fixes for host gcc 4.6.1
[zpugcc/jano.git] / toolchain / gcc / newlib / libm / math / s_atan.c
blobc52a09dd08b75b1972c4d963f17ac3b0fed79e86
2 /* @(#)s_atan.c 5.1 93/09/24 */
3 /*
4 * ====================================================
5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7 * Developed at SunPro, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
10 * is preserved.
11 * ====================================================
16 FUNCTION
17 <<atan>>, <<atanf>>---arc tangent
19 INDEX
20 atan
21 INDEX
22 atanf
24 ANSI_SYNOPSIS
25 #include <math.h>
26 double atan(double <[x]>);
27 float atanf(float <[x]>);
29 TRAD_SYNOPSIS
30 #include <math.h>
31 double atan(<[x]>);
32 double <[x]>;
34 float atanf(<[x]>);
35 float <[x]>;
37 DESCRIPTION
39 <<atan>> computes the inverse tangent (arc tangent) of the input value.
41 <<atanf>> is identical to <<atan>>, save that it operates on <<floats>>.
43 RETURNS
44 @ifnottex
45 <<atan>> returns a value in radians, in the range of -pi/2 to pi/2.
46 @end ifnottex
47 @tex
48 <<atan>> returns a value in radians, in the range of $-\pi/2$ to $\pi/2$.
49 @end tex
51 PORTABILITY
52 <<atan>> is ANSI C. <<atanf>> is an extension.
56 /* atan(x)
57 * Method
58 * 1. Reduce x to positive by atan(x) = -atan(-x).
59 * 2. According to the integer k=4t+0.25 chopped, t=x, the argument
60 * is further reduced to one of the following intervals and the
61 * arctangent of t is evaluated by the corresponding formula:
63 * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
64 * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
65 * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
66 * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
67 * [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
69 * Constants:
70 * The hexadecimal values are the intended ones for the following
71 * constants. The decimal values may be used, provided that the
72 * compiler will convert from decimal to binary accurately enough
73 * to produce the hexadecimal values shown.
76 #include "fdlibm.h"
78 #ifndef _DOUBLE_IS_32BITS
80 #ifdef __STDC__
81 static const double atanhi[] = {
82 #else
83 static double atanhi[] = {
84 #endif
85 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
86 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
87 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
88 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
91 #ifdef __STDC__
92 static const double atanlo[] = {
93 #else
94 static double atanlo[] = {
95 #endif
96 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
97 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
98 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
99 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
102 #ifdef __STDC__
103 static const double aT[] = {
104 #else
105 static double aT[] = {
106 #endif
107 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
108 -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
109 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
110 -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
111 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
112 -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
113 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
114 -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
115 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
116 -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
117 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
120 #ifdef __STDC__
121 static const double
122 #else
123 static double
124 #endif
125 one = 1.0,
126 huge = 1.0e300;
128 #ifdef __STDC__
129 double atan(double x)
130 #else
131 double atan(x)
132 double x;
133 #endif
135 double w,s1,s2,z;
136 __int32_t ix,hx,id;
138 GET_HIGH_WORD(hx,x);
139 ix = hx&0x7fffffff;
140 if(ix>=0x44100000) { /* if |x| >= 2^66 */
141 __uint32_t low;
142 GET_LOW_WORD(low,x);
143 if(ix>0x7ff00000||
144 (ix==0x7ff00000&&(low!=0)))
145 return x+x; /* NaN */
146 if(hx>0) return atanhi[3]+atanlo[3];
147 else return -atanhi[3]-atanlo[3];
148 } if (ix < 0x3fdc0000) { /* |x| < 0.4375 */
149 if (ix < 0x3e200000) { /* |x| < 2^-29 */
150 if(huge+x>one) return x; /* raise inexact */
152 id = -1;
153 } else {
154 x = fabs(x);
155 if (ix < 0x3ff30000) { /* |x| < 1.1875 */
156 if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */
157 id = 0; x = (2.0*x-one)/(2.0+x);
158 } else { /* 11/16<=|x|< 19/16 */
159 id = 1; x = (x-one)/(x+one);
161 } else {
162 if (ix < 0x40038000) { /* |x| < 2.4375 */
163 id = 2; x = (x-1.5)/(one+1.5*x);
164 } else { /* 2.4375 <= |x| < 2^66 */
165 id = 3; x = -1.0/x;
168 /* end of argument reduction */
169 z = x*x;
170 w = z*z;
171 /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
172 s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
173 s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
174 if (id<0) return x - x*(s1+s2);
175 else {
176 z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
177 return (hx<0)? -z:z;
181 #endif /* _DOUBLE_IS_32BITS */