Bump clang version to 18 (#14116)
[betaflight.git] / lib / main / CMSIS / DSP / Source / ControllerFunctions / arm_sin_cos_f32.c
blob7ec1b5392659bdb75b5719c3dfaf0ac32dda9dc9
1 /* ----------------------------------------------------------------------
2 * Project: CMSIS DSP Library
3 * Title: arm_sin_cos_f32.c
4 * Description: Sine and Cosine calculation for floating-point values
6 * $Date: 27. January 2017
7 * $Revision: V.1.5.1
9 * Target Processor: Cortex-M cores
10 * -------------------------------------------------------------------- */
12 * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
14 * SPDX-License-Identifier: Apache-2.0
16 * Licensed under the Apache License, Version 2.0 (the License); you may
17 * not use this file except in compliance with the License.
18 * You may obtain a copy of the License at
20 * www.apache.org/licenses/LICENSE-2.0
22 * Unless required by applicable law or agreed to in writing, software
23 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
24 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
25 * See the License for the specific language governing permissions and
26 * limitations under the License.
29 #include "arm_math.h"
30 #include "arm_common_tables.h"
32 /**
33 * @ingroup groupController
36 /**
37 * @defgroup SinCos Sine Cosine
39 * Computes the trigonometric sine and cosine values using a combination of table lookup
40 * and linear interpolation.
41 * There are separate functions for Q31 and floating-point data types.
42 * The input to the floating-point version is in degrees while the
43 * fixed-point Q31 have a scaled input with the range
44 * [-1 0.9999] mapping to [-180 +180] degrees.
46 * The floating point function also allows values that are out of the usual range. When this happens, the function will
47 * take extra time to adjust the input value to the range of [-180 180].
49 * The result is accurate to 5 digits after the decimal point.
51 * The implementation is based on table lookup using 360 values together with linear interpolation.
52 * The steps used are:
53 * -# Calculation of the nearest integer table index.
54 * -# Compute the fractional portion (fract) of the input.
55 * -# Fetch the value corresponding to \c index from sine table to \c y0 and also value from \c index+1 to \c y1.
56 * -# Sine value is computed as <code> *psinVal = y0 + (fract * (y1 - y0))</code>.
57 * -# Fetch the value corresponding to \c index from cosine table to \c y0 and also value from \c index+1 to \c y1.
58 * -# Cosine value is computed as <code> *pcosVal = y0 + (fract * (y1 - y0))</code>.
61 /**
62 * @addtogroup SinCos
63 * @{
66 /**
67 * @brief Floating-point sin_cos function.
68 * @param[in] theta input value in degrees
69 * @param[out] *pSinVal points to the processed sine output.
70 * @param[out] *pCosVal points to the processed cos output.
71 * @return none.
74 void arm_sin_cos_f32(
75 float32_t theta,
76 float32_t * pSinVal,
77 float32_t * pCosVal)
79 float32_t fract, in; /* Temporary variables for input, output */
80 uint16_t indexS, indexC; /* Index variable */
81 float32_t f1, f2, d1, d2; /* Two nearest output values */
82 float32_t findex, Dn, Df, temp;
84 /* input x is in degrees */
85 /* Scale the input, divide input by 360, for cosine add 0.25 (pi/2) to read sine table */
86 in = theta * 0.00277777777778f;
88 if (in < 0.0f)
90 in = -in;
93 in = in - (int32_t)in;
95 /* Calculation of index of the table */
96 findex = (float32_t) FAST_MATH_TABLE_SIZE * in;
97 indexS = ((uint16_t)findex) & 0x1ff;
98 indexC = (indexS + (FAST_MATH_TABLE_SIZE / 4)) & 0x1ff;
100 /* fractional value calculation */
101 fract = findex - (float32_t) indexS;
103 /* Read two nearest values of input value from the cos & sin tables */
104 f1 = sinTable_f32[indexC+0];
105 f2 = sinTable_f32[indexC+1];
106 d1 = -sinTable_f32[indexS+0];
107 d2 = -sinTable_f32[indexS+1];
109 temp = (1.0f - fract) * f1 + fract * f2;
111 Dn = 0.0122718463030f; // delta between the two points (fixed), in this case 2*pi/FAST_MATH_TABLE_SIZE
112 Df = f2 - f1; // delta between the values of the functions
114 temp = Dn *(d1 + d2) - 2 * Df;
115 temp = fract * temp + (3 * Df - (d2 + 2 * d1) * Dn);
116 temp = fract * temp + d1 * Dn;
118 /* Calculation of cosine value */
119 *pCosVal = fract * temp + f1;
121 /* Read two nearest values of input value from the cos & sin tables */
122 f1 = sinTable_f32[indexS+0];
123 f2 = sinTable_f32[indexS+1];
124 d1 = sinTable_f32[indexC+0];
125 d2 = sinTable_f32[indexC+1];
127 temp = (1.0f - fract) * f1 + fract * f2;
129 Df = f2 - f1; // delta between the values of the functions
130 temp = Dn*(d1 + d2) - 2*Df;
131 temp = fract*temp + (3*Df - (d2 + 2*d1)*Dn);
132 temp = fract*temp + d1*Dn;
134 /* Calculation of sine value */
135 *pSinVal = fract*temp + f1;
137 if (theta < 0.0f)
139 *pSinVal = -*pSinVal;
143 * @} end of SinCos group