2 /* @(#)s_tan.c 5.1 93/09/24 */
4 * ====================================================
5 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
7 * Developed at SunPro, a Sun Microsystems, Inc. business.
8 * Permission to use, copy, modify, and distribute this
9 * software is freely granted, provided that this notice
11 * ====================================================
18 <<tan>>, <<tanf>>---tangent
27 double tan(double <[x]>);
28 float tanf(float <[x]>);
40 <<tan>> computes the tangent of the argument <[x]>.
41 Angles are specified in radians.
43 <<tanf>> is identical, save that it takes and returns <<float>> values.
46 The tangent of <[x]> is returned.
49 <<tan>> is ANSI. <<tanf>> is an extension.
53 * Return tangent function of x.
56 * __kernel_tan ... tangent function on [-pi/4,pi/4]
57 * __ieee754_rem_pio2 ... argument reduction routine
60 * Let S,C and T denote the sin, cos and tan respectively on
61 * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
62 * in [-pi/4 , +pi/4], and let n = k mod 4.
65 * n sin(x) cos(x) tan(x)
66 * ----------------------------------------------------------
71 * ----------------------------------------------------------
74 * Let trig be any of sin, cos, or tan.
75 * trig(+-INF) is NaN, with signals;
76 * trig(NaN) is that NaN;
79 * TRIG(x) returns trig(x) nearly rounded
84 #ifndef _DOUBLE_IS_32BITS
101 if(ix
<= 0x3fe921fb) return __kernel_tan(x
,z
,1);
103 /* tan(Inf or NaN) is NaN */
104 else if (ix
>=0x7ff00000) return x
-x
; /* NaN */
106 /* argument reduction needed */
108 n
= __ieee754_rem_pio2(x
,y
);
109 return __kernel_tan(y
[0],y
[1],1-((n
&1)<<1)); /* 1 -- n even
114 #endif /* _DOUBLE_IS_32BITS */