))
149 if (! info
->traditional_format
)
151 s
= bfd_make_section (abfd
, ".eh_frame_hdr");
153 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
154 || ! bfd_set_section_alignment (abfd
, s
, 2))
156 elf_hash_table (info
)->eh_info
.hdr_sec
= s
;
159 bed
= get_elf_backend_data (abfd
);
161 /* Create sections to hold version informations. These are removed
162 if they are not needed. */
163 s
= bfd_make_section (abfd
, ".gnu.version_d");
165 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
166 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
169 s
= bfd_make_section (abfd
, ".gnu.version");
171 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
172 || ! bfd_set_section_alignment (abfd
, s
, 1))
175 s
= bfd_make_section (abfd
, ".gnu.version_r");
177 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
178 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
181 s
= bfd_make_section (abfd
, ".dynsym");
183 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
184 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
187 s
= bfd_make_section (abfd
, ".dynstr");
189 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
))
192 /* Create a strtab to hold the dynamic symbol names. */
193 if (elf_hash_table (info
)->dynstr
== NULL
)
195 elf_hash_table (info
)->dynstr
= _bfd_elf_strtab_init ();
196 if (elf_hash_table (info
)->dynstr
== NULL
)
200 s
= bfd_make_section (abfd
, ".dynamic");
202 || ! bfd_set_section_flags (abfd
, s
, flags
)
203 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
206 /* The special symbol _DYNAMIC is always set to the start of the
207 .dynamic section. This call occurs before we have processed the
208 symbols for any dynamic object, so we don't have to worry about
209 overriding a dynamic definition. We could set _DYNAMIC in a
210 linker script, but we only want to define it if we are, in fact,
211 creating a .dynamic section. We don't want to define it if there
212 is no .dynamic section, since on some ELF platforms the start up
213 code examines it to decide how to initialize the process. */
215 if (! (_bfd_generic_link_add_one_symbol
216 (info
, abfd
, "_DYNAMIC", BSF_GLOBAL
, s
, 0, NULL
, FALSE
,
217 get_elf_backend_data (abfd
)->collect
, &bh
)))
219 h
= (struct elf_link_hash_entry
*) bh
;
220 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
221 h
->type
= STT_OBJECT
;
223 if (! info
->executable
224 && ! bfd_elf_link_record_dynamic_symbol (info
, h
))
227 s
= bfd_make_section (abfd
, ".hash");
229 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
230 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
232 elf_section_data (s
)->this_hdr
.sh_entsize
= bed
->s
->sizeof_hash_entry
;
234 /* Let the backend create the rest of the sections. This lets the
235 backend set the right flags. The backend will normally create
236 the .got and .plt sections. */
237 if (! (*bed
->elf_backend_create_dynamic_sections
) (abfd
, info
))
240 elf_hash_table (info
)->dynamic_sections_created
= TRUE
;
245 /* Create dynamic sections when linking against a dynamic object. */
248 _bfd_elf_create_dynamic_sections (bfd
*abfd
, struct bfd_link_info
*info
)
250 flagword flags
, pltflags
;
252 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
254 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
255 .rel[a].bss sections. */
257 flags
= (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
| SEC_IN_MEMORY
258 | SEC_LINKER_CREATED
);
261 pltflags
|= SEC_CODE
;
262 if (bed
->plt_not_loaded
)
263 pltflags
&= ~ (SEC_CODE
| SEC_LOAD
| SEC_HAS_CONTENTS
);
264 if (bed
->plt_readonly
)
265 pltflags
|= SEC_READONLY
;
267 s
= bfd_make_section (abfd
, ".plt");
269 || ! bfd_set_section_flags (abfd
, s
, pltflags
)
270 || ! bfd_set_section_alignment (abfd
, s
, bed
->plt_alignment
))
273 if (bed
->want_plt_sym
)
275 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
277 struct elf_link_hash_entry
*h
;
278 struct bfd_link_hash_entry
*bh
= NULL
;
280 if (! (_bfd_generic_link_add_one_symbol
281 (info
, abfd
, "_PROCEDURE_LINKAGE_TABLE_", BSF_GLOBAL
, s
, 0, NULL
,
282 FALSE
, get_elf_backend_data (abfd
)->collect
, &bh
)))
284 h
= (struct elf_link_hash_entry
*) bh
;
285 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
286 h
->type
= STT_OBJECT
;
288 if (! info
->executable
289 && ! bfd_elf_link_record_dynamic_symbol (info
, h
))
293 s
= bfd_make_section (abfd
,
294 bed
->default_use_rela_p
? ".rela.plt" : ".rel.plt");
296 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
297 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
300 if (! _bfd_elf_create_got_section (abfd
, info
))
303 if (bed
->want_dynbss
)
305 /* The .dynbss section is a place to put symbols which are defined
306 by dynamic objects, are referenced by regular objects, and are
307 not functions. We must allocate space for them in the process
308 image and use a R_*_COPY reloc to tell the dynamic linker to
309 initialize them at run time. The linker script puts the .dynbss
310 section into the .bss section of the final image. */
311 s
= bfd_make_section (abfd
, ".dynbss");
313 || ! bfd_set_section_flags (abfd
, s
, SEC_ALLOC
| SEC_LINKER_CREATED
))
316 /* The .rel[a].bss section holds copy relocs. This section is not
317 normally needed. We need to create it here, though, so that the
318 linker will map it to an output section. We can't just create it
319 only if we need it, because we will not know whether we need it
320 until we have seen all the input files, and the first time the
321 main linker code calls BFD after examining all the input files
322 (size_dynamic_sections) the input sections have already been
323 mapped to the output sections. If the section turns out not to
324 be needed, we can discard it later. We will never need this
325 section when generating a shared object, since they do not use
329 s
= bfd_make_section (abfd
,
330 (bed
->default_use_rela_p
331 ? ".rela.bss" : ".rel.bss"));
333 || ! bfd_set_section_flags (abfd
, s
, flags
| SEC_READONLY
)
334 || ! bfd_set_section_alignment (abfd
, s
, bed
->s
->log_file_align
))
342 /* Record a new dynamic symbol. We record the dynamic symbols as we
343 read the input files, since we need to have a list of all of them
344 before we can determine the final sizes of the output sections.
345 Note that we may actually call this function even though we are not
346 going to output any dynamic symbols; in some cases we know that a
347 symbol should be in the dynamic symbol table, but only if there is
351 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info
*info
,
352 struct elf_link_hash_entry
*h
)
354 if (h
->dynindx
== -1)
356 struct elf_strtab_hash
*dynstr
;
361 /* XXX: The ABI draft says the linker must turn hidden and
362 internal symbols into STB_LOCAL symbols when producing the
363 DSO. However, if ld.so honors st_other in the dynamic table,
364 this would not be necessary. */
365 switch (ELF_ST_VISIBILITY (h
->other
))
369 if (h
->root
.type
!= bfd_link_hash_undefined
370 && h
->root
.type
!= bfd_link_hash_undefweak
)
372 h
->elf_link_hash_flags
|= ELF_LINK_FORCED_LOCAL
;
380 h
->dynindx
= elf_hash_table (info
)->dynsymcount
;
381 ++elf_hash_table (info
)->dynsymcount
;
383 dynstr
= elf_hash_table (info
)->dynstr
;
386 /* Create a strtab to hold the dynamic symbol names. */
387 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
392 /* We don't put any version information in the dynamic string
394 name
= h
->root
.root
.string
;
395 p
= strchr (name
, ELF_VER_CHR
);
397 /* We know that the p points into writable memory. In fact,
398 there are only a few symbols that have read-only names, being
399 those like _GLOBAL_OFFSET_TABLE_ that are created specially
400 by the backends. Most symbols will have names pointing into
401 an ELF string table read from a file, or to objalloc memory. */
404 indx
= _bfd_elf_strtab_add (dynstr
, name
, p
!= NULL
);
409 if (indx
== (bfd_size_type
) -1)
411 h
->dynstr_index
= indx
;
417 /* Record an assignment to a symbol made by a linker script. We need
418 this in case some dynamic object refers to this symbol. */
421 bfd_elf_record_link_assignment (bfd
*output_bfd ATTRIBUTE_UNUSED
,
422 struct bfd_link_info
*info
,
426 struct elf_link_hash_entry
*h
;
428 if (!is_elf_hash_table (info
->hash
))
431 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
, TRUE
, FALSE
);
435 /* Since we're defining the symbol, don't let it seem to have not
436 been defined. record_dynamic_symbol and size_dynamic_sections
437 may depend on this. */
438 if (h
->root
.type
== bfd_link_hash_undefweak
439 || h
->root
.type
== bfd_link_hash_undefined
)
440 h
->root
.type
= bfd_link_hash_new
;
442 if (h
->root
.type
== bfd_link_hash_new
)
443 h
->elf_link_hash_flags
&= ~ELF_LINK_NON_ELF
;
445 /* If this symbol is being provided by the linker script, and it is
446 currently defined by a dynamic object, but not by a regular
447 object, then mark it as undefined so that the generic linker will
448 force the correct value. */
450 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
451 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
452 h
->root
.type
= bfd_link_hash_undefined
;
454 /* If this symbol is not being provided by the linker script, and it is
455 currently defined by a dynamic object, but not by a regular object,
456 then clear out any version information because the symbol will not be
457 associated with the dynamic object any more. */
459 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
460 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
461 h
->verinfo
.verdef
= NULL
;
463 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
465 if (((h
->elf_link_hash_flags
& (ELF_LINK_HASH_DEF_DYNAMIC
466 | ELF_LINK_HASH_REF_DYNAMIC
)) != 0
470 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
473 /* If this is a weak defined symbol, and we know a corresponding
474 real symbol from the same dynamic object, make sure the real
475 symbol is also made into a dynamic symbol. */
476 if (h
->weakdef
!= NULL
477 && h
->weakdef
->dynindx
== -1)
479 if (! bfd_elf_link_record_dynamic_symbol (info
, h
->weakdef
))
487 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on
488 success, and 2 on a failure caused by attempting to record a symbol
489 in a discarded section, eg. a discarded link-once section symbol. */
492 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info
*info
,
497 struct elf_link_local_dynamic_entry
*entry
;
498 struct elf_link_hash_table
*eht
;
499 struct elf_strtab_hash
*dynstr
;
500 unsigned long dynstr_index
;
502 Elf_External_Sym_Shndx eshndx
;
503 char esym
[sizeof (Elf64_External_Sym
)];
505 if (! is_elf_hash_table (info
->hash
))
508 /* See if the entry exists already. */
509 for (entry
= elf_hash_table (info
)->dynlocal
; entry
; entry
= entry
->next
)
510 if (entry
->input_bfd
== input_bfd
&& entry
->input_indx
== input_indx
)
513 amt
= sizeof (*entry
);
514 entry
= bfd_alloc (input_bfd
, amt
);
518 /* Go find the symbol, so that we can find it's name. */
519 if (!bfd_elf_get_elf_syms (input_bfd
, &elf_tdata (input_bfd
)->symtab_hdr
,
520 1, input_indx
, &entry
->isym
, esym
, &eshndx
))
522 bfd_release (input_bfd
, entry
);
526 if (entry
->isym
.st_shndx
!= SHN_UNDEF
527 && (entry
->isym
.st_shndx
< SHN_LORESERVE
528 || entry
->isym
.st_shndx
> SHN_HIRESERVE
))
532 s
= bfd_section_from_elf_index (input_bfd
, entry
->isym
.st_shndx
);
533 if (s
== NULL
|| bfd_is_abs_section (s
->output_section
))
535 /* We can still bfd_release here as nothing has done another
536 bfd_alloc. We can't do this later in this function. */
537 bfd_release (input_bfd
, entry
);
542 name
= (bfd_elf_string_from_elf_section
543 (input_bfd
, elf_tdata (input_bfd
)->symtab_hdr
.sh_link
,
544 entry
->isym
.st_name
));
546 dynstr
= elf_hash_table (info
)->dynstr
;
549 /* Create a strtab to hold the dynamic symbol names. */
550 elf_hash_table (info
)->dynstr
= dynstr
= _bfd_elf_strtab_init ();
555 dynstr_index
= _bfd_elf_strtab_add (dynstr
, name
, FALSE
);
556 if (dynstr_index
== (unsigned long) -1)
558 entry
->isym
.st_name
= dynstr_index
;
560 eht
= elf_hash_table (info
);
562 entry
->next
= eht
->dynlocal
;
563 eht
->dynlocal
= entry
;
564 entry
->input_bfd
= input_bfd
;
565 entry
->input_indx
= input_indx
;
568 /* Whatever binding the symbol had before, it's now local. */
570 = ELF_ST_INFO (STB_LOCAL
, ELF_ST_TYPE (entry
->isym
.st_info
));
572 /* The dynindx will be set at the end of size_dynamic_sections. */
577 /* Return the dynindex of a local dynamic symbol. */
580 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info
*info
,
584 struct elf_link_local_dynamic_entry
*e
;
586 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
587 if (e
->input_bfd
== input_bfd
&& e
->input_indx
== input_indx
)
592 /* This function is used to renumber the dynamic symbols, if some of
593 them are removed because they are marked as local. This is called
594 via elf_link_hash_traverse. */
597 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry
*h
,
600 size_t *count
= data
;
602 if (h
->root
.type
== bfd_link_hash_warning
)
603 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
605 if (h
->dynindx
!= -1)
606 h
->dynindx
= ++(*count
);
611 /* Assign dynsym indices. In a shared library we generate a section
612 symbol for each output section, which come first. Next come all of
613 the back-end allocated local dynamic syms, followed by the rest of
614 the global symbols. */
617 _bfd_elf_link_renumber_dynsyms (bfd
*output_bfd
, struct bfd_link_info
*info
)
619 unsigned long dynsymcount
= 0;
624 for (p
= output_bfd
->sections
; p
; p
= p
->next
)
625 if ((p
->flags
& SEC_EXCLUDE
) == 0)
626 elf_section_data (p
)->dynindx
= ++dynsymcount
;
629 if (elf_hash_table (info
)->dynlocal
)
631 struct elf_link_local_dynamic_entry
*p
;
632 for (p
= elf_hash_table (info
)->dynlocal
; p
; p
= p
->next
)
633 p
->dynindx
= ++dynsymcount
;
636 elf_link_hash_traverse (elf_hash_table (info
),
637 elf_link_renumber_hash_table_dynsyms
,
640 /* There is an unused NULL entry at the head of the table which
641 we must account for in our count. Unless there weren't any
642 symbols, which means we'll have no table at all. */
643 if (dynsymcount
!= 0)
646 return elf_hash_table (info
)->dynsymcount
= dynsymcount
;
649 /* This function is called when we want to define a new symbol. It
650 handles the various cases which arise when we find a definition in
651 a dynamic object, or when there is already a definition in a
652 dynamic object. The new symbol is described by NAME, SYM, PSEC,
653 and PVALUE. We set SYM_HASH to the hash table entry. We set
654 OVERRIDE if the old symbol is overriding a new definition. We set
655 TYPE_CHANGE_OK if it is OK for the type to change. We set
656 SIZE_CHANGE_OK if it is OK for the size to change. By OK to
657 change, we mean that we shouldn't warn if the type or size does
661 _bfd_elf_merge_symbol (bfd
*abfd
,
662 struct bfd_link_info
*info
,
664 Elf_Internal_Sym
*sym
,
667 struct elf_link_hash_entry
**sym_hash
,
669 bfd_boolean
*override
,
670 bfd_boolean
*type_change_ok
,
671 bfd_boolean
*size_change_ok
)
674 struct elf_link_hash_entry
*h
;
675 struct elf_link_hash_entry
*flip
;
678 bfd_boolean newdyn
, olddyn
, olddef
, newdef
, newdyncommon
, olddyncommon
;
679 bfd_boolean newweak
, oldweak
;
685 bind
= ELF_ST_BIND (sym
->st_info
);
687 if (! bfd_is_und_section (sec
))
688 h
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
, FALSE
, FALSE
);
690 h
= ((struct elf_link_hash_entry
*)
691 bfd_wrapped_link_hash_lookup (abfd
, info
, name
, TRUE
, FALSE
, FALSE
));
696 /* This code is for coping with dynamic objects, and is only useful
697 if we are doing an ELF link. */
698 if (info
->hash
->creator
!= abfd
->xvec
)
701 /* For merging, we only care about real symbols. */
703 while (h
->root
.type
== bfd_link_hash_indirect
704 || h
->root
.type
== bfd_link_hash_warning
)
705 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
707 /* If we just created the symbol, mark it as being an ELF symbol.
708 Other than that, there is nothing to do--there is no merge issue
709 with a newly defined symbol--so we just return. */
711 if (h
->root
.type
== bfd_link_hash_new
)
713 h
->elf_link_hash_flags
&=~ ELF_LINK_NON_ELF
;
717 /* OLDBFD is a BFD associated with the existing symbol. */
719 switch (h
->root
.type
)
725 case bfd_link_hash_undefined
:
726 case bfd_link_hash_undefweak
:
727 oldbfd
= h
->root
.u
.undef
.abfd
;
730 case bfd_link_hash_defined
:
731 case bfd_link_hash_defweak
:
732 oldbfd
= h
->root
.u
.def
.section
->owner
;
735 case bfd_link_hash_common
:
736 oldbfd
= h
->root
.u
.c
.p
->section
->owner
;
740 /* In cases involving weak versioned symbols, we may wind up trying
741 to merge a symbol with itself. Catch that here, to avoid the
742 confusion that results if we try to override a symbol with
743 itself. The additional tests catch cases like
744 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
745 dynamic object, which we do want to handle here. */
747 && ((abfd
->flags
& DYNAMIC
) == 0
748 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0))
751 /* NEWDYN and OLDDYN indicate whether the new or old symbol,
752 respectively, is from a dynamic object. */
754 if ((abfd
->flags
& DYNAMIC
) != 0)
760 olddyn
= (oldbfd
->flags
& DYNAMIC
) != 0;
765 /* This code handles the special SHN_MIPS_{TEXT,DATA} section
766 indices used by MIPS ELF. */
767 switch (h
->root
.type
)
773 case bfd_link_hash_defined
:
774 case bfd_link_hash_defweak
:
775 hsec
= h
->root
.u
.def
.section
;
778 case bfd_link_hash_common
:
779 hsec
= h
->root
.u
.c
.p
->section
;
786 olddyn
= (hsec
->symbol
->flags
& BSF_DYNAMIC
) != 0;
789 /* NEWDEF and OLDDEF indicate whether the new or old symbol,
790 respectively, appear to be a definition rather than reference. */
792 if (bfd_is_und_section (sec
) || bfd_is_com_section (sec
))
797 if (h
->root
.type
== bfd_link_hash_undefined
798 || h
->root
.type
== bfd_link_hash_undefweak
799 || h
->root
.type
== bfd_link_hash_common
)
804 /* We need to remember if a symbol has a definition in a dynamic
805 object or is weak in all dynamic objects. Internal and hidden
806 visibility will make it unavailable to dynamic objects. */
807 if (newdyn
&& (h
->elf_link_hash_flags
& ELF_LINK_DYNAMIC_DEF
) == 0)
809 if (!bfd_is_und_section (sec
))
810 h
->elf_link_hash_flags
|= ELF_LINK_DYNAMIC_DEF
;
813 /* Check if this symbol is weak in all dynamic objects. If it
814 is the first time we see it in a dynamic object, we mark
815 if it is weak. Otherwise, we clear it. */
816 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) == 0)
818 if (bind
== STB_WEAK
)
819 h
->elf_link_hash_flags
|= ELF_LINK_DYNAMIC_WEAK
;
821 else if (bind
!= STB_WEAK
)
822 h
->elf_link_hash_flags
&= ~ELF_LINK_DYNAMIC_WEAK
;
826 /* If the old symbol has non-default visibility, we ignore the new
827 definition from a dynamic object. */
829 && ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
830 && !bfd_is_und_section (sec
))
833 /* Make sure this symbol is dynamic. */
834 h
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_DYNAMIC
;
835 /* A protected symbol has external availability. Make sure it is
838 FIXME: Should we check type and size for protected symbol? */
839 if (ELF_ST_VISIBILITY (h
->other
) == STV_PROTECTED
)
840 return bfd_elf_link_record_dynamic_symbol (info
, h
);
845 && ELF_ST_VISIBILITY (sym
->st_other
) != STV_DEFAULT
846 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0)
848 /* If the new symbol with non-default visibility comes from a
849 relocatable file and the old definition comes from a dynamic
850 object, we remove the old definition. */
851 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
854 if ((h
->root
.und_next
|| info
->hash
->undefs_tail
== &h
->root
)
855 && bfd_is_und_section (sec
))
857 /* If the new symbol is undefined and the old symbol was
858 also undefined before, we need to make sure
859 _bfd_generic_link_add_one_symbol doesn't mess
860 up the linker hash table undefs list. Since the old
861 definition came from a dynamic object, it is still on the
863 h
->root
.type
= bfd_link_hash_undefined
;
864 /* FIXME: What if the new symbol is weak undefined? */
865 h
->root
.u
.undef
.abfd
= abfd
;
869 h
->root
.type
= bfd_link_hash_new
;
870 h
->root
.u
.undef
.abfd
= NULL
;
873 if (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
)
875 h
->elf_link_hash_flags
&= ~ELF_LINK_HASH_DEF_DYNAMIC
;
876 h
->elf_link_hash_flags
|= (ELF_LINK_HASH_REF_DYNAMIC
877 | ELF_LINK_DYNAMIC_DEF
);
879 /* FIXME: Should we check type and size for protected symbol? */
885 /* Differentiate strong and weak symbols. */
886 newweak
= bind
== STB_WEAK
;
887 oldweak
= (h
->root
.type
== bfd_link_hash_defweak
888 || h
->root
.type
== bfd_link_hash_undefweak
);
890 /* If a new weak symbol definition comes from a regular file and the
891 old symbol comes from a dynamic library, we treat the new one as
892 strong. Similarly, an old weak symbol definition from a regular
893 file is treated as strong when the new symbol comes from a dynamic
894 library. Further, an old weak symbol from a dynamic library is
895 treated as strong if the new symbol is from a dynamic library.
896 This reflects the way glibc's ld.so works.
898 Do this before setting *type_change_ok or *size_change_ok so that
899 we warn properly when dynamic library symbols are overridden. */
901 if (newdef
&& !newdyn
&& olddyn
)
903 if (olddef
&& newdyn
)
906 /* It's OK to change the type if either the existing symbol or the
907 new symbol is weak. A type change is also OK if the old symbol
908 is undefined and the new symbol is defined. */
913 && h
->root
.type
== bfd_link_hash_undefined
))
914 *type_change_ok
= TRUE
;
916 /* It's OK to change the size if either the existing symbol or the
917 new symbol is weak, or if the old symbol is undefined. */
920 || h
->root
.type
== bfd_link_hash_undefined
)
921 *size_change_ok
= TRUE
;
923 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
924 symbol, respectively, appears to be a common symbol in a dynamic
925 object. If a symbol appears in an uninitialized section, and is
926 not weak, and is not a function, then it may be a common symbol
927 which was resolved when the dynamic object was created. We want
928 to treat such symbols specially, because they raise special
929 considerations when setting the symbol size: if the symbol
930 appears as a common symbol in a regular object, and the size in
931 the regular object is larger, we must make sure that we use the
932 larger size. This problematic case can always be avoided in C,
933 but it must be handled correctly when using Fortran shared
936 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
937 likewise for OLDDYNCOMMON and OLDDEF.
939 Note that this test is just a heuristic, and that it is quite
940 possible to have an uninitialized symbol in a shared object which
941 is really a definition, rather than a common symbol. This could
942 lead to some minor confusion when the symbol really is a common
943 symbol in some regular object. However, I think it will be
949 && (sec
->flags
& SEC_ALLOC
) != 0
950 && (sec
->flags
& SEC_LOAD
) == 0
952 && ELF_ST_TYPE (sym
->st_info
) != STT_FUNC
)
955 newdyncommon
= FALSE
;
959 && h
->root
.type
== bfd_link_hash_defined
960 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
961 && (h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0
962 && (h
->root
.u
.def
.section
->flags
& SEC_LOAD
) == 0
964 && h
->type
!= STT_FUNC
)
967 olddyncommon
= FALSE
;
969 /* If both the old and the new symbols look like common symbols in a
970 dynamic object, set the size of the symbol to the larger of the
975 && sym
->st_size
!= h
->size
)
977 /* Since we think we have two common symbols, issue a multiple
978 common warning if desired. Note that we only warn if the
979 size is different. If the size is the same, we simply let
980 the old symbol override the new one as normally happens with
981 symbols defined in dynamic objects. */
983 if (! ((*info
->callbacks
->multiple_common
)
984 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
985 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
988 if (sym
->st_size
> h
->size
)
989 h
->size
= sym
->st_size
;
991 *size_change_ok
= TRUE
;
994 /* If we are looking at a dynamic object, and we have found a
995 definition, we need to see if the symbol was already defined by
996 some other object. If so, we want to use the existing
997 definition, and we do not want to report a multiple symbol
998 definition error; we do this by clobbering *PSEC to be
1001 We treat a common symbol as a definition if the symbol in the
1002 shared library is a function, since common symbols always
1003 represent variables; this can cause confusion in principle, but
1004 any such confusion would seem to indicate an erroneous program or
1005 shared library. We also permit a common symbol in a regular
1006 object to override a weak symbol in a shared object. */
1011 || (h
->root
.type
== bfd_link_hash_common
1013 || ELF_ST_TYPE (sym
->st_info
) == STT_FUNC
))))
1017 newdyncommon
= FALSE
;
1019 *psec
= sec
= bfd_und_section_ptr
;
1020 *size_change_ok
= TRUE
;
1022 /* If we get here when the old symbol is a common symbol, then
1023 we are explicitly letting it override a weak symbol or
1024 function in a dynamic object, and we don't want to warn about
1025 a type change. If the old symbol is a defined symbol, a type
1026 change warning may still be appropriate. */
1028 if (h
->root
.type
== bfd_link_hash_common
)
1029 *type_change_ok
= TRUE
;
1032 /* Handle the special case of an old common symbol merging with a
1033 new symbol which looks like a common symbol in a shared object.
1034 We change *PSEC and *PVALUE to make the new symbol look like a
1035 common symbol, and let _bfd_generic_link_add_one_symbol will do
1039 && h
->root
.type
== bfd_link_hash_common
)
1043 newdyncommon
= FALSE
;
1044 *pvalue
= sym
->st_size
;
1045 *psec
= sec
= bfd_com_section_ptr
;
1046 *size_change_ok
= TRUE
;
1049 /* If the old symbol is from a dynamic object, and the new symbol is
1050 a definition which is not from a dynamic object, then the new
1051 symbol overrides the old symbol. Symbols from regular files
1052 always take precedence over symbols from dynamic objects, even if
1053 they are defined after the dynamic object in the link.
1055 As above, we again permit a common symbol in a regular object to
1056 override a definition in a shared object if the shared object
1057 symbol is a function or is weak. */
1062 || (bfd_is_com_section (sec
)
1064 || h
->type
== STT_FUNC
)))
1067 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0)
1069 /* Change the hash table entry to undefined, and let
1070 _bfd_generic_link_add_one_symbol do the right thing with the
1073 h
->root
.type
= bfd_link_hash_undefined
;
1074 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1075 *size_change_ok
= TRUE
;
1078 olddyncommon
= FALSE
;
1080 /* We again permit a type change when a common symbol may be
1081 overriding a function. */
1083 if (bfd_is_com_section (sec
))
1084 *type_change_ok
= TRUE
;
1086 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1089 /* This union may have been set to be non-NULL when this symbol
1090 was seen in a dynamic object. We must force the union to be
1091 NULL, so that it is correct for a regular symbol. */
1092 h
->verinfo
.vertree
= NULL
;
1095 /* Handle the special case of a new common symbol merging with an
1096 old symbol that looks like it might be a common symbol defined in
1097 a shared object. Note that we have already handled the case in
1098 which a new common symbol should simply override the definition
1099 in the shared library. */
1102 && bfd_is_com_section (sec
)
1105 /* It would be best if we could set the hash table entry to a
1106 common symbol, but we don't know what to use for the section
1107 or the alignment. */
1108 if (! ((*info
->callbacks
->multiple_common
)
1109 (info
, h
->root
.root
.string
, oldbfd
, bfd_link_hash_common
,
1110 h
->size
, abfd
, bfd_link_hash_common
, sym
->st_size
)))
1113 /* If the presumed common symbol in the dynamic object is
1114 larger, pretend that the new symbol has its size. */
1116 if (h
->size
> *pvalue
)
1119 /* FIXME: We no longer know the alignment required by the symbol
1120 in the dynamic object, so we just wind up using the one from
1121 the regular object. */
1124 olddyncommon
= FALSE
;
1126 h
->root
.type
= bfd_link_hash_undefined
;
1127 h
->root
.u
.undef
.abfd
= h
->root
.u
.def
.section
->owner
;
1129 *size_change_ok
= TRUE
;
1130 *type_change_ok
= TRUE
;
1132 if ((*sym_hash
)->root
.type
== bfd_link_hash_indirect
)
1135 h
->verinfo
.vertree
= NULL
;
1140 /* Handle the case where we had a versioned symbol in a dynamic
1141 library and now find a definition in a normal object. In this
1142 case, we make the versioned symbol point to the normal one. */
1143 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1144 flip
->root
.type
= h
->root
.type
;
1145 h
->root
.type
= bfd_link_hash_indirect
;
1146 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) flip
;
1147 (*bed
->elf_backend_copy_indirect_symbol
) (bed
, flip
, h
);
1148 flip
->root
.u
.undef
.abfd
= h
->root
.u
.undef
.abfd
;
1149 if (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
)
1151 h
->elf_link_hash_flags
&= ~ELF_LINK_HASH_DEF_DYNAMIC
;
1152 flip
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_DYNAMIC
;
1159 /* This function is called to create an indirect symbol from the
1160 default for the symbol with the default version if needed. The
1161 symbol is described by H, NAME, SYM, PSEC, VALUE, and OVERRIDE. We
1162 set DYNSYM if the new indirect symbol is dynamic. */
1165 _bfd_elf_add_default_symbol (bfd
*abfd
,
1166 struct bfd_link_info
*info
,
1167 struct elf_link_hash_entry
*h
,
1169 Elf_Internal_Sym
*sym
,
1172 bfd_boolean
*dynsym
,
1173 bfd_boolean override
)
1175 bfd_boolean type_change_ok
;
1176 bfd_boolean size_change_ok
;
1179 struct elf_link_hash_entry
*hi
;
1180 struct bfd_link_hash_entry
*bh
;
1181 const struct elf_backend_data
*bed
;
1182 bfd_boolean collect
;
1183 bfd_boolean dynamic
;
1185 size_t len
, shortlen
;
1188 /* If this symbol has a version, and it is the default version, we
1189 create an indirect symbol from the default name to the fully
1190 decorated name. This will cause external references which do not
1191 specify a version to be bound to this version of the symbol. */
1192 p
= strchr (name
, ELF_VER_CHR
);
1193 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
1198 /* We are overridden by an old definition. We need to check if we
1199 need to create the indirect symbol from the default name. */
1200 hi
= elf_link_hash_lookup (elf_hash_table (info
), name
, TRUE
,
1202 BFD_ASSERT (hi
!= NULL
);
1205 while (hi
->root
.type
== bfd_link_hash_indirect
1206 || hi
->root
.type
== bfd_link_hash_warning
)
1208 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1214 bed
= get_elf_backend_data (abfd
);
1215 collect
= bed
->collect
;
1216 dynamic
= (abfd
->flags
& DYNAMIC
) != 0;
1218 shortlen
= p
- name
;
1219 shortname
= bfd_hash_allocate (&info
->hash
->table
, shortlen
+ 1);
1220 if (shortname
== NULL
)
1222 memcpy (shortname
, name
, shortlen
);
1223 shortname
[shortlen
] = '\0';
1225 /* We are going to create a new symbol. Merge it with any existing
1226 symbol with this name. For the purposes of the merge, act as
1227 though we were defining the symbol we just defined, although we
1228 actually going to define an indirect symbol. */
1229 type_change_ok
= FALSE
;
1230 size_change_ok
= FALSE
;
1232 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
1233 &hi
, &skip
, &override
, &type_change_ok
,
1243 if (! (_bfd_generic_link_add_one_symbol
1244 (info
, abfd
, shortname
, BSF_INDIRECT
, bfd_ind_section_ptr
,
1245 0, name
, FALSE
, collect
, &bh
)))
1247 hi
= (struct elf_link_hash_entry
*) bh
;
1251 /* In this case the symbol named SHORTNAME is overriding the
1252 indirect symbol we want to add. We were planning on making
1253 SHORTNAME an indirect symbol referring to NAME. SHORTNAME
1254 is the name without a version. NAME is the fully versioned
1255 name, and it is the default version.
1257 Overriding means that we already saw a definition for the
1258 symbol SHORTNAME in a regular object, and it is overriding
1259 the symbol defined in the dynamic object.
1261 When this happens, we actually want to change NAME, the
1262 symbol we just added, to refer to SHORTNAME. This will cause
1263 references to NAME in the shared object to become references
1264 to SHORTNAME in the regular object. This is what we expect
1265 when we override a function in a shared object: that the
1266 references in the shared object will be mapped to the
1267 definition in the regular object. */
1269 while (hi
->root
.type
== bfd_link_hash_indirect
1270 || hi
->root
.type
== bfd_link_hash_warning
)
1271 hi
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1273 h
->root
.type
= bfd_link_hash_indirect
;
1274 h
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) hi
;
1275 if (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
)
1277 h
->elf_link_hash_flags
&=~ ELF_LINK_HASH_DEF_DYNAMIC
;
1278 hi
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_DYNAMIC
;
1279 if (hi
->elf_link_hash_flags
1280 & (ELF_LINK_HASH_REF_REGULAR
1281 | ELF_LINK_HASH_DEF_REGULAR
))
1283 if (! bfd_elf_link_record_dynamic_symbol (info
, hi
))
1288 /* Now set HI to H, so that the following code will set the
1289 other fields correctly. */
1293 /* If there is a duplicate definition somewhere, then HI may not
1294 point to an indirect symbol. We will have reported an error to
1295 the user in that case. */
1297 if (hi
->root
.type
== bfd_link_hash_indirect
)
1299 struct elf_link_hash_entry
*ht
;
1301 ht
= (struct elf_link_hash_entry
*) hi
->root
.u
.i
.link
;
1302 (*bed
->elf_backend_copy_indirect_symbol
) (bed
, ht
, hi
);
1304 /* See if the new flags lead us to realize that the symbol must
1311 || ((hi
->elf_link_hash_flags
1312 & ELF_LINK_HASH_REF_DYNAMIC
) != 0))
1317 if ((hi
->elf_link_hash_flags
1318 & ELF_LINK_HASH_REF_REGULAR
) != 0)
1324 /* We also need to define an indirection from the nondefault version
1328 len
= strlen (name
);
1329 shortname
= bfd_hash_allocate (&info
->hash
->table
, len
);
1330 if (shortname
== NULL
)
1332 memcpy (shortname
, name
, shortlen
);
1333 memcpy (shortname
+ shortlen
, p
+ 1, len
- shortlen
);
1335 /* Once again, merge with any existing symbol. */
1336 type_change_ok
= FALSE
;
1337 size_change_ok
= FALSE
;
1339 if (!_bfd_elf_merge_symbol (abfd
, info
, shortname
, sym
, &sec
, value
,
1340 &hi
, &skip
, &override
, &type_change_ok
,
1349 /* Here SHORTNAME is a versioned name, so we don't expect to see
1350 the type of override we do in the case above unless it is
1351 overridden by a versioned definition. */
1352 if (hi
->root
.type
!= bfd_link_hash_defined
1353 && hi
->root
.type
!= bfd_link_hash_defweak
)
1354 (*_bfd_error_handler
)
1355 (_("%s: warning: unexpected redefinition of indirect versioned symbol `%s'"),
1356 bfd_archive_filename (abfd
), shortname
);
1361 if (! (_bfd_generic_link_add_one_symbol
1362 (info
, abfd
, shortname
, BSF_INDIRECT
,
1363 bfd_ind_section_ptr
, 0, name
, FALSE
, collect
, &bh
)))
1365 hi
= (struct elf_link_hash_entry
*) bh
;
1367 /* If there is a duplicate definition somewhere, then HI may not
1368 point to an indirect symbol. We will have reported an error
1369 to the user in that case. */
1371 if (hi
->root
.type
== bfd_link_hash_indirect
)
1373 (*bed
->elf_backend_copy_indirect_symbol
) (bed
, h
, hi
);
1375 /* See if the new flags lead us to realize that the symbol
1382 || ((hi
->elf_link_hash_flags
1383 & ELF_LINK_HASH_REF_DYNAMIC
) != 0))
1388 if ((hi
->elf_link_hash_flags
1389 & ELF_LINK_HASH_REF_REGULAR
) != 0)
1399 /* This routine is used to export all defined symbols into the dynamic
1400 symbol table. It is called via elf_link_hash_traverse. */
1403 _bfd_elf_export_symbol (struct elf_link_hash_entry
*h
, void *data
)
1405 struct elf_info_failed
*eif
= data
;
1407 /* Ignore indirect symbols. These are added by the versioning code. */
1408 if (h
->root
.type
== bfd_link_hash_indirect
)
1411 if (h
->root
.type
== bfd_link_hash_warning
)
1412 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1414 if (h
->dynindx
== -1
1415 && (h
->elf_link_hash_flags
1416 & (ELF_LINK_HASH_DEF_REGULAR
| ELF_LINK_HASH_REF_REGULAR
)) != 0)
1418 struct bfd_elf_version_tree
*t
;
1419 struct bfd_elf_version_expr
*d
;
1421 for (t
= eif
->verdefs
; t
!= NULL
; t
= t
->next
)
1423 if (t
->globals
.list
!= NULL
)
1425 d
= (*t
->match
) (&t
->globals
, NULL
, h
->root
.root
.string
);
1430 if (t
->locals
.list
!= NULL
)
1432 d
= (*t
->match
) (&t
->locals
, NULL
, h
->root
.root
.string
);
1441 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
1452 /* Look through the symbols which are defined in other shared
1453 libraries and referenced here. Update the list of version
1454 dependencies. This will be put into the .gnu.version_r section.
1455 This function is called via elf_link_hash_traverse. */
1458 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry
*h
,
1461 struct elf_find_verdep_info
*rinfo
= data
;
1462 Elf_Internal_Verneed
*t
;
1463 Elf_Internal_Vernaux
*a
;
1466 if (h
->root
.type
== bfd_link_hash_warning
)
1467 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1469 /* We only care about symbols defined in shared objects with version
1471 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) == 0
1472 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0
1474 || h
->verinfo
.verdef
== NULL
)
1477 /* See if we already know about this version. */
1478 for (t
= elf_tdata (rinfo
->output_bfd
)->verref
; t
!= NULL
; t
= t
->vn_nextref
)
1480 if (t
->vn_bfd
!= h
->verinfo
.verdef
->vd_bfd
)
1483 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
1484 if (a
->vna_nodename
== h
->verinfo
.verdef
->vd_nodename
)
1490 /* This is a new version. Add it to tree we are building. */
1495 t
= bfd_zalloc (rinfo
->output_bfd
, amt
);
1498 rinfo
->failed
= TRUE
;
1502 t
->vn_bfd
= h
->verinfo
.verdef
->vd_bfd
;
1503 t
->vn_nextref
= elf_tdata (rinfo
->output_bfd
)->verref
;
1504 elf_tdata (rinfo
->output_bfd
)->verref
= t
;
1508 a
= bfd_zalloc (rinfo
->output_bfd
, amt
);
1510 /* Note that we are copying a string pointer here, and testing it
1511 above. If bfd_elf_string_from_elf_section is ever changed to
1512 discard the string data when low in memory, this will have to be
1514 a
->vna_nodename
= h
->verinfo
.verdef
->vd_nodename
;
1516 a
->vna_flags
= h
->verinfo
.verdef
->vd_flags
;
1517 a
->vna_nextptr
= t
->vn_auxptr
;
1519 h
->verinfo
.verdef
->vd_exp_refno
= rinfo
->vers
;
1522 a
->vna_other
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
1529 /* Figure out appropriate versions for all the symbols. We may not
1530 have the version number script until we have read all of the input
1531 files, so until that point we don't know which symbols should be
1532 local. This function is called via elf_link_hash_traverse. */
1535 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry
*h
, void *data
)
1537 struct elf_assign_sym_version_info
*sinfo
;
1538 struct bfd_link_info
*info
;
1539 const struct elf_backend_data
*bed
;
1540 struct elf_info_failed eif
;
1547 if (h
->root
.type
== bfd_link_hash_warning
)
1548 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
1550 /* Fix the symbol flags. */
1553 if (! _bfd_elf_fix_symbol_flags (h
, &eif
))
1556 sinfo
->failed
= TRUE
;
1560 /* We only need version numbers for symbols defined in regular
1562 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
1565 bed
= get_elf_backend_data (sinfo
->output_bfd
);
1566 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
1567 if (p
!= NULL
&& h
->verinfo
.vertree
== NULL
)
1569 struct bfd_elf_version_tree
*t
;
1574 /* There are two consecutive ELF_VER_CHR characters if this is
1575 not a hidden symbol. */
1577 if (*p
== ELF_VER_CHR
)
1583 /* If there is no version string, we can just return out. */
1587 h
->elf_link_hash_flags
|= ELF_LINK_HIDDEN
;
1591 /* Look for the version. If we find it, it is no longer weak. */
1592 for (t
= sinfo
->verdefs
; t
!= NULL
; t
= t
->next
)
1594 if (strcmp (t
->name
, p
) == 0)
1598 struct bfd_elf_version_expr
*d
;
1600 len
= p
- h
->root
.root
.string
;
1601 alc
= bfd_malloc (len
);
1604 memcpy (alc
, h
->root
.root
.string
, len
- 1);
1605 alc
[len
- 1] = '\0';
1606 if (alc
[len
- 2] == ELF_VER_CHR
)
1607 alc
[len
- 2] = '\0';
1609 h
->verinfo
.vertree
= t
;
1613 if (t
->globals
.list
!= NULL
)
1614 d
= (*t
->match
) (&t
->globals
, NULL
, alc
);
1616 /* See if there is anything to force this symbol to
1618 if (d
== NULL
&& t
->locals
.list
!= NULL
)
1620 d
= (*t
->match
) (&t
->locals
, NULL
, alc
);
1624 && ! info
->export_dynamic
)
1625 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
1633 /* If we are building an application, we need to create a
1634 version node for this version. */
1635 if (t
== NULL
&& info
->executable
)
1637 struct bfd_elf_version_tree
**pp
;
1640 /* If we aren't going to export this symbol, we don't need
1641 to worry about it. */
1642 if (h
->dynindx
== -1)
1646 t
= bfd_zalloc (sinfo
->output_bfd
, amt
);
1649 sinfo
->failed
= TRUE
;
1654 t
->name_indx
= (unsigned int) -1;
1658 /* Don't count anonymous version tag. */
1659 if (sinfo
->verdefs
!= NULL
&& sinfo
->verdefs
->vernum
== 0)
1661 for (pp
= &sinfo
->verdefs
; *pp
!= NULL
; pp
= &(*pp
)->next
)
1663 t
->vernum
= version_index
;
1667 h
->verinfo
.vertree
= t
;
1671 /* We could not find the version for a symbol when
1672 generating a shared archive. Return an error. */
1673 (*_bfd_error_handler
)
1674 (_("%s: undefined versioned symbol name %s"),
1675 bfd_get_filename (sinfo
->output_bfd
), h
->root
.root
.string
);
1676 bfd_set_error (bfd_error_bad_value
);
1677 sinfo
->failed
= TRUE
;
1682 h
->elf_link_hash_flags
|= ELF_LINK_HIDDEN
;
1685 /* If we don't have a version for this symbol, see if we can find
1687 if (h
->verinfo
.vertree
== NULL
&& sinfo
->verdefs
!= NULL
)
1689 struct bfd_elf_version_tree
*t
;
1690 struct bfd_elf_version_tree
*local_ver
;
1691 struct bfd_elf_version_expr
*d
;
1693 /* See if can find what version this symbol is in. If the
1694 symbol is supposed to be local, then don't actually register
1697 for (t
= sinfo
->verdefs
; t
!= NULL
; t
= t
->next
)
1699 if (t
->globals
.list
!= NULL
)
1701 bfd_boolean matched
;
1705 while ((d
= (*t
->match
) (&t
->globals
, d
,
1706 h
->root
.root
.string
)) != NULL
)
1711 /* There is a version without definition. Make
1712 the symbol the default definition for this
1714 h
->verinfo
.vertree
= t
;
1722 /* There is no undefined version for this symbol. Hide the
1724 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
1727 if (t
->locals
.list
!= NULL
)
1730 while ((d
= (*t
->match
) (&t
->locals
, d
,
1731 h
->root
.root
.string
)) != NULL
)
1734 /* If the match is "*", keep looking for a more
1735 explicit, perhaps even global, match.
1736 XXX: Shouldn't this be !d->wildcard instead? */
1737 if (d
->pattern
[0] != '*' || d
->pattern
[1] != '\0')
1746 if (local_ver
!= NULL
)
1748 h
->verinfo
.vertree
= local_ver
;
1749 if (h
->dynindx
!= -1
1751 && ! info
->export_dynamic
)
1753 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
1761 /* Read and swap the relocs from the section indicated by SHDR. This
1762 may be either a REL or a RELA section. The relocations are
1763 translated into RELA relocations and stored in INTERNAL_RELOCS,
1764 which should have already been allocated to contain enough space.
1765 The EXTERNAL_RELOCS are a buffer where the external form of the
1766 relocations should be stored.
1768 Returns FALSE if something goes wrong. */
1771 elf_link_read_relocs_from_section (bfd
*abfd
,
1773 Elf_Internal_Shdr
*shdr
,
1774 void *external_relocs
,
1775 Elf_Internal_Rela
*internal_relocs
)
1777 const struct elf_backend_data
*bed
;
1778 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
1779 const bfd_byte
*erela
;
1780 const bfd_byte
*erelaend
;
1781 Elf_Internal_Rela
*irela
;
1782 Elf_Internal_Shdr
*symtab_hdr
;
1785 /* Position ourselves at the start of the section. */
1786 if (bfd_seek (abfd
, shdr
->sh_offset
, SEEK_SET
) != 0)
1789 /* Read the relocations. */
1790 if (bfd_bread (external_relocs
, shdr
->sh_size
, abfd
) != shdr
->sh_size
)
1793 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
1794 nsyms
= symtab_hdr
->sh_size
/ symtab_hdr
->sh_entsize
;
1796 bed
= get_elf_backend_data (abfd
);
1798 /* Convert the external relocations to the internal format. */
1799 if (shdr
->sh_entsize
== bed
->s
->sizeof_rel
)
1800 swap_in
= bed
->s
->swap_reloc_in
;
1801 else if (shdr
->sh_entsize
== bed
->s
->sizeof_rela
)
1802 swap_in
= bed
->s
->swap_reloca_in
;
1805 bfd_set_error (bfd_error_wrong_format
);
1809 erela
= external_relocs
;
1810 erelaend
= erela
+ shdr
->sh_size
;
1811 irela
= internal_relocs
;
1812 while (erela
< erelaend
)
1816 (*swap_in
) (abfd
, erela
, irela
);
1817 r_symndx
= ELF32_R_SYM (irela
->r_info
);
1818 if (bed
->s
->arch_size
== 64)
1820 if ((size_t) r_symndx
>= nsyms
)
1822 (*_bfd_error_handler
)
1823 (_("%s: bad reloc symbol index (0x%lx >= 0x%lx) for offset 0x%lx in section `%s'"),
1824 bfd_archive_filename (abfd
), (unsigned long) r_symndx
,
1825 (unsigned long) nsyms
, irela
->r_offset
, sec
->name
);
1826 bfd_set_error (bfd_error_bad_value
);
1829 irela
+= bed
->s
->int_rels_per_ext_rel
;
1830 erela
+= shdr
->sh_entsize
;
1836 /* Read and swap the relocs for a section O. They may have been
1837 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
1838 not NULL, they are used as buffers to read into. They are known to
1839 be large enough. If the INTERNAL_RELOCS relocs argument is NULL,
1840 the return value is allocated using either malloc or bfd_alloc,
1841 according to the KEEP_MEMORY argument. If O has two relocation
1842 sections (both REL and RELA relocations), then the REL_HDR
1843 relocations will appear first in INTERNAL_RELOCS, followed by the
1844 REL_HDR2 relocations. */
1847 _bfd_elf_link_read_relocs (bfd
*abfd
,
1849 void *external_relocs
,
1850 Elf_Internal_Rela
*internal_relocs
,
1851 bfd_boolean keep_memory
)
1853 Elf_Internal_Shdr
*rel_hdr
;
1854 void *alloc1
= NULL
;
1855 Elf_Internal_Rela
*alloc2
= NULL
;
1856 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
1858 if (elf_section_data (o
)->relocs
!= NULL
)
1859 return elf_section_data (o
)->relocs
;
1861 if (o
->reloc_count
== 0)
1864 rel_hdr
= &elf_section_data (o
)->rel_hdr
;
1866 if (internal_relocs
== NULL
)
1870 size
= o
->reloc_count
;
1871 size
*= bed
->s
->int_rels_per_ext_rel
* sizeof (Elf_Internal_Rela
);
1873 internal_relocs
= bfd_alloc (abfd
, size
);
1875 internal_relocs
= alloc2
= bfd_malloc (size
);
1876 if (internal_relocs
== NULL
)
1880 if (external_relocs
== NULL
)
1882 bfd_size_type size
= rel_hdr
->sh_size
;
1884 if (elf_section_data (o
)->rel_hdr2
)
1885 size
+= elf_section_data (o
)->rel_hdr2
->sh_size
;
1886 alloc1
= bfd_malloc (size
);
1889 external_relocs
= alloc1
;
1892 if (!elf_link_read_relocs_from_section (abfd
, o
, rel_hdr
,
1896 if (elf_section_data (o
)->rel_hdr2
1897 && (!elf_link_read_relocs_from_section
1899 elf_section_data (o
)->rel_hdr2
,
1900 ((bfd_byte
*) external_relocs
) + rel_hdr
->sh_size
,
1901 internal_relocs
+ (NUM_SHDR_ENTRIES (rel_hdr
)
1902 * bed
->s
->int_rels_per_ext_rel
))))
1905 /* Cache the results for next time, if we can. */
1907 elf_section_data (o
)->relocs
= internal_relocs
;
1912 /* Don't free alloc2, since if it was allocated we are passing it
1913 back (under the name of internal_relocs). */
1915 return internal_relocs
;
1925 /* Compute the size of, and allocate space for, REL_HDR which is the
1926 section header for a section containing relocations for O. */
1929 _bfd_elf_link_size_reloc_section (bfd
*abfd
,
1930 Elf_Internal_Shdr
*rel_hdr
,
1933 bfd_size_type reloc_count
;
1934 bfd_size_type num_rel_hashes
;
1936 /* Figure out how many relocations there will be. */
1937 if (rel_hdr
== &elf_section_data (o
)->rel_hdr
)
1938 reloc_count
= elf_section_data (o
)->rel_count
;
1940 reloc_count
= elf_section_data (o
)->rel_count2
;
1942 num_rel_hashes
= o
->reloc_count
;
1943 if (num_rel_hashes
< reloc_count
)
1944 num_rel_hashes
= reloc_count
;
1946 /* That allows us to calculate the size of the section. */
1947 rel_hdr
->sh_size
= rel_hdr
->sh_entsize
* reloc_count
;
1949 /* The contents field must last into write_object_contents, so we
1950 allocate it with bfd_alloc rather than malloc. Also since we
1951 cannot be sure that the contents will actually be filled in,
1952 we zero the allocated space. */
1953 rel_hdr
->contents
= bfd_zalloc (abfd
, rel_hdr
->sh_size
);
1954 if (rel_hdr
->contents
== NULL
&& rel_hdr
->sh_size
!= 0)
1957 /* We only allocate one set of hash entries, so we only do it the
1958 first time we are called. */
1959 if (elf_section_data (o
)->rel_hashes
== NULL
1962 struct elf_link_hash_entry
**p
;
1964 p
= bfd_zmalloc (num_rel_hashes
* sizeof (struct elf_link_hash_entry
*));
1968 elf_section_data (o
)->rel_hashes
= p
;
1974 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
1975 originated from the section given by INPUT_REL_HDR) to the
1979 _bfd_elf_link_output_relocs (bfd
*output_bfd
,
1980 asection
*input_section
,
1981 Elf_Internal_Shdr
*input_rel_hdr
,
1982 Elf_Internal_Rela
*internal_relocs
)
1984 Elf_Internal_Rela
*irela
;
1985 Elf_Internal_Rela
*irelaend
;
1987 Elf_Internal_Shdr
*output_rel_hdr
;
1988 asection
*output_section
;
1989 unsigned int *rel_countp
= NULL
;
1990 const struct elf_backend_data
*bed
;
1991 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
1993 output_section
= input_section
->output_section
;
1994 output_rel_hdr
= NULL
;
1996 if (elf_section_data (output_section
)->rel_hdr
.sh_entsize
1997 == input_rel_hdr
->sh_entsize
)
1999 output_rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
2000 rel_countp
= &elf_section_data (output_section
)->rel_count
;
2002 else if (elf_section_data (output_section
)->rel_hdr2
2003 && (elf_section_data (output_section
)->rel_hdr2
->sh_entsize
2004 == input_rel_hdr
->sh_entsize
))
2006 output_rel_hdr
= elf_section_data (output_section
)->rel_hdr2
;
2007 rel_countp
= &elf_section_data (output_section
)->rel_count2
;
2011 (*_bfd_error_handler
)
2012 (_("%s: relocation size mismatch in %s section %s"),
2013 bfd_get_filename (output_bfd
),
2014 bfd_archive_filename (input_section
->owner
),
2015 input_section
->name
);
2016 bfd_set_error (bfd_error_wrong_object_format
);
2020 bed
= get_elf_backend_data (output_bfd
);
2021 if (input_rel_hdr
->sh_entsize
== bed
->s
->sizeof_rel
)
2022 swap_out
= bed
->s
->swap_reloc_out
;
2023 else if (input_rel_hdr
->sh_entsize
== bed
->s
->sizeof_rela
)
2024 swap_out
= bed
->s
->swap_reloca_out
;
2028 erel
= output_rel_hdr
->contents
;
2029 erel
+= *rel_countp
* input_rel_hdr
->sh_entsize
;
2030 irela
= internal_relocs
;
2031 irelaend
= irela
+ (NUM_SHDR_ENTRIES (input_rel_hdr
)
2032 * bed
->s
->int_rels_per_ext_rel
);
2033 while (irela
< irelaend
)
2035 (*swap_out
) (output_bfd
, irela
, erel
);
2036 irela
+= bed
->s
->int_rels_per_ext_rel
;
2037 erel
+= input_rel_hdr
->sh_entsize
;
2040 /* Bump the counter, so that we know where to add the next set of
2042 *rel_countp
+= NUM_SHDR_ENTRIES (input_rel_hdr
);
2047 /* Fix up the flags for a symbol. This handles various cases which
2048 can only be fixed after all the input files are seen. This is
2049 currently called by both adjust_dynamic_symbol and
2050 assign_sym_version, which is unnecessary but perhaps more robust in
2051 the face of future changes. */
2054 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry
*h
,
2055 struct elf_info_failed
*eif
)
2057 /* If this symbol was mentioned in a non-ELF file, try to set
2058 DEF_REGULAR and REF_REGULAR correctly. This is the only way to
2059 permit a non-ELF file to correctly refer to a symbol defined in
2060 an ELF dynamic object. */
2061 if ((h
->elf_link_hash_flags
& ELF_LINK_NON_ELF
) != 0)
2063 while (h
->root
.type
== bfd_link_hash_indirect
)
2064 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2066 if (h
->root
.type
!= bfd_link_hash_defined
2067 && h
->root
.type
!= bfd_link_hash_defweak
)
2068 h
->elf_link_hash_flags
|= (ELF_LINK_HASH_REF_REGULAR
2069 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
);
2072 if (h
->root
.u
.def
.section
->owner
!= NULL
2073 && (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2074 == bfd_target_elf_flavour
))
2075 h
->elf_link_hash_flags
|= (ELF_LINK_HASH_REF_REGULAR
2076 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
);
2078 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
2081 if (h
->dynindx
== -1
2082 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
2083 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) != 0))
2085 if (! bfd_elf_link_record_dynamic_symbol (eif
->info
, h
))
2094 /* Unfortunately, ELF_LINK_NON_ELF is only correct if the symbol
2095 was first seen in a non-ELF file. Fortunately, if the symbol
2096 was first seen in an ELF file, we're probably OK unless the
2097 symbol was defined in a non-ELF file. Catch that case here.
2098 FIXME: We're still in trouble if the symbol was first seen in
2099 a dynamic object, and then later in a non-ELF regular object. */
2100 if ((h
->root
.type
== bfd_link_hash_defined
2101 || h
->root
.type
== bfd_link_hash_defweak
)
2102 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
2103 && (h
->root
.u
.def
.section
->owner
!= NULL
2104 ? (bfd_get_flavour (h
->root
.u
.def
.section
->owner
)
2105 != bfd_target_elf_flavour
)
2106 : (bfd_is_abs_section (h
->root
.u
.def
.section
)
2107 && (h
->elf_link_hash_flags
2108 & ELF_LINK_HASH_DEF_DYNAMIC
) == 0)))
2109 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
2112 /* If this is a final link, and the symbol was defined as a common
2113 symbol in a regular object file, and there was no definition in
2114 any dynamic object, then the linker will have allocated space for
2115 the symbol in a common section but the ELF_LINK_HASH_DEF_REGULAR
2116 flag will not have been set. */
2117 if (h
->root
.type
== bfd_link_hash_defined
2118 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
2119 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) != 0
2120 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) == 0
2121 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
2122 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
2124 /* If -Bsymbolic was used (which means to bind references to global
2125 symbols to the definition within the shared object), and this
2126 symbol was defined in a regular object, then it actually doesn't
2127 need a PLT entry. Likewise, if the symbol has non-default
2128 visibility. If the symbol has hidden or internal visibility, we
2129 will force it local. */
2130 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) != 0
2131 && eif
->info
->shared
2132 && is_elf_hash_table (eif
->info
->hash
)
2133 && (eif
->info
->symbolic
2134 || ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
2135 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0)
2137 const struct elf_backend_data
*bed
;
2138 bfd_boolean force_local
;
2140 bed
= get_elf_backend_data (elf_hash_table (eif
->info
)->dynobj
);
2142 force_local
= (ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
2143 || ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
);
2144 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, force_local
);
2147 /* If a weak undefined symbol has non-default visibility, we also
2148 hide it from the dynamic linker. */
2149 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
2150 && h
->root
.type
== bfd_link_hash_undefweak
)
2152 const struct elf_backend_data
*bed
;
2153 bed
= get_elf_backend_data (elf_hash_table (eif
->info
)->dynobj
);
2154 (*bed
->elf_backend_hide_symbol
) (eif
->info
, h
, TRUE
);
2157 /* If this is a weak defined symbol in a dynamic object, and we know
2158 the real definition in the dynamic object, copy interesting flags
2159 over to the real definition. */
2160 if (h
->weakdef
!= NULL
)
2162 struct elf_link_hash_entry
*weakdef
;
2164 weakdef
= h
->weakdef
;
2165 if (h
->root
.type
== bfd_link_hash_indirect
)
2166 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2168 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
2169 || h
->root
.type
== bfd_link_hash_defweak
);
2170 BFD_ASSERT (weakdef
->root
.type
== bfd_link_hash_defined
2171 || weakdef
->root
.type
== bfd_link_hash_defweak
);
2172 BFD_ASSERT (weakdef
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
);
2174 /* If the real definition is defined by a regular object file,
2175 don't do anything special. See the longer description in
2176 _bfd_elf_adjust_dynamic_symbol, below. */
2177 if ((weakdef
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0)
2181 const struct elf_backend_data
*bed
;
2183 bed
= get_elf_backend_data (elf_hash_table (eif
->info
)->dynobj
);
2184 (*bed
->elf_backend_copy_indirect_symbol
) (bed
, weakdef
, h
);
2191 /* Make the backend pick a good value for a dynamic symbol. This is
2192 called via elf_link_hash_traverse, and also calls itself
2196 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry
*h
, void *data
)
2198 struct elf_info_failed
*eif
= data
;
2200 const struct elf_backend_data
*bed
;
2202 if (! is_elf_hash_table (eif
->info
->hash
))
2205 if (h
->root
.type
== bfd_link_hash_warning
)
2207 h
->plt
= elf_hash_table (eif
->info
)->init_offset
;
2208 h
->got
= elf_hash_table (eif
->info
)->init_offset
;
2210 /* When warning symbols are created, they **replace** the "real"
2211 entry in the hash table, thus we never get to see the real
2212 symbol in a hash traversal. So look at it now. */
2213 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2216 /* Ignore indirect symbols. These are added by the versioning code. */
2217 if (h
->root
.type
== bfd_link_hash_indirect
)
2220 /* Fix the symbol flags. */
2221 if (! _bfd_elf_fix_symbol_flags (h
, eif
))
2224 /* If this symbol does not require a PLT entry, and it is not
2225 defined by a dynamic object, or is not referenced by a regular
2226 object, ignore it. We do have to handle a weak defined symbol,
2227 even if no regular object refers to it, if we decided to add it
2228 to the dynamic symbol table. FIXME: Do we normally need to worry
2229 about symbols which are defined by one dynamic object and
2230 referenced by another one? */
2231 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) == 0
2232 && ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) != 0
2233 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) == 0
2234 || ((h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) == 0
2235 && (h
->weakdef
== NULL
|| h
->weakdef
->dynindx
== -1))))
2237 h
->plt
= elf_hash_table (eif
->info
)->init_offset
;
2241 /* If we've already adjusted this symbol, don't do it again. This
2242 can happen via a recursive call. */
2243 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DYNAMIC_ADJUSTED
) != 0)
2246 /* Don't look at this symbol again. Note that we must set this
2247 after checking the above conditions, because we may look at a
2248 symbol once, decide not to do anything, and then get called
2249 recursively later after REF_REGULAR is set below. */
2250 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DYNAMIC_ADJUSTED
;
2252 /* If this is a weak definition, and we know a real definition, and
2253 the real symbol is not itself defined by a regular object file,
2254 then get a good value for the real definition. We handle the
2255 real symbol first, for the convenience of the backend routine.
2257 Note that there is a confusing case here. If the real definition
2258 is defined by a regular object file, we don't get the real symbol
2259 from the dynamic object, but we do get the weak symbol. If the
2260 processor backend uses a COPY reloc, then if some routine in the
2261 dynamic object changes the real symbol, we will not see that
2262 change in the corresponding weak symbol. This is the way other
2263 ELF linkers work as well, and seems to be a result of the shared
2266 I will clarify this issue. Most SVR4 shared libraries define the
2267 variable _timezone and define timezone as a weak synonym. The
2268 tzset call changes _timezone. If you write
2269 extern int timezone;
2271 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2272 you might expect that, since timezone is a synonym for _timezone,
2273 the same number will print both times. However, if the processor
2274 backend uses a COPY reloc, then actually timezone will be copied
2275 into your process image, and, since you define _timezone
2276 yourself, _timezone will not. Thus timezone and _timezone will
2277 wind up at different memory locations. The tzset call will set
2278 _timezone, leaving timezone unchanged. */
2280 if (h
->weakdef
!= NULL
)
2282 /* If we get to this point, we know there is an implicit
2283 reference by a regular object file via the weak symbol H.
2284 FIXME: Is this really true? What if the traversal finds
2285 H->WEAKDEF before it finds H? */
2286 h
->weakdef
->elf_link_hash_flags
|= ELF_LINK_HASH_REF_REGULAR
;
2288 if (! _bfd_elf_adjust_dynamic_symbol (h
->weakdef
, eif
))
2292 /* If a symbol has no type and no size and does not require a PLT
2293 entry, then we are probably about to do the wrong thing here: we
2294 are probably going to create a COPY reloc for an empty object.
2295 This case can arise when a shared object is built with assembly
2296 code, and the assembly code fails to set the symbol type. */
2298 && h
->type
== STT_NOTYPE
2299 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_NEEDS_PLT
) == 0)
2300 (*_bfd_error_handler
)
2301 (_("warning: type and size of dynamic symbol `%s' are not defined"),
2302 h
->root
.root
.string
);
2304 dynobj
= elf_hash_table (eif
->info
)->dynobj
;
2305 bed
= get_elf_backend_data (dynobj
);
2306 if (! (*bed
->elf_backend_adjust_dynamic_symbol
) (eif
->info
, h
))
2315 /* Adjust all external symbols pointing into SEC_MERGE sections
2316 to reflect the object merging within the sections. */
2319 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry
*h
, void *data
)
2323 if (h
->root
.type
== bfd_link_hash_warning
)
2324 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2326 if ((h
->root
.type
== bfd_link_hash_defined
2327 || h
->root
.type
== bfd_link_hash_defweak
)
2328 && ((sec
= h
->root
.u
.def
.section
)->flags
& SEC_MERGE
)
2329 && sec
->sec_info_type
== ELF_INFO_TYPE_MERGE
)
2331 bfd
*output_bfd
= data
;
2333 h
->root
.u
.def
.value
=
2334 _bfd_merged_section_offset (output_bfd
,
2335 &h
->root
.u
.def
.section
,
2336 elf_section_data (sec
)->sec_info
,
2337 h
->root
.u
.def
.value
, 0);
2343 /* Returns false if the symbol referred to by H should be considered
2344 to resolve local to the current module, and true if it should be
2345 considered to bind dynamically. */
2348 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry
*h
,
2349 struct bfd_link_info
*info
,
2350 bfd_boolean ignore_protected
)
2352 bfd_boolean binding_stays_local_p
;
2357 while (h
->root
.type
== bfd_link_hash_indirect
2358 || h
->root
.type
== bfd_link_hash_warning
)
2359 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2361 /* If it was forced local, then clearly it's not dynamic. */
2362 if (h
->dynindx
== -1)
2364 if (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
)
2367 /* Identify the cases where name binding rules say that a
2368 visible symbol resolves locally. */
2369 binding_stays_local_p
= info
->executable
|| info
->symbolic
;
2371 switch (ELF_ST_VISIBILITY (h
->other
))
2378 /* Proper resolution for function pointer equality may require
2379 that these symbols perhaps be resolved dynamically, even though
2380 we should be resolving them to the current module. */
2381 if (!ignore_protected
)
2382 binding_stays_local_p
= TRUE
;
2389 /* If it isn't defined locally, then clearly it's dynamic. */
2390 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
2393 /* Otherwise, the symbol is dynamic if binding rules don't tell
2394 us that it remains local. */
2395 return !binding_stays_local_p
;
2398 /* Return true if the symbol referred to by H should be considered
2399 to resolve local to the current module, and false otherwise. Differs
2400 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2401 undefined symbols and weak symbols. */
2404 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry
*h
,
2405 struct bfd_link_info
*info
,
2406 bfd_boolean local_protected
)
2408 /* If it's a local sym, of course we resolve locally. */
2412 /* If we don't have a definition in a regular file, then we can't
2413 resolve locally. The sym is either undefined or dynamic. */
2414 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
2417 /* Forced local symbols resolve locally. */
2418 if ((h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0)
2421 /* As do non-dynamic symbols. */
2422 if (h
->dynindx
== -1)
2425 /* At this point, we know the symbol is defined and dynamic. In an
2426 executable it must resolve locally, likewise when building symbolic
2427 shared libraries. */
2428 if (info
->executable
|| info
->symbolic
)
2431 /* Now deal with defined dynamic symbols in shared libraries. Ones
2432 with default visibility might not resolve locally. */
2433 if (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
2436 /* However, STV_HIDDEN or STV_INTERNAL ones must be local. */
2437 if (ELF_ST_VISIBILITY (h
->other
) != STV_PROTECTED
)
2440 /* Function pointer equality tests may require that STV_PROTECTED
2441 symbols be treated as dynamic symbols, even when we know that the
2442 dynamic linker will resolve them locally. */
2443 return local_protected
;
2446 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2447 aligned. Returns the first TLS output section. */
2449 struct bfd_section
*
2450 _bfd_elf_tls_setup (bfd
*obfd
, struct bfd_link_info
*info
)
2452 struct bfd_section
*sec
, *tls
;
2453 unsigned int align
= 0;
2455 for (sec
= obfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
2456 if ((sec
->flags
& SEC_THREAD_LOCAL
) != 0)
2460 for (; sec
!= NULL
&& (sec
->flags
& SEC_THREAD_LOCAL
) != 0; sec
= sec
->next
)
2461 if (sec
->alignment_power
> align
)
2462 align
= sec
->alignment_power
;
2464 elf_hash_table (info
)->tls_sec
= tls
;
2466 /* Ensure the alignment of the first section is the largest alignment,
2467 so that the tls segment starts aligned. */
2469 tls
->alignment_power
= align
;
2474 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */
2476 is_global_data_symbol_definition (bfd
*abfd ATTRIBUTE_UNUSED
,
2477 Elf_Internal_Sym
*sym
)
2479 /* Local symbols do not count, but target specific ones might. */
2480 if (ELF_ST_BIND (sym
->st_info
) != STB_GLOBAL
2481 && ELF_ST_BIND (sym
->st_info
) < STB_LOOS
)
2484 /* Function symbols do not count. */
2485 if (ELF_ST_TYPE (sym
->st_info
) == STT_FUNC
)
2488 /* If the section is undefined, then so is the symbol. */
2489 if (sym
->st_shndx
== SHN_UNDEF
)
2492 /* If the symbol is defined in the common section, then
2493 it is a common definition and so does not count. */
2494 if (sym
->st_shndx
== SHN_COMMON
)
2497 /* If the symbol is in a target specific section then we
2498 must rely upon the backend to tell us what it is. */
2499 if (sym
->st_shndx
>= SHN_LORESERVE
&& sym
->st_shndx
< SHN_ABS
)
2500 /* FIXME - this function is not coded yet:
2502 return _bfd_is_global_symbol_definition (abfd, sym);
2504 Instead for now assume that the definition is not global,
2505 Even if this is wrong, at least the linker will behave
2506 in the same way that it used to do. */
2512 /* Search the symbol table of the archive element of the archive ABFD
2513 whose archive map contains a mention of SYMDEF, and determine if
2514 the symbol is defined in this element. */
2516 elf_link_is_defined_archive_symbol (bfd
* abfd
, carsym
* symdef
)
2518 Elf_Internal_Shdr
* hdr
;
2519 bfd_size_type symcount
;
2520 bfd_size_type extsymcount
;
2521 bfd_size_type extsymoff
;
2522 Elf_Internal_Sym
*isymbuf
;
2523 Elf_Internal_Sym
*isym
;
2524 Elf_Internal_Sym
*isymend
;
2527 abfd
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
2531 if (! bfd_check_format (abfd
, bfd_object
))
2534 /* If we have already included the element containing this symbol in the
2535 link then we do not need to include it again. Just claim that any symbol
2536 it contains is not a definition, so that our caller will not decide to
2537 (re)include this element. */
2538 if (abfd
->archive_pass
)
2541 /* Select the appropriate symbol table. */
2542 if ((abfd
->flags
& DYNAMIC
) == 0 || elf_dynsymtab (abfd
) == 0)
2543 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
2545 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
2547 symcount
= hdr
->sh_size
/ get_elf_backend_data (abfd
)->s
->sizeof_sym
;
2549 /* The sh_info field of the symtab header tells us where the
2550 external symbols start. We don't care about the local symbols. */
2551 if (elf_bad_symtab (abfd
))
2553 extsymcount
= symcount
;
2558 extsymcount
= symcount
- hdr
->sh_info
;
2559 extsymoff
= hdr
->sh_info
;
2562 if (extsymcount
== 0)
2565 /* Read in the symbol table. */
2566 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
2568 if (isymbuf
== NULL
)
2571 /* Scan the symbol table looking for SYMDEF. */
2573 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
; isym
< isymend
; isym
++)
2577 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
2582 if (strcmp (name
, symdef
->name
) == 0)
2584 result
= is_global_data_symbol_definition (abfd
, isym
);
2594 /* Add an entry to the .dynamic table. */
2597 _bfd_elf_add_dynamic_entry (struct bfd_link_info
*info
,
2601 struct elf_link_hash_table
*hash_table
;
2602 const struct elf_backend_data
*bed
;
2604 bfd_size_type newsize
;
2605 bfd_byte
*newcontents
;
2606 Elf_Internal_Dyn dyn
;
2608 hash_table
= elf_hash_table (info
);
2609 if (! is_elf_hash_table (hash_table
))
2612 bed
= get_elf_backend_data (hash_table
->dynobj
);
2613 s
= bfd_get_section_by_name (hash_table
->dynobj
, ".dynamic");
2614 BFD_ASSERT (s
!= NULL
);
2616 newsize
= s
->_raw_size
+ bed
->s
->sizeof_dyn
;
2617 newcontents
= bfd_realloc (s
->contents
, newsize
);
2618 if (newcontents
== NULL
)
2622 dyn
.d_un
.d_val
= val
;
2623 bed
->s
->swap_dyn_out (hash_table
->dynobj
, &dyn
, newcontents
+ s
->_raw_size
);
2625 s
->_raw_size
= newsize
;
2626 s
->contents
= newcontents
;
2631 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
2632 otherwise just check whether one already exists. Returns -1 on error,
2633 1 if a DT_NEEDED tag already exists, and 0 on success. */
2636 elf_add_dt_needed_tag (struct bfd_link_info
*info
,
2640 struct elf_link_hash_table
*hash_table
;
2641 bfd_size_type oldsize
;
2642 bfd_size_type strindex
;
2644 hash_table
= elf_hash_table (info
);
2645 oldsize
= _bfd_elf_strtab_size (hash_table
->dynstr
);
2646 strindex
= _bfd_elf_strtab_add (hash_table
->dynstr
, soname
, FALSE
);
2647 if (strindex
== (bfd_size_type
) -1)
2650 if (oldsize
== _bfd_elf_strtab_size (hash_table
->dynstr
))
2653 const struct elf_backend_data
*bed
;
2656 bed
= get_elf_backend_data (hash_table
->dynobj
);
2657 sdyn
= bfd_get_section_by_name (hash_table
->dynobj
, ".dynamic");
2658 BFD_ASSERT (sdyn
!= NULL
);
2660 for (extdyn
= sdyn
->contents
;
2661 extdyn
< sdyn
->contents
+ sdyn
->_raw_size
;
2662 extdyn
+= bed
->s
->sizeof_dyn
)
2664 Elf_Internal_Dyn dyn
;
2666 bed
->s
->swap_dyn_in (hash_table
->dynobj
, extdyn
, &dyn
);
2667 if (dyn
.d_tag
== DT_NEEDED
2668 && dyn
.d_un
.d_val
== strindex
)
2670 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
2678 if (!_bfd_elf_add_dynamic_entry (info
, DT_NEEDED
, strindex
))
2682 /* We were just checking for existence of the tag. */
2683 _bfd_elf_strtab_delref (hash_table
->dynstr
, strindex
);
2688 /* Sort symbol by value and section. */
2690 elf_sort_symbol (const void *arg1
, const void *arg2
)
2692 const struct elf_link_hash_entry
*h1
;
2693 const struct elf_link_hash_entry
*h2
;
2694 bfd_signed_vma vdiff
;
2696 h1
= *(const struct elf_link_hash_entry
**) arg1
;
2697 h2
= *(const struct elf_link_hash_entry
**) arg2
;
2698 vdiff
= h1
->root
.u
.def
.value
- h2
->root
.u
.def
.value
;
2700 return vdiff
> 0 ? 1 : -1;
2703 long sdiff
= h1
->root
.u
.def
.section
- h2
->root
.u
.def
.section
;
2705 return sdiff
> 0 ? 1 : -1;
2710 /* This function is used to adjust offsets into .dynstr for
2711 dynamic symbols. This is called via elf_link_hash_traverse. */
2714 elf_adjust_dynstr_offsets (struct elf_link_hash_entry
*h
, void *data
)
2716 struct elf_strtab_hash
*dynstr
= data
;
2718 if (h
->root
.type
== bfd_link_hash_warning
)
2719 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
2721 if (h
->dynindx
!= -1)
2722 h
->dynstr_index
= _bfd_elf_strtab_offset (dynstr
, h
->dynstr_index
);
2726 /* Assign string offsets in .dynstr, update all structures referencing
2730 elf_finalize_dynstr (bfd
*output_bfd
, struct bfd_link_info
*info
)
2732 struct elf_link_hash_table
*hash_table
= elf_hash_table (info
);
2733 struct elf_link_local_dynamic_entry
*entry
;
2734 struct elf_strtab_hash
*dynstr
= hash_table
->dynstr
;
2735 bfd
*dynobj
= hash_table
->dynobj
;
2738 const struct elf_backend_data
*bed
;
2741 _bfd_elf_strtab_finalize (dynstr
);
2742 size
= _bfd_elf_strtab_size (dynstr
);
2744 bed
= get_elf_backend_data (dynobj
);
2745 sdyn
= bfd_get_section_by_name (dynobj
, ".dynamic");
2746 BFD_ASSERT (sdyn
!= NULL
);
2748 /* Update all .dynamic entries referencing .dynstr strings. */
2749 for (extdyn
= sdyn
->contents
;
2750 extdyn
< sdyn
->contents
+ sdyn
->_raw_size
;
2751 extdyn
+= bed
->s
->sizeof_dyn
)
2753 Elf_Internal_Dyn dyn
;
2755 bed
->s
->swap_dyn_in (dynobj
, extdyn
, &dyn
);
2759 dyn
.d_un
.d_val
= size
;
2767 dyn
.d_un
.d_val
= _bfd_elf_strtab_offset (dynstr
, dyn
.d_un
.d_val
);
2772 bed
->s
->swap_dyn_out (dynobj
, &dyn
, extdyn
);
2775 /* Now update local dynamic symbols. */
2776 for (entry
= hash_table
->dynlocal
; entry
; entry
= entry
->next
)
2777 entry
->isym
.st_name
= _bfd_elf_strtab_offset (dynstr
,
2778 entry
->isym
.st_name
);
2780 /* And the rest of dynamic symbols. */
2781 elf_link_hash_traverse (hash_table
, elf_adjust_dynstr_offsets
, dynstr
);
2783 /* Adjust version definitions. */
2784 if (elf_tdata (output_bfd
)->cverdefs
)
2789 Elf_Internal_Verdef def
;
2790 Elf_Internal_Verdaux defaux
;
2792 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
2796 _bfd_elf_swap_verdef_in (output_bfd
, (Elf_External_Verdef
*) p
,
2798 p
+= sizeof (Elf_External_Verdef
);
2799 for (i
= 0; i
< def
.vd_cnt
; ++i
)
2801 _bfd_elf_swap_verdaux_in (output_bfd
,
2802 (Elf_External_Verdaux
*) p
, &defaux
);
2803 defaux
.vda_name
= _bfd_elf_strtab_offset (dynstr
,
2805 _bfd_elf_swap_verdaux_out (output_bfd
,
2806 &defaux
, (Elf_External_Verdaux
*) p
);
2807 p
+= sizeof (Elf_External_Verdaux
);
2810 while (def
.vd_next
);
2813 /* Adjust version references. */
2814 if (elf_tdata (output_bfd
)->verref
)
2819 Elf_Internal_Verneed need
;
2820 Elf_Internal_Vernaux needaux
;
2822 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
2826 _bfd_elf_swap_verneed_in (output_bfd
, (Elf_External_Verneed
*) p
,
2828 need
.vn_file
= _bfd_elf_strtab_offset (dynstr
, need
.vn_file
);
2829 _bfd_elf_swap_verneed_out (output_bfd
, &need
,
2830 (Elf_External_Verneed
*) p
);
2831 p
+= sizeof (Elf_External_Verneed
);
2832 for (i
= 0; i
< need
.vn_cnt
; ++i
)
2834 _bfd_elf_swap_vernaux_in (output_bfd
,
2835 (Elf_External_Vernaux
*) p
, &needaux
);
2836 needaux
.vna_name
= _bfd_elf_strtab_offset (dynstr
,
2838 _bfd_elf_swap_vernaux_out (output_bfd
,
2840 (Elf_External_Vernaux
*) p
);
2841 p
+= sizeof (Elf_External_Vernaux
);
2844 while (need
.vn_next
);
2850 /* Add symbols from an ELF object file to the linker hash table. */
2853 elf_link_add_object_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
2855 bfd_boolean (*add_symbol_hook
)
2856 (bfd
*, struct bfd_link_info
*, Elf_Internal_Sym
*,
2857 const char **, flagword
*, asection
**, bfd_vma
*);
2858 bfd_boolean (*check_relocs
)
2859 (bfd
*, struct bfd_link_info
*, asection
*, const Elf_Internal_Rela
*);
2860 bfd_boolean collect
;
2861 Elf_Internal_Shdr
*hdr
;
2862 bfd_size_type symcount
;
2863 bfd_size_type extsymcount
;
2864 bfd_size_type extsymoff
;
2865 struct elf_link_hash_entry
**sym_hash
;
2866 bfd_boolean dynamic
;
2867 Elf_External_Versym
*extversym
= NULL
;
2868 Elf_External_Versym
*ever
;
2869 struct elf_link_hash_entry
*weaks
;
2870 struct elf_link_hash_entry
**nondeflt_vers
= NULL
;
2871 bfd_size_type nondeflt_vers_cnt
= 0;
2872 Elf_Internal_Sym
*isymbuf
= NULL
;
2873 Elf_Internal_Sym
*isym
;
2874 Elf_Internal_Sym
*isymend
;
2875 const struct elf_backend_data
*bed
;
2876 bfd_boolean add_needed
;
2877 struct elf_link_hash_table
* hash_table
;
2880 hash_table
= elf_hash_table (info
);
2882 bed
= get_elf_backend_data (abfd
);
2883 add_symbol_hook
= bed
->elf_add_symbol_hook
;
2884 collect
= bed
->collect
;
2886 if ((abfd
->flags
& DYNAMIC
) == 0)
2892 /* You can't use -r against a dynamic object. Also, there's no
2893 hope of using a dynamic object which does not exactly match
2894 the format of the output file. */
2895 if (info
->relocatable
2896 || !is_elf_hash_table (hash_table
)
2897 || hash_table
->root
.creator
!= abfd
->xvec
)
2899 bfd_set_error (bfd_error_invalid_operation
);
2904 /* As a GNU extension, any input sections which are named
2905 .gnu.warning.SYMBOL are treated as warning symbols for the given
2906 symbol. This differs from .gnu.warning sections, which generate
2907 warnings when they are included in an output file. */
2908 if (info
->executable
)
2912 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
2916 name
= bfd_get_section_name (abfd
, s
);
2917 if (strncmp (name
, ".gnu.warning.", sizeof ".gnu.warning." - 1) == 0)
2921 bfd_size_type prefix_len
;
2922 const char * gnu_warning_prefix
= _("warning: ");
2924 name
+= sizeof ".gnu.warning." - 1;
2926 /* If this is a shared object, then look up the symbol
2927 in the hash table. If it is there, and it is already
2928 been defined, then we will not be using the entry
2929 from this shared object, so we don't need to warn.
2930 FIXME: If we see the definition in a regular object
2931 later on, we will warn, but we shouldn't. The only
2932 fix is to keep track of what warnings we are supposed
2933 to emit, and then handle them all at the end of the
2937 struct elf_link_hash_entry
*h
;
2939 h
= elf_link_hash_lookup (hash_table
, name
,
2940 FALSE
, FALSE
, TRUE
);
2942 /* FIXME: What about bfd_link_hash_common? */
2944 && (h
->root
.type
== bfd_link_hash_defined
2945 || h
->root
.type
== bfd_link_hash_defweak
))
2947 /* We don't want to issue this warning. Clobber
2948 the section size so that the warning does not
2949 get copied into the output file. */
2955 sz
= bfd_section_size (abfd
, s
);
2956 prefix_len
= strlen (gnu_warning_prefix
);
2957 msg
= bfd_alloc (abfd
, prefix_len
+ sz
+ 1);
2961 strcpy (msg
, gnu_warning_prefix
);
2962 if (! bfd_get_section_contents (abfd
, s
, msg
+ prefix_len
, 0, sz
))
2965 msg
[prefix_len
+ sz
] = '\0';
2967 if (! (_bfd_generic_link_add_one_symbol
2968 (info
, abfd
, name
, BSF_WARNING
, s
, 0, msg
,
2969 FALSE
, collect
, NULL
)))
2972 if (! info
->relocatable
)
2974 /* Clobber the section size so that the warning does
2975 not get copied into the output file. */
2985 /* If we are creating a shared library, create all the dynamic
2986 sections immediately. We need to attach them to something,
2987 so we attach them to this BFD, provided it is the right
2988 format. FIXME: If there are no input BFD's of the same
2989 format as the output, we can't make a shared library. */
2991 && is_elf_hash_table (hash_table
)
2992 && hash_table
->root
.creator
== abfd
->xvec
2993 && ! hash_table
->dynamic_sections_created
)
2995 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
2999 else if (!is_elf_hash_table (hash_table
))
3004 const char *soname
= NULL
;
3005 struct bfd_link_needed_list
*rpath
= NULL
, *runpath
= NULL
;
3008 /* ld --just-symbols and dynamic objects don't mix very well.
3009 Test for --just-symbols by looking at info set up by
3010 _bfd_elf_link_just_syms. */
3011 if ((s
= abfd
->sections
) != NULL
3012 && s
->sec_info_type
== ELF_INFO_TYPE_JUST_SYMS
)
3015 /* If this dynamic lib was specified on the command line with
3016 --as-needed in effect, then we don't want to add a DT_NEEDED
3017 tag unless the lib is actually used. Similary for libs brought
3018 in by another lib's DT_NEEDED. */
3019 add_needed
= elf_dyn_lib_class (abfd
) == DYN_NORMAL
;
3021 s
= bfd_get_section_by_name (abfd
, ".dynamic");
3027 unsigned long shlink
;
3029 dynbuf
= bfd_malloc (s
->_raw_size
);
3033 if (! bfd_get_section_contents (abfd
, s
, dynbuf
, 0, s
->_raw_size
))
3034 goto error_free_dyn
;
3036 elfsec
= _bfd_elf_section_from_bfd_section (abfd
, s
);
3038 goto error_free_dyn
;
3039 shlink
= elf_elfsections (abfd
)[elfsec
]->sh_link
;
3041 for (extdyn
= dynbuf
;
3042 extdyn
< dynbuf
+ s
->_raw_size
;
3043 extdyn
+= bed
->s
->sizeof_dyn
)
3045 Elf_Internal_Dyn dyn
;
3047 bed
->s
->swap_dyn_in (abfd
, extdyn
, &dyn
);
3048 if (dyn
.d_tag
== DT_SONAME
)
3050 unsigned int tagv
= dyn
.d_un
.d_val
;
3051 soname
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3053 goto error_free_dyn
;
3055 if (dyn
.d_tag
== DT_NEEDED
)
3057 struct bfd_link_needed_list
*n
, **pn
;
3059 unsigned int tagv
= dyn
.d_un
.d_val
;
3061 amt
= sizeof (struct bfd_link_needed_list
);
3062 n
= bfd_alloc (abfd
, amt
);
3063 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3064 if (n
== NULL
|| fnm
== NULL
)
3065 goto error_free_dyn
;
3066 amt
= strlen (fnm
) + 1;
3067 anm
= bfd_alloc (abfd
, amt
);
3069 goto error_free_dyn
;
3070 memcpy (anm
, fnm
, amt
);
3074 for (pn
= & hash_table
->needed
;
3080 if (dyn
.d_tag
== DT_RUNPATH
)
3082 struct bfd_link_needed_list
*n
, **pn
;
3084 unsigned int tagv
= dyn
.d_un
.d_val
;
3086 amt
= sizeof (struct bfd_link_needed_list
);
3087 n
= bfd_alloc (abfd
, amt
);
3088 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3089 if (n
== NULL
|| fnm
== NULL
)
3090 goto error_free_dyn
;
3091 amt
= strlen (fnm
) + 1;
3092 anm
= bfd_alloc (abfd
, amt
);
3094 goto error_free_dyn
;
3095 memcpy (anm
, fnm
, amt
);
3099 for (pn
= & runpath
;
3105 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */
3106 if (!runpath
&& dyn
.d_tag
== DT_RPATH
)
3108 struct bfd_link_needed_list
*n
, **pn
;
3110 unsigned int tagv
= dyn
.d_un
.d_val
;
3112 amt
= sizeof (struct bfd_link_needed_list
);
3113 n
= bfd_alloc (abfd
, amt
);
3114 fnm
= bfd_elf_string_from_elf_section (abfd
, shlink
, tagv
);
3115 if (n
== NULL
|| fnm
== NULL
)
3116 goto error_free_dyn
;
3117 amt
= strlen (fnm
) + 1;
3118 anm
= bfd_alloc (abfd
, amt
);
3125 memcpy (anm
, fnm
, amt
);
3140 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that
3141 frees all more recently bfd_alloc'd blocks as well. */
3147 struct bfd_link_needed_list
**pn
;
3148 for (pn
= & hash_table
->runpath
;
3155 /* We do not want to include any of the sections in a dynamic
3156 object in the output file. We hack by simply clobbering the
3157 list of sections in the BFD. This could be handled more
3158 cleanly by, say, a new section flag; the existing
3159 SEC_NEVER_LOAD flag is not the one we want, because that one
3160 still implies that the section takes up space in the output
3162 bfd_section_list_clear (abfd
);
3164 /* If this is the first dynamic object found in the link, create
3165 the special sections required for dynamic linking. */
3166 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
3169 /* Find the name to use in a DT_NEEDED entry that refers to this
3170 object. If the object has a DT_SONAME entry, we use it.
3171 Otherwise, if the generic linker stuck something in
3172 elf_dt_name, we use that. Otherwise, we just use the file
3174 if (soname
== NULL
|| *soname
== '\0')
3176 soname
= elf_dt_name (abfd
);
3177 if (soname
== NULL
|| *soname
== '\0')
3178 soname
= bfd_get_filename (abfd
);
3181 /* Save the SONAME because sometimes the linker emulation code
3182 will need to know it. */
3183 elf_dt_name (abfd
) = soname
;
3185 ret
= elf_add_dt_needed_tag (info
, soname
, add_needed
);
3189 /* If we have already included this dynamic object in the
3190 link, just ignore it. There is no reason to include a
3191 particular dynamic object more than once. */
3196 /* If this is a dynamic object, we always link against the .dynsym
3197 symbol table, not the .symtab symbol table. The dynamic linker
3198 will only see the .dynsym symbol table, so there is no reason to
3199 look at .symtab for a dynamic object. */
3201 if (! dynamic
|| elf_dynsymtab (abfd
) == 0)
3202 hdr
= &elf_tdata (abfd
)->symtab_hdr
;
3204 hdr
= &elf_tdata (abfd
)->dynsymtab_hdr
;
3206 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
3208 /* The sh_info field of the symtab header tells us where the
3209 external symbols start. We don't care about the local symbols at
3211 if (elf_bad_symtab (abfd
))
3213 extsymcount
= symcount
;
3218 extsymcount
= symcount
- hdr
->sh_info
;
3219 extsymoff
= hdr
->sh_info
;
3223 if (extsymcount
!= 0)
3225 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, extsymcount
, extsymoff
,
3227 if (isymbuf
== NULL
)
3230 /* We store a pointer to the hash table entry for each external
3232 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
3233 sym_hash
= bfd_alloc (abfd
, amt
);
3234 if (sym_hash
== NULL
)
3235 goto error_free_sym
;
3236 elf_sym_hashes (abfd
) = sym_hash
;
3241 /* Read in any version definitions. */
3242 if (! _bfd_elf_slurp_version_tables (abfd
))
3243 goto error_free_sym
;
3245 /* Read in the symbol versions, but don't bother to convert them
3246 to internal format. */
3247 if (elf_dynversym (abfd
) != 0)
3249 Elf_Internal_Shdr
*versymhdr
;
3251 versymhdr
= &elf_tdata (abfd
)->dynversym_hdr
;
3252 extversym
= bfd_malloc (versymhdr
->sh_size
);
3253 if (extversym
== NULL
)
3254 goto error_free_sym
;
3255 amt
= versymhdr
->sh_size
;
3256 if (bfd_seek (abfd
, versymhdr
->sh_offset
, SEEK_SET
) != 0
3257 || bfd_bread (extversym
, amt
, abfd
) != amt
)
3258 goto error_free_vers
;
3264 ever
= extversym
!= NULL
? extversym
+ extsymoff
: NULL
;
3265 for (isym
= isymbuf
, isymend
= isymbuf
+ extsymcount
;
3267 isym
++, sym_hash
++, ever
= (ever
!= NULL
? ever
+ 1 : NULL
))
3274 struct elf_link_hash_entry
*h
;
3275 bfd_boolean definition
;
3276 bfd_boolean size_change_ok
;
3277 bfd_boolean type_change_ok
;
3278 bfd_boolean new_weakdef
;
3279 bfd_boolean override
;
3280 unsigned int old_alignment
;
3285 flags
= BSF_NO_FLAGS
;
3287 value
= isym
->st_value
;
3290 bind
= ELF_ST_BIND (isym
->st_info
);
3291 if (bind
== STB_LOCAL
)
3293 /* This should be impossible, since ELF requires that all
3294 global symbols follow all local symbols, and that sh_info
3295 point to the first global symbol. Unfortunately, Irix 5
3299 else if (bind
== STB_GLOBAL
)
3301 if (isym
->st_shndx
!= SHN_UNDEF
3302 && isym
->st_shndx
!= SHN_COMMON
)
3305 else if (bind
== STB_WEAK
)
3309 /* Leave it up to the processor backend. */
3312 if (isym
->st_shndx
== SHN_UNDEF
)
3313 sec
= bfd_und_section_ptr
;
3314 else if (isym
->st_shndx
< SHN_LORESERVE
|| isym
->st_shndx
> SHN_HIRESERVE
)
3316 sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
3318 sec
= bfd_abs_section_ptr
;
3319 else if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
3322 else if (isym
->st_shndx
== SHN_ABS
)
3323 sec
= bfd_abs_section_ptr
;
3324 else if (isym
->st_shndx
== SHN_COMMON
)
3326 sec
= bfd_com_section_ptr
;
3327 /* What ELF calls the size we call the value. What ELF
3328 calls the value we call the alignment. */
3329 value
= isym
->st_size
;
3333 /* Leave it up to the processor backend. */
3336 name
= bfd_elf_string_from_elf_section (abfd
, hdr
->sh_link
,
3339 goto error_free_vers
;
3341 if (isym
->st_shndx
== SHN_COMMON
3342 && ELF_ST_TYPE (isym
->st_info
) == STT_TLS
)
3344 asection
*tcomm
= bfd_get_section_by_name (abfd
, ".tcommon");
3348 tcomm
= bfd_make_section (abfd
, ".tcommon");
3350 || !bfd_set_section_flags (abfd
, tcomm
, (SEC_ALLOC
3352 | SEC_LINKER_CREATED
3353 | SEC_THREAD_LOCAL
)))
3354 goto error_free_vers
;
3358 else if (add_symbol_hook
)
3360 if (! (*add_symbol_hook
) (abfd
, info
, isym
, &name
, &flags
, &sec
,
3362 goto error_free_vers
;
3364 /* The hook function sets the name to NULL if this symbol
3365 should be skipped for some reason. */
3370 /* Sanity check that all possibilities were handled. */
3373 bfd_set_error (bfd_error_bad_value
);
3374 goto error_free_vers
;
3377 if (bfd_is_und_section (sec
)
3378 || bfd_is_com_section (sec
))
3383 size_change_ok
= FALSE
;
3384 type_change_ok
= get_elf_backend_data (abfd
)->type_change_ok
;
3388 if (is_elf_hash_table (hash_table
))
3390 Elf_Internal_Versym iver
;
3391 unsigned int vernum
= 0;
3396 _bfd_elf_swap_versym_in (abfd
, ever
, &iver
);
3397 vernum
= iver
.vs_vers
& VERSYM_VERSION
;
3399 /* If this is a hidden symbol, or if it is not version
3400 1, we append the version name to the symbol name.
3401 However, we do not modify a non-hidden absolute
3402 symbol, because it might be the version symbol
3403 itself. FIXME: What if it isn't? */
3404 if ((iver
.vs_vers
& VERSYM_HIDDEN
) != 0
3405 || (vernum
> 1 && ! bfd_is_abs_section (sec
)))
3408 size_t namelen
, verlen
, newlen
;
3411 if (isym
->st_shndx
!= SHN_UNDEF
)
3413 if (vernum
> elf_tdata (abfd
)->dynverdef_hdr
.sh_info
)
3415 (*_bfd_error_handler
)
3416 (_("%s: %s: invalid version %u (max %d)"),
3417 bfd_archive_filename (abfd
), name
, vernum
,
3418 elf_tdata (abfd
)->dynverdef_hdr
.sh_info
);
3419 bfd_set_error (bfd_error_bad_value
);
3420 goto error_free_vers
;
3422 else if (vernum
> 1)
3424 elf_tdata (abfd
)->verdef
[vernum
- 1].vd_nodename
;
3430 /* We cannot simply test for the number of
3431 entries in the VERNEED section since the
3432 numbers for the needed versions do not start
3434 Elf_Internal_Verneed
*t
;
3437 for (t
= elf_tdata (abfd
)->verref
;
3441 Elf_Internal_Vernaux
*a
;
3443 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
3445 if (a
->vna_other
== vernum
)
3447 verstr
= a
->vna_nodename
;
3456 (*_bfd_error_handler
)
3457 (_("%s: %s: invalid needed version %d"),
3458 bfd_archive_filename (abfd
), name
, vernum
);
3459 bfd_set_error (bfd_error_bad_value
);
3460 goto error_free_vers
;
3464 namelen
= strlen (name
);
3465 verlen
= strlen (verstr
);
3466 newlen
= namelen
+ verlen
+ 2;
3467 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
3468 && isym
->st_shndx
!= SHN_UNDEF
)
3471 newname
= bfd_alloc (abfd
, newlen
);
3472 if (newname
== NULL
)
3473 goto error_free_vers
;
3474 memcpy (newname
, name
, namelen
);
3475 p
= newname
+ namelen
;
3477 /* If this is a defined non-hidden version symbol,
3478 we add another @ to the name. This indicates the
3479 default version of the symbol. */
3480 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0
3481 && isym
->st_shndx
!= SHN_UNDEF
)
3483 memcpy (p
, verstr
, verlen
+ 1);
3489 if (!_bfd_elf_merge_symbol (abfd
, info
, name
, isym
, &sec
, &value
,
3490 sym_hash
, &skip
, &override
,
3491 &type_change_ok
, &size_change_ok
))
3492 goto error_free_vers
;
3501 while (h
->root
.type
== bfd_link_hash_indirect
3502 || h
->root
.type
== bfd_link_hash_warning
)
3503 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
3505 /* Remember the old alignment if this is a common symbol, so
3506 that we don't reduce the alignment later on. We can't
3507 check later, because _bfd_generic_link_add_one_symbol
3508 will set a default for the alignment which we want to
3509 override. We also remember the old bfd where the existing
3510 definition comes from. */
3511 switch (h
->root
.type
)
3516 case bfd_link_hash_defined
:
3517 case bfd_link_hash_defweak
:
3518 old_bfd
= h
->root
.u
.def
.section
->owner
;
3521 case bfd_link_hash_common
:
3522 old_bfd
= h
->root
.u
.c
.p
->section
->owner
;
3523 old_alignment
= h
->root
.u
.c
.p
->alignment_power
;
3527 if (elf_tdata (abfd
)->verdef
!= NULL
3531 h
->verinfo
.verdef
= &elf_tdata (abfd
)->verdef
[vernum
- 1];
3534 if (! (_bfd_generic_link_add_one_symbol
3535 (info
, abfd
, name
, flags
, sec
, value
, NULL
, FALSE
, collect
,
3536 (struct bfd_link_hash_entry
**) sym_hash
)))
3537 goto error_free_vers
;
3540 while (h
->root
.type
== bfd_link_hash_indirect
3541 || h
->root
.type
== bfd_link_hash_warning
)
3542 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
3545 new_weakdef
= FALSE
;
3548 && (flags
& BSF_WEAK
) != 0
3549 && ELF_ST_TYPE (isym
->st_info
) != STT_FUNC
3550 && is_elf_hash_table (hash_table
)
3551 && h
->weakdef
== NULL
)
3553 /* Keep a list of all weak defined non function symbols from
3554 a dynamic object, using the weakdef field. Later in this
3555 function we will set the weakdef field to the correct
3556 value. We only put non-function symbols from dynamic
3557 objects on this list, because that happens to be the only
3558 time we need to know the normal symbol corresponding to a
3559 weak symbol, and the information is time consuming to
3560 figure out. If the weakdef field is not already NULL,
3561 then this symbol was already defined by some previous
3562 dynamic object, and we will be using that previous
3563 definition anyhow. */
3570 /* Set the alignment of a common symbol. */
3571 if (isym
->st_shndx
== SHN_COMMON
3572 && h
->root
.type
== bfd_link_hash_common
)
3576 align
= bfd_log2 (isym
->st_value
);
3577 if (align
> old_alignment
3578 /* Permit an alignment power of zero if an alignment of one
3579 is specified and no other alignments have been specified. */
3580 || (isym
->st_value
== 1 && old_alignment
== 0))
3581 h
->root
.u
.c
.p
->alignment_power
= align
;
3583 h
->root
.u
.c
.p
->alignment_power
= old_alignment
;
3586 if (is_elf_hash_table (hash_table
))
3592 /* Check the alignment when a common symbol is involved. This
3593 can change when a common symbol is overridden by a normal
3594 definition or a common symbol is ignored due to the old
3595 normal definition. We need to make sure the maximum
3596 alignment is maintained. */
3597 if ((old_alignment
|| isym
->st_shndx
== SHN_COMMON
)
3598 && h
->root
.type
!= bfd_link_hash_common
)
3600 unsigned int common_align
;
3601 unsigned int normal_align
;
3602 unsigned int symbol_align
;
3606 symbol_align
= ffs (h
->root
.u
.def
.value
) - 1;
3607 if (h
->root
.u
.def
.section
->owner
!= NULL
3608 && (h
->root
.u
.def
.section
->owner
->flags
& DYNAMIC
) == 0)
3610 normal_align
= h
->root
.u
.def
.section
->alignment_power
;
3611 if (normal_align
> symbol_align
)
3612 normal_align
= symbol_align
;
3615 normal_align
= symbol_align
;
3619 common_align
= old_alignment
;
3620 common_bfd
= old_bfd
;
3625 common_align
= bfd_log2 (isym
->st_value
);
3627 normal_bfd
= old_bfd
;
3630 if (normal_align
< common_align
)
3631 (*_bfd_error_handler
)
3632 (_("Warning: alignment %u of symbol `%s' in %s is smaller than %u in %s"),
3635 bfd_archive_filename (normal_bfd
),
3637 bfd_archive_filename (common_bfd
));
3640 /* Remember the symbol size and type. */
3641 if (isym
->st_size
!= 0
3642 && (definition
|| h
->size
== 0))
3644 if (h
->size
!= 0 && h
->size
!= isym
->st_size
&& ! size_change_ok
)
3645 (*_bfd_error_handler
)
3646 (_("Warning: size of symbol `%s' changed from %lu in %s to %lu in %s"),
3647 name
, (unsigned long) h
->size
,
3648 bfd_archive_filename (old_bfd
),
3649 (unsigned long) isym
->st_size
,
3650 bfd_archive_filename (abfd
));
3652 h
->size
= isym
->st_size
;
3655 /* If this is a common symbol, then we always want H->SIZE
3656 to be the size of the common symbol. The code just above
3657 won't fix the size if a common symbol becomes larger. We
3658 don't warn about a size change here, because that is
3659 covered by --warn-common. */
3660 if (h
->root
.type
== bfd_link_hash_common
)
3661 h
->size
= h
->root
.u
.c
.size
;
3663 if (ELF_ST_TYPE (isym
->st_info
) != STT_NOTYPE
3664 && (definition
|| h
->type
== STT_NOTYPE
))
3666 if (h
->type
!= STT_NOTYPE
3667 && h
->type
!= ELF_ST_TYPE (isym
->st_info
)
3668 && ! type_change_ok
)
3669 (*_bfd_error_handler
)
3670 (_("Warning: type of symbol `%s' changed from %d to %d in %s"),
3671 name
, h
->type
, ELF_ST_TYPE (isym
->st_info
),
3672 bfd_archive_filename (abfd
));
3674 h
->type
= ELF_ST_TYPE (isym
->st_info
);
3677 /* If st_other has a processor-specific meaning, specific
3678 code might be needed here. We never merge the visibility
3679 attribute with the one from a dynamic object. */
3680 if (bed
->elf_backend_merge_symbol_attribute
)
3681 (*bed
->elf_backend_merge_symbol_attribute
) (h
, isym
, definition
,
3684 if (isym
->st_other
!= 0 && !dynamic
)
3686 unsigned char hvis
, symvis
, other
, nvis
;
3688 /* Take the balance of OTHER from the definition. */
3689 other
= (definition
? isym
->st_other
: h
->other
);
3690 other
&= ~ ELF_ST_VISIBILITY (-1);
3692 /* Combine visibilities, using the most constraining one. */
3693 hvis
= ELF_ST_VISIBILITY (h
->other
);
3694 symvis
= ELF_ST_VISIBILITY (isym
->st_other
);
3700 nvis
= hvis
< symvis
? hvis
: symvis
;
3702 h
->other
= other
| nvis
;
3705 /* Set a flag in the hash table entry indicating the type of
3706 reference or definition we just found. Keep a count of
3707 the number of dynamic symbols we find. A dynamic symbol
3708 is one which is referenced or defined by both a regular
3709 object and a shared object. */
3710 old_flags
= h
->elf_link_hash_flags
;
3716 new_flag
= ELF_LINK_HASH_REF_REGULAR
;
3717 if (bind
!= STB_WEAK
)
3718 new_flag
|= ELF_LINK_HASH_REF_REGULAR_NONWEAK
;
3721 new_flag
= ELF_LINK_HASH_DEF_REGULAR
;
3722 if (! info
->executable
3723 || (old_flags
& (ELF_LINK_HASH_DEF_DYNAMIC
3724 | ELF_LINK_HASH_REF_DYNAMIC
)) != 0)
3730 new_flag
= ELF_LINK_HASH_REF_DYNAMIC
;
3732 new_flag
= ELF_LINK_HASH_DEF_DYNAMIC
;
3733 if ((old_flags
& (ELF_LINK_HASH_DEF_REGULAR
3734 | ELF_LINK_HASH_REF_REGULAR
)) != 0
3735 || (h
->weakdef
!= NULL
3737 && h
->weakdef
->dynindx
!= -1))
3741 h
->elf_link_hash_flags
|= new_flag
;
3743 /* Check to see if we need to add an indirect symbol for
3744 the default name. */
3745 if (definition
|| h
->root
.type
== bfd_link_hash_common
)
3746 if (!_bfd_elf_add_default_symbol (abfd
, info
, h
, name
, isym
,
3747 &sec
, &value
, &dynsym
,
3749 goto error_free_vers
;
3751 if (definition
&& !dynamic
)
3753 char *p
= strchr (name
, ELF_VER_CHR
);
3754 if (p
!= NULL
&& p
[1] != ELF_VER_CHR
)
3756 /* Queue non-default versions so that .symver x, x@FOO
3757 aliases can be checked. */
3758 if (! nondeflt_vers
)
3760 amt
= (isymend
- isym
+ 1)
3761 * sizeof (struct elf_link_hash_entry
*);
3762 nondeflt_vers
= bfd_malloc (amt
);
3764 nondeflt_vers
[nondeflt_vers_cnt
++] = h
;
3768 if (dynsym
&& h
->dynindx
== -1)
3770 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
3771 goto error_free_vers
;
3772 if (h
->weakdef
!= NULL
3774 && h
->weakdef
->dynindx
== -1)
3776 if (! bfd_elf_link_record_dynamic_symbol (info
, h
->weakdef
))
3777 goto error_free_vers
;
3780 else if (dynsym
&& h
->dynindx
!= -1)
3781 /* If the symbol already has a dynamic index, but
3782 visibility says it should not be visible, turn it into
3784 switch (ELF_ST_VISIBILITY (h
->other
))
3788 (*bed
->elf_backend_hide_symbol
) (info
, h
, TRUE
);
3796 && (h
->elf_link_hash_flags
3797 & ELF_LINK_HASH_REF_REGULAR
) != 0)
3800 const char *soname
= elf_dt_name (abfd
);
3802 /* A symbol from a library loaded via DT_NEEDED of some
3803 other library is referenced by a regular object.
3804 Add a DT_NEEDED entry for it. */
3806 ret
= elf_add_dt_needed_tag (info
, soname
, add_needed
);
3808 goto error_free_vers
;
3810 BFD_ASSERT (ret
== 0);
3815 /* Now that all the symbols from this input file are created, handle
3816 .symver foo, foo@BAR such that any relocs against foo become foo@BAR. */
3817 if (nondeflt_vers
!= NULL
)
3819 bfd_size_type cnt
, symidx
;
3821 for (cnt
= 0; cnt
< nondeflt_vers_cnt
; ++cnt
)
3823 struct elf_link_hash_entry
*h
= nondeflt_vers
[cnt
], *hi
;
3824 char *shortname
, *p
;
3826 p
= strchr (h
->root
.root
.string
, ELF_VER_CHR
);
3828 || (h
->root
.type
!= bfd_link_hash_defined
3829 && h
->root
.type
!= bfd_link_hash_defweak
))
3832 amt
= p
- h
->root
.root
.string
;
3833 shortname
= bfd_malloc (amt
+ 1);
3834 memcpy (shortname
, h
->root
.root
.string
, amt
);
3835 shortname
[amt
] = '\0';
3837 hi
= (struct elf_link_hash_entry
*)
3838 bfd_link_hash_lookup (&hash_table
->root
, shortname
,
3839 FALSE
, FALSE
, FALSE
);
3841 && hi
->root
.type
== h
->root
.type
3842 && hi
->root
.u
.def
.value
== h
->root
.u
.def
.value
3843 && hi
->root
.u
.def
.section
== h
->root
.u
.def
.section
)
3845 (*bed
->elf_backend_hide_symbol
) (info
, hi
, TRUE
);
3846 hi
->root
.type
= bfd_link_hash_indirect
;
3847 hi
->root
.u
.i
.link
= (struct bfd_link_hash_entry
*) h
;
3848 (*bed
->elf_backend_copy_indirect_symbol
) (bed
, h
, hi
);
3849 sym_hash
= elf_sym_hashes (abfd
);
3851 for (symidx
= 0; symidx
< extsymcount
; ++symidx
)
3852 if (sym_hash
[symidx
] == hi
)
3854 sym_hash
[symidx
] = h
;
3860 free (nondeflt_vers
);
3861 nondeflt_vers
= NULL
;
3864 if (extversym
!= NULL
)
3870 if (isymbuf
!= NULL
)
3874 /* Now set the weakdefs field correctly for all the weak defined
3875 symbols we found. The only way to do this is to search all the
3876 symbols. Since we only need the information for non functions in
3877 dynamic objects, that's the only time we actually put anything on
3878 the list WEAKS. We need this information so that if a regular
3879 object refers to a symbol defined weakly in a dynamic object, the
3880 real symbol in the dynamic object is also put in the dynamic
3881 symbols; we also must arrange for both symbols to point to the
3882 same memory location. We could handle the general case of symbol
3883 aliasing, but a general symbol alias can only be generated in
3884 assembler code, handling it correctly would be very time
3885 consuming, and other ELF linkers don't handle general aliasing
3889 struct elf_link_hash_entry
**hpp
;
3890 struct elf_link_hash_entry
**hppend
;
3891 struct elf_link_hash_entry
**sorted_sym_hash
;
3892 struct elf_link_hash_entry
*h
;
3895 /* Since we have to search the whole symbol list for each weak
3896 defined symbol, search time for N weak defined symbols will be
3897 O(N^2). Binary search will cut it down to O(NlogN). */
3898 amt
= extsymcount
* sizeof (struct elf_link_hash_entry
*);
3899 sorted_sym_hash
= bfd_malloc (amt
);
3900 if (sorted_sym_hash
== NULL
)
3902 sym_hash
= sorted_sym_hash
;
3903 hpp
= elf_sym_hashes (abfd
);
3904 hppend
= hpp
+ extsymcount
;
3906 for (; hpp
< hppend
; hpp
++)
3910 && h
->root
.type
== bfd_link_hash_defined
3911 && h
->type
!= STT_FUNC
)
3919 qsort (sorted_sym_hash
, sym_count
,
3920 sizeof (struct elf_link_hash_entry
*),
3923 while (weaks
!= NULL
)
3925 struct elf_link_hash_entry
*hlook
;
3932 weaks
= hlook
->weakdef
;
3933 hlook
->weakdef
= NULL
;
3935 BFD_ASSERT (hlook
->root
.type
== bfd_link_hash_defined
3936 || hlook
->root
.type
== bfd_link_hash_defweak
3937 || hlook
->root
.type
== bfd_link_hash_common
3938 || hlook
->root
.type
== bfd_link_hash_indirect
);
3939 slook
= hlook
->root
.u
.def
.section
;
3940 vlook
= hlook
->root
.u
.def
.value
;
3947 bfd_signed_vma vdiff
;
3949 h
= sorted_sym_hash
[idx
];
3950 vdiff
= vlook
- h
->root
.u
.def
.value
;
3957 long sdiff
= slook
- h
->root
.u
.def
.section
;
3970 /* We didn't find a value/section match. */
3974 for (i
= ilook
; i
< sym_count
; i
++)
3976 h
= sorted_sym_hash
[i
];
3978 /* Stop if value or section doesn't match. */
3979 if (h
->root
.u
.def
.value
!= vlook
3980 || h
->root
.u
.def
.section
!= slook
)
3982 else if (h
!= hlook
)
3986 /* If the weak definition is in the list of dynamic
3987 symbols, make sure the real definition is put
3989 if (hlook
->dynindx
!= -1 && h
->dynindx
== -1)
3991 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
3995 /* If the real definition is in the list of dynamic
3996 symbols, make sure the weak definition is put
3997 there as well. If we don't do this, then the
3998 dynamic loader might not merge the entries for the
3999 real definition and the weak definition. */
4000 if (h
->dynindx
!= -1 && hlook
->dynindx
== -1)
4002 if (! bfd_elf_link_record_dynamic_symbol (info
, hlook
))
4010 free (sorted_sym_hash
);
4013 /* If this object is the same format as the output object, and it is
4014 not a shared library, then let the backend look through the
4017 This is required to build global offset table entries and to
4018 arrange for dynamic relocs. It is not required for the
4019 particular common case of linking non PIC code, even when linking
4020 against shared libraries, but unfortunately there is no way of
4021 knowing whether an object file has been compiled PIC or not.
4022 Looking through the relocs is not particularly time consuming.
4023 The problem is that we must either (1) keep the relocs in memory,
4024 which causes the linker to require additional runtime memory or
4025 (2) read the relocs twice from the input file, which wastes time.
4026 This would be a good case for using mmap.
4028 I have no idea how to handle linking PIC code into a file of a
4029 different format. It probably can't be done. */
4030 check_relocs
= get_elf_backend_data (abfd
)->check_relocs
;
4032 && is_elf_hash_table (hash_table
)
4033 && hash_table
->root
.creator
== abfd
->xvec
4034 && check_relocs
!= NULL
)
4038 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
4040 Elf_Internal_Rela
*internal_relocs
;
4043 if ((o
->flags
& SEC_RELOC
) == 0
4044 || o
->reloc_count
== 0
4045 || ((info
->strip
== strip_all
|| info
->strip
== strip_debugger
)
4046 && (o
->flags
& SEC_DEBUGGING
) != 0)
4047 || bfd_is_abs_section (o
->output_section
))
4050 internal_relocs
= _bfd_elf_link_read_relocs (abfd
, o
, NULL
, NULL
,
4052 if (internal_relocs
== NULL
)
4055 ok
= (*check_relocs
) (abfd
, info
, o
, internal_relocs
);
4057 if (elf_section_data (o
)->relocs
!= internal_relocs
)
4058 free (internal_relocs
);
4065 /* If this is a non-traditional link, try to optimize the handling
4066 of the .stab/.stabstr sections. */
4068 && ! info
->traditional_format
4069 && is_elf_hash_table (hash_table
)
4070 && (info
->strip
!= strip_all
&& info
->strip
!= strip_debugger
))
4074 stabstr
= bfd_get_section_by_name (abfd
, ".stabstr");
4075 if (stabstr
!= NULL
)
4077 bfd_size_type string_offset
= 0;
4080 for (stab
= abfd
->sections
; stab
; stab
= stab
->next
)
4081 if (strncmp (".stab", stab
->name
, 5) == 0
4082 && (!stab
->name
[5] ||
4083 (stab
->name
[5] == '.' && ISDIGIT (stab
->name
[6])))
4084 && (stab
->flags
& SEC_MERGE
) == 0
4085 && !bfd_is_abs_section (stab
->output_section
))
4087 struct bfd_elf_section_data
*secdata
;
4089 secdata
= elf_section_data (stab
);
4090 if (! _bfd_link_section_stabs (abfd
,
4091 & hash_table
->stab_info
,
4096 if (secdata
->sec_info
)
4097 stab
->sec_info_type
= ELF_INFO_TYPE_STABS
;
4102 if (! info
->relocatable
4104 && is_elf_hash_table (hash_table
))
4108 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
4109 if ((s
->flags
& SEC_MERGE
) != 0
4110 && !bfd_is_abs_section (s
->output_section
))
4112 struct bfd_elf_section_data
*secdata
;
4114 secdata
= elf_section_data (s
);
4115 if (! _bfd_merge_section (abfd
,
4116 & hash_table
->merge_info
,
4117 s
, &secdata
->sec_info
))
4119 else if (secdata
->sec_info
)
4120 s
->sec_info_type
= ELF_INFO_TYPE_MERGE
;
4124 if (is_elf_hash_table (hash_table
))
4126 /* Add this bfd to the loaded list. */
4127 struct elf_link_loaded_list
*n
;
4129 n
= bfd_alloc (abfd
, sizeof (struct elf_link_loaded_list
));
4133 n
->next
= hash_table
->loaded
;
4134 hash_table
->loaded
= n
;
4140 if (nondeflt_vers
!= NULL
)
4141 free (nondeflt_vers
);
4142 if (extversym
!= NULL
)
4145 if (isymbuf
!= NULL
)
4151 /* Add symbols from an ELF archive file to the linker hash table. We
4152 don't use _bfd_generic_link_add_archive_symbols because of a
4153 problem which arises on UnixWare. The UnixWare libc.so is an
4154 archive which includes an entry libc.so.1 which defines a bunch of
4155 symbols. The libc.so archive also includes a number of other
4156 object files, which also define symbols, some of which are the same
4157 as those defined in libc.so.1. Correct linking requires that we
4158 consider each object file in turn, and include it if it defines any
4159 symbols we need. _bfd_generic_link_add_archive_symbols does not do
4160 this; it looks through the list of undefined symbols, and includes
4161 any object file which defines them. When this algorithm is used on
4162 UnixWare, it winds up pulling in libc.so.1 early and defining a
4163 bunch of symbols. This means that some of the other objects in the
4164 archive are not included in the link, which is incorrect since they
4165 precede libc.so.1 in the archive.
4167 Fortunately, ELF archive handling is simpler than that done by
4168 _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4169 oddities. In ELF, if we find a symbol in the archive map, and the
4170 symbol is currently undefined, we know that we must pull in that
4173 Unfortunately, we do have to make multiple passes over the symbol
4174 table until nothing further is resolved. */
4177 elf_link_add_archive_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
4180 bfd_boolean
*defined
= NULL
;
4181 bfd_boolean
*included
= NULL
;
4186 if (! bfd_has_map (abfd
))
4188 /* An empty archive is a special case. */
4189 if (bfd_openr_next_archived_file (abfd
, NULL
) == NULL
)
4191 bfd_set_error (bfd_error_no_armap
);
4195 /* Keep track of all symbols we know to be already defined, and all
4196 files we know to be already included. This is to speed up the
4197 second and subsequent passes. */
4198 c
= bfd_ardata (abfd
)->symdef_count
;
4202 amt
*= sizeof (bfd_boolean
);
4203 defined
= bfd_zmalloc (amt
);
4204 included
= bfd_zmalloc (amt
);
4205 if (defined
== NULL
|| included
== NULL
)
4208 symdefs
= bfd_ardata (abfd
)->symdefs
;
4221 symdefend
= symdef
+ c
;
4222 for (i
= 0; symdef
< symdefend
; symdef
++, i
++)
4224 struct elf_link_hash_entry
*h
;
4226 struct bfd_link_hash_entry
*undefs_tail
;
4229 if (defined
[i
] || included
[i
])
4231 if (symdef
->file_offset
== last
)
4237 h
= elf_link_hash_lookup (elf_hash_table (info
), symdef
->name
,
4238 FALSE
, FALSE
, FALSE
);
4245 /* If this is a default version (the name contains @@),
4246 look up the symbol again with only one `@' as well
4247 as without the version. The effect is that references
4248 to the symbol with and without the version will be
4249 matched by the default symbol in the archive. */
4251 p
= strchr (symdef
->name
, ELF_VER_CHR
);
4252 if (p
== NULL
|| p
[1] != ELF_VER_CHR
)
4255 /* First check with only one `@'. */
4256 len
= strlen (symdef
->name
);
4257 copy
= bfd_alloc (abfd
, len
);
4260 first
= p
- symdef
->name
+ 1;
4261 memcpy (copy
, symdef
->name
, first
);
4262 memcpy (copy
+ first
, symdef
->name
+ first
+ 1, len
- first
);
4264 h
= elf_link_hash_lookup (elf_hash_table (info
), copy
,
4265 FALSE
, FALSE
, FALSE
);
4269 /* We also need to check references to the symbol
4270 without the version. */
4272 copy
[first
- 1] = '\0';
4273 h
= elf_link_hash_lookup (elf_hash_table (info
),
4274 copy
, FALSE
, FALSE
, FALSE
);
4277 bfd_release (abfd
, copy
);
4283 if (h
->root
.type
== bfd_link_hash_common
)
4285 /* We currently have a common symbol. The archive map contains
4286 a reference to this symbol, so we may want to include it. We
4287 only want to include it however, if this archive element
4288 contains a definition of the symbol, not just another common
4291 Unfortunately some archivers (including GNU ar) will put
4292 declarations of common symbols into their archive maps, as
4293 well as real definitions, so we cannot just go by the archive
4294 map alone. Instead we must read in the element's symbol
4295 table and check that to see what kind of symbol definition
4297 if (! elf_link_is_defined_archive_symbol (abfd
, symdef
))
4300 else if (h
->root
.type
!= bfd_link_hash_undefined
)
4302 if (h
->root
.type
!= bfd_link_hash_undefweak
)
4307 /* We need to include this archive member. */
4308 element
= _bfd_get_elt_at_filepos (abfd
, symdef
->file_offset
);
4309 if (element
== NULL
)
4312 if (! bfd_check_format (element
, bfd_object
))
4315 /* Doublecheck that we have not included this object
4316 already--it should be impossible, but there may be
4317 something wrong with the archive. */
4318 if (element
->archive_pass
!= 0)
4320 bfd_set_error (bfd_error_bad_value
);
4323 element
->archive_pass
= 1;
4325 undefs_tail
= info
->hash
->undefs_tail
;
4327 if (! (*info
->callbacks
->add_archive_element
) (info
, element
,
4330 if (! bfd_link_add_symbols (element
, info
))
4333 /* If there are any new undefined symbols, we need to make
4334 another pass through the archive in order to see whether
4335 they can be defined. FIXME: This isn't perfect, because
4336 common symbols wind up on undefs_tail and because an
4337 undefined symbol which is defined later on in this pass
4338 does not require another pass. This isn't a bug, but it
4339 does make the code less efficient than it could be. */
4340 if (undefs_tail
!= info
->hash
->undefs_tail
)
4343 /* Look backward to mark all symbols from this object file
4344 which we have already seen in this pass. */
4348 included
[mark
] = TRUE
;
4353 while (symdefs
[mark
].file_offset
== symdef
->file_offset
);
4355 /* We mark subsequent symbols from this object file as we go
4356 on through the loop. */
4357 last
= symdef
->file_offset
;
4368 if (defined
!= NULL
)
4370 if (included
!= NULL
)
4375 /* Given an ELF BFD, add symbols to the global hash table as
4379 bfd_elf_link_add_symbols (bfd
*abfd
, struct bfd_link_info
*info
)
4381 switch (bfd_get_format (abfd
))
4384 return elf_link_add_object_symbols (abfd
, info
);
4386 return elf_link_add_archive_symbols (abfd
, info
);
4388 bfd_set_error (bfd_error_wrong_format
);
4393 /* This function will be called though elf_link_hash_traverse to store
4394 all hash value of the exported symbols in an array. */
4397 elf_collect_hash_codes (struct elf_link_hash_entry
*h
, void *data
)
4399 unsigned long **valuep
= data
;
4405 if (h
->root
.type
== bfd_link_hash_warning
)
4406 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
4408 /* Ignore indirect symbols. These are added by the versioning code. */
4409 if (h
->dynindx
== -1)
4412 name
= h
->root
.root
.string
;
4413 p
= strchr (name
, ELF_VER_CHR
);
4416 alc
= bfd_malloc (p
- name
+ 1);
4417 memcpy (alc
, name
, p
- name
);
4418 alc
[p
- name
] = '\0';
4422 /* Compute the hash value. */
4423 ha
= bfd_elf_hash (name
);
4425 /* Store the found hash value in the array given as the argument. */
4428 /* And store it in the struct so that we can put it in the hash table
4430 h
->elf_hash_value
= ha
;
4438 /* Array used to determine the number of hash table buckets to use
4439 based on the number of symbols there are. If there are fewer than
4440 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
4441 fewer than 37 we use 17 buckets, and so forth. We never use more
4442 than 32771 buckets. */
4444 static const size_t elf_buckets
[] =
4446 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
4450 /* Compute bucket count for hashing table. We do not use a static set
4451 of possible tables sizes anymore. Instead we determine for all
4452 possible reasonable sizes of the table the outcome (i.e., the
4453 number of collisions etc) and choose the best solution. The
4454 weighting functions are not too simple to allow the table to grow
4455 without bounds. Instead one of the weighting factors is the size.
4456 Therefore the result is always a good payoff between few collisions
4457 (= short chain lengths) and table size. */
4459 compute_bucket_count (struct bfd_link_info
*info
)
4461 size_t dynsymcount
= elf_hash_table (info
)->dynsymcount
;
4462 size_t best_size
= 0;
4463 unsigned long int *hashcodes
;
4464 unsigned long int *hashcodesp
;
4465 unsigned long int i
;
4468 /* Compute the hash values for all exported symbols. At the same
4469 time store the values in an array so that we could use them for
4472 amt
*= sizeof (unsigned long int);
4473 hashcodes
= bfd_malloc (amt
);
4474 if (hashcodes
== NULL
)
4476 hashcodesp
= hashcodes
;
4478 /* Put all hash values in HASHCODES. */
4479 elf_link_hash_traverse (elf_hash_table (info
),
4480 elf_collect_hash_codes
, &hashcodesp
);
4482 /* We have a problem here. The following code to optimize the table
4483 size requires an integer type with more the 32 bits. If
4484 BFD_HOST_U_64_BIT is set we know about such a type. */
4485 #ifdef BFD_HOST_U_64_BIT
4488 unsigned long int nsyms
= hashcodesp
- hashcodes
;
4491 BFD_HOST_U_64_BIT best_chlen
= ~((BFD_HOST_U_64_BIT
) 0);
4492 unsigned long int *counts
;
4493 bfd
*dynobj
= elf_hash_table (info
)->dynobj
;
4494 const struct elf_backend_data
*bed
= get_elf_backend_data (dynobj
);
4496 /* Possible optimization parameters: if we have NSYMS symbols we say
4497 that the hashing table must at least have NSYMS/4 and at most
4499 minsize
= nsyms
/ 4;
4502 best_size
= maxsize
= nsyms
* 2;
4504 /* Create array where we count the collisions in. We must use bfd_malloc
4505 since the size could be large. */
4507 amt
*= sizeof (unsigned long int);
4508 counts
= bfd_malloc (amt
);
4515 /* Compute the "optimal" size for the hash table. The criteria is a
4516 minimal chain length. The minor criteria is (of course) the size
4518 for (i
= minsize
; i
< maxsize
; ++i
)
4520 /* Walk through the array of hashcodes and count the collisions. */
4521 BFD_HOST_U_64_BIT max
;
4522 unsigned long int j
;
4523 unsigned long int fact
;
4525 memset (counts
, '\0', i
* sizeof (unsigned long int));
4527 /* Determine how often each hash bucket is used. */
4528 for (j
= 0; j
< nsyms
; ++j
)
4529 ++counts
[hashcodes
[j
] % i
];
4531 /* For the weight function we need some information about the
4532 pagesize on the target. This is information need not be 100%
4533 accurate. Since this information is not available (so far) we
4534 define it here to a reasonable default value. If it is crucial
4535 to have a better value some day simply define this value. */
4536 # ifndef BFD_TARGET_PAGESIZE
4537 # define BFD_TARGET_PAGESIZE (4096)
4540 /* We in any case need 2 + NSYMS entries for the size values and
4542 max
= (2 + nsyms
) * (bed
->s
->arch_size
/ 8);
4545 /* Variant 1: optimize for short chains. We add the squares
4546 of all the chain lengths (which favors many small chain
4547 over a few long chains). */
4548 for (j
= 0; j
< i
; ++j
)
4549 max
+= counts
[j
] * counts
[j
];
4551 /* This adds penalties for the overall size of the table. */
4552 fact
= i
/ (BFD_TARGET_PAGESIZE
/ (bed
->s
->arch_size
/ 8)) + 1;
4555 /* Variant 2: Optimize a lot more for small table. Here we
4556 also add squares of the size but we also add penalties for
4557 empty slots (the +1 term). */
4558 for (j
= 0; j
< i
; ++j
)
4559 max
+= (1 + counts
[j
]) * (1 + counts
[j
]);
4561 /* The overall size of the table is considered, but not as
4562 strong as in variant 1, where it is squared. */
4563 fact
= i
/ (BFD_TARGET_PAGESIZE
/ (bed
->s
->arch_size
/ 8)) + 1;
4567 /* Compare with current best results. */
4568 if (max
< best_chlen
)
4578 #endif /* defined (BFD_HOST_U_64_BIT) */
4580 /* This is the fallback solution if no 64bit type is available or if we
4581 are not supposed to spend much time on optimizations. We select the
4582 bucket count using a fixed set of numbers. */
4583 for (i
= 0; elf_buckets
[i
] != 0; i
++)
4585 best_size
= elf_buckets
[i
];
4586 if (dynsymcount
< elf_buckets
[i
+ 1])
4591 /* Free the arrays we needed. */
4597 /* Set up the sizes and contents of the ELF dynamic sections. This is
4598 called by the ELF linker emulation before_allocation routine. We
4599 must set the sizes of the sections before the linker sets the
4600 addresses of the various sections. */
4603 bfd_elf_size_dynamic_sections (bfd
*output_bfd
,
4606 const char *filter_shlib
,
4607 const char * const *auxiliary_filters
,
4608 struct bfd_link_info
*info
,
4609 asection
**sinterpptr
,
4610 struct bfd_elf_version_tree
*verdefs
)
4612 bfd_size_type soname_indx
;
4614 const struct elf_backend_data
*bed
;
4615 struct elf_assign_sym_version_info asvinfo
;
4619 soname_indx
= (bfd_size_type
) -1;
4621 if (!is_elf_hash_table (info
->hash
))
4624 if (info
->execstack
)
4625 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
| PF_X
;
4626 else if (info
->noexecstack
)
4627 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
;
4631 asection
*notesec
= NULL
;
4634 for (inputobj
= info
->input_bfds
;
4636 inputobj
= inputobj
->link_next
)
4640 if (inputobj
->flags
& DYNAMIC
)
4642 s
= bfd_get_section_by_name (inputobj
, ".note.GNU-stack");
4645 if (s
->flags
& SEC_CODE
)
4654 elf_tdata (output_bfd
)->stack_flags
= PF_R
| PF_W
| exec
;
4655 if (exec
&& info
->relocatable
4656 && notesec
->output_section
!= bfd_abs_section_ptr
)
4657 notesec
->output_section
->flags
|= SEC_CODE
;
4661 /* Any syms created from now on start with -1 in
4662 got.refcount/offset and plt.refcount/offset. */
4663 elf_hash_table (info
)->init_refcount
= elf_hash_table (info
)->init_offset
;
4665 /* The backend may have to create some sections regardless of whether
4666 we're dynamic or not. */
4667 bed
= get_elf_backend_data (output_bfd
);
4668 if (bed
->elf_backend_always_size_sections
4669 && ! (*bed
->elf_backend_always_size_sections
) (output_bfd
, info
))
4672 dynobj
= elf_hash_table (info
)->dynobj
;
4674 /* If there were no dynamic objects in the link, there is nothing to
4679 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info
))
4682 if (elf_hash_table (info
)->dynamic_sections_created
)
4684 struct elf_info_failed eif
;
4685 struct elf_link_hash_entry
*h
;
4687 struct bfd_elf_version_tree
*t
;
4688 struct bfd_elf_version_expr
*d
;
4689 bfd_boolean all_defined
;
4691 *sinterpptr
= bfd_get_section_by_name (dynobj
, ".interp");
4692 BFD_ASSERT (*sinterpptr
!= NULL
|| !info
->executable
);
4696 soname_indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
4698 if (soname_indx
== (bfd_size_type
) -1
4699 || !_bfd_elf_add_dynamic_entry (info
, DT_SONAME
, soname_indx
))
4705 if (!_bfd_elf_add_dynamic_entry (info
, DT_SYMBOLIC
, 0))
4707 info
->flags
|= DF_SYMBOLIC
;
4714 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
, rpath
,
4716 if (indx
== (bfd_size_type
) -1
4717 || !_bfd_elf_add_dynamic_entry (info
, DT_RPATH
, indx
))
4720 if (info
->new_dtags
)
4722 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
, indx
);
4723 if (!_bfd_elf_add_dynamic_entry (info
, DT_RUNPATH
, indx
))
4728 if (filter_shlib
!= NULL
)
4732 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
4733 filter_shlib
, TRUE
);
4734 if (indx
== (bfd_size_type
) -1
4735 || !_bfd_elf_add_dynamic_entry (info
, DT_FILTER
, indx
))
4739 if (auxiliary_filters
!= NULL
)
4741 const char * const *p
;
4743 for (p
= auxiliary_filters
; *p
!= NULL
; p
++)
4747 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
4749 if (indx
== (bfd_size_type
) -1
4750 || !_bfd_elf_add_dynamic_entry (info
, DT_AUXILIARY
, indx
))
4756 eif
.verdefs
= verdefs
;
4759 /* If we are supposed to export all symbols into the dynamic symbol
4760 table (this is not the normal case), then do so. */
4761 if (info
->export_dynamic
)
4763 elf_link_hash_traverse (elf_hash_table (info
),
4764 _bfd_elf_export_symbol
,
4770 /* Make all global versions with definition. */
4771 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
4772 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
4773 if (!d
->symver
&& d
->symbol
)
4775 const char *verstr
, *name
;
4776 size_t namelen
, verlen
, newlen
;
4778 struct elf_link_hash_entry
*newh
;
4781 namelen
= strlen (name
);
4783 verlen
= strlen (verstr
);
4784 newlen
= namelen
+ verlen
+ 3;
4786 newname
= bfd_malloc (newlen
);
4787 if (newname
== NULL
)
4789 memcpy (newname
, name
, namelen
);
4791 /* Check the hidden versioned definition. */
4792 p
= newname
+ namelen
;
4794 memcpy (p
, verstr
, verlen
+ 1);
4795 newh
= elf_link_hash_lookup (elf_hash_table (info
),
4796 newname
, FALSE
, FALSE
,
4799 || (newh
->root
.type
!= bfd_link_hash_defined
4800 && newh
->root
.type
!= bfd_link_hash_defweak
))
4802 /* Check the default versioned definition. */
4804 memcpy (p
, verstr
, verlen
+ 1);
4805 newh
= elf_link_hash_lookup (elf_hash_table (info
),
4806 newname
, FALSE
, FALSE
,
4811 /* Mark this version if there is a definition and it is
4812 not defined in a shared object. */
4814 && ((newh
->elf_link_hash_flags
4815 & ELF_LINK_HASH_DEF_DYNAMIC
) == 0)
4816 && (newh
->root
.type
== bfd_link_hash_defined
4817 || newh
->root
.type
== bfd_link_hash_defweak
))
4821 /* Attach all the symbols to their version information. */
4822 asvinfo
.output_bfd
= output_bfd
;
4823 asvinfo
.info
= info
;
4824 asvinfo
.verdefs
= verdefs
;
4825 asvinfo
.failed
= FALSE
;
4827 elf_link_hash_traverse (elf_hash_table (info
),
4828 _bfd_elf_link_assign_sym_version
,
4833 if (!info
->allow_undefined_version
)
4835 /* Check if all global versions have a definition. */
4837 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
4838 for (d
= t
->globals
.list
; d
!= NULL
; d
= d
->next
)
4839 if (!d
->symver
&& !d
->script
)
4841 (*_bfd_error_handler
)
4842 (_("%s: undefined version: %s"),
4843 d
->pattern
, t
->name
);
4844 all_defined
= FALSE
;
4849 bfd_set_error (bfd_error_bad_value
);
4854 /* Find all symbols which were defined in a dynamic object and make
4855 the backend pick a reasonable value for them. */
4856 elf_link_hash_traverse (elf_hash_table (info
),
4857 _bfd_elf_adjust_dynamic_symbol
,
4862 /* Add some entries to the .dynamic section. We fill in some of the
4863 values later, in elf_bfd_final_link, but we must add the entries
4864 now so that we know the final size of the .dynamic section. */
4866 /* If there are initialization and/or finalization functions to
4867 call then add the corresponding DT_INIT/DT_FINI entries. */
4868 h
= (info
->init_function
4869 ? elf_link_hash_lookup (elf_hash_table (info
),
4870 info
->init_function
, FALSE
,
4874 && (h
->elf_link_hash_flags
& (ELF_LINK_HASH_REF_REGULAR
4875 | ELF_LINK_HASH_DEF_REGULAR
)) != 0)
4877 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT
, 0))
4880 h
= (info
->fini_function
4881 ? elf_link_hash_lookup (elf_hash_table (info
),
4882 info
->fini_function
, FALSE
,
4886 && (h
->elf_link_hash_flags
& (ELF_LINK_HASH_REF_REGULAR
4887 | ELF_LINK_HASH_DEF_REGULAR
)) != 0)
4889 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI
, 0))
4893 if (bfd_get_section_by_name (output_bfd
, ".preinit_array") != NULL
)
4895 /* DT_PREINIT_ARRAY is not allowed in shared library. */
4896 if (! info
->executable
)
4901 for (sub
= info
->input_bfds
; sub
!= NULL
;
4902 sub
= sub
->link_next
)
4903 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
4904 if (elf_section_data (o
)->this_hdr
.sh_type
4905 == SHT_PREINIT_ARRAY
)
4907 (*_bfd_error_handler
)
4908 (_("%s: .preinit_array section is not allowed in DSO"),
4909 bfd_archive_filename (sub
));
4913 bfd_set_error (bfd_error_nonrepresentable_section
);
4917 if (!_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAY
, 0)
4918 || !_bfd_elf_add_dynamic_entry (info
, DT_PREINIT_ARRAYSZ
, 0))
4921 if (bfd_get_section_by_name (output_bfd
, ".init_array") != NULL
)
4923 if (!_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAY
, 0)
4924 || !_bfd_elf_add_dynamic_entry (info
, DT_INIT_ARRAYSZ
, 0))
4927 if (bfd_get_section_by_name (output_bfd
, ".fini_array") != NULL
)
4929 if (!_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAY
, 0)
4930 || !_bfd_elf_add_dynamic_entry (info
, DT_FINI_ARRAYSZ
, 0))
4934 dynstr
= bfd_get_section_by_name (dynobj
, ".dynstr");
4935 /* If .dynstr is excluded from the link, we don't want any of
4936 these tags. Strictly, we should be checking each section
4937 individually; This quick check covers for the case where
4938 someone does a /DISCARD/ : { *(*) }. */
4939 if (dynstr
!= NULL
&& dynstr
->output_section
!= bfd_abs_section_ptr
)
4941 bfd_size_type strsize
;
4943 strsize
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
4944 if (!_bfd_elf_add_dynamic_entry (info
, DT_HASH
, 0)
4945 || !_bfd_elf_add_dynamic_entry (info
, DT_STRTAB
, 0)
4946 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMTAB
, 0)
4947 || !_bfd_elf_add_dynamic_entry (info
, DT_STRSZ
, strsize
)
4948 || !_bfd_elf_add_dynamic_entry (info
, DT_SYMENT
,
4949 bed
->s
->sizeof_sym
))
4954 /* The backend must work out the sizes of all the other dynamic
4956 if (bed
->elf_backend_size_dynamic_sections
4957 && ! (*bed
->elf_backend_size_dynamic_sections
) (output_bfd
, info
))
4960 if (elf_hash_table (info
)->dynamic_sections_created
)
4962 bfd_size_type dynsymcount
;
4964 size_t bucketcount
= 0;
4965 size_t hash_entry_size
;
4966 unsigned int dtagcount
;
4968 /* Set up the version definition section. */
4969 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_d");
4970 BFD_ASSERT (s
!= NULL
);
4972 /* We may have created additional version definitions if we are
4973 just linking a regular application. */
4974 verdefs
= asvinfo
.verdefs
;
4976 /* Skip anonymous version tag. */
4977 if (verdefs
!= NULL
&& verdefs
->vernum
== 0)
4978 verdefs
= verdefs
->next
;
4980 if (verdefs
== NULL
)
4981 _bfd_strip_section_from_output (info
, s
);
4986 struct bfd_elf_version_tree
*t
;
4988 Elf_Internal_Verdef def
;
4989 Elf_Internal_Verdaux defaux
;
4994 /* Make space for the base version. */
4995 size
+= sizeof (Elf_External_Verdef
);
4996 size
+= sizeof (Elf_External_Verdaux
);
4999 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5001 struct bfd_elf_version_deps
*n
;
5003 size
+= sizeof (Elf_External_Verdef
);
5004 size
+= sizeof (Elf_External_Verdaux
);
5007 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
5008 size
+= sizeof (Elf_External_Verdaux
);
5011 s
->_raw_size
= size
;
5012 s
->contents
= bfd_alloc (output_bfd
, s
->_raw_size
);
5013 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
5016 /* Fill in the version definition section. */
5020 def
.vd_version
= VER_DEF_CURRENT
;
5021 def
.vd_flags
= VER_FLG_BASE
;
5024 def
.vd_aux
= sizeof (Elf_External_Verdef
);
5025 def
.vd_next
= (sizeof (Elf_External_Verdef
)
5026 + sizeof (Elf_External_Verdaux
));
5028 if (soname_indx
!= (bfd_size_type
) -1)
5030 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
5032 def
.vd_hash
= bfd_elf_hash (soname
);
5033 defaux
.vda_name
= soname_indx
;
5040 name
= basename (output_bfd
->filename
);
5041 def
.vd_hash
= bfd_elf_hash (name
);
5042 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5044 if (indx
== (bfd_size_type
) -1)
5046 defaux
.vda_name
= indx
;
5048 defaux
.vda_next
= 0;
5050 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
5051 (Elf_External_Verdef
*) p
);
5052 p
+= sizeof (Elf_External_Verdef
);
5053 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
5054 (Elf_External_Verdaux
*) p
);
5055 p
+= sizeof (Elf_External_Verdaux
);
5057 for (t
= verdefs
; t
!= NULL
; t
= t
->next
)
5060 struct bfd_elf_version_deps
*n
;
5061 struct elf_link_hash_entry
*h
;
5062 struct bfd_link_hash_entry
*bh
;
5065 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
5068 /* Add a symbol representing this version. */
5070 if (! (_bfd_generic_link_add_one_symbol
5071 (info
, dynobj
, t
->name
, BSF_GLOBAL
, bfd_abs_section_ptr
,
5073 get_elf_backend_data (dynobj
)->collect
, &bh
)))
5075 h
= (struct elf_link_hash_entry
*) bh
;
5076 h
->elf_link_hash_flags
&= ~ ELF_LINK_NON_ELF
;
5077 h
->elf_link_hash_flags
|= ELF_LINK_HASH_DEF_REGULAR
;
5078 h
->type
= STT_OBJECT
;
5079 h
->verinfo
.vertree
= t
;
5081 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
5084 def
.vd_version
= VER_DEF_CURRENT
;
5086 if (t
->globals
.list
== NULL
5087 && t
->locals
.list
== NULL
5089 def
.vd_flags
|= VER_FLG_WEAK
;
5090 def
.vd_ndx
= t
->vernum
+ 1;
5091 def
.vd_cnt
= cdeps
+ 1;
5092 def
.vd_hash
= bfd_elf_hash (t
->name
);
5093 def
.vd_aux
= sizeof (Elf_External_Verdef
);
5095 if (t
->next
!= NULL
)
5096 def
.vd_next
= (sizeof (Elf_External_Verdef
)
5097 + (cdeps
+ 1) * sizeof (Elf_External_Verdaux
));
5099 _bfd_elf_swap_verdef_out (output_bfd
, &def
,
5100 (Elf_External_Verdef
*) p
);
5101 p
+= sizeof (Elf_External_Verdef
);
5103 defaux
.vda_name
= h
->dynstr_index
;
5104 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
5106 defaux
.vda_next
= 0;
5107 if (t
->deps
!= NULL
)
5108 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
5109 t
->name_indx
= defaux
.vda_name
;
5111 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
5112 (Elf_External_Verdaux
*) p
);
5113 p
+= sizeof (Elf_External_Verdaux
);
5115 for (n
= t
->deps
; n
!= NULL
; n
= n
->next
)
5117 if (n
->version_needed
== NULL
)
5119 /* This can happen if there was an error in the
5121 defaux
.vda_name
= 0;
5125 defaux
.vda_name
= n
->version_needed
->name_indx
;
5126 _bfd_elf_strtab_addref (elf_hash_table (info
)->dynstr
,
5129 if (n
->next
== NULL
)
5130 defaux
.vda_next
= 0;
5132 defaux
.vda_next
= sizeof (Elf_External_Verdaux
);
5134 _bfd_elf_swap_verdaux_out (output_bfd
, &defaux
,
5135 (Elf_External_Verdaux
*) p
);
5136 p
+= sizeof (Elf_External_Verdaux
);
5140 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERDEF
, 0)
5141 || !_bfd_elf_add_dynamic_entry (info
, DT_VERDEFNUM
, cdefs
))
5144 elf_tdata (output_bfd
)->cverdefs
= cdefs
;
5147 if ((info
->new_dtags
&& info
->flags
) || (info
->flags
& DF_STATIC_TLS
))
5149 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS
, info
->flags
))
5152 else if (info
->flags
& DF_BIND_NOW
)
5154 if (!_bfd_elf_add_dynamic_entry (info
, DT_BIND_NOW
, 0))
5160 if (info
->executable
)
5161 info
->flags_1
&= ~ (DF_1_INITFIRST
5164 if (!_bfd_elf_add_dynamic_entry (info
, DT_FLAGS_1
, info
->flags_1
))
5168 /* Work out the size of the version reference section. */
5170 s
= bfd_get_section_by_name (dynobj
, ".gnu.version_r");
5171 BFD_ASSERT (s
!= NULL
);
5173 struct elf_find_verdep_info sinfo
;
5175 sinfo
.output_bfd
= output_bfd
;
5177 sinfo
.vers
= elf_tdata (output_bfd
)->cverdefs
;
5178 if (sinfo
.vers
== 0)
5180 sinfo
.failed
= FALSE
;
5182 elf_link_hash_traverse (elf_hash_table (info
),
5183 _bfd_elf_link_find_version_dependencies
,
5186 if (elf_tdata (output_bfd
)->verref
== NULL
)
5187 _bfd_strip_section_from_output (info
, s
);
5190 Elf_Internal_Verneed
*t
;
5195 /* Build the version definition section. */
5198 for (t
= elf_tdata (output_bfd
)->verref
;
5202 Elf_Internal_Vernaux
*a
;
5204 size
+= sizeof (Elf_External_Verneed
);
5206 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
5207 size
+= sizeof (Elf_External_Vernaux
);
5210 s
->_raw_size
= size
;
5211 s
->contents
= bfd_alloc (output_bfd
, s
->_raw_size
);
5212 if (s
->contents
== NULL
)
5216 for (t
= elf_tdata (output_bfd
)->verref
;
5221 Elf_Internal_Vernaux
*a
;
5225 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
5228 t
->vn_version
= VER_NEED_CURRENT
;
5230 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5231 elf_dt_name (t
->vn_bfd
) != NULL
5232 ? elf_dt_name (t
->vn_bfd
)
5233 : basename (t
->vn_bfd
->filename
),
5235 if (indx
== (bfd_size_type
) -1)
5238 t
->vn_aux
= sizeof (Elf_External_Verneed
);
5239 if (t
->vn_nextref
== NULL
)
5242 t
->vn_next
= (sizeof (Elf_External_Verneed
)
5243 + caux
* sizeof (Elf_External_Vernaux
));
5245 _bfd_elf_swap_verneed_out (output_bfd
, t
,
5246 (Elf_External_Verneed
*) p
);
5247 p
+= sizeof (Elf_External_Verneed
);
5249 for (a
= t
->vn_auxptr
; a
!= NULL
; a
= a
->vna_nextptr
)
5251 a
->vna_hash
= bfd_elf_hash (a
->vna_nodename
);
5252 indx
= _bfd_elf_strtab_add (elf_hash_table (info
)->dynstr
,
5253 a
->vna_nodename
, FALSE
);
5254 if (indx
== (bfd_size_type
) -1)
5257 if (a
->vna_nextptr
== NULL
)
5260 a
->vna_next
= sizeof (Elf_External_Vernaux
);
5262 _bfd_elf_swap_vernaux_out (output_bfd
, a
,
5263 (Elf_External_Vernaux
*) p
);
5264 p
+= sizeof (Elf_External_Vernaux
);
5268 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERNEED
, 0)
5269 || !_bfd_elf_add_dynamic_entry (info
, DT_VERNEEDNUM
, crefs
))
5272 elf_tdata (output_bfd
)->cverrefs
= crefs
;
5276 /* Assign dynsym indicies. In a shared library we generate a
5277 section symbol for each output section, which come first.
5278 Next come all of the back-end allocated local dynamic syms,
5279 followed by the rest of the global symbols. */
5281 dynsymcount
= _bfd_elf_link_renumber_dynsyms (output_bfd
, info
);
5283 /* Work out the size of the symbol version section. */
5284 s
= bfd_get_section_by_name (dynobj
, ".gnu.version");
5285 BFD_ASSERT (s
!= NULL
);
5286 if (dynsymcount
== 0
5287 || (verdefs
== NULL
&& elf_tdata (output_bfd
)->verref
== NULL
))
5289 _bfd_strip_section_from_output (info
, s
);
5290 /* The DYNSYMCOUNT might have changed if we were going to
5291 output a dynamic symbol table entry for S. */
5292 dynsymcount
= _bfd_elf_link_renumber_dynsyms (output_bfd
, info
);
5296 s
->_raw_size
= dynsymcount
* sizeof (Elf_External_Versym
);
5297 s
->contents
= bfd_zalloc (output_bfd
, s
->_raw_size
);
5298 if (s
->contents
== NULL
)
5301 if (!_bfd_elf_add_dynamic_entry (info
, DT_VERSYM
, 0))
5305 /* Set the size of the .dynsym and .hash sections. We counted
5306 the number of dynamic symbols in elf_link_add_object_symbols.
5307 We will build the contents of .dynsym and .hash when we build
5308 the final symbol table, because until then we do not know the
5309 correct value to give the symbols. We built the .dynstr
5310 section as we went along in elf_link_add_object_symbols. */
5311 s
= bfd_get_section_by_name (dynobj
, ".dynsym");
5312 BFD_ASSERT (s
!= NULL
);
5313 s
->_raw_size
= dynsymcount
* bed
->s
->sizeof_sym
;
5314 s
->contents
= bfd_alloc (output_bfd
, s
->_raw_size
);
5315 if (s
->contents
== NULL
&& s
->_raw_size
!= 0)
5318 if (dynsymcount
!= 0)
5320 Elf_Internal_Sym isym
;
5322 /* The first entry in .dynsym is a dummy symbol. */
5329 bed
->s
->swap_symbol_out (output_bfd
, &isym
, s
->contents
, 0);
5332 /* Compute the size of the hashing table. As a side effect this
5333 computes the hash values for all the names we export. */
5334 bucketcount
= compute_bucket_count (info
);
5336 s
= bfd_get_section_by_name (dynobj
, ".hash");
5337 BFD_ASSERT (s
!= NULL
);
5338 hash_entry_size
= elf_section_data (s
)->this_hdr
.sh_entsize
;
5339 s
->_raw_size
= ((2 + bucketcount
+ dynsymcount
) * hash_entry_size
);
5340 s
->contents
= bfd_zalloc (output_bfd
, s
->_raw_size
);
5341 if (s
->contents
== NULL
)
5344 bfd_put (8 * hash_entry_size
, output_bfd
, bucketcount
, s
->contents
);
5345 bfd_put (8 * hash_entry_size
, output_bfd
, dynsymcount
,
5346 s
->contents
+ hash_entry_size
);
5348 elf_hash_table (info
)->bucketcount
= bucketcount
;
5350 s
= bfd_get_section_by_name (dynobj
, ".dynstr");
5351 BFD_ASSERT (s
!= NULL
);
5353 elf_finalize_dynstr (output_bfd
, info
);
5355 s
->_raw_size
= _bfd_elf_strtab_size (elf_hash_table (info
)->dynstr
);
5357 for (dtagcount
= 0; dtagcount
<= info
->spare_dynamic_tags
; ++dtagcount
)
5358 if (!_bfd_elf_add_dynamic_entry (info
, DT_NULL
, 0))
5365 /* Final phase of ELF linker. */
5367 /* A structure we use to avoid passing large numbers of arguments. */
5369 struct elf_final_link_info
5371 /* General link information. */
5372 struct bfd_link_info
*info
;
5375 /* Symbol string table. */
5376 struct bfd_strtab_hash
*symstrtab
;
5377 /* .dynsym section. */
5378 asection
*dynsym_sec
;
5379 /* .hash section. */
5381 /* symbol version section (.gnu.version). */
5382 asection
*symver_sec
;
5383 /* Buffer large enough to hold contents of any section. */
5385 /* Buffer large enough to hold external relocs of any section. */
5386 void *external_relocs
;
5387 /* Buffer large enough to hold internal relocs of any section. */
5388 Elf_Internal_Rela
*internal_relocs
;
5389 /* Buffer large enough to hold external local symbols of any input
5391 bfd_byte
*external_syms
;
5392 /* And a buffer for symbol section indices. */
5393 Elf_External_Sym_Shndx
*locsym_shndx
;
5394 /* Buffer large enough to hold internal local symbols of any input
5396 Elf_Internal_Sym
*internal_syms
;
5397 /* Array large enough to hold a symbol index for each local symbol
5398 of any input BFD. */
5400 /* Array large enough to hold a section pointer for each local
5401 symbol of any input BFD. */
5402 asection
**sections
;
5403 /* Buffer to hold swapped out symbols. */
5405 /* And one for symbol section indices. */
5406 Elf_External_Sym_Shndx
*symshndxbuf
;
5407 /* Number of swapped out symbols in buffer. */
5408 size_t symbuf_count
;
5409 /* Number of symbols which fit in symbuf. */
5411 /* And same for symshndxbuf. */
5412 size_t shndxbuf_size
;
5415 /* This struct is used to pass information to elf_link_output_extsym. */
5417 struct elf_outext_info
5420 bfd_boolean localsyms
;
5421 struct elf_final_link_info
*finfo
;
5424 /* When performing a relocatable link, the input relocations are
5425 preserved. But, if they reference global symbols, the indices
5426 referenced must be updated. Update all the relocations in
5427 REL_HDR (there are COUNT of them), using the data in REL_HASH. */
5430 elf_link_adjust_relocs (bfd
*abfd
,
5431 Elf_Internal_Shdr
*rel_hdr
,
5433 struct elf_link_hash_entry
**rel_hash
)
5436 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5438 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
5439 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
5440 bfd_vma r_type_mask
;
5443 if (rel_hdr
->sh_entsize
== bed
->s
->sizeof_rel
)
5445 swap_in
= bed
->s
->swap_reloc_in
;
5446 swap_out
= bed
->s
->swap_reloc_out
;
5448 else if (rel_hdr
->sh_entsize
== bed
->s
->sizeof_rela
)
5450 swap_in
= bed
->s
->swap_reloca_in
;
5451 swap_out
= bed
->s
->swap_reloca_out
;
5456 if (bed
->s
->int_rels_per_ext_rel
> MAX_INT_RELS_PER_EXT_REL
)
5459 if (bed
->s
->arch_size
== 32)
5466 r_type_mask
= 0xffffffff;
5470 erela
= rel_hdr
->contents
;
5471 for (i
= 0; i
< count
; i
++, rel_hash
++, erela
+= rel_hdr
->sh_entsize
)
5473 Elf_Internal_Rela irela
[MAX_INT_RELS_PER_EXT_REL
];
5476 if (*rel_hash
== NULL
)
5479 BFD_ASSERT ((*rel_hash
)->indx
>= 0);
5481 (*swap_in
) (abfd
, erela
, irela
);
5482 for (j
= 0; j
< bed
->s
->int_rels_per_ext_rel
; j
++)
5483 irela
[j
].r_info
= ((bfd_vma
) (*rel_hash
)->indx
<< r_sym_shift
5484 | (irela
[j
].r_info
& r_type_mask
));
5485 (*swap_out
) (abfd
, irela
, erela
);
5489 struct elf_link_sort_rela
5495 enum elf_reloc_type_class type
;
5496 /* We use this as an array of size int_rels_per_ext_rel. */
5497 Elf_Internal_Rela rela
[1];
5501 elf_link_sort_cmp1 (const void *A
, const void *B
)
5503 const struct elf_link_sort_rela
*a
= A
;
5504 const struct elf_link_sort_rela
*b
= B
;
5505 int relativea
, relativeb
;
5507 relativea
= a
->type
== reloc_class_relative
;
5508 relativeb
= b
->type
== reloc_class_relative
;
5510 if (relativea
< relativeb
)
5512 if (relativea
> relativeb
)
5514 if ((a
->rela
->r_info
& a
->u
.sym_mask
) < (b
->rela
->r_info
& b
->u
.sym_mask
))
5516 if ((a
->rela
->r_info
& a
->u
.sym_mask
) > (b
->rela
->r_info
& b
->u
.sym_mask
))
5518 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
5520 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
5526 elf_link_sort_cmp2 (const void *A
, const void *B
)
5528 const struct elf_link_sort_rela
*a
= A
;
5529 const struct elf_link_sort_rela
*b
= B
;
5532 if (a
->u
.offset
< b
->u
.offset
)
5534 if (a
->u
.offset
> b
->u
.offset
)
5536 copya
= (a
->type
== reloc_class_copy
) * 2 + (a
->type
== reloc_class_plt
);
5537 copyb
= (b
->type
== reloc_class_copy
) * 2 + (b
->type
== reloc_class_plt
);
5542 if (a
->rela
->r_offset
< b
->rela
->r_offset
)
5544 if (a
->rela
->r_offset
> b
->rela
->r_offset
)
5550 elf_link_sort_relocs (bfd
*abfd
, struct bfd_link_info
*info
, asection
**psec
)
5553 bfd_size_type count
, size
;
5554 size_t i
, ret
, sort_elt
, ext_size
;
5555 bfd_byte
*sort
, *s_non_relative
, *p
;
5556 struct elf_link_sort_rela
*sq
;
5557 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
5558 int i2e
= bed
->s
->int_rels_per_ext_rel
;
5559 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
5560 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
5561 struct bfd_link_order
*lo
;
5564 reldyn
= bfd_get_section_by_name (abfd
, ".rela.dyn");
5565 if (reldyn
== NULL
|| reldyn
->_raw_size
== 0)
5567 reldyn
= bfd_get_section_by_name (abfd
, ".rel.dyn");
5568 if (reldyn
== NULL
|| reldyn
->_raw_size
== 0)
5570 ext_size
= bed
->s
->sizeof_rel
;
5571 swap_in
= bed
->s
->swap_reloc_in
;
5572 swap_out
= bed
->s
->swap_reloc_out
;
5576 ext_size
= bed
->s
->sizeof_rela
;
5577 swap_in
= bed
->s
->swap_reloca_in
;
5578 swap_out
= bed
->s
->swap_reloca_out
;
5580 count
= reldyn
->_raw_size
/ ext_size
;
5583 for (lo
= reldyn
->link_order_head
; lo
!= NULL
; lo
= lo
->next
)
5584 if (lo
->type
== bfd_indirect_link_order
)
5586 asection
*o
= lo
->u
.indirect
.section
;
5587 size
+= o
->_raw_size
;
5590 if (size
!= reldyn
->_raw_size
)
5593 sort_elt
= (sizeof (struct elf_link_sort_rela
)
5594 + (i2e
- 1) * sizeof (Elf_Internal_Rela
));
5595 sort
= bfd_zmalloc (sort_elt
* count
);
5598 (*info
->callbacks
->warning
)
5599 (info
, _("Not enough memory to sort relocations"), 0, abfd
, 0, 0);
5603 if (bed
->s
->arch_size
== 32)
5604 r_sym_mask
= ~(bfd_vma
) 0xff;
5606 r_sym_mask
= ~(bfd_vma
) 0xffffffff;
5608 for (lo
= reldyn
->link_order_head
; lo
!= NULL
; lo
= lo
->next
)
5609 if (lo
->type
== bfd_indirect_link_order
)
5611 bfd_byte
*erel
, *erelend
;
5612 asection
*o
= lo
->u
.indirect
.section
;
5615 erelend
= o
->contents
+ o
->_raw_size
;
5616 p
= sort
+ o
->output_offset
/ ext_size
* sort_elt
;
5617 while (erel
< erelend
)
5619 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
5620 (*swap_in
) (abfd
, erel
, s
->rela
);
5621 s
->type
= (*bed
->elf_backend_reloc_type_class
) (s
->rela
);
5622 s
->u
.sym_mask
= r_sym_mask
;
5628 qsort (sort
, count
, sort_elt
, elf_link_sort_cmp1
);
5630 for (i
= 0, p
= sort
; i
< count
; i
++, p
+= sort_elt
)
5632 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
5633 if (s
->type
!= reloc_class_relative
)
5639 sq
= (struct elf_link_sort_rela
*) s_non_relative
;
5640 for (; i
< count
; i
++, p
+= sort_elt
)
5642 struct elf_link_sort_rela
*sp
= (struct elf_link_sort_rela
*) p
;
5643 if (((sp
->rela
->r_info
^ sq
->rela
->r_info
) & r_sym_mask
) != 0)
5645 sp
->u
.offset
= sq
->rela
->r_offset
;
5648 qsort (s_non_relative
, count
- ret
, sort_elt
, elf_link_sort_cmp2
);
5650 for (lo
= reldyn
->link_order_head
; lo
!= NULL
; lo
= lo
->next
)
5651 if (lo
->type
== bfd_indirect_link_order
)
5653 bfd_byte
*erel
, *erelend
;
5654 asection
*o
= lo
->u
.indirect
.section
;
5657 erelend
= o
->contents
+ o
->_raw_size
;
5658 p
= sort
+ o
->output_offset
/ ext_size
* sort_elt
;
5659 while (erel
< erelend
)
5661 struct elf_link_sort_rela
*s
= (struct elf_link_sort_rela
*) p
;
5662 (*swap_out
) (abfd
, s
->rela
, erel
);
5673 /* Flush the output symbols to the file. */
5676 elf_link_flush_output_syms (struct elf_final_link_info
*finfo
,
5677 const struct elf_backend_data
*bed
)
5679 if (finfo
->symbuf_count
> 0)
5681 Elf_Internal_Shdr
*hdr
;
5685 hdr
= &elf_tdata (finfo
->output_bfd
)->symtab_hdr
;
5686 pos
= hdr
->sh_offset
+ hdr
->sh_size
;
5687 amt
= finfo
->symbuf_count
* bed
->s
->sizeof_sym
;
5688 if (bfd_seek (finfo
->output_bfd
, pos
, SEEK_SET
) != 0
5689 || bfd_bwrite (finfo
->symbuf
, amt
, finfo
->output_bfd
) != amt
)
5692 hdr
->sh_size
+= amt
;
5693 finfo
->symbuf_count
= 0;
5699 /* Add a symbol to the output symbol table. */
5702 elf_link_output_sym (struct elf_final_link_info
*finfo
,
5704 Elf_Internal_Sym
*elfsym
,
5705 asection
*input_sec
,
5706 struct elf_link_hash_entry
*h
)
5709 Elf_External_Sym_Shndx
*destshndx
;
5710 bfd_boolean (*output_symbol_hook
)
5711 (struct bfd_link_info
*, const char *, Elf_Internal_Sym
*, asection
*,
5712 struct elf_link_hash_entry
*);
5713 const struct elf_backend_data
*bed
;
5715 bed
= get_elf_backend_data (finfo
->output_bfd
);
5716 output_symbol_hook
= bed
->elf_backend_link_output_symbol_hook
;
5717 if (output_symbol_hook
!= NULL
)
5719 if (! (*output_symbol_hook
) (finfo
->info
, name
, elfsym
, input_sec
, h
))
5723 if (name
== NULL
|| *name
== '\0')
5724 elfsym
->st_name
= 0;
5725 else if (input_sec
->flags
& SEC_EXCLUDE
)
5726 elfsym
->st_name
= 0;
5729 elfsym
->st_name
= (unsigned long) _bfd_stringtab_add (finfo
->symstrtab
,
5731 if (elfsym
->st_name
== (unsigned long) -1)
5735 if (finfo
->symbuf_count
>= finfo
->symbuf_size
)
5737 if (! elf_link_flush_output_syms (finfo
, bed
))
5741 dest
= finfo
->symbuf
+ finfo
->symbuf_count
* bed
->s
->sizeof_sym
;
5742 destshndx
= finfo
->symshndxbuf
;
5743 if (destshndx
!= NULL
)
5745 if (bfd_get_symcount (finfo
->output_bfd
) >= finfo
->shndxbuf_size
)
5749 amt
= finfo
->shndxbuf_size
* sizeof (Elf_External_Sym_Shndx
);
5750 finfo
->symshndxbuf
= destshndx
= bfd_realloc (destshndx
, amt
* 2);
5751 if (destshndx
== NULL
)
5753 memset ((char *) destshndx
+ amt
, 0, amt
);
5754 finfo
->shndxbuf_size
*= 2;
5756 destshndx
+= bfd_get_symcount (finfo
->output_bfd
);
5759 bed
->s
->swap_symbol_out (finfo
->output_bfd
, elfsym
, dest
, destshndx
);
5760 finfo
->symbuf_count
+= 1;
5761 bfd_get_symcount (finfo
->output_bfd
) += 1;
5766 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
5767 allowing an unsatisfied unversioned symbol in the DSO to match a
5768 versioned symbol that would normally require an explicit version.
5769 We also handle the case that a DSO references a hidden symbol
5770 which may be satisfied by a versioned symbol in another DSO. */
5773 elf_link_check_versioned_symbol (struct bfd_link_info
*info
,
5774 const struct elf_backend_data
*bed
,
5775 struct elf_link_hash_entry
*h
)
5778 struct elf_link_loaded_list
*loaded
;
5780 if (!is_elf_hash_table (info
->hash
))
5783 switch (h
->root
.type
)
5789 case bfd_link_hash_undefined
:
5790 case bfd_link_hash_undefweak
:
5791 abfd
= h
->root
.u
.undef
.abfd
;
5792 if ((abfd
->flags
& DYNAMIC
) == 0
5793 || elf_dyn_lib_class (abfd
) != DYN_DT_NEEDED
)
5797 case bfd_link_hash_defined
:
5798 case bfd_link_hash_defweak
:
5799 abfd
= h
->root
.u
.def
.section
->owner
;
5802 case bfd_link_hash_common
:
5803 abfd
= h
->root
.u
.c
.p
->section
->owner
;
5806 BFD_ASSERT (abfd
!= NULL
);
5808 for (loaded
= elf_hash_table (info
)->loaded
;
5810 loaded
= loaded
->next
)
5813 Elf_Internal_Shdr
*hdr
;
5814 bfd_size_type symcount
;
5815 bfd_size_type extsymcount
;
5816 bfd_size_type extsymoff
;
5817 Elf_Internal_Shdr
*versymhdr
;
5818 Elf_Internal_Sym
*isym
;
5819 Elf_Internal_Sym
*isymend
;
5820 Elf_Internal_Sym
*isymbuf
;
5821 Elf_External_Versym
*ever
;
5822 Elf_External_Versym
*extversym
;
5824 input
= loaded
->abfd
;
5826 /* We check each DSO for a possible hidden versioned definition. */
5828 || (input
->flags
& DYNAMIC
) == 0
5829 || elf_dynversym (input
) == 0)
5832 hdr
= &elf_tdata (input
)->dynsymtab_hdr
;
5834 symcount
= hdr
->sh_size
/ bed
->s
->sizeof_sym
;
5835 if (elf_bad_symtab (input
))
5837 extsymcount
= symcount
;
5842 extsymcount
= symcount
- hdr
->sh_info
;
5843 extsymoff
= hdr
->sh_info
;
5846 if (extsymcount
== 0)
5849 isymbuf
= bfd_elf_get_elf_syms (input
, hdr
, extsymcount
, extsymoff
,
5851 if (isymbuf
== NULL
)
5854 /* Read in any version definitions. */
5855 versymhdr
= &elf_tdata (input
)->dynversym_hdr
;
5856 extversym
= bfd_malloc (versymhdr
->sh_size
);
5857 if (extversym
== NULL
)
5860 if (bfd_seek (input
, versymhdr
->sh_offset
, SEEK_SET
) != 0
5861 || (bfd_bread (extversym
, versymhdr
->sh_size
, input
)
5862 != versymhdr
->sh_size
))
5870 ever
= extversym
+ extsymoff
;
5871 isymend
= isymbuf
+ extsymcount
;
5872 for (isym
= isymbuf
; isym
< isymend
; isym
++, ever
++)
5875 Elf_Internal_Versym iver
;
5876 unsigned short version_index
;
5878 if (ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
5879 || isym
->st_shndx
== SHN_UNDEF
)
5882 name
= bfd_elf_string_from_elf_section (input
,
5885 if (strcmp (name
, h
->root
.root
.string
) != 0)
5888 _bfd_elf_swap_versym_in (input
, ever
, &iver
);
5890 if ((iver
.vs_vers
& VERSYM_HIDDEN
) == 0)
5892 /* If we have a non-hidden versioned sym, then it should
5893 have provided a definition for the undefined sym. */
5897 version_index
= iver
.vs_vers
& VERSYM_VERSION
;
5898 if (version_index
== 1 || version_index
== 2)
5900 /* This is the base or first version. We can use it. */
5914 /* Add an external symbol to the symbol table. This is called from
5915 the hash table traversal routine. When generating a shared object,
5916 we go through the symbol table twice. The first time we output
5917 anything that might have been forced to local scope in a version
5918 script. The second time we output the symbols that are still
5922 elf_link_output_extsym (struct elf_link_hash_entry
*h
, void *data
)
5924 struct elf_outext_info
*eoinfo
= data
;
5925 struct elf_final_link_info
*finfo
= eoinfo
->finfo
;
5927 Elf_Internal_Sym sym
;
5928 asection
*input_sec
;
5929 const struct elf_backend_data
*bed
;
5931 if (h
->root
.type
== bfd_link_hash_warning
)
5933 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
5934 if (h
->root
.type
== bfd_link_hash_new
)
5938 /* Decide whether to output this symbol in this pass. */
5939 if (eoinfo
->localsyms
)
5941 if ((h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0)
5946 if ((h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0)
5950 bed
= get_elf_backend_data (finfo
->output_bfd
);
5952 /* If we have an undefined symbol reference here then it must have
5953 come from a shared library that is being linked in. (Undefined
5954 references in regular files have already been handled). If we
5955 are reporting errors for this situation then do so now. */
5956 if (h
->root
.type
== bfd_link_hash_undefined
5957 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) != 0
5958 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) == 0
5959 && ! elf_link_check_versioned_symbol (finfo
->info
, bed
, h
)
5960 && finfo
->info
->unresolved_syms_in_shared_libs
!= RM_IGNORE
)
5962 if (! ((*finfo
->info
->callbacks
->undefined_symbol
)
5963 (finfo
->info
, h
->root
.root
.string
, h
->root
.u
.undef
.abfd
,
5964 NULL
, 0, finfo
->info
->unresolved_syms_in_shared_libs
== RM_GENERATE_ERROR
)))
5966 eoinfo
->failed
= TRUE
;
5971 /* We should also warn if a forced local symbol is referenced from
5972 shared libraries. */
5973 if (! finfo
->info
->relocatable
5974 && (! finfo
->info
->shared
)
5975 && (h
->elf_link_hash_flags
5976 & (ELF_LINK_FORCED_LOCAL
| ELF_LINK_HASH_REF_DYNAMIC
| ELF_LINK_DYNAMIC_DEF
| ELF_LINK_DYNAMIC_WEAK
))
5977 == (ELF_LINK_FORCED_LOCAL
| ELF_LINK_HASH_REF_DYNAMIC
)
5978 && ! elf_link_check_versioned_symbol (finfo
->info
, bed
, h
))
5980 (*_bfd_error_handler
)
5981 (_("%s: %s symbol `%s' in %s is referenced by DSO"),
5982 bfd_get_filename (finfo
->output_bfd
),
5983 ELF_ST_VISIBILITY (h
->other
) == STV_INTERNAL
5985 : ELF_ST_VISIBILITY (h
->other
) == STV_HIDDEN
5986 ? "hidden" : "local",
5987 h
->root
.root
.string
,
5988 bfd_archive_filename (h
->root
.u
.def
.section
->owner
));
5989 eoinfo
->failed
= TRUE
;
5993 /* We don't want to output symbols that have never been mentioned by
5994 a regular file, or that we have been told to strip. However, if
5995 h->indx is set to -2, the symbol is used by a reloc and we must
5999 else if (((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_DYNAMIC
) != 0
6000 || (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_DYNAMIC
) != 0)
6001 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0
6002 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) == 0)
6004 else if (finfo
->info
->strip
== strip_all
)
6006 else if (finfo
->info
->strip
== strip_some
6007 && bfd_hash_lookup (finfo
->info
->keep_hash
,
6008 h
->root
.root
.string
, FALSE
, FALSE
) == NULL
)
6010 else if (finfo
->info
->strip_discarded
6011 && (h
->root
.type
== bfd_link_hash_defined
6012 || h
->root
.type
== bfd_link_hash_defweak
)
6013 && elf_discarded_section (h
->root
.u
.def
.section
))
6018 /* If we're stripping it, and it's not a dynamic symbol, there's
6019 nothing else to do unless it is a forced local symbol. */
6022 && (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0)
6026 sym
.st_size
= h
->size
;
6027 sym
.st_other
= h
->other
;
6028 if ((h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0)
6029 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, h
->type
);
6030 else if (h
->root
.type
== bfd_link_hash_undefweak
6031 || h
->root
.type
== bfd_link_hash_defweak
)
6032 sym
.st_info
= ELF_ST_INFO (STB_WEAK
, h
->type
);
6034 sym
.st_info
= ELF_ST_INFO (STB_GLOBAL
, h
->type
);
6036 switch (h
->root
.type
)
6039 case bfd_link_hash_new
:
6040 case bfd_link_hash_warning
:
6044 case bfd_link_hash_undefined
:
6045 case bfd_link_hash_undefweak
:
6046 input_sec
= bfd_und_section_ptr
;
6047 sym
.st_shndx
= SHN_UNDEF
;
6050 case bfd_link_hash_defined
:
6051 case bfd_link_hash_defweak
:
6053 input_sec
= h
->root
.u
.def
.section
;
6054 if (input_sec
->output_section
!= NULL
)
6057 _bfd_elf_section_from_bfd_section (finfo
->output_bfd
,
6058 input_sec
->output_section
);
6059 if (sym
.st_shndx
== SHN_BAD
)
6061 (*_bfd_error_handler
)
6062 (_("%s: could not find output section %s for input section %s"),
6063 bfd_get_filename (finfo
->output_bfd
),
6064 input_sec
->output_section
->name
,
6066 eoinfo
->failed
= TRUE
;
6070 /* ELF symbols in relocatable files are section relative,
6071 but in nonrelocatable files they are virtual
6073 sym
.st_value
= h
->root
.u
.def
.value
+ input_sec
->output_offset
;
6074 if (! finfo
->info
->relocatable
)
6076 sym
.st_value
+= input_sec
->output_section
->vma
;
6077 if (h
->type
== STT_TLS
)
6079 /* STT_TLS symbols are relative to PT_TLS segment
6081 BFD_ASSERT (elf_hash_table (finfo
->info
)->tls_sec
!= NULL
);
6082 sym
.st_value
-= elf_hash_table (finfo
->info
)->tls_sec
->vma
;
6088 BFD_ASSERT (input_sec
->owner
== NULL
6089 || (input_sec
->owner
->flags
& DYNAMIC
) != 0);
6090 sym
.st_shndx
= SHN_UNDEF
;
6091 input_sec
= bfd_und_section_ptr
;
6096 case bfd_link_hash_common
:
6097 input_sec
= h
->root
.u
.c
.p
->section
;
6098 sym
.st_shndx
= SHN_COMMON
;
6099 sym
.st_value
= 1 << h
->root
.u
.c
.p
->alignment_power
;
6102 case bfd_link_hash_indirect
:
6103 /* These symbols are created by symbol versioning. They point
6104 to the decorated version of the name. For example, if the
6105 symbol foo@@GNU_1.2 is the default, which should be used when
6106 foo is used with no version, then we add an indirect symbol
6107 foo which points to foo@@GNU_1.2. We ignore these symbols,
6108 since the indirected symbol is already in the hash table. */
6112 /* Give the processor backend a chance to tweak the symbol value,
6113 and also to finish up anything that needs to be done for this
6114 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for
6115 forced local syms when non-shared is due to a historical quirk. */
6116 if ((h
->dynindx
!= -1
6117 || (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) != 0)
6118 && ((finfo
->info
->shared
6119 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
6120 || h
->root
.type
!= bfd_link_hash_undefweak
))
6121 || (h
->elf_link_hash_flags
& ELF_LINK_FORCED_LOCAL
) == 0)
6122 && elf_hash_table (finfo
->info
)->dynamic_sections_created
)
6124 if (! ((*bed
->elf_backend_finish_dynamic_symbol
)
6125 (finfo
->output_bfd
, finfo
->info
, h
, &sym
)))
6127 eoinfo
->failed
= TRUE
;
6132 /* If we are marking the symbol as undefined, and there are no
6133 non-weak references to this symbol from a regular object, then
6134 mark the symbol as weak undefined; if there are non-weak
6135 references, mark the symbol as strong. We can't do this earlier,
6136 because it might not be marked as undefined until the
6137 finish_dynamic_symbol routine gets through with it. */
6138 if (sym
.st_shndx
== SHN_UNDEF
6139 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR
) != 0
6140 && (ELF_ST_BIND (sym
.st_info
) == STB_GLOBAL
6141 || ELF_ST_BIND (sym
.st_info
) == STB_WEAK
))
6145 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_REF_REGULAR_NONWEAK
) != 0)
6146 bindtype
= STB_GLOBAL
;
6148 bindtype
= STB_WEAK
;
6149 sym
.st_info
= ELF_ST_INFO (bindtype
, ELF_ST_TYPE (sym
.st_info
));
6152 /* If a non-weak symbol with non-default visibility is not defined
6153 locally, it is a fatal error. */
6154 if (! finfo
->info
->relocatable
6155 && ELF_ST_VISIBILITY (sym
.st_other
) != STV_DEFAULT
6156 && ELF_ST_BIND (sym
.st_info
) != STB_WEAK
6157 && h
->root
.type
== bfd_link_hash_undefined
6158 && (h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
6160 (*_bfd_error_handler
)
6161 (_("%s: %s symbol `%s' isn't defined"),
6162 bfd_get_filename (finfo
->output_bfd
),
6163 ELF_ST_VISIBILITY (sym
.st_other
) == STV_PROTECTED
6165 : ELF_ST_VISIBILITY (sym
.st_other
) == STV_INTERNAL
6166 ? "internal" : "hidden",
6167 h
->root
.root
.string
);
6168 eoinfo
->failed
= TRUE
;
6172 /* If this symbol should be put in the .dynsym section, then put it
6173 there now. We already know the symbol index. We also fill in
6174 the entry in the .hash section. */
6175 if (h
->dynindx
!= -1
6176 && elf_hash_table (finfo
->info
)->dynamic_sections_created
)
6180 size_t hash_entry_size
;
6181 bfd_byte
*bucketpos
;
6185 sym
.st_name
= h
->dynstr_index
;
6186 esym
= finfo
->dynsym_sec
->contents
+ h
->dynindx
* bed
->s
->sizeof_sym
;
6187 bed
->s
->swap_symbol_out (finfo
->output_bfd
, &sym
, esym
, 0);
6189 bucketcount
= elf_hash_table (finfo
->info
)->bucketcount
;
6190 bucket
= h
->elf_hash_value
% bucketcount
;
6192 = elf_section_data (finfo
->hash_sec
)->this_hdr
.sh_entsize
;
6193 bucketpos
= ((bfd_byte
*) finfo
->hash_sec
->contents
6194 + (bucket
+ 2) * hash_entry_size
);
6195 chain
= bfd_get (8 * hash_entry_size
, finfo
->output_bfd
, bucketpos
);
6196 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, h
->dynindx
, bucketpos
);
6197 bfd_put (8 * hash_entry_size
, finfo
->output_bfd
, chain
,
6198 ((bfd_byte
*) finfo
->hash_sec
->contents
6199 + (bucketcount
+ 2 + h
->dynindx
) * hash_entry_size
));
6201 if (finfo
->symver_sec
!= NULL
&& finfo
->symver_sec
->contents
!= NULL
)
6203 Elf_Internal_Versym iversym
;
6204 Elf_External_Versym
*eversym
;
6206 if ((h
->elf_link_hash_flags
& ELF_LINK_HASH_DEF_REGULAR
) == 0)
6208 if (h
->verinfo
.verdef
== NULL
)
6209 iversym
.vs_vers
= 0;
6211 iversym
.vs_vers
= h
->verinfo
.verdef
->vd_exp_refno
+ 1;
6215 if (h
->verinfo
.vertree
== NULL
)
6216 iversym
.vs_vers
= 1;
6218 iversym
.vs_vers
= h
->verinfo
.vertree
->vernum
+ 1;
6221 if ((h
->elf_link_hash_flags
& ELF_LINK_HIDDEN
) != 0)
6222 iversym
.vs_vers
|= VERSYM_HIDDEN
;
6224 eversym
= (Elf_External_Versym
*) finfo
->symver_sec
->contents
;
6225 eversym
+= h
->dynindx
;
6226 _bfd_elf_swap_versym_out (finfo
->output_bfd
, &iversym
, eversym
);
6230 /* If we're stripping it, then it was just a dynamic symbol, and
6231 there's nothing else to do. */
6232 if (strip
|| (input_sec
->flags
& SEC_EXCLUDE
) != 0)
6235 h
->indx
= bfd_get_symcount (finfo
->output_bfd
);
6237 if (! elf_link_output_sym (finfo
, h
->root
.root
.string
, &sym
, input_sec
, h
))
6239 eoinfo
->failed
= TRUE
;
6247 elf_section_ignore_discarded_relocs (asection
*sec
)
6249 const struct elf_backend_data
*bed
;
6251 switch (sec
->sec_info_type
)
6253 case ELF_INFO_TYPE_STABS
:
6254 case ELF_INFO_TYPE_EH_FRAME
:
6260 bed
= get_elf_backend_data (sec
->owner
);
6261 if (bed
->elf_backend_ignore_discarded_relocs
!= NULL
6262 && (*bed
->elf_backend_ignore_discarded_relocs
) (sec
))
6268 /* Link an input file into the linker output file. This function
6269 handles all the sections and relocations of the input file at once.
6270 This is so that we only have to read the local symbols once, and
6271 don't have to keep them in memory. */
6274 elf_link_input_bfd (struct elf_final_link_info
*finfo
, bfd
*input_bfd
)
6276 bfd_boolean (*relocate_section
)
6277 (bfd
*, struct bfd_link_info
*, bfd
*, asection
*, bfd_byte
*,
6278 Elf_Internal_Rela
*, Elf_Internal_Sym
*, asection
**);
6280 Elf_Internal_Shdr
*symtab_hdr
;
6283 Elf_Internal_Sym
*isymbuf
;
6284 Elf_Internal_Sym
*isym
;
6285 Elf_Internal_Sym
*isymend
;
6287 asection
**ppsection
;
6289 const struct elf_backend_data
*bed
;
6290 bfd_boolean emit_relocs
;
6291 struct elf_link_hash_entry
**sym_hashes
;
6293 output_bfd
= finfo
->output_bfd
;
6294 bed
= get_elf_backend_data (output_bfd
);
6295 relocate_section
= bed
->elf_backend_relocate_section
;
6297 /* If this is a dynamic object, we don't want to do anything here:
6298 we don't want the local symbols, and we don't want the section
6300 if ((input_bfd
->flags
& DYNAMIC
) != 0)
6303 emit_relocs
= (finfo
->info
->relocatable
6304 || finfo
->info
->emitrelocations
6305 || bed
->elf_backend_emit_relocs
);
6307 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
6308 if (elf_bad_symtab (input_bfd
))
6310 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
6315 locsymcount
= symtab_hdr
->sh_info
;
6316 extsymoff
= symtab_hdr
->sh_info
;
6319 /* Read the local symbols. */
6320 isymbuf
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
6321 if (isymbuf
== NULL
&& locsymcount
!= 0)
6323 isymbuf
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
, locsymcount
, 0,
6324 finfo
->internal_syms
,
6325 finfo
->external_syms
,
6326 finfo
->locsym_shndx
);
6327 if (isymbuf
== NULL
)
6331 /* Find local symbol sections and adjust values of symbols in
6332 SEC_MERGE sections. Write out those local symbols we know are
6333 going into the output file. */
6334 isymend
= isymbuf
+ locsymcount
;
6335 for (isym
= isymbuf
, pindex
= finfo
->indices
, ppsection
= finfo
->sections
;
6337 isym
++, pindex
++, ppsection
++)
6341 Elf_Internal_Sym osym
;
6345 if (elf_bad_symtab (input_bfd
))
6347 if (ELF_ST_BIND (isym
->st_info
) != STB_LOCAL
)
6354 if (isym
->st_shndx
== SHN_UNDEF
)
6355 isec
= bfd_und_section_ptr
;
6356 else if (isym
->st_shndx
< SHN_LORESERVE
6357 || isym
->st_shndx
> SHN_HIRESERVE
)
6359 isec
= bfd_section_from_elf_index (input_bfd
, isym
->st_shndx
);
6361 && isec
->sec_info_type
== ELF_INFO_TYPE_MERGE
6362 && ELF_ST_TYPE (isym
->st_info
) != STT_SECTION
)
6364 _bfd_merged_section_offset (output_bfd
, &isec
,
6365 elf_section_data (isec
)->sec_info
,
6368 else if (isym
->st_shndx
== SHN_ABS
)
6369 isec
= bfd_abs_section_ptr
;
6370 else if (isym
->st_shndx
== SHN_COMMON
)
6371 isec
= bfd_com_section_ptr
;
6380 /* Don't output the first, undefined, symbol. */
6381 if (ppsection
== finfo
->sections
)
6384 if (ELF_ST_TYPE (isym
->st_info
) == STT_SECTION
)
6386 /* We never output section symbols. Instead, we use the
6387 section symbol of the corresponding section in the output
6392 /* If we are stripping all symbols, we don't want to output this
6394 if (finfo
->info
->strip
== strip_all
)
6397 /* If we are discarding all local symbols, we don't want to
6398 output this one. If we are generating a relocatable output
6399 file, then some of the local symbols may be required by
6400 relocs; we output them below as we discover that they are
6402 if (finfo
->info
->discard
== discard_all
)
6405 /* If this symbol is defined in a section which we are
6406 discarding, we don't need to keep it, but note that
6407 linker_mark is only reliable for sections that have contents.
6408 For the benefit of the MIPS ELF linker, we check SEC_EXCLUDE
6409 as well as linker_mark. */
6410 if ((isym
->st_shndx
< SHN_LORESERVE
|| isym
->st_shndx
> SHN_HIRESERVE
)
6412 && ((! isec
->linker_mark
&& (isec
->flags
& SEC_HAS_CONTENTS
) != 0)
6413 || (! finfo
->info
->relocatable
6414 && (isec
->flags
& SEC_EXCLUDE
) != 0)))
6417 /* Get the name of the symbol. */
6418 name
= bfd_elf_string_from_elf_section (input_bfd
, symtab_hdr
->sh_link
,
6423 /* See if we are discarding symbols with this name. */
6424 if ((finfo
->info
->strip
== strip_some
6425 && (bfd_hash_lookup (finfo
->info
->keep_hash
, name
, FALSE
, FALSE
)
6427 || (((finfo
->info
->discard
== discard_sec_merge
6428 && (isec
->flags
& SEC_MERGE
) && ! finfo
->info
->relocatable
)
6429 || finfo
->info
->discard
== discard_l
)
6430 && bfd_is_local_label_name (input_bfd
, name
)))
6433 /* If we get here, we are going to output this symbol. */
6437 /* Adjust the section index for the output file. */
6438 osym
.st_shndx
= _bfd_elf_section_from_bfd_section (output_bfd
,
6439 isec
->output_section
);
6440 if (osym
.st_shndx
== SHN_BAD
)
6443 *pindex
= bfd_get_symcount (output_bfd
);
6445 /* ELF symbols in relocatable files are section relative, but
6446 in executable files they are virtual addresses. Note that
6447 this code assumes that all ELF sections have an associated
6448 BFD section with a reasonable value for output_offset; below
6449 we assume that they also have a reasonable value for
6450 output_section. Any special sections must be set up to meet
6451 these requirements. */
6452 osym
.st_value
+= isec
->output_offset
;
6453 if (! finfo
->info
->relocatable
)
6455 osym
.st_value
+= isec
->output_section
->vma
;
6456 if (ELF_ST_TYPE (osym
.st_info
) == STT_TLS
)
6458 /* STT_TLS symbols are relative to PT_TLS segment base. */
6459 BFD_ASSERT (elf_hash_table (finfo
->info
)->tls_sec
!= NULL
);
6460 osym
.st_value
-= elf_hash_table (finfo
->info
)->tls_sec
->vma
;
6464 if (! elf_link_output_sym (finfo
, name
, &osym
, isec
, NULL
))
6468 /* Relocate the contents of each section. */
6469 sym_hashes
= elf_sym_hashes (input_bfd
);
6470 for (o
= input_bfd
->sections
; o
!= NULL
; o
= o
->next
)
6474 if (! o
->linker_mark
)
6476 /* This section was omitted from the link. */
6480 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
6481 || (o
->_raw_size
== 0 && (o
->flags
& SEC_RELOC
) == 0))
6484 if ((o
->flags
& SEC_LINKER_CREATED
) != 0)
6486 /* Section was created by _bfd_elf_link_create_dynamic_sections
6491 /* Get the contents of the section. They have been cached by a
6492 relaxation routine. Note that o is a section in an input
6493 file, so the contents field will not have been set by any of
6494 the routines which work on output files. */
6495 if (elf_section_data (o
)->this_hdr
.contents
!= NULL
)
6496 contents
= elf_section_data (o
)->this_hdr
.contents
;
6499 contents
= finfo
->contents
;
6500 if (! bfd_get_section_contents (input_bfd
, o
, contents
, 0,
6505 if ((o
->flags
& SEC_RELOC
) != 0)
6507 Elf_Internal_Rela
*internal_relocs
;
6508 bfd_vma r_type_mask
;
6511 /* Get the swapped relocs. */
6513 = _bfd_elf_link_read_relocs (input_bfd
, o
, finfo
->external_relocs
,
6514 finfo
->internal_relocs
, FALSE
);
6515 if (internal_relocs
== NULL
6516 && o
->reloc_count
> 0)
6519 if (bed
->s
->arch_size
== 32)
6526 r_type_mask
= 0xffffffff;
6530 /* Run through the relocs looking for any against symbols
6531 from discarded sections and section symbols from
6532 removed link-once sections. Complain about relocs
6533 against discarded sections. Zero relocs against removed
6534 link-once sections. Preserve debug information as much
6536 if (!elf_section_ignore_discarded_relocs (o
))
6538 Elf_Internal_Rela
*rel
, *relend
;
6540 rel
= internal_relocs
;
6541 relend
= rel
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
6542 for ( ; rel
< relend
; rel
++)
6544 unsigned long r_symndx
= rel
->r_info
>> r_sym_shift
;
6547 if (r_symndx
>= locsymcount
6548 || (elf_bad_symtab (input_bfd
)
6549 && finfo
->sections
[r_symndx
] == NULL
))
6551 struct elf_link_hash_entry
*h
;
6553 h
= sym_hashes
[r_symndx
- extsymoff
];
6554 while (h
->root
.type
== bfd_link_hash_indirect
6555 || h
->root
.type
== bfd_link_hash_warning
)
6556 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
6558 /* Complain if the definition comes from a
6559 discarded section. */
6560 sec
= h
->root
.u
.def
.section
;
6561 if ((h
->root
.type
== bfd_link_hash_defined
6562 || h
->root
.type
== bfd_link_hash_defweak
)
6563 && elf_discarded_section (sec
))
6565 if ((o
->flags
& SEC_DEBUGGING
) != 0)
6567 BFD_ASSERT (r_symndx
!= 0);
6568 /* Try to preserve debug information. */
6569 if ((o
->flags
& SEC_DEBUGGING
) != 0
6570 && sec
->kept_section
!= NULL
6571 && sec
->_raw_size
== sec
->kept_section
->_raw_size
)
6572 h
->root
.u
.def
.section
6573 = sec
->kept_section
;
6575 memset (rel
, 0, sizeof (*rel
));
6578 finfo
->info
->callbacks
->error_handler
6579 (LD_DEFINITION_IN_DISCARDED_SECTION
,
6580 _("%T: discarded in section `%s' from %s\n"),
6581 h
->root
.root
.string
,
6582 h
->root
.root
.string
,
6583 h
->root
.u
.def
.section
->name
,
6584 bfd_archive_filename (h
->root
.u
.def
.section
->owner
));
6589 sec
= finfo
->sections
[r_symndx
];
6591 if (sec
!= NULL
&& elf_discarded_section (sec
))
6593 if ((o
->flags
& SEC_DEBUGGING
) != 0
6594 || (sec
->flags
& SEC_LINK_ONCE
) != 0)
6596 BFD_ASSERT (r_symndx
!= 0);
6597 /* Try to preserve debug information. */
6598 if ((o
->flags
& SEC_DEBUGGING
) != 0
6599 && sec
->kept_section
!= NULL
6600 && sec
->_raw_size
== sec
->kept_section
->_raw_size
)
6601 finfo
->sections
[r_symndx
]
6602 = sec
->kept_section
;
6605 rel
->r_info
&= r_type_mask
;
6615 ok
= asprintf (&buf
, "local symbol %d",
6618 buf
= (char *) "local symbol";
6619 finfo
->info
->callbacks
->error_handler
6620 (LD_DEFINITION_IN_DISCARDED_SECTION
,
6621 _("%T: discarded in section `%s' from %s\n"),
6622 buf
, buf
, sec
->name
,
6623 bfd_archive_filename (input_bfd
));
6632 /* Relocate the section by invoking a back end routine.
6634 The back end routine is responsible for adjusting the
6635 section contents as necessary, and (if using Rela relocs
6636 and generating a relocatable output file) adjusting the
6637 reloc addend as necessary.
6639 The back end routine does not have to worry about setting
6640 the reloc address or the reloc symbol index.
6642 The back end routine is given a pointer to the swapped in
6643 internal symbols, and can access the hash table entries
6644 for the external symbols via elf_sym_hashes (input_bfd).
6646 When generating relocatable output, the back end routine
6647 must handle STB_LOCAL/STT_SECTION symbols specially. The
6648 output symbol is going to be a section symbol
6649 corresponding to the output section, which will require
6650 the addend to be adjusted. */
6652 if (! (*relocate_section
) (output_bfd
, finfo
->info
,
6653 input_bfd
, o
, contents
,
6661 Elf_Internal_Rela
*irela
;
6662 Elf_Internal_Rela
*irelaend
;
6663 bfd_vma last_offset
;
6664 struct elf_link_hash_entry
**rel_hash
;
6665 Elf_Internal_Shdr
*input_rel_hdr
, *input_rel_hdr2
;
6666 unsigned int next_erel
;
6667 bfd_boolean (*reloc_emitter
)
6668 (bfd
*, asection
*, Elf_Internal_Shdr
*, Elf_Internal_Rela
*);
6669 bfd_boolean rela_normal
;
6671 input_rel_hdr
= &elf_section_data (o
)->rel_hdr
;
6672 rela_normal
= (bed
->rela_normal
6673 && (input_rel_hdr
->sh_entsize
6674 == bed
->s
->sizeof_rela
));
6676 /* Adjust the reloc addresses and symbol indices. */
6678 irela
= internal_relocs
;
6679 irelaend
= irela
+ o
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
6680 rel_hash
= (elf_section_data (o
->output_section
)->rel_hashes
6681 + elf_section_data (o
->output_section
)->rel_count
6682 + elf_section_data (o
->output_section
)->rel_count2
);
6683 last_offset
= o
->output_offset
;
6684 if (!finfo
->info
->relocatable
)
6685 last_offset
+= o
->output_section
->vma
;
6686 for (next_erel
= 0; irela
< irelaend
; irela
++, next_erel
++)
6688 unsigned long r_symndx
;
6690 Elf_Internal_Sym sym
;
6692 if (next_erel
== bed
->s
->int_rels_per_ext_rel
)
6698 irela
->r_offset
= _bfd_elf_section_offset (output_bfd
,
6701 if (irela
->r_offset
>= (bfd_vma
) -2)
6703 /* This is a reloc for a deleted entry or somesuch.
6704 Turn it into an R_*_NONE reloc, at the same
6705 offset as the last reloc. elf_eh_frame.c and
6706 elf_bfd_discard_info rely on reloc offsets
6708 irela
->r_offset
= last_offset
;
6710 irela
->r_addend
= 0;
6714 irela
->r_offset
+= o
->output_offset
;
6716 /* Relocs in an executable have to be virtual addresses. */
6717 if (!finfo
->info
->relocatable
)
6718 irela
->r_offset
+= o
->output_section
->vma
;
6720 last_offset
= irela
->r_offset
;
6722 r_symndx
= irela
->r_info
>> r_sym_shift
;
6723 if (r_symndx
== STN_UNDEF
)
6726 if (r_symndx
>= locsymcount
6727 || (elf_bad_symtab (input_bfd
)
6728 && finfo
->sections
[r_symndx
] == NULL
))
6730 struct elf_link_hash_entry
*rh
;
6733 /* This is a reloc against a global symbol. We
6734 have not yet output all the local symbols, so
6735 we do not know the symbol index of any global
6736 symbol. We set the rel_hash entry for this
6737 reloc to point to the global hash table entry
6738 for this symbol. The symbol index is then
6739 set at the end of elf_bfd_final_link. */
6740 indx
= r_symndx
- extsymoff
;
6741 rh
= elf_sym_hashes (input_bfd
)[indx
];
6742 while (rh
->root
.type
== bfd_link_hash_indirect
6743 || rh
->root
.type
== bfd_link_hash_warning
)
6744 rh
= (struct elf_link_hash_entry
*) rh
->root
.u
.i
.link
;
6746 /* Setting the index to -2 tells
6747 elf_link_output_extsym that this symbol is
6749 BFD_ASSERT (rh
->indx
< 0);
6757 /* This is a reloc against a local symbol. */
6760 sym
= isymbuf
[r_symndx
];
6761 sec
= finfo
->sections
[r_symndx
];
6762 if (ELF_ST_TYPE (sym
.st_info
) == STT_SECTION
)
6764 /* I suppose the backend ought to fill in the
6765 section of any STT_SECTION symbol against a
6766 processor specific section. If we have
6767 discarded a section, the output_section will
6768 be the absolute section. */
6769 if (bfd_is_abs_section (sec
)
6771 && bfd_is_abs_section (sec
->output_section
)))
6773 else if (sec
== NULL
|| sec
->owner
== NULL
)
6775 bfd_set_error (bfd_error_bad_value
);
6780 r_symndx
= sec
->output_section
->target_index
;
6781 BFD_ASSERT (r_symndx
!= 0);
6784 /* Adjust the addend according to where the
6785 section winds up in the output section. */
6787 irela
->r_addend
+= sec
->output_offset
;
6791 if (finfo
->indices
[r_symndx
] == -1)
6793 unsigned long shlink
;
6797 if (finfo
->info
->strip
== strip_all
)
6799 /* You can't do ld -r -s. */
6800 bfd_set_error (bfd_error_invalid_operation
);
6804 /* This symbol was skipped earlier, but
6805 since it is needed by a reloc, we
6806 must output it now. */
6807 shlink
= symtab_hdr
->sh_link
;
6808 name
= (bfd_elf_string_from_elf_section
6809 (input_bfd
, shlink
, sym
.st_name
));
6813 osec
= sec
->output_section
;
6815 _bfd_elf_section_from_bfd_section (output_bfd
,
6817 if (sym
.st_shndx
== SHN_BAD
)
6820 sym
.st_value
+= sec
->output_offset
;
6821 if (! finfo
->info
->relocatable
)
6823 sym
.st_value
+= osec
->vma
;
6824 if (ELF_ST_TYPE (sym
.st_info
) == STT_TLS
)
6826 /* STT_TLS symbols are relative to PT_TLS
6828 BFD_ASSERT (elf_hash_table (finfo
->info
)
6830 sym
.st_value
-= (elf_hash_table (finfo
->info
)
6835 finfo
->indices
[r_symndx
]
6836 = bfd_get_symcount (output_bfd
);
6838 if (! elf_link_output_sym (finfo
, name
, &sym
, sec
,
6843 r_symndx
= finfo
->indices
[r_symndx
];
6846 irela
->r_info
= ((bfd_vma
) r_symndx
<< r_sym_shift
6847 | (irela
->r_info
& r_type_mask
));
6850 /* Swap out the relocs. */
6851 if (bed
->elf_backend_emit_relocs
6852 && !(finfo
->info
->relocatable
6853 || finfo
->info
->emitrelocations
))
6854 reloc_emitter
= bed
->elf_backend_emit_relocs
;
6856 reloc_emitter
= _bfd_elf_link_output_relocs
;
6858 if (input_rel_hdr
->sh_size
!= 0
6859 && ! (*reloc_emitter
) (output_bfd
, o
, input_rel_hdr
,
6863 input_rel_hdr2
= elf_section_data (o
)->rel_hdr2
;
6864 if (input_rel_hdr2
&& input_rel_hdr2
->sh_size
!= 0)
6866 internal_relocs
+= (NUM_SHDR_ENTRIES (input_rel_hdr
)
6867 * bed
->s
->int_rels_per_ext_rel
);
6868 if (! (*reloc_emitter
) (output_bfd
, o
, input_rel_hdr2
,
6875 /* Write out the modified section contents. */
6876 if (bed
->elf_backend_write_section
6877 && (*bed
->elf_backend_write_section
) (output_bfd
, o
, contents
))
6879 /* Section written out. */
6881 else switch (o
->sec_info_type
)
6883 case ELF_INFO_TYPE_STABS
:
6884 if (! (_bfd_write_section_stabs
6886 &elf_hash_table (finfo
->info
)->stab_info
,
6887 o
, &elf_section_data (o
)->sec_info
, contents
)))
6890 case ELF_INFO_TYPE_MERGE
:
6891 if (! _bfd_write_merged_section (output_bfd
, o
,
6892 elf_section_data (o
)->sec_info
))
6895 case ELF_INFO_TYPE_EH_FRAME
:
6897 if (! _bfd_elf_write_section_eh_frame (output_bfd
, finfo
->info
,
6904 bfd_size_type sec_size
;
6906 sec_size
= (o
->_cooked_size
!= 0 ? o
->_cooked_size
: o
->_raw_size
);
6907 if (! (o
->flags
& SEC_EXCLUDE
)
6908 && ! bfd_set_section_contents (output_bfd
, o
->output_section
,
6910 (file_ptr
) o
->output_offset
,
6921 /* Generate a reloc when linking an ELF file. This is a reloc
6922 requested by the linker, and does come from any input file. This
6923 is used to build constructor and destructor tables when linking
6927 elf_reloc_link_order (bfd
*output_bfd
,
6928 struct bfd_link_info
*info
,
6929 asection
*output_section
,
6930 struct bfd_link_order
*link_order
)
6932 reloc_howto_type
*howto
;
6936 struct elf_link_hash_entry
**rel_hash_ptr
;
6937 Elf_Internal_Shdr
*rel_hdr
;
6938 const struct elf_backend_data
*bed
= get_elf_backend_data (output_bfd
);
6939 Elf_Internal_Rela irel
[MAX_INT_RELS_PER_EXT_REL
];
6943 howto
= bfd_reloc_type_lookup (output_bfd
, link_order
->u
.reloc
.p
->reloc
);
6946 bfd_set_error (bfd_error_bad_value
);
6950 addend
= link_order
->u
.reloc
.p
->addend
;
6952 /* Figure out the symbol index. */
6953 rel_hash_ptr
= (elf_section_data (output_section
)->rel_hashes
6954 + elf_section_data (output_section
)->rel_count
6955 + elf_section_data (output_section
)->rel_count2
);
6956 if (link_order
->type
== bfd_section_reloc_link_order
)
6958 indx
= link_order
->u
.reloc
.p
->u
.section
->target_index
;
6959 BFD_ASSERT (indx
!= 0);
6960 *rel_hash_ptr
= NULL
;
6964 struct elf_link_hash_entry
*h
;
6966 /* Treat a reloc against a defined symbol as though it were
6967 actually against the section. */
6968 h
= ((struct elf_link_hash_entry
*)
6969 bfd_wrapped_link_hash_lookup (output_bfd
, info
,
6970 link_order
->u
.reloc
.p
->u
.name
,
6971 FALSE
, FALSE
, TRUE
));
6973 && (h
->root
.type
== bfd_link_hash_defined
6974 || h
->root
.type
== bfd_link_hash_defweak
))
6978 section
= h
->root
.u
.def
.section
;
6979 indx
= section
->output_section
->target_index
;
6980 *rel_hash_ptr
= NULL
;
6981 /* It seems that we ought to add the symbol value to the
6982 addend here, but in practice it has already been added
6983 because it was passed to constructor_callback. */
6984 addend
+= section
->output_section
->vma
+ section
->output_offset
;
6988 /* Setting the index to -2 tells elf_link_output_extsym that
6989 this symbol is used by a reloc. */
6996 if (! ((*info
->callbacks
->unattached_reloc
)
6997 (info
, link_order
->u
.reloc
.p
->u
.name
, NULL
, NULL
, 0)))
7003 /* If this is an inplace reloc, we must write the addend into the
7005 if (howto
->partial_inplace
&& addend
!= 0)
7008 bfd_reloc_status_type rstat
;
7011 const char *sym_name
;
7013 size
= bfd_get_reloc_size (howto
);
7014 buf
= bfd_zmalloc (size
);
7017 rstat
= _bfd_relocate_contents (howto
, output_bfd
, addend
, buf
);
7024 case bfd_reloc_outofrange
:
7027 case bfd_reloc_overflow
:
7028 if (link_order
->type
== bfd_section_reloc_link_order
)
7029 sym_name
= bfd_section_name (output_bfd
,
7030 link_order
->u
.reloc
.p
->u
.section
);
7032 sym_name
= link_order
->u
.reloc
.p
->u
.name
;
7033 if (! ((*info
->callbacks
->reloc_overflow
)
7034 (info
, sym_name
, howto
->name
, addend
, NULL
, NULL
, 0)))
7041 ok
= bfd_set_section_contents (output_bfd
, output_section
, buf
,
7042 link_order
->offset
, size
);
7048 /* The address of a reloc is relative to the section in a
7049 relocatable file, and is a virtual address in an executable
7051 offset
= link_order
->offset
;
7052 if (! info
->relocatable
)
7053 offset
+= output_section
->vma
;
7055 for (i
= 0; i
< bed
->s
->int_rels_per_ext_rel
; i
++)
7057 irel
[i
].r_offset
= offset
;
7059 irel
[i
].r_addend
= 0;
7061 if (bed
->s
->arch_size
== 32)
7062 irel
[0].r_info
= ELF32_R_INFO (indx
, howto
->type
);
7064 irel
[0].r_info
= ELF64_R_INFO (indx
, howto
->type
);
7066 rel_hdr
= &elf_section_data (output_section
)->rel_hdr
;
7067 erel
= rel_hdr
->contents
;
7068 if (rel_hdr
->sh_type
== SHT_REL
)
7070 erel
+= (elf_section_data (output_section
)->rel_count
7071 * bed
->s
->sizeof_rel
);
7072 (*bed
->s
->swap_reloc_out
) (output_bfd
, irel
, erel
);
7076 irel
[0].r_addend
= addend
;
7077 erel
+= (elf_section_data (output_section
)->rel_count
7078 * bed
->s
->sizeof_rela
);
7079 (*bed
->s
->swap_reloca_out
) (output_bfd
, irel
, erel
);
7082 ++elf_section_data (output_section
)->rel_count
;
7087 /* Do the final step of an ELF link. */
7090 bfd_elf_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
7092 bfd_boolean dynamic
;
7093 bfd_boolean emit_relocs
;
7095 struct elf_final_link_info finfo
;
7096 register asection
*o
;
7097 register struct bfd_link_order
*p
;
7099 bfd_size_type max_contents_size
;
7100 bfd_size_type max_external_reloc_size
;
7101 bfd_size_type max_internal_reloc_count
;
7102 bfd_size_type max_sym_count
;
7103 bfd_size_type max_sym_shndx_count
;
7105 Elf_Internal_Sym elfsym
;
7107 Elf_Internal_Shdr
*symtab_hdr
;
7108 Elf_Internal_Shdr
*symtab_shndx_hdr
;
7109 Elf_Internal_Shdr
*symstrtab_hdr
;
7110 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
7111 struct elf_outext_info eoinfo
;
7113 size_t relativecount
= 0;
7114 asection
*reldyn
= 0;
7117 if (! is_elf_hash_table (info
->hash
))
7121 abfd
->flags
|= DYNAMIC
;
7123 dynamic
= elf_hash_table (info
)->dynamic_sections_created
;
7124 dynobj
= elf_hash_table (info
)->dynobj
;
7126 emit_relocs
= (info
->relocatable
7127 || info
->emitrelocations
7128 || bed
->elf_backend_emit_relocs
);
7131 finfo
.output_bfd
= abfd
;
7132 finfo
.symstrtab
= _bfd_elf_stringtab_init ();
7133 if (finfo
.symstrtab
== NULL
)
7138 finfo
.dynsym_sec
= NULL
;
7139 finfo
.hash_sec
= NULL
;
7140 finfo
.symver_sec
= NULL
;
7144 finfo
.dynsym_sec
= bfd_get_section_by_name (dynobj
, ".dynsym");
7145 finfo
.hash_sec
= bfd_get_section_by_name (dynobj
, ".hash");
7146 BFD_ASSERT (finfo
.dynsym_sec
!= NULL
&& finfo
.hash_sec
!= NULL
);
7147 finfo
.symver_sec
= bfd_get_section_by_name (dynobj
, ".gnu.version");
7148 /* Note that it is OK if symver_sec is NULL. */
7151 finfo
.contents
= NULL
;
7152 finfo
.external_relocs
= NULL
;
7153 finfo
.internal_relocs
= NULL
;
7154 finfo
.external_syms
= NULL
;
7155 finfo
.locsym_shndx
= NULL
;
7156 finfo
.internal_syms
= NULL
;
7157 finfo
.indices
= NULL
;
7158 finfo
.sections
= NULL
;
7159 finfo
.symbuf
= NULL
;
7160 finfo
.symshndxbuf
= NULL
;
7161 finfo
.symbuf_count
= 0;
7162 finfo
.shndxbuf_size
= 0;
7164 /* Count up the number of relocations we will output for each output
7165 section, so that we know the sizes of the reloc sections. We
7166 also figure out some maximum sizes. */
7167 max_contents_size
= 0;
7168 max_external_reloc_size
= 0;
7169 max_internal_reloc_count
= 0;
7171 max_sym_shndx_count
= 0;
7173 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
7175 struct bfd_elf_section_data
*esdo
= elf_section_data (o
);
7178 for (p
= o
->link_order_head
; p
!= NULL
; p
= p
->next
)
7180 unsigned int reloc_count
= 0;
7181 struct bfd_elf_section_data
*esdi
= NULL
;
7182 unsigned int *rel_count1
;
7184 if (p
->type
== bfd_section_reloc_link_order
7185 || p
->type
== bfd_symbol_reloc_link_order
)
7187 else if (p
->type
== bfd_indirect_link_order
)
7191 sec
= p
->u
.indirect
.section
;
7192 esdi
= elf_section_data (sec
);
7194 /* Mark all sections which are to be included in the
7195 link. This will normally be every section. We need
7196 to do this so that we can identify any sections which
7197 the linker has decided to not include. */
7198 sec
->linker_mark
= TRUE
;
7200 if (sec
->flags
& SEC_MERGE
)
7203 if (info
->relocatable
|| info
->emitrelocations
)
7204 reloc_count
= sec
->reloc_count
;
7205 else if (bed
->elf_backend_count_relocs
)
7207 Elf_Internal_Rela
* relocs
;
7209 relocs
= _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
,
7212 reloc_count
= (*bed
->elf_backend_count_relocs
) (sec
, relocs
);
7214 if (elf_section_data (o
)->relocs
!= relocs
)
7218 if (sec
->_raw_size
> max_contents_size
)
7219 max_contents_size
= sec
->_raw_size
;
7220 if (sec
->_cooked_size
> max_contents_size
)
7221 max_contents_size
= sec
->_cooked_size
;
7223 /* We are interested in just local symbols, not all
7225 if (bfd_get_flavour (sec
->owner
) == bfd_target_elf_flavour
7226 && (sec
->owner
->flags
& DYNAMIC
) == 0)
7230 if (elf_bad_symtab (sec
->owner
))
7231 sym_count
= (elf_tdata (sec
->owner
)->symtab_hdr
.sh_size
7232 / bed
->s
->sizeof_sym
);
7234 sym_count
= elf_tdata (sec
->owner
)->symtab_hdr
.sh_info
;
7236 if (sym_count
> max_sym_count
)
7237 max_sym_count
= sym_count
;
7239 if (sym_count
> max_sym_shndx_count
7240 && elf_symtab_shndx (sec
->owner
) != 0)
7241 max_sym_shndx_count
= sym_count
;
7243 if ((sec
->flags
& SEC_RELOC
) != 0)
7247 ext_size
= elf_section_data (sec
)->rel_hdr
.sh_size
;
7248 if (ext_size
> max_external_reloc_size
)
7249 max_external_reloc_size
= ext_size
;
7250 if (sec
->reloc_count
> max_internal_reloc_count
)
7251 max_internal_reloc_count
= sec
->reloc_count
;
7256 if (reloc_count
== 0)
7259 o
->reloc_count
+= reloc_count
;
7261 /* MIPS may have a mix of REL and RELA relocs on sections.
7262 To support this curious ABI we keep reloc counts in
7263 elf_section_data too. We must be careful to add the
7264 relocations from the input section to the right output
7265 count. FIXME: Get rid of one count. We have
7266 o->reloc_count == esdo->rel_count + esdo->rel_count2. */
7267 rel_count1
= &esdo
->rel_count
;
7270 bfd_boolean same_size
;
7271 bfd_size_type entsize1
;
7273 entsize1
= esdi
->rel_hdr
.sh_entsize
;
7274 BFD_ASSERT (entsize1
== bed
->s
->sizeof_rel
7275 || entsize1
== bed
->s
->sizeof_rela
);
7276 same_size
= !o
->use_rela_p
== (entsize1
== bed
->s
->sizeof_rel
);
7279 rel_count1
= &esdo
->rel_count2
;
7281 if (esdi
->rel_hdr2
!= NULL
)
7283 bfd_size_type entsize2
= esdi
->rel_hdr2
->sh_entsize
;
7284 unsigned int alt_count
;
7285 unsigned int *rel_count2
;
7287 BFD_ASSERT (entsize2
!= entsize1
7288 && (entsize2
== bed
->s
->sizeof_rel
7289 || entsize2
== bed
->s
->sizeof_rela
));
7291 rel_count2
= &esdo
->rel_count2
;
7293 rel_count2
= &esdo
->rel_count
;
7295 /* The following is probably too simplistic if the
7296 backend counts output relocs unusually. */
7297 BFD_ASSERT (bed
->elf_backend_count_relocs
== NULL
);
7298 alt_count
= NUM_SHDR_ENTRIES (esdi
->rel_hdr2
);
7299 *rel_count2
+= alt_count
;
7300 reloc_count
-= alt_count
;
7303 *rel_count1
+= reloc_count
;
7306 if (o
->reloc_count
> 0)
7307 o
->flags
|= SEC_RELOC
;
7310 /* Explicitly clear the SEC_RELOC flag. The linker tends to
7311 set it (this is probably a bug) and if it is set
7312 assign_section_numbers will create a reloc section. */
7313 o
->flags
&=~ SEC_RELOC
;
7316 /* If the SEC_ALLOC flag is not set, force the section VMA to
7317 zero. This is done in elf_fake_sections as well, but forcing
7318 the VMA to 0 here will ensure that relocs against these
7319 sections are handled correctly. */
7320 if ((o
->flags
& SEC_ALLOC
) == 0
7321 && ! o
->user_set_vma
)
7325 if (! info
->relocatable
&& merged
)
7326 elf_link_hash_traverse (elf_hash_table (info
),
7327 _bfd_elf_link_sec_merge_syms
, abfd
);
7329 /* Figure out the file positions for everything but the symbol table
7330 and the relocs. We set symcount to force assign_section_numbers
7331 to create a symbol table. */
7332 bfd_get_symcount (abfd
) = info
->strip
== strip_all
? 0 : 1;
7333 BFD_ASSERT (! abfd
->output_has_begun
);
7334 if (! _bfd_elf_compute_section_file_positions (abfd
, info
))
7337 /* That created the reloc sections. Set their sizes, and assign
7338 them file positions, and allocate some buffers. */
7339 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
7341 if ((o
->flags
& SEC_RELOC
) != 0)
7343 if (!(_bfd_elf_link_size_reloc_section
7344 (abfd
, &elf_section_data (o
)->rel_hdr
, o
)))
7347 if (elf_section_data (o
)->rel_hdr2
7348 && !(_bfd_elf_link_size_reloc_section
7349 (abfd
, elf_section_data (o
)->rel_hdr2
, o
)))
7353 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
7354 to count upwards while actually outputting the relocations. */
7355 elf_section_data (o
)->rel_count
= 0;
7356 elf_section_data (o
)->rel_count2
= 0;
7359 _bfd_elf_assign_file_positions_for_relocs (abfd
);
7361 /* We have now assigned file positions for all the sections except
7362 .symtab and .strtab. We start the .symtab section at the current
7363 file position, and write directly to it. We build the .strtab
7364 section in memory. */
7365 bfd_get_symcount (abfd
) = 0;
7366 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
7367 /* sh_name is set in prep_headers. */
7368 symtab_hdr
->sh_type
= SHT_SYMTAB
;
7369 /* sh_flags, sh_addr and sh_size all start off zero. */
7370 symtab_hdr
->sh_entsize
= bed
->s
->sizeof_sym
;
7371 /* sh_link is set in assign_section_numbers. */
7372 /* sh_info is set below. */
7373 /* sh_offset is set just below. */
7374 symtab_hdr
->sh_addralign
= 1 << bed
->s
->log_file_align
;
7376 off
= elf_tdata (abfd
)->next_file_pos
;
7377 off
= _bfd_elf_assign_file_position_for_section (symtab_hdr
, off
, TRUE
);
7379 /* Note that at this point elf_tdata (abfd)->next_file_pos is
7380 incorrect. We do not yet know the size of the .symtab section.
7381 We correct next_file_pos below, after we do know the size. */
7383 /* Allocate a buffer to hold swapped out symbols. This is to avoid
7384 continuously seeking to the right position in the file. */
7385 if (! info
->keep_memory
|| max_sym_count
< 20)
7386 finfo
.symbuf_size
= 20;
7388 finfo
.symbuf_size
= max_sym_count
;
7389 amt
= finfo
.symbuf_size
;
7390 amt
*= bed
->s
->sizeof_sym
;
7391 finfo
.symbuf
= bfd_malloc (amt
);
7392 if (finfo
.symbuf
== NULL
)
7394 if (elf_numsections (abfd
) > SHN_LORESERVE
)
7396 /* Wild guess at number of output symbols. realloc'd as needed. */
7397 amt
= 2 * max_sym_count
+ elf_numsections (abfd
) + 1000;
7398 finfo
.shndxbuf_size
= amt
;
7399 amt
*= sizeof (Elf_External_Sym_Shndx
);
7400 finfo
.symshndxbuf
= bfd_zmalloc (amt
);
7401 if (finfo
.symshndxbuf
== NULL
)
7405 /* Start writing out the symbol table. The first symbol is always a
7407 if (info
->strip
!= strip_all
7410 elfsym
.st_value
= 0;
7413 elfsym
.st_other
= 0;
7414 elfsym
.st_shndx
= SHN_UNDEF
;
7415 if (! elf_link_output_sym (&finfo
, NULL
, &elfsym
, bfd_und_section_ptr
,
7421 /* Some standard ELF linkers do this, but we don't because it causes
7422 bootstrap comparison failures. */
7423 /* Output a file symbol for the output file as the second symbol.
7424 We output this even if we are discarding local symbols, although
7425 I'm not sure if this is correct. */
7426 elfsym
.st_value
= 0;
7428 elfsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FILE
);
7429 elfsym
.st_other
= 0;
7430 elfsym
.st_shndx
= SHN_ABS
;
7431 if (! elf_link_output_sym (&finfo
, bfd_get_filename (abfd
),
7432 &elfsym
, bfd_abs_section_ptr
, NULL
))
7436 /* Output a symbol for each section. We output these even if we are
7437 discarding local symbols, since they are used for relocs. These
7438 symbols have no names. We store the index of each one in the
7439 index field of the section, so that we can find it again when
7440 outputting relocs. */
7441 if (info
->strip
!= strip_all
7445 elfsym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
7446 elfsym
.st_other
= 0;
7447 for (i
= 1; i
< elf_numsections (abfd
); i
++)
7449 o
= bfd_section_from_elf_index (abfd
, i
);
7451 o
->target_index
= bfd_get_symcount (abfd
);
7452 elfsym
.st_shndx
= i
;
7453 if (info
->relocatable
|| o
== NULL
)
7454 elfsym
.st_value
= 0;
7456 elfsym
.st_value
= o
->vma
;
7457 if (! elf_link_output_sym (&finfo
, NULL
, &elfsym
, o
, NULL
))
7459 if (i
== SHN_LORESERVE
- 1)
7460 i
+= SHN_HIRESERVE
+ 1 - SHN_LORESERVE
;
7464 /* Allocate some memory to hold information read in from the input
7466 if (max_contents_size
!= 0)
7468 finfo
.contents
= bfd_malloc (max_contents_size
);
7469 if (finfo
.contents
== NULL
)
7473 if (max_external_reloc_size
!= 0)
7475 finfo
.external_relocs
= bfd_malloc (max_external_reloc_size
);
7476 if (finfo
.external_relocs
== NULL
)
7480 if (max_internal_reloc_count
!= 0)
7482 amt
= max_internal_reloc_count
* bed
->s
->int_rels_per_ext_rel
;
7483 amt
*= sizeof (Elf_Internal_Rela
);
7484 finfo
.internal_relocs
= bfd_malloc (amt
);
7485 if (finfo
.internal_relocs
== NULL
)
7489 if (max_sym_count
!= 0)
7491 amt
= max_sym_count
* bed
->s
->sizeof_sym
;
7492 finfo
.external_syms
= bfd_malloc (amt
);
7493 if (finfo
.external_syms
== NULL
)
7496 amt
= max_sym_count
* sizeof (Elf_Internal_Sym
);
7497 finfo
.internal_syms
= bfd_malloc (amt
);
7498 if (finfo
.internal_syms
== NULL
)
7501 amt
= max_sym_count
* sizeof (long);
7502 finfo
.indices
= bfd_malloc (amt
);
7503 if (finfo
.indices
== NULL
)
7506 amt
= max_sym_count
* sizeof (asection
*);
7507 finfo
.sections
= bfd_malloc (amt
);
7508 if (finfo
.sections
== NULL
)
7512 if (max_sym_shndx_count
!= 0)
7514 amt
= max_sym_shndx_count
* sizeof (Elf_External_Sym_Shndx
);
7515 finfo
.locsym_shndx
= bfd_malloc (amt
);
7516 if (finfo
.locsym_shndx
== NULL
)
7520 if (elf_hash_table (info
)->tls_sec
)
7522 bfd_vma base
, end
= 0;
7525 for (sec
= elf_hash_table (info
)->tls_sec
;
7526 sec
&& (sec
->flags
& SEC_THREAD_LOCAL
);
7529 bfd_vma size
= sec
->_raw_size
;
7531 if (size
== 0 && (sec
->flags
& SEC_HAS_CONTENTS
) == 0)
7533 struct bfd_link_order
*o
;
7535 for (o
= sec
->link_order_head
; o
!= NULL
; o
= o
->next
)
7536 if (size
< o
->offset
+ o
->size
)
7537 size
= o
->offset
+ o
->size
;
7539 end
= sec
->vma
+ size
;
7541 base
= elf_hash_table (info
)->tls_sec
->vma
;
7542 end
= align_power (end
, elf_hash_table (info
)->tls_sec
->alignment_power
);
7543 elf_hash_table (info
)->tls_size
= end
- base
;
7546 /* Since ELF permits relocations to be against local symbols, we
7547 must have the local symbols available when we do the relocations.
7548 Since we would rather only read the local symbols once, and we
7549 would rather not keep them in memory, we handle all the
7550 relocations for a single input file at the same time.
7552 Unfortunately, there is no way to know the total number of local
7553 symbols until we have seen all of them, and the local symbol
7554 indices precede the global symbol indices. This means that when
7555 we are generating relocatable output, and we see a reloc against
7556 a global symbol, we can not know the symbol index until we have
7557 finished examining all the local symbols to see which ones we are
7558 going to output. To deal with this, we keep the relocations in
7559 memory, and don't output them until the end of the link. This is
7560 an unfortunate waste of memory, but I don't see a good way around
7561 it. Fortunately, it only happens when performing a relocatable
7562 link, which is not the common case. FIXME: If keep_memory is set
7563 we could write the relocs out and then read them again; I don't
7564 know how bad the memory loss will be. */
7566 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
7567 sub
->output_has_begun
= FALSE
;
7568 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
7570 for (p
= o
->link_order_head
; p
!= NULL
; p
= p
->next
)
7572 if (p
->type
== bfd_indirect_link_order
7573 && (bfd_get_flavour ((sub
= p
->u
.indirect
.section
->owner
))
7574 == bfd_target_elf_flavour
)
7575 && elf_elfheader (sub
)->e_ident
[EI_CLASS
] == bed
->s
->elfclass
)
7577 if (! sub
->output_has_begun
)
7579 if (! elf_link_input_bfd (&finfo
, sub
))
7581 sub
->output_has_begun
= TRUE
;
7584 else if (p
->type
== bfd_section_reloc_link_order
7585 || p
->type
== bfd_symbol_reloc_link_order
)
7587 if (! elf_reloc_link_order (abfd
, info
, o
, p
))
7592 if (! _bfd_default_link_order (abfd
, info
, o
, p
))
7598 /* Output any global symbols that got converted to local in a
7599 version script or due to symbol visibility. We do this in a
7600 separate step since ELF requires all local symbols to appear
7601 prior to any global symbols. FIXME: We should only do this if
7602 some global symbols were, in fact, converted to become local.
7603 FIXME: Will this work correctly with the Irix 5 linker? */
7604 eoinfo
.failed
= FALSE
;
7605 eoinfo
.finfo
= &finfo
;
7606 eoinfo
.localsyms
= TRUE
;
7607 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
7612 /* That wrote out all the local symbols. Finish up the symbol table
7613 with the global symbols. Even if we want to strip everything we
7614 can, we still need to deal with those global symbols that got
7615 converted to local in a version script. */
7617 /* The sh_info field records the index of the first non local symbol. */
7618 symtab_hdr
->sh_info
= bfd_get_symcount (abfd
);
7621 && finfo
.dynsym_sec
->output_section
!= bfd_abs_section_ptr
)
7623 Elf_Internal_Sym sym
;
7624 bfd_byte
*dynsym
= finfo
.dynsym_sec
->contents
;
7625 long last_local
= 0;
7627 /* Write out the section symbols for the output sections. */
7634 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_SECTION
);
7637 for (s
= abfd
->sections
; s
!= NULL
; s
= s
->next
)
7643 indx
= elf_section_data (s
)->this_idx
;
7644 dynindx
= elf_section_data (s
)->dynindx
;
7645 BFD_ASSERT (indx
> 0);
7646 sym
.st_shndx
= indx
;
7647 sym
.st_value
= s
->vma
;
7648 dest
= dynsym
+ dynindx
* bed
->s
->sizeof_sym
;
7649 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
7652 last_local
= bfd_count_sections (abfd
);
7655 /* Write out the local dynsyms. */
7656 if (elf_hash_table (info
)->dynlocal
)
7658 struct elf_link_local_dynamic_entry
*e
;
7659 for (e
= elf_hash_table (info
)->dynlocal
; e
; e
= e
->next
)
7664 sym
.st_size
= e
->isym
.st_size
;
7665 sym
.st_other
= e
->isym
.st_other
;
7667 /* Copy the internal symbol as is.
7668 Note that we saved a word of storage and overwrote
7669 the original st_name with the dynstr_index. */
7672 if (e
->isym
.st_shndx
!= SHN_UNDEF
7673 && (e
->isym
.st_shndx
< SHN_LORESERVE
7674 || e
->isym
.st_shndx
> SHN_HIRESERVE
))
7676 s
= bfd_section_from_elf_index (e
->input_bfd
,
7680 elf_section_data (s
->output_section
)->this_idx
;
7681 sym
.st_value
= (s
->output_section
->vma
7683 + e
->isym
.st_value
);
7686 if (last_local
< e
->dynindx
)
7687 last_local
= e
->dynindx
;
7689 dest
= dynsym
+ e
->dynindx
* bed
->s
->sizeof_sym
;
7690 bed
->s
->swap_symbol_out (abfd
, &sym
, dest
, 0);
7694 elf_section_data (finfo
.dynsym_sec
->output_section
)->this_hdr
.sh_info
=
7698 /* We get the global symbols from the hash table. */
7699 eoinfo
.failed
= FALSE
;
7700 eoinfo
.localsyms
= FALSE
;
7701 eoinfo
.finfo
= &finfo
;
7702 elf_link_hash_traverse (elf_hash_table (info
), elf_link_output_extsym
,
7707 /* If backend needs to output some symbols not present in the hash
7708 table, do it now. */
7709 if (bed
->elf_backend_output_arch_syms
)
7711 typedef bfd_boolean (*out_sym_func
)
7712 (void *, const char *, Elf_Internal_Sym
*, asection
*,
7713 struct elf_link_hash_entry
*);
7715 if (! ((*bed
->elf_backend_output_arch_syms
)
7716 (abfd
, info
, &finfo
, (out_sym_func
) elf_link_output_sym
)))
7720 /* Flush all symbols to the file. */
7721 if (! elf_link_flush_output_syms (&finfo
, bed
))
7724 /* Now we know the size of the symtab section. */
7725 off
+= symtab_hdr
->sh_size
;
7727 symtab_shndx_hdr
= &elf_tdata (abfd
)->symtab_shndx_hdr
;
7728 if (symtab_shndx_hdr
->sh_name
!= 0)
7730 symtab_shndx_hdr
->sh_type
= SHT_SYMTAB_SHNDX
;
7731 symtab_shndx_hdr
->sh_entsize
= sizeof (Elf_External_Sym_Shndx
);
7732 symtab_shndx_hdr
->sh_addralign
= sizeof (Elf_External_Sym_Shndx
);
7733 amt
= bfd_get_symcount (abfd
) * sizeof (Elf_External_Sym_Shndx
);
7734 symtab_shndx_hdr
->sh_size
= amt
;
7736 off
= _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr
,
7739 if (bfd_seek (abfd
, symtab_shndx_hdr
->sh_offset
, SEEK_SET
) != 0
7740 || (bfd_bwrite (finfo
.symshndxbuf
, amt
, abfd
) != amt
))
7745 /* Finish up and write out the symbol string table (.strtab)
7747 symstrtab_hdr
= &elf_tdata (abfd
)->strtab_hdr
;
7748 /* sh_name was set in prep_headers. */
7749 symstrtab_hdr
->sh_type
= SHT_STRTAB
;
7750 symstrtab_hdr
->sh_flags
= 0;
7751 symstrtab_hdr
->sh_addr
= 0;
7752 symstrtab_hdr
->sh_size
= _bfd_stringtab_size (finfo
.symstrtab
);
7753 symstrtab_hdr
->sh_entsize
= 0;
7754 symstrtab_hdr
->sh_link
= 0;
7755 symstrtab_hdr
->sh_info
= 0;
7756 /* sh_offset is set just below. */
7757 symstrtab_hdr
->sh_addralign
= 1;
7759 off
= _bfd_elf_assign_file_position_for_section (symstrtab_hdr
, off
, TRUE
);
7760 elf_tdata (abfd
)->next_file_pos
= off
;
7762 if (bfd_get_symcount (abfd
) > 0)
7764 if (bfd_seek (abfd
, symstrtab_hdr
->sh_offset
, SEEK_SET
) != 0
7765 || ! _bfd_stringtab_emit (abfd
, finfo
.symstrtab
))
7769 /* Adjust the relocs to have the correct symbol indices. */
7770 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
7772 if ((o
->flags
& SEC_RELOC
) == 0)
7775 elf_link_adjust_relocs (abfd
, &elf_section_data (o
)->rel_hdr
,
7776 elf_section_data (o
)->rel_count
,
7777 elf_section_data (o
)->rel_hashes
);
7778 if (elf_section_data (o
)->rel_hdr2
!= NULL
)
7779 elf_link_adjust_relocs (abfd
, elf_section_data (o
)->rel_hdr2
,
7780 elf_section_data (o
)->rel_count2
,
7781 (elf_section_data (o
)->rel_hashes
7782 + elf_section_data (o
)->rel_count
));
7784 /* Set the reloc_count field to 0 to prevent write_relocs from
7785 trying to swap the relocs out itself. */
7789 if (dynamic
&& info
->combreloc
&& dynobj
!= NULL
)
7790 relativecount
= elf_link_sort_relocs (abfd
, info
, &reldyn
);
7792 /* If we are linking against a dynamic object, or generating a
7793 shared library, finish up the dynamic linking information. */
7796 bfd_byte
*dyncon
, *dynconend
;
7798 /* Fix up .dynamic entries. */
7799 o
= bfd_get_section_by_name (dynobj
, ".dynamic");
7800 BFD_ASSERT (o
!= NULL
);
7802 dyncon
= o
->contents
;
7803 dynconend
= o
->contents
+ o
->_raw_size
;
7804 for (; dyncon
< dynconend
; dyncon
+= bed
->s
->sizeof_dyn
)
7806 Elf_Internal_Dyn dyn
;
7810 bed
->s
->swap_dyn_in (dynobj
, dyncon
, &dyn
);
7817 if (relativecount
> 0 && dyncon
+ bed
->s
->sizeof_dyn
< dynconend
)
7819 switch (elf_section_data (reldyn
)->this_hdr
.sh_type
)
7821 case SHT_REL
: dyn
.d_tag
= DT_RELCOUNT
; break;
7822 case SHT_RELA
: dyn
.d_tag
= DT_RELACOUNT
; break;
7825 dyn
.d_un
.d_val
= relativecount
;
7832 name
= info
->init_function
;
7835 name
= info
->fini_function
;
7838 struct elf_link_hash_entry
*h
;
7840 h
= elf_link_hash_lookup (elf_hash_table (info
), name
,
7841 FALSE
, FALSE
, TRUE
);
7843 && (h
->root
.type
== bfd_link_hash_defined
7844 || h
->root
.type
== bfd_link_hash_defweak
))
7846 dyn
.d_un
.d_val
= h
->root
.u
.def
.value
;
7847 o
= h
->root
.u
.def
.section
;
7848 if (o
->output_section
!= NULL
)
7849 dyn
.d_un
.d_val
+= (o
->output_section
->vma
7850 + o
->output_offset
);
7853 /* The symbol is imported from another shared
7854 library and does not apply to this one. */
7862 case DT_PREINIT_ARRAYSZ
:
7863 name
= ".preinit_array";
7865 case DT_INIT_ARRAYSZ
:
7866 name
= ".init_array";
7868 case DT_FINI_ARRAYSZ
:
7869 name
= ".fini_array";
7871 o
= bfd_get_section_by_name (abfd
, name
);
7874 (*_bfd_error_handler
)
7875 (_("%s: could not find output section %s"),
7876 bfd_get_filename (abfd
), name
);
7879 if (o
->_raw_size
== 0)
7880 (*_bfd_error_handler
)
7881 (_("warning: %s section has zero size"), name
);
7882 dyn
.d_un
.d_val
= o
->_raw_size
;
7885 case DT_PREINIT_ARRAY
:
7886 name
= ".preinit_array";
7889 name
= ".init_array";
7892 name
= ".fini_array";
7905 name
= ".gnu.version_d";
7908 name
= ".gnu.version_r";
7911 name
= ".gnu.version";
7913 o
= bfd_get_section_by_name (abfd
, name
);
7916 (*_bfd_error_handler
)
7917 (_("%s: could not find output section %s"),
7918 bfd_get_filename (abfd
), name
);
7921 dyn
.d_un
.d_ptr
= o
->vma
;
7928 if (dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
7933 for (i
= 1; i
< elf_numsections (abfd
); i
++)
7935 Elf_Internal_Shdr
*hdr
;
7937 hdr
= elf_elfsections (abfd
)[i
];
7938 if (hdr
->sh_type
== type
7939 && (hdr
->sh_flags
& SHF_ALLOC
) != 0)
7941 if (dyn
.d_tag
== DT_RELSZ
|| dyn
.d_tag
== DT_RELASZ
)
7942 dyn
.d_un
.d_val
+= hdr
->sh_size
;
7945 if (dyn
.d_un
.d_val
== 0
7946 || hdr
->sh_addr
< dyn
.d_un
.d_val
)
7947 dyn
.d_un
.d_val
= hdr
->sh_addr
;
7953 bed
->s
->swap_dyn_out (dynobj
, &dyn
, dyncon
);
7957 /* If we have created any dynamic sections, then output them. */
7960 if (! (*bed
->elf_backend_finish_dynamic_sections
) (abfd
, info
))
7963 for (o
= dynobj
->sections
; o
!= NULL
; o
= o
->next
)
7965 if ((o
->flags
& SEC_HAS_CONTENTS
) == 0
7966 || o
->_raw_size
== 0
7967 || o
->output_section
== bfd_abs_section_ptr
)
7969 if ((o
->flags
& SEC_LINKER_CREATED
) == 0)
7971 /* At this point, we are only interested in sections
7972 created by _bfd_elf_link_create_dynamic_sections. */
7975 if ((elf_section_data (o
->output_section
)->this_hdr
.sh_type
7977 || strcmp (bfd_get_section_name (abfd
, o
), ".dynstr") != 0)
7979 if (! bfd_set_section_contents (abfd
, o
->output_section
,
7981 (file_ptr
) o
->output_offset
,
7987 /* The contents of the .dynstr section are actually in a
7989 off
= elf_section_data (o
->output_section
)->this_hdr
.sh_offset
;
7990 if (bfd_seek (abfd
, off
, SEEK_SET
) != 0
7991 || ! _bfd_elf_strtab_emit (abfd
,
7992 elf_hash_table (info
)->dynstr
))
7998 if (info
->relocatable
)
8000 bfd_boolean failed
= FALSE
;
8002 bfd_map_over_sections (abfd
, bfd_elf_set_group_contents
, &failed
);
8007 /* If we have optimized stabs strings, output them. */
8008 if (elf_hash_table (info
)->stab_info
!= NULL
)
8010 if (! _bfd_write_stab_strings (abfd
, &elf_hash_table (info
)->stab_info
))
8014 if (info
->eh_frame_hdr
)
8016 if (! _bfd_elf_write_section_eh_frame_hdr (abfd
, info
))
8020 if (finfo
.symstrtab
!= NULL
)
8021 _bfd_stringtab_free (finfo
.symstrtab
);
8022 if (finfo
.contents
!= NULL
)
8023 free (finfo
.contents
);
8024 if (finfo
.external_relocs
!= NULL
)
8025 free (finfo
.external_relocs
);
8026 if (finfo
.internal_relocs
!= NULL
)
8027 free (finfo
.internal_relocs
);
8028 if (finfo
.external_syms
!= NULL
)
8029 free (finfo
.external_syms
);
8030 if (finfo
.locsym_shndx
!= NULL
)
8031 free (finfo
.locsym_shndx
);
8032 if (finfo
.internal_syms
!= NULL
)
8033 free (finfo
.internal_syms
);
8034 if (finfo
.indices
!= NULL
)
8035 free (finfo
.indices
);
8036 if (finfo
.sections
!= NULL
)
8037 free (finfo
.sections
);
8038 if (finfo
.symbuf
!= NULL
)
8039 free (finfo
.symbuf
);
8040 if (finfo
.symshndxbuf
!= NULL
)
8041 free (finfo
.symshndxbuf
);
8042 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
8044 if ((o
->flags
& SEC_RELOC
) != 0
8045 && elf_section_data (o
)->rel_hashes
!= NULL
)
8046 free (elf_section_data (o
)->rel_hashes
);
8049 elf_tdata (abfd
)->linker
= TRUE
;
8054 if (finfo
.symstrtab
!= NULL
)
8055 _bfd_stringtab_free (finfo
.symstrtab
);
8056 if (finfo
.contents
!= NULL
)
8057 free (finfo
.contents
);
8058 if (finfo
.external_relocs
!= NULL
)
8059 free (finfo
.external_relocs
);
8060 if (finfo
.internal_relocs
!= NULL
)
8061 free (finfo
.internal_relocs
);
8062 if (finfo
.external_syms
!= NULL
)
8063 free (finfo
.external_syms
);
8064 if (finfo
.locsym_shndx
!= NULL
)
8065 free (finfo
.locsym_shndx
);
8066 if (finfo
.internal_syms
!= NULL
)
8067 free (finfo
.internal_syms
);
8068 if (finfo
.indices
!= NULL
)
8069 free (finfo
.indices
);
8070 if (finfo
.sections
!= NULL
)
8071 free (finfo
.sections
);
8072 if (finfo
.symbuf
!= NULL
)
8073 free (finfo
.symbuf
);
8074 if (finfo
.symshndxbuf
!= NULL
)
8075 free (finfo
.symshndxbuf
);
8076 for (o
= abfd
->sections
; o
!= NULL
; o
= o
->next
)
8078 if ((o
->flags
& SEC_RELOC
) != 0
8079 && elf_section_data (o
)->rel_hashes
!= NULL
)
8080 free (elf_section_data (o
)->rel_hashes
);
8086 /* Garbage collect unused sections. */
8088 /* The mark phase of garbage collection. For a given section, mark
8089 it and any sections in this section's group, and all the sections
8090 which define symbols to which it refers. */
8092 typedef asection
* (*gc_mark_hook_fn
)
8093 (asection
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
8094 struct elf_link_hash_entry
*, Elf_Internal_Sym
*);
8097 elf_gc_mark (struct bfd_link_info
*info
,
8099 gc_mark_hook_fn gc_mark_hook
)
8102 asection
*group_sec
;
8106 /* Mark all the sections in the group. */
8107 group_sec
= elf_section_data (sec
)->next_in_group
;
8108 if (group_sec
&& !group_sec
->gc_mark
)
8109 if (!elf_gc_mark (info
, group_sec
, gc_mark_hook
))
8112 /* Look through the section relocs. */
8114 if ((sec
->flags
& SEC_RELOC
) != 0 && sec
->reloc_count
> 0)
8116 Elf_Internal_Rela
*relstart
, *rel
, *relend
;
8117 Elf_Internal_Shdr
*symtab_hdr
;
8118 struct elf_link_hash_entry
**sym_hashes
;
8121 bfd
*input_bfd
= sec
->owner
;
8122 const struct elf_backend_data
*bed
= get_elf_backend_data (input_bfd
);
8123 Elf_Internal_Sym
*isym
= NULL
;
8126 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
8127 sym_hashes
= elf_sym_hashes (input_bfd
);
8129 /* Read the local symbols. */
8130 if (elf_bad_symtab (input_bfd
))
8132 nlocsyms
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
8136 extsymoff
= nlocsyms
= symtab_hdr
->sh_info
;
8138 isym
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
8139 if (isym
== NULL
&& nlocsyms
!= 0)
8141 isym
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
, nlocsyms
, 0,
8147 /* Read the relocations. */
8148 relstart
= _bfd_elf_link_read_relocs (input_bfd
, sec
, NULL
, NULL
,
8150 if (relstart
== NULL
)
8155 relend
= relstart
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
8157 if (bed
->s
->arch_size
== 32)
8162 for (rel
= relstart
; rel
< relend
; rel
++)
8164 unsigned long r_symndx
;
8166 struct elf_link_hash_entry
*h
;
8168 r_symndx
= rel
->r_info
>> r_sym_shift
;
8172 if (r_symndx
>= nlocsyms
8173 || ELF_ST_BIND (isym
[r_symndx
].st_info
) != STB_LOCAL
)
8175 h
= sym_hashes
[r_symndx
- extsymoff
];
8176 rsec
= (*gc_mark_hook
) (sec
, info
, rel
, h
, NULL
);
8180 rsec
= (*gc_mark_hook
) (sec
, info
, rel
, NULL
, &isym
[r_symndx
]);
8183 if (rsec
&& !rsec
->gc_mark
)
8185 if (bfd_get_flavour (rsec
->owner
) != bfd_target_elf_flavour
)
8187 else if (!elf_gc_mark (info
, rsec
, gc_mark_hook
))
8196 if (elf_section_data (sec
)->relocs
!= relstart
)
8199 if (isym
!= NULL
&& symtab_hdr
->contents
!= (unsigned char *) isym
)
8201 if (! info
->keep_memory
)
8204 symtab_hdr
->contents
= (unsigned char *) isym
;
8211 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */
8214 elf_gc_sweep_symbol (struct elf_link_hash_entry
*h
, void *idxptr
)
8218 if (h
->root
.type
== bfd_link_hash_warning
)
8219 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8221 if (h
->dynindx
!= -1
8222 && ((h
->root
.type
!= bfd_link_hash_defined
8223 && h
->root
.type
!= bfd_link_hash_defweak
)
8224 || h
->root
.u
.def
.section
->gc_mark
))
8225 h
->dynindx
= (*idx
)++;
8230 /* The sweep phase of garbage collection. Remove all garbage sections. */
8232 typedef bfd_boolean (*gc_sweep_hook_fn
)
8233 (bfd
*, struct bfd_link_info
*, asection
*, const Elf_Internal_Rela
*);
8236 elf_gc_sweep (struct bfd_link_info
*info
, gc_sweep_hook_fn gc_sweep_hook
)
8240 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
8244 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
8247 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
8249 /* Keep special sections. Keep .debug sections. */
8250 if ((o
->flags
& SEC_LINKER_CREATED
)
8251 || (o
->flags
& SEC_DEBUGGING
))
8257 /* Skip sweeping sections already excluded. */
8258 if (o
->flags
& SEC_EXCLUDE
)
8261 /* Since this is early in the link process, it is simple
8262 to remove a section from the output. */
8263 o
->flags
|= SEC_EXCLUDE
;
8265 /* But we also have to update some of the relocation
8266 info we collected before. */
8268 && (o
->flags
& SEC_RELOC
) && o
->reloc_count
> 0)
8270 Elf_Internal_Rela
*internal_relocs
;
8274 = _bfd_elf_link_read_relocs (o
->owner
, o
, NULL
, NULL
,
8276 if (internal_relocs
== NULL
)
8279 r
= (*gc_sweep_hook
) (o
->owner
, info
, o
, internal_relocs
);
8281 if (elf_section_data (o
)->relocs
!= internal_relocs
)
8282 free (internal_relocs
);
8290 /* Remove the symbols that were in the swept sections from the dynamic
8291 symbol table. GCFIXME: Anyone know how to get them out of the
8292 static symbol table as well? */
8296 elf_link_hash_traverse (elf_hash_table (info
), elf_gc_sweep_symbol
, &i
);
8298 elf_hash_table (info
)->dynsymcount
= i
;
8304 /* Propagate collected vtable information. This is called through
8305 elf_link_hash_traverse. */
8308 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry
*h
, void *okp
)
8310 if (h
->root
.type
== bfd_link_hash_warning
)
8311 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8313 /* Those that are not vtables. */
8314 if (h
->vtable_parent
== NULL
)
8317 /* Those vtables that do not have parents, we cannot merge. */
8318 if (h
->vtable_parent
== (struct elf_link_hash_entry
*) -1)
8321 /* If we've already been done, exit. */
8322 if (h
->vtable_entries_used
&& h
->vtable_entries_used
[-1])
8325 /* Make sure the parent's table is up to date. */
8326 elf_gc_propagate_vtable_entries_used (h
->vtable_parent
, okp
);
8328 if (h
->vtable_entries_used
== NULL
)
8330 /* None of this table's entries were referenced. Re-use the
8332 h
->vtable_entries_used
= h
->vtable_parent
->vtable_entries_used
;
8333 h
->vtable_entries_size
= h
->vtable_parent
->vtable_entries_size
;
8338 bfd_boolean
*cu
, *pu
;
8340 /* Or the parent's entries into ours. */
8341 cu
= h
->vtable_entries_used
;
8343 pu
= h
->vtable_parent
->vtable_entries_used
;
8346 const struct elf_backend_data
*bed
;
8347 unsigned int log_file_align
;
8349 bed
= get_elf_backend_data (h
->root
.u
.def
.section
->owner
);
8350 log_file_align
= bed
->s
->log_file_align
;
8351 n
= h
->vtable_parent
->vtable_entries_size
>> log_file_align
;
8366 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry
*h
, void *okp
)
8369 bfd_vma hstart
, hend
;
8370 Elf_Internal_Rela
*relstart
, *relend
, *rel
;
8371 const struct elf_backend_data
*bed
;
8372 unsigned int log_file_align
;
8374 if (h
->root
.type
== bfd_link_hash_warning
)
8375 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8377 /* Take care of both those symbols that do not describe vtables as
8378 well as those that are not loaded. */
8379 if (h
->vtable_parent
== NULL
)
8382 BFD_ASSERT (h
->root
.type
== bfd_link_hash_defined
8383 || h
->root
.type
== bfd_link_hash_defweak
);
8385 sec
= h
->root
.u
.def
.section
;
8386 hstart
= h
->root
.u
.def
.value
;
8387 hend
= hstart
+ h
->size
;
8389 relstart
= _bfd_elf_link_read_relocs (sec
->owner
, sec
, NULL
, NULL
, TRUE
);
8391 return *(bfd_boolean
*) okp
= FALSE
;
8392 bed
= get_elf_backend_data (sec
->owner
);
8393 log_file_align
= bed
->s
->log_file_align
;
8395 relend
= relstart
+ sec
->reloc_count
* bed
->s
->int_rels_per_ext_rel
;
8397 for (rel
= relstart
; rel
< relend
; ++rel
)
8398 if (rel
->r_offset
>= hstart
&& rel
->r_offset
< hend
)
8400 /* If the entry is in use, do nothing. */
8401 if (h
->vtable_entries_used
8402 && (rel
->r_offset
- hstart
) < h
->vtable_entries_size
)
8404 bfd_vma entry
= (rel
->r_offset
- hstart
) >> log_file_align
;
8405 if (h
->vtable_entries_used
[entry
])
8408 /* Otherwise, kill it. */
8409 rel
->r_offset
= rel
->r_info
= rel
->r_addend
= 0;
8415 /* Do mark and sweep of unused sections. */
8418 bfd_elf_gc_sections (bfd
*abfd
, struct bfd_link_info
*info
)
8420 bfd_boolean ok
= TRUE
;
8422 asection
* (*gc_mark_hook
)
8423 (asection
*, struct bfd_link_info
*, Elf_Internal_Rela
*,
8424 struct elf_link_hash_entry
*h
, Elf_Internal_Sym
*);
8426 if (!get_elf_backend_data (abfd
)->can_gc_sections
8427 || info
->relocatable
8428 || info
->emitrelocations
8429 || !is_elf_hash_table (info
->hash
)
8430 || elf_hash_table (info
)->dynamic_sections_created
)
8432 (*_bfd_error_handler
)(_("Warning: gc-sections option ignored"));
8436 /* Apply transitive closure to the vtable entry usage info. */
8437 elf_link_hash_traverse (elf_hash_table (info
),
8438 elf_gc_propagate_vtable_entries_used
,
8443 /* Kill the vtable relocations that were not used. */
8444 elf_link_hash_traverse (elf_hash_table (info
),
8445 elf_gc_smash_unused_vtentry_relocs
,
8450 /* Grovel through relocs to find out who stays ... */
8452 gc_mark_hook
= get_elf_backend_data (abfd
)->gc_mark_hook
;
8453 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
8457 if (bfd_get_flavour (sub
) != bfd_target_elf_flavour
)
8460 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
8462 if (o
->flags
& SEC_KEEP
)
8463 if (!elf_gc_mark (info
, o
, gc_mark_hook
))
8468 /* ... and mark SEC_EXCLUDE for those that go. */
8469 if (!elf_gc_sweep (info
, get_elf_backend_data (abfd
)->gc_sweep_hook
))
8475 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */
8478 bfd_elf_gc_record_vtinherit (bfd
*abfd
,
8480 struct elf_link_hash_entry
*h
,
8483 struct elf_link_hash_entry
**sym_hashes
, **sym_hashes_end
;
8484 struct elf_link_hash_entry
**search
, *child
;
8485 bfd_size_type extsymcount
;
8486 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8488 /* The sh_info field of the symtab header tells us where the
8489 external symbols start. We don't care about the local symbols at
8491 extsymcount
= elf_tdata (abfd
)->symtab_hdr
.sh_size
/ bed
->s
->sizeof_sym
;
8492 if (!elf_bad_symtab (abfd
))
8493 extsymcount
-= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
8495 sym_hashes
= elf_sym_hashes (abfd
);
8496 sym_hashes_end
= sym_hashes
+ extsymcount
;
8498 /* Hunt down the child symbol, which is in this section at the same
8499 offset as the relocation. */
8500 for (search
= sym_hashes
; search
!= sym_hashes_end
; ++search
)
8502 if ((child
= *search
) != NULL
8503 && (child
->root
.type
== bfd_link_hash_defined
8504 || child
->root
.type
== bfd_link_hash_defweak
)
8505 && child
->root
.u
.def
.section
== sec
8506 && child
->root
.u
.def
.value
== offset
)
8510 (*_bfd_error_handler
) ("%s: %s+%lu: No symbol found for INHERIT",
8511 bfd_archive_filename (abfd
), sec
->name
,
8512 (unsigned long) offset
);
8513 bfd_set_error (bfd_error_invalid_operation
);
8519 /* This *should* only be the absolute section. It could potentially
8520 be that someone has defined a non-global vtable though, which
8521 would be bad. It isn't worth paging in the local symbols to be
8522 sure though; that case should simply be handled by the assembler. */
8524 child
->vtable_parent
= (struct elf_link_hash_entry
*) -1;
8527 child
->vtable_parent
= h
;
8532 /* Called from check_relocs to record the existence of a VTENTRY reloc. */
8535 bfd_elf_gc_record_vtentry (bfd
*abfd ATTRIBUTE_UNUSED
,
8536 asection
*sec ATTRIBUTE_UNUSED
,
8537 struct elf_link_hash_entry
*h
,
8540 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8541 unsigned int log_file_align
= bed
->s
->log_file_align
;
8543 if (addend
>= h
->vtable_entries_size
)
8545 size_t size
, bytes
, file_align
;
8546 bfd_boolean
*ptr
= h
->vtable_entries_used
;
8548 /* While the symbol is undefined, we have to be prepared to handle
8550 file_align
= 1 << log_file_align
;
8551 if (h
->root
.type
== bfd_link_hash_undefined
)
8552 size
= addend
+ file_align
;
8558 /* Oops! We've got a reference past the defined end of
8559 the table. This is probably a bug -- shall we warn? */
8560 size
= addend
+ file_align
;
8563 size
= (size
+ file_align
- 1) & -file_align
;
8565 /* Allocate one extra entry for use as a "done" flag for the
8566 consolidation pass. */
8567 bytes
= ((size
>> log_file_align
) + 1) * sizeof (bfd_boolean
);
8571 ptr
= bfd_realloc (ptr
- 1, bytes
);
8577 oldbytes
= (((h
->vtable_entries_size
>> log_file_align
) + 1)
8578 * sizeof (bfd_boolean
));
8579 memset (((char *) ptr
) + oldbytes
, 0, bytes
- oldbytes
);
8583 ptr
= bfd_zmalloc (bytes
);
8588 /* And arrange for that done flag to be at index -1. */
8589 h
->vtable_entries_used
= ptr
+ 1;
8590 h
->vtable_entries_size
= size
;
8593 h
->vtable_entries_used
[addend
>> log_file_align
] = TRUE
;
8598 struct alloc_got_off_arg
{
8600 unsigned int got_elt_size
;
8603 /* We need a special top-level link routine to convert got reference counts
8604 to real got offsets. */
8607 elf_gc_allocate_got_offsets (struct elf_link_hash_entry
*h
, void *arg
)
8609 struct alloc_got_off_arg
*gofarg
= arg
;
8611 if (h
->root
.type
== bfd_link_hash_warning
)
8612 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8614 if (h
->got
.refcount
> 0)
8616 h
->got
.offset
= gofarg
->gotoff
;
8617 gofarg
->gotoff
+= gofarg
->got_elt_size
;
8620 h
->got
.offset
= (bfd_vma
) -1;
8625 /* And an accompanying bit to work out final got entry offsets once
8626 we're done. Should be called from final_link. */
8629 bfd_elf_gc_common_finalize_got_offsets (bfd
*abfd
,
8630 struct bfd_link_info
*info
)
8633 const struct elf_backend_data
*bed
= get_elf_backend_data (abfd
);
8635 unsigned int got_elt_size
= bed
->s
->arch_size
/ 8;
8636 struct alloc_got_off_arg gofarg
;
8638 if (! is_elf_hash_table (info
->hash
))
8641 /* The GOT offset is relative to the .got section, but the GOT header is
8642 put into the .got.plt section, if the backend uses it. */
8643 if (bed
->want_got_plt
)
8646 gotoff
= bed
->got_header_size
;
8648 /* Do the local .got entries first. */
8649 for (i
= info
->input_bfds
; i
; i
= i
->link_next
)
8651 bfd_signed_vma
*local_got
;
8652 bfd_size_type j
, locsymcount
;
8653 Elf_Internal_Shdr
*symtab_hdr
;
8655 if (bfd_get_flavour (i
) != bfd_target_elf_flavour
)
8658 local_got
= elf_local_got_refcounts (i
);
8662 symtab_hdr
= &elf_tdata (i
)->symtab_hdr
;
8663 if (elf_bad_symtab (i
))
8664 locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
8666 locsymcount
= symtab_hdr
->sh_info
;
8668 for (j
= 0; j
< locsymcount
; ++j
)
8670 if (local_got
[j
] > 0)
8672 local_got
[j
] = gotoff
;
8673 gotoff
+= got_elt_size
;
8676 local_got
[j
] = (bfd_vma
) -1;
8680 /* Then the global .got entries. .plt refcounts are handled by
8681 adjust_dynamic_symbol */
8682 gofarg
.gotoff
= gotoff
;
8683 gofarg
.got_elt_size
= got_elt_size
;
8684 elf_link_hash_traverse (elf_hash_table (info
),
8685 elf_gc_allocate_got_offsets
,
8690 /* Many folk need no more in the way of final link than this, once
8691 got entry reference counting is enabled. */
8694 bfd_elf_gc_common_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
8696 if (!bfd_elf_gc_common_finalize_got_offsets (abfd
, info
))
8699 /* Invoke the regular ELF backend linker to do all the work. */
8700 return bfd_elf_final_link (abfd
, info
);
8704 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset
, void *cookie
)
8706 struct elf_reloc_cookie
*rcookie
= cookie
;
8708 if (rcookie
->bad_symtab
)
8709 rcookie
->rel
= rcookie
->rels
;
8711 for (; rcookie
->rel
< rcookie
->relend
; rcookie
->rel
++)
8713 unsigned long r_symndx
;
8715 if (! rcookie
->bad_symtab
)
8716 if (rcookie
->rel
->r_offset
> offset
)
8718 if (rcookie
->rel
->r_offset
!= offset
)
8721 r_symndx
= rcookie
->rel
->r_info
>> rcookie
->r_sym_shift
;
8722 if (r_symndx
== SHN_UNDEF
)
8725 if (r_symndx
>= rcookie
->locsymcount
8726 || ELF_ST_BIND (rcookie
->locsyms
[r_symndx
].st_info
) != STB_LOCAL
)
8728 struct elf_link_hash_entry
*h
;
8730 h
= rcookie
->sym_hashes
[r_symndx
- rcookie
->extsymoff
];
8732 while (h
->root
.type
== bfd_link_hash_indirect
8733 || h
->root
.type
== bfd_link_hash_warning
)
8734 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
8736 if ((h
->root
.type
== bfd_link_hash_defined
8737 || h
->root
.type
== bfd_link_hash_defweak
)
8738 && elf_discarded_section (h
->root
.u
.def
.section
))
8745 /* It's not a relocation against a global symbol,
8746 but it could be a relocation against a local
8747 symbol for a discarded section. */
8749 Elf_Internal_Sym
*isym
;
8751 /* Need to: get the symbol; get the section. */
8752 isym
= &rcookie
->locsyms
[r_symndx
];
8753 if (isym
->st_shndx
< SHN_LORESERVE
|| isym
->st_shndx
> SHN_HIRESERVE
)
8755 isec
= bfd_section_from_elf_index (rcookie
->abfd
, isym
->st_shndx
);
8756 if (isec
!= NULL
&& elf_discarded_section (isec
))
8765 /* Discard unneeded references to discarded sections.
8766 Returns TRUE if any section's size was changed. */
8767 /* This function assumes that the relocations are in sorted order,
8768 which is true for all known assemblers. */
8771 bfd_elf_discard_info (bfd
*output_bfd
, struct bfd_link_info
*info
)
8773 struct elf_reloc_cookie cookie
;
8774 asection
*stab
, *eh
;
8775 Elf_Internal_Shdr
*symtab_hdr
;
8776 const struct elf_backend_data
*bed
;
8779 bfd_boolean ret
= FALSE
;
8781 if (info
->traditional_format
8782 || !is_elf_hash_table (info
->hash
))
8785 for (abfd
= info
->input_bfds
; abfd
!= NULL
; abfd
= abfd
->link_next
)
8787 if (bfd_get_flavour (abfd
) != bfd_target_elf_flavour
)
8790 bed
= get_elf_backend_data (abfd
);
8792 if ((abfd
->flags
& DYNAMIC
) != 0)
8795 eh
= bfd_get_section_by_name (abfd
, ".eh_frame");
8796 if (info
->relocatable
8798 && (eh
->_raw_size
== 0
8799 || bfd_is_abs_section (eh
->output_section
))))
8802 stab
= bfd_get_section_by_name (abfd
, ".stab");
8804 && (stab
->_raw_size
== 0
8805 || bfd_is_abs_section (stab
->output_section
)
8806 || stab
->sec_info_type
!= ELF_INFO_TYPE_STABS
))
8811 && bed
->elf_backend_discard_info
== NULL
)
8814 symtab_hdr
= &elf_tdata (abfd
)->symtab_hdr
;
8816 cookie
.sym_hashes
= elf_sym_hashes (abfd
);
8817 cookie
.bad_symtab
= elf_bad_symtab (abfd
);
8818 if (cookie
.bad_symtab
)
8820 cookie
.locsymcount
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
8821 cookie
.extsymoff
= 0;
8825 cookie
.locsymcount
= symtab_hdr
->sh_info
;
8826 cookie
.extsymoff
= symtab_hdr
->sh_info
;
8829 if (bed
->s
->arch_size
== 32)
8830 cookie
.r_sym_shift
= 8;
8832 cookie
.r_sym_shift
= 32;
8834 cookie
.locsyms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
8835 if (cookie
.locsyms
== NULL
&& cookie
.locsymcount
!= 0)
8837 cookie
.locsyms
= bfd_elf_get_elf_syms (abfd
, symtab_hdr
,
8838 cookie
.locsymcount
, 0,
8840 if (cookie
.locsyms
== NULL
)
8847 count
= stab
->reloc_count
;
8849 cookie
.rels
= _bfd_elf_link_read_relocs (abfd
, stab
, NULL
, NULL
,
8851 if (cookie
.rels
!= NULL
)
8853 cookie
.rel
= cookie
.rels
;
8854 cookie
.relend
= cookie
.rels
;
8855 cookie
.relend
+= count
* bed
->s
->int_rels_per_ext_rel
;
8856 if (_bfd_discard_section_stabs (abfd
, stab
,
8857 elf_section_data (stab
)->sec_info
,
8858 bfd_elf_reloc_symbol_deleted_p
,
8861 if (elf_section_data (stab
)->relocs
!= cookie
.rels
)
8869 count
= eh
->reloc_count
;
8871 cookie
.rels
= _bfd_elf_link_read_relocs (abfd
, eh
, NULL
, NULL
,
8873 cookie
.rel
= cookie
.rels
;
8874 cookie
.relend
= cookie
.rels
;
8875 if (cookie
.rels
!= NULL
)
8876 cookie
.relend
+= count
* bed
->s
->int_rels_per_ext_rel
;
8878 if (_bfd_elf_discard_section_eh_frame (abfd
, info
, eh
,
8879 bfd_elf_reloc_symbol_deleted_p
,
8883 if (cookie
.rels
!= NULL
8884 && elf_section_data (eh
)->relocs
!= cookie
.rels
)
8888 if (bed
->elf_backend_discard_info
!= NULL
8889 && (*bed
->elf_backend_discard_info
) (abfd
, &cookie
, info
))
8892 if (cookie
.locsyms
!= NULL
8893 && symtab_hdr
->contents
!= (unsigned char *) cookie
.locsyms
)
8895 if (! info
->keep_memory
)
8896 free (cookie
.locsyms
);
8898 symtab_hdr
->contents
= (unsigned char *) cookie
.locsyms
;
8902 if (info
->eh_frame_hdr
8903 && !info
->relocatable
8904 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd
, info
))