[PATCH 30/57][Arm][GAS] Add support for MVE instructions: vqmovnt, vqmovnb, vqmovunt...
[binutils-gdb.git] / gdb / iq2000-tdep.c
blob0c50a72fc923bc51a3070c4df8e7e89e4f3827c0
1 /* Target-dependent code for the IQ2000 architecture, for GDB, the GNU
2 Debugger.
4 Copyright (C) 2000-2019 Free Software Foundation, Inc.
6 Contributed by Red Hat.
8 This file is part of GDB.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-base.h"
26 #include "frame-unwind.h"
27 #include "dwarf2-frame.h"
28 #include "gdbtypes.h"
29 #include "value.h"
30 #include "dis-asm.h"
31 #include "arch-utils.h"
32 #include "regcache.h"
33 #include "osabi.h"
34 #include "gdbcore.h"
36 enum gdb_regnum
38 E_R0_REGNUM, E_R1_REGNUM, E_R2_REGNUM, E_R3_REGNUM,
39 E_R4_REGNUM, E_R5_REGNUM, E_R6_REGNUM, E_R7_REGNUM,
40 E_R8_REGNUM, E_R9_REGNUM, E_R10_REGNUM, E_R11_REGNUM,
41 E_R12_REGNUM, E_R13_REGNUM, E_R14_REGNUM, E_R15_REGNUM,
42 E_R16_REGNUM, E_R17_REGNUM, E_R18_REGNUM, E_R19_REGNUM,
43 E_R20_REGNUM, E_R21_REGNUM, E_R22_REGNUM, E_R23_REGNUM,
44 E_R24_REGNUM, E_R25_REGNUM, E_R26_REGNUM, E_R27_REGNUM,
45 E_R28_REGNUM, E_R29_REGNUM, E_R30_REGNUM, E_R31_REGNUM,
46 E_PC_REGNUM,
47 E_LR_REGNUM = E_R31_REGNUM, /* Link register. */
48 E_SP_REGNUM = E_R29_REGNUM, /* Stack pointer. */
49 E_FP_REGNUM = E_R27_REGNUM, /* Frame pointer. */
50 E_FN_RETURN_REGNUM = E_R2_REGNUM, /* Function return value register. */
51 E_1ST_ARGREG = E_R4_REGNUM, /* 1st function arg register. */
52 E_LAST_ARGREG = E_R11_REGNUM, /* Last function arg register. */
53 E_NUM_REGS = E_PC_REGNUM + 1
56 /* Use an invalid address value as 'not available' marker. */
57 enum { REG_UNAVAIL = (CORE_ADDR) -1 };
59 struct iq2000_frame_cache
61 /* Base address. */
62 CORE_ADDR base;
63 CORE_ADDR pc;
64 LONGEST framesize;
65 int using_fp;
66 CORE_ADDR saved_sp;
67 CORE_ADDR saved_regs [E_NUM_REGS];
70 /* Harvard methods: */
72 static CORE_ADDR
73 insn_ptr_from_addr (CORE_ADDR addr) /* CORE_ADDR to target pointer. */
75 return addr & 0x7fffffffL;
78 static CORE_ADDR
79 insn_addr_from_ptr (CORE_ADDR ptr) /* target_pointer to CORE_ADDR. */
81 return (ptr & 0x7fffffffL) | 0x80000000L;
84 /* Function: pointer_to_address
85 Convert a target pointer to an address in host (CORE_ADDR) format. */
87 static CORE_ADDR
88 iq2000_pointer_to_address (struct gdbarch *gdbarch,
89 struct type * type, const gdb_byte * buf)
91 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
92 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
93 CORE_ADDR addr
94 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
96 if (target == TYPE_CODE_FUNC
97 || target == TYPE_CODE_METHOD
98 || TYPE_CODE_SPACE (TYPE_TARGET_TYPE (type)))
99 addr = insn_addr_from_ptr (addr);
101 return addr;
104 /* Function: address_to_pointer
105 Convert a host-format address (CORE_ADDR) into a target pointer. */
107 static void
108 iq2000_address_to_pointer (struct gdbarch *gdbarch,
109 struct type *type, gdb_byte *buf, CORE_ADDR addr)
111 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
112 enum type_code target = TYPE_CODE (TYPE_TARGET_TYPE (type));
114 if (target == TYPE_CODE_FUNC || target == TYPE_CODE_METHOD)
115 addr = insn_ptr_from_addr (addr);
116 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order, addr);
119 /* Real register methods: */
121 /* Function: register_name
122 Returns the name of the iq2000 register number N. */
124 static const char *
125 iq2000_register_name (struct gdbarch *gdbarch, int regnum)
127 static const char * names[E_NUM_REGS] =
129 "r0", "r1", "r2", "r3", "r4",
130 "r5", "r6", "r7", "r8", "r9",
131 "r10", "r11", "r12", "r13", "r14",
132 "r15", "r16", "r17", "r18", "r19",
133 "r20", "r21", "r22", "r23", "r24",
134 "r25", "r26", "r27", "r28", "r29",
135 "r30", "r31",
136 "pc"
138 if (regnum < 0 || regnum >= E_NUM_REGS)
139 return NULL;
140 return names[regnum];
143 /* Prologue analysis methods: */
145 /* ADDIU insn (001001 rs(5) rt(5) imm(16)). */
146 #define INSN_IS_ADDIU(X) (((X) & 0xfc000000) == 0x24000000)
147 #define ADDIU_REG_SRC(X) (((X) & 0x03e00000) >> 21)
148 #define ADDIU_REG_TGT(X) (((X) & 0x001f0000) >> 16)
149 #define ADDIU_IMMEDIATE(X) ((signed short) ((X) & 0x0000ffff))
151 /* "MOVE" (OR) insn (000000 rs(5) rt(5) rd(5) 00000 100101). */
152 #define INSN_IS_MOVE(X) (((X) & 0xffe007ff) == 0x00000025)
153 #define MOVE_REG_SRC(X) (((X) & 0x001f0000) >> 16)
154 #define MOVE_REG_TGT(X) (((X) & 0x0000f800) >> 11)
156 /* STORE WORD insn (101011 rs(5) rt(5) offset(16)). */
157 #define INSN_IS_STORE_WORD(X) (((X) & 0xfc000000) == 0xac000000)
158 #define SW_REG_INDEX(X) (((X) & 0x03e00000) >> 21)
159 #define SW_REG_SRC(X) (((X) & 0x001f0000) >> 16)
160 #define SW_OFFSET(X) ((signed short) ((X) & 0x0000ffff))
162 /* Function: find_last_line_symbol
164 Given an address range, first find a line symbol corresponding to
165 the starting address. Then find the last line symbol within the
166 range that has a line number less than or equal to the first line.
168 For optimized code with code motion, this finds the last address
169 for the lowest-numbered line within the address range. */
171 static struct symtab_and_line
172 find_last_line_symbol (CORE_ADDR start, CORE_ADDR end, int notcurrent)
174 struct symtab_and_line sal = find_pc_line (start, notcurrent);
175 struct symtab_and_line best_sal = sal;
177 if (sal.pc == 0 || sal.line == 0 || sal.end == 0)
178 return sal;
182 if (sal.line && sal.line <= best_sal.line)
183 best_sal = sal;
184 sal = find_pc_line (sal.end, notcurrent);
186 while (sal.pc && sal.pc < end);
188 return best_sal;
191 /* Function: scan_prologue
192 Decode the instructions within the given address range.
193 Decide when we must have reached the end of the function prologue.
194 If a frame_info pointer is provided, fill in its prologue information.
196 Returns the address of the first instruction after the prologue. */
198 static CORE_ADDR
199 iq2000_scan_prologue (struct gdbarch *gdbarch,
200 CORE_ADDR scan_start,
201 CORE_ADDR scan_end,
202 struct frame_info *fi,
203 struct iq2000_frame_cache *cache)
205 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
206 struct symtab_and_line sal;
207 CORE_ADDR pc;
208 CORE_ADDR loop_end;
209 int srcreg;
210 int tgtreg;
211 signed short offset;
213 if (scan_end == (CORE_ADDR) 0)
215 loop_end = scan_start + 100;
216 sal.end = sal.pc = 0;
218 else
220 loop_end = scan_end;
221 if (fi)
222 sal = find_last_line_symbol (scan_start, scan_end, 0);
223 else
224 sal.end = 0; /* Avoid GCC false warning. */
227 /* Saved registers:
228 We first have to save the saved register's offset, and
229 only later do we compute its actual address. Since the
230 offset can be zero, we must first initialize all the
231 saved regs to minus one (so we can later distinguish
232 between one that's not saved, and one that's saved at zero). */
233 for (srcreg = 0; srcreg < E_NUM_REGS; srcreg ++)
234 cache->saved_regs[srcreg] = -1;
235 cache->using_fp = 0;
236 cache->framesize = 0;
238 for (pc = scan_start; pc < loop_end; pc += 4)
240 LONGEST insn = read_memory_unsigned_integer (pc, 4, byte_order);
241 /* Skip any instructions writing to (sp) or decrementing the
242 SP. */
243 if ((insn & 0xffe00000) == 0xac200000)
245 /* sw using SP/%1 as base. */
246 /* LEGACY -- from assembly-only port. */
247 tgtreg = ((insn >> 16) & 0x1f);
248 if (tgtreg >= 0 && tgtreg < E_NUM_REGS)
249 cache->saved_regs[tgtreg] = -((signed short) (insn & 0xffff));
251 continue;
254 if ((insn & 0xffff8000) == 0x20218000)
256 /* addi %1, %1, -N == addi %sp, %sp, -N */
257 /* LEGACY -- from assembly-only port. */
258 cache->framesize = -((signed short) (insn & 0xffff));
259 continue;
262 if (INSN_IS_ADDIU (insn))
264 srcreg = ADDIU_REG_SRC (insn);
265 tgtreg = ADDIU_REG_TGT (insn);
266 offset = ADDIU_IMMEDIATE (insn);
267 if (srcreg == E_SP_REGNUM && tgtreg == E_SP_REGNUM)
268 cache->framesize = -offset;
269 continue;
272 if (INSN_IS_STORE_WORD (insn))
274 srcreg = SW_REG_SRC (insn);
275 tgtreg = SW_REG_INDEX (insn);
276 offset = SW_OFFSET (insn);
278 if (tgtreg == E_SP_REGNUM || tgtreg == E_FP_REGNUM)
280 /* "push" to stack (via SP or FP reg). */
281 if (cache->saved_regs[srcreg] == -1) /* Don't save twice. */
282 cache->saved_regs[srcreg] = offset;
283 continue;
287 if (INSN_IS_MOVE (insn))
289 srcreg = MOVE_REG_SRC (insn);
290 tgtreg = MOVE_REG_TGT (insn);
292 if (srcreg == E_SP_REGNUM && tgtreg == E_FP_REGNUM)
294 /* Copy sp to fp. */
295 cache->using_fp = 1;
296 continue;
300 /* Unknown instruction encountered in frame. Bail out?
301 1) If we have a subsequent line symbol, we can keep going.
302 2) If not, we need to bail out and quit scanning instructions. */
304 if (fi && sal.end && (pc < sal.end)) /* Keep scanning. */
305 continue;
306 else /* bail */
307 break;
310 return pc;
313 static void
314 iq2000_init_frame_cache (struct iq2000_frame_cache *cache)
316 int i;
318 cache->base = 0;
319 cache->framesize = 0;
320 cache->using_fp = 0;
321 cache->saved_sp = 0;
322 for (i = 0; i < E_NUM_REGS; i++)
323 cache->saved_regs[i] = -1;
326 /* Function: iq2000_skip_prologue
327 If the input address is in a function prologue,
328 returns the address of the end of the prologue;
329 else returns the input address.
331 Note: the input address is likely to be the function start,
332 since this function is mainly used for advancing a breakpoint
333 to the first line, or stepping to the first line when we have
334 stepped into a function call. */
336 static CORE_ADDR
337 iq2000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
339 CORE_ADDR func_addr = 0 , func_end = 0;
341 if (find_pc_partial_function (pc, NULL, & func_addr, & func_end))
343 struct symtab_and_line sal;
344 struct iq2000_frame_cache cache;
346 /* Found a function. */
347 sal = find_pc_line (func_addr, 0);
348 if (sal.end && sal.end < func_end)
349 /* Found a line number, use it as end of prologue. */
350 return sal.end;
352 /* No useable line symbol. Use prologue parsing method. */
353 iq2000_init_frame_cache (&cache);
354 return iq2000_scan_prologue (gdbarch, func_addr, func_end, NULL, &cache);
357 /* No function symbol -- just return the PC. */
358 return (CORE_ADDR) pc;
361 static struct iq2000_frame_cache *
362 iq2000_frame_cache (struct frame_info *this_frame, void **this_cache)
364 struct gdbarch *gdbarch = get_frame_arch (this_frame);
365 struct iq2000_frame_cache *cache;
366 CORE_ADDR current_pc;
367 int i;
369 if (*this_cache)
370 return (struct iq2000_frame_cache *) *this_cache;
372 cache = FRAME_OBSTACK_ZALLOC (struct iq2000_frame_cache);
373 iq2000_init_frame_cache (cache);
374 *this_cache = cache;
376 cache->base = get_frame_register_unsigned (this_frame, E_FP_REGNUM);
378 current_pc = get_frame_pc (this_frame);
379 find_pc_partial_function (current_pc, NULL, &cache->pc, NULL);
380 if (cache->pc != 0)
381 iq2000_scan_prologue (gdbarch, cache->pc, current_pc, this_frame, cache);
382 if (!cache->using_fp)
383 cache->base = get_frame_register_unsigned (this_frame, E_SP_REGNUM);
385 cache->saved_sp = cache->base + cache->framesize;
387 for (i = 0; i < E_NUM_REGS; i++)
388 if (cache->saved_regs[i] != -1)
389 cache->saved_regs[i] += cache->base;
391 return cache;
394 static struct value *
395 iq2000_frame_prev_register (struct frame_info *this_frame, void **this_cache,
396 int regnum)
398 struct iq2000_frame_cache *cache = iq2000_frame_cache (this_frame,
399 this_cache);
401 if (regnum == E_SP_REGNUM && cache->saved_sp)
402 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
404 if (regnum == E_PC_REGNUM)
405 regnum = E_LR_REGNUM;
407 if (regnum < E_NUM_REGS && cache->saved_regs[regnum] != -1)
408 return frame_unwind_got_memory (this_frame, regnum,
409 cache->saved_regs[regnum]);
411 return frame_unwind_got_register (this_frame, regnum, regnum);
414 static void
415 iq2000_frame_this_id (struct frame_info *this_frame, void **this_cache,
416 struct frame_id *this_id)
418 struct iq2000_frame_cache *cache = iq2000_frame_cache (this_frame,
419 this_cache);
421 /* This marks the outermost frame. */
422 if (cache->base == 0)
423 return;
425 *this_id = frame_id_build (cache->saved_sp, cache->pc);
428 static const struct frame_unwind iq2000_frame_unwind = {
429 NORMAL_FRAME,
430 default_frame_unwind_stop_reason,
431 iq2000_frame_this_id,
432 iq2000_frame_prev_register,
433 NULL,
434 default_frame_sniffer
437 static CORE_ADDR
438 iq2000_frame_base_address (struct frame_info *this_frame, void **this_cache)
440 struct iq2000_frame_cache *cache = iq2000_frame_cache (this_frame,
441 this_cache);
443 return cache->base;
446 static const struct frame_base iq2000_frame_base = {
447 &iq2000_frame_unwind,
448 iq2000_frame_base_address,
449 iq2000_frame_base_address,
450 iq2000_frame_base_address
453 static int
454 iq2000_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
456 if ((*pcptr & 3) != 0)
457 error (_("breakpoint_from_pc: invalid breakpoint address 0x%lx"),
458 (long) *pcptr);
460 return 4;
463 static const gdb_byte *
464 iq2000_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
466 static const unsigned char big_breakpoint[] = { 0x00, 0x00, 0x00, 0x0d };
467 static const unsigned char little_breakpoint[] = { 0x0d, 0x00, 0x00, 0x00 };
468 *size = kind;
470 return (gdbarch_byte_order (gdbarch)
471 == BFD_ENDIAN_BIG) ? big_breakpoint : little_breakpoint;
474 /* Target function return value methods: */
476 /* Function: store_return_value
477 Copy the function return value from VALBUF into the
478 proper location for a function return. */
480 static void
481 iq2000_store_return_value (struct type *type, struct regcache *regcache,
482 const void *valbuf)
484 int len = TYPE_LENGTH (type);
485 int regno = E_FN_RETURN_REGNUM;
487 while (len > 0)
489 gdb_byte buf[4];
490 int size = len % 4 ?: 4;
492 memset (buf, 0, 4);
493 memcpy (buf + 4 - size, valbuf, size);
494 regcache->raw_write (regno++, buf);
495 len -= size;
496 valbuf = ((char *) valbuf) + size;
500 /* Function: use_struct_convention
501 Returns non-zero if the given struct type will be returned using
502 a special convention, rather than the normal function return method. */
504 static int
505 iq2000_use_struct_convention (struct type *type)
507 return ((TYPE_CODE (type) == TYPE_CODE_STRUCT)
508 || (TYPE_CODE (type) == TYPE_CODE_UNION))
509 && TYPE_LENGTH (type) > 8;
512 /* Function: extract_return_value
513 Copy the function's return value into VALBUF.
514 This function is called only in the context of "target function calls",
515 ie. when the debugger forces a function to be called in the child, and
516 when the debugger forces a function to return prematurely via the
517 "return" command. */
519 static void
520 iq2000_extract_return_value (struct type *type, struct regcache *regcache,
521 gdb_byte *valbuf)
523 struct gdbarch *gdbarch = regcache->arch ();
524 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
526 /* If the function's return value is 8 bytes or less, it is
527 returned in a register, and if larger than 8 bytes, it is
528 returned in a stack location which is pointed to by the same
529 register. */
530 int len = TYPE_LENGTH (type);
532 if (len <= (2 * 4))
534 int regno = E_FN_RETURN_REGNUM;
536 /* Return values of <= 8 bytes are returned in
537 FN_RETURN_REGNUM. */
538 while (len > 0)
540 ULONGEST tmp;
541 int size = len % 4 ?: 4;
543 /* By using store_unsigned_integer we avoid having to
544 do anything special for small big-endian values. */
545 regcache_cooked_read_unsigned (regcache, regno++, &tmp);
546 store_unsigned_integer (valbuf, size, byte_order, tmp);
547 len -= size;
548 valbuf += size;
551 else
553 /* Return values > 8 bytes are returned in memory,
554 pointed to by FN_RETURN_REGNUM. */
555 ULONGEST return_buffer;
556 regcache_cooked_read_unsigned (regcache, E_FN_RETURN_REGNUM,
557 &return_buffer);
558 read_memory (return_buffer, valbuf, TYPE_LENGTH (type));
562 static enum return_value_convention
563 iq2000_return_value (struct gdbarch *gdbarch, struct value *function,
564 struct type *type, struct regcache *regcache,
565 gdb_byte *readbuf, const gdb_byte *writebuf)
567 if (iq2000_use_struct_convention (type))
568 return RETURN_VALUE_STRUCT_CONVENTION;
569 if (writebuf)
570 iq2000_store_return_value (type, regcache, writebuf);
571 else if (readbuf)
572 iq2000_extract_return_value (type, regcache, readbuf);
573 return RETURN_VALUE_REGISTER_CONVENTION;
576 /* Function: register_virtual_type
577 Returns the default type for register N. */
579 static struct type *
580 iq2000_register_type (struct gdbarch *gdbarch, int regnum)
582 return builtin_type (gdbarch)->builtin_int32;
585 static CORE_ADDR
586 iq2000_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
588 /* This is the same frame alignment used by gcc. */
589 return ((sp + 7) & ~7);
592 /* Convenience function to check 8-byte types for being a scalar type
593 or a struct with only one long long or double member. */
594 static int
595 iq2000_pass_8bytetype_by_address (struct type *type)
597 struct type *ftype;
599 /* Skip typedefs. */
600 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
601 type = TYPE_TARGET_TYPE (type);
602 /* Non-struct and non-union types are always passed by value. */
603 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
604 && TYPE_CODE (type) != TYPE_CODE_UNION)
605 return 0;
606 /* Structs with more than 1 field are always passed by address. */
607 if (TYPE_NFIELDS (type) != 1)
608 return 1;
609 /* Get field type. */
610 ftype = (TYPE_FIELDS (type))[0].type;
611 /* The field type must have size 8, otherwise pass by address. */
612 if (TYPE_LENGTH (ftype) != 8)
613 return 1;
614 /* Skip typedefs of field type. */
615 while (TYPE_CODE (ftype) == TYPE_CODE_TYPEDEF)
616 ftype = TYPE_TARGET_TYPE (ftype);
617 /* If field is int or float, pass by value. */
618 if (TYPE_CODE (ftype) == TYPE_CODE_FLT
619 || TYPE_CODE (ftype) == TYPE_CODE_INT)
620 return 0;
621 /* Everything else, pass by address. */
622 return 1;
625 static CORE_ADDR
626 iq2000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
627 struct regcache *regcache, CORE_ADDR bp_addr,
628 int nargs, struct value **args, CORE_ADDR sp,
629 function_call_return_method return_method,
630 CORE_ADDR struct_addr)
632 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
633 const bfd_byte *val;
634 bfd_byte buf[4];
635 struct type *type;
636 int i, argreg, typelen, slacklen;
637 int stackspace = 0;
638 /* Used to copy struct arguments into the stack. */
639 CORE_ADDR struct_ptr;
641 /* First determine how much stack space we will need. */
642 for (i = 0, argreg = E_1ST_ARGREG + (return_method == return_method_struct);
643 i < nargs;
644 i++)
646 type = value_type (args[i]);
647 typelen = TYPE_LENGTH (type);
648 if (typelen <= 4)
650 /* Scalars of up to 4 bytes,
651 structs of up to 4 bytes, and
652 pointers. */
653 if (argreg <= E_LAST_ARGREG)
654 argreg++;
655 else
656 stackspace += 4;
658 else if (typelen == 8 && !iq2000_pass_8bytetype_by_address (type))
660 /* long long,
661 double, and possibly
662 structs with a single field of long long or double. */
663 if (argreg <= E_LAST_ARGREG - 1)
665 /* 8-byte arg goes into a register pair
666 (must start with an even-numbered reg). */
667 if (((argreg - E_1ST_ARGREG) % 2) != 0)
668 argreg ++;
669 argreg += 2;
671 else
673 argreg = E_LAST_ARGREG + 1; /* no more argregs. */
674 /* 8-byte arg goes on stack, must be 8-byte aligned. */
675 stackspace = ((stackspace + 7) & ~7);
676 stackspace += 8;
679 else
681 /* Structs are passed as pointer to a copy of the struct.
682 So we need room on the stack for a copy of the struct
683 plus for the argument pointer. */
684 if (argreg <= E_LAST_ARGREG)
685 argreg++;
686 else
687 stackspace += 4;
688 /* Care for 8-byte alignment of structs saved on stack. */
689 stackspace += ((typelen + 7) & ~7);
693 /* Now copy params, in ascending order, into their assigned location
694 (either in a register or on the stack). */
696 sp -= (sp % 8); /* align */
697 struct_ptr = sp;
698 sp -= stackspace;
699 sp -= (sp % 8); /* align again */
700 stackspace = 0;
702 argreg = E_1ST_ARGREG;
703 if (return_method == return_method_struct)
705 /* A function that returns a struct will consume one argreg to do so.
707 regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
710 for (i = 0; i < nargs; i++)
712 type = value_type (args[i]);
713 typelen = TYPE_LENGTH (type);
714 val = value_contents (args[i]);
715 if (typelen <= 4)
717 /* Char, short, int, float, pointer, and structs <= four bytes. */
718 slacklen = (4 - (typelen % 4)) % 4;
719 memset (buf, 0, sizeof (buf));
720 memcpy (buf + slacklen, val, typelen);
721 if (argreg <= E_LAST_ARGREG)
723 /* Passed in a register. */
724 regcache->raw_write (argreg++, buf);
726 else
728 /* Passed on the stack. */
729 write_memory (sp + stackspace, buf, 4);
730 stackspace += 4;
733 else if (typelen == 8 && !iq2000_pass_8bytetype_by_address (type))
735 /* (long long), (double), or struct consisting of
736 a single (long long) or (double). */
737 if (argreg <= E_LAST_ARGREG - 1)
739 /* 8-byte arg goes into a register pair
740 (must start with an even-numbered reg). */
741 if (((argreg - E_1ST_ARGREG) % 2) != 0)
742 argreg++;
743 regcache->raw_write (argreg++, val);
744 regcache->raw_write (argreg++, val + 4);
746 else
748 /* 8-byte arg goes on stack, must be 8-byte aligned. */
749 argreg = E_LAST_ARGREG + 1; /* no more argregs. */
750 stackspace = ((stackspace + 7) & ~7);
751 write_memory (sp + stackspace, val, typelen);
752 stackspace += 8;
755 else
757 /* Store struct beginning at the upper end of the previously
758 computed stack space. Then store the address of the struct
759 using the usual rules for a 4 byte value. */
760 struct_ptr -= ((typelen + 7) & ~7);
761 write_memory (struct_ptr, val, typelen);
762 if (argreg <= E_LAST_ARGREG)
763 regcache_cooked_write_unsigned (regcache, argreg++, struct_ptr);
764 else
766 store_unsigned_integer (buf, 4, byte_order, struct_ptr);
767 write_memory (sp + stackspace, buf, 4);
768 stackspace += 4;
773 /* Store return address. */
774 regcache_cooked_write_unsigned (regcache, E_LR_REGNUM, bp_addr);
776 /* Update stack pointer. */
777 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
779 /* And that should do it. Return the new stack pointer. */
780 return sp;
783 /* Function: gdbarch_init
784 Initializer function for the iq2000 gdbarch vector.
785 Called by gdbarch. Sets up the gdbarch vector(s) for this target. */
787 static struct gdbarch *
788 iq2000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
790 struct gdbarch *gdbarch;
792 /* Look up list for candidates - only one. */
793 arches = gdbarch_list_lookup_by_info (arches, &info);
794 if (arches != NULL)
795 return arches->gdbarch;
797 gdbarch = gdbarch_alloc (&info, NULL);
799 set_gdbarch_num_regs (gdbarch, E_NUM_REGS);
800 set_gdbarch_num_pseudo_regs (gdbarch, 0);
801 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
802 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
803 set_gdbarch_register_name (gdbarch, iq2000_register_name);
804 set_gdbarch_address_to_pointer (gdbarch, iq2000_address_to_pointer);
805 set_gdbarch_pointer_to_address (gdbarch, iq2000_pointer_to_address);
806 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
807 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
808 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
809 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
810 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
811 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
812 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
813 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
814 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
815 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
816 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
817 set_gdbarch_return_value (gdbarch, iq2000_return_value);
818 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
819 iq2000_breakpoint_kind_from_pc);
820 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
821 iq2000_sw_breakpoint_from_kind);
822 set_gdbarch_frame_args_skip (gdbarch, 0);
823 set_gdbarch_skip_prologue (gdbarch, iq2000_skip_prologue);
824 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
825 set_gdbarch_register_type (gdbarch, iq2000_register_type);
826 set_gdbarch_frame_align (gdbarch, iq2000_frame_align);
827 frame_base_set_default (gdbarch, &iq2000_frame_base);
828 set_gdbarch_push_dummy_call (gdbarch, iq2000_push_dummy_call);
830 gdbarch_init_osabi (info, gdbarch);
832 dwarf2_append_unwinders (gdbarch);
833 frame_unwind_append_unwinder (gdbarch, &iq2000_frame_unwind);
835 return gdbarch;
838 /* Function: _initialize_iq2000_tdep
839 Initializer function for the iq2000 module.
840 Called by gdb at start-up. */
842 void
843 _initialize_iq2000_tdep (void)
845 register_gdbarch_init (bfd_arch_iq2000, iq2000_gdbarch_init);