2 /* @(#)fdlibm.h 5.1 93/09/24 */
4 * ====================================================
5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7 * Developed at SunPro, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
11 * ====================================================
14 /* REDHAT LOCAL: Include files. */
16 #include <sys/types.h>
17 #include <machine/ieeefp.h>
19 /* REDHAT LOCAL: Default to XOPEN_MODE. */
22 /* Most routines need to check whether a float is finite, infinite, or not a
23 number, and many need to know whether the result of an operation will
24 overflow. These conditions depend on whether the largest exponent is
25 used for NaNs & infinities, or whether it's used for finite numbers. The
26 macros below wrap up that kind of information:
28 FLT_UWORD_IS_FINITE(X)
29 True if a positive float with bitmask X is finite.
32 True if a positive float with bitmask X is not a number.
34 FLT_UWORD_IS_INFINITE(X)
35 True if a positive float with bitmask X is +infinity.
38 The bitmask of FLT_MAX.
41 The bitmask of FLT_MAX/2.
44 The bitmask of the largest finite exponent (129 if the largest
45 exponent is used for finite numbers, 128 otherwise).
48 The bitmask of log(FLT_MAX), rounded down. This value is the largest
49 input that can be passed to exp() without producing overflow.
52 The bitmask of log(2*FLT_MAX), rounded down. This value is the
53 largest input than can be passed to cosh() without producing
57 The largest biased exponent that can be used for finite numbers
58 (255 if the largest exponent is used for finite numbers, 254
61 #ifdef _FLT_LARGEST_EXPONENT_IS_NORMAL
62 #define FLT_UWORD_IS_FINITE(x) 1
63 #define FLT_UWORD_IS_NAN(x) 0
64 #define FLT_UWORD_IS_INFINITE(x) 0
65 #define FLT_UWORD_MAX 0x7fffffff
66 #define FLT_UWORD_EXP_MAX 0x43010000
67 #define FLT_UWORD_LOG_MAX 0x42b2d4fc
68 #define FLT_UWORD_LOG_2MAX 0x42b437e0
69 #define HUGE ((float)0X1.FFFFFEP128)
71 #define FLT_UWORD_IS_FINITE(x) ((x)<0x7f800000L)
72 #define FLT_UWORD_IS_NAN(x) ((x)>0x7f800000L)
73 #define FLT_UWORD_IS_INFINITE(x) ((x)==0x7f800000L)
74 #define FLT_UWORD_MAX 0x7f7fffff
75 #define FLT_UWORD_EXP_MAX 0x43000000
76 #define FLT_UWORD_LOG_MAX 0x42b17217
77 #define FLT_UWORD_LOG_2MAX 0x42b2d4fc
78 #define HUGE ((float)3.40282346638528860e+38)
80 #define FLT_UWORD_HALF_MAX (FLT_UWORD_MAX-(1<<23))
81 #define FLT_LARGEST_EXP (FLT_UWORD_MAX>>23)
83 /* Many routines check for zero and subnormal numbers. Such things depend
84 on whether the target supports denormals or not:
87 True if a positive float with bitmask X is +0. Without denormals,
88 any float with a zero exponent is a +0 representation. With
89 denormals, the only +0 representation is a 0 bitmask.
91 FLT_UWORD_IS_SUBNORMAL(X)
92 True if a non-zero positive float with bitmask X is subnormal.
93 (Routines should check for zeros first.)
96 The bitmask of the smallest float above +0. Call this number
100 The bitmask of the float representation of REAL_FLT_MIN's exponent.
103 The bitmask of |log(REAL_FLT_MIN)|, rounding down.
106 REAL_FLT_MIN's exponent - EXP_BIAS (1 if denormals are not supported,
110 #ifdef _FLT_NO_DENORMALS
111 #define FLT_UWORD_IS_ZERO(x) ((x)<0x00800000L)
112 #define FLT_UWORD_IS_SUBNORMAL(x) 0
113 #define FLT_UWORD_MIN 0x00800000
114 #define FLT_UWORD_EXP_MIN 0x42fc0000
115 #define FLT_UWORD_LOG_MIN 0x42aeac50
116 #define FLT_SMALLEST_EXP 1
118 #define FLT_UWORD_IS_ZERO(x) ((x)==0)
119 #define FLT_UWORD_IS_SUBNORMAL(x) ((x)<0x00800000L)
120 #define FLT_UWORD_MIN 0x00000001
121 #define FLT_UWORD_EXP_MIN 0x43160000
122 #define FLT_UWORD_LOG_MIN 0x42cff1b5
123 #define FLT_SMALLEST_EXP -22
134 * set X_TLOSS = pi*2**52, which is possibly defined in <values.h>
135 * (one may replace the following line by "#include <values.h>")
138 #define X_TLOSS 1.41484755040568800000e+16
140 /* Functions that are not documented, and are not in <math.h>. */
142 extern double logb
__P((double));
144 extern double scalb
__P((double, int));
146 extern double scalb
__P((double, double));
148 extern double significand
__P((double));
150 /* ieee style elementary functions */
151 extern double __ieee754_sqrt
__P((double));
152 extern double __ieee754_acos
__P((double));
153 extern double __ieee754_acosh
__P((double));
154 extern double __ieee754_log
__P((double));
155 extern double __ieee754_atanh
__P((double));
156 extern double __ieee754_asin
__P((double));
157 extern double __ieee754_atan2
__P((double,double));
158 extern double __ieee754_exp
__P((double));
159 extern double __ieee754_cosh
__P((double));
160 extern double __ieee754_fmod
__P((double,double));
161 extern double __ieee754_pow
__P((double,double));
162 extern double __ieee754_lgamma_r
__P((double,int *));
163 extern double __ieee754_gamma_r
__P((double,int *));
164 extern double __ieee754_log10
__P((double));
165 extern double __ieee754_sinh
__P((double));
166 extern double __ieee754_hypot
__P((double,double));
167 extern double __ieee754_j0
__P((double));
168 extern double __ieee754_j1
__P((double));
169 extern double __ieee754_y0
__P((double));
170 extern double __ieee754_y1
__P((double));
171 extern double __ieee754_jn
__P((int,double));
172 extern double __ieee754_yn
__P((int,double));
173 extern double __ieee754_remainder
__P((double,double));
174 extern __int32_t __ieee754_rem_pio2
__P((double,double*));
176 extern double __ieee754_scalb
__P((double,int));
178 extern double __ieee754_scalb
__P((double,double));
181 /* fdlibm kernel function */
182 extern double __kernel_standard
__P((double,double,int));
183 extern double __kernel_sin
__P((double,double,int));
184 extern double __kernel_cos
__P((double,double));
185 extern double __kernel_tan
__P((double,double,int));
186 extern int __kernel_rem_pio2
__P((double*,double*,int,int,int,const __int32_t
*));
188 /* Undocumented float functions. */
189 extern float logbf
__P((float));
191 extern float scalbf
__P((float, int));
193 extern float scalbf
__P((float, float));
195 extern float significandf
__P((float));
197 /* ieee style elementary float functions */
198 extern float __ieee754_sqrtf
__P((float));
199 extern float __ieee754_acosf
__P((float));
200 extern float __ieee754_acoshf
__P((float));
201 extern float __ieee754_logf
__P((float));
202 extern float __ieee754_atanhf
__P((float));
203 extern float __ieee754_asinf
__P((float));
204 extern float __ieee754_atan2f
__P((float,float));
205 extern float __ieee754_expf
__P((float));
206 extern float __ieee754_coshf
__P((float));
207 extern float __ieee754_fmodf
__P((float,float));
208 extern float __ieee754_powf
__P((float,float));
209 extern float __ieee754_lgammaf_r
__P((float,int *));
210 extern float __ieee754_gammaf_r
__P((float,int *));
211 extern float __ieee754_log10f
__P((float));
212 extern float __ieee754_sinhf
__P((float));
213 extern float __ieee754_hypotf
__P((float,float));
214 extern float __ieee754_j0f
__P((float));
215 extern float __ieee754_j1f
__P((float));
216 extern float __ieee754_y0f
__P((float));
217 extern float __ieee754_y1f
__P((float));
218 extern float __ieee754_jnf
__P((int,float));
219 extern float __ieee754_ynf
__P((int,float));
220 extern float __ieee754_remainderf
__P((float,float));
221 extern __int32_t __ieee754_rem_pio2f
__P((float,float*));
223 extern float __ieee754_scalbf
__P((float,int));
225 extern float __ieee754_scalbf
__P((float,float));
228 /* float versions of fdlibm kernel functions */
229 extern float __kernel_sinf
__P((float,float,int));
230 extern float __kernel_cosf
__P((float,float));
231 extern float __kernel_tanf
__P((float,float,int));
232 extern int __kernel_rem_pio2f
__P((float*,float*,int,int,int,const __int32_t
*));
234 /* The original code used statements like
235 n0 = ((*(int*)&one)>>29)^1; * index of high word *
236 ix0 = *(n0+(int*)&x); * high word of x *
237 ix1 = *((1-n0)+(int*)&x); * low word of x *
238 to dig two 32 bit words out of the 64 bit IEEE floating point
239 value. That is non-ANSI, and, moreover, the gcc instruction
240 scheduler gets it wrong. We instead use the following macros.
241 Unlike the original code, we determine the endianness at compile
242 time, not at run time; I don't see much benefit to selecting
243 endianness at run time. */
245 #ifndef __IEEE_BIG_ENDIAN
246 #ifndef __IEEE_LITTLE_ENDIAN
247 #error Must define endianness
251 /* A union which permits us to convert between a double and two 32 bit
254 #ifdef __IEEE_BIG_ENDIAN
264 } ieee_double_shape_type
;
268 #ifdef __IEEE_LITTLE_ENDIAN
278 } ieee_double_shape_type
;
282 /* Get two 32 bit ints from a double. */
284 #define EXTRACT_WORDS(ix0,ix1,d) \
286 ieee_double_shape_type ew_u; \
288 (ix0) = ew_u.parts.msw; \
289 (ix1) = ew_u.parts.lsw; \
292 /* Get the more significant 32 bit int from a double. */
294 #define GET_HIGH_WORD(i,d) \
296 ieee_double_shape_type gh_u; \
298 (i) = gh_u.parts.msw; \
301 /* Get the less significant 32 bit int from a double. */
303 #define GET_LOW_WORD(i,d) \
305 ieee_double_shape_type gl_u; \
307 (i) = gl_u.parts.lsw; \
310 /* Set a double from two 32 bit ints. */
312 #define INSERT_WORDS(d,ix0,ix1) \
314 ieee_double_shape_type iw_u; \
315 iw_u.parts.msw = (ix0); \
316 iw_u.parts.lsw = (ix1); \
320 /* Set the more significant 32 bits of a double from an int. */
322 #define SET_HIGH_WORD(d,v) \
324 ieee_double_shape_type sh_u; \
326 sh_u.parts.msw = (v); \
330 /* Set the less significant 32 bits of a double from an int. */
332 #define SET_LOW_WORD(d,v) \
334 ieee_double_shape_type sl_u; \
336 sl_u.parts.lsw = (v); \
340 /* A union which permits us to convert between a float and a 32 bit
347 } ieee_float_shape_type
;
349 /* Get a 32 bit int from a float. */
351 #define GET_FLOAT_WORD(i,d) \
353 ieee_float_shape_type gf_u; \
358 /* Set a float from a 32 bit int. */
360 #define SET_FLOAT_WORD(d,i) \
362 ieee_float_shape_type sf_u; \