2 /* @(#)s_atan.c 5.1 93/09/24 */
4 * ====================================================
5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7 * Developed at SunPro, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
11 * ====================================================
17 <<atan>>, <<atanf>>---arc tangent
26 double atan(double <[x]>);
27 float atanf(float <[x]>);
39 <<atan>> computes the inverse tangent (arc tangent) of the input value.
41 <<atanf>> is identical to <<atan>>, save that it operates on <<floats>>.
45 <<atan>> returns a value in radians, in the range of -pi/2 to pi/2.
48 <<atan>> returns a value in radians, in the range of $-\pi/2$ to $\pi/2$.
52 <<atan>> is ANSI C. <<atanf>> is an extension.
58 * 1. Reduce x to positive by atan(x) = -atan(-x).
59 * 2. According to the integer k=4t+0.25 chopped, t=x, the argument
60 * is further reduced to one of the following intervals and the
61 * arctangent of t is evaluated by the corresponding formula:
63 * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
64 * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
65 * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
66 * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
67 * [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
70 * The hexadecimal values are the intended ones for the following
71 * constants. The decimal values may be used, provided that the
72 * compiler will convert from decimal to binary accurately enough
73 * to produce the hexadecimal values shown.
78 #ifndef _DOUBLE_IS_32BITS
81 static const double atanhi
[] = {
83 static double atanhi
[] = {
85 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
86 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
87 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
88 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
92 static const double atanlo
[] = {
94 static double atanlo
[] = {
96 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
97 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
98 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
99 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
103 static const double aT
[] = {
105 static double aT
[] = {
107 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
108 -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
109 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
110 -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
111 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
112 -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
113 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
114 -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
115 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
116 -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
117 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
129 double atan(double x
)
140 if(ix
>=0x44100000) { /* if |x| >= 2^66 */
144 (ix
==0x7ff00000&&(low
!=0)))
145 return x
+x
; /* NaN */
146 if(hx
>0) return atanhi
[3]+atanlo
[3];
147 else return -atanhi
[3]-atanlo
[3];
148 } if (ix
< 0x3fdc0000) { /* |x| < 0.4375 */
149 if (ix
< 0x3e200000) { /* |x| < 2^-29 */
150 if(huge
+x
>one
) return x
; /* raise inexact */
155 if (ix
< 0x3ff30000) { /* |x| < 1.1875 */
156 if (ix
< 0x3fe60000) { /* 7/16 <=|x|<11/16 */
157 id
= 0; x
= (2.0*x
-one
)/(2.0+x
);
158 } else { /* 11/16<=|x|< 19/16 */
159 id
= 1; x
= (x
-one
)/(x
+one
);
162 if (ix
< 0x40038000) { /* |x| < 2.4375 */
163 id
= 2; x
= (x
-1.5)/(one
+1.5*x
);
164 } else { /* 2.4375 <= |x| < 2^66 */
168 /* end of argument reduction */
171 /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
172 s1
= z
*(aT
[0]+w
*(aT
[2]+w
*(aT
[4]+w
*(aT
[6]+w
*(aT
[8]+w
*aT
[10])))));
173 s2
= w
*(aT
[1]+w
*(aT
[3]+w
*(aT
[5]+w
*(aT
[7]+w
*aT
[9]))));
174 if (id
<0) return x
- x
*(s1
+s2
);
176 z
= atanhi
[id
] - ((x
*(s1
+s2
) - atanlo
[id
]) - x
);
181 #endif /* _DOUBLE_IS_32BITS */