alsa.audio: move handling of XRUN when writting to the slave task
[AROS.git] / workbench / devs / networks / e1000 / e1000_nvm.c
blob69b1ca74065cf11c95365bb4c660e13633478c3f
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include "e1000_api.h"
31 static void e1000_reload_nvm_generic(struct e1000_hw *hw);
33 /**
34 * e1000_init_nvm_ops_generic - Initialize NVM function pointers
35 * @hw: pointer to the HW structure
37 * Setups up the function pointers to no-op functions
38 **/
39 void e1000_init_nvm_ops_generic(struct e1000_hw *hw)
41 struct e1000_nvm_info *nvm = &hw->nvm;
42 DEBUGFUNC("e1000_init_nvm_ops_generic");
44 /* Initialize function pointers */
45 nvm->ops.init_params = e1000_null_ops_generic;
46 nvm->ops.acquire = e1000_null_ops_generic;
47 nvm->ops.read = e1000_null_read_nvm;
48 nvm->ops.release = e1000_null_nvm_generic;
49 nvm->ops.reload = e1000_reload_nvm_generic;
50 nvm->ops.update = e1000_null_ops_generic;
51 nvm->ops.valid_led_default = e1000_null_led_default;
52 nvm->ops.validate = e1000_null_ops_generic;
53 nvm->ops.write = e1000_null_write_nvm;
56 /**
57 * e1000_null_nvm_read - No-op function, return 0
58 * @hw: pointer to the HW structure
59 **/
60 s32 e1000_null_read_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c)
62 DEBUGFUNC("e1000_null_read_nvm");
63 return E1000_SUCCESS;
66 /**
67 * e1000_null_nvm_generic - No-op function, return void
68 * @hw: pointer to the HW structure
69 **/
70 void e1000_null_nvm_generic(struct e1000_hw *hw)
72 DEBUGFUNC("e1000_null_nvm_generic");
73 return;
76 /**
77 * e1000_null_led_default - No-op function, return 0
78 * @hw: pointer to the HW structure
79 **/
80 s32 e1000_null_led_default(struct e1000_hw *hw, u16 *data)
82 DEBUGFUNC("e1000_null_led_default");
83 return E1000_SUCCESS;
86 /**
87 * e1000_null_write_nvm - No-op function, return 0
88 * @hw: pointer to the HW structure
89 **/
90 s32 e1000_null_write_nvm(struct e1000_hw *hw, u16 a, u16 b, u16 *c)
92 DEBUGFUNC("e1000_null_write_nvm");
93 return E1000_SUCCESS;
96 /**
97 * e1000_raise_eec_clk - Raise EEPROM clock
98 * @hw: pointer to the HW structure
99 * @eecd: pointer to the EEPROM
101 * Enable/Raise the EEPROM clock bit.
103 static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
105 *eecd = *eecd | E1000_EECD_SK;
106 E1000_WRITE_REG(hw, E1000_EECD, *eecd);
107 E1000_WRITE_FLUSH(hw);
108 usec_delay(hw->nvm.delay_usec);
112 * e1000_lower_eec_clk - Lower EEPROM clock
113 * @hw: pointer to the HW structure
114 * @eecd: pointer to the EEPROM
116 * Clear/Lower the EEPROM clock bit.
118 static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
120 *eecd = *eecd & ~E1000_EECD_SK;
121 E1000_WRITE_REG(hw, E1000_EECD, *eecd);
122 E1000_WRITE_FLUSH(hw);
123 usec_delay(hw->nvm.delay_usec);
127 * e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
128 * @hw: pointer to the HW structure
129 * @data: data to send to the EEPROM
130 * @count: number of bits to shift out
132 * We need to shift 'count' bits out to the EEPROM. So, the value in the
133 * "data" parameter will be shifted out to the EEPROM one bit at a time.
134 * In order to do this, "data" must be broken down into bits.
136 static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
138 struct e1000_nvm_info *nvm = &hw->nvm;
139 u32 eecd = E1000_READ_REG(hw, E1000_EECD);
140 u32 mask;
142 DEBUGFUNC("e1000_shift_out_eec_bits");
144 mask = 0x01 << (count - 1);
145 if (nvm->type == e1000_nvm_eeprom_microwire)
146 eecd &= ~E1000_EECD_DO;
147 else
148 if (nvm->type == e1000_nvm_eeprom_spi)
149 eecd |= E1000_EECD_DO;
151 do {
152 eecd &= ~E1000_EECD_DI;
154 if (data & mask)
155 eecd |= E1000_EECD_DI;
157 E1000_WRITE_REG(hw, E1000_EECD, eecd);
158 E1000_WRITE_FLUSH(hw);
160 usec_delay(nvm->delay_usec);
162 e1000_raise_eec_clk(hw, &eecd);
163 e1000_lower_eec_clk(hw, &eecd);
165 mask >>= 1;
166 } while (mask);
168 eecd &= ~E1000_EECD_DI;
169 E1000_WRITE_REG(hw, E1000_EECD, eecd);
173 * e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
174 * @hw: pointer to the HW structure
175 * @count: number of bits to shift in
177 * In order to read a register from the EEPROM, we need to shift 'count' bits
178 * in from the EEPROM. Bits are "shifted in" by raising the clock input to
179 * the EEPROM (setting the SK bit), and then reading the value of the data out
180 * "DO" bit. During this "shifting in" process the data in "DI" bit should
181 * always be clear.
183 static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
185 u32 eecd;
186 u32 i;
187 u16 data;
189 DEBUGFUNC("e1000_shift_in_eec_bits");
191 eecd = E1000_READ_REG(hw, E1000_EECD);
193 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
194 data = 0;
196 for (i = 0; i < count; i++) {
197 data <<= 1;
198 e1000_raise_eec_clk(hw, &eecd);
200 eecd = E1000_READ_REG(hw, E1000_EECD);
202 eecd &= ~E1000_EECD_DI;
203 if (eecd & E1000_EECD_DO)
204 data |= 1;
206 e1000_lower_eec_clk(hw, &eecd);
209 return data;
213 * e1000_poll_eerd_eewr_done - Poll for EEPROM read/write completion
214 * @hw: pointer to the HW structure
215 * @ee_reg: EEPROM flag for polling
217 * Polls the EEPROM status bit for either read or write completion based
218 * upon the value of 'ee_reg'.
220 s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
222 u32 attempts = 100000;
223 u32 i, reg = 0;
224 s32 ret_val = -E1000_ERR_NVM;
226 DEBUGFUNC("e1000_poll_eerd_eewr_done");
228 for (i = 0; i < attempts; i++) {
229 if (ee_reg == E1000_NVM_POLL_READ)
230 reg = E1000_READ_REG(hw, E1000_EERD);
231 else
232 reg = E1000_READ_REG(hw, E1000_EEWR);
234 if (reg & E1000_NVM_RW_REG_DONE) {
235 ret_val = E1000_SUCCESS;
236 break;
239 usec_delay(5);
242 return ret_val;
246 * e1000_acquire_nvm_generic - Generic request for access to EEPROM
247 * @hw: pointer to the HW structure
249 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
250 * Return successful if access grant bit set, else clear the request for
251 * EEPROM access and return -E1000_ERR_NVM (-1).
253 s32 e1000_acquire_nvm_generic(struct e1000_hw *hw)
255 u32 eecd = E1000_READ_REG(hw, E1000_EECD);
256 s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
257 s32 ret_val = E1000_SUCCESS;
259 DEBUGFUNC("e1000_acquire_nvm_generic");
261 E1000_WRITE_REG(hw, E1000_EECD, eecd | E1000_EECD_REQ);
262 eecd = E1000_READ_REG(hw, E1000_EECD);
264 while (timeout) {
265 if (eecd & E1000_EECD_GNT)
266 break;
267 usec_delay(5);
268 eecd = E1000_READ_REG(hw, E1000_EECD);
269 timeout--;
272 if (!timeout) {
273 eecd &= ~E1000_EECD_REQ;
274 E1000_WRITE_REG(hw, E1000_EECD, eecd);
275 DEBUGOUT("Could not acquire NVM grant\n");
276 ret_val = -E1000_ERR_NVM;
279 return ret_val;
283 * e1000_standby_nvm - Return EEPROM to standby state
284 * @hw: pointer to the HW structure
286 * Return the EEPROM to a standby state.
288 static void e1000_standby_nvm(struct e1000_hw *hw)
290 struct e1000_nvm_info *nvm = &hw->nvm;
291 u32 eecd = E1000_READ_REG(hw, E1000_EECD);
293 DEBUGFUNC("e1000_standby_nvm");
295 if (nvm->type == e1000_nvm_eeprom_microwire) {
296 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
297 E1000_WRITE_REG(hw, E1000_EECD, eecd);
298 E1000_WRITE_FLUSH(hw);
299 usec_delay(nvm->delay_usec);
301 e1000_raise_eec_clk(hw, &eecd);
303 /* Select EEPROM */
304 eecd |= E1000_EECD_CS;
305 E1000_WRITE_REG(hw, E1000_EECD, eecd);
306 E1000_WRITE_FLUSH(hw);
307 usec_delay(nvm->delay_usec);
309 e1000_lower_eec_clk(hw, &eecd);
310 } else
311 if (nvm->type == e1000_nvm_eeprom_spi) {
312 /* Toggle CS to flush commands */
313 eecd |= E1000_EECD_CS;
314 E1000_WRITE_REG(hw, E1000_EECD, eecd);
315 E1000_WRITE_FLUSH(hw);
316 usec_delay(nvm->delay_usec);
317 eecd &= ~E1000_EECD_CS;
318 E1000_WRITE_REG(hw, E1000_EECD, eecd);
319 E1000_WRITE_FLUSH(hw);
320 usec_delay(nvm->delay_usec);
325 * e1000_stop_nvm - Terminate EEPROM command
326 * @hw: pointer to the HW structure
328 * Terminates the current command by inverting the EEPROM's chip select pin.
330 void e1000_stop_nvm(struct e1000_hw *hw)
332 u32 eecd;
334 DEBUGFUNC("e1000_stop_nvm");
336 eecd = E1000_READ_REG(hw, E1000_EECD);
337 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
338 /* Pull CS high */
339 eecd |= E1000_EECD_CS;
340 e1000_lower_eec_clk(hw, &eecd);
341 } else if (hw->nvm.type == e1000_nvm_eeprom_microwire) {
342 /* CS on Microwire is active-high */
343 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
344 E1000_WRITE_REG(hw, E1000_EECD, eecd);
345 e1000_raise_eec_clk(hw, &eecd);
346 e1000_lower_eec_clk(hw, &eecd);
351 * e1000_release_nvm_generic - Release exclusive access to EEPROM
352 * @hw: pointer to the HW structure
354 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
356 void e1000_release_nvm_generic(struct e1000_hw *hw)
358 u32 eecd;
360 DEBUGFUNC("e1000_release_nvm_generic");
362 e1000_stop_nvm(hw);
364 eecd = E1000_READ_REG(hw, E1000_EECD);
365 eecd &= ~E1000_EECD_REQ;
366 E1000_WRITE_REG(hw, E1000_EECD, eecd);
370 * e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
371 * @hw: pointer to the HW structure
373 * Setups the EEPROM for reading and writing.
375 static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
377 struct e1000_nvm_info *nvm = &hw->nvm;
378 u32 eecd = E1000_READ_REG(hw, E1000_EECD);
379 s32 ret_val = E1000_SUCCESS;
380 u16 timeout = 0;
381 u8 spi_stat_reg;
383 DEBUGFUNC("e1000_ready_nvm_eeprom");
385 if (nvm->type == e1000_nvm_eeprom_microwire) {
386 /* Clear SK and DI */
387 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
388 E1000_WRITE_REG(hw, E1000_EECD, eecd);
389 /* Set CS */
390 eecd |= E1000_EECD_CS;
391 E1000_WRITE_REG(hw, E1000_EECD, eecd);
392 } else
393 if (nvm->type == e1000_nvm_eeprom_spi) {
394 /* Clear SK and CS */
395 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
396 E1000_WRITE_REG(hw, E1000_EECD, eecd);
397 usec_delay(1);
398 timeout = NVM_MAX_RETRY_SPI;
401 * Read "Status Register" repeatedly until the LSB is cleared.
402 * The EEPROM will signal that the command has been completed
403 * by clearing bit 0 of the internal status register. If it's
404 * not cleared within 'timeout', then error out.
406 while (timeout) {
407 e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
408 hw->nvm.opcode_bits);
409 spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
410 if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
411 break;
413 usec_delay(5);
414 e1000_standby_nvm(hw);
415 timeout--;
418 if (!timeout) {
419 DEBUGOUT("SPI NVM Status error\n");
420 ret_val = -E1000_ERR_NVM;
421 goto out;
425 out:
426 return ret_val;
430 * e1000_read_nvm_spi - Read EEPROM's using SPI
431 * @hw: pointer to the HW structure
432 * @offset: offset of word in the EEPROM to read
433 * @words: number of words to read
434 * @data: word read from the EEPROM
436 * Reads a 16 bit word from the EEPROM.
438 s32 e1000_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
440 struct e1000_nvm_info *nvm = &hw->nvm;
441 u32 i = 0;
442 s32 ret_val;
443 u16 word_in;
444 u8 read_opcode = NVM_READ_OPCODE_SPI;
446 DEBUGFUNC("e1000_read_nvm_spi");
449 * A check for invalid values: offset too large, too many words,
450 * and not enough words.
452 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
453 (words == 0)) {
454 DEBUGOUT("nvm parameter(s) out of bounds\n");
455 ret_val = -E1000_ERR_NVM;
456 goto out;
459 ret_val = nvm->ops.acquire(hw);
460 if (ret_val)
461 goto out;
463 ret_val = e1000_ready_nvm_eeprom(hw);
464 if (ret_val)
465 goto release;
467 e1000_standby_nvm(hw);
469 if ((nvm->address_bits == 8) && (offset >= 128))
470 read_opcode |= NVM_A8_OPCODE_SPI;
472 /* Send the READ command (opcode + addr) */
473 e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
474 e1000_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
477 * Read the data. SPI NVMs increment the address with each byte
478 * read and will roll over if reading beyond the end. This allows
479 * us to read the whole NVM from any offset
481 for (i = 0; i < words; i++) {
482 word_in = e1000_shift_in_eec_bits(hw, 16);
483 data[i] = (word_in >> 8) | (word_in << 8);
486 release:
487 nvm->ops.release(hw);
489 out:
490 return ret_val;
494 * e1000_read_nvm_microwire - Reads EEPROM's using microwire
495 * @hw: pointer to the HW structure
496 * @offset: offset of word in the EEPROM to read
497 * @words: number of words to read
498 * @data: word read from the EEPROM
500 * Reads a 16 bit word from the EEPROM.
502 s32 e1000_read_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
503 u16 *data)
505 struct e1000_nvm_info *nvm = &hw->nvm;
506 u32 i = 0;
507 s32 ret_val;
508 u8 read_opcode = NVM_READ_OPCODE_MICROWIRE;
510 DEBUGFUNC("e1000_read_nvm_microwire");
513 * A check for invalid values: offset too large, too many words,
514 * and not enough words.
516 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
517 (words == 0)) {
518 DEBUGOUT("nvm parameter(s) out of bounds\n");
519 ret_val = -E1000_ERR_NVM;
520 goto out;
523 ret_val = nvm->ops.acquire(hw);
524 if (ret_val)
525 goto out;
527 ret_val = e1000_ready_nvm_eeprom(hw);
528 if (ret_val)
529 goto release;
531 for (i = 0; i < words; i++) {
532 /* Send the READ command (opcode + addr) */
533 e1000_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
534 e1000_shift_out_eec_bits(hw, (u16)(offset + i),
535 nvm->address_bits);
538 * Read the data. For microwire, each word requires the
539 * overhead of setup and tear-down.
541 data[i] = e1000_shift_in_eec_bits(hw, 16);
542 e1000_standby_nvm(hw);
545 release:
546 nvm->ops.release(hw);
548 out:
549 return ret_val;
553 * e1000_read_nvm_eerd - Reads EEPROM using EERD register
554 * @hw: pointer to the HW structure
555 * @offset: offset of word in the EEPROM to read
556 * @words: number of words to read
557 * @data: word read from the EEPROM
559 * Reads a 16 bit word from the EEPROM using the EERD register.
561 s32 e1000_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
563 struct e1000_nvm_info *nvm = &hw->nvm;
564 u32 i, eerd = 0;
565 s32 ret_val = E1000_SUCCESS;
567 DEBUGFUNC("e1000_read_nvm_eerd");
570 * A check for invalid values: offset too large, too many words,
571 * too many words for the offset, and not enough words.
573 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
574 (words == 0)) {
575 DEBUGOUT("nvm parameter(s) out of bounds\n");
576 ret_val = -E1000_ERR_NVM;
577 goto out;
580 for (i = 0; i < words; i++) {
581 eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
582 E1000_NVM_RW_REG_START;
584 E1000_WRITE_REG(hw, E1000_EERD, eerd);
585 ret_val = e1000_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
586 if (ret_val)
587 break;
589 data[i] = (E1000_READ_REG(hw, E1000_EERD) >>
590 E1000_NVM_RW_REG_DATA);
593 out:
594 return ret_val;
598 * e1000_write_nvm_spi - Write to EEPROM using SPI
599 * @hw: pointer to the HW structure
600 * @offset: offset within the EEPROM to be written to
601 * @words: number of words to write
602 * @data: 16 bit word(s) to be written to the EEPROM
604 * Writes data to EEPROM at offset using SPI interface.
606 * If e1000_update_nvm_checksum is not called after this function , the
607 * EEPROM will most likely contain an invalid checksum.
609 s32 e1000_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
611 struct e1000_nvm_info *nvm = &hw->nvm;
612 s32 ret_val;
613 u16 widx = 0;
615 DEBUGFUNC("e1000_write_nvm_spi");
618 * A check for invalid values: offset too large, too many words,
619 * and not enough words.
621 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
622 (words == 0)) {
623 DEBUGOUT("nvm parameter(s) out of bounds\n");
624 ret_val = -E1000_ERR_NVM;
625 goto out;
628 ret_val = nvm->ops.acquire(hw);
629 if (ret_val)
630 goto out;
632 while (widx < words) {
633 u8 write_opcode = NVM_WRITE_OPCODE_SPI;
635 ret_val = e1000_ready_nvm_eeprom(hw);
636 if (ret_val)
637 goto release;
639 e1000_standby_nvm(hw);
641 /* Send the WRITE ENABLE command (8 bit opcode) */
642 e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
643 nvm->opcode_bits);
645 e1000_standby_nvm(hw);
648 * Some SPI eeproms use the 8th address bit embedded in the
649 * opcode
651 if ((nvm->address_bits == 8) && (offset >= 128))
652 write_opcode |= NVM_A8_OPCODE_SPI;
654 /* Send the Write command (8-bit opcode + addr) */
655 e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
656 e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
657 nvm->address_bits);
659 /* Loop to allow for up to whole page write of eeprom */
660 while (widx < words) {
661 u16 word_out = data[widx];
662 word_out = (word_out >> 8) | (word_out << 8);
663 e1000_shift_out_eec_bits(hw, word_out, 16);
664 widx++;
666 if ((((offset + widx) * 2) % nvm->page_size) == 0) {
667 e1000_standby_nvm(hw);
668 break;
673 msec_delay(10);
674 release:
675 nvm->ops.release(hw);
677 out:
678 return ret_val;
682 * e1000_write_nvm_microwire - Writes EEPROM using microwire
683 * @hw: pointer to the HW structure
684 * @offset: offset within the EEPROM to be written to
685 * @words: number of words to write
686 * @data: 16 bit word(s) to be written to the EEPROM
688 * Writes data to EEPROM at offset using microwire interface.
690 * If e1000_update_nvm_checksum is not called after this function , the
691 * EEPROM will most likely contain an invalid checksum.
693 s32 e1000_write_nvm_microwire(struct e1000_hw *hw, u16 offset, u16 words,
694 u16 *data)
696 struct e1000_nvm_info *nvm = &hw->nvm;
697 s32 ret_val;
698 u32 eecd;
699 u16 words_written = 0;
700 u16 widx = 0;
702 DEBUGFUNC("e1000_write_nvm_microwire");
705 * A check for invalid values: offset too large, too many words,
706 * and not enough words.
708 if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
709 (words == 0)) {
710 DEBUGOUT("nvm parameter(s) out of bounds\n");
711 ret_val = -E1000_ERR_NVM;
712 goto out;
715 ret_val = nvm->ops.acquire(hw);
716 if (ret_val)
717 goto out;
719 ret_val = e1000_ready_nvm_eeprom(hw);
720 if (ret_val)
721 goto release;
723 e1000_shift_out_eec_bits(hw, NVM_EWEN_OPCODE_MICROWIRE,
724 (u16)(nvm->opcode_bits + 2));
726 e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
728 e1000_standby_nvm(hw);
730 while (words_written < words) {
731 e1000_shift_out_eec_bits(hw, NVM_WRITE_OPCODE_MICROWIRE,
732 nvm->opcode_bits);
734 e1000_shift_out_eec_bits(hw, (u16)(offset + words_written),
735 nvm->address_bits);
737 e1000_shift_out_eec_bits(hw, data[words_written], 16);
739 e1000_standby_nvm(hw);
741 for (widx = 0; widx < 200; widx++) {
742 eecd = E1000_READ_REG(hw, E1000_EECD);
743 if (eecd & E1000_EECD_DO)
744 break;
745 usec_delay(50);
748 if (widx == 200) {
749 DEBUGOUT("NVM Write did not complete\n");
750 ret_val = -E1000_ERR_NVM;
751 goto release;
754 e1000_standby_nvm(hw);
756 words_written++;
759 e1000_shift_out_eec_bits(hw, NVM_EWDS_OPCODE_MICROWIRE,
760 (u16)(nvm->opcode_bits + 2));
762 e1000_shift_out_eec_bits(hw, 0, (u16)(nvm->address_bits - 2));
764 release:
765 nvm->ops.release(hw);
767 out:
768 return ret_val;
772 * e1000_read_pba_num_generic - Read device part number
773 * @hw: pointer to the HW structure
774 * @pba_num: pointer to device part number
776 * Reads the product board assembly (PBA) number from the EEPROM and stores
777 * the value in pba_num.
779 s32 e1000_read_pba_num_generic(struct e1000_hw *hw, u32 *pba_num)
781 s32 ret_val;
782 u16 nvm_data;
784 DEBUGFUNC("e1000_read_pba_num_generic");
786 ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
787 if (ret_val) {
788 DEBUGOUT("NVM Read Error\n");
789 goto out;
791 *pba_num = (u32)(nvm_data << 16);
793 ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &nvm_data);
794 if (ret_val) {
795 DEBUGOUT("NVM Read Error\n");
796 goto out;
798 *pba_num |= nvm_data;
800 out:
801 return ret_val;
805 * e1000_read_mac_addr_generic - Read device MAC address
806 * @hw: pointer to the HW structure
808 * Reads the device MAC address from the EEPROM and stores the value.
809 * Since devices with two ports use the same EEPROM, we increment the
810 * last bit in the MAC address for the second port.
812 s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
814 u32 rar_high;
815 u32 rar_low;
816 u16 i;
818 rar_high = E1000_READ_REG(hw, E1000_RAH(0));
819 rar_low = E1000_READ_REG(hw, E1000_RAL(0));
821 for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
822 hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
824 for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
825 hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
827 for (i = 0; i < ETH_ADDR_LEN; i++)
828 hw->mac.addr[i] = hw->mac.perm_addr[i];
830 return E1000_SUCCESS;
834 * e1000_validate_nvm_checksum_generic - Validate EEPROM checksum
835 * @hw: pointer to the HW structure
837 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
838 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
840 s32 e1000_validate_nvm_checksum_generic(struct e1000_hw *hw)
842 s32 ret_val = E1000_SUCCESS;
843 u16 checksum = 0;
844 u16 i, nvm_data;
846 DEBUGFUNC("e1000_validate_nvm_checksum_generic");
848 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
849 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
850 if (ret_val) {
851 DEBUGOUT("NVM Read Error\n");
852 goto out;
854 checksum += nvm_data;
857 if (checksum != (u16) NVM_SUM) {
858 DEBUGOUT("NVM Checksum Invalid\n");
859 ret_val = -E1000_ERR_NVM;
860 goto out;
863 out:
864 return ret_val;
868 * e1000_update_nvm_checksum_generic - Update EEPROM checksum
869 * @hw: pointer to the HW structure
871 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
872 * up to the checksum. Then calculates the EEPROM checksum and writes the
873 * value to the EEPROM.
875 s32 e1000_update_nvm_checksum_generic(struct e1000_hw *hw)
877 s32 ret_val;
878 u16 checksum = 0;
879 u16 i, nvm_data;
881 DEBUGFUNC("e1000_update_nvm_checksum");
883 for (i = 0; i < NVM_CHECKSUM_REG; i++) {
884 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
885 if (ret_val) {
886 DEBUGOUT("NVM Read Error while updating checksum.\n");
887 goto out;
889 checksum += nvm_data;
891 checksum = (u16) NVM_SUM - checksum;
892 ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
893 if (ret_val)
894 DEBUGOUT("NVM Write Error while updating checksum.\n");
896 out:
897 return ret_val;
901 * e1000_reload_nvm_generic - Reloads EEPROM
902 * @hw: pointer to the HW structure
904 * Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
905 * extended control register.
907 static void e1000_reload_nvm_generic(struct e1000_hw *hw)
909 u32 ctrl_ext;
911 DEBUGFUNC("e1000_reload_nvm_generic");
913 usec_delay(10);
914 ctrl_ext = E1000_READ_REG(hw, E1000_CTRL_EXT);
915 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
916 E1000_WRITE_REG(hw, E1000_CTRL_EXT, ctrl_ext);
917 E1000_WRITE_FLUSH(hw);