4 * Copyright (C) 1991-1997, Thomas G. Lane.
5 * Modified 2006-2012 by Guido Vollbeding.
6 * This file is part of the Independent JPEG Group's software.
7 * For conditions of distribution and use, see the accompanying README file.
9 * This file contains Huffman entropy decoding routines.
10 * Both sequential and progressive modes are supported in this single module.
12 * Much of the complexity here has to do with supporting input suspension.
13 * If the data source module demands suspension, we want to be able to back
14 * up to the start of the current MCU. To do this, we copy state variables
15 * into local working storage, and update them back to the permanent
16 * storage only upon successful completion of an MCU.
19 #define JPEG_INTERNALS
24 /* Derived data constructed for each Huffman table */
26 #define HUFF_LOOKAHEAD 8 /* # of bits of lookahead */
29 /* Basic tables: (element [0] of each array is unused) */
30 INT32 maxcode
[18]; /* largest code of length k (-1 if none) */
31 /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */
32 INT32 valoffset
[17]; /* huffval[] offset for codes of length k */
33 /* valoffset[k] = huffval[] index of 1st symbol of code length k, less
34 * the smallest code of length k; so given a code of length k, the
35 * corresponding symbol is huffval[code + valoffset[k]]
38 /* Link to public Huffman table (needed only in jpeg_huff_decode) */
41 /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of
42 * the input data stream. If the next Huffman code is no more
43 * than HUFF_LOOKAHEAD bits long, we can obtain its length and
44 * the corresponding symbol directly from these tables.
46 int look_nbits
[1<<HUFF_LOOKAHEAD
]; /* # bits, or 0 if too long */
47 UINT8 look_sym
[1<<HUFF_LOOKAHEAD
]; /* symbol, or unused */
52 * Fetching the next N bits from the input stream is a time-critical operation
53 * for the Huffman decoders. We implement it with a combination of inline
54 * macros and out-of-line subroutines. Note that N (the number of bits
55 * demanded at one time) never exceeds 15 for JPEG use.
57 * We read source bytes into get_buffer and dole out bits as needed.
58 * If get_buffer already contains enough bits, they are fetched in-line
59 * by the macros CHECK_BIT_BUFFER and GET_BITS. When there aren't enough
60 * bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer
61 * as full as possible (not just to the number of bits needed; this
62 * prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer).
63 * Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension.
64 * On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains
65 * at least the requested number of bits --- dummy zeroes are inserted if
69 typedef INT32 bit_buf_type
; /* type of bit-extraction buffer */
70 #define BIT_BUF_SIZE 32 /* size of buffer in bits */
72 /* If long is > 32 bits on your machine, and shifting/masking longs is
73 * reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE
74 * appropriately should be a win. Unfortunately we can't define the size
75 * with something like #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8)
76 * because not all machines measure sizeof in 8-bit bytes.
79 typedef struct { /* Bitreading state saved across MCUs */
80 bit_buf_type get_buffer
; /* current bit-extraction buffer */
81 int bits_left
; /* # of unused bits in it */
84 typedef struct { /* Bitreading working state within an MCU */
85 /* Current data source location */
86 /* We need a copy, rather than munging the original, in case of suspension */
87 const JOCTET
* next_input_byte
; /* => next byte to read from source */
88 size_t bytes_in_buffer
; /* # of bytes remaining in source buffer */
89 /* Bit input buffer --- note these values are kept in register variables,
90 * not in this struct, inside the inner loops.
92 bit_buf_type get_buffer
; /* current bit-extraction buffer */
93 int bits_left
; /* # of unused bits in it */
94 /* Pointer needed by jpeg_fill_bit_buffer. */
95 j_decompress_ptr cinfo
; /* back link to decompress master record */
96 } bitread_working_state
;
98 /* Macros to declare and load/save bitread local variables. */
99 #define BITREAD_STATE_VARS \
100 register bit_buf_type get_buffer; \
101 register int bits_left; \
102 bitread_working_state br_state
104 #define BITREAD_LOAD_STATE(cinfop,permstate) \
105 br_state.cinfo = cinfop; \
106 br_state.next_input_byte = cinfop->src->next_input_byte; \
107 br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \
108 get_buffer = permstate.get_buffer; \
109 bits_left = permstate.bits_left;
111 #define BITREAD_SAVE_STATE(cinfop,permstate) \
112 cinfop->src->next_input_byte = br_state.next_input_byte; \
113 cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \
114 permstate.get_buffer = get_buffer; \
115 permstate.bits_left = bits_left
118 * These macros provide the in-line portion of bit fetching.
119 * Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer
120 * before using GET_BITS, PEEK_BITS, or DROP_BITS.
121 * The variables get_buffer and bits_left are assumed to be locals,
122 * but the state struct might not be (jpeg_huff_decode needs this).
123 * CHECK_BIT_BUFFER(state,n,action);
124 * Ensure there are N bits in get_buffer; if suspend, take action.
127 * val = PEEK_BITS(n);
128 * Fetch next N bits without removing them from the buffer.
130 * Discard next N bits.
131 * The value N should be a simple variable, not an expression, because it
132 * is evaluated multiple times.
135 #define CHECK_BIT_BUFFER(state,nbits,action) \
136 { if (bits_left < (nbits)) { \
137 if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits)) \
139 get_buffer = (state).get_buffer; bits_left = (state).bits_left; } }
141 #define GET_BITS(nbits) \
142 (((int) (get_buffer >> (bits_left -= (nbits)))) & BIT_MASK(nbits))
144 #define PEEK_BITS(nbits) \
145 (((int) (get_buffer >> (bits_left - (nbits)))) & BIT_MASK(nbits))
147 #define DROP_BITS(nbits) \
148 (bits_left -= (nbits))
152 * Code for extracting next Huffman-coded symbol from input bit stream.
153 * Again, this is time-critical and we make the main paths be macros.
155 * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits
156 * without looping. Usually, more than 95% of the Huffman codes will be 8
157 * or fewer bits long. The few overlength codes are handled with a loop,
158 * which need not be inline code.
160 * Notes about the HUFF_DECODE macro:
161 * 1. Near the end of the data segment, we may fail to get enough bits
162 * for a lookahead. In that case, we do it the hard way.
163 * 2. If the lookahead table contains no entry, the next code must be
164 * more than HUFF_LOOKAHEAD bits long.
165 * 3. jpeg_huff_decode returns -1 if forced to suspend.
168 #define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \
169 { register int nb, look; \
170 if (bits_left < HUFF_LOOKAHEAD) { \
171 if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \
172 get_buffer = state.get_buffer; bits_left = state.bits_left; \
173 if (bits_left < HUFF_LOOKAHEAD) { \
174 nb = 1; goto slowlabel; \
177 look = PEEK_BITS(HUFF_LOOKAHEAD); \
178 if ((nb = htbl->look_nbits[look]) != 0) { \
180 result = htbl->look_sym[look]; \
182 nb = HUFF_LOOKAHEAD+1; \
184 if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \
186 get_buffer = state.get_buffer; bits_left = state.bits_left; \
192 * Expanded entropy decoder object for Huffman decoding.
194 * The savable_state subrecord contains fields that change within an MCU,
195 * but must not be updated permanently until we complete the MCU.
199 unsigned int EOBRUN
; /* remaining EOBs in EOBRUN */
200 int last_dc_val
[MAX_COMPS_IN_SCAN
]; /* last DC coef for each component */
203 /* This macro is to work around compilers with missing or broken
204 * structure assignment. You'll need to fix this code if you have
205 * such a compiler and you change MAX_COMPS_IN_SCAN.
208 #ifndef NO_STRUCT_ASSIGN
209 #define ASSIGN_STATE(dest,src) ((dest) = (src))
211 #if MAX_COMPS_IN_SCAN == 4
212 #define ASSIGN_STATE(dest,src) \
213 ((dest).EOBRUN = (src).EOBRUN, \
214 (dest).last_dc_val[0] = (src).last_dc_val[0], \
215 (dest).last_dc_val[1] = (src).last_dc_val[1], \
216 (dest).last_dc_val[2] = (src).last_dc_val[2], \
217 (dest).last_dc_val[3] = (src).last_dc_val[3])
223 struct jpeg_entropy_decoder pub
; /* public fields */
225 /* These fields are loaded into local variables at start of each MCU.
226 * In case of suspension, we exit WITHOUT updating them.
228 bitread_perm_state bitstate
; /* Bit buffer at start of MCU */
229 savable_state saved
; /* Other state at start of MCU */
231 /* These fields are NOT loaded into local working state. */
232 boolean insufficient_data
; /* set TRUE after emitting warning */
233 unsigned int restarts_to_go
; /* MCUs left in this restart interval */
235 /* Following two fields used only in progressive mode */
237 /* Pointers to derived tables (these workspaces have image lifespan) */
238 d_derived_tbl
* derived_tbls
[NUM_HUFF_TBLS
];
240 d_derived_tbl
* ac_derived_tbl
; /* active table during an AC scan */
242 /* Following fields used only in sequential mode */
244 /* Pointers to derived tables (these workspaces have image lifespan) */
245 d_derived_tbl
* dc_derived_tbls
[NUM_HUFF_TBLS
];
246 d_derived_tbl
* ac_derived_tbls
[NUM_HUFF_TBLS
];
248 /* Precalculated info set up by start_pass for use in decode_mcu: */
250 /* Pointers to derived tables to be used for each block within an MCU */
251 d_derived_tbl
* dc_cur_tbls
[D_MAX_BLOCKS_IN_MCU
];
252 d_derived_tbl
* ac_cur_tbls
[D_MAX_BLOCKS_IN_MCU
];
253 /* Whether we care about the DC and AC coefficient values for each block */
254 int coef_limit
[D_MAX_BLOCKS_IN_MCU
];
255 } huff_entropy_decoder
;
257 typedef huff_entropy_decoder
* huff_entropy_ptr
;
260 static const int jpeg_zigzag_order
[8][8] = {
261 { 0, 1, 5, 6, 14, 15, 27, 28 },
262 { 2, 4, 7, 13, 16, 26, 29, 42 },
263 { 3, 8, 12, 17, 25, 30, 41, 43 },
264 { 9, 11, 18, 24, 31, 40, 44, 53 },
265 { 10, 19, 23, 32, 39, 45, 52, 54 },
266 { 20, 22, 33, 38, 46, 51, 55, 60 },
267 { 21, 34, 37, 47, 50, 56, 59, 61 },
268 { 35, 36, 48, 49, 57, 58, 62, 63 }
271 static const int jpeg_zigzag_order7
[7][7] = {
272 { 0, 1, 5, 6, 14, 15, 27 },
273 { 2, 4, 7, 13, 16, 26, 28 },
274 { 3, 8, 12, 17, 25, 29, 38 },
275 { 9, 11, 18, 24, 30, 37, 39 },
276 { 10, 19, 23, 31, 36, 40, 45 },
277 { 20, 22, 32, 35, 41, 44, 46 },
278 { 21, 33, 34, 42, 43, 47, 48 }
281 static const int jpeg_zigzag_order6
[6][6] = {
282 { 0, 1, 5, 6, 14, 15 },
283 { 2, 4, 7, 13, 16, 25 },
284 { 3, 8, 12, 17, 24, 26 },
285 { 9, 11, 18, 23, 27, 32 },
286 { 10, 19, 22, 28, 31, 33 },
287 { 20, 21, 29, 30, 34, 35 }
290 static const int jpeg_zigzag_order5
[5][5] = {
293 { 3, 8, 12, 16, 21 },
294 { 9, 11, 17, 20, 22 },
295 { 10, 18, 19, 23, 24 }
298 static const int jpeg_zigzag_order4
[4][4] = {
305 static const int jpeg_zigzag_order3
[3][3] = {
311 static const int jpeg_zigzag_order2
[2][2] = {
318 * Compute the derived values for a Huffman table.
319 * This routine also performs some validation checks on the table.
323 jpeg_make_d_derived_tbl (j_decompress_ptr cinfo
, boolean isDC
, int tblno
,
324 d_derived_tbl
** pdtbl
)
328 int p
, i
, l
, si
, numsymbols
;
331 unsigned int huffcode
[257];
334 /* Note that huffsize[] and huffcode[] are filled in code-length order,
335 * paralleling the order of the symbols themselves in htbl->huffval[].
338 /* Find the input Huffman table */
339 if (tblno
< 0 || tblno
>= NUM_HUFF_TBLS
)
340 ERREXIT1(cinfo
, JERR_NO_HUFF_TABLE
, tblno
);
342 isDC
? cinfo
->dc_huff_tbl_ptrs
[tblno
] : cinfo
->ac_huff_tbl_ptrs
[tblno
];
344 ERREXIT1(cinfo
, JERR_NO_HUFF_TABLE
, tblno
);
346 /* Allocate a workspace if we haven't already done so. */
348 *pdtbl
= (d_derived_tbl
*)
349 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
,
350 SIZEOF(d_derived_tbl
));
352 dtbl
->pub
= htbl
; /* fill in back link */
354 /* Figure C.1: make table of Huffman code length for each symbol */
357 for (l
= 1; l
<= 16; l
++) {
358 i
= (int) htbl
->bits
[l
];
359 if (i
< 0 || p
+ i
> 256) /* protect against table overrun */
360 ERREXIT(cinfo
, JERR_BAD_HUFF_TABLE
);
362 huffsize
[p
++] = (char) l
;
367 /* Figure C.2: generate the codes themselves */
368 /* We also validate that the counts represent a legal Huffman code tree. */
373 while (huffsize
[p
]) {
374 while (((int) huffsize
[p
]) == si
) {
375 huffcode
[p
++] = code
;
378 /* code is now 1 more than the last code used for codelength si; but
379 * it must still fit in si bits, since no code is allowed to be all ones.
381 if (((INT32
) code
) >= (((INT32
) 1) << si
))
382 ERREXIT(cinfo
, JERR_BAD_HUFF_TABLE
);
387 /* Figure F.15: generate decoding tables for bit-sequential decoding */
390 for (l
= 1; l
<= 16; l
++) {
392 /* valoffset[l] = huffval[] index of 1st symbol of code length l,
393 * minus the minimum code of length l
395 dtbl
->valoffset
[l
] = (INT32
) p
- (INT32
) huffcode
[p
];
397 dtbl
->maxcode
[l
] = huffcode
[p
-1]; /* maximum code of length l */
399 dtbl
->maxcode
[l
] = -1; /* -1 if no codes of this length */
402 dtbl
->maxcode
[17] = 0xFFFFFL
; /* ensures jpeg_huff_decode terminates */
404 /* Compute lookahead tables to speed up decoding.
405 * First we set all the table entries to 0, indicating "too long";
406 * then we iterate through the Huffman codes that are short enough and
407 * fill in all the entries that correspond to bit sequences starting
411 MEMZERO(dtbl
->look_nbits
, SIZEOF(dtbl
->look_nbits
));
414 for (l
= 1; l
<= HUFF_LOOKAHEAD
; l
++) {
415 for (i
= 1; i
<= (int) htbl
->bits
[l
]; i
++, p
++) {
416 /* l = current code's length, p = its index in huffcode[] & huffval[]. */
417 /* Generate left-justified code followed by all possible bit sequences */
418 lookbits
= huffcode
[p
] << (HUFF_LOOKAHEAD
-l
);
419 for (ctr
= 1 << (HUFF_LOOKAHEAD
-l
); ctr
> 0; ctr
--) {
420 dtbl
->look_nbits
[lookbits
] = l
;
421 dtbl
->look_sym
[lookbits
] = htbl
->huffval
[p
];
427 /* Validate symbols as being reasonable.
428 * For AC tables, we make no check, but accept all byte values 0..255.
429 * For DC tables, we require the symbols to be in range 0..15.
430 * (Tighter bounds could be applied depending on the data depth and mode,
431 * but this is sufficient to ensure safe decoding.)
434 for (i
= 0; i
< numsymbols
; i
++) {
435 int sym
= htbl
->huffval
[i
];
436 if (sym
< 0 || sym
> 15)
437 ERREXIT(cinfo
, JERR_BAD_HUFF_TABLE
);
444 * Out-of-line code for bit fetching.
445 * Note: current values of get_buffer and bits_left are passed as parameters,
446 * but are returned in the corresponding fields of the state struct.
448 * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
449 * of get_buffer to be used. (On machines with wider words, an even larger
450 * buffer could be used.) However, on some machines 32-bit shifts are
451 * quite slow and take time proportional to the number of places shifted.
452 * (This is true with most PC compilers, for instance.) In this case it may
453 * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the
454 * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
458 #define MIN_GET_BITS 15 /* minimum allowable value */
460 #define MIN_GET_BITS (BIT_BUF_SIZE-7)
465 jpeg_fill_bit_buffer (bitread_working_state
* state
,
466 register bit_buf_type get_buffer
, register int bits_left
,
468 /* Load up the bit buffer to a depth of at least nbits */
470 /* Copy heavily used state fields into locals (hopefully registers) */
471 register const JOCTET
* next_input_byte
= state
->next_input_byte
;
472 register size_t bytes_in_buffer
= state
->bytes_in_buffer
;
473 j_decompress_ptr cinfo
= state
->cinfo
;
475 /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
476 /* (It is assumed that no request will be for more than that many bits.) */
477 /* We fail to do so only if we hit a marker or are forced to suspend. */
479 if (cinfo
->unread_marker
== 0) { /* cannot advance past a marker */
480 while (bits_left
< MIN_GET_BITS
) {
483 /* Attempt to read a byte */
484 if (bytes_in_buffer
== 0) {
485 if (! (*cinfo
->src
->fill_input_buffer
) (cinfo
))
487 next_input_byte
= cinfo
->src
->next_input_byte
;
488 bytes_in_buffer
= cinfo
->src
->bytes_in_buffer
;
491 c
= GETJOCTET(*next_input_byte
++);
493 /* If it's 0xFF, check and discard stuffed zero byte */
495 /* Loop here to discard any padding FF's on terminating marker,
496 * so that we can save a valid unread_marker value. NOTE: we will
497 * accept multiple FF's followed by a 0 as meaning a single FF data
498 * byte. This data pattern is not valid according to the standard.
501 if (bytes_in_buffer
== 0) {
502 if (! (*cinfo
->src
->fill_input_buffer
) (cinfo
))
504 next_input_byte
= cinfo
->src
->next_input_byte
;
505 bytes_in_buffer
= cinfo
->src
->bytes_in_buffer
;
508 c
= GETJOCTET(*next_input_byte
++);
512 /* Found FF/00, which represents an FF data byte */
515 /* Oops, it's actually a marker indicating end of compressed data.
516 * Save the marker code for later use.
517 * Fine point: it might appear that we should save the marker into
518 * bitread working state, not straight into permanent state. But
519 * once we have hit a marker, we cannot need to suspend within the
520 * current MCU, because we will read no more bytes from the data
521 * source. So it is OK to update permanent state right away.
523 cinfo
->unread_marker
= c
;
524 /* See if we need to insert some fake zero bits. */
529 /* OK, load c into get_buffer */
530 get_buffer
= (get_buffer
<< 8) | c
;
535 /* We get here if we've read the marker that terminates the compressed
536 * data segment. There should be enough bits in the buffer register
537 * to satisfy the request; if so, no problem.
539 if (nbits
> bits_left
) {
540 /* Uh-oh. Report corrupted data to user and stuff zeroes into
541 * the data stream, so that we can produce some kind of image.
542 * We use a nonvolatile flag to ensure that only one warning message
543 * appears per data segment.
545 if (! ((huff_entropy_ptr
) cinfo
->entropy
)->insufficient_data
) {
546 WARNMS(cinfo
, JWRN_HIT_MARKER
);
547 ((huff_entropy_ptr
) cinfo
->entropy
)->insufficient_data
= TRUE
;
549 /* Fill the buffer with zero bits */
550 get_buffer
<<= MIN_GET_BITS
- bits_left
;
551 bits_left
= MIN_GET_BITS
;
555 /* Unload the local registers */
556 state
->next_input_byte
= next_input_byte
;
557 state
->bytes_in_buffer
= bytes_in_buffer
;
558 state
->get_buffer
= get_buffer
;
559 state
->bits_left
= bits_left
;
566 * Figure F.12: extend sign bit.
567 * On some machines, a shift and sub will be faster than a table lookup.
572 #define BIT_MASK(nbits) ((1<<(nbits))-1)
573 #define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) - ((1<<(s))-1) : (x))
577 #define BIT_MASK(nbits) bmask[nbits]
578 #define HUFF_EXTEND(x,s) ((x) <= bmask[(s) - 1] ? (x) - bmask[s] : (x))
580 static const int bmask
[16] = /* bmask[n] is mask for n rightmost bits */
581 { 0, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F, 0x007F, 0x00FF,
582 0x01FF, 0x03FF, 0x07FF, 0x0FFF, 0x1FFF, 0x3FFF, 0x7FFF };
584 #endif /* AVOID_TABLES */
588 * Out-of-line code for Huffman code decoding.
592 jpeg_huff_decode (bitread_working_state
* state
,
593 register bit_buf_type get_buffer
, register int bits_left
,
594 d_derived_tbl
* htbl
, int min_bits
)
596 register int l
= min_bits
;
599 /* HUFF_DECODE has determined that the code is at least min_bits */
600 /* bits long, so fetch that many bits in one swoop. */
602 CHECK_BIT_BUFFER(*state
, l
, return -1);
605 /* Collect the rest of the Huffman code one bit at a time. */
606 /* This is per Figure F.16 in the JPEG spec. */
608 while (code
> htbl
->maxcode
[l
]) {
610 CHECK_BIT_BUFFER(*state
, 1, return -1);
615 /* Unload the local registers */
616 state
->get_buffer
= get_buffer
;
617 state
->bits_left
= bits_left
;
619 /* With garbage input we may reach the sentinel value l = 17. */
622 WARNMS(state
->cinfo
, JWRN_HUFF_BAD_CODE
);
623 return 0; /* fake a zero as the safest result */
626 return htbl
->pub
->huffval
[ (int) (code
+ htbl
->valoffset
[l
]) ];
631 * Check for a restart marker & resynchronize decoder.
632 * Returns FALSE if must suspend.
636 process_restart (j_decompress_ptr cinfo
)
638 huff_entropy_ptr entropy
= (huff_entropy_ptr
) cinfo
->entropy
;
641 /* Throw away any unused bits remaining in bit buffer; */
642 /* include any full bytes in next_marker's count of discarded bytes */
643 cinfo
->marker
->discarded_bytes
+= entropy
->bitstate
.bits_left
/ 8;
644 entropy
->bitstate
.bits_left
= 0;
646 /* Advance past the RSTn marker */
647 if (! (*cinfo
->marker
->read_restart_marker
) (cinfo
))
650 /* Re-initialize DC predictions to 0 */
651 for (ci
= 0; ci
< cinfo
->comps_in_scan
; ci
++)
652 entropy
->saved
.last_dc_val
[ci
] = 0;
653 /* Re-init EOB run count, too */
654 entropy
->saved
.EOBRUN
= 0;
656 /* Reset restart counter */
657 entropy
->restarts_to_go
= cinfo
->restart_interval
;
659 /* Reset out-of-data flag, unless read_restart_marker left us smack up
660 * against a marker. In that case we will end up treating the next data
661 * segment as empty, and we can avoid producing bogus output pixels by
662 * leaving the flag set.
664 if (cinfo
->unread_marker
== 0)
665 entropy
->insufficient_data
= FALSE
;
672 * Huffman MCU decoding.
673 * Each of these routines decodes and returns one MCU's worth of
674 * Huffman-compressed coefficients.
675 * The coefficients are reordered from zigzag order into natural array order,
676 * but are not dequantized.
678 * The i'th block of the MCU is stored into the block pointed to by
679 * MCU_data[i]. WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER.
680 * (Wholesale zeroing is usually a little faster than retail...)
682 * We return FALSE if data source requested suspension. In that case no
683 * changes have been made to permanent state. (Exception: some output
684 * coefficients may already have been assigned. This is harmless for
685 * spectral selection, since we'll just re-assign them on the next call.
686 * Successive approximation AC refinement has to be more careful, however.)
690 * MCU decoding for DC initial scan (either spectral selection,
691 * or first pass of successive approximation).
695 decode_mcu_DC_first (j_decompress_ptr cinfo
, JBLOCKROW
*MCU_data
)
697 huff_entropy_ptr entropy
= (huff_entropy_ptr
) cinfo
->entropy
;
705 jpeg_component_info
* compptr
;
707 /* Process restart marker if needed; may have to suspend */
708 if (cinfo
->restart_interval
) {
709 if (entropy
->restarts_to_go
== 0)
710 if (! process_restart(cinfo
))
714 /* If we've run out of data, just leave the MCU set to zeroes.
715 * This way, we return uniform gray for the remainder of the segment.
717 if (! entropy
->insufficient_data
) {
719 /* Load up working state */
720 BITREAD_LOAD_STATE(cinfo
,entropy
->bitstate
);
721 ASSIGN_STATE(state
, entropy
->saved
);
723 /* Outer loop handles each block in the MCU */
725 for (blkn
= 0; blkn
< cinfo
->blocks_in_MCU
; blkn
++) {
726 block
= MCU_data
[blkn
];
727 ci
= cinfo
->MCU_membership
[blkn
];
728 compptr
= cinfo
->cur_comp_info
[ci
];
729 tbl
= entropy
->derived_tbls
[compptr
->dc_tbl_no
];
731 /* Decode a single block's worth of coefficients */
733 /* Section F.2.2.1: decode the DC coefficient difference */
734 HUFF_DECODE(s
, br_state
, tbl
, return FALSE
, label1
);
736 CHECK_BIT_BUFFER(br_state
, s
, return FALSE
);
738 s
= HUFF_EXTEND(r
, s
);
741 /* Convert DC difference to actual value, update last_dc_val */
742 s
+= state
.last_dc_val
[ci
];
743 state
.last_dc_val
[ci
] = s
;
744 /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */
745 (*block
)[0] = (JCOEF
) (s
<< Al
);
748 /* Completed MCU, so update state */
749 BITREAD_SAVE_STATE(cinfo
,entropy
->bitstate
);
750 ASSIGN_STATE(entropy
->saved
, state
);
753 /* Account for restart interval (no-op if not using restarts) */
754 entropy
->restarts_to_go
--;
761 * MCU decoding for AC initial scan (either spectral selection,
762 * or first pass of successive approximation).
766 decode_mcu_AC_first (j_decompress_ptr cinfo
, JBLOCKROW
*MCU_data
)
768 huff_entropy_ptr entropy
= (huff_entropy_ptr
) cinfo
->entropy
;
769 register int s
, k
, r
;
772 const int * natural_order
;
777 /* Process restart marker if needed; may have to suspend */
778 if (cinfo
->restart_interval
) {
779 if (entropy
->restarts_to_go
== 0)
780 if (! process_restart(cinfo
))
784 /* If we've run out of data, just leave the MCU set to zeroes.
785 * This way, we return uniform gray for the remainder of the segment.
787 if (! entropy
->insufficient_data
) {
791 natural_order
= cinfo
->natural_order
;
793 /* Load up working state.
794 * We can avoid loading/saving bitread state if in an EOB run.
796 EOBRUN
= entropy
->saved
.EOBRUN
; /* only part of saved state we need */
798 /* There is always only one block per MCU */
800 if (EOBRUN
) /* if it's a band of zeroes... */
801 EOBRUN
--; /* ...process it now (we do nothing) */
803 BITREAD_LOAD_STATE(cinfo
,entropy
->bitstate
);
805 tbl
= entropy
->ac_derived_tbl
;
807 for (k
= cinfo
->Ss
; k
<= Se
; k
++) {
808 HUFF_DECODE(s
, br_state
, tbl
, return FALSE
, label2
);
813 CHECK_BIT_BUFFER(br_state
, s
, return FALSE
);
815 s
= HUFF_EXTEND(r
, s
);
816 /* Scale and output coefficient in natural (dezigzagged) order */
817 (*block
)[natural_order
[k
]] = (JCOEF
) (s
<< Al
);
819 if (r
!= 15) { /* EOBr, run length is 2^r + appended bits */
820 if (r
) { /* EOBr, r > 0 */
822 CHECK_BIT_BUFFER(br_state
, r
, return FALSE
);
825 EOBRUN
--; /* this band is processed at this moment */
827 break; /* force end-of-band */
829 k
+= 15; /* ZRL: skip 15 zeroes in band */
833 BITREAD_SAVE_STATE(cinfo
,entropy
->bitstate
);
836 /* Completed MCU, so update state */
837 entropy
->saved
.EOBRUN
= EOBRUN
; /* only part of saved state we need */
840 /* Account for restart interval (no-op if not using restarts) */
841 entropy
->restarts_to_go
--;
848 * MCU decoding for DC successive approximation refinement scan.
849 * Note: we assume such scans can be multi-component, although the spec
850 * is not very clear on the point.
854 decode_mcu_DC_refine (j_decompress_ptr cinfo
, JBLOCKROW
*MCU_data
)
856 huff_entropy_ptr entropy
= (huff_entropy_ptr
) cinfo
->entropy
;
857 int p1
= 1 << cinfo
->Al
; /* 1 in the bit position being coded */
862 /* Process restart marker if needed; may have to suspend */
863 if (cinfo
->restart_interval
) {
864 if (entropy
->restarts_to_go
== 0)
865 if (! process_restart(cinfo
))
869 /* Not worth the cycles to check insufficient_data here,
870 * since we will not change the data anyway if we read zeroes.
873 /* Load up working state */
874 BITREAD_LOAD_STATE(cinfo
,entropy
->bitstate
);
876 /* Outer loop handles each block in the MCU */
878 for (blkn
= 0; blkn
< cinfo
->blocks_in_MCU
; blkn
++) {
879 block
= MCU_data
[blkn
];
881 /* Encoded data is simply the next bit of the two's-complement DC value */
882 CHECK_BIT_BUFFER(br_state
, 1, return FALSE
);
885 /* Note: since we use |=, repeating the assignment later is safe */
888 /* Completed MCU, so update state */
889 BITREAD_SAVE_STATE(cinfo
,entropy
->bitstate
);
891 /* Account for restart interval (no-op if not using restarts) */
892 entropy
->restarts_to_go
--;
899 * MCU decoding for AC successive approximation refinement scan.
903 decode_mcu_AC_refine (j_decompress_ptr cinfo
, JBLOCKROW
*MCU_data
)
905 huff_entropy_ptr entropy
= (huff_entropy_ptr
) cinfo
->entropy
;
906 register int s
, k
, r
;
909 const int * natural_order
;
915 int newnz_pos
[DCTSIZE2
];
917 /* Process restart marker if needed; may have to suspend */
918 if (cinfo
->restart_interval
) {
919 if (entropy
->restarts_to_go
== 0)
920 if (! process_restart(cinfo
))
924 /* If we've run out of data, don't modify the MCU.
926 if (! entropy
->insufficient_data
) {
929 p1
= 1 << cinfo
->Al
; /* 1 in the bit position being coded */
930 m1
= (-1) << cinfo
->Al
; /* -1 in the bit position being coded */
931 natural_order
= cinfo
->natural_order
;
933 /* Load up working state */
934 BITREAD_LOAD_STATE(cinfo
,entropy
->bitstate
);
935 EOBRUN
= entropy
->saved
.EOBRUN
; /* only part of saved state we need */
937 /* There is always only one block per MCU */
939 tbl
= entropy
->ac_derived_tbl
;
941 /* If we are forced to suspend, we must undo the assignments to any newly
942 * nonzero coefficients in the block, because otherwise we'd get confused
943 * next time about which coefficients were already nonzero.
944 * But we need not undo addition of bits to already-nonzero coefficients;
945 * instead, we can test the current bit to see if we already did it.
949 /* initialize coefficient loop counter to start of band */
954 HUFF_DECODE(s
, br_state
, tbl
, goto undoit
, label3
);
958 if (s
!= 1) /* size of new coef should always be 1 */
959 WARNMS(cinfo
, JWRN_HUFF_BAD_CODE
);
960 CHECK_BIT_BUFFER(br_state
, 1, goto undoit
);
962 s
= p1
; /* newly nonzero coef is positive */
964 s
= m1
; /* newly nonzero coef is negative */
967 EOBRUN
= 1 << r
; /* EOBr, run length is 2^r + appended bits */
969 CHECK_BIT_BUFFER(br_state
, r
, goto undoit
);
973 break; /* rest of block is handled by EOB logic */
975 /* note s = 0 for processing ZRL */
977 /* Advance over already-nonzero coefs and r still-zero coefs,
978 * appending correction bits to the nonzeroes. A correction bit is 1
979 * if the absolute value of the coefficient must be increased.
982 thiscoef
= *block
+ natural_order
[k
];
984 CHECK_BIT_BUFFER(br_state
, 1, goto undoit
);
986 if ((*thiscoef
& p1
) == 0) { /* do nothing if already set it */
995 break; /* reached target zero coefficient */
1000 int pos
= natural_order
[k
];
1001 /* Output newly nonzero coefficient */
1002 (*block
)[pos
] = (JCOEF
) s
;
1003 /* Remember its position in case we have to suspend */
1004 newnz_pos
[num_newnz
++] = pos
;
1011 /* Scan any remaining coefficient positions after the end-of-band
1012 * (the last newly nonzero coefficient, if any). Append a correction
1013 * bit to each already-nonzero coefficient. A correction bit is 1
1014 * if the absolute value of the coefficient must be increased.
1017 thiscoef
= *block
+ natural_order
[k
];
1019 CHECK_BIT_BUFFER(br_state
, 1, goto undoit
);
1021 if ((*thiscoef
& p1
) == 0) { /* do nothing if already changed it */
1031 /* Count one block completed in EOB run */
1035 /* Completed MCU, so update state */
1036 BITREAD_SAVE_STATE(cinfo
,entropy
->bitstate
);
1037 entropy
->saved
.EOBRUN
= EOBRUN
; /* only part of saved state we need */
1040 /* Account for restart interval (no-op if not using restarts) */
1041 entropy
->restarts_to_go
--;
1046 /* Re-zero any output coefficients that we made newly nonzero */
1048 (*block
)[newnz_pos
[--num_newnz
]] = 0;
1055 * Decode one MCU's worth of Huffman-compressed coefficients,
1060 decode_mcu_sub (j_decompress_ptr cinfo
, JBLOCKROW
*MCU_data
)
1062 huff_entropy_ptr entropy
= (huff_entropy_ptr
) cinfo
->entropy
;
1063 const int * natural_order
;
1066 savable_state state
;
1068 /* Process restart marker if needed; may have to suspend */
1069 if (cinfo
->restart_interval
) {
1070 if (entropy
->restarts_to_go
== 0)
1071 if (! process_restart(cinfo
))
1075 /* If we've run out of data, just leave the MCU set to zeroes.
1076 * This way, we return uniform gray for the remainder of the segment.
1078 if (! entropy
->insufficient_data
) {
1080 natural_order
= cinfo
->natural_order
;
1083 /* Load up working state */
1084 BITREAD_LOAD_STATE(cinfo
,entropy
->bitstate
);
1085 ASSIGN_STATE(state
, entropy
->saved
);
1087 /* Outer loop handles each block in the MCU */
1089 for (blkn
= 0; blkn
< cinfo
->blocks_in_MCU
; blkn
++) {
1090 JBLOCKROW block
= MCU_data
[blkn
];
1091 d_derived_tbl
* htbl
;
1092 register int s
, k
, r
;
1095 /* Decode a single block's worth of coefficients */
1097 /* Section F.2.2.1: decode the DC coefficient difference */
1098 htbl
= entropy
->dc_cur_tbls
[blkn
];
1099 HUFF_DECODE(s
, br_state
, htbl
, return FALSE
, label1
);
1101 htbl
= entropy
->ac_cur_tbls
[blkn
];
1103 coef_limit
= entropy
->coef_limit
[blkn
];
1105 /* Convert DC difference to actual value, update last_dc_val */
1107 CHECK_BIT_BUFFER(br_state
, s
, return FALSE
);
1109 s
= HUFF_EXTEND(r
, s
);
1111 ci
= cinfo
->MCU_membership
[blkn
];
1112 s
+= state
.last_dc_val
[ci
];
1113 state
.last_dc_val
[ci
] = s
;
1114 /* Output the DC coefficient */
1115 (*block
)[0] = (JCOEF
) s
;
1117 /* Section F.2.2.2: decode the AC coefficients */
1118 /* Since zeroes are skipped, output area must be cleared beforehand */
1119 for (; k
< coef_limit
; k
++) {
1120 HUFF_DECODE(s
, br_state
, htbl
, return FALSE
, label2
);
1127 CHECK_BIT_BUFFER(br_state
, s
, return FALSE
);
1129 s
= HUFF_EXTEND(r
, s
);
1130 /* Output coefficient in natural (dezigzagged) order.
1131 * Note: the extra entries in natural_order[] will save us
1132 * if k > Se, which could happen if the data is corrupted.
1134 (*block
)[natural_order
[k
]] = (JCOEF
) s
;
1143 CHECK_BIT_BUFFER(br_state
, s
, return FALSE
);
1148 /* Section F.2.2.2: decode the AC coefficients */
1149 /* In this path we just discard the values */
1150 for (; k
<= Se
; k
++) {
1151 HUFF_DECODE(s
, br_state
, htbl
, return FALSE
, label3
);
1158 CHECK_BIT_BUFFER(br_state
, s
, return FALSE
);
1170 /* Completed MCU, so update state */
1171 BITREAD_SAVE_STATE(cinfo
,entropy
->bitstate
);
1172 ASSIGN_STATE(entropy
->saved
, state
);
1175 /* Account for restart interval (no-op if not using restarts) */
1176 entropy
->restarts_to_go
--;
1183 * Decode one MCU's worth of Huffman-compressed coefficients,
1188 decode_mcu (j_decompress_ptr cinfo
, JBLOCKROW
*MCU_data
)
1190 huff_entropy_ptr entropy
= (huff_entropy_ptr
) cinfo
->entropy
;
1193 savable_state state
;
1195 /* Process restart marker if needed; may have to suspend */
1196 if (cinfo
->restart_interval
) {
1197 if (entropy
->restarts_to_go
== 0)
1198 if (! process_restart(cinfo
))
1202 /* If we've run out of data, just leave the MCU set to zeroes.
1203 * This way, we return uniform gray for the remainder of the segment.
1205 if (! entropy
->insufficient_data
) {
1207 /* Load up working state */
1208 BITREAD_LOAD_STATE(cinfo
,entropy
->bitstate
);
1209 ASSIGN_STATE(state
, entropy
->saved
);
1211 /* Outer loop handles each block in the MCU */
1213 for (blkn
= 0; blkn
< cinfo
->blocks_in_MCU
; blkn
++) {
1214 JBLOCKROW block
= MCU_data
[blkn
];
1215 d_derived_tbl
* htbl
;
1216 register int s
, k
, r
;
1219 /* Decode a single block's worth of coefficients */
1221 /* Section F.2.2.1: decode the DC coefficient difference */
1222 htbl
= entropy
->dc_cur_tbls
[blkn
];
1223 HUFF_DECODE(s
, br_state
, htbl
, return FALSE
, label1
);
1225 htbl
= entropy
->ac_cur_tbls
[blkn
];
1227 coef_limit
= entropy
->coef_limit
[blkn
];
1229 /* Convert DC difference to actual value, update last_dc_val */
1231 CHECK_BIT_BUFFER(br_state
, s
, return FALSE
);
1233 s
= HUFF_EXTEND(r
, s
);
1235 ci
= cinfo
->MCU_membership
[blkn
];
1236 s
+= state
.last_dc_val
[ci
];
1237 state
.last_dc_val
[ci
] = s
;
1238 /* Output the DC coefficient */
1239 (*block
)[0] = (JCOEF
) s
;
1241 /* Section F.2.2.2: decode the AC coefficients */
1242 /* Since zeroes are skipped, output area must be cleared beforehand */
1243 for (; k
< coef_limit
; k
++) {
1244 HUFF_DECODE(s
, br_state
, htbl
, return FALSE
, label2
);
1251 CHECK_BIT_BUFFER(br_state
, s
, return FALSE
);
1253 s
= HUFF_EXTEND(r
, s
);
1254 /* Output coefficient in natural (dezigzagged) order.
1255 * Note: the extra entries in jpeg_natural_order[] will save us
1256 * if k >= DCTSIZE2, which could happen if the data is corrupted.
1258 (*block
)[jpeg_natural_order
[k
]] = (JCOEF
) s
;
1267 CHECK_BIT_BUFFER(br_state
, s
, return FALSE
);
1272 /* Section F.2.2.2: decode the AC coefficients */
1273 /* In this path we just discard the values */
1274 for (; k
< DCTSIZE2
; k
++) {
1275 HUFF_DECODE(s
, br_state
, htbl
, return FALSE
, label3
);
1282 CHECK_BIT_BUFFER(br_state
, s
, return FALSE
);
1294 /* Completed MCU, so update state */
1295 BITREAD_SAVE_STATE(cinfo
,entropy
->bitstate
);
1296 ASSIGN_STATE(entropy
->saved
, state
);
1299 /* Account for restart interval (no-op if not using restarts) */
1300 entropy
->restarts_to_go
--;
1307 * Initialize for a Huffman-compressed scan.
1311 start_pass_huff_decoder (j_decompress_ptr cinfo
)
1313 huff_entropy_ptr entropy
= (huff_entropy_ptr
) cinfo
->entropy
;
1314 int ci
, blkn
, tbl
, i
;
1315 jpeg_component_info
* compptr
;
1317 if (cinfo
->progressive_mode
) {
1318 /* Validate progressive scan parameters */
1319 if (cinfo
->Ss
== 0) {
1323 /* need not check Ss/Se < 0 since they came from unsigned bytes */
1324 if (cinfo
->Se
< cinfo
->Ss
|| cinfo
->Se
> cinfo
->lim_Se
)
1326 /* AC scans may have only one component */
1327 if (cinfo
->comps_in_scan
!= 1)
1330 if (cinfo
->Ah
!= 0) {
1331 /* Successive approximation refinement scan: must have Al = Ah-1. */
1332 if (cinfo
->Ah
-1 != cinfo
->Al
)
1335 if (cinfo
->Al
> 13) { /* need not check for < 0 */
1336 /* Arguably the maximum Al value should be less than 13 for 8-bit precision,
1337 * but the spec doesn't say so, and we try to be liberal about what we
1338 * accept. Note: large Al values could result in out-of-range DC
1339 * coefficients during early scans, leading to bizarre displays due to
1340 * overflows in the IDCT math. But we won't crash.
1343 ERREXIT4(cinfo
, JERR_BAD_PROGRESSION
,
1344 cinfo
->Ss
, cinfo
->Se
, cinfo
->Ah
, cinfo
->Al
);
1346 /* Update progression status, and verify that scan order is legal.
1347 * Note that inter-scan inconsistencies are treated as warnings
1348 * not fatal errors ... not clear if this is right way to behave.
1350 for (ci
= 0; ci
< cinfo
->comps_in_scan
; ci
++) {
1351 int coefi
, cindex
= cinfo
->cur_comp_info
[ci
]->component_index
;
1352 int *coef_bit_ptr
= & cinfo
->coef_bits
[cindex
][0];
1353 if (cinfo
->Ss
&& coef_bit_ptr
[0] < 0) /* AC without prior DC scan */
1354 WARNMS2(cinfo
, JWRN_BOGUS_PROGRESSION
, cindex
, 0);
1355 for (coefi
= cinfo
->Ss
; coefi
<= cinfo
->Se
; coefi
++) {
1356 int expected
= (coef_bit_ptr
[coefi
] < 0) ? 0 : coef_bit_ptr
[coefi
];
1357 if (cinfo
->Ah
!= expected
)
1358 WARNMS2(cinfo
, JWRN_BOGUS_PROGRESSION
, cindex
, coefi
);
1359 coef_bit_ptr
[coefi
] = cinfo
->Al
;
1363 /* Select MCU decoding routine */
1364 if (cinfo
->Ah
== 0) {
1366 entropy
->pub
.decode_mcu
= decode_mcu_DC_first
;
1368 entropy
->pub
.decode_mcu
= decode_mcu_AC_first
;
1371 entropy
->pub
.decode_mcu
= decode_mcu_DC_refine
;
1373 entropy
->pub
.decode_mcu
= decode_mcu_AC_refine
;
1376 for (ci
= 0; ci
< cinfo
->comps_in_scan
; ci
++) {
1377 compptr
= cinfo
->cur_comp_info
[ci
];
1378 /* Make sure requested tables are present, and compute derived tables.
1379 * We may build same derived table more than once, but it's not expensive.
1381 if (cinfo
->Ss
== 0) {
1382 if (cinfo
->Ah
== 0) { /* DC refinement needs no table */
1383 tbl
= compptr
->dc_tbl_no
;
1384 jpeg_make_d_derived_tbl(cinfo
, TRUE
, tbl
,
1385 & entropy
->derived_tbls
[tbl
]);
1388 tbl
= compptr
->ac_tbl_no
;
1389 jpeg_make_d_derived_tbl(cinfo
, FALSE
, tbl
,
1390 & entropy
->derived_tbls
[tbl
]);
1391 /* remember the single active table */
1392 entropy
->ac_derived_tbl
= entropy
->derived_tbls
[tbl
];
1394 /* Initialize DC predictions to 0 */
1395 entropy
->saved
.last_dc_val
[ci
] = 0;
1398 /* Initialize private state variables */
1399 entropy
->saved
.EOBRUN
= 0;
1401 /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
1402 * This ought to be an error condition, but we make it a warning because
1403 * there are some baseline files out there with all zeroes in these bytes.
1405 if (cinfo
->Ss
!= 0 || cinfo
->Ah
!= 0 || cinfo
->Al
!= 0 ||
1406 ((cinfo
->is_baseline
|| cinfo
->Se
< DCTSIZE2
) &&
1407 cinfo
->Se
!= cinfo
->lim_Se
))
1408 WARNMS(cinfo
, JWRN_NOT_SEQUENTIAL
);
1410 /* Select MCU decoding routine */
1411 /* We retain the hard-coded case for full-size blocks.
1412 * This is not necessary, but it appears that this version is slightly
1413 * more performant in the given implementation.
1414 * With an improved implementation we would prefer a single optimized
1417 if (cinfo
->lim_Se
!= DCTSIZE2
-1)
1418 entropy
->pub
.decode_mcu
= decode_mcu_sub
;
1420 entropy
->pub
.decode_mcu
= decode_mcu
;
1422 for (ci
= 0; ci
< cinfo
->comps_in_scan
; ci
++) {
1423 compptr
= cinfo
->cur_comp_info
[ci
];
1424 /* Compute derived values for Huffman tables */
1425 /* We may do this more than once for a table, but it's not expensive */
1426 tbl
= compptr
->dc_tbl_no
;
1427 jpeg_make_d_derived_tbl(cinfo
, TRUE
, tbl
,
1428 & entropy
->dc_derived_tbls
[tbl
]);
1429 if (cinfo
->lim_Se
) { /* AC needs no table when not present */
1430 tbl
= compptr
->ac_tbl_no
;
1431 jpeg_make_d_derived_tbl(cinfo
, FALSE
, tbl
,
1432 & entropy
->ac_derived_tbls
[tbl
]);
1434 /* Initialize DC predictions to 0 */
1435 entropy
->saved
.last_dc_val
[ci
] = 0;
1438 /* Precalculate decoding info for each block in an MCU of this scan */
1439 for (blkn
= 0; blkn
< cinfo
->blocks_in_MCU
; blkn
++) {
1440 ci
= cinfo
->MCU_membership
[blkn
];
1441 compptr
= cinfo
->cur_comp_info
[ci
];
1442 /* Precalculate which table to use for each block */
1443 entropy
->dc_cur_tbls
[blkn
] = entropy
->dc_derived_tbls
[compptr
->dc_tbl_no
];
1444 entropy
->ac_cur_tbls
[blkn
] = entropy
->ac_derived_tbls
[compptr
->ac_tbl_no
];
1445 /* Decide whether we really care about the coefficient values */
1446 if (compptr
->component_needed
) {
1447 ci
= compptr
->DCT_v_scaled_size
;
1448 i
= compptr
->DCT_h_scaled_size
;
1449 switch (cinfo
->lim_Se
) {
1451 entropy
->coef_limit
[blkn
] = 1;
1454 if (ci
<= 0 || ci
> 2) ci
= 2;
1455 if (i
<= 0 || i
> 2) i
= 2;
1456 entropy
->coef_limit
[blkn
] = 1 + jpeg_zigzag_order2
[ci
- 1][i
- 1];
1459 if (ci
<= 0 || ci
> 3) ci
= 3;
1460 if (i
<= 0 || i
> 3) i
= 3;
1461 entropy
->coef_limit
[blkn
] = 1 + jpeg_zigzag_order3
[ci
- 1][i
- 1];
1464 if (ci
<= 0 || ci
> 4) ci
= 4;
1465 if (i
<= 0 || i
> 4) i
= 4;
1466 entropy
->coef_limit
[blkn
] = 1 + jpeg_zigzag_order4
[ci
- 1][i
- 1];
1469 if (ci
<= 0 || ci
> 5) ci
= 5;
1470 if (i
<= 0 || i
> 5) i
= 5;
1471 entropy
->coef_limit
[blkn
] = 1 + jpeg_zigzag_order5
[ci
- 1][i
- 1];
1474 if (ci
<= 0 || ci
> 6) ci
= 6;
1475 if (i
<= 0 || i
> 6) i
= 6;
1476 entropy
->coef_limit
[blkn
] = 1 + jpeg_zigzag_order6
[ci
- 1][i
- 1];
1479 if (ci
<= 0 || ci
> 7) ci
= 7;
1480 if (i
<= 0 || i
> 7) i
= 7;
1481 entropy
->coef_limit
[blkn
] = 1 + jpeg_zigzag_order7
[ci
- 1][i
- 1];
1484 if (ci
<= 0 || ci
> 8) ci
= 8;
1485 if (i
<= 0 || i
> 8) i
= 8;
1486 entropy
->coef_limit
[blkn
] = 1 + jpeg_zigzag_order
[ci
- 1][i
- 1];
1490 entropy
->coef_limit
[blkn
] = 0;
1495 /* Initialize bitread state variables */
1496 entropy
->bitstate
.bits_left
= 0;
1497 entropy
->bitstate
.get_buffer
= 0; /* unnecessary, but keeps Purify quiet */
1498 entropy
->insufficient_data
= FALSE
;
1500 /* Initialize restart counter */
1501 entropy
->restarts_to_go
= cinfo
->restart_interval
;
1506 * Module initialization routine for Huffman entropy decoding.
1510 jinit_huff_decoder (j_decompress_ptr cinfo
)
1512 huff_entropy_ptr entropy
;
1515 entropy
= (huff_entropy_ptr
)
1516 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
,
1517 SIZEOF(huff_entropy_decoder
));
1518 cinfo
->entropy
= &entropy
->pub
;
1519 entropy
->pub
.start_pass
= start_pass_huff_decoder
;
1521 if (cinfo
->progressive_mode
) {
1522 /* Create progression status table */
1523 int *coef_bit_ptr
, ci
;
1524 cinfo
->coef_bits
= (int (*)[DCTSIZE2
])
1525 (*cinfo
->mem
->alloc_small
) ((j_common_ptr
) cinfo
, JPOOL_IMAGE
,
1526 cinfo
->num_components
*DCTSIZE2
*SIZEOF(int));
1527 coef_bit_ptr
= & cinfo
->coef_bits
[0][0];
1528 for (ci
= 0; ci
< cinfo
->num_components
; ci
++)
1529 for (i
= 0; i
< DCTSIZE2
; i
++)
1530 *coef_bit_ptr
++ = -1;
1532 /* Mark derived tables unallocated */
1533 for (i
= 0; i
< NUM_HUFF_TBLS
; i
++) {
1534 entropy
->derived_tbls
[i
] = NULL
;
1537 /* Mark tables unallocated */
1538 for (i
= 0; i
< NUM_HUFF_TBLS
; i
++) {
1539 entropy
->dc_derived_tbls
[i
] = entropy
->ac_derived_tbls
[i
] = NULL
;