fix baseline build (old cairo) - 'cairo_rectangle_int_t' does not name a type
[LibreOffice.git] / chart2 / source / view / charttypes / Splines.cxx
blobc8427a58970b52ab747aea757ed7fda5343963f3
1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2 /*
3 * This file is part of the LibreOffice project.
5 * This Source Code Form is subject to the terms of the Mozilla Public
6 * License, v. 2.0. If a copy of the MPL was not distributed with this
7 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 * This file incorporates work covered by the following license notice:
11 * Licensed to the Apache Software Foundation (ASF) under one or more
12 * contributor license agreements. See the NOTICE file distributed
13 * with this work for additional information regarding copyright
14 * ownership. The ASF licenses this file to you under the Apache
15 * License, Version 2.0 (the "License"); you may not use this file
16 * except in compliance with the License. You may obtain a copy of
17 * the License at http://www.apache.org/licenses/LICENSE-2.0 .
20 #include "Splines.hxx"
21 #include <rtl/math.hxx>
22 #include <osl/diagnose.h>
24 #include <vector>
25 #include <algorithm>
26 #include <functional>
27 #include <boost/scoped_array.hpp>
29 #define MAX_BSPLINE_DEGREE 15
31 namespace chart
33 using namespace ::com::sun::star;
35 namespace
38 typedef ::std::pair< double, double > tPointType;
39 typedef ::std::vector< tPointType > tPointVecType;
40 typedef tPointVecType::size_type lcl_tSizeType;
42 class lcl_SplineCalculation
44 public:
45 /** @descr creates an object that calculates cublic splines on construction
47 @param rSortedPoints the points for which splines shall be calculated, they need to be sorted in x values
48 @param fY1FirstDerivation the resulting spline should have the first
49 derivation equal to this value at the x-value of the first point
50 of rSortedPoints. If fY1FirstDerivation is set to infinity, a natural
51 spline is calculated.
52 @param fYnFirstDerivation the resulting spline should have the first
53 derivation equal to this value at the x-value of the last point
54 of rSortedPoints
56 lcl_SplineCalculation( const tPointVecType & rSortedPoints,
57 double fY1FirstDerivation,
58 double fYnFirstDerivation );
60 /** @descr creates an object that calculates cublic splines on construction
61 for the special case of periodic cubic spline
63 @param rSortedPoints the points for which splines shall be calculated,
64 they need to be sorted in x values. First and last y value must be equal
66 lcl_SplineCalculation( const tPointVecType & rSortedPoints);
68 /** @descr this function corresponds to the function splint in [1].
70 [1] Numerical Recipies in C, 2nd edition
71 William H. Press, et al.,
72 Section 3.3, page 116
74 double GetInterpolatedValue( double x );
76 private:
77 /// a copy of the points given in the CTOR
78 tPointVecType m_aPoints;
80 /// the result of the Calculate() method
81 ::std::vector< double > m_aSecDerivY;
83 double m_fYp1;
84 double m_fYpN;
86 // these values are cached for performance reasons
87 lcl_tSizeType m_nKLow;
88 lcl_tSizeType m_nKHigh;
89 double m_fLastInterpolatedValue;
91 /** @descr this function corresponds to the function spline in [1].
93 [1] Numerical Recipies in C, 2nd edition
94 William H. Press, et al.,
95 Section 3.3, page 115
97 void Calculate();
99 /** @descr this function corresponds to the algorithm 4.76 in [2] and
100 theorem 5.3.7 in [3]
102 [2] Engeln-Müllges, Gisela: Numerik-Algorithmen: Verfahren, Beispiele, Anwendungen
103 Springer, Berlin; Auflage: 9., überarb. und erw. A. (8. Dezember 2004)
104 Section 4.10.2, page 175
106 [3] Hanrath, Wilhelm: Mathematik III / Numerik, Vorlesungsskript zur
107 Veranstaltung im WS 2007/2008
108 Fachhochschule Aachen, 2009-09-19
109 Numerik_01.pdf, downloaded 2011-04-19 via
110 http://www.fh-aachen.de/index.php?id=11424&no_cache=1&file=5016&uid=44191
111 Section 5.3, page 129
113 void CalculatePeriodic();
116 lcl_SplineCalculation::lcl_SplineCalculation(
117 const tPointVecType & rSortedPoints,
118 double fY1FirstDerivation,
119 double fYnFirstDerivation )
120 : m_aPoints( rSortedPoints ),
121 m_fYp1( fY1FirstDerivation ),
122 m_fYpN( fYnFirstDerivation ),
123 m_nKLow( 0 ),
124 m_nKHigh( rSortedPoints.size() - 1 ),
125 m_fLastInterpolatedValue(0.0)
127 ::rtl::math::setInf( &m_fLastInterpolatedValue, false );
128 Calculate();
131 lcl_SplineCalculation::lcl_SplineCalculation(
132 const tPointVecType & rSortedPoints)
133 : m_aPoints( rSortedPoints ),
134 m_fYp1( 0.0 ), /*dummy*/
135 m_fYpN( 0.0 ), /*dummy*/
136 m_nKLow( 0 ),
137 m_nKHigh( rSortedPoints.size() - 1 ),
138 m_fLastInterpolatedValue(0.0)
140 ::rtl::math::setInf( &m_fLastInterpolatedValue, false );
141 CalculatePeriodic();
144 void lcl_SplineCalculation::Calculate()
146 if( m_aPoints.size() <= 1 )
147 return;
149 // n is the last valid index to m_aPoints
150 const lcl_tSizeType n = m_aPoints.size() - 1;
151 ::std::vector< double > u( n );
152 m_aSecDerivY.resize( n + 1, 0.0 );
154 if( ::rtl::math::isInf( m_fYp1 ) )
156 // natural spline
157 m_aSecDerivY[ 0 ] = 0.0;
158 u[ 0 ] = 0.0;
160 else
162 m_aSecDerivY[ 0 ] = -0.5;
163 double xDiff = ( m_aPoints[ 1 ].first - m_aPoints[ 0 ].first );
164 u[ 0 ] = ( 3.0 / xDiff ) *
165 ((( m_aPoints[ 1 ].second - m_aPoints[ 0 ].second ) / xDiff ) - m_fYp1 );
168 for( lcl_tSizeType i = 1; i < n; ++i )
170 tPointType
171 p_i = m_aPoints[ i ],
172 p_im1 = m_aPoints[ i - 1 ],
173 p_ip1 = m_aPoints[ i + 1 ];
175 double sig = ( p_i.first - p_im1.first ) /
176 ( p_ip1.first - p_im1.first );
177 double p = sig * m_aSecDerivY[ i - 1 ] + 2.0;
179 m_aSecDerivY[ i ] = ( sig - 1.0 ) / p;
180 u[ i ] =
181 ( ( p_ip1.second - p_i.second ) /
182 ( p_ip1.first - p_i.first ) ) -
183 ( ( p_i.second - p_im1.second ) /
184 ( p_i.first - p_im1.first ) );
185 u[ i ] =
186 ( 6.0 * u[ i ] / ( p_ip1.first - p_im1.first )
187 - sig * u[ i - 1 ] ) / p;
190 // initialize to values for natural splines (used for m_fYpN equal to
191 // infinity)
192 double qn = 0.0;
193 double un = 0.0;
195 if( ! ::rtl::math::isInf( m_fYpN ) )
197 qn = 0.5;
198 double xDiff = ( m_aPoints[ n ].first - m_aPoints[ n - 1 ].first );
199 un = ( 3.0 / xDiff ) *
200 ( m_fYpN - ( m_aPoints[ n ].second - m_aPoints[ n - 1 ].second ) / xDiff );
203 m_aSecDerivY[ n ] = ( un - qn * u[ n - 1 ] ) * ( qn * m_aSecDerivY[ n - 1 ] + 1.0 );
205 // note: the algorithm in [1] iterates from n-1 to 0, but as size_type
206 // may be (usuall is) an unsigned type, we can not write k >= 0, as this
207 // is always true.
208 for( lcl_tSizeType k = n; k > 0; --k )
210 ( m_aSecDerivY[ k - 1 ] *= m_aSecDerivY[ k ] ) += u[ k - 1 ];
214 void lcl_SplineCalculation::CalculatePeriodic()
216 if( m_aPoints.size() <= 1 )
217 return;
219 // n is the last valid index to m_aPoints
220 const lcl_tSizeType n = m_aPoints.size() - 1;
222 // u is used for vector f in A*c=f in [3], vector a in Ax=a in [2],
223 // vector z in Rtranspose z = a and Dr=z in [2]
224 ::std::vector< double > u( n + 1, 0.0 );
226 // used for vector c in A*c=f and vector x in Ax=a in [2]
227 m_aSecDerivY.resize( n + 1, 0.0 );
229 // diagonal of matrix A, used index 1 to n
230 ::std::vector< double > Adiag( n + 1, 0.0 );
232 // secondary diagonal of matrix A with index 1 to n-1 and upper right element in A[n]
233 ::std::vector< double > Aupper( n + 1, 0.0 );
235 // diagonal of matrix D in A=(R transpose)*D*R in [2], used index 1 to n
236 ::std::vector< double > Ddiag( n+1, 0.0 );
238 // right column of matrix R, used index 1 to n-2
239 ::std::vector< double > Rright( n-1, 0.0 );
241 // secondary diagonal of matrix R, used index 1 to n-1
242 ::std::vector< double > Rupper( n, 0.0 );
244 if (n<4)
246 if (n==3)
247 { // special handling of three polynomials, that are four points
248 double xDiff0 = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first ;
249 double xDiff1 = m_aPoints[ 2 ].first - m_aPoints[ 1 ].first ;
250 double xDiff2 = m_aPoints[ 3 ].first - m_aPoints[ 2 ].first ;
251 double xDiff2p1 = xDiff2 + xDiff1;
252 double xDiff0p2 = xDiff0 + xDiff2;
253 double xDiff1p0 = xDiff1 + xDiff0;
254 double fFactor = 1.5 / (xDiff0*xDiff1 + xDiff1*xDiff2 + xDiff2*xDiff0);
255 double yDiff0 = (m_aPoints[ 1 ].second - m_aPoints[ 0 ].second) / xDiff0;
256 double yDiff1 = (m_aPoints[ 2 ].second - m_aPoints[ 1 ].second) / xDiff1;
257 double yDiff2 = (m_aPoints[ 0 ].second - m_aPoints[ 2 ].second) / xDiff2;
258 m_aSecDerivY[ 1 ] = fFactor * (yDiff1*xDiff2p1 - yDiff0*xDiff0p2);
259 m_aSecDerivY[ 2 ] = fFactor * (yDiff2*xDiff0p2 - yDiff1*xDiff1p0);
260 m_aSecDerivY[ 3 ] = fFactor * (yDiff0*xDiff1p0 - yDiff2*xDiff2p1);
261 m_aSecDerivY[ 0 ] = m_aSecDerivY[ 3 ];
263 else if (n==2)
265 // special handling of two polynomials, that are three points
266 double xDiff0 = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first;
267 double xDiff1 = m_aPoints[ 2 ].first - m_aPoints[ 1 ].first;
268 double fHelp = 3.0 * (m_aPoints[ 0 ].second - m_aPoints[ 1 ].second) / (xDiff0*xDiff1);
269 m_aSecDerivY[ 1 ] = fHelp ;
270 m_aSecDerivY[ 2 ] = -fHelp ;
271 m_aSecDerivY[ 0 ] = m_aSecDerivY[ 2 ] ;
273 else
275 // should be handled with natural spline, periodic not possible.
278 else
280 double xDiff_i =1.0; // values are dummy;
281 double xDiff_im1 =1.0;
282 double yDiff_i = 1.0;
283 double yDiff_im1 = 1.0;
284 // fill matrix A and fill right side vector u
285 for( lcl_tSizeType i=1; i<n; ++i )
287 xDiff_im1 = m_aPoints[ i ].first - m_aPoints[ i-1 ].first;
288 xDiff_i = m_aPoints[ i+1 ].first - m_aPoints[ i ].first;
289 yDiff_im1 = (m_aPoints[ i ].second - m_aPoints[ i-1 ].second) / xDiff_im1;
290 yDiff_i = (m_aPoints[ i+1 ].second - m_aPoints[ i ].second) / xDiff_i;
291 Adiag[ i ] = 2 * (xDiff_im1 + xDiff_i);
292 Aupper[ i ] = xDiff_i;
293 u [ i ] = 3 * (yDiff_i - yDiff_im1);
295 xDiff_im1 = m_aPoints[ n ].first - m_aPoints[ n-1 ].first;
296 xDiff_i = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first;
297 yDiff_im1 = (m_aPoints[ n ].second - m_aPoints[ n-1 ].second) / xDiff_im1;
298 yDiff_i = (m_aPoints[ 1 ].second - m_aPoints[ 0 ].second) / xDiff_i;
299 Adiag[ n ] = 2 * (xDiff_im1 + xDiff_i);
300 Aupper[ n ] = xDiff_i;
301 u [ n ] = 3 * (yDiff_i - yDiff_im1);
303 // decomposite A=(R transpose)*D*R
304 Ddiag[1] = Adiag[1];
305 Rupper[1] = Aupper[1] / Ddiag[1];
306 Rright[1] = Aupper[n] / Ddiag[1];
307 for( lcl_tSizeType i=2; i<=n-2; ++i )
309 Ddiag[i] = Adiag[i] - Aupper[ i-1 ] * Rupper[ i-1 ];
310 Rupper[ i ] = Aupper[ i ] / Ddiag[ i ];
311 Rright[ i ] = - Rright[ i-1 ] * Aupper[ i-1 ] / Ddiag[ i ];
313 Ddiag[ n-1 ] = Adiag[ n-1 ] - Aupper[ n-2 ] * Rupper[ n-2 ];
314 Rupper[ n-1 ] = ( Aupper[ n-1 ] - Aupper[ n-2 ] * Rright[ n-2] ) / Ddiag[ n-1 ];
315 double fSum = 0.0;
316 for ( lcl_tSizeType i=1; i<=n-2; ++i )
318 fSum += Ddiag[ i ] * Rright[ i ] * Rright[ i ];
320 Ddiag[ n ] = Adiag[ n ] - fSum - Ddiag[ n-1 ] * Rupper[ n-1 ] * Rupper[ n-1 ]; // bug in [2]!
322 // solve forward (R transpose)*z=u, overwrite u with z
323 for ( lcl_tSizeType i=2; i<=n-1; ++i )
325 u[ i ] -= u[ i-1 ]* Rupper[ i-1 ];
327 fSum = 0.0;
328 for ( lcl_tSizeType i=1; i<=n-2; ++i )
330 fSum += Rright[ i ] * u[ i ];
332 u[ n ] = u[ n ] - fSum - Rupper[ n - 1] * u[ n-1 ];
334 // solve forward D*r=z, z is in u, overwrite u with r
335 for ( lcl_tSizeType i=1; i<=n; ++i )
337 u[ i ] = u[i] / Ddiag[ i ];
340 // solve backward R*x= r, r is in u
341 m_aSecDerivY[ n ] = u[ n ];
342 m_aSecDerivY[ n-1 ] = u[ n-1 ] - Rupper[ n-1 ] * m_aSecDerivY[ n ];
343 for ( lcl_tSizeType i=n-2; i>=1; --i)
345 m_aSecDerivY[ i ] = u[ i ] - Rupper[ i ] * m_aSecDerivY[ i+1 ] - Rright[ i ] * m_aSecDerivY[ n ];
347 // periodic
348 m_aSecDerivY[ 0 ] = m_aSecDerivY[ n ];
351 // adapt m_aSecDerivY for usage in GetInterpolatedValue()
352 for( lcl_tSizeType i = 0; i <= n ; ++i )
354 m_aSecDerivY[ i ] *= 2.0;
359 double lcl_SplineCalculation::GetInterpolatedValue( double x )
361 OSL_PRECOND( ( m_aPoints[ 0 ].first <= x ) &&
362 ( x <= m_aPoints[ m_aPoints.size() - 1 ].first ),
363 "Trying to extrapolate" );
365 const lcl_tSizeType n = m_aPoints.size() - 1;
366 if( x < m_fLastInterpolatedValue )
368 m_nKLow = 0;
369 m_nKHigh = n;
371 // calculate m_nKLow and m_nKHigh
372 // first initialization is done in CTOR
373 while( m_nKHigh - m_nKLow > 1 )
375 lcl_tSizeType k = ( m_nKHigh + m_nKLow ) / 2;
376 if( m_aPoints[ k ].first > x )
377 m_nKHigh = k;
378 else
379 m_nKLow = k;
382 else
384 while( ( m_aPoints[ m_nKHigh ].first < x ) &&
385 ( m_nKHigh <= n ) )
387 ++m_nKHigh;
388 ++m_nKLow;
390 OSL_ENSURE( m_nKHigh <= n, "Out of Bounds" );
392 m_fLastInterpolatedValue = x;
394 double h = m_aPoints[ m_nKHigh ].first - m_aPoints[ m_nKLow ].first;
395 OSL_ENSURE( h != 0, "Bad input to GetInterpolatedValue()" );
397 double a = ( m_aPoints[ m_nKHigh ].first - x ) / h;
398 double b = ( x - m_aPoints[ m_nKLow ].first ) / h;
400 return ( a * m_aPoints[ m_nKLow ].second +
401 b * m_aPoints[ m_nKHigh ].second +
402 (( a*a*a - a ) * m_aSecDerivY[ m_nKLow ] +
403 ( b*b*b - b ) * m_aSecDerivY[ m_nKHigh ] ) *
404 ( h*h ) / 6.0 );
407 // helper methods for B-spline
409 // Create parameter t_0 to t_n using the centripetal method with a power of 0.5
410 bool createParameterT(const tPointVecType& rUniquePoints, double* t)
411 { // precondition: no adjacent identical points
412 // postcondition: 0 = t_0 < t_1 < ... < t_n = 1
413 bool bIsSuccessful = true;
414 const lcl_tSizeType n = rUniquePoints.size() - 1;
415 t[0]=0.0;
416 double dx = 0.0;
417 double dy = 0.0;
418 double fDiffMax = 1.0; //dummy values
419 double fDenominator = 0.0; // initialized for summing up
420 for (lcl_tSizeType i=1; i<=n ; ++i)
421 { // 4th root(dx^2+dy^2)
422 dx = rUniquePoints[i].first - rUniquePoints[i-1].first;
423 dy = rUniquePoints[i].second - rUniquePoints[i-1].second;
424 // scaling to avoid underflow or overflow
425 fDiffMax = (fabs(dx)>fabs(dy)) ? fabs(dx) : fabs(dy);
426 if (fDiffMax == 0.0)
428 bIsSuccessful = false;
429 break;
431 else
433 dx /= fDiffMax;
434 dy /= fDiffMax;
435 fDenominator += sqrt(sqrt(dx * dx + dy * dy)) * sqrt(fDiffMax);
438 if (fDenominator == 0.0)
440 bIsSuccessful = false;
442 if (bIsSuccessful)
444 for (lcl_tSizeType j=1; j<=n ; ++j)
446 double fNumerator = 0.0;
447 for (lcl_tSizeType i=1; i<=j ; ++i)
449 dx = rUniquePoints[i].first - rUniquePoints[i-1].first;
450 dy = rUniquePoints[i].second - rUniquePoints[i-1].second;
451 fDiffMax = (fabs(dx)>fabs(dy)) ? fabs(dx) : fabs(dy);
452 // same as above, so should not be zero
453 dx /= fDiffMax;
454 dy /= fDiffMax;
455 fNumerator += sqrt(sqrt(dx * dx + dy * dy)) * sqrt(fDiffMax);
457 t[j] = fNumerator / fDenominator;
460 // postcondition check
461 t[n] = 1.0;
462 double fPrevious = 0.0;
463 for (lcl_tSizeType i=1; i <= n && bIsSuccessful ; ++i)
465 if (fPrevious >= t[i])
467 bIsSuccessful = false;
469 else
471 fPrevious = t[i];
475 return bIsSuccessful;
478 void createKnotVector(const lcl_tSizeType n, const sal_uInt32 p, double* t, double* u)
479 { // precondition: 0 = t_0 < t_1 < ... < t_n = 1
480 for (lcl_tSizeType j = 0; j <= p; ++j)
482 u[j] = 0.0;
484 for (lcl_tSizeType j = 1; j <= n-p; ++j )
486 double fSum = 0.0;
487 for (lcl_tSizeType i = j; i <= j+p-1; ++i)
489 fSum += t[i];
491 assert(p != 0);
492 u[j+p] = fSum / p ;
494 for (lcl_tSizeType j = n+1; j <= n+1+p; ++j)
496 u[j] = 1.0;
500 void applyNtoParameterT(const lcl_tSizeType i,const double tk,const sal_uInt32 p,const double* u, double* rowN)
502 // get N_p(t_k) recursively, only N_(i-p) till N_(i) are relevant, all other N_# are zero
504 // initialize with indicator function degree 0
505 rowN[p] = 1.0; // all others are zero
507 // calculate up to degree p
508 for (sal_uInt32 s = 1; s <= p; ++s)
510 // first element
511 double fLeftFactor = 0.0;
512 double fRightFactor = ( u[i+1] - tk ) / ( u[i+1]- u[i-s+1] );
513 // i-s "true index" - (i-p)"shift" = p-s
514 rowN[p-s] = fRightFactor * rowN[p-s+1];
516 // middle elements
517 for (sal_uInt32 j = s-1; j>=1 ; --j)
519 fLeftFactor = ( tk - u[i-j] ) / ( u[i-j+s] - u[i-j] ) ;
520 fRightFactor = ( u[i-j+s+1] - tk ) / ( u[i-j+s+1] - u[i-j+1] );
521 // i-j "true index" - (i-p)"shift" = p-j
522 rowN[p-j] = fLeftFactor * rowN[p-j] + fRightFactor * rowN[p-j+1];
525 // last element
526 fLeftFactor = ( tk - u[i] ) / ( u[i+s] - u[i] );
527 // i "true index" - (i-p)"shift" = p
528 rowN[p] = fLeftFactor * rowN[p];
532 } // anonymous namespace
534 // Calculates uniform parametric splines with subinterval length 1,
535 // according ODF1.2 part 1, chapter 'chart interpolation'.
536 void SplineCalculater::CalculateCubicSplines(
537 const drawing::PolyPolygonShape3D& rInput
538 , drawing::PolyPolygonShape3D& rResult
539 , sal_uInt32 nGranularity )
541 OSL_PRECOND( nGranularity > 0, "Granularity is invalid" );
543 rResult.SequenceX.realloc(0);
544 rResult.SequenceY.realloc(0);
545 rResult.SequenceZ.realloc(0);
547 sal_uInt32 nOuterCount = rInput.SequenceX.getLength();
548 if( !nOuterCount )
549 return;
551 rResult.SequenceX.realloc(nOuterCount);
552 rResult.SequenceY.realloc(nOuterCount);
553 rResult.SequenceZ.realloc(nOuterCount);
555 for( sal_uInt32 nOuter = 0; nOuter < nOuterCount; ++nOuter )
557 if( rInput.SequenceX[nOuter].getLength() <= 1 )
558 continue; //we need at least two points
560 sal_uInt32 nMaxIndexPoints = rInput.SequenceX[nOuter].getLength()-1; // is >=1
561 const double* pOldX = rInput.SequenceX[nOuter].getConstArray();
562 const double* pOldY = rInput.SequenceY[nOuter].getConstArray();
563 const double* pOldZ = rInput.SequenceZ[nOuter].getConstArray();
565 ::std::vector < double > aParameter(nMaxIndexPoints+1);
566 aParameter[0]=0.0;
567 for( sal_uInt32 nIndex=1; nIndex<=nMaxIndexPoints; nIndex++ )
569 aParameter[nIndex]=aParameter[nIndex-1]+1;
572 // Split the calculation to X, Y and Z coordinate
573 tPointVecType aInputX;
574 aInputX.resize(nMaxIndexPoints+1);
575 tPointVecType aInputY;
576 aInputY.resize(nMaxIndexPoints+1);
577 tPointVecType aInputZ;
578 aInputZ.resize(nMaxIndexPoints+1);
579 for (sal_uInt32 nN=0;nN<=nMaxIndexPoints; nN++ )
581 aInputX[ nN ].first=aParameter[nN];
582 aInputX[ nN ].second=pOldX[ nN ];
583 aInputY[ nN ].first=aParameter[nN];
584 aInputY[ nN ].second=pOldY[ nN ];
585 aInputZ[ nN ].first=aParameter[nN];
586 aInputZ[ nN ].second=pOldZ[ nN ];
589 // generate a spline for each coordinate. It holds the complete
590 // information to calculate each point of the curve
591 lcl_SplineCalculation* aSplineX;
592 lcl_SplineCalculation* aSplineY;
593 // lcl_SplineCalculation* aSplineZ; the z-coordinates of all points in
594 // a data series are equal. No spline calculation needed, but copy
595 // coordinate to output
597 if( pOldX[ 0 ] == pOldX[nMaxIndexPoints] &&
598 pOldY[ 0 ] == pOldY[nMaxIndexPoints] &&
599 pOldZ[ 0 ] == pOldZ[nMaxIndexPoints] &&
600 nMaxIndexPoints >=2 )
601 { // periodic spline
602 aSplineX = new lcl_SplineCalculation( aInputX) ;
603 aSplineY = new lcl_SplineCalculation( aInputY) ;
604 // aSplineZ = new lcl_SplineCalculation( aInputZ) ;
606 else // generate the kind "natural spline"
608 double fInfty;
609 ::rtl::math::setInf( &fInfty, false );
610 double fXDerivation = fInfty;
611 double fYDerivation = fInfty;
612 aSplineX = new lcl_SplineCalculation( aInputX, fXDerivation, fXDerivation );
613 aSplineY = new lcl_SplineCalculation( aInputY, fYDerivation, fYDerivation );
616 // fill result polygon with calculated values
617 rResult.SequenceX[nOuter].realloc( nMaxIndexPoints*nGranularity + 1);
618 rResult.SequenceY[nOuter].realloc( nMaxIndexPoints*nGranularity + 1);
619 rResult.SequenceZ[nOuter].realloc( nMaxIndexPoints*nGranularity + 1);
621 double* pNewX = rResult.SequenceX[nOuter].getArray();
622 double* pNewY = rResult.SequenceY[nOuter].getArray();
623 double* pNewZ = rResult.SequenceZ[nOuter].getArray();
625 sal_uInt32 nNewPointIndex = 0; // Index in result points
627 for( sal_uInt32 ni = 0; ni < nMaxIndexPoints; ni++ )
629 // given point is surely a curve point
630 pNewX[nNewPointIndex] = pOldX[ni];
631 pNewY[nNewPointIndex] = pOldY[ni];
632 pNewZ[nNewPointIndex] = pOldZ[ni];
633 nNewPointIndex++;
635 // calculate intermediate points
636 double fInc = ( aParameter[ ni+1 ] - aParameter[ni] ) / static_cast< double >( nGranularity );
637 for(sal_uInt32 nj = 1; nj < nGranularity; nj++)
639 double fParam = aParameter[ni] + ( fInc * static_cast< double >( nj ) );
641 pNewX[nNewPointIndex]=aSplineX->GetInterpolatedValue( fParam );
642 pNewY[nNewPointIndex]=aSplineY->GetInterpolatedValue( fParam );
643 // pNewZ[nNewPointIndex]=aSplineZ->GetInterpolatedValue( fParam );
644 pNewZ[nNewPointIndex] = pOldZ[ni];
645 nNewPointIndex++;
648 // add last point
649 pNewX[nNewPointIndex] = pOldX[nMaxIndexPoints];
650 pNewY[nNewPointIndex] = pOldY[nMaxIndexPoints];
651 pNewZ[nNewPointIndex] = pOldZ[nMaxIndexPoints];
652 delete aSplineX;
653 delete aSplineY;
654 // delete aSplineZ;
658 // The implementation follows closely ODF1.2 spec, chapter chart:interpolation
659 // using the same names as in spec as far as possible, without prefix.
660 // More details can be found on
661 // Dr. C.-K. Shene: CS3621 Introduction to Computing with Geometry Notes
662 // Unit 9: Interpolation and Approximation/Curve Global Interpolation
663 // Department of Computer Science, Michigan Technological University
664 // http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/
665 // [last called 2011-05-20]
666 void SplineCalculater::CalculateBSplines(
667 const ::com::sun::star::drawing::PolyPolygonShape3D& rInput
668 , ::com::sun::star::drawing::PolyPolygonShape3D& rResult
669 , sal_uInt32 nResolution
670 , sal_uInt32 nDegree )
672 // nResolution is ODF1.2 file format attribute chart:spline-resolution and
673 // ODF1.2 spec variable k. Causion, k is used as index in the spec in addition.
674 // nDegree is ODF1.2 file format attribute chart:spline-order and
675 // ODF1.2 spec variable p
676 OSL_ASSERT( nResolution > 1 );
677 OSL_ASSERT( nDegree >= 1 );
679 // limit the b-spline degree to prevent insanely large sets of points
680 sal_uInt32 p = std::min<sal_uInt32>(nDegree, MAX_BSPLINE_DEGREE);
682 rResult.SequenceX.realloc(0);
683 rResult.SequenceY.realloc(0);
684 rResult.SequenceZ.realloc(0);
686 sal_Int32 nOuterCount = rInput.SequenceX.getLength();
687 if( !nOuterCount )
688 return; // no input
690 rResult.SequenceX.realloc(nOuterCount);
691 rResult.SequenceY.realloc(nOuterCount);
692 rResult.SequenceZ.realloc(nOuterCount);
694 for( sal_Int32 nOuter = 0; nOuter < nOuterCount; ++nOuter )
696 if( rInput.SequenceX[nOuter].getLength() <= 1 )
697 continue; // need at least 2 points, next piece of the series
699 // Copy input to vector of points and remove adjacent double points. The
700 // Z-coordinate is equal for all points in a series and holds the depth
701 // in 3D mode, simple copying is enough.
702 lcl_tSizeType nMaxIndexPoints = rInput.SequenceX[nOuter].getLength()-1; // is >=1
703 const double* pOldX = rInput.SequenceX[nOuter].getConstArray();
704 const double* pOldY = rInput.SequenceY[nOuter].getConstArray();
705 const double* pOldZ = rInput.SequenceZ[nOuter].getConstArray();
706 double fZCoordinate = pOldZ[0];
707 tPointVecType aPointsIn;
708 aPointsIn.resize(nMaxIndexPoints+1);
709 for (lcl_tSizeType i = 0; i <= nMaxIndexPoints; ++i )
711 aPointsIn[ i ].first = pOldX[i];
712 aPointsIn[ i ].second = pOldY[i];
714 aPointsIn.erase( ::std::unique( aPointsIn.begin(), aPointsIn.end()),
715 aPointsIn.end() );
717 // n is the last valid index to the reduced aPointsIn
718 // There are n+1 valid data points.
719 const lcl_tSizeType n = aPointsIn.size() - 1;
720 if (n < 1 || p > n)
721 continue; // need at least 2 points, degree p needs at least n+1 points
722 // next piece of series
724 boost::scoped_array<double> t(new double [n+1]);
725 if (!createParameterT(aPointsIn, t.get()))
727 continue; // next piece of series
730 lcl_tSizeType m = n + p + 1;
731 boost::scoped_array<double> u(new double [m+1]);
732 createKnotVector(n, p, t.get(), u.get());
734 // The matrix N contains the B-spline basis functions applied to parameters.
735 // In each row only p+1 adjacent elements are non-zero. The starting
736 // column in a higher row is equal or greater than in the lower row.
737 // To store this matrix the non-zero elements are shifted to column 0
738 // and the amount of shifting is remembered in an array.
739 boost::scoped_array<double*> aMatN(new double*[n+1]);
740 for (lcl_tSizeType row = 0; row <=n; ++row)
742 aMatN[row] = new double[p+1];
743 for (sal_uInt32 col = 0; col <= p; ++col)
744 aMatN[row][col] = 0.0;
746 boost::scoped_array<lcl_tSizeType> aShift(new lcl_tSizeType[n+1]);
747 aMatN[0][0] = 1.0; //all others are zero
748 aShift[0] = 0;
749 aMatN[n][0] = 1.0;
750 aShift[n] = n;
751 for (lcl_tSizeType k = 1; k<=n-1; ++k)
752 { // all basis functions are applied to t_k,
753 // results are elements in row k in matrix N
755 // find the one interval with u_i <= t_k < u_(i+1)
756 // remember u_0 = ... = u_p = 0.0 and u_(m-p) = ... u_m = 1.0 and 0<t_k<1
757 lcl_tSizeType i = p;
758 while (!(u[i] <= t[k] && t[k] < u[i+1]))
760 ++i;
763 // index in reduced matrix aMatN = (index in full matrix N) - (i-p)
764 aShift[k] = i - p;
766 applyNtoParameterT(i, t[k], p, u.get(), aMatN[k]);
767 } // next row k
769 // Get matrix C of control points from the matrix equation aMatN * C = aPointsIn
770 // aPointsIn is overwritten with C.
771 // Gaussian elimination is possible without pivoting, see reference
772 lcl_tSizeType r = 0; // true row index
773 lcl_tSizeType c = 0; // true column index
774 double fDivisor = 1.0; // used for diagonal element
775 double fEliminate = 1.0; // used for the element, that will become zero
776 double fHelp;
777 tPointType aHelp;
778 lcl_tSizeType nHelp; // used in triangle change
779 bool bIsSuccessful = true;
780 for (c = 0 ; c <= n && bIsSuccessful; ++c)
782 // search for first non-zero downwards
783 r = c;
784 while ( r < n && aMatN[r][c-aShift[r]] == 0 )
786 ++r;
788 if (aMatN[r][c-aShift[r]] == 0.0)
790 // Matrix N is singular, although this is mathematically impossible
791 bIsSuccessful = false;
793 else
795 // exchange total row r with total row c if necessary
796 if (r != c)
798 for ( sal_uInt32 i = 0; i <= p ; ++i)
800 fHelp = aMatN[r][i];
801 aMatN[r][i] = aMatN[c][i];
802 aMatN[c][i] = fHelp;
804 aHelp = aPointsIn[r];
805 aPointsIn[r] = aPointsIn[c];
806 aPointsIn[c] = aHelp;
807 nHelp = aShift[r];
808 aShift[r] = aShift[c];
809 aShift[c] = nHelp;
812 // divide row c, so that element(c,c) becomes 1
813 fDivisor = aMatN[c][c-aShift[c]]; // not zero, see above
814 for (sal_uInt32 i = 0; i <= p; ++i)
816 aMatN[c][i] /= fDivisor;
818 aPointsIn[c].first /= fDivisor;
819 aPointsIn[c].second /= fDivisor;
821 // eliminate forward, examine row c+1 to n-1 (worst case)
822 // stop if first non-zero element in row has an higher column as c
823 // look at nShift for that, elements in nShift are equal or increasing
824 for ( r = c+1; r < n && aShift[r]<=c ; ++r)
826 fEliminate = aMatN[r][0];
827 if (fEliminate != 0.0) // else accidentally zero, nothing to do
829 for (sal_uInt32 i = 1; i <= p; ++i)
831 aMatN[r][i-1] = aMatN[r][i] - fEliminate * aMatN[c][i];
833 aMatN[r][p]=0;
834 aPointsIn[r].first -= fEliminate * aPointsIn[c].first;
835 aPointsIn[r].second -= fEliminate * aPointsIn[c].second;
836 ++aShift[r];
840 }// upper triangle form is reached
841 if( bIsSuccessful)
843 // eliminate backwards, begin with last column
844 for (lcl_tSizeType cc = n; cc >= 1; --cc )
846 // In row cc the diagonal element(cc,cc) == 1 and all elements left from
847 // diagonal are zero and do not influence other rows.
848 // Full matrix N has semibandwidth < p, therefore element(r,c) is
849 // zero, if abs(r-cc)>=p. abs(r-cc)=cc-r, because r<cc.
850 r = cc - 1;
851 while ( r !=0 && cc-r < p )
853 fEliminate = aMatN[r][ cc - aShift[r] ];
854 if ( fEliminate != 0.0) // else element is accidentically zero, no action needed
856 // row r -= fEliminate * row cc only relevant for right side
857 aMatN[r][cc - aShift[r]] = 0.0;
858 aPointsIn[r].first -= fEliminate * aPointsIn[cc].first;
859 aPointsIn[r].second -= fEliminate * aPointsIn[cc].second;
861 --r;
864 } // aPointsIn contains the control points now.
865 if (bIsSuccessful)
867 // calculate the intermediate points according given resolution
868 // using deBoor-Cox algorithm
869 lcl_tSizeType nNewSize = nResolution * n + 1;
870 rResult.SequenceX[nOuter].realloc(nNewSize);
871 rResult.SequenceY[nOuter].realloc(nNewSize);
872 rResult.SequenceZ[nOuter].realloc(nNewSize);
873 double* pNewX = rResult.SequenceX[nOuter].getArray();
874 double* pNewY = rResult.SequenceY[nOuter].getArray();
875 double* pNewZ = rResult.SequenceZ[nOuter].getArray();
876 pNewX[0] = aPointsIn[0].first;
877 pNewY[0] = aPointsIn[0].second;
878 pNewZ[0] = fZCoordinate; // Precondition: z-coordinates of all points of a series are equal
879 pNewX[nNewSize -1 ] = aPointsIn[n].first;
880 pNewY[nNewSize -1 ] = aPointsIn[n].second;
881 pNewZ[nNewSize -1 ] = fZCoordinate;
882 boost::scoped_array<double> aP(new double[m+1]);
883 lcl_tSizeType nLow = 0;
884 for ( lcl_tSizeType nTIndex = 0; nTIndex <= n-1; ++nTIndex)
886 for (sal_uInt32 nResolutionStep = 1;
887 nResolutionStep <= nResolution && !( nTIndex == n-1 && nResolutionStep == nResolution);
888 ++nResolutionStep)
890 lcl_tSizeType nNewIndex = nTIndex * nResolution + nResolutionStep;
891 double ux = t[nTIndex] + nResolutionStep * ( t[nTIndex+1] - t[nTIndex]) /nResolution;
893 // get index nLow, so that u[nLow]<= ux < u[nLow +1]
894 // continue from previous nLow
895 while ( u[nLow] <= ux)
897 ++nLow;
899 --nLow;
901 // x-coordinate
902 for (lcl_tSizeType i = nLow-p; i <= nLow; ++i)
904 aP[i] = aPointsIn[i].first;
906 for (sal_uInt32 lcl_Degree = 1; lcl_Degree <= p; ++lcl_Degree)
908 for (lcl_tSizeType i = nLow; i >= nLow + lcl_Degree - p; --i)
910 double fFactor = ( ux - u[i] ) / ( u[i+p+1-lcl_Degree] - u[i]);
911 aP[i] = (1 - fFactor)* aP[i-1] + fFactor * aP[i];
914 pNewX[nNewIndex] = aP[nLow];
916 // y-coordinate
917 for (lcl_tSizeType i = nLow - p; i <= nLow; ++i)
919 aP[i] = aPointsIn[i].second;
921 for (sal_uInt32 lcl_Degree = 1; lcl_Degree <= p; ++lcl_Degree)
923 for (lcl_tSizeType i = nLow; i >= nLow +lcl_Degree - p; --i)
925 double fFactor = ( ux - u[i] ) / ( u[i+p+1-lcl_Degree] - u[i]);
926 aP[i] = (1 - fFactor)* aP[i-1] + fFactor * aP[i];
929 pNewY[nNewIndex] = aP[nLow];
930 pNewZ[nNewIndex] = fZCoordinate;
934 for (lcl_tSizeType row = 0; row <=n; ++row)
936 delete[] aMatN[row];
938 } // next piece of the series
941 } //namespace chart
943 /* vim:set shiftwidth=4 softtabstop=4 expandtab: */