Hint added.
[AROS.git] / compiler / stdc / math / s_cbrt.c
blob8d00040b50e57526e4ea9e8ca97b02a1dc0aa7e6
1 /* @(#)s_cbrt.c 5.1 93/09/24 */
2 /*
3 * ====================================================
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
7 * Permission to use, copy, modify, and distribute this
8 * software is freely granted, provided that this notice
9 * is preserved.
10 * ====================================================
12 * Optimized by Bruce D. Evans.
15 #ifndef lint
16 static char rcsid[] = "$FreeBSD: src/lib/msun/src/s_cbrt.c,v 1.14 2005/12/20 01:21:30 bde Exp $";
17 #endif
19 #include "math.h"
20 #include "math_private.h"
22 /* cbrt(x)
23 * Return cube root of x
25 static const uint32_t
26 B1 = 715094163, /* B1 = (1023-1023/3-0.03306235651)*2**20 */
27 B2 = 696219795; /* B2 = (1023-1023/3-54/3-0.03306235651)*2**20 */
29 /* |1/cbrt(x) - p(x)| < 2**-23.5 (~[-7.93e-8, 7.929e-8]). */
30 static const double
31 P0 = 1.87595182427177009643, /* 0x3ffe03e6, 0x0f61e692 */
32 P1 = -1.88497979543377169875, /* 0xbffe28e0, 0x92f02420 */
33 P2 = 1.621429720105354466140, /* 0x3ff9f160, 0x4a49d6c2 */
34 P3 = -0.758397934778766047437, /* 0xbfe844cb, 0xbee751d9 */
35 P4 = 0.145996192886612446982; /* 0x3fc2b000, 0xd4e4edd7 */
37 double
38 cbrt(double x)
40 int32_t hx;
41 union {
42 double value;
43 uint64_t bits;
44 } u;
45 double r,s,t=0.0,w;
46 uint32_t sign;
47 uint32_t high,low;
49 EXTRACT_WORDS(hx,low,x);
50 sign=hx&0x80000000; /* sign= sign(x) */
51 hx ^=sign;
52 if(hx>=0x7ff00000) return(x+x); /* cbrt(NaN,INF) is itself */
55 * Rough cbrt to 5 bits:
56 * cbrt(2**e*(1+m) ~= 2**(e/3)*(1+(e%3+m)/3)
57 * where e is integral and >= 0, m is real and in [0, 1), and "/" and
58 * "%" are integer division and modulus with rounding towards minus
59 * infinity. The RHS is always >= the LHS and has a maximum relative
60 * error of about 1 in 16. Adding a bias of -0.03306235651 to the
61 * (e%3+m)/3 term reduces the error to about 1 in 32. With the IEEE
62 * floating point representation, for finite positive normal values,
63 * ordinary integer divison of the value in bits magically gives
64 * almost exactly the RHS of the above provided we first subtract the
65 * exponent bias (1023 for doubles) and later add it back. We do the
66 * subtraction virtually to keep e >= 0 so that ordinary integer
67 * division rounds towards minus infinity; this is also efficient.
69 if(hx<0x00100000) { /* zero or subnormal? */
70 if((hx|low)==0)
71 return(x); /* cbrt(0) is itself */
72 SET_HIGH_WORD(t,0x43500000); /* set t= 2**54 */
73 t*=x;
74 GET_HIGH_WORD(high,t);
75 INSERT_WORDS(t,sign|((high&0x7fffffff)/3+B2),0);
76 } else
77 INSERT_WORDS(t,sign|(hx/3+B1),0);
80 * New cbrt to 23 bits:
81 * cbrt(x) = t*cbrt(x/t**3) ~= t*P(t**3/x)
82 * where P(r) is a polynomial of degree 4 that approximates 1/cbrt(r)
83 * to within 2**-23.5 when |r - 1| < 1/10. The rough approximation
84 * has produced t such than |t/cbrt(x) - 1| ~< 1/32, and cubing this
85 * gives us bounds for r = t**3/x.
87 * Try to optimize for parallel evaluation as in k_tanf.c.
89 r=(t*t)*(t/x);
90 t=t*((P0+r*(P1+r*P2))+((r*r)*r)*(P3+r*P4));
93 * Round t away from zero to 23 bits (sloppily except for ensuring that
94 * the result is larger in magnitude than cbrt(x) but not much more than
95 * 2 23-bit ulps larger). With rounding towards zero, the error bound
96 * would be ~5/6 instead of ~4/6. With a maximum error of 2 23-bit ulps
97 * in the rounded t, the infinite-precision error in the Newton
98 * approximation barely affects third digit in the the final error
99 * 0.667; the error in the rounded t can be up to about 3 23-bit ulps
100 * before the final error is larger than 0.667 ulps.
102 u.value=t;
103 u.bits=(u.bits+0x80000000)&0xffffffffc0000000ULL;
104 t=u.value;
106 /* one step Newton iteration to 53 bits with error < 0.667 ulps */
107 s=t*t; /* t*t is exact */
108 r=x/s; /* error <= 0.5 ulps; |r| < |t| */
109 w=t+t; /* t+t is exact */
110 r=(r-t)/(w+r); /* r-t is exact; w+r ~= 3*t */
111 t=t+t*r; /* error <= 0.5 + 0.5/3 + epsilon */
113 return(t);