nss: upgrade to release 3.73
[LibreOffice.git] / chart2 / source / view / charttypes / Splines.cxx
blob774d5fc1d7acba5e2d6b5ab681097eaa3752b4b4
1 /* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2 /*
3 * This file is part of the LibreOffice project.
5 * This Source Code Form is subject to the terms of the Mozilla Public
6 * License, v. 2.0. If a copy of the MPL was not distributed with this
7 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 * This file incorporates work covered by the following license notice:
11 * Licensed to the Apache Software Foundation (ASF) under one or more
12 * contributor license agreements. See the NOTICE file distributed
13 * with this work for additional information regarding copyright
14 * ownership. The ASF licenses this file to you under the Apache
15 * License, Version 2.0 (the "License"); you may not use this file
16 * except in compliance with the License. You may obtain a copy of
17 * the License at http://www.apache.org/licenses/LICENSE-2.0 .
20 #include "Splines.hxx"
21 #include <rtl/math.hxx>
22 #include <osl/diagnose.h>
23 #include <com/sun/star/drawing/PolyPolygonShape3D.hpp>
25 #include <vector>
26 #include <algorithm>
27 #include <memory>
29 namespace chart
31 using namespace ::com::sun::star;
33 namespace
36 typedef std::pair< double, double > tPointType;
37 typedef std::vector< tPointType > tPointVecType;
38 typedef tPointVecType::size_type lcl_tSizeType;
40 class lcl_SplineCalculation
42 public:
43 /** @descr creates an object that calculates cubic splines on construction
45 @param rSortedPoints the points for which splines shall be calculated, they need to be sorted in x values
46 @param fY1FirstDerivation the resulting spline should have the first
47 derivation equal to this value at the x-value of the first point
48 of rSortedPoints. If fY1FirstDerivation is set to infinity, a natural
49 spline is calculated.
50 @param fYnFirstDerivation the resulting spline should have the first
51 derivation equal to this value at the x-value of the last point
52 of rSortedPoints
54 lcl_SplineCalculation( const tPointVecType & rSortedPoints,
55 double fY1FirstDerivation,
56 double fYnFirstDerivation );
58 /** @descr creates an object that calculates cubic splines on construction
59 for the special case of periodic cubic spline
61 @param rSortedPoints the points for which splines shall be calculated,
62 they need to be sorted in x values. First and last y value must be equal
64 explicit lcl_SplineCalculation( const tPointVecType & rSortedPoints);
66 /** @descr this function corresponds to the function splint in [1].
68 [1] Numerical Recipes in C, 2nd edition
69 William H. Press, et al.,
70 Section 3.3, page 116
72 double GetInterpolatedValue( double x );
74 private:
75 /// a copy of the points given in the CTOR
76 tPointVecType m_aPoints;
78 /// the result of the Calculate() method
79 std::vector< double > m_aSecDerivY;
81 double m_fYp1;
82 double m_fYpN;
84 // these values are cached for performance reasons
85 lcl_tSizeType m_nKLow;
86 lcl_tSizeType m_nKHigh;
87 double m_fLastInterpolatedValue;
89 /** @descr this function corresponds to the function spline in [1].
91 [1] Numerical Recipes in C, 2nd edition
92 William H. Press, et al.,
93 Section 3.3, page 115
95 void Calculate();
97 /** @descr this function corresponds to the algorithm 4.76 in [2] and
98 theorem 5.3.7 in [3]
100 [2] Engeln-Müllges, Gisela: Numerik-Algorithmen: Verfahren, Beispiele, Anwendungen
101 Springer, Berlin; Auflage: 9., überarb. und erw. A. (8. Dezember 2004)
102 Section 4.10.2, page 175
104 [3] Hanrath, Wilhelm: Mathematik III / Numerik, Vorlesungsskript zur
105 Veranstaltung im WS 2007/2008
106 Fachhochschule Aachen, 2009-09-19
107 Numerik_01.pdf, downloaded 2011-04-19 via
108 http://www.fh-aachen.de/index.php?id=11424&no_cache=1&file=5016&uid=44191
109 Section 5.3, page 129
111 void CalculatePeriodic();
114 lcl_SplineCalculation::lcl_SplineCalculation(
115 const tPointVecType & rSortedPoints,
116 double fY1FirstDerivation,
117 double fYnFirstDerivation )
118 : m_aPoints( rSortedPoints ),
119 m_fYp1( fY1FirstDerivation ),
120 m_fYpN( fYnFirstDerivation ),
121 m_nKLow( 0 ),
122 m_nKHigh( rSortedPoints.size() - 1 ),
123 m_fLastInterpolatedValue(0.0)
125 ::rtl::math::setInf( &m_fLastInterpolatedValue, false );
126 Calculate();
129 lcl_SplineCalculation::lcl_SplineCalculation(
130 const tPointVecType & rSortedPoints)
131 : m_aPoints( rSortedPoints ),
132 m_fYp1( 0.0 ), /*dummy*/
133 m_fYpN( 0.0 ), /*dummy*/
134 m_nKLow( 0 ),
135 m_nKHigh( rSortedPoints.size() - 1 ),
136 m_fLastInterpolatedValue(0.0)
138 ::rtl::math::setInf( &m_fLastInterpolatedValue, false );
139 CalculatePeriodic();
142 void lcl_SplineCalculation::Calculate()
144 if( m_aPoints.size() <= 1 )
145 return;
147 // n is the last valid index to m_aPoints
148 const lcl_tSizeType n = m_aPoints.size() - 1;
149 std::vector< double > u( n );
150 m_aSecDerivY.resize( n + 1, 0.0 );
152 if( std::isinf( m_fYp1 ) )
154 // natural spline
155 m_aSecDerivY[ 0 ] = 0.0;
156 u[ 0 ] = 0.0;
158 else
160 m_aSecDerivY[ 0 ] = -0.5;
161 double xDiff = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first;
162 u[ 0 ] = ( 3.0 / xDiff ) *
163 ((( m_aPoints[ 1 ].second - m_aPoints[ 0 ].second ) / xDiff ) - m_fYp1 );
166 for( lcl_tSizeType i = 1; i < n; ++i )
168 tPointType
169 p_i = m_aPoints[ i ],
170 p_im1 = m_aPoints[ i - 1 ],
171 p_ip1 = m_aPoints[ i + 1 ];
173 double sig = ( p_i.first - p_im1.first ) /
174 ( p_ip1.first - p_im1.first );
175 double p = sig * m_aSecDerivY[ i - 1 ] + 2.0;
177 m_aSecDerivY[ i ] = ( sig - 1.0 ) / p;
178 u[ i ] =
179 ( ( p_ip1.second - p_i.second ) /
180 ( p_ip1.first - p_i.first ) ) -
181 ( ( p_i.second - p_im1.second ) /
182 ( p_i.first - p_im1.first ) );
183 u[ i ] =
184 ( 6.0 * u[ i ] / ( p_ip1.first - p_im1.first )
185 - sig * u[ i - 1 ] ) / p;
188 // initialize to values for natural splines (used for m_fYpN equal to
189 // infinity)
190 double qn = 0.0;
191 double un = 0.0;
193 if( ! std::isinf( m_fYpN ) )
195 qn = 0.5;
196 double xDiff = m_aPoints[ n ].first - m_aPoints[ n - 1 ].first;
197 un = ( 3.0 / xDiff ) *
198 ( m_fYpN - ( m_aPoints[ n ].second - m_aPoints[ n - 1 ].second ) / xDiff );
201 m_aSecDerivY[ n ] = ( un - qn * u[ n - 1 ] ) * ( qn * m_aSecDerivY[ n - 1 ] + 1.0 );
203 // note: the algorithm in [1] iterates from n-1 to 0, but as size_type
204 // may be (usually is) an unsigned type, we can not write k >= 0, as this
205 // is always true.
206 for( lcl_tSizeType k = n; k > 0; --k )
208 m_aSecDerivY[ k - 1 ] = (m_aSecDerivY[ k - 1 ] * m_aSecDerivY[ k ] ) + u[ k - 1 ];
212 void lcl_SplineCalculation::CalculatePeriodic()
214 if( m_aPoints.size() <= 1 )
215 return;
217 // n is the last valid index to m_aPoints
218 const lcl_tSizeType n = m_aPoints.size() - 1;
220 // u is used for vector f in A*c=f in [3], vector a in Ax=a in [2],
221 // vector z in Rtranspose z = a and Dr=z in [2]
222 std::vector< double > u( n + 1, 0.0 );
224 // used for vector c in A*c=f and vector x in Ax=a in [2]
225 m_aSecDerivY.resize( n + 1, 0.0 );
227 // diagonal of matrix A, used index 1 to n
228 std::vector< double > Adiag( n + 1, 0.0 );
230 // secondary diagonal of matrix A with index 1 to n-1 and upper right element in A[n]
231 std::vector< double > Aupper( n + 1, 0.0 );
233 // diagonal of matrix D in A=(R transpose)*D*R in [2], used index 1 to n
234 std::vector< double > Ddiag( n+1, 0.0 );
236 // right column of matrix R, used index 1 to n-2
237 std::vector< double > Rright( n-1, 0.0 );
239 // secondary diagonal of matrix R, used index 1 to n-1
240 std::vector< double > Rupper( n, 0.0 );
242 if (n<4)
244 if (n==3)
245 { // special handling of three polynomials, that are four points
246 double xDiff0 = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first ;
247 double xDiff1 = m_aPoints[ 2 ].first - m_aPoints[ 1 ].first ;
248 double xDiff2 = m_aPoints[ 3 ].first - m_aPoints[ 2 ].first ;
249 double xDiff2p1 = xDiff2 + xDiff1;
250 double xDiff0p2 = xDiff0 + xDiff2;
251 double xDiff1p0 = xDiff1 + xDiff0;
252 double fFactor = 1.5 / (xDiff0*xDiff1 + xDiff1*xDiff2 + xDiff2*xDiff0);
253 double yDiff0 = (m_aPoints[ 1 ].second - m_aPoints[ 0 ].second) / xDiff0;
254 double yDiff1 = (m_aPoints[ 2 ].second - m_aPoints[ 1 ].second) / xDiff1;
255 double yDiff2 = (m_aPoints[ 0 ].second - m_aPoints[ 2 ].second) / xDiff2;
256 m_aSecDerivY[ 1 ] = fFactor * (yDiff1*xDiff2p1 - yDiff0*xDiff0p2);
257 m_aSecDerivY[ 2 ] = fFactor * (yDiff2*xDiff0p2 - yDiff1*xDiff1p0);
258 m_aSecDerivY[ 3 ] = fFactor * (yDiff0*xDiff1p0 - yDiff2*xDiff2p1);
259 m_aSecDerivY[ 0 ] = m_aSecDerivY[ 3 ];
261 else if (n==2)
263 // special handling of two polynomials, that are three points
264 double xDiff0 = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first;
265 double xDiff1 = m_aPoints[ 2 ].first - m_aPoints[ 1 ].first;
266 double fHelp = 3.0 * (m_aPoints[ 0 ].second - m_aPoints[ 1 ].second) / (xDiff0*xDiff1);
267 m_aSecDerivY[ 1 ] = fHelp ;
268 m_aSecDerivY[ 2 ] = -fHelp ;
269 m_aSecDerivY[ 0 ] = m_aSecDerivY[ 2 ] ;
271 else
273 // should be handled with natural spline, periodic not possible.
276 else
278 double xDiff_i =1.0; // values are dummy;
279 double xDiff_im1 =1.0;
280 double yDiff_i = 1.0;
281 double yDiff_im1 = 1.0;
282 // fill matrix A and fill right side vector u
283 for( lcl_tSizeType i=1; i<n; ++i )
285 xDiff_im1 = m_aPoints[ i ].first - m_aPoints[ i-1 ].first;
286 xDiff_i = m_aPoints[ i+1 ].first - m_aPoints[ i ].first;
287 yDiff_im1 = (m_aPoints[ i ].second - m_aPoints[ i-1 ].second) / xDiff_im1;
288 yDiff_i = (m_aPoints[ i+1 ].second - m_aPoints[ i ].second) / xDiff_i;
289 Adiag[ i ] = 2 * (xDiff_im1 + xDiff_i);
290 Aupper[ i ] = xDiff_i;
291 u [ i ] = 3 * (yDiff_i - yDiff_im1);
293 xDiff_im1 = m_aPoints[ n ].first - m_aPoints[ n-1 ].first;
294 xDiff_i = m_aPoints[ 1 ].first - m_aPoints[ 0 ].first;
295 yDiff_im1 = (m_aPoints[ n ].second - m_aPoints[ n-1 ].second) / xDiff_im1;
296 yDiff_i = (m_aPoints[ 1 ].second - m_aPoints[ 0 ].second) / xDiff_i;
297 Adiag[ n ] = 2 * (xDiff_im1 + xDiff_i);
298 Aupper[ n ] = xDiff_i;
299 u [ n ] = 3 * (yDiff_i - yDiff_im1);
301 // decomposite A=(R transpose)*D*R
302 Ddiag[1] = Adiag[1];
303 Rupper[1] = Aupper[1] / Ddiag[1];
304 Rright[1] = Aupper[n] / Ddiag[1];
305 for( lcl_tSizeType i=2; i<=n-2; ++i )
307 Ddiag[i] = Adiag[i] - Aupper[ i-1 ] * Rupper[ i-1 ];
308 Rupper[ i ] = Aupper[ i ] / Ddiag[ i ];
309 Rright[ i ] = - Rright[ i-1 ] * Aupper[ i-1 ] / Ddiag[ i ];
311 Ddiag[ n-1 ] = Adiag[ n-1 ] - Aupper[ n-2 ] * Rupper[ n-2 ];
312 Rupper[ n-1 ] = ( Aupper[ n-1 ] - Aupper[ n-2 ] * Rright[ n-2] ) / Ddiag[ n-1 ];
313 double fSum = 0.0;
314 for ( lcl_tSizeType i=1; i<=n-2; ++i )
316 fSum += Ddiag[ i ] * Rright[ i ] * Rright[ i ];
318 Ddiag[ n ] = Adiag[ n ] - fSum - Ddiag[ n-1 ] * Rupper[ n-1 ] * Rupper[ n-1 ]; // bug in [2]!
320 // solve forward (R transpose)*z=u, overwrite u with z
321 for ( lcl_tSizeType i=2; i<=n-1; ++i )
323 u[ i ] -= u[ i-1 ]* Rupper[ i-1 ];
325 fSum = 0.0;
326 for ( lcl_tSizeType i=1; i<=n-2; ++i )
328 fSum += Rright[ i ] * u[ i ];
330 u[ n ] = u[ n ] - fSum - Rupper[ n - 1] * u[ n-1 ];
332 // solve forward D*r=z, z is in u, overwrite u with r
333 for ( lcl_tSizeType i=1; i<=n; ++i )
335 u[ i ] = u[i] / Ddiag[ i ];
338 // solve backward R*x= r, r is in u
339 m_aSecDerivY[ n ] = u[ n ];
340 m_aSecDerivY[ n-1 ] = u[ n-1 ] - Rupper[ n-1 ] * m_aSecDerivY[ n ];
341 for ( lcl_tSizeType i=n-2; i>=1; --i)
343 m_aSecDerivY[ i ] = u[ i ] - Rupper[ i ] * m_aSecDerivY[ i+1 ] - Rright[ i ] * m_aSecDerivY[ n ];
345 // periodic
346 m_aSecDerivY[ 0 ] = m_aSecDerivY[ n ];
349 // adapt m_aSecDerivY for usage in GetInterpolatedValue()
350 for( lcl_tSizeType i = 0; i <= n ; ++i )
352 m_aSecDerivY[ i ] *= 2.0;
357 double lcl_SplineCalculation::GetInterpolatedValue( double x )
359 OSL_PRECOND( ( m_aPoints[ 0 ].first <= x ) &&
360 ( x <= m_aPoints[ m_aPoints.size() - 1 ].first ),
361 "Trying to extrapolate" );
363 const lcl_tSizeType n = m_aPoints.size() - 1;
364 if( x < m_fLastInterpolatedValue )
366 m_nKLow = 0;
367 m_nKHigh = n;
369 // calculate m_nKLow and m_nKHigh
370 // first initialization is done in CTOR
371 while( m_nKHigh - m_nKLow > 1 )
373 lcl_tSizeType k = ( m_nKHigh + m_nKLow ) / 2;
374 if( m_aPoints[ k ].first > x )
375 m_nKHigh = k;
376 else
377 m_nKLow = k;
380 else
382 while( ( m_nKHigh <= n ) &&
383 ( m_aPoints[ m_nKHigh ].first < x ) )
385 ++m_nKHigh;
386 ++m_nKLow;
388 OSL_ENSURE( m_nKHigh <= n, "Out of Bounds" );
390 m_fLastInterpolatedValue = x;
392 double h = m_aPoints[ m_nKHigh ].first - m_aPoints[ m_nKLow ].first;
393 OSL_ENSURE( h != 0, "Bad input to GetInterpolatedValue()" );
395 double a = ( m_aPoints[ m_nKHigh ].first - x ) / h;
396 double b = ( x - m_aPoints[ m_nKLow ].first ) / h;
398 return ( a * m_aPoints[ m_nKLow ].second +
399 b * m_aPoints[ m_nKHigh ].second +
400 (( a*a*a - a ) * m_aSecDerivY[ m_nKLow ] +
401 ( b*b*b - b ) * m_aSecDerivY[ m_nKHigh ] ) *
402 ( h*h ) / 6.0 );
405 // helper methods for B-spline
407 // Create parameter t_0 to t_n using the centripetal method with a power of 0.5
408 bool createParameterT(const tPointVecType& rUniquePoints, double* t)
409 { // precondition: no adjacent identical points
410 // postcondition: 0 = t_0 < t_1 < ... < t_n = 1
411 bool bIsSuccessful = true;
412 const lcl_tSizeType n = rUniquePoints.size() - 1;
413 t[0]=0.0;
414 double dx = 0.0;
415 double dy = 0.0;
416 double fDiffMax = 1.0; //dummy values
417 double fDenominator = 0.0; // initialized for summing up
418 for (lcl_tSizeType i=1; i<=n ; ++i)
419 { // 4th root(dx^2+dy^2)
420 dx = rUniquePoints[i].first - rUniquePoints[i-1].first;
421 dy = rUniquePoints[i].second - rUniquePoints[i-1].second;
422 // scaling to avoid underflow or overflow
423 fDiffMax = std::max(fabs(dx), fabs(dy));
424 if (fDiffMax == 0.0)
426 bIsSuccessful = false;
427 break;
429 else
431 dx /= fDiffMax;
432 dy /= fDiffMax;
433 fDenominator += sqrt(sqrt(dx * dx + dy * dy)) * sqrt(fDiffMax);
436 if (fDenominator == 0.0)
438 bIsSuccessful = false;
440 if (bIsSuccessful)
442 for (lcl_tSizeType j=1; j<=n ; ++j)
444 double fNumerator = 0.0;
445 for (lcl_tSizeType i=1; i<=j ; ++i)
447 dx = rUniquePoints[i].first - rUniquePoints[i-1].first;
448 dy = rUniquePoints[i].second - rUniquePoints[i-1].second;
449 fDiffMax = std::max(fabs(dx), fabs(dy));
450 // same as above, so should not be zero
451 dx /= fDiffMax;
452 dy /= fDiffMax;
453 fNumerator += sqrt(sqrt(dx * dx + dy * dy)) * sqrt(fDiffMax);
455 t[j] = fNumerator / fDenominator;
458 // postcondition check
459 t[n] = 1.0;
460 double fPrevious = 0.0;
461 for (lcl_tSizeType i=1; i <= n && bIsSuccessful ; ++i)
463 if (fPrevious >= t[i])
465 bIsSuccessful = false;
467 else
469 fPrevious = t[i];
473 return bIsSuccessful;
476 void createKnotVector(const lcl_tSizeType n, const sal_uInt32 p, const double* t, double* u)
477 { // precondition: 0 = t_0 < t_1 < ... < t_n = 1
478 for (lcl_tSizeType j = 0; j <= p; ++j)
480 u[j] = 0.0;
482 for (lcl_tSizeType j = 1; j <= n-p; ++j )
484 double fSum = 0.0;
485 for (lcl_tSizeType i = j; i <= j+p-1; ++i)
487 fSum += t[i];
489 assert(p != 0);
490 u[j+p] = fSum / p ;
492 for (lcl_tSizeType j = n+1; j <= n+1+p; ++j)
494 u[j] = 1.0;
498 void applyNtoParameterT(const lcl_tSizeType i,const double tk,const sal_uInt32 p,const double* u, double* rowN)
500 // get N_p(t_k) recursively, only N_(i-p) till N_(i) are relevant, all other N_# are zero
502 // initialize with indicator function degree 0
503 rowN[p] = 1.0; // all others are zero
505 // calculate up to degree p
506 for (sal_uInt32 s = 1; s <= p; ++s)
508 // first element
509 double fLeftFactor = 0.0;
510 double fRightFactor = ( u[i+1] - tk ) / ( u[i+1]- u[i-s+1] );
511 // i-s "true index" - (i-p)"shift" = p-s
512 rowN[p-s] = fRightFactor * rowN[p-s+1];
514 // middle elements
515 for (sal_uInt32 j = s-1; j>=1 ; --j)
517 fLeftFactor = ( tk - u[i-j] ) / ( u[i-j+s] - u[i-j] ) ;
518 fRightFactor = ( u[i-j+s+1] - tk ) / ( u[i-j+s+1] - u[i-j+1] );
519 // i-j "true index" - (i-p)"shift" = p-j
520 rowN[p-j] = fLeftFactor * rowN[p-j] + fRightFactor * rowN[p-j+1];
523 // last element
524 fLeftFactor = ( tk - u[i] ) / ( u[i+s] - u[i] );
525 // i "true index" - (i-p)"shift" = p
526 rowN[p] = fLeftFactor * rowN[p];
530 } // anonymous namespace
532 // Calculates uniform parametric splines with subinterval length 1,
533 // according ODF1.2 part 1, chapter 'chart interpolation'.
534 void SplineCalculater::CalculateCubicSplines(
535 const drawing::PolyPolygonShape3D& rInput
536 , drawing::PolyPolygonShape3D& rResult
537 , sal_uInt32 nGranularity )
539 OSL_PRECOND( nGranularity > 0, "Granularity is invalid" );
541 sal_uInt32 nOuterCount = rInput.SequenceX.getLength();
543 rResult.SequenceX.realloc(nOuterCount);
544 rResult.SequenceY.realloc(nOuterCount);
545 rResult.SequenceZ.realloc(nOuterCount);
547 if( !nOuterCount )
548 return;
550 for( sal_uInt32 nOuter = 0; nOuter < nOuterCount; ++nOuter )
552 if( rInput.SequenceX[nOuter].getLength() <= 1 )
553 continue; //we need at least two points
555 sal_uInt32 nMaxIndexPoints = rInput.SequenceX[nOuter].getLength()-1; // is >=1
556 const double* pOldX = rInput.SequenceX[nOuter].getConstArray();
557 const double* pOldY = rInput.SequenceY[nOuter].getConstArray();
558 const double* pOldZ = rInput.SequenceZ[nOuter].getConstArray();
560 std::vector < double > aParameter(nMaxIndexPoints+1);
561 aParameter[0]=0.0;
562 for( sal_uInt32 nIndex=1; nIndex<=nMaxIndexPoints; nIndex++ )
564 aParameter[nIndex]=aParameter[nIndex-1]+1;
567 // Split the calculation to X, Y and Z coordinate
568 tPointVecType aInputX;
569 aInputX.resize(nMaxIndexPoints+1);
570 tPointVecType aInputY;
571 aInputY.resize(nMaxIndexPoints+1);
572 tPointVecType aInputZ;
573 aInputZ.resize(nMaxIndexPoints+1);
574 for (sal_uInt32 nN=0;nN<=nMaxIndexPoints; nN++ )
576 aInputX[ nN ].first=aParameter[nN];
577 aInputX[ nN ].second=pOldX[ nN ];
578 aInputY[ nN ].first=aParameter[nN];
579 aInputY[ nN ].second=pOldY[ nN ];
580 aInputZ[ nN ].first=aParameter[nN];
581 aInputZ[ nN ].second=pOldZ[ nN ];
584 // generate a spline for each coordinate. It holds the complete
585 // information to calculate each point of the curve
586 std::unique_ptr<lcl_SplineCalculation> aSplineX;
587 std::unique_ptr<lcl_SplineCalculation> aSplineY;
588 // lcl_SplineCalculation* aSplineZ; the z-coordinates of all points in
589 // a data series are equal. No spline calculation needed, but copy
590 // coordinate to output
592 if( pOldX[ 0 ] == pOldX[nMaxIndexPoints] &&
593 pOldY[ 0 ] == pOldY[nMaxIndexPoints] &&
594 pOldZ[ 0 ] == pOldZ[nMaxIndexPoints] &&
595 nMaxIndexPoints >=2 )
596 { // periodic spline
597 aSplineX.reset(new lcl_SplineCalculation( aInputX));
598 aSplineY.reset(new lcl_SplineCalculation( aInputY));
599 // aSplineZ = new lcl_SplineCalculation( aInputZ) ;
601 else // generate the kind "natural spline"
603 double fInfty;
604 ::rtl::math::setInf( &fInfty, false );
605 double fXDerivation = fInfty;
606 double fYDerivation = fInfty;
607 aSplineX.reset(new lcl_SplineCalculation( aInputX, fXDerivation, fXDerivation ));
608 aSplineY.reset(new lcl_SplineCalculation( aInputY, fYDerivation, fYDerivation ));
611 // fill result polygon with calculated values
612 rResult.SequenceX[nOuter].realloc( nMaxIndexPoints*nGranularity + 1);
613 rResult.SequenceY[nOuter].realloc( nMaxIndexPoints*nGranularity + 1);
614 rResult.SequenceZ[nOuter].realloc( nMaxIndexPoints*nGranularity + 1);
616 double* pNewX = rResult.SequenceX[nOuter].getArray();
617 double* pNewY = rResult.SequenceY[nOuter].getArray();
618 double* pNewZ = rResult.SequenceZ[nOuter].getArray();
620 sal_uInt32 nNewPointIndex = 0; // Index in result points
622 for( sal_uInt32 ni = 0; ni < nMaxIndexPoints; ni++ )
624 // given point is surely a curve point
625 pNewX[nNewPointIndex] = pOldX[ni];
626 pNewY[nNewPointIndex] = pOldY[ni];
627 pNewZ[nNewPointIndex] = pOldZ[ni];
628 nNewPointIndex++;
630 // calculate intermediate points
631 double fInc = ( aParameter[ ni+1 ] - aParameter[ni] ) / static_cast< double >( nGranularity );
632 for(sal_uInt32 nj = 1; nj < nGranularity; nj++)
634 double fParam = aParameter[ni] + ( fInc * static_cast< double >( nj ) );
636 pNewX[nNewPointIndex]=aSplineX->GetInterpolatedValue( fParam );
637 pNewY[nNewPointIndex]=aSplineY->GetInterpolatedValue( fParam );
638 // pNewZ[nNewPointIndex]=aSplineZ->GetInterpolatedValue( fParam );
639 pNewZ[nNewPointIndex] = pOldZ[ni];
640 nNewPointIndex++;
643 // add last point
644 pNewX[nNewPointIndex] = pOldX[nMaxIndexPoints];
645 pNewY[nNewPointIndex] = pOldY[nMaxIndexPoints];
646 pNewZ[nNewPointIndex] = pOldZ[nMaxIndexPoints];
650 // The implementation follows closely ODF1.2 spec, chapter chart:interpolation
651 // using the same names as in spec as far as possible, without prefix.
652 // More details can be found on
653 // Dr. C.-K. Shene: CS3621 Introduction to Computing with Geometry Notes
654 // Unit 9: Interpolation and Approximation/Curve Global Interpolation
655 // Department of Computer Science, Michigan Technological University
656 // http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/
657 // [last called 2011-05-20]
658 void SplineCalculater::CalculateBSplines(
659 const css::drawing::PolyPolygonShape3D& rInput
660 , css::drawing::PolyPolygonShape3D& rResult
661 , sal_uInt32 nResolution
662 , sal_uInt32 nDegree )
664 // nResolution is ODF1.2 file format attribute chart:spline-resolution and
665 // ODF1.2 spec variable k. Causion, k is used as index in the spec in addition.
666 // nDegree is ODF1.2 file format attribute chart:spline-order and
667 // ODF1.2 spec variable p
668 OSL_ASSERT( nResolution > 1 );
669 OSL_ASSERT( nDegree >= 1 );
671 // limit the b-spline degree at 15 to prevent insanely large sets of points
672 sal_uInt32 p = std::min<sal_uInt32>(nDegree, 15);
674 sal_Int32 nOuterCount = rInput.SequenceX.getLength();
676 rResult.SequenceX.realloc(nOuterCount);
677 rResult.SequenceY.realloc(nOuterCount);
678 rResult.SequenceZ.realloc(nOuterCount);
680 if( !nOuterCount )
681 return; // no input
683 for( sal_Int32 nOuter = 0; nOuter < nOuterCount; ++nOuter )
685 if( rInput.SequenceX[nOuter].getLength() <= 1 )
686 continue; // need at least 2 points, next piece of the series
688 // Copy input to vector of points and remove adjacent double points. The
689 // Z-coordinate is equal for all points in a series and holds the depth
690 // in 3D mode, simple copying is enough.
691 lcl_tSizeType nMaxIndexPoints = rInput.SequenceX[nOuter].getLength()-1; // is >=1
692 const double* pOldX = rInput.SequenceX[nOuter].getConstArray();
693 const double* pOldY = rInput.SequenceY[nOuter].getConstArray();
694 const double* pOldZ = rInput.SequenceZ[nOuter].getConstArray();
695 double fZCoordinate = pOldZ[0];
696 tPointVecType aPointsIn;
697 aPointsIn.resize(nMaxIndexPoints+1);
698 for (lcl_tSizeType i = 0; i <= nMaxIndexPoints; ++i )
700 aPointsIn[ i ].first = pOldX[i];
701 aPointsIn[ i ].second = pOldY[i];
703 aPointsIn.erase( std::unique( aPointsIn.begin(), aPointsIn.end()),
704 aPointsIn.end() );
706 // n is the last valid index to the reduced aPointsIn
707 // There are n+1 valid data points.
708 const lcl_tSizeType n = aPointsIn.size() - 1;
709 if (n < 1 || p > n)
710 continue; // need at least 2 points, degree p needs at least n+1 points
711 // next piece of series
713 std::unique_ptr<double[]> t(new double [n+1]);
714 if (!createParameterT(aPointsIn, t.get()))
716 continue; // next piece of series
719 lcl_tSizeType m = n + p + 1;
720 std::unique_ptr<double[]> u(new double [m+1]);
721 createKnotVector(n, p, t.get(), u.get());
723 // The matrix N contains the B-spline basis functions applied to parameters.
724 // In each row only p+1 adjacent elements are non-zero. The starting
725 // column in a higher row is equal or greater than in the lower row.
726 // To store this matrix the non-zero elements are shifted to column 0
727 // and the amount of shifting is remembered in an array.
728 std::unique_ptr<double*[]> aMatN(new double*[n+1]);
729 for (lcl_tSizeType row = 0; row <=n; ++row)
731 aMatN[row] = new double[p+1];
732 for (sal_uInt32 col = 0; col <= p; ++col)
733 aMatN[row][col] = 0.0;
735 std::unique_ptr<lcl_tSizeType[]> aShift(new lcl_tSizeType[n+1]);
736 aMatN[0][0] = 1.0; //all others are zero
737 aShift[0] = 0;
738 aMatN[n][0] = 1.0;
739 aShift[n] = n;
740 for (lcl_tSizeType k = 1; k<=n-1; ++k)
741 { // all basis functions are applied to t_k,
742 // results are elements in row k in matrix N
744 // find the one interval with u_i <= t_k < u_(i+1)
745 // remember u_0 = ... = u_p = 0.0 and u_(m-p) = ... u_m = 1.0 and 0<t_k<1
746 lcl_tSizeType i = p;
747 while (u[i] > t[k] || t[k] >= u[i+1])
749 ++i;
752 // index in reduced matrix aMatN = (index in full matrix N) - (i-p)
753 aShift[k] = i - p;
755 applyNtoParameterT(i, t[k], p, u.get(), aMatN[k]);
756 } // next row k
758 // Get matrix C of control points from the matrix equation aMatN * C = aPointsIn
759 // aPointsIn is overwritten with C.
760 // Gaussian elimination is possible without pivoting, see reference
761 lcl_tSizeType r = 0; // true row index
762 lcl_tSizeType c = 0; // true column index
763 double fDivisor = 1.0; // used for diagonal element
764 double fEliminate = 1.0; // used for the element, that will become zero
765 double fHelp;
766 tPointType aHelp;
767 lcl_tSizeType nHelp; // used in triangle change
768 bool bIsSuccessful = true;
769 for (c = 0 ; c <= n && bIsSuccessful; ++c)
771 // search for first non-zero downwards
772 r = c;
773 while ( r < n && aMatN[r][c-aShift[r]] == 0 )
775 ++r;
777 if (aMatN[r][c-aShift[r]] == 0.0)
779 // Matrix N is singular, although this is mathematically impossible
780 bIsSuccessful = false;
782 else
784 // exchange total row r with total row c if necessary
785 if (r != c)
787 for ( sal_uInt32 i = 0; i <= p ; ++i)
789 fHelp = aMatN[r][i];
790 aMatN[r][i] = aMatN[c][i];
791 aMatN[c][i] = fHelp;
793 aHelp = aPointsIn[r];
794 aPointsIn[r] = aPointsIn[c];
795 aPointsIn[c] = aHelp;
796 nHelp = aShift[r];
797 aShift[r] = aShift[c];
798 aShift[c] = nHelp;
801 // divide row c, so that element(c,c) becomes 1
802 fDivisor = aMatN[c][c-aShift[c]]; // not zero, see above
803 for (sal_uInt32 i = 0; i <= p; ++i)
805 aMatN[c][i] /= fDivisor;
807 aPointsIn[c].first /= fDivisor;
808 aPointsIn[c].second /= fDivisor;
810 // eliminate forward, examine row c+1 to n-1 (worst case)
811 // stop if first non-zero element in row has an higher column as c
812 // look at nShift for that, elements in nShift are equal or increasing
813 for ( r = c+1; r < n && aShift[r]<=c ; ++r)
815 fEliminate = aMatN[r][0];
816 if (fEliminate != 0.0) // else accidentally zero, nothing to do
818 for (sal_uInt32 i = 1; i <= p; ++i)
820 aMatN[r][i-1] = aMatN[r][i] - fEliminate * aMatN[c][i];
822 aMatN[r][p]=0;
823 aPointsIn[r].first -= fEliminate * aPointsIn[c].first;
824 aPointsIn[r].second -= fEliminate * aPointsIn[c].second;
825 ++aShift[r];
829 }// upper triangle form is reached
830 if( bIsSuccessful)
832 // eliminate backwards, begin with last column
833 for (lcl_tSizeType cc = n; cc >= 1; --cc )
835 // In row cc the diagonal element(cc,cc) == 1 and all elements left from
836 // diagonal are zero and do not influence other rows.
837 // Full matrix N has semibandwidth < p, therefore element(r,c) is
838 // zero, if abs(r-cc)>=p. abs(r-cc)=cc-r, because r<cc.
839 r = cc - 1;
840 while ( r !=0 && cc-r < p )
842 fEliminate = aMatN[r][ cc - aShift[r] ];
843 if ( fEliminate != 0.0) // else element is accidentally zero, no action needed
845 // row r -= fEliminate * row cc only relevant for right side
846 aMatN[r][cc - aShift[r]] = 0.0;
847 aPointsIn[r].first -= fEliminate * aPointsIn[cc].first;
848 aPointsIn[r].second -= fEliminate * aPointsIn[cc].second;
850 --r;
853 // aPointsIn contains the control points now.
855 // calculate the intermediate points according given resolution
856 // using deBoor-Cox algorithm
857 lcl_tSizeType nNewSize = nResolution * n + 1;
858 rResult.SequenceX[nOuter].realloc(nNewSize);
859 rResult.SequenceY[nOuter].realloc(nNewSize);
860 rResult.SequenceZ[nOuter].realloc(nNewSize);
861 double* pNewX = rResult.SequenceX[nOuter].getArray();
862 double* pNewY = rResult.SequenceY[nOuter].getArray();
863 double* pNewZ = rResult.SequenceZ[nOuter].getArray();
864 pNewX[0] = aPointsIn[0].first;
865 pNewY[0] = aPointsIn[0].second;
866 pNewZ[0] = fZCoordinate; // Precondition: z-coordinates of all points of a series are equal
867 pNewX[nNewSize -1 ] = aPointsIn[n].first;
868 pNewY[nNewSize -1 ] = aPointsIn[n].second;
869 pNewZ[nNewSize -1 ] = fZCoordinate;
870 std::unique_ptr<double[]> aP(new double[m+1]);
871 lcl_tSizeType nLow = 0;
872 for ( lcl_tSizeType nTIndex = 0; nTIndex <= n-1; ++nTIndex)
874 for (sal_uInt32 nResolutionStep = 1;
875 nResolutionStep <= nResolution && ( nTIndex != n-1 || nResolutionStep != nResolution);
876 ++nResolutionStep)
878 lcl_tSizeType nNewIndex = nTIndex * nResolution + nResolutionStep;
879 double ux = t[nTIndex] + nResolutionStep * ( t[nTIndex+1] - t[nTIndex]) /nResolution;
881 // get index nLow, so that u[nLow]<= ux < u[nLow +1]
882 // continue from previous nLow
883 while ( u[nLow] <= ux)
885 ++nLow;
887 --nLow;
889 // x-coordinate
890 for (lcl_tSizeType i = nLow-p; i <= nLow; ++i)
892 aP[i] = aPointsIn[i].first;
894 for (sal_uInt32 lcl_Degree = 1; lcl_Degree <= p; ++lcl_Degree)
896 for (lcl_tSizeType i = nLow; i >= nLow + lcl_Degree - p; --i)
898 double fFactor = ( ux - u[i] ) / ( u[i+p+1-lcl_Degree] - u[i]);
899 aP[i] = (1 - fFactor)* aP[i-1] + fFactor * aP[i];
902 pNewX[nNewIndex] = aP[nLow];
904 // y-coordinate
905 for (lcl_tSizeType i = nLow - p; i <= nLow; ++i)
907 aP[i] = aPointsIn[i].second;
909 for (sal_uInt32 lcl_Degree = 1; lcl_Degree <= p; ++lcl_Degree)
911 for (lcl_tSizeType i = nLow; i >= nLow +lcl_Degree - p; --i)
913 double fFactor = ( ux - u[i] ) / ( u[i+p+1-lcl_Degree] - u[i]);
914 aP[i] = (1 - fFactor)* aP[i-1] + fFactor * aP[i];
917 pNewY[nNewIndex] = aP[nLow];
918 pNewZ[nNewIndex] = fZCoordinate;
922 for (lcl_tSizeType row = 0; row <=n; ++row)
924 delete[] aMatN[row];
926 } // next piece of the series
929 } //namespace chart
931 /* vim:set shiftwidth=4 softtabstop=4 expandtab: */