x11gfx.hidd: support 32 bit modes
[AROS.git] / compiler / stdc / math / s_fma.c
blobf6d8349c085151d6c40ac27aba0c1bdb657da2ee
1 /*-
2 * Copyright (c) 2005 David Schultz <das@FreeBSD.ORG>
3 * All rights reserved.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
27 __FBSDID("$FreeBSD: src/lib/msun/src/s_fma.c,v 1.4 2005/03/18 02:27:59 das Exp $");
29 #include <aros/system.h>
31 #include <fenv.h>
32 #include <float.h>
33 #include <math.h>
36 * Fused multiply-add: Compute x * y + z with a single rounding error.
38 * We use scaling to avoid overflow/underflow, along with the
39 * canonical precision-doubling technique adapted from:
41 * Dekker, T. A Floating-Point Technique for Extending the
42 * Available Precision. Numer. Math. 18, 224-242 (1971).
44 * This algorithm is sensitive to the rounding precision. FPUs such
45 * as the i387 must be set in double-precision mode if variables are
46 * to be stored in FP registers in order to avoid incorrect results.
47 * This is the default on FreeBSD, but not on many other systems.
49 * Hardware instructions should be used on architectures that support it,
50 * since this implementation will likely be several times slower.
52 #if LDBL_MANT_DIG != 113
53 double
54 fma(double x, double y, double z)
56 static const double split = 0x1p27 + 1.0;
57 double xs, ys, zs;
58 double c, cc, hx, hy, p, q, tx, ty;
59 double r, rr, s;
60 int oround;
61 int ex, ey, ez;
62 int spread;
64 if (z == 0.0)
65 return (x * y);
66 if (x == 0.0 || y == 0.0)
67 return (x * y + z);
69 /* Results of frexp() are undefined for these cases. */
70 if (!isfinite(x) || !isfinite(y) || !isfinite(z))
71 return (x * y + z);
73 xs = frexp(x, &ex);
74 ys = frexp(y, &ey);
75 zs = frexp(z, &ez);
76 oround = fegetround();
77 spread = ex + ey - ez;
80 * If x * y and z are many orders of magnitude apart, the scaling
81 * will overflow, so we handle these cases specially. Rounding
82 * modes other than FE_TONEAREST are painful.
84 if (spread > DBL_MANT_DIG * 2) {
85 fenv_t env;
86 feraiseexcept(FE_INEXACT);
87 switch(oround) {
88 case FE_TONEAREST:
89 return (x * y);
90 case FE_TOWARDZERO:
91 if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
92 return (x * y);
93 feholdexcept(&env);
94 r = x * y;
95 if (!fetestexcept(FE_INEXACT))
96 r = nextafter(r, 0);
97 feupdateenv(&env);
98 return (r);
99 case FE_DOWNWARD:
100 if (z > 0.0)
101 return (x * y);
102 feholdexcept(&env);
103 r = x * y;
104 if (!fetestexcept(FE_INEXACT))
105 r = nextafter(r, -INFINITY);
106 feupdateenv(&env);
107 return (r);
108 default: /* FE_UPWARD */
109 if (z < 0.0)
110 return (x * y);
111 feholdexcept(&env);
112 r = x * y;
113 if (!fetestexcept(FE_INEXACT))
114 r = nextafter(r, INFINITY);
115 feupdateenv(&env);
116 return (r);
119 if (spread < -DBL_MANT_DIG) {
120 feraiseexcept(FE_INEXACT);
121 if (!isnormal(z))
122 feraiseexcept(FE_UNDERFLOW);
123 switch (oround) {
124 case FE_TONEAREST:
125 return (z);
126 case FE_TOWARDZERO:
127 if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
128 return (z);
129 else
130 return (nextafter(z, 0));
131 case FE_DOWNWARD:
132 if (x > 0.0 ^ y < 0.0)
133 return (z);
134 else
135 return (nextafter(z, -INFINITY));
136 default: /* FE_UPWARD */
137 if (x > 0.0 ^ y < 0.0)
138 return (nextafter(z, INFINITY));
139 else
140 return (z);
145 * Use Dekker's algorithm to perform the multiplication and
146 * subsequent addition in twice the machine precision.
147 * Arrange so that x * y = c + cc, and x * y + z = r + rr.
149 fesetround(FE_TONEAREST);
151 p = xs * split;
152 hx = xs - p;
153 hx += p;
154 tx = xs - hx;
156 p = ys * split;
157 hy = ys - p;
158 hy += p;
159 ty = ys - hy;
161 p = hx * hy;
162 q = hx * ty + tx * hy;
163 c = p + q;
164 cc = p - c + q + tx * ty;
166 zs = ldexp(zs, -spread);
167 r = c + zs;
168 s = r - c;
169 rr = (c - (r - s)) + (zs - s) + cc;
171 spread = ex + ey;
172 if (spread + ilogb(r) > -1023) {
173 fesetround(oround);
174 r = r + rr;
175 } else {
177 * The result is subnormal, so we round before scaling to
178 * avoid double rounding.
180 p = ldexp(copysign(0x1p-1022, r), -spread);
181 c = r + p;
182 s = c - r;
183 cc = (r - (c - s)) + (p - s) + rr;
184 fesetround(oround);
185 r = (c + cc) - p;
187 return (ldexp(r, spread));
189 #else /* LDBL_MANT_DIG == 113 */
191 * 113 bits of precision is more than twice the precision of a double,
192 * so it is enough to represent the intermediate product exactly.
194 double
195 fma(double x, double y, double z)
197 return ((long double)x * y + z);
199 #endif /* LDBL_MANT_DIG != 113 */
201 #if (LDBL_MANT_DIG == 53)
202 /* Alias fma -> fmal */
203 AROS_MAKE_ASM_SYM(typeof(fmal), fmal, AROS_CSYM_FROM_ASM_NAME(fmal), AROS_CSYM_FROM_ASM_NAME(fma));
204 AROS_EXPORT_ASM_SYM(AROS_CSYM_FROM_ASM_NAME(fmal));
205 #endif