1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
5 This file is part of BFD, the Binary File Descriptor library.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
26 #include "bfd_stdint.h"
27 #include "libiberty.h"
31 #include "elf-vxworks.h"
34 /* Return the relocation section associated with NAME. HTAB is the
35 bfd's elf32_arm_link_hash_entry. */
36 #define RELOC_SECTION(HTAB, NAME) \
37 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
39 /* Return size of a relocation entry. HTAB is the bfd's
40 elf32_arm_link_hash_entry. */
41 #define RELOC_SIZE(HTAB) \
43 ? sizeof (Elf32_External_Rel) \
44 : sizeof (Elf32_External_Rela))
46 /* Return function to swap relocations in. HTAB is the bfd's
47 elf32_arm_link_hash_entry. */
48 #define SWAP_RELOC_IN(HTAB) \
50 ? bfd_elf32_swap_reloc_in \
51 : bfd_elf32_swap_reloca_in)
53 /* Return function to swap relocations out. HTAB is the bfd's
54 elf32_arm_link_hash_entry. */
55 #define SWAP_RELOC_OUT(HTAB) \
57 ? bfd_elf32_swap_reloc_out \
58 : bfd_elf32_swap_reloca_out)
60 #define elf_info_to_howto 0
61 #define elf_info_to_howto_rel elf32_arm_info_to_howto
63 #define ARM_ELF_ABI_VERSION 0
64 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
66 /* The Adjusted Place, as defined by AAELF. */
67 #define Pa(X) ((X) & 0xfffffffc)
69 static bfd_boolean
elf32_arm_write_section (bfd
*output_bfd
,
70 struct bfd_link_info
*link_info
,
74 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
75 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
78 static reloc_howto_type elf32_arm_howto_table_1
[] =
81 HOWTO (R_ARM_NONE
, /* type */
83 0, /* size (0 = byte, 1 = short, 2 = long) */
85 FALSE
, /* pc_relative */
87 complain_overflow_dont
,/* complain_on_overflow */
88 bfd_elf_generic_reloc
, /* special_function */
89 "R_ARM_NONE", /* name */
90 FALSE
, /* partial_inplace */
93 FALSE
), /* pcrel_offset */
95 HOWTO (R_ARM_PC24
, /* type */
97 2, /* size (0 = byte, 1 = short, 2 = long) */
99 TRUE
, /* pc_relative */
101 complain_overflow_signed
,/* complain_on_overflow */
102 bfd_elf_generic_reloc
, /* special_function */
103 "R_ARM_PC24", /* name */
104 FALSE
, /* partial_inplace */
105 0x00ffffff, /* src_mask */
106 0x00ffffff, /* dst_mask */
107 TRUE
), /* pcrel_offset */
109 /* 32 bit absolute */
110 HOWTO (R_ARM_ABS32
, /* type */
112 2, /* size (0 = byte, 1 = short, 2 = long) */
114 FALSE
, /* pc_relative */
116 complain_overflow_bitfield
,/* complain_on_overflow */
117 bfd_elf_generic_reloc
, /* special_function */
118 "R_ARM_ABS32", /* name */
119 FALSE
, /* partial_inplace */
120 0xffffffff, /* src_mask */
121 0xffffffff, /* dst_mask */
122 FALSE
), /* pcrel_offset */
124 /* standard 32bit pc-relative reloc */
125 HOWTO (R_ARM_REL32
, /* type */
127 2, /* size (0 = byte, 1 = short, 2 = long) */
129 TRUE
, /* pc_relative */
131 complain_overflow_bitfield
,/* complain_on_overflow */
132 bfd_elf_generic_reloc
, /* special_function */
133 "R_ARM_REL32", /* name */
134 FALSE
, /* partial_inplace */
135 0xffffffff, /* src_mask */
136 0xffffffff, /* dst_mask */
137 TRUE
), /* pcrel_offset */
139 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
140 HOWTO (R_ARM_LDR_PC_G0
, /* type */
142 0, /* size (0 = byte, 1 = short, 2 = long) */
144 TRUE
, /* pc_relative */
146 complain_overflow_dont
,/* complain_on_overflow */
147 bfd_elf_generic_reloc
, /* special_function */
148 "R_ARM_LDR_PC_G0", /* name */
149 FALSE
, /* partial_inplace */
150 0xffffffff, /* src_mask */
151 0xffffffff, /* dst_mask */
152 TRUE
), /* pcrel_offset */
154 /* 16 bit absolute */
155 HOWTO (R_ARM_ABS16
, /* type */
157 1, /* size (0 = byte, 1 = short, 2 = long) */
159 FALSE
, /* pc_relative */
161 complain_overflow_bitfield
,/* complain_on_overflow */
162 bfd_elf_generic_reloc
, /* special_function */
163 "R_ARM_ABS16", /* name */
164 FALSE
, /* partial_inplace */
165 0x0000ffff, /* src_mask */
166 0x0000ffff, /* dst_mask */
167 FALSE
), /* pcrel_offset */
169 /* 12 bit absolute */
170 HOWTO (R_ARM_ABS12
, /* type */
172 2, /* size (0 = byte, 1 = short, 2 = long) */
174 FALSE
, /* pc_relative */
176 complain_overflow_bitfield
,/* complain_on_overflow */
177 bfd_elf_generic_reloc
, /* special_function */
178 "R_ARM_ABS12", /* name */
179 FALSE
, /* partial_inplace */
180 0x00000fff, /* src_mask */
181 0x00000fff, /* dst_mask */
182 FALSE
), /* pcrel_offset */
184 HOWTO (R_ARM_THM_ABS5
, /* type */
186 1, /* size (0 = byte, 1 = short, 2 = long) */
188 FALSE
, /* pc_relative */
190 complain_overflow_bitfield
,/* complain_on_overflow */
191 bfd_elf_generic_reloc
, /* special_function */
192 "R_ARM_THM_ABS5", /* name */
193 FALSE
, /* partial_inplace */
194 0x000007e0, /* src_mask */
195 0x000007e0, /* dst_mask */
196 FALSE
), /* pcrel_offset */
199 HOWTO (R_ARM_ABS8
, /* type */
201 0, /* size (0 = byte, 1 = short, 2 = long) */
203 FALSE
, /* pc_relative */
205 complain_overflow_bitfield
,/* complain_on_overflow */
206 bfd_elf_generic_reloc
, /* special_function */
207 "R_ARM_ABS8", /* name */
208 FALSE
, /* partial_inplace */
209 0x000000ff, /* src_mask */
210 0x000000ff, /* dst_mask */
211 FALSE
), /* pcrel_offset */
213 HOWTO (R_ARM_SBREL32
, /* type */
215 2, /* size (0 = byte, 1 = short, 2 = long) */
217 FALSE
, /* pc_relative */
219 complain_overflow_dont
,/* complain_on_overflow */
220 bfd_elf_generic_reloc
, /* special_function */
221 "R_ARM_SBREL32", /* name */
222 FALSE
, /* partial_inplace */
223 0xffffffff, /* src_mask */
224 0xffffffff, /* dst_mask */
225 FALSE
), /* pcrel_offset */
227 HOWTO (R_ARM_THM_CALL
, /* type */
229 2, /* size (0 = byte, 1 = short, 2 = long) */
231 TRUE
, /* pc_relative */
233 complain_overflow_signed
,/* complain_on_overflow */
234 bfd_elf_generic_reloc
, /* special_function */
235 "R_ARM_THM_CALL", /* name */
236 FALSE
, /* partial_inplace */
237 0x07ff2fff, /* src_mask */
238 0x07ff2fff, /* dst_mask */
239 TRUE
), /* pcrel_offset */
241 HOWTO (R_ARM_THM_PC8
, /* type */
243 1, /* size (0 = byte, 1 = short, 2 = long) */
245 TRUE
, /* pc_relative */
247 complain_overflow_signed
,/* complain_on_overflow */
248 bfd_elf_generic_reloc
, /* special_function */
249 "R_ARM_THM_PC8", /* name */
250 FALSE
, /* partial_inplace */
251 0x000000ff, /* src_mask */
252 0x000000ff, /* dst_mask */
253 TRUE
), /* pcrel_offset */
255 HOWTO (R_ARM_BREL_ADJ
, /* type */
257 1, /* size (0 = byte, 1 = short, 2 = long) */
259 FALSE
, /* pc_relative */
261 complain_overflow_signed
,/* complain_on_overflow */
262 bfd_elf_generic_reloc
, /* special_function */
263 "R_ARM_BREL_ADJ", /* name */
264 FALSE
, /* partial_inplace */
265 0xffffffff, /* src_mask */
266 0xffffffff, /* dst_mask */
267 FALSE
), /* pcrel_offset */
269 HOWTO (R_ARM_TLS_DESC
, /* type */
271 2, /* size (0 = byte, 1 = short, 2 = long) */
273 FALSE
, /* pc_relative */
275 complain_overflow_bitfield
,/* complain_on_overflow */
276 bfd_elf_generic_reloc
, /* special_function */
277 "R_ARM_TLS_DESC", /* name */
278 FALSE
, /* partial_inplace */
279 0xffffffff, /* src_mask */
280 0xffffffff, /* dst_mask */
281 FALSE
), /* pcrel_offset */
283 HOWTO (R_ARM_THM_SWI8
, /* type */
285 0, /* size (0 = byte, 1 = short, 2 = long) */
287 FALSE
, /* pc_relative */
289 complain_overflow_signed
,/* complain_on_overflow */
290 bfd_elf_generic_reloc
, /* special_function */
291 "R_ARM_SWI8", /* name */
292 FALSE
, /* partial_inplace */
293 0x00000000, /* src_mask */
294 0x00000000, /* dst_mask */
295 FALSE
), /* pcrel_offset */
297 /* BLX instruction for the ARM. */
298 HOWTO (R_ARM_XPC25
, /* type */
300 2, /* size (0 = byte, 1 = short, 2 = long) */
302 TRUE
, /* pc_relative */
304 complain_overflow_signed
,/* complain_on_overflow */
305 bfd_elf_generic_reloc
, /* special_function */
306 "R_ARM_XPC25", /* name */
307 FALSE
, /* partial_inplace */
308 0x00ffffff, /* src_mask */
309 0x00ffffff, /* dst_mask */
310 TRUE
), /* pcrel_offset */
312 /* BLX instruction for the Thumb. */
313 HOWTO (R_ARM_THM_XPC22
, /* type */
315 2, /* size (0 = byte, 1 = short, 2 = long) */
317 TRUE
, /* pc_relative */
319 complain_overflow_signed
,/* complain_on_overflow */
320 bfd_elf_generic_reloc
, /* special_function */
321 "R_ARM_THM_XPC22", /* name */
322 FALSE
, /* partial_inplace */
323 0x07ff2fff, /* src_mask */
324 0x07ff2fff, /* dst_mask */
325 TRUE
), /* pcrel_offset */
327 /* Dynamic TLS relocations. */
329 HOWTO (R_ARM_TLS_DTPMOD32
, /* type */
331 2, /* size (0 = byte, 1 = short, 2 = long) */
333 FALSE
, /* pc_relative */
335 complain_overflow_bitfield
,/* complain_on_overflow */
336 bfd_elf_generic_reloc
, /* special_function */
337 "R_ARM_TLS_DTPMOD32", /* name */
338 TRUE
, /* partial_inplace */
339 0xffffffff, /* src_mask */
340 0xffffffff, /* dst_mask */
341 FALSE
), /* pcrel_offset */
343 HOWTO (R_ARM_TLS_DTPOFF32
, /* type */
345 2, /* size (0 = byte, 1 = short, 2 = long) */
347 FALSE
, /* pc_relative */
349 complain_overflow_bitfield
,/* complain_on_overflow */
350 bfd_elf_generic_reloc
, /* special_function */
351 "R_ARM_TLS_DTPOFF32", /* name */
352 TRUE
, /* partial_inplace */
353 0xffffffff, /* src_mask */
354 0xffffffff, /* dst_mask */
355 FALSE
), /* pcrel_offset */
357 HOWTO (R_ARM_TLS_TPOFF32
, /* type */
359 2, /* size (0 = byte, 1 = short, 2 = long) */
361 FALSE
, /* pc_relative */
363 complain_overflow_bitfield
,/* complain_on_overflow */
364 bfd_elf_generic_reloc
, /* special_function */
365 "R_ARM_TLS_TPOFF32", /* name */
366 TRUE
, /* partial_inplace */
367 0xffffffff, /* src_mask */
368 0xffffffff, /* dst_mask */
369 FALSE
), /* pcrel_offset */
371 /* Relocs used in ARM Linux */
373 HOWTO (R_ARM_COPY
, /* type */
375 2, /* size (0 = byte, 1 = short, 2 = long) */
377 FALSE
, /* pc_relative */
379 complain_overflow_bitfield
,/* complain_on_overflow */
380 bfd_elf_generic_reloc
, /* special_function */
381 "R_ARM_COPY", /* name */
382 TRUE
, /* partial_inplace */
383 0xffffffff, /* src_mask */
384 0xffffffff, /* dst_mask */
385 FALSE
), /* pcrel_offset */
387 HOWTO (R_ARM_GLOB_DAT
, /* type */
389 2, /* size (0 = byte, 1 = short, 2 = long) */
391 FALSE
, /* pc_relative */
393 complain_overflow_bitfield
,/* complain_on_overflow */
394 bfd_elf_generic_reloc
, /* special_function */
395 "R_ARM_GLOB_DAT", /* name */
396 TRUE
, /* partial_inplace */
397 0xffffffff, /* src_mask */
398 0xffffffff, /* dst_mask */
399 FALSE
), /* pcrel_offset */
401 HOWTO (R_ARM_JUMP_SLOT
, /* type */
403 2, /* size (0 = byte, 1 = short, 2 = long) */
405 FALSE
, /* pc_relative */
407 complain_overflow_bitfield
,/* complain_on_overflow */
408 bfd_elf_generic_reloc
, /* special_function */
409 "R_ARM_JUMP_SLOT", /* name */
410 TRUE
, /* partial_inplace */
411 0xffffffff, /* src_mask */
412 0xffffffff, /* dst_mask */
413 FALSE
), /* pcrel_offset */
415 HOWTO (R_ARM_RELATIVE
, /* type */
417 2, /* size (0 = byte, 1 = short, 2 = long) */
419 FALSE
, /* pc_relative */
421 complain_overflow_bitfield
,/* complain_on_overflow */
422 bfd_elf_generic_reloc
, /* special_function */
423 "R_ARM_RELATIVE", /* name */
424 TRUE
, /* partial_inplace */
425 0xffffffff, /* src_mask */
426 0xffffffff, /* dst_mask */
427 FALSE
), /* pcrel_offset */
429 HOWTO (R_ARM_GOTOFF32
, /* type */
431 2, /* size (0 = byte, 1 = short, 2 = long) */
433 FALSE
, /* pc_relative */
435 complain_overflow_bitfield
,/* complain_on_overflow */
436 bfd_elf_generic_reloc
, /* special_function */
437 "R_ARM_GOTOFF32", /* name */
438 TRUE
, /* partial_inplace */
439 0xffffffff, /* src_mask */
440 0xffffffff, /* dst_mask */
441 FALSE
), /* pcrel_offset */
443 HOWTO (R_ARM_GOTPC
, /* type */
445 2, /* size (0 = byte, 1 = short, 2 = long) */
447 TRUE
, /* pc_relative */
449 complain_overflow_bitfield
,/* complain_on_overflow */
450 bfd_elf_generic_reloc
, /* special_function */
451 "R_ARM_GOTPC", /* name */
452 TRUE
, /* partial_inplace */
453 0xffffffff, /* src_mask */
454 0xffffffff, /* dst_mask */
455 TRUE
), /* pcrel_offset */
457 HOWTO (R_ARM_GOT32
, /* type */
459 2, /* size (0 = byte, 1 = short, 2 = long) */
461 FALSE
, /* pc_relative */
463 complain_overflow_bitfield
,/* complain_on_overflow */
464 bfd_elf_generic_reloc
, /* special_function */
465 "R_ARM_GOT32", /* name */
466 TRUE
, /* partial_inplace */
467 0xffffffff, /* src_mask */
468 0xffffffff, /* dst_mask */
469 FALSE
), /* pcrel_offset */
471 HOWTO (R_ARM_PLT32
, /* type */
473 2, /* size (0 = byte, 1 = short, 2 = long) */
475 TRUE
, /* pc_relative */
477 complain_overflow_bitfield
,/* complain_on_overflow */
478 bfd_elf_generic_reloc
, /* special_function */
479 "R_ARM_PLT32", /* name */
480 FALSE
, /* partial_inplace */
481 0x00ffffff, /* src_mask */
482 0x00ffffff, /* dst_mask */
483 TRUE
), /* pcrel_offset */
485 HOWTO (R_ARM_CALL
, /* type */
487 2, /* size (0 = byte, 1 = short, 2 = long) */
489 TRUE
, /* pc_relative */
491 complain_overflow_signed
,/* complain_on_overflow */
492 bfd_elf_generic_reloc
, /* special_function */
493 "R_ARM_CALL", /* name */
494 FALSE
, /* partial_inplace */
495 0x00ffffff, /* src_mask */
496 0x00ffffff, /* dst_mask */
497 TRUE
), /* pcrel_offset */
499 HOWTO (R_ARM_JUMP24
, /* type */
501 2, /* size (0 = byte, 1 = short, 2 = long) */
503 TRUE
, /* pc_relative */
505 complain_overflow_signed
,/* complain_on_overflow */
506 bfd_elf_generic_reloc
, /* special_function */
507 "R_ARM_JUMP24", /* name */
508 FALSE
, /* partial_inplace */
509 0x00ffffff, /* src_mask */
510 0x00ffffff, /* dst_mask */
511 TRUE
), /* pcrel_offset */
513 HOWTO (R_ARM_THM_JUMP24
, /* type */
515 2, /* size (0 = byte, 1 = short, 2 = long) */
517 TRUE
, /* pc_relative */
519 complain_overflow_signed
,/* complain_on_overflow */
520 bfd_elf_generic_reloc
, /* special_function */
521 "R_ARM_THM_JUMP24", /* name */
522 FALSE
, /* partial_inplace */
523 0x07ff2fff, /* src_mask */
524 0x07ff2fff, /* dst_mask */
525 TRUE
), /* pcrel_offset */
527 HOWTO (R_ARM_BASE_ABS
, /* type */
529 2, /* size (0 = byte, 1 = short, 2 = long) */
531 FALSE
, /* pc_relative */
533 complain_overflow_dont
,/* complain_on_overflow */
534 bfd_elf_generic_reloc
, /* special_function */
535 "R_ARM_BASE_ABS", /* name */
536 FALSE
, /* partial_inplace */
537 0xffffffff, /* src_mask */
538 0xffffffff, /* dst_mask */
539 FALSE
), /* pcrel_offset */
541 HOWTO (R_ARM_ALU_PCREL7_0
, /* type */
543 2, /* size (0 = byte, 1 = short, 2 = long) */
545 TRUE
, /* pc_relative */
547 complain_overflow_dont
,/* complain_on_overflow */
548 bfd_elf_generic_reloc
, /* special_function */
549 "R_ARM_ALU_PCREL_7_0", /* name */
550 FALSE
, /* partial_inplace */
551 0x00000fff, /* src_mask */
552 0x00000fff, /* dst_mask */
553 TRUE
), /* pcrel_offset */
555 HOWTO (R_ARM_ALU_PCREL15_8
, /* type */
557 2, /* size (0 = byte, 1 = short, 2 = long) */
559 TRUE
, /* pc_relative */
561 complain_overflow_dont
,/* complain_on_overflow */
562 bfd_elf_generic_reloc
, /* special_function */
563 "R_ARM_ALU_PCREL_15_8",/* name */
564 FALSE
, /* partial_inplace */
565 0x00000fff, /* src_mask */
566 0x00000fff, /* dst_mask */
567 TRUE
), /* pcrel_offset */
569 HOWTO (R_ARM_ALU_PCREL23_15
, /* type */
571 2, /* size (0 = byte, 1 = short, 2 = long) */
573 TRUE
, /* pc_relative */
575 complain_overflow_dont
,/* complain_on_overflow */
576 bfd_elf_generic_reloc
, /* special_function */
577 "R_ARM_ALU_PCREL_23_15",/* name */
578 FALSE
, /* partial_inplace */
579 0x00000fff, /* src_mask */
580 0x00000fff, /* dst_mask */
581 TRUE
), /* pcrel_offset */
583 HOWTO (R_ARM_LDR_SBREL_11_0
, /* type */
585 2, /* size (0 = byte, 1 = short, 2 = long) */
587 FALSE
, /* pc_relative */
589 complain_overflow_dont
,/* complain_on_overflow */
590 bfd_elf_generic_reloc
, /* special_function */
591 "R_ARM_LDR_SBREL_11_0",/* name */
592 FALSE
, /* partial_inplace */
593 0x00000fff, /* src_mask */
594 0x00000fff, /* dst_mask */
595 FALSE
), /* pcrel_offset */
597 HOWTO (R_ARM_ALU_SBREL_19_12
, /* type */
599 2, /* size (0 = byte, 1 = short, 2 = long) */
601 FALSE
, /* pc_relative */
603 complain_overflow_dont
,/* complain_on_overflow */
604 bfd_elf_generic_reloc
, /* special_function */
605 "R_ARM_ALU_SBREL_19_12",/* name */
606 FALSE
, /* partial_inplace */
607 0x000ff000, /* src_mask */
608 0x000ff000, /* dst_mask */
609 FALSE
), /* pcrel_offset */
611 HOWTO (R_ARM_ALU_SBREL_27_20
, /* type */
613 2, /* size (0 = byte, 1 = short, 2 = long) */
615 FALSE
, /* pc_relative */
617 complain_overflow_dont
,/* complain_on_overflow */
618 bfd_elf_generic_reloc
, /* special_function */
619 "R_ARM_ALU_SBREL_27_20",/* name */
620 FALSE
, /* partial_inplace */
621 0x0ff00000, /* src_mask */
622 0x0ff00000, /* dst_mask */
623 FALSE
), /* pcrel_offset */
625 HOWTO (R_ARM_TARGET1
, /* type */
627 2, /* size (0 = byte, 1 = short, 2 = long) */
629 FALSE
, /* pc_relative */
631 complain_overflow_dont
,/* complain_on_overflow */
632 bfd_elf_generic_reloc
, /* special_function */
633 "R_ARM_TARGET1", /* name */
634 FALSE
, /* partial_inplace */
635 0xffffffff, /* src_mask */
636 0xffffffff, /* dst_mask */
637 FALSE
), /* pcrel_offset */
639 HOWTO (R_ARM_ROSEGREL32
, /* type */
641 2, /* size (0 = byte, 1 = short, 2 = long) */
643 FALSE
, /* pc_relative */
645 complain_overflow_dont
,/* complain_on_overflow */
646 bfd_elf_generic_reloc
, /* special_function */
647 "R_ARM_ROSEGREL32", /* name */
648 FALSE
, /* partial_inplace */
649 0xffffffff, /* src_mask */
650 0xffffffff, /* dst_mask */
651 FALSE
), /* pcrel_offset */
653 HOWTO (R_ARM_V4BX
, /* type */
655 2, /* size (0 = byte, 1 = short, 2 = long) */
657 FALSE
, /* pc_relative */
659 complain_overflow_dont
,/* complain_on_overflow */
660 bfd_elf_generic_reloc
, /* special_function */
661 "R_ARM_V4BX", /* name */
662 FALSE
, /* partial_inplace */
663 0xffffffff, /* src_mask */
664 0xffffffff, /* dst_mask */
665 FALSE
), /* pcrel_offset */
667 HOWTO (R_ARM_TARGET2
, /* type */
669 2, /* size (0 = byte, 1 = short, 2 = long) */
671 FALSE
, /* pc_relative */
673 complain_overflow_signed
,/* complain_on_overflow */
674 bfd_elf_generic_reloc
, /* special_function */
675 "R_ARM_TARGET2", /* name */
676 FALSE
, /* partial_inplace */
677 0xffffffff, /* src_mask */
678 0xffffffff, /* dst_mask */
679 TRUE
), /* pcrel_offset */
681 HOWTO (R_ARM_PREL31
, /* type */
683 2, /* size (0 = byte, 1 = short, 2 = long) */
685 TRUE
, /* pc_relative */
687 complain_overflow_signed
,/* complain_on_overflow */
688 bfd_elf_generic_reloc
, /* special_function */
689 "R_ARM_PREL31", /* name */
690 FALSE
, /* partial_inplace */
691 0x7fffffff, /* src_mask */
692 0x7fffffff, /* dst_mask */
693 TRUE
), /* pcrel_offset */
695 HOWTO (R_ARM_MOVW_ABS_NC
, /* type */
697 2, /* size (0 = byte, 1 = short, 2 = long) */
699 FALSE
, /* pc_relative */
701 complain_overflow_dont
,/* complain_on_overflow */
702 bfd_elf_generic_reloc
, /* special_function */
703 "R_ARM_MOVW_ABS_NC", /* name */
704 FALSE
, /* partial_inplace */
705 0x000f0fff, /* src_mask */
706 0x000f0fff, /* dst_mask */
707 FALSE
), /* pcrel_offset */
709 HOWTO (R_ARM_MOVT_ABS
, /* type */
711 2, /* size (0 = byte, 1 = short, 2 = long) */
713 FALSE
, /* pc_relative */
715 complain_overflow_bitfield
,/* complain_on_overflow */
716 bfd_elf_generic_reloc
, /* special_function */
717 "R_ARM_MOVT_ABS", /* name */
718 FALSE
, /* partial_inplace */
719 0x000f0fff, /* src_mask */
720 0x000f0fff, /* dst_mask */
721 FALSE
), /* pcrel_offset */
723 HOWTO (R_ARM_MOVW_PREL_NC
, /* type */
725 2, /* size (0 = byte, 1 = short, 2 = long) */
727 TRUE
, /* pc_relative */
729 complain_overflow_dont
,/* complain_on_overflow */
730 bfd_elf_generic_reloc
, /* special_function */
731 "R_ARM_MOVW_PREL_NC", /* name */
732 FALSE
, /* partial_inplace */
733 0x000f0fff, /* src_mask */
734 0x000f0fff, /* dst_mask */
735 TRUE
), /* pcrel_offset */
737 HOWTO (R_ARM_MOVT_PREL
, /* type */
739 2, /* size (0 = byte, 1 = short, 2 = long) */
741 TRUE
, /* pc_relative */
743 complain_overflow_bitfield
,/* complain_on_overflow */
744 bfd_elf_generic_reloc
, /* special_function */
745 "R_ARM_MOVT_PREL", /* name */
746 FALSE
, /* partial_inplace */
747 0x000f0fff, /* src_mask */
748 0x000f0fff, /* dst_mask */
749 TRUE
), /* pcrel_offset */
751 HOWTO (R_ARM_THM_MOVW_ABS_NC
, /* type */
753 2, /* size (0 = byte, 1 = short, 2 = long) */
755 FALSE
, /* pc_relative */
757 complain_overflow_dont
,/* complain_on_overflow */
758 bfd_elf_generic_reloc
, /* special_function */
759 "R_ARM_THM_MOVW_ABS_NC",/* name */
760 FALSE
, /* partial_inplace */
761 0x040f70ff, /* src_mask */
762 0x040f70ff, /* dst_mask */
763 FALSE
), /* pcrel_offset */
765 HOWTO (R_ARM_THM_MOVT_ABS
, /* type */
767 2, /* size (0 = byte, 1 = short, 2 = long) */
769 FALSE
, /* pc_relative */
771 complain_overflow_bitfield
,/* complain_on_overflow */
772 bfd_elf_generic_reloc
, /* special_function */
773 "R_ARM_THM_MOVT_ABS", /* name */
774 FALSE
, /* partial_inplace */
775 0x040f70ff, /* src_mask */
776 0x040f70ff, /* dst_mask */
777 FALSE
), /* pcrel_offset */
779 HOWTO (R_ARM_THM_MOVW_PREL_NC
,/* type */
781 2, /* size (0 = byte, 1 = short, 2 = long) */
783 TRUE
, /* pc_relative */
785 complain_overflow_dont
,/* complain_on_overflow */
786 bfd_elf_generic_reloc
, /* special_function */
787 "R_ARM_THM_MOVW_PREL_NC",/* name */
788 FALSE
, /* partial_inplace */
789 0x040f70ff, /* src_mask */
790 0x040f70ff, /* dst_mask */
791 TRUE
), /* pcrel_offset */
793 HOWTO (R_ARM_THM_MOVT_PREL
, /* type */
795 2, /* size (0 = byte, 1 = short, 2 = long) */
797 TRUE
, /* pc_relative */
799 complain_overflow_bitfield
,/* complain_on_overflow */
800 bfd_elf_generic_reloc
, /* special_function */
801 "R_ARM_THM_MOVT_PREL", /* name */
802 FALSE
, /* partial_inplace */
803 0x040f70ff, /* src_mask */
804 0x040f70ff, /* dst_mask */
805 TRUE
), /* pcrel_offset */
807 HOWTO (R_ARM_THM_JUMP19
, /* type */
809 2, /* size (0 = byte, 1 = short, 2 = long) */
811 TRUE
, /* pc_relative */
813 complain_overflow_signed
,/* complain_on_overflow */
814 bfd_elf_generic_reloc
, /* special_function */
815 "R_ARM_THM_JUMP19", /* name */
816 FALSE
, /* partial_inplace */
817 0x043f2fff, /* src_mask */
818 0x043f2fff, /* dst_mask */
819 TRUE
), /* pcrel_offset */
821 HOWTO (R_ARM_THM_JUMP6
, /* type */
823 1, /* size (0 = byte, 1 = short, 2 = long) */
825 TRUE
, /* pc_relative */
827 complain_overflow_unsigned
,/* complain_on_overflow */
828 bfd_elf_generic_reloc
, /* special_function */
829 "R_ARM_THM_JUMP6", /* name */
830 FALSE
, /* partial_inplace */
831 0x02f8, /* src_mask */
832 0x02f8, /* dst_mask */
833 TRUE
), /* pcrel_offset */
835 /* These are declared as 13-bit signed relocations because we can
836 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
838 HOWTO (R_ARM_THM_ALU_PREL_11_0
,/* type */
840 2, /* size (0 = byte, 1 = short, 2 = long) */
842 TRUE
, /* pc_relative */
844 complain_overflow_dont
,/* complain_on_overflow */
845 bfd_elf_generic_reloc
, /* special_function */
846 "R_ARM_THM_ALU_PREL_11_0",/* name */
847 FALSE
, /* partial_inplace */
848 0xffffffff, /* src_mask */
849 0xffffffff, /* dst_mask */
850 TRUE
), /* pcrel_offset */
852 HOWTO (R_ARM_THM_PC12
, /* type */
854 2, /* size (0 = byte, 1 = short, 2 = long) */
856 TRUE
, /* pc_relative */
858 complain_overflow_dont
,/* complain_on_overflow */
859 bfd_elf_generic_reloc
, /* special_function */
860 "R_ARM_THM_PC12", /* name */
861 FALSE
, /* partial_inplace */
862 0xffffffff, /* src_mask */
863 0xffffffff, /* dst_mask */
864 TRUE
), /* pcrel_offset */
866 HOWTO (R_ARM_ABS32_NOI
, /* type */
868 2, /* size (0 = byte, 1 = short, 2 = long) */
870 FALSE
, /* pc_relative */
872 complain_overflow_dont
,/* complain_on_overflow */
873 bfd_elf_generic_reloc
, /* special_function */
874 "R_ARM_ABS32_NOI", /* name */
875 FALSE
, /* partial_inplace */
876 0xffffffff, /* src_mask */
877 0xffffffff, /* dst_mask */
878 FALSE
), /* pcrel_offset */
880 HOWTO (R_ARM_REL32_NOI
, /* type */
882 2, /* size (0 = byte, 1 = short, 2 = long) */
884 TRUE
, /* pc_relative */
886 complain_overflow_dont
,/* complain_on_overflow */
887 bfd_elf_generic_reloc
, /* special_function */
888 "R_ARM_REL32_NOI", /* name */
889 FALSE
, /* partial_inplace */
890 0xffffffff, /* src_mask */
891 0xffffffff, /* dst_mask */
892 FALSE
), /* pcrel_offset */
894 /* Group relocations. */
896 HOWTO (R_ARM_ALU_PC_G0_NC
, /* type */
898 2, /* size (0 = byte, 1 = short, 2 = long) */
900 TRUE
, /* pc_relative */
902 complain_overflow_dont
,/* complain_on_overflow */
903 bfd_elf_generic_reloc
, /* special_function */
904 "R_ARM_ALU_PC_G0_NC", /* name */
905 FALSE
, /* partial_inplace */
906 0xffffffff, /* src_mask */
907 0xffffffff, /* dst_mask */
908 TRUE
), /* pcrel_offset */
910 HOWTO (R_ARM_ALU_PC_G0
, /* type */
912 2, /* size (0 = byte, 1 = short, 2 = long) */
914 TRUE
, /* pc_relative */
916 complain_overflow_dont
,/* complain_on_overflow */
917 bfd_elf_generic_reloc
, /* special_function */
918 "R_ARM_ALU_PC_G0", /* name */
919 FALSE
, /* partial_inplace */
920 0xffffffff, /* src_mask */
921 0xffffffff, /* dst_mask */
922 TRUE
), /* pcrel_offset */
924 HOWTO (R_ARM_ALU_PC_G1_NC
, /* type */
926 2, /* size (0 = byte, 1 = short, 2 = long) */
928 TRUE
, /* pc_relative */
930 complain_overflow_dont
,/* complain_on_overflow */
931 bfd_elf_generic_reloc
, /* special_function */
932 "R_ARM_ALU_PC_G1_NC", /* name */
933 FALSE
, /* partial_inplace */
934 0xffffffff, /* src_mask */
935 0xffffffff, /* dst_mask */
936 TRUE
), /* pcrel_offset */
938 HOWTO (R_ARM_ALU_PC_G1
, /* type */
940 2, /* size (0 = byte, 1 = short, 2 = long) */
942 TRUE
, /* pc_relative */
944 complain_overflow_dont
,/* complain_on_overflow */
945 bfd_elf_generic_reloc
, /* special_function */
946 "R_ARM_ALU_PC_G1", /* name */
947 FALSE
, /* partial_inplace */
948 0xffffffff, /* src_mask */
949 0xffffffff, /* dst_mask */
950 TRUE
), /* pcrel_offset */
952 HOWTO (R_ARM_ALU_PC_G2
, /* type */
954 2, /* size (0 = byte, 1 = short, 2 = long) */
956 TRUE
, /* pc_relative */
958 complain_overflow_dont
,/* complain_on_overflow */
959 bfd_elf_generic_reloc
, /* special_function */
960 "R_ARM_ALU_PC_G2", /* name */
961 FALSE
, /* partial_inplace */
962 0xffffffff, /* src_mask */
963 0xffffffff, /* dst_mask */
964 TRUE
), /* pcrel_offset */
966 HOWTO (R_ARM_LDR_PC_G1
, /* type */
968 2, /* size (0 = byte, 1 = short, 2 = long) */
970 TRUE
, /* pc_relative */
972 complain_overflow_dont
,/* complain_on_overflow */
973 bfd_elf_generic_reloc
, /* special_function */
974 "R_ARM_LDR_PC_G1", /* name */
975 FALSE
, /* partial_inplace */
976 0xffffffff, /* src_mask */
977 0xffffffff, /* dst_mask */
978 TRUE
), /* pcrel_offset */
980 HOWTO (R_ARM_LDR_PC_G2
, /* type */
982 2, /* size (0 = byte, 1 = short, 2 = long) */
984 TRUE
, /* pc_relative */
986 complain_overflow_dont
,/* complain_on_overflow */
987 bfd_elf_generic_reloc
, /* special_function */
988 "R_ARM_LDR_PC_G2", /* name */
989 FALSE
, /* partial_inplace */
990 0xffffffff, /* src_mask */
991 0xffffffff, /* dst_mask */
992 TRUE
), /* pcrel_offset */
994 HOWTO (R_ARM_LDRS_PC_G0
, /* type */
996 2, /* size (0 = byte, 1 = short, 2 = long) */
998 TRUE
, /* pc_relative */
1000 complain_overflow_dont
,/* complain_on_overflow */
1001 bfd_elf_generic_reloc
, /* special_function */
1002 "R_ARM_LDRS_PC_G0", /* name */
1003 FALSE
, /* partial_inplace */
1004 0xffffffff, /* src_mask */
1005 0xffffffff, /* dst_mask */
1006 TRUE
), /* pcrel_offset */
1008 HOWTO (R_ARM_LDRS_PC_G1
, /* type */
1010 2, /* size (0 = byte, 1 = short, 2 = long) */
1012 TRUE
, /* pc_relative */
1014 complain_overflow_dont
,/* complain_on_overflow */
1015 bfd_elf_generic_reloc
, /* special_function */
1016 "R_ARM_LDRS_PC_G1", /* name */
1017 FALSE
, /* partial_inplace */
1018 0xffffffff, /* src_mask */
1019 0xffffffff, /* dst_mask */
1020 TRUE
), /* pcrel_offset */
1022 HOWTO (R_ARM_LDRS_PC_G2
, /* type */
1024 2, /* size (0 = byte, 1 = short, 2 = long) */
1026 TRUE
, /* pc_relative */
1028 complain_overflow_dont
,/* complain_on_overflow */
1029 bfd_elf_generic_reloc
, /* special_function */
1030 "R_ARM_LDRS_PC_G2", /* name */
1031 FALSE
, /* partial_inplace */
1032 0xffffffff, /* src_mask */
1033 0xffffffff, /* dst_mask */
1034 TRUE
), /* pcrel_offset */
1036 HOWTO (R_ARM_LDC_PC_G0
, /* type */
1038 2, /* size (0 = byte, 1 = short, 2 = long) */
1040 TRUE
, /* pc_relative */
1042 complain_overflow_dont
,/* complain_on_overflow */
1043 bfd_elf_generic_reloc
, /* special_function */
1044 "R_ARM_LDC_PC_G0", /* name */
1045 FALSE
, /* partial_inplace */
1046 0xffffffff, /* src_mask */
1047 0xffffffff, /* dst_mask */
1048 TRUE
), /* pcrel_offset */
1050 HOWTO (R_ARM_LDC_PC_G1
, /* type */
1052 2, /* size (0 = byte, 1 = short, 2 = long) */
1054 TRUE
, /* pc_relative */
1056 complain_overflow_dont
,/* complain_on_overflow */
1057 bfd_elf_generic_reloc
, /* special_function */
1058 "R_ARM_LDC_PC_G1", /* name */
1059 FALSE
, /* partial_inplace */
1060 0xffffffff, /* src_mask */
1061 0xffffffff, /* dst_mask */
1062 TRUE
), /* pcrel_offset */
1064 HOWTO (R_ARM_LDC_PC_G2
, /* type */
1066 2, /* size (0 = byte, 1 = short, 2 = long) */
1068 TRUE
, /* pc_relative */
1070 complain_overflow_dont
,/* complain_on_overflow */
1071 bfd_elf_generic_reloc
, /* special_function */
1072 "R_ARM_LDC_PC_G2", /* name */
1073 FALSE
, /* partial_inplace */
1074 0xffffffff, /* src_mask */
1075 0xffffffff, /* dst_mask */
1076 TRUE
), /* pcrel_offset */
1078 HOWTO (R_ARM_ALU_SB_G0_NC
, /* type */
1080 2, /* size (0 = byte, 1 = short, 2 = long) */
1082 TRUE
, /* pc_relative */
1084 complain_overflow_dont
,/* complain_on_overflow */
1085 bfd_elf_generic_reloc
, /* special_function */
1086 "R_ARM_ALU_SB_G0_NC", /* name */
1087 FALSE
, /* partial_inplace */
1088 0xffffffff, /* src_mask */
1089 0xffffffff, /* dst_mask */
1090 TRUE
), /* pcrel_offset */
1092 HOWTO (R_ARM_ALU_SB_G0
, /* type */
1094 2, /* size (0 = byte, 1 = short, 2 = long) */
1096 TRUE
, /* pc_relative */
1098 complain_overflow_dont
,/* complain_on_overflow */
1099 bfd_elf_generic_reloc
, /* special_function */
1100 "R_ARM_ALU_SB_G0", /* name */
1101 FALSE
, /* partial_inplace */
1102 0xffffffff, /* src_mask */
1103 0xffffffff, /* dst_mask */
1104 TRUE
), /* pcrel_offset */
1106 HOWTO (R_ARM_ALU_SB_G1_NC
, /* type */
1108 2, /* size (0 = byte, 1 = short, 2 = long) */
1110 TRUE
, /* pc_relative */
1112 complain_overflow_dont
,/* complain_on_overflow */
1113 bfd_elf_generic_reloc
, /* special_function */
1114 "R_ARM_ALU_SB_G1_NC", /* name */
1115 FALSE
, /* partial_inplace */
1116 0xffffffff, /* src_mask */
1117 0xffffffff, /* dst_mask */
1118 TRUE
), /* pcrel_offset */
1120 HOWTO (R_ARM_ALU_SB_G1
, /* type */
1122 2, /* size (0 = byte, 1 = short, 2 = long) */
1124 TRUE
, /* pc_relative */
1126 complain_overflow_dont
,/* complain_on_overflow */
1127 bfd_elf_generic_reloc
, /* special_function */
1128 "R_ARM_ALU_SB_G1", /* name */
1129 FALSE
, /* partial_inplace */
1130 0xffffffff, /* src_mask */
1131 0xffffffff, /* dst_mask */
1132 TRUE
), /* pcrel_offset */
1134 HOWTO (R_ARM_ALU_SB_G2
, /* type */
1136 2, /* size (0 = byte, 1 = short, 2 = long) */
1138 TRUE
, /* pc_relative */
1140 complain_overflow_dont
,/* complain_on_overflow */
1141 bfd_elf_generic_reloc
, /* special_function */
1142 "R_ARM_ALU_SB_G2", /* name */
1143 FALSE
, /* partial_inplace */
1144 0xffffffff, /* src_mask */
1145 0xffffffff, /* dst_mask */
1146 TRUE
), /* pcrel_offset */
1148 HOWTO (R_ARM_LDR_SB_G0
, /* type */
1150 2, /* size (0 = byte, 1 = short, 2 = long) */
1152 TRUE
, /* pc_relative */
1154 complain_overflow_dont
,/* complain_on_overflow */
1155 bfd_elf_generic_reloc
, /* special_function */
1156 "R_ARM_LDR_SB_G0", /* name */
1157 FALSE
, /* partial_inplace */
1158 0xffffffff, /* src_mask */
1159 0xffffffff, /* dst_mask */
1160 TRUE
), /* pcrel_offset */
1162 HOWTO (R_ARM_LDR_SB_G1
, /* type */
1164 2, /* size (0 = byte, 1 = short, 2 = long) */
1166 TRUE
, /* pc_relative */
1168 complain_overflow_dont
,/* complain_on_overflow */
1169 bfd_elf_generic_reloc
, /* special_function */
1170 "R_ARM_LDR_SB_G1", /* name */
1171 FALSE
, /* partial_inplace */
1172 0xffffffff, /* src_mask */
1173 0xffffffff, /* dst_mask */
1174 TRUE
), /* pcrel_offset */
1176 HOWTO (R_ARM_LDR_SB_G2
, /* type */
1178 2, /* size (0 = byte, 1 = short, 2 = long) */
1180 TRUE
, /* pc_relative */
1182 complain_overflow_dont
,/* complain_on_overflow */
1183 bfd_elf_generic_reloc
, /* special_function */
1184 "R_ARM_LDR_SB_G2", /* name */
1185 FALSE
, /* partial_inplace */
1186 0xffffffff, /* src_mask */
1187 0xffffffff, /* dst_mask */
1188 TRUE
), /* pcrel_offset */
1190 HOWTO (R_ARM_LDRS_SB_G0
, /* type */
1192 2, /* size (0 = byte, 1 = short, 2 = long) */
1194 TRUE
, /* pc_relative */
1196 complain_overflow_dont
,/* complain_on_overflow */
1197 bfd_elf_generic_reloc
, /* special_function */
1198 "R_ARM_LDRS_SB_G0", /* name */
1199 FALSE
, /* partial_inplace */
1200 0xffffffff, /* src_mask */
1201 0xffffffff, /* dst_mask */
1202 TRUE
), /* pcrel_offset */
1204 HOWTO (R_ARM_LDRS_SB_G1
, /* type */
1206 2, /* size (0 = byte, 1 = short, 2 = long) */
1208 TRUE
, /* pc_relative */
1210 complain_overflow_dont
,/* complain_on_overflow */
1211 bfd_elf_generic_reloc
, /* special_function */
1212 "R_ARM_LDRS_SB_G1", /* name */
1213 FALSE
, /* partial_inplace */
1214 0xffffffff, /* src_mask */
1215 0xffffffff, /* dst_mask */
1216 TRUE
), /* pcrel_offset */
1218 HOWTO (R_ARM_LDRS_SB_G2
, /* type */
1220 2, /* size (0 = byte, 1 = short, 2 = long) */
1222 TRUE
, /* pc_relative */
1224 complain_overflow_dont
,/* complain_on_overflow */
1225 bfd_elf_generic_reloc
, /* special_function */
1226 "R_ARM_LDRS_SB_G2", /* name */
1227 FALSE
, /* partial_inplace */
1228 0xffffffff, /* src_mask */
1229 0xffffffff, /* dst_mask */
1230 TRUE
), /* pcrel_offset */
1232 HOWTO (R_ARM_LDC_SB_G0
, /* type */
1234 2, /* size (0 = byte, 1 = short, 2 = long) */
1236 TRUE
, /* pc_relative */
1238 complain_overflow_dont
,/* complain_on_overflow */
1239 bfd_elf_generic_reloc
, /* special_function */
1240 "R_ARM_LDC_SB_G0", /* name */
1241 FALSE
, /* partial_inplace */
1242 0xffffffff, /* src_mask */
1243 0xffffffff, /* dst_mask */
1244 TRUE
), /* pcrel_offset */
1246 HOWTO (R_ARM_LDC_SB_G1
, /* type */
1248 2, /* size (0 = byte, 1 = short, 2 = long) */
1250 TRUE
, /* pc_relative */
1252 complain_overflow_dont
,/* complain_on_overflow */
1253 bfd_elf_generic_reloc
, /* special_function */
1254 "R_ARM_LDC_SB_G1", /* name */
1255 FALSE
, /* partial_inplace */
1256 0xffffffff, /* src_mask */
1257 0xffffffff, /* dst_mask */
1258 TRUE
), /* pcrel_offset */
1260 HOWTO (R_ARM_LDC_SB_G2
, /* type */
1262 2, /* size (0 = byte, 1 = short, 2 = long) */
1264 TRUE
, /* pc_relative */
1266 complain_overflow_dont
,/* complain_on_overflow */
1267 bfd_elf_generic_reloc
, /* special_function */
1268 "R_ARM_LDC_SB_G2", /* name */
1269 FALSE
, /* partial_inplace */
1270 0xffffffff, /* src_mask */
1271 0xffffffff, /* dst_mask */
1272 TRUE
), /* pcrel_offset */
1274 /* End of group relocations. */
1276 HOWTO (R_ARM_MOVW_BREL_NC
, /* type */
1278 2, /* size (0 = byte, 1 = short, 2 = long) */
1280 FALSE
, /* pc_relative */
1282 complain_overflow_dont
,/* complain_on_overflow */
1283 bfd_elf_generic_reloc
, /* special_function */
1284 "R_ARM_MOVW_BREL_NC", /* name */
1285 FALSE
, /* partial_inplace */
1286 0x0000ffff, /* src_mask */
1287 0x0000ffff, /* dst_mask */
1288 FALSE
), /* pcrel_offset */
1290 HOWTO (R_ARM_MOVT_BREL
, /* type */
1292 2, /* size (0 = byte, 1 = short, 2 = long) */
1294 FALSE
, /* pc_relative */
1296 complain_overflow_bitfield
,/* complain_on_overflow */
1297 bfd_elf_generic_reloc
, /* special_function */
1298 "R_ARM_MOVT_BREL", /* name */
1299 FALSE
, /* partial_inplace */
1300 0x0000ffff, /* src_mask */
1301 0x0000ffff, /* dst_mask */
1302 FALSE
), /* pcrel_offset */
1304 HOWTO (R_ARM_MOVW_BREL
, /* type */
1306 2, /* size (0 = byte, 1 = short, 2 = long) */
1308 FALSE
, /* pc_relative */
1310 complain_overflow_dont
,/* complain_on_overflow */
1311 bfd_elf_generic_reloc
, /* special_function */
1312 "R_ARM_MOVW_BREL", /* name */
1313 FALSE
, /* partial_inplace */
1314 0x0000ffff, /* src_mask */
1315 0x0000ffff, /* dst_mask */
1316 FALSE
), /* pcrel_offset */
1318 HOWTO (R_ARM_THM_MOVW_BREL_NC
,/* type */
1320 2, /* size (0 = byte, 1 = short, 2 = long) */
1322 FALSE
, /* pc_relative */
1324 complain_overflow_dont
,/* complain_on_overflow */
1325 bfd_elf_generic_reloc
, /* special_function */
1326 "R_ARM_THM_MOVW_BREL_NC",/* name */
1327 FALSE
, /* partial_inplace */
1328 0x040f70ff, /* src_mask */
1329 0x040f70ff, /* dst_mask */
1330 FALSE
), /* pcrel_offset */
1332 HOWTO (R_ARM_THM_MOVT_BREL
, /* type */
1334 2, /* size (0 = byte, 1 = short, 2 = long) */
1336 FALSE
, /* pc_relative */
1338 complain_overflow_bitfield
,/* complain_on_overflow */
1339 bfd_elf_generic_reloc
, /* special_function */
1340 "R_ARM_THM_MOVT_BREL", /* name */
1341 FALSE
, /* partial_inplace */
1342 0x040f70ff, /* src_mask */
1343 0x040f70ff, /* dst_mask */
1344 FALSE
), /* pcrel_offset */
1346 HOWTO (R_ARM_THM_MOVW_BREL
, /* type */
1348 2, /* size (0 = byte, 1 = short, 2 = long) */
1350 FALSE
, /* pc_relative */
1352 complain_overflow_dont
,/* complain_on_overflow */
1353 bfd_elf_generic_reloc
, /* special_function */
1354 "R_ARM_THM_MOVW_BREL", /* name */
1355 FALSE
, /* partial_inplace */
1356 0x040f70ff, /* src_mask */
1357 0x040f70ff, /* dst_mask */
1358 FALSE
), /* pcrel_offset */
1360 HOWTO (R_ARM_TLS_GOTDESC
, /* type */
1362 2, /* size (0 = byte, 1 = short, 2 = long) */
1364 FALSE
, /* pc_relative */
1366 complain_overflow_bitfield
,/* complain_on_overflow */
1367 NULL
, /* special_function */
1368 "R_ARM_TLS_GOTDESC", /* name */
1369 TRUE
, /* partial_inplace */
1370 0xffffffff, /* src_mask */
1371 0xffffffff, /* dst_mask */
1372 FALSE
), /* pcrel_offset */
1374 HOWTO (R_ARM_TLS_CALL
, /* type */
1376 2, /* size (0 = byte, 1 = short, 2 = long) */
1378 FALSE
, /* pc_relative */
1380 complain_overflow_dont
,/* complain_on_overflow */
1381 bfd_elf_generic_reloc
, /* special_function */
1382 "R_ARM_TLS_CALL", /* name */
1383 FALSE
, /* partial_inplace */
1384 0x00ffffff, /* src_mask */
1385 0x00ffffff, /* dst_mask */
1386 FALSE
), /* pcrel_offset */
1388 HOWTO (R_ARM_TLS_DESCSEQ
, /* type */
1390 2, /* size (0 = byte, 1 = short, 2 = long) */
1392 FALSE
, /* pc_relative */
1394 complain_overflow_bitfield
,/* complain_on_overflow */
1395 bfd_elf_generic_reloc
, /* special_function */
1396 "R_ARM_TLS_DESCSEQ", /* name */
1397 FALSE
, /* partial_inplace */
1398 0x00000000, /* src_mask */
1399 0x00000000, /* dst_mask */
1400 FALSE
), /* pcrel_offset */
1402 HOWTO (R_ARM_THM_TLS_CALL
, /* type */
1404 2, /* size (0 = byte, 1 = short, 2 = long) */
1406 FALSE
, /* pc_relative */
1408 complain_overflow_dont
,/* complain_on_overflow */
1409 bfd_elf_generic_reloc
, /* special_function */
1410 "R_ARM_THM_TLS_CALL", /* name */
1411 FALSE
, /* partial_inplace */
1412 0x07ff07ff, /* src_mask */
1413 0x07ff07ff, /* dst_mask */
1414 FALSE
), /* pcrel_offset */
1416 HOWTO (R_ARM_PLT32_ABS
, /* type */
1418 2, /* size (0 = byte, 1 = short, 2 = long) */
1420 FALSE
, /* pc_relative */
1422 complain_overflow_dont
,/* complain_on_overflow */
1423 bfd_elf_generic_reloc
, /* special_function */
1424 "R_ARM_PLT32_ABS", /* name */
1425 FALSE
, /* partial_inplace */
1426 0xffffffff, /* src_mask */
1427 0xffffffff, /* dst_mask */
1428 FALSE
), /* pcrel_offset */
1430 HOWTO (R_ARM_GOT_ABS
, /* type */
1432 2, /* size (0 = byte, 1 = short, 2 = long) */
1434 FALSE
, /* pc_relative */
1436 complain_overflow_dont
,/* complain_on_overflow */
1437 bfd_elf_generic_reloc
, /* special_function */
1438 "R_ARM_GOT_ABS", /* name */
1439 FALSE
, /* partial_inplace */
1440 0xffffffff, /* src_mask */
1441 0xffffffff, /* dst_mask */
1442 FALSE
), /* pcrel_offset */
1444 HOWTO (R_ARM_GOT_PREL
, /* type */
1446 2, /* size (0 = byte, 1 = short, 2 = long) */
1448 TRUE
, /* pc_relative */
1450 complain_overflow_dont
, /* complain_on_overflow */
1451 bfd_elf_generic_reloc
, /* special_function */
1452 "R_ARM_GOT_PREL", /* name */
1453 FALSE
, /* partial_inplace */
1454 0xffffffff, /* src_mask */
1455 0xffffffff, /* dst_mask */
1456 TRUE
), /* pcrel_offset */
1458 HOWTO (R_ARM_GOT_BREL12
, /* type */
1460 2, /* size (0 = byte, 1 = short, 2 = long) */
1462 FALSE
, /* pc_relative */
1464 complain_overflow_bitfield
,/* complain_on_overflow */
1465 bfd_elf_generic_reloc
, /* special_function */
1466 "R_ARM_GOT_BREL12", /* name */
1467 FALSE
, /* partial_inplace */
1468 0x00000fff, /* src_mask */
1469 0x00000fff, /* dst_mask */
1470 FALSE
), /* pcrel_offset */
1472 HOWTO (R_ARM_GOTOFF12
, /* type */
1474 2, /* size (0 = byte, 1 = short, 2 = long) */
1476 FALSE
, /* pc_relative */
1478 complain_overflow_bitfield
,/* complain_on_overflow */
1479 bfd_elf_generic_reloc
, /* special_function */
1480 "R_ARM_GOTOFF12", /* name */
1481 FALSE
, /* partial_inplace */
1482 0x00000fff, /* src_mask */
1483 0x00000fff, /* dst_mask */
1484 FALSE
), /* pcrel_offset */
1486 EMPTY_HOWTO (R_ARM_GOTRELAX
), /* reserved for future GOT-load optimizations */
1488 /* GNU extension to record C++ vtable member usage */
1489 HOWTO (R_ARM_GNU_VTENTRY
, /* type */
1491 2, /* size (0 = byte, 1 = short, 2 = long) */
1493 FALSE
, /* pc_relative */
1495 complain_overflow_dont
, /* complain_on_overflow */
1496 _bfd_elf_rel_vtable_reloc_fn
, /* special_function */
1497 "R_ARM_GNU_VTENTRY", /* name */
1498 FALSE
, /* partial_inplace */
1501 FALSE
), /* pcrel_offset */
1503 /* GNU extension to record C++ vtable hierarchy */
1504 HOWTO (R_ARM_GNU_VTINHERIT
, /* type */
1506 2, /* size (0 = byte, 1 = short, 2 = long) */
1508 FALSE
, /* pc_relative */
1510 complain_overflow_dont
, /* complain_on_overflow */
1511 NULL
, /* special_function */
1512 "R_ARM_GNU_VTINHERIT", /* name */
1513 FALSE
, /* partial_inplace */
1516 FALSE
), /* pcrel_offset */
1518 HOWTO (R_ARM_THM_JUMP11
, /* type */
1520 1, /* size (0 = byte, 1 = short, 2 = long) */
1522 TRUE
, /* pc_relative */
1524 complain_overflow_signed
, /* complain_on_overflow */
1525 bfd_elf_generic_reloc
, /* special_function */
1526 "R_ARM_THM_JUMP11", /* name */
1527 FALSE
, /* partial_inplace */
1528 0x000007ff, /* src_mask */
1529 0x000007ff, /* dst_mask */
1530 TRUE
), /* pcrel_offset */
1532 HOWTO (R_ARM_THM_JUMP8
, /* type */
1534 1, /* size (0 = byte, 1 = short, 2 = long) */
1536 TRUE
, /* pc_relative */
1538 complain_overflow_signed
, /* complain_on_overflow */
1539 bfd_elf_generic_reloc
, /* special_function */
1540 "R_ARM_THM_JUMP8", /* name */
1541 FALSE
, /* partial_inplace */
1542 0x000000ff, /* src_mask */
1543 0x000000ff, /* dst_mask */
1544 TRUE
), /* pcrel_offset */
1546 /* TLS relocations */
1547 HOWTO (R_ARM_TLS_GD32
, /* type */
1549 2, /* size (0 = byte, 1 = short, 2 = long) */
1551 FALSE
, /* pc_relative */
1553 complain_overflow_bitfield
,/* complain_on_overflow */
1554 NULL
, /* special_function */
1555 "R_ARM_TLS_GD32", /* name */
1556 TRUE
, /* partial_inplace */
1557 0xffffffff, /* src_mask */
1558 0xffffffff, /* dst_mask */
1559 FALSE
), /* pcrel_offset */
1561 HOWTO (R_ARM_TLS_LDM32
, /* type */
1563 2, /* size (0 = byte, 1 = short, 2 = long) */
1565 FALSE
, /* pc_relative */
1567 complain_overflow_bitfield
,/* complain_on_overflow */
1568 bfd_elf_generic_reloc
, /* special_function */
1569 "R_ARM_TLS_LDM32", /* name */
1570 TRUE
, /* partial_inplace */
1571 0xffffffff, /* src_mask */
1572 0xffffffff, /* dst_mask */
1573 FALSE
), /* pcrel_offset */
1575 HOWTO (R_ARM_TLS_LDO32
, /* type */
1577 2, /* size (0 = byte, 1 = short, 2 = long) */
1579 FALSE
, /* pc_relative */
1581 complain_overflow_bitfield
,/* complain_on_overflow */
1582 bfd_elf_generic_reloc
, /* special_function */
1583 "R_ARM_TLS_LDO32", /* name */
1584 TRUE
, /* partial_inplace */
1585 0xffffffff, /* src_mask */
1586 0xffffffff, /* dst_mask */
1587 FALSE
), /* pcrel_offset */
1589 HOWTO (R_ARM_TLS_IE32
, /* type */
1591 2, /* size (0 = byte, 1 = short, 2 = long) */
1593 FALSE
, /* pc_relative */
1595 complain_overflow_bitfield
,/* complain_on_overflow */
1596 NULL
, /* special_function */
1597 "R_ARM_TLS_IE32", /* name */
1598 TRUE
, /* partial_inplace */
1599 0xffffffff, /* src_mask */
1600 0xffffffff, /* dst_mask */
1601 FALSE
), /* pcrel_offset */
1603 HOWTO (R_ARM_TLS_LE32
, /* type */
1605 2, /* size (0 = byte, 1 = short, 2 = long) */
1607 FALSE
, /* pc_relative */
1609 complain_overflow_bitfield
,/* complain_on_overflow */
1610 bfd_elf_generic_reloc
, /* special_function */
1611 "R_ARM_TLS_LE32", /* name */
1612 TRUE
, /* partial_inplace */
1613 0xffffffff, /* src_mask */
1614 0xffffffff, /* dst_mask */
1615 FALSE
), /* pcrel_offset */
1617 HOWTO (R_ARM_TLS_LDO12
, /* type */
1619 2, /* size (0 = byte, 1 = short, 2 = long) */
1621 FALSE
, /* pc_relative */
1623 complain_overflow_bitfield
,/* complain_on_overflow */
1624 bfd_elf_generic_reloc
, /* special_function */
1625 "R_ARM_TLS_LDO12", /* name */
1626 FALSE
, /* partial_inplace */
1627 0x00000fff, /* src_mask */
1628 0x00000fff, /* dst_mask */
1629 FALSE
), /* pcrel_offset */
1631 HOWTO (R_ARM_TLS_LE12
, /* type */
1633 2, /* size (0 = byte, 1 = short, 2 = long) */
1635 FALSE
, /* pc_relative */
1637 complain_overflow_bitfield
,/* complain_on_overflow */
1638 bfd_elf_generic_reloc
, /* special_function */
1639 "R_ARM_TLS_LE12", /* name */
1640 FALSE
, /* partial_inplace */
1641 0x00000fff, /* src_mask */
1642 0x00000fff, /* dst_mask */
1643 FALSE
), /* pcrel_offset */
1645 HOWTO (R_ARM_TLS_IE12GP
, /* type */
1647 2, /* size (0 = byte, 1 = short, 2 = long) */
1649 FALSE
, /* pc_relative */
1651 complain_overflow_bitfield
,/* complain_on_overflow */
1652 bfd_elf_generic_reloc
, /* special_function */
1653 "R_ARM_TLS_IE12GP", /* name */
1654 FALSE
, /* partial_inplace */
1655 0x00000fff, /* src_mask */
1656 0x00000fff, /* dst_mask */
1657 FALSE
), /* pcrel_offset */
1659 /* 112-127 private relocations. */
1677 /* R_ARM_ME_TOO, obsolete. */
1680 HOWTO (R_ARM_THM_TLS_DESCSEQ
, /* type */
1682 1, /* size (0 = byte, 1 = short, 2 = long) */
1684 FALSE
, /* pc_relative */
1686 complain_overflow_bitfield
,/* complain_on_overflow */
1687 bfd_elf_generic_reloc
, /* special_function */
1688 "R_ARM_THM_TLS_DESCSEQ",/* name */
1689 FALSE
, /* partial_inplace */
1690 0x00000000, /* src_mask */
1691 0x00000000, /* dst_mask */
1692 FALSE
), /* pcrel_offset */
1696 static reloc_howto_type elf32_arm_howto_table_2
[1] =
1698 HOWTO (R_ARM_IRELATIVE
, /* type */
1700 2, /* size (0 = byte, 1 = short, 2 = long) */
1702 FALSE
, /* pc_relative */
1704 complain_overflow_bitfield
,/* complain_on_overflow */
1705 bfd_elf_generic_reloc
, /* special_function */
1706 "R_ARM_IRELATIVE", /* name */
1707 TRUE
, /* partial_inplace */
1708 0xffffffff, /* src_mask */
1709 0xffffffff, /* dst_mask */
1710 FALSE
) /* pcrel_offset */
1713 /* 249-255 extended, currently unused, relocations: */
1714 static reloc_howto_type elf32_arm_howto_table_3
[4] =
1716 HOWTO (R_ARM_RREL32
, /* type */
1718 0, /* size (0 = byte, 1 = short, 2 = long) */
1720 FALSE
, /* pc_relative */
1722 complain_overflow_dont
,/* complain_on_overflow */
1723 bfd_elf_generic_reloc
, /* special_function */
1724 "R_ARM_RREL32", /* name */
1725 FALSE
, /* partial_inplace */
1728 FALSE
), /* pcrel_offset */
1730 HOWTO (R_ARM_RABS32
, /* type */
1732 0, /* size (0 = byte, 1 = short, 2 = long) */
1734 FALSE
, /* pc_relative */
1736 complain_overflow_dont
,/* complain_on_overflow */
1737 bfd_elf_generic_reloc
, /* special_function */
1738 "R_ARM_RABS32", /* name */
1739 FALSE
, /* partial_inplace */
1742 FALSE
), /* pcrel_offset */
1744 HOWTO (R_ARM_RPC24
, /* type */
1746 0, /* size (0 = byte, 1 = short, 2 = long) */
1748 FALSE
, /* pc_relative */
1750 complain_overflow_dont
,/* complain_on_overflow */
1751 bfd_elf_generic_reloc
, /* special_function */
1752 "R_ARM_RPC24", /* name */
1753 FALSE
, /* partial_inplace */
1756 FALSE
), /* pcrel_offset */
1758 HOWTO (R_ARM_RBASE
, /* type */
1760 0, /* size (0 = byte, 1 = short, 2 = long) */
1762 FALSE
, /* pc_relative */
1764 complain_overflow_dont
,/* complain_on_overflow */
1765 bfd_elf_generic_reloc
, /* special_function */
1766 "R_ARM_RBASE", /* name */
1767 FALSE
, /* partial_inplace */
1770 FALSE
) /* pcrel_offset */
1773 static reloc_howto_type
*
1774 elf32_arm_howto_from_type (unsigned int r_type
)
1776 if (r_type
< ARRAY_SIZE (elf32_arm_howto_table_1
))
1777 return &elf32_arm_howto_table_1
[r_type
];
1779 if (r_type
== R_ARM_IRELATIVE
)
1780 return &elf32_arm_howto_table_2
[r_type
- R_ARM_IRELATIVE
];
1782 if (r_type
>= R_ARM_RREL32
1783 && r_type
< R_ARM_RREL32
+ ARRAY_SIZE (elf32_arm_howto_table_3
))
1784 return &elf32_arm_howto_table_3
[r_type
- R_ARM_RREL32
];
1790 elf32_arm_info_to_howto (bfd
* abfd ATTRIBUTE_UNUSED
, arelent
* bfd_reloc
,
1791 Elf_Internal_Rela
* elf_reloc
)
1793 unsigned int r_type
;
1795 r_type
= ELF32_R_TYPE (elf_reloc
->r_info
);
1796 bfd_reloc
->howto
= elf32_arm_howto_from_type (r_type
);
1799 struct elf32_arm_reloc_map
1801 bfd_reloc_code_real_type bfd_reloc_val
;
1802 unsigned char elf_reloc_val
;
1805 /* All entries in this list must also be present in elf32_arm_howto_table. */
1806 static const struct elf32_arm_reloc_map elf32_arm_reloc_map
[] =
1808 {BFD_RELOC_NONE
, R_ARM_NONE
},
1809 {BFD_RELOC_ARM_PCREL_BRANCH
, R_ARM_PC24
},
1810 {BFD_RELOC_ARM_PCREL_CALL
, R_ARM_CALL
},
1811 {BFD_RELOC_ARM_PCREL_JUMP
, R_ARM_JUMP24
},
1812 {BFD_RELOC_ARM_PCREL_BLX
, R_ARM_XPC25
},
1813 {BFD_RELOC_THUMB_PCREL_BLX
, R_ARM_THM_XPC22
},
1814 {BFD_RELOC_32
, R_ARM_ABS32
},
1815 {BFD_RELOC_32_PCREL
, R_ARM_REL32
},
1816 {BFD_RELOC_8
, R_ARM_ABS8
},
1817 {BFD_RELOC_16
, R_ARM_ABS16
},
1818 {BFD_RELOC_ARM_OFFSET_IMM
, R_ARM_ABS12
},
1819 {BFD_RELOC_ARM_THUMB_OFFSET
, R_ARM_THM_ABS5
},
1820 {BFD_RELOC_THUMB_PCREL_BRANCH25
, R_ARM_THM_JUMP24
},
1821 {BFD_RELOC_THUMB_PCREL_BRANCH23
, R_ARM_THM_CALL
},
1822 {BFD_RELOC_THUMB_PCREL_BRANCH12
, R_ARM_THM_JUMP11
},
1823 {BFD_RELOC_THUMB_PCREL_BRANCH20
, R_ARM_THM_JUMP19
},
1824 {BFD_RELOC_THUMB_PCREL_BRANCH9
, R_ARM_THM_JUMP8
},
1825 {BFD_RELOC_THUMB_PCREL_BRANCH7
, R_ARM_THM_JUMP6
},
1826 {BFD_RELOC_ARM_GLOB_DAT
, R_ARM_GLOB_DAT
},
1827 {BFD_RELOC_ARM_JUMP_SLOT
, R_ARM_JUMP_SLOT
},
1828 {BFD_RELOC_ARM_RELATIVE
, R_ARM_RELATIVE
},
1829 {BFD_RELOC_ARM_GOTOFF
, R_ARM_GOTOFF32
},
1830 {BFD_RELOC_ARM_GOTPC
, R_ARM_GOTPC
},
1831 {BFD_RELOC_ARM_GOT_PREL
, R_ARM_GOT_PREL
},
1832 {BFD_RELOC_ARM_GOT32
, R_ARM_GOT32
},
1833 {BFD_RELOC_ARM_PLT32
, R_ARM_PLT32
},
1834 {BFD_RELOC_ARM_TARGET1
, R_ARM_TARGET1
},
1835 {BFD_RELOC_ARM_ROSEGREL32
, R_ARM_ROSEGREL32
},
1836 {BFD_RELOC_ARM_SBREL32
, R_ARM_SBREL32
},
1837 {BFD_RELOC_ARM_PREL31
, R_ARM_PREL31
},
1838 {BFD_RELOC_ARM_TARGET2
, R_ARM_TARGET2
},
1839 {BFD_RELOC_ARM_PLT32
, R_ARM_PLT32
},
1840 {BFD_RELOC_ARM_TLS_GOTDESC
, R_ARM_TLS_GOTDESC
},
1841 {BFD_RELOC_ARM_TLS_CALL
, R_ARM_TLS_CALL
},
1842 {BFD_RELOC_ARM_THM_TLS_CALL
, R_ARM_THM_TLS_CALL
},
1843 {BFD_RELOC_ARM_TLS_DESCSEQ
, R_ARM_TLS_DESCSEQ
},
1844 {BFD_RELOC_ARM_THM_TLS_DESCSEQ
, R_ARM_THM_TLS_DESCSEQ
},
1845 {BFD_RELOC_ARM_TLS_DESC
, R_ARM_TLS_DESC
},
1846 {BFD_RELOC_ARM_TLS_GD32
, R_ARM_TLS_GD32
},
1847 {BFD_RELOC_ARM_TLS_LDO32
, R_ARM_TLS_LDO32
},
1848 {BFD_RELOC_ARM_TLS_LDM32
, R_ARM_TLS_LDM32
},
1849 {BFD_RELOC_ARM_TLS_DTPMOD32
, R_ARM_TLS_DTPMOD32
},
1850 {BFD_RELOC_ARM_TLS_DTPOFF32
, R_ARM_TLS_DTPOFF32
},
1851 {BFD_RELOC_ARM_TLS_TPOFF32
, R_ARM_TLS_TPOFF32
},
1852 {BFD_RELOC_ARM_TLS_IE32
, R_ARM_TLS_IE32
},
1853 {BFD_RELOC_ARM_TLS_LE32
, R_ARM_TLS_LE32
},
1854 {BFD_RELOC_ARM_IRELATIVE
, R_ARM_IRELATIVE
},
1855 {BFD_RELOC_VTABLE_INHERIT
, R_ARM_GNU_VTINHERIT
},
1856 {BFD_RELOC_VTABLE_ENTRY
, R_ARM_GNU_VTENTRY
},
1857 {BFD_RELOC_ARM_MOVW
, R_ARM_MOVW_ABS_NC
},
1858 {BFD_RELOC_ARM_MOVT
, R_ARM_MOVT_ABS
},
1859 {BFD_RELOC_ARM_MOVW_PCREL
, R_ARM_MOVW_PREL_NC
},
1860 {BFD_RELOC_ARM_MOVT_PCREL
, R_ARM_MOVT_PREL
},
1861 {BFD_RELOC_ARM_THUMB_MOVW
, R_ARM_THM_MOVW_ABS_NC
},
1862 {BFD_RELOC_ARM_THUMB_MOVT
, R_ARM_THM_MOVT_ABS
},
1863 {BFD_RELOC_ARM_THUMB_MOVW_PCREL
, R_ARM_THM_MOVW_PREL_NC
},
1864 {BFD_RELOC_ARM_THUMB_MOVT_PCREL
, R_ARM_THM_MOVT_PREL
},
1865 {BFD_RELOC_ARM_ALU_PC_G0_NC
, R_ARM_ALU_PC_G0_NC
},
1866 {BFD_RELOC_ARM_ALU_PC_G0
, R_ARM_ALU_PC_G0
},
1867 {BFD_RELOC_ARM_ALU_PC_G1_NC
, R_ARM_ALU_PC_G1_NC
},
1868 {BFD_RELOC_ARM_ALU_PC_G1
, R_ARM_ALU_PC_G1
},
1869 {BFD_RELOC_ARM_ALU_PC_G2
, R_ARM_ALU_PC_G2
},
1870 {BFD_RELOC_ARM_LDR_PC_G0
, R_ARM_LDR_PC_G0
},
1871 {BFD_RELOC_ARM_LDR_PC_G1
, R_ARM_LDR_PC_G1
},
1872 {BFD_RELOC_ARM_LDR_PC_G2
, R_ARM_LDR_PC_G2
},
1873 {BFD_RELOC_ARM_LDRS_PC_G0
, R_ARM_LDRS_PC_G0
},
1874 {BFD_RELOC_ARM_LDRS_PC_G1
, R_ARM_LDRS_PC_G1
},
1875 {BFD_RELOC_ARM_LDRS_PC_G2
, R_ARM_LDRS_PC_G2
},
1876 {BFD_RELOC_ARM_LDC_PC_G0
, R_ARM_LDC_PC_G0
},
1877 {BFD_RELOC_ARM_LDC_PC_G1
, R_ARM_LDC_PC_G1
},
1878 {BFD_RELOC_ARM_LDC_PC_G2
, R_ARM_LDC_PC_G2
},
1879 {BFD_RELOC_ARM_ALU_SB_G0_NC
, R_ARM_ALU_SB_G0_NC
},
1880 {BFD_RELOC_ARM_ALU_SB_G0
, R_ARM_ALU_SB_G0
},
1881 {BFD_RELOC_ARM_ALU_SB_G1_NC
, R_ARM_ALU_SB_G1_NC
},
1882 {BFD_RELOC_ARM_ALU_SB_G1
, R_ARM_ALU_SB_G1
},
1883 {BFD_RELOC_ARM_ALU_SB_G2
, R_ARM_ALU_SB_G2
},
1884 {BFD_RELOC_ARM_LDR_SB_G0
, R_ARM_LDR_SB_G0
},
1885 {BFD_RELOC_ARM_LDR_SB_G1
, R_ARM_LDR_SB_G1
},
1886 {BFD_RELOC_ARM_LDR_SB_G2
, R_ARM_LDR_SB_G2
},
1887 {BFD_RELOC_ARM_LDRS_SB_G0
, R_ARM_LDRS_SB_G0
},
1888 {BFD_RELOC_ARM_LDRS_SB_G1
, R_ARM_LDRS_SB_G1
},
1889 {BFD_RELOC_ARM_LDRS_SB_G2
, R_ARM_LDRS_SB_G2
},
1890 {BFD_RELOC_ARM_LDC_SB_G0
, R_ARM_LDC_SB_G0
},
1891 {BFD_RELOC_ARM_LDC_SB_G1
, R_ARM_LDC_SB_G1
},
1892 {BFD_RELOC_ARM_LDC_SB_G2
, R_ARM_LDC_SB_G2
},
1893 {BFD_RELOC_ARM_V4BX
, R_ARM_V4BX
}
1896 static reloc_howto_type
*
1897 elf32_arm_reloc_type_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
1898 bfd_reloc_code_real_type code
)
1902 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_reloc_map
); i
++)
1903 if (elf32_arm_reloc_map
[i
].bfd_reloc_val
== code
)
1904 return elf32_arm_howto_from_type (elf32_arm_reloc_map
[i
].elf_reloc_val
);
1909 static reloc_howto_type
*
1910 elf32_arm_reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
1915 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_1
); i
++)
1916 if (elf32_arm_howto_table_1
[i
].name
!= NULL
1917 && strcasecmp (elf32_arm_howto_table_1
[i
].name
, r_name
) == 0)
1918 return &elf32_arm_howto_table_1
[i
];
1920 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_2
); i
++)
1921 if (elf32_arm_howto_table_2
[i
].name
!= NULL
1922 && strcasecmp (elf32_arm_howto_table_2
[i
].name
, r_name
) == 0)
1923 return &elf32_arm_howto_table_2
[i
];
1925 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_3
); i
++)
1926 if (elf32_arm_howto_table_3
[i
].name
!= NULL
1927 && strcasecmp (elf32_arm_howto_table_3
[i
].name
, r_name
) == 0)
1928 return &elf32_arm_howto_table_3
[i
];
1933 /* Support for core dump NOTE sections. */
1936 elf32_arm_nabi_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
1941 switch (note
->descsz
)
1946 case 148: /* Linux/ARM 32-bit. */
1948 elf_tdata (abfd
)->core
->signal
= bfd_get_16 (abfd
, note
->descdata
+ 12);
1951 elf_tdata (abfd
)->core
->lwpid
= bfd_get_32 (abfd
, note
->descdata
+ 24);
1960 /* Make a ".reg/999" section. */
1961 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
1962 size
, note
->descpos
+ offset
);
1966 elf32_arm_nabi_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
1968 switch (note
->descsz
)
1973 case 124: /* Linux/ARM elf_prpsinfo. */
1974 elf_tdata (abfd
)->core
->pid
1975 = bfd_get_32 (abfd
, note
->descdata
+ 12);
1976 elf_tdata (abfd
)->core
->program
1977 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 28, 16);
1978 elf_tdata (abfd
)->core
->command
1979 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 44, 80);
1982 /* Note that for some reason, a spurious space is tacked
1983 onto the end of the args in some (at least one anyway)
1984 implementations, so strip it off if it exists. */
1986 char *command
= elf_tdata (abfd
)->core
->command
;
1987 int n
= strlen (command
);
1989 if (0 < n
&& command
[n
- 1] == ' ')
1990 command
[n
- 1] = '\0';
1997 elf32_arm_nabi_write_core_note (bfd
*abfd
, char *buf
, int *bufsiz
,
2010 va_start (ap
, note_type
);
2011 memset (data
, 0, sizeof (data
));
2012 strncpy (data
+ 28, va_arg (ap
, const char *), 16);
2013 strncpy (data
+ 44, va_arg (ap
, const char *), 80);
2016 return elfcore_write_note (abfd
, buf
, bufsiz
,
2017 "CORE", note_type
, data
, sizeof (data
));
2028 va_start (ap
, note_type
);
2029 memset (data
, 0, sizeof (data
));
2030 pid
= va_arg (ap
, long);
2031 bfd_put_32 (abfd
, pid
, data
+ 24);
2032 cursig
= va_arg (ap
, int);
2033 bfd_put_16 (abfd
, cursig
, data
+ 12);
2034 greg
= va_arg (ap
, const void *);
2035 memcpy (data
+ 72, greg
, 72);
2038 return elfcore_write_note (abfd
, buf
, bufsiz
,
2039 "CORE", note_type
, data
, sizeof (data
));
2044 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
2045 #define TARGET_LITTLE_NAME "elf32-littlearm"
2046 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
2047 #define TARGET_BIG_NAME "elf32-bigarm"
2049 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2050 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
2051 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note
2053 typedef unsigned long int insn32
;
2054 typedef unsigned short int insn16
;
2056 /* In lieu of proper flags, assume all EABIv4 or later objects are
2058 #define INTERWORK_FLAG(abfd) \
2059 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2060 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2061 || ((abfd)->flags & BFD_LINKER_CREATED))
2063 /* The linker script knows the section names for placement.
2064 The entry_names are used to do simple name mangling on the stubs.
2065 Given a function name, and its type, the stub can be found. The
2066 name can be changed. The only requirement is the %s be present. */
2067 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2068 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2070 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2071 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2073 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2074 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2076 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2077 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2079 #define STUB_ENTRY_NAME "__%s_veneer"
2081 /* The name of the dynamic interpreter. This is put in the .interp
2083 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2085 static const unsigned long tls_trampoline
[] =
2087 0xe08e0000, /* add r0, lr, r0 */
2088 0xe5901004, /* ldr r1, [r0,#4] */
2089 0xe12fff11, /* bx r1 */
2092 static const unsigned long dl_tlsdesc_lazy_trampoline
[] =
2094 0xe52d2004, /* push {r2} */
2095 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2096 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2097 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2098 0xe081100f, /* 2: add r1, pc */
2099 0xe12fff12, /* bx r2 */
2100 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2101 + dl_tlsdesc_lazy_resolver(GOT) */
2102 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2105 #ifdef FOUR_WORD_PLT
2107 /* The first entry in a procedure linkage table looks like
2108 this. It is set up so that any shared library function that is
2109 called before the relocation has been set up calls the dynamic
2111 static const bfd_vma elf32_arm_plt0_entry
[] =
2113 0xe52de004, /* str lr, [sp, #-4]! */
2114 0xe59fe010, /* ldr lr, [pc, #16] */
2115 0xe08fe00e, /* add lr, pc, lr */
2116 0xe5bef008, /* ldr pc, [lr, #8]! */
2119 /* Subsequent entries in a procedure linkage table look like
2121 static const bfd_vma elf32_arm_plt_entry
[] =
2123 0xe28fc600, /* add ip, pc, #NN */
2124 0xe28cca00, /* add ip, ip, #NN */
2125 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2126 0x00000000, /* unused */
2131 /* The first entry in a procedure linkage table looks like
2132 this. It is set up so that any shared library function that is
2133 called before the relocation has been set up calls the dynamic
2135 static const bfd_vma elf32_arm_plt0_entry
[] =
2137 0xe52de004, /* str lr, [sp, #-4]! */
2138 0xe59fe004, /* ldr lr, [pc, #4] */
2139 0xe08fe00e, /* add lr, pc, lr */
2140 0xe5bef008, /* ldr pc, [lr, #8]! */
2141 0x00000000, /* &GOT[0] - . */
2144 /* Subsequent entries in a procedure linkage table look like
2146 static const bfd_vma elf32_arm_plt_entry
[] =
2148 0xe28fc600, /* add ip, pc, #0xNN00000 */
2149 0xe28cca00, /* add ip, ip, #0xNN000 */
2150 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2155 /* The format of the first entry in the procedure linkage table
2156 for a VxWorks executable. */
2157 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry
[] =
2159 0xe52dc008, /* str ip,[sp,#-8]! */
2160 0xe59fc000, /* ldr ip,[pc] */
2161 0xe59cf008, /* ldr pc,[ip,#8] */
2162 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2165 /* The format of subsequent entries in a VxWorks executable. */
2166 static const bfd_vma elf32_arm_vxworks_exec_plt_entry
[] =
2168 0xe59fc000, /* ldr ip,[pc] */
2169 0xe59cf000, /* ldr pc,[ip] */
2170 0x00000000, /* .long @got */
2171 0xe59fc000, /* ldr ip,[pc] */
2172 0xea000000, /* b _PLT */
2173 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2176 /* The format of entries in a VxWorks shared library. */
2177 static const bfd_vma elf32_arm_vxworks_shared_plt_entry
[] =
2179 0xe59fc000, /* ldr ip,[pc] */
2180 0xe79cf009, /* ldr pc,[ip,r9] */
2181 0x00000000, /* .long @got */
2182 0xe59fc000, /* ldr ip,[pc] */
2183 0xe599f008, /* ldr pc,[r9,#8] */
2184 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2187 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2188 #define PLT_THUMB_STUB_SIZE 4
2189 static const bfd_vma elf32_arm_plt_thumb_stub
[] =
2195 /* The entries in a PLT when using a DLL-based target with multiple
2197 static const bfd_vma elf32_arm_symbian_plt_entry
[] =
2199 0xe51ff004, /* ldr pc, [pc, #-4] */
2200 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2203 /* The first entry in a procedure linkage table looks like
2204 this. It is set up so that any shared library function that is
2205 called before the relocation has been set up calls the dynamic
2207 static const bfd_vma elf32_arm_nacl_plt0_entry
[] =
2210 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2211 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2212 0xe08cc00f, /* add ip, ip, pc */
2213 0xe52dc008, /* str ip, [sp, #-8]! */
2214 /* Second bundle: */
2215 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2216 0xe59cc000, /* ldr ip, [ip] */
2217 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2218 0xe12fff1c, /* bx ip */
2220 0xe320f000, /* nop */
2221 0xe320f000, /* nop */
2222 0xe320f000, /* nop */
2224 0xe50dc004, /* str ip, [sp, #-4] */
2225 /* Fourth bundle: */
2226 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2227 0xe59cc000, /* ldr ip, [ip] */
2228 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2229 0xe12fff1c, /* bx ip */
2231 #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2233 /* Subsequent entries in a procedure linkage table look like this. */
2234 static const bfd_vma elf32_arm_nacl_plt_entry
[] =
2236 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2237 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2238 0xe08cc00f, /* add ip, ip, pc */
2239 0xea000000, /* b .Lplt_tail */
2242 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2243 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2244 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2245 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2246 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2247 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2257 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2258 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2259 is inserted in arm_build_one_stub(). */
2260 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2261 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2262 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2263 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2264 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2265 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2270 enum stub_insn_type type
;
2271 unsigned int r_type
;
2275 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2276 to reach the stub if necessary. */
2277 static const insn_sequence elf32_arm_stub_long_branch_any_any
[] =
2279 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2280 DATA_WORD (0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2283 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2285 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb
[] =
2287 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2288 ARM_INSN (0xe12fff1c), /* bx ip */
2289 DATA_WORD (0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2292 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2293 static const insn_sequence elf32_arm_stub_long_branch_thumb_only
[] =
2295 THUMB16_INSN (0xb401), /* push {r0} */
2296 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2297 THUMB16_INSN (0x4684), /* mov ip, r0 */
2298 THUMB16_INSN (0xbc01), /* pop {r0} */
2299 THUMB16_INSN (0x4760), /* bx ip */
2300 THUMB16_INSN (0xbf00), /* nop */
2301 DATA_WORD (0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2304 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2306 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb
[] =
2308 THUMB16_INSN (0x4778), /* bx pc */
2309 THUMB16_INSN (0x46c0), /* nop */
2310 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2311 ARM_INSN (0xe12fff1c), /* bx ip */
2312 DATA_WORD (0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2315 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2317 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm
[] =
2319 THUMB16_INSN (0x4778), /* bx pc */
2320 THUMB16_INSN (0x46c0), /* nop */
2321 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2322 DATA_WORD (0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2325 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2326 one, when the destination is close enough. */
2327 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm
[] =
2329 THUMB16_INSN (0x4778), /* bx pc */
2330 THUMB16_INSN (0x46c0), /* nop */
2331 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2334 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2335 blx to reach the stub if necessary. */
2336 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic
[] =
2338 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2339 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2340 DATA_WORD (0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X-4) */
2343 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2344 blx to reach the stub if necessary. We can not add into pc;
2345 it is not guaranteed to mode switch (different in ARMv6 and
2347 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic
[] =
2349 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2350 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2351 ARM_INSN (0xe12fff1c), /* bx ip */
2352 DATA_WORD (0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2355 /* V4T ARM -> ARM long branch stub, PIC. */
2356 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic
[] =
2358 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2359 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2360 ARM_INSN (0xe12fff1c), /* bx ip */
2361 DATA_WORD (0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2364 /* V4T Thumb -> ARM long branch stub, PIC. */
2365 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic
[] =
2367 THUMB16_INSN (0x4778), /* bx pc */
2368 THUMB16_INSN (0x46c0), /* nop */
2369 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2370 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2371 DATA_WORD (0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X) */
2374 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2376 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic
[] =
2378 THUMB16_INSN (0xb401), /* push {r0} */
2379 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2380 THUMB16_INSN (0x46fc), /* mov ip, pc */
2381 THUMB16_INSN (0x4484), /* add ip, r0 */
2382 THUMB16_INSN (0xbc01), /* pop {r0} */
2383 THUMB16_INSN (0x4760), /* bx ip */
2384 DATA_WORD (0, R_ARM_REL32
, 4), /* dcd R_ARM_REL32(X) */
2387 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2389 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic
[] =
2391 THUMB16_INSN (0x4778), /* bx pc */
2392 THUMB16_INSN (0x46c0), /* nop */
2393 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2394 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2395 ARM_INSN (0xe12fff1c), /* bx ip */
2396 DATA_WORD (0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2399 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2400 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2401 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic
[] =
2403 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2404 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2405 DATA_WORD (0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X-4) */
2408 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2409 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2410 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic
[] =
2412 THUMB16_INSN (0x4778), /* bx pc */
2413 THUMB16_INSN (0x46c0), /* nop */
2414 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2415 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2416 DATA_WORD (0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X) */
2419 /* Cortex-A8 erratum-workaround stubs. */
2421 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2422 can't use a conditional branch to reach this stub). */
2424 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond
[] =
2426 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2427 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2428 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2431 /* Stub used for b.w and bl.w instructions. */
2433 static const insn_sequence elf32_arm_stub_a8_veneer_b
[] =
2435 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2438 static const insn_sequence elf32_arm_stub_a8_veneer_bl
[] =
2440 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2443 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2444 instruction (which switches to ARM mode) to point to this stub. Jump to the
2445 real destination using an ARM-mode branch. */
2447 static const insn_sequence elf32_arm_stub_a8_veneer_blx
[] =
2449 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2452 /* For each section group there can be a specially created linker section
2453 to hold the stubs for that group. The name of the stub section is based
2454 upon the name of another section within that group with the suffix below
2457 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2458 create what appeared to be a linker stub section when it actually
2459 contained user code/data. For example, consider this fragment:
2461 const char * stubborn_problems[] = { "np" };
2463 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2466 .data.rel.local.stubborn_problems
2468 This then causes problems in arm32_arm_build_stubs() as it triggers:
2470 // Ignore non-stub sections.
2471 if (!strstr (stub_sec->name, STUB_SUFFIX))
2474 And so the section would be ignored instead of being processed. Hence
2475 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2477 #define STUB_SUFFIX ".__stub"
2479 /* One entry per long/short branch stub defined above. */
2481 DEF_STUB(long_branch_any_any) \
2482 DEF_STUB(long_branch_v4t_arm_thumb) \
2483 DEF_STUB(long_branch_thumb_only) \
2484 DEF_STUB(long_branch_v4t_thumb_thumb) \
2485 DEF_STUB(long_branch_v4t_thumb_arm) \
2486 DEF_STUB(short_branch_v4t_thumb_arm) \
2487 DEF_STUB(long_branch_any_arm_pic) \
2488 DEF_STUB(long_branch_any_thumb_pic) \
2489 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2490 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2491 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2492 DEF_STUB(long_branch_thumb_only_pic) \
2493 DEF_STUB(long_branch_any_tls_pic) \
2494 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2495 DEF_STUB(a8_veneer_b_cond) \
2496 DEF_STUB(a8_veneer_b) \
2497 DEF_STUB(a8_veneer_bl) \
2498 DEF_STUB(a8_veneer_blx)
2500 #define DEF_STUB(x) arm_stub_##x,
2501 enum elf32_arm_stub_type
2505 /* Note the first a8_veneer type */
2506 arm_stub_a8_veneer_lwm
= arm_stub_a8_veneer_b_cond
2512 const insn_sequence
* template_sequence
;
2516 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2517 static const stub_def stub_definitions
[] =
2523 struct elf32_arm_stub_hash_entry
2525 /* Base hash table entry structure. */
2526 struct bfd_hash_entry root
;
2528 /* The stub section. */
2531 /* Offset within stub_sec of the beginning of this stub. */
2532 bfd_vma stub_offset
;
2534 /* Given the symbol's value and its section we can determine its final
2535 value when building the stubs (so the stub knows where to jump). */
2536 bfd_vma target_value
;
2537 asection
*target_section
;
2539 /* Offset to apply to relocation referencing target_value. */
2540 bfd_vma target_addend
;
2542 /* The instruction which caused this stub to be generated (only valid for
2543 Cortex-A8 erratum workaround stubs at present). */
2544 unsigned long orig_insn
;
2546 /* The stub type. */
2547 enum elf32_arm_stub_type stub_type
;
2548 /* Its encoding size in bytes. */
2551 const insn_sequence
*stub_template
;
2552 /* The size of the template (number of entries). */
2553 int stub_template_size
;
2555 /* The symbol table entry, if any, that this was derived from. */
2556 struct elf32_arm_link_hash_entry
*h
;
2558 /* Type of branch. */
2559 enum arm_st_branch_type branch_type
;
2561 /* Where this stub is being called from, or, in the case of combined
2562 stub sections, the first input section in the group. */
2565 /* The name for the local symbol at the start of this stub. The
2566 stub name in the hash table has to be unique; this does not, so
2567 it can be friendlier. */
2571 /* Used to build a map of a section. This is required for mixed-endian
2574 typedef struct elf32_elf_section_map
2579 elf32_arm_section_map
;
2581 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2585 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
,
2586 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER
,
2587 VFP11_ERRATUM_ARM_VENEER
,
2588 VFP11_ERRATUM_THUMB_VENEER
2590 elf32_vfp11_erratum_type
;
2592 typedef struct elf32_vfp11_erratum_list
2594 struct elf32_vfp11_erratum_list
*next
;
2600 struct elf32_vfp11_erratum_list
*veneer
;
2601 unsigned int vfp_insn
;
2605 struct elf32_vfp11_erratum_list
*branch
;
2609 elf32_vfp11_erratum_type type
;
2611 elf32_vfp11_erratum_list
;
2616 INSERT_EXIDX_CANTUNWIND_AT_END
2618 arm_unwind_edit_type
;
2620 /* A (sorted) list of edits to apply to an unwind table. */
2621 typedef struct arm_unwind_table_edit
2623 arm_unwind_edit_type type
;
2624 /* Note: we sometimes want to insert an unwind entry corresponding to a
2625 section different from the one we're currently writing out, so record the
2626 (text) section this edit relates to here. */
2627 asection
*linked_section
;
2629 struct arm_unwind_table_edit
*next
;
2631 arm_unwind_table_edit
;
2633 typedef struct _arm_elf_section_data
2635 /* Information about mapping symbols. */
2636 struct bfd_elf_section_data elf
;
2637 unsigned int mapcount
;
2638 unsigned int mapsize
;
2639 elf32_arm_section_map
*map
;
2640 /* Information about CPU errata. */
2641 unsigned int erratumcount
;
2642 elf32_vfp11_erratum_list
*erratumlist
;
2643 /* Information about unwind tables. */
2646 /* Unwind info attached to a text section. */
2649 asection
*arm_exidx_sec
;
2652 /* Unwind info attached to an .ARM.exidx section. */
2655 arm_unwind_table_edit
*unwind_edit_list
;
2656 arm_unwind_table_edit
*unwind_edit_tail
;
2660 _arm_elf_section_data
;
2662 #define elf32_arm_section_data(sec) \
2663 ((_arm_elf_section_data *) elf_section_data (sec))
2665 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2666 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2667 so may be created multiple times: we use an array of these entries whilst
2668 relaxing which we can refresh easily, then create stubs for each potentially
2669 erratum-triggering instruction once we've settled on a solution. */
2671 struct a8_erratum_fix
2677 unsigned long orig_insn
;
2679 enum elf32_arm_stub_type stub_type
;
2680 enum arm_st_branch_type branch_type
;
2683 /* A table of relocs applied to branches which might trigger Cortex-A8
2686 struct a8_erratum_reloc
2689 bfd_vma destination
;
2690 struct elf32_arm_link_hash_entry
*hash
;
2691 const char *sym_name
;
2692 unsigned int r_type
;
2693 enum arm_st_branch_type branch_type
;
2694 bfd_boolean non_a8_stub
;
2697 /* The size of the thread control block. */
2700 /* ARM-specific information about a PLT entry, over and above the usual
2704 /* We reference count Thumb references to a PLT entry separately,
2705 so that we can emit the Thumb trampoline only if needed. */
2706 bfd_signed_vma thumb_refcount
;
2708 /* Some references from Thumb code may be eliminated by BL->BLX
2709 conversion, so record them separately. */
2710 bfd_signed_vma maybe_thumb_refcount
;
2712 /* How many of the recorded PLT accesses were from non-call relocations.
2713 This information is useful when deciding whether anything takes the
2714 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
2715 non-call references to the function should resolve directly to the
2716 real runtime target. */
2717 unsigned int noncall_refcount
;
2719 /* Since PLT entries have variable size if the Thumb prologue is
2720 used, we need to record the index into .got.plt instead of
2721 recomputing it from the PLT offset. */
2722 bfd_signed_vma got_offset
;
2725 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
2726 struct arm_local_iplt_info
2728 /* The information that is usually found in the generic ELF part of
2729 the hash table entry. */
2730 union gotplt_union root
;
2732 /* The information that is usually found in the ARM-specific part of
2733 the hash table entry. */
2734 struct arm_plt_info arm
;
2736 /* A list of all potential dynamic relocations against this symbol. */
2737 struct elf_dyn_relocs
*dyn_relocs
;
2740 struct elf_arm_obj_tdata
2742 struct elf_obj_tdata root
;
2744 /* tls_type for each local got entry. */
2745 char *local_got_tls_type
;
2747 /* GOTPLT entries for TLS descriptors. */
2748 bfd_vma
*local_tlsdesc_gotent
;
2750 /* Information for local symbols that need entries in .iplt. */
2751 struct arm_local_iplt_info
**local_iplt
;
2753 /* Zero to warn when linking objects with incompatible enum sizes. */
2754 int no_enum_size_warning
;
2756 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2757 int no_wchar_size_warning
;
2760 #define elf_arm_tdata(bfd) \
2761 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2763 #define elf32_arm_local_got_tls_type(bfd) \
2764 (elf_arm_tdata (bfd)->local_got_tls_type)
2766 #define elf32_arm_local_tlsdesc_gotent(bfd) \
2767 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2769 #define elf32_arm_local_iplt(bfd) \
2770 (elf_arm_tdata (bfd)->local_iplt)
2772 #define is_arm_elf(bfd) \
2773 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2774 && elf_tdata (bfd) != NULL \
2775 && elf_object_id (bfd) == ARM_ELF_DATA)
2778 elf32_arm_mkobject (bfd
*abfd
)
2780 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_arm_obj_tdata
),
2784 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2786 /* Arm ELF linker hash entry. */
2787 struct elf32_arm_link_hash_entry
2789 struct elf_link_hash_entry root
;
2791 /* Track dynamic relocs copied for this symbol. */
2792 struct elf_dyn_relocs
*dyn_relocs
;
2794 /* ARM-specific PLT information. */
2795 struct arm_plt_info plt
;
2797 #define GOT_UNKNOWN 0
2798 #define GOT_NORMAL 1
2799 #define GOT_TLS_GD 2
2800 #define GOT_TLS_IE 4
2801 #define GOT_TLS_GDESC 8
2802 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
2803 unsigned int tls_type
: 8;
2805 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
2806 unsigned int is_iplt
: 1;
2808 unsigned int unused
: 23;
2810 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
2811 starting at the end of the jump table. */
2812 bfd_vma tlsdesc_got
;
2814 /* The symbol marking the real symbol location for exported thumb
2815 symbols with Arm stubs. */
2816 struct elf_link_hash_entry
*export_glue
;
2818 /* A pointer to the most recently used stub hash entry against this
2820 struct elf32_arm_stub_hash_entry
*stub_cache
;
2823 /* Traverse an arm ELF linker hash table. */
2824 #define elf32_arm_link_hash_traverse(table, func, info) \
2825 (elf_link_hash_traverse \
2827 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2830 /* Get the ARM elf linker hash table from a link_info structure. */
2831 #define elf32_arm_hash_table(info) \
2832 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
2833 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
2835 #define arm_stub_hash_lookup(table, string, create, copy) \
2836 ((struct elf32_arm_stub_hash_entry *) \
2837 bfd_hash_lookup ((table), (string), (create), (copy)))
2839 /* Array to keep track of which stub sections have been created, and
2840 information on stub grouping. */
2843 /* This is the section to which stubs in the group will be
2846 /* The stub section. */
2850 #define elf32_arm_compute_jump_table_size(htab) \
2851 ((htab)->next_tls_desc_index * 4)
2853 /* ARM ELF linker hash table. */
2854 struct elf32_arm_link_hash_table
2856 /* The main hash table. */
2857 struct elf_link_hash_table root
;
2859 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2860 bfd_size_type thumb_glue_size
;
2862 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2863 bfd_size_type arm_glue_size
;
2865 /* The size in bytes of section containing the ARMv4 BX veneers. */
2866 bfd_size_type bx_glue_size
;
2868 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2869 veneer has been populated. */
2870 bfd_vma bx_glue_offset
[15];
2872 /* The size in bytes of the section containing glue for VFP11 erratum
2874 bfd_size_type vfp11_erratum_glue_size
;
2876 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
2877 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2878 elf32_arm_write_section(). */
2879 struct a8_erratum_fix
*a8_erratum_fixes
;
2880 unsigned int num_a8_erratum_fixes
;
2882 /* An arbitrary input BFD chosen to hold the glue sections. */
2883 bfd
* bfd_of_glue_owner
;
2885 /* Nonzero to output a BE8 image. */
2888 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2889 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2892 /* The relocation to use for R_ARM_TARGET2 relocations. */
2895 /* 0 = Ignore R_ARM_V4BX.
2896 1 = Convert BX to MOV PC.
2897 2 = Generate v4 interworing stubs. */
2900 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
2903 /* Whether we should fix the ARM1176 BLX immediate issue. */
2906 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2909 /* What sort of code sequences we should look for which may trigger the
2910 VFP11 denorm erratum. */
2911 bfd_arm_vfp11_fix vfp11_fix
;
2913 /* Global counter for the number of fixes we have emitted. */
2914 int num_vfp11_fixes
;
2916 /* Nonzero to force PIC branch veneers. */
2919 /* The number of bytes in the initial entry in the PLT. */
2920 bfd_size_type plt_header_size
;
2922 /* The number of bytes in the subsequent PLT etries. */
2923 bfd_size_type plt_entry_size
;
2925 /* True if the target system is VxWorks. */
2928 /* True if the target system is Symbian OS. */
2931 /* True if the target system is Native Client. */
2934 /* True if the target uses REL relocations. */
2937 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
2938 bfd_vma next_tls_desc_index
;
2940 /* How many R_ARM_TLS_DESC relocations were generated so far. */
2941 bfd_vma num_tls_desc
;
2943 /* Short-cuts to get to dynamic linker sections. */
2947 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2950 /* The offset into splt of the PLT entry for the TLS descriptor
2951 resolver. Special values are 0, if not necessary (or not found
2952 to be necessary yet), and -1 if needed but not determined
2954 bfd_vma dt_tlsdesc_plt
;
2956 /* The offset into sgot of the GOT entry used by the PLT entry
2958 bfd_vma dt_tlsdesc_got
;
2960 /* Offset in .plt section of tls_arm_trampoline. */
2961 bfd_vma tls_trampoline
;
2963 /* Data for R_ARM_TLS_LDM32 relocations. */
2966 bfd_signed_vma refcount
;
2970 /* Small local sym cache. */
2971 struct sym_cache sym_cache
;
2973 /* For convenience in allocate_dynrelocs. */
2976 /* The amount of space used by the reserved portion of the sgotplt
2977 section, plus whatever space is used by the jump slots. */
2978 bfd_vma sgotplt_jump_table_size
;
2980 /* The stub hash table. */
2981 struct bfd_hash_table stub_hash_table
;
2983 /* Linker stub bfd. */
2986 /* Linker call-backs. */
2987 asection
* (*add_stub_section
) (const char *, asection
*);
2988 void (*layout_sections_again
) (void);
2990 /* Array to keep track of which stub sections have been created, and
2991 information on stub grouping. */
2992 struct map_stub
*stub_group
;
2994 /* Number of elements in stub_group. */
2997 /* Assorted information used by elf32_arm_size_stubs. */
2998 unsigned int bfd_count
;
3000 asection
**input_list
;
3003 /* Create an entry in an ARM ELF linker hash table. */
3005 static struct bfd_hash_entry
*
3006 elf32_arm_link_hash_newfunc (struct bfd_hash_entry
* entry
,
3007 struct bfd_hash_table
* table
,
3008 const char * string
)
3010 struct elf32_arm_link_hash_entry
* ret
=
3011 (struct elf32_arm_link_hash_entry
*) entry
;
3013 /* Allocate the structure if it has not already been allocated by a
3016 ret
= (struct elf32_arm_link_hash_entry
*)
3017 bfd_hash_allocate (table
, sizeof (struct elf32_arm_link_hash_entry
));
3019 return (struct bfd_hash_entry
*) ret
;
3021 /* Call the allocation method of the superclass. */
3022 ret
= ((struct elf32_arm_link_hash_entry
*)
3023 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
3027 ret
->dyn_relocs
= NULL
;
3028 ret
->tls_type
= GOT_UNKNOWN
;
3029 ret
->tlsdesc_got
= (bfd_vma
) -1;
3030 ret
->plt
.thumb_refcount
= 0;
3031 ret
->plt
.maybe_thumb_refcount
= 0;
3032 ret
->plt
.noncall_refcount
= 0;
3033 ret
->plt
.got_offset
= -1;
3034 ret
->is_iplt
= FALSE
;
3035 ret
->export_glue
= NULL
;
3037 ret
->stub_cache
= NULL
;
3040 return (struct bfd_hash_entry
*) ret
;
3043 /* Ensure that we have allocated bookkeeping structures for ABFD's local
3047 elf32_arm_allocate_local_sym_info (bfd
*abfd
)
3049 if (elf_local_got_refcounts (abfd
) == NULL
)
3051 bfd_size_type num_syms
;
3055 num_syms
= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
3056 size
= num_syms
* (sizeof (bfd_signed_vma
)
3057 + sizeof (struct arm_local_iplt_info
*)
3060 data
= bfd_zalloc (abfd
, size
);
3064 elf_local_got_refcounts (abfd
) = (bfd_signed_vma
*) data
;
3065 data
+= num_syms
* sizeof (bfd_signed_vma
);
3067 elf32_arm_local_iplt (abfd
) = (struct arm_local_iplt_info
**) data
;
3068 data
+= num_syms
* sizeof (struct arm_local_iplt_info
*);
3070 elf32_arm_local_tlsdesc_gotent (abfd
) = (bfd_vma
*) data
;
3071 data
+= num_syms
* sizeof (bfd_vma
);
3073 elf32_arm_local_got_tls_type (abfd
) = data
;
3078 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
3079 to input bfd ABFD. Create the information if it doesn't already exist.
3080 Return null if an allocation fails. */
3082 static struct arm_local_iplt_info
*
3083 elf32_arm_create_local_iplt (bfd
*abfd
, unsigned long r_symndx
)
3085 struct arm_local_iplt_info
**ptr
;
3087 if (!elf32_arm_allocate_local_sym_info (abfd
))
3090 BFD_ASSERT (r_symndx
< elf_tdata (abfd
)->symtab_hdr
.sh_info
);
3091 ptr
= &elf32_arm_local_iplt (abfd
)[r_symndx
];
3093 *ptr
= bfd_zalloc (abfd
, sizeof (**ptr
));
3097 /* Try to obtain PLT information for the symbol with index R_SYMNDX
3098 in ABFD's symbol table. If the symbol is global, H points to its
3099 hash table entry, otherwise H is null.
3101 Return true if the symbol does have PLT information. When returning
3102 true, point *ROOT_PLT at the target-independent reference count/offset
3103 union and *ARM_PLT at the ARM-specific information. */
3106 elf32_arm_get_plt_info (bfd
*abfd
, struct elf32_arm_link_hash_entry
*h
,
3107 unsigned long r_symndx
, union gotplt_union
**root_plt
,
3108 struct arm_plt_info
**arm_plt
)
3110 struct arm_local_iplt_info
*local_iplt
;
3114 *root_plt
= &h
->root
.plt
;
3119 if (elf32_arm_local_iplt (abfd
) == NULL
)
3122 local_iplt
= elf32_arm_local_iplt (abfd
)[r_symndx
];
3123 if (local_iplt
== NULL
)
3126 *root_plt
= &local_iplt
->root
;
3127 *arm_plt
= &local_iplt
->arm
;
3131 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3135 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info
*info
,
3136 struct arm_plt_info
*arm_plt
)
3138 struct elf32_arm_link_hash_table
*htab
;
3140 htab
= elf32_arm_hash_table (info
);
3141 return (arm_plt
->thumb_refcount
!= 0
3142 || (!htab
->use_blx
&& arm_plt
->maybe_thumb_refcount
!= 0));
3145 /* Return a pointer to the head of the dynamic reloc list that should
3146 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3147 ABFD's symbol table. Return null if an error occurs. */
3149 static struct elf_dyn_relocs
**
3150 elf32_arm_get_local_dynreloc_list (bfd
*abfd
, unsigned long r_symndx
,
3151 Elf_Internal_Sym
*isym
)
3153 if (ELF32_ST_TYPE (isym
->st_info
) == STT_GNU_IFUNC
)
3155 struct arm_local_iplt_info
*local_iplt
;
3157 local_iplt
= elf32_arm_create_local_iplt (abfd
, r_symndx
);
3158 if (local_iplt
== NULL
)
3160 return &local_iplt
->dyn_relocs
;
3164 /* Track dynamic relocs needed for local syms too.
3165 We really need local syms available to do this
3170 s
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
3174 vpp
= &elf_section_data (s
)->local_dynrel
;
3175 return (struct elf_dyn_relocs
**) vpp
;
3179 /* Initialize an entry in the stub hash table. */
3181 static struct bfd_hash_entry
*
3182 stub_hash_newfunc (struct bfd_hash_entry
*entry
,
3183 struct bfd_hash_table
*table
,
3186 /* Allocate the structure if it has not already been allocated by a
3190 entry
= (struct bfd_hash_entry
*)
3191 bfd_hash_allocate (table
, sizeof (struct elf32_arm_stub_hash_entry
));
3196 /* Call the allocation method of the superclass. */
3197 entry
= bfd_hash_newfunc (entry
, table
, string
);
3200 struct elf32_arm_stub_hash_entry
*eh
;
3202 /* Initialize the local fields. */
3203 eh
= (struct elf32_arm_stub_hash_entry
*) entry
;
3204 eh
->stub_sec
= NULL
;
3205 eh
->stub_offset
= 0;
3206 eh
->target_value
= 0;
3207 eh
->target_section
= NULL
;
3208 eh
->target_addend
= 0;
3210 eh
->stub_type
= arm_stub_none
;
3212 eh
->stub_template
= NULL
;
3213 eh
->stub_template_size
= 0;
3216 eh
->output_name
= NULL
;
3222 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3223 shortcuts to them in our hash table. */
3226 create_got_section (bfd
*dynobj
, struct bfd_link_info
*info
)
3228 struct elf32_arm_link_hash_table
*htab
;
3230 htab
= elf32_arm_hash_table (info
);
3234 /* BPABI objects never have a GOT, or associated sections. */
3235 if (htab
->symbian_p
)
3238 if (! _bfd_elf_create_got_section (dynobj
, info
))
3244 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3247 create_ifunc_sections (struct bfd_link_info
*info
)
3249 struct elf32_arm_link_hash_table
*htab
;
3250 const struct elf_backend_data
*bed
;
3255 htab
= elf32_arm_hash_table (info
);
3256 dynobj
= htab
->root
.dynobj
;
3257 bed
= get_elf_backend_data (dynobj
);
3258 flags
= bed
->dynamic_sec_flags
;
3260 if (htab
->root
.iplt
== NULL
)
3262 s
= bfd_make_section_anyway_with_flags (dynobj
, ".iplt",
3263 flags
| SEC_READONLY
| SEC_CODE
);
3265 || !bfd_set_section_alignment (dynobj
, s
, bed
->plt_alignment
))
3267 htab
->root
.iplt
= s
;
3270 if (htab
->root
.irelplt
== NULL
)
3272 s
= bfd_make_section_anyway_with_flags (dynobj
,
3273 RELOC_SECTION (htab
, ".iplt"),
3274 flags
| SEC_READONLY
);
3276 || !bfd_set_section_alignment (dynobj
, s
, bed
->s
->log_file_align
))
3278 htab
->root
.irelplt
= s
;
3281 if (htab
->root
.igotplt
== NULL
)
3283 s
= bfd_make_section_anyway_with_flags (dynobj
, ".igot.plt", flags
);
3285 || !bfd_set_section_alignment (dynobj
, s
, bed
->s
->log_file_align
))
3287 htab
->root
.igotplt
= s
;
3292 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3293 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3297 elf32_arm_create_dynamic_sections (bfd
*dynobj
, struct bfd_link_info
*info
)
3299 struct elf32_arm_link_hash_table
*htab
;
3301 htab
= elf32_arm_hash_table (info
);
3305 if (!htab
->root
.sgot
&& !create_got_section (dynobj
, info
))
3308 if (!_bfd_elf_create_dynamic_sections (dynobj
, info
))
3311 htab
->sdynbss
= bfd_get_linker_section (dynobj
, ".dynbss");
3313 htab
->srelbss
= bfd_get_linker_section (dynobj
,
3314 RELOC_SECTION (htab
, ".bss"));
3316 if (htab
->vxworks_p
)
3318 if (!elf_vxworks_create_dynamic_sections (dynobj
, info
, &htab
->srelplt2
))
3323 htab
->plt_header_size
= 0;
3324 htab
->plt_entry_size
3325 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry
);
3329 htab
->plt_header_size
3330 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry
);
3331 htab
->plt_entry_size
3332 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry
);
3336 if (!htab
->root
.splt
3337 || !htab
->root
.srelplt
3339 || (!info
->shared
&& !htab
->srelbss
))
3345 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3348 elf32_arm_copy_indirect_symbol (struct bfd_link_info
*info
,
3349 struct elf_link_hash_entry
*dir
,
3350 struct elf_link_hash_entry
*ind
)
3352 struct elf32_arm_link_hash_entry
*edir
, *eind
;
3354 edir
= (struct elf32_arm_link_hash_entry
*) dir
;
3355 eind
= (struct elf32_arm_link_hash_entry
*) ind
;
3357 if (eind
->dyn_relocs
!= NULL
)
3359 if (edir
->dyn_relocs
!= NULL
)
3361 struct elf_dyn_relocs
**pp
;
3362 struct elf_dyn_relocs
*p
;
3364 /* Add reloc counts against the indirect sym to the direct sym
3365 list. Merge any entries against the same section. */
3366 for (pp
= &eind
->dyn_relocs
; (p
= *pp
) != NULL
; )
3368 struct elf_dyn_relocs
*q
;
3370 for (q
= edir
->dyn_relocs
; q
!= NULL
; q
= q
->next
)
3371 if (q
->sec
== p
->sec
)
3373 q
->pc_count
+= p
->pc_count
;
3374 q
->count
+= p
->count
;
3381 *pp
= edir
->dyn_relocs
;
3384 edir
->dyn_relocs
= eind
->dyn_relocs
;
3385 eind
->dyn_relocs
= NULL
;
3388 if (ind
->root
.type
== bfd_link_hash_indirect
)
3390 /* Copy over PLT info. */
3391 edir
->plt
.thumb_refcount
+= eind
->plt
.thumb_refcount
;
3392 eind
->plt
.thumb_refcount
= 0;
3393 edir
->plt
.maybe_thumb_refcount
+= eind
->plt
.maybe_thumb_refcount
;
3394 eind
->plt
.maybe_thumb_refcount
= 0;
3395 edir
->plt
.noncall_refcount
+= eind
->plt
.noncall_refcount
;
3396 eind
->plt
.noncall_refcount
= 0;
3398 /* We should only allocate a function to .iplt once the final
3399 symbol information is known. */
3400 BFD_ASSERT (!eind
->is_iplt
);
3402 if (dir
->got
.refcount
<= 0)
3404 edir
->tls_type
= eind
->tls_type
;
3405 eind
->tls_type
= GOT_UNKNOWN
;
3409 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
3412 /* Create an ARM elf linker hash table. */
3414 static struct bfd_link_hash_table
*
3415 elf32_arm_link_hash_table_create (bfd
*abfd
)
3417 struct elf32_arm_link_hash_table
*ret
;
3418 bfd_size_type amt
= sizeof (struct elf32_arm_link_hash_table
);
3420 ret
= (struct elf32_arm_link_hash_table
*) bfd_zmalloc (amt
);
3424 if (!_bfd_elf_link_hash_table_init (& ret
->root
, abfd
,
3425 elf32_arm_link_hash_newfunc
,
3426 sizeof (struct elf32_arm_link_hash_entry
),
3433 ret
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
3434 #ifdef FOUR_WORD_PLT
3435 ret
->plt_header_size
= 16;
3436 ret
->plt_entry_size
= 16;
3438 ret
->plt_header_size
= 20;
3439 ret
->plt_entry_size
= 12;
3444 if (!bfd_hash_table_init (&ret
->stub_hash_table
, stub_hash_newfunc
,
3445 sizeof (struct elf32_arm_stub_hash_entry
)))
3451 return &ret
->root
.root
;
3454 /* Free the derived linker hash table. */
3457 elf32_arm_hash_table_free (struct bfd_link_hash_table
*hash
)
3459 struct elf32_arm_link_hash_table
*ret
3460 = (struct elf32_arm_link_hash_table
*) hash
;
3462 bfd_hash_table_free (&ret
->stub_hash_table
);
3463 _bfd_elf_link_hash_table_free (hash
);
3466 /* Determine if we're dealing with a Thumb only architecture. */
3469 using_thumb_only (struct elf32_arm_link_hash_table
*globals
)
3471 int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3475 if (arch
== TAG_CPU_ARCH_V6_M
|| arch
== TAG_CPU_ARCH_V6S_M
)
3478 if (arch
!= TAG_CPU_ARCH_V7
&& arch
!= TAG_CPU_ARCH_V7E_M
)
3481 profile
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3482 Tag_CPU_arch_profile
);
3484 return profile
== 'M';
3487 /* Determine if we're dealing with a Thumb-2 object. */
3490 using_thumb2 (struct elf32_arm_link_hash_table
*globals
)
3492 int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3494 return arch
== TAG_CPU_ARCH_V6T2
|| arch
>= TAG_CPU_ARCH_V7
;
3497 /* Determine what kind of NOPs are available. */
3500 arch_has_arm_nop (struct elf32_arm_link_hash_table
*globals
)
3502 const int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3504 return arch
== TAG_CPU_ARCH_V6T2
3505 || arch
== TAG_CPU_ARCH_V6K
3506 || arch
== TAG_CPU_ARCH_V7
3507 || arch
== TAG_CPU_ARCH_V7E_M
;
3511 arch_has_thumb2_nop (struct elf32_arm_link_hash_table
*globals
)
3513 const int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3515 return (arch
== TAG_CPU_ARCH_V6T2
|| arch
== TAG_CPU_ARCH_V7
3516 || arch
== TAG_CPU_ARCH_V7E_M
);
3520 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type
)
3524 case arm_stub_long_branch_thumb_only
:
3525 case arm_stub_long_branch_v4t_thumb_arm
:
3526 case arm_stub_short_branch_v4t_thumb_arm
:
3527 case arm_stub_long_branch_v4t_thumb_arm_pic
:
3528 case arm_stub_long_branch_v4t_thumb_tls_pic
:
3529 case arm_stub_long_branch_thumb_only_pic
:
3540 /* Determine the type of stub needed, if any, for a call. */
3542 static enum elf32_arm_stub_type
3543 arm_type_of_stub (struct bfd_link_info
*info
,
3544 asection
*input_sec
,
3545 const Elf_Internal_Rela
*rel
,
3546 unsigned char st_type
,
3547 enum arm_st_branch_type
*actual_branch_type
,
3548 struct elf32_arm_link_hash_entry
*hash
,
3549 bfd_vma destination
,
3555 bfd_signed_vma branch_offset
;
3556 unsigned int r_type
;
3557 struct elf32_arm_link_hash_table
* globals
;
3560 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
3562 enum arm_st_branch_type branch_type
= *actual_branch_type
;
3563 union gotplt_union
*root_plt
;
3564 struct arm_plt_info
*arm_plt
;
3566 if (branch_type
== ST_BRANCH_LONG
)
3569 globals
= elf32_arm_hash_table (info
);
3570 if (globals
== NULL
)
3573 thumb_only
= using_thumb_only (globals
);
3575 thumb2
= using_thumb2 (globals
);
3577 /* Determine where the call point is. */
3578 location
= (input_sec
->output_offset
3579 + input_sec
->output_section
->vma
3582 r_type
= ELF32_R_TYPE (rel
->r_info
);
3584 /* For TLS call relocs, it is the caller's responsibility to provide
3585 the address of the appropriate trampoline. */
3586 if (r_type
!= R_ARM_TLS_CALL
3587 && r_type
!= R_ARM_THM_TLS_CALL
3588 && elf32_arm_get_plt_info (input_bfd
, hash
, ELF32_R_SYM (rel
->r_info
),
3589 &root_plt
, &arm_plt
)
3590 && root_plt
->offset
!= (bfd_vma
) -1)
3594 if (hash
== NULL
|| hash
->is_iplt
)
3595 splt
= globals
->root
.iplt
;
3597 splt
= globals
->root
.splt
;
3602 /* Note when dealing with PLT entries: the main PLT stub is in
3603 ARM mode, so if the branch is in Thumb mode, another
3604 Thumb->ARM stub will be inserted later just before the ARM
3605 PLT stub. We don't take this extra distance into account
3606 here, because if a long branch stub is needed, we'll add a
3607 Thumb->Arm one and branch directly to the ARM PLT entry
3608 because it avoids spreading offset corrections in several
3611 destination
= (splt
->output_section
->vma
3612 + splt
->output_offset
3613 + root_plt
->offset
);
3615 branch_type
= ST_BRANCH_TO_ARM
;
3618 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
3619 BFD_ASSERT (st_type
!= STT_GNU_IFUNC
);
3621 branch_offset
= (bfd_signed_vma
)(destination
- location
);
3623 if (r_type
== R_ARM_THM_CALL
|| r_type
== R_ARM_THM_JUMP24
3624 || r_type
== R_ARM_THM_TLS_CALL
)
3626 /* Handle cases where:
3627 - this call goes too far (different Thumb/Thumb2 max
3629 - it's a Thumb->Arm call and blx is not available, or it's a
3630 Thumb->Arm branch (not bl). A stub is needed in this case,
3631 but only if this call is not through a PLT entry. Indeed,
3632 PLT stubs handle mode switching already.
3635 && (branch_offset
> THM_MAX_FWD_BRANCH_OFFSET
3636 || (branch_offset
< THM_MAX_BWD_BRANCH_OFFSET
)))
3638 && (branch_offset
> THM2_MAX_FWD_BRANCH_OFFSET
3639 || (branch_offset
< THM2_MAX_BWD_BRANCH_OFFSET
)))
3640 || (branch_type
== ST_BRANCH_TO_ARM
3641 && (((r_type
== R_ARM_THM_CALL
3642 || r_type
== R_ARM_THM_TLS_CALL
) && !globals
->use_blx
)
3643 || (r_type
== R_ARM_THM_JUMP24
))
3646 if (branch_type
== ST_BRANCH_TO_THUMB
)
3648 /* Thumb to thumb. */
3651 stub_type
= (info
->shared
| globals
->pic_veneer
)
3653 ? ((globals
->use_blx
3654 && (r_type
== R_ARM_THM_CALL
))
3655 /* V5T and above. Stub starts with ARM code, so
3656 we must be able to switch mode before
3657 reaching it, which is only possible for 'bl'
3658 (ie R_ARM_THM_CALL relocation). */
3659 ? arm_stub_long_branch_any_thumb_pic
3660 /* On V4T, use Thumb code only. */
3661 : arm_stub_long_branch_v4t_thumb_thumb_pic
)
3663 /* non-PIC stubs. */
3664 : ((globals
->use_blx
3665 && (r_type
== R_ARM_THM_CALL
))
3666 /* V5T and above. */
3667 ? arm_stub_long_branch_any_any
3669 : arm_stub_long_branch_v4t_thumb_thumb
);
3673 stub_type
= (info
->shared
| globals
->pic_veneer
)
3675 ? arm_stub_long_branch_thumb_only_pic
3677 : arm_stub_long_branch_thumb_only
;
3684 && sym_sec
->owner
!= NULL
3685 && !INTERWORK_FLAG (sym_sec
->owner
))
3687 (*_bfd_error_handler
)
3688 (_("%B(%s): warning: interworking not enabled.\n"
3689 " first occurrence: %B: Thumb call to ARM"),
3690 sym_sec
->owner
, input_bfd
, name
);
3694 (info
->shared
| globals
->pic_veneer
)
3696 ? (r_type
== R_ARM_THM_TLS_CALL
3698 ? (globals
->use_blx
? arm_stub_long_branch_any_tls_pic
3699 : arm_stub_long_branch_v4t_thumb_tls_pic
)
3700 : ((globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
3701 /* V5T PIC and above. */
3702 ? arm_stub_long_branch_any_arm_pic
3704 : arm_stub_long_branch_v4t_thumb_arm_pic
))
3706 /* non-PIC stubs. */
3707 : ((globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
3708 /* V5T and above. */
3709 ? arm_stub_long_branch_any_any
3711 : arm_stub_long_branch_v4t_thumb_arm
);
3713 /* Handle v4t short branches. */
3714 if ((stub_type
== arm_stub_long_branch_v4t_thumb_arm
)
3715 && (branch_offset
<= THM_MAX_FWD_BRANCH_OFFSET
)
3716 && (branch_offset
>= THM_MAX_BWD_BRANCH_OFFSET
))
3717 stub_type
= arm_stub_short_branch_v4t_thumb_arm
;
3721 else if (r_type
== R_ARM_CALL
3722 || r_type
== R_ARM_JUMP24
3723 || r_type
== R_ARM_PLT32
3724 || r_type
== R_ARM_TLS_CALL
)
3726 if (branch_type
== ST_BRANCH_TO_THUMB
)
3731 && sym_sec
->owner
!= NULL
3732 && !INTERWORK_FLAG (sym_sec
->owner
))
3734 (*_bfd_error_handler
)
3735 (_("%B(%s): warning: interworking not enabled.\n"
3736 " first occurrence: %B: ARM call to Thumb"),
3737 sym_sec
->owner
, input_bfd
, name
);
3740 /* We have an extra 2-bytes reach because of
3741 the mode change (bit 24 (H) of BLX encoding). */
3742 if (branch_offset
> (ARM_MAX_FWD_BRANCH_OFFSET
+ 2)
3743 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
)
3744 || (r_type
== R_ARM_CALL
&& !globals
->use_blx
)
3745 || (r_type
== R_ARM_JUMP24
)
3746 || (r_type
== R_ARM_PLT32
))
3748 stub_type
= (info
->shared
| globals
->pic_veneer
)
3750 ? ((globals
->use_blx
)
3751 /* V5T and above. */
3752 ? arm_stub_long_branch_any_thumb_pic
3754 : arm_stub_long_branch_v4t_arm_thumb_pic
)
3756 /* non-PIC stubs. */
3757 : ((globals
->use_blx
)
3758 /* V5T and above. */
3759 ? arm_stub_long_branch_any_any
3761 : arm_stub_long_branch_v4t_arm_thumb
);
3767 if (branch_offset
> ARM_MAX_FWD_BRANCH_OFFSET
3768 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
))
3771 (info
->shared
| globals
->pic_veneer
)
3773 ? (r_type
== R_ARM_TLS_CALL
3775 ? arm_stub_long_branch_any_tls_pic
3776 : arm_stub_long_branch_any_arm_pic
)
3777 /* non-PIC stubs. */
3778 : arm_stub_long_branch_any_any
;
3783 /* If a stub is needed, record the actual destination type. */
3784 if (stub_type
!= arm_stub_none
)
3785 *actual_branch_type
= branch_type
;
3790 /* Build a name for an entry in the stub hash table. */
3793 elf32_arm_stub_name (const asection
*input_section
,
3794 const asection
*sym_sec
,
3795 const struct elf32_arm_link_hash_entry
*hash
,
3796 const Elf_Internal_Rela
*rel
,
3797 enum elf32_arm_stub_type stub_type
)
3804 len
= 8 + 1 + strlen (hash
->root
.root
.root
.string
) + 1 + 8 + 1 + 2 + 1;
3805 stub_name
= (char *) bfd_malloc (len
);
3806 if (stub_name
!= NULL
)
3807 sprintf (stub_name
, "%08x_%s+%x_%d",
3808 input_section
->id
& 0xffffffff,
3809 hash
->root
.root
.root
.string
,
3810 (int) rel
->r_addend
& 0xffffffff,
3815 len
= 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
3816 stub_name
= (char *) bfd_malloc (len
);
3817 if (stub_name
!= NULL
)
3818 sprintf (stub_name
, "%08x_%x:%x+%x_%d",
3819 input_section
->id
& 0xffffffff,
3820 sym_sec
->id
& 0xffffffff,
3821 ELF32_R_TYPE (rel
->r_info
) == R_ARM_TLS_CALL
3822 || ELF32_R_TYPE (rel
->r_info
) == R_ARM_THM_TLS_CALL
3823 ? 0 : (int) ELF32_R_SYM (rel
->r_info
) & 0xffffffff,
3824 (int) rel
->r_addend
& 0xffffffff,
3831 /* Look up an entry in the stub hash. Stub entries are cached because
3832 creating the stub name takes a bit of time. */
3834 static struct elf32_arm_stub_hash_entry
*
3835 elf32_arm_get_stub_entry (const asection
*input_section
,
3836 const asection
*sym_sec
,
3837 struct elf_link_hash_entry
*hash
,
3838 const Elf_Internal_Rela
*rel
,
3839 struct elf32_arm_link_hash_table
*htab
,
3840 enum elf32_arm_stub_type stub_type
)
3842 struct elf32_arm_stub_hash_entry
*stub_entry
;
3843 struct elf32_arm_link_hash_entry
*h
= (struct elf32_arm_link_hash_entry
*) hash
;
3844 const asection
*id_sec
;
3846 if ((input_section
->flags
& SEC_CODE
) == 0)
3849 /* If this input section is part of a group of sections sharing one
3850 stub section, then use the id of the first section in the group.
3851 Stub names need to include a section id, as there may well be
3852 more than one stub used to reach say, printf, and we need to
3853 distinguish between them. */
3854 id_sec
= htab
->stub_group
[input_section
->id
].link_sec
;
3856 if (h
!= NULL
&& h
->stub_cache
!= NULL
3857 && h
->stub_cache
->h
== h
3858 && h
->stub_cache
->id_sec
== id_sec
3859 && h
->stub_cache
->stub_type
== stub_type
)
3861 stub_entry
= h
->stub_cache
;
3867 stub_name
= elf32_arm_stub_name (id_sec
, sym_sec
, h
, rel
, stub_type
);
3868 if (stub_name
== NULL
)
3871 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
,
3872 stub_name
, FALSE
, FALSE
);
3874 h
->stub_cache
= stub_entry
;
3882 /* Find or create a stub section. Returns a pointer to the stub section, and
3883 the section to which the stub section will be attached (in *LINK_SEC_P).
3884 LINK_SEC_P may be NULL. */
3887 elf32_arm_create_or_find_stub_sec (asection
**link_sec_p
, asection
*section
,
3888 struct elf32_arm_link_hash_table
*htab
)
3893 link_sec
= htab
->stub_group
[section
->id
].link_sec
;
3894 BFD_ASSERT (link_sec
!= NULL
);
3895 stub_sec
= htab
->stub_group
[section
->id
].stub_sec
;
3897 if (stub_sec
== NULL
)
3899 stub_sec
= htab
->stub_group
[link_sec
->id
].stub_sec
;
3900 if (stub_sec
== NULL
)
3906 namelen
= strlen (link_sec
->name
);
3907 len
= namelen
+ sizeof (STUB_SUFFIX
);
3908 s_name
= (char *) bfd_alloc (htab
->stub_bfd
, len
);
3912 memcpy (s_name
, link_sec
->name
, namelen
);
3913 memcpy (s_name
+ namelen
, STUB_SUFFIX
, sizeof (STUB_SUFFIX
));
3914 stub_sec
= (*htab
->add_stub_section
) (s_name
, link_sec
);
3915 if (stub_sec
== NULL
)
3917 htab
->stub_group
[link_sec
->id
].stub_sec
= stub_sec
;
3919 htab
->stub_group
[section
->id
].stub_sec
= stub_sec
;
3923 *link_sec_p
= link_sec
;
3928 /* Add a new stub entry to the stub hash. Not all fields of the new
3929 stub entry are initialised. */
3931 static struct elf32_arm_stub_hash_entry
*
3932 elf32_arm_add_stub (const char *stub_name
,
3934 struct elf32_arm_link_hash_table
*htab
)
3938 struct elf32_arm_stub_hash_entry
*stub_entry
;
3940 stub_sec
= elf32_arm_create_or_find_stub_sec (&link_sec
, section
, htab
);
3941 if (stub_sec
== NULL
)
3944 /* Enter this entry into the linker stub hash table. */
3945 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
3947 if (stub_entry
== NULL
)
3949 (*_bfd_error_handler
) (_("%s: cannot create stub entry %s"),
3955 stub_entry
->stub_sec
= stub_sec
;
3956 stub_entry
->stub_offset
= 0;
3957 stub_entry
->id_sec
= link_sec
;
3962 /* Store an Arm insn into an output section not processed by
3963 elf32_arm_write_section. */
3966 put_arm_insn (struct elf32_arm_link_hash_table
* htab
,
3967 bfd
* output_bfd
, bfd_vma val
, void * ptr
)
3969 if (htab
->byteswap_code
!= bfd_little_endian (output_bfd
))
3970 bfd_putl32 (val
, ptr
);
3972 bfd_putb32 (val
, ptr
);
3975 /* Store a 16-bit Thumb insn into an output section not processed by
3976 elf32_arm_write_section. */
3979 put_thumb_insn (struct elf32_arm_link_hash_table
* htab
,
3980 bfd
* output_bfd
, bfd_vma val
, void * ptr
)
3982 if (htab
->byteswap_code
!= bfd_little_endian (output_bfd
))
3983 bfd_putl16 (val
, ptr
);
3985 bfd_putb16 (val
, ptr
);
3988 /* If it's possible to change R_TYPE to a more efficient access
3989 model, return the new reloc type. */
3992 elf32_arm_tls_transition (struct bfd_link_info
*info
, int r_type
,
3993 struct elf_link_hash_entry
*h
)
3995 int is_local
= (h
== NULL
);
3997 if (info
->shared
|| (h
&& h
->root
.type
== bfd_link_hash_undefweak
))
4000 /* We do not support relaxations for Old TLS models. */
4003 case R_ARM_TLS_GOTDESC
:
4004 case R_ARM_TLS_CALL
:
4005 case R_ARM_THM_TLS_CALL
:
4006 case R_ARM_TLS_DESCSEQ
:
4007 case R_ARM_THM_TLS_DESCSEQ
:
4008 return is_local
? R_ARM_TLS_LE32
: R_ARM_TLS_IE32
;
4014 static bfd_reloc_status_type elf32_arm_final_link_relocate
4015 (reloc_howto_type
*, bfd
*, bfd
*, asection
*, bfd_byte
*,
4016 Elf_Internal_Rela
*, bfd_vma
, struct bfd_link_info
*, asection
*,
4017 const char *, unsigned char, enum arm_st_branch_type
,
4018 struct elf_link_hash_entry
*, bfd_boolean
*, char **);
4021 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type
)
4025 case arm_stub_a8_veneer_b_cond
:
4026 case arm_stub_a8_veneer_b
:
4027 case arm_stub_a8_veneer_bl
:
4030 case arm_stub_long_branch_any_any
:
4031 case arm_stub_long_branch_v4t_arm_thumb
:
4032 case arm_stub_long_branch_thumb_only
:
4033 case arm_stub_long_branch_v4t_thumb_thumb
:
4034 case arm_stub_long_branch_v4t_thumb_arm
:
4035 case arm_stub_short_branch_v4t_thumb_arm
:
4036 case arm_stub_long_branch_any_arm_pic
:
4037 case arm_stub_long_branch_any_thumb_pic
:
4038 case arm_stub_long_branch_v4t_thumb_thumb_pic
:
4039 case arm_stub_long_branch_v4t_arm_thumb_pic
:
4040 case arm_stub_long_branch_v4t_thumb_arm_pic
:
4041 case arm_stub_long_branch_thumb_only_pic
:
4042 case arm_stub_long_branch_any_tls_pic
:
4043 case arm_stub_long_branch_v4t_thumb_tls_pic
:
4044 case arm_stub_a8_veneer_blx
:
4048 abort (); /* Should be unreachable. */
4053 arm_build_one_stub (struct bfd_hash_entry
*gen_entry
,
4057 struct elf32_arm_stub_hash_entry
*stub_entry
;
4058 struct elf32_arm_link_hash_table
*globals
;
4059 struct bfd_link_info
*info
;
4066 const insn_sequence
*template_sequence
;
4068 int stub_reloc_idx
[MAXRELOCS
] = {-1, -1};
4069 int stub_reloc_offset
[MAXRELOCS
] = {0, 0};
4072 /* Massage our args to the form they really have. */
4073 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
4074 info
= (struct bfd_link_info
*) in_arg
;
4076 globals
= elf32_arm_hash_table (info
);
4077 if (globals
== NULL
)
4080 stub_sec
= stub_entry
->stub_sec
;
4082 if ((globals
->fix_cortex_a8
< 0)
4083 != (arm_stub_required_alignment (stub_entry
->stub_type
) == 2))
4084 /* We have to do less-strictly-aligned fixes last. */
4087 /* Make a note of the offset within the stubs for this entry. */
4088 stub_entry
->stub_offset
= stub_sec
->size
;
4089 loc
= stub_sec
->contents
+ stub_entry
->stub_offset
;
4091 stub_bfd
= stub_sec
->owner
;
4093 /* This is the address of the stub destination. */
4094 sym_value
= (stub_entry
->target_value
4095 + stub_entry
->target_section
->output_offset
4096 + stub_entry
->target_section
->output_section
->vma
);
4098 template_sequence
= stub_entry
->stub_template
;
4099 template_size
= stub_entry
->stub_template_size
;
4102 for (i
= 0; i
< template_size
; i
++)
4104 switch (template_sequence
[i
].type
)
4108 bfd_vma data
= (bfd_vma
) template_sequence
[i
].data
;
4109 if (template_sequence
[i
].reloc_addend
!= 0)
4111 /* We've borrowed the reloc_addend field to mean we should
4112 insert a condition code into this (Thumb-1 branch)
4113 instruction. See THUMB16_BCOND_INSN. */
4114 BFD_ASSERT ((data
& 0xff00) == 0xd000);
4115 data
|= ((stub_entry
->orig_insn
>> 22) & 0xf) << 8;
4117 bfd_put_16 (stub_bfd
, data
, loc
+ size
);
4123 bfd_put_16 (stub_bfd
,
4124 (template_sequence
[i
].data
>> 16) & 0xffff,
4126 bfd_put_16 (stub_bfd
, template_sequence
[i
].data
& 0xffff,
4128 if (template_sequence
[i
].r_type
!= R_ARM_NONE
)
4130 stub_reloc_idx
[nrelocs
] = i
;
4131 stub_reloc_offset
[nrelocs
++] = size
;
4137 bfd_put_32 (stub_bfd
, template_sequence
[i
].data
,
4139 /* Handle cases where the target is encoded within the
4141 if (template_sequence
[i
].r_type
== R_ARM_JUMP24
)
4143 stub_reloc_idx
[nrelocs
] = i
;
4144 stub_reloc_offset
[nrelocs
++] = size
;
4150 bfd_put_32 (stub_bfd
, template_sequence
[i
].data
, loc
+ size
);
4151 stub_reloc_idx
[nrelocs
] = i
;
4152 stub_reloc_offset
[nrelocs
++] = size
;
4162 stub_sec
->size
+= size
;
4164 /* Stub size has already been computed in arm_size_one_stub. Check
4166 BFD_ASSERT (size
== stub_entry
->stub_size
);
4168 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
4169 if (stub_entry
->branch_type
== ST_BRANCH_TO_THUMB
)
4172 /* Assume there is at least one and at most MAXRELOCS entries to relocate
4174 BFD_ASSERT (nrelocs
!= 0 && nrelocs
<= MAXRELOCS
);
4176 for (i
= 0; i
< nrelocs
; i
++)
4177 if (template_sequence
[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_JUMP24
4178 || template_sequence
[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_JUMP19
4179 || template_sequence
[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_CALL
4180 || template_sequence
[stub_reloc_idx
[i
]].r_type
== R_ARM_THM_XPC22
)
4182 Elf_Internal_Rela rel
;
4183 bfd_boolean unresolved_reloc
;
4184 char *error_message
;
4185 enum arm_st_branch_type branch_type
4186 = (template_sequence
[stub_reloc_idx
[i
]].r_type
!= R_ARM_THM_XPC22
4187 ? ST_BRANCH_TO_THUMB
: ST_BRANCH_TO_ARM
);
4188 bfd_vma points_to
= sym_value
+ stub_entry
->target_addend
;
4190 rel
.r_offset
= stub_entry
->stub_offset
+ stub_reloc_offset
[i
];
4191 rel
.r_info
= ELF32_R_INFO (0,
4192 template_sequence
[stub_reloc_idx
[i
]].r_type
);
4193 rel
.r_addend
= template_sequence
[stub_reloc_idx
[i
]].reloc_addend
;
4195 if (stub_entry
->stub_type
== arm_stub_a8_veneer_b_cond
&& i
== 0)
4196 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4197 template should refer back to the instruction after the original
4199 points_to
= sym_value
;
4201 /* There may be unintended consequences if this is not true. */
4202 BFD_ASSERT (stub_entry
->h
== NULL
);
4204 /* Note: _bfd_final_link_relocate doesn't handle these relocations
4205 properly. We should probably use this function unconditionally,
4206 rather than only for certain relocations listed in the enclosing
4207 conditional, for the sake of consistency. */
4208 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4209 (template_sequence
[stub_reloc_idx
[i
]].r_type
),
4210 stub_bfd
, info
->output_bfd
, stub_sec
, stub_sec
->contents
, &rel
,
4211 points_to
, info
, stub_entry
->target_section
, "", STT_FUNC
,
4212 branch_type
, (struct elf_link_hash_entry
*) stub_entry
->h
,
4213 &unresolved_reloc
, &error_message
);
4217 Elf_Internal_Rela rel
;
4218 bfd_boolean unresolved_reloc
;
4219 char *error_message
;
4220 bfd_vma points_to
= sym_value
+ stub_entry
->target_addend
4221 + template_sequence
[stub_reloc_idx
[i
]].reloc_addend
;
4223 rel
.r_offset
= stub_entry
->stub_offset
+ stub_reloc_offset
[i
];
4224 rel
.r_info
= ELF32_R_INFO (0,
4225 template_sequence
[stub_reloc_idx
[i
]].r_type
);
4228 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4229 (template_sequence
[stub_reloc_idx
[i
]].r_type
),
4230 stub_bfd
, info
->output_bfd
, stub_sec
, stub_sec
->contents
, &rel
,
4231 points_to
, info
, stub_entry
->target_section
, "", STT_FUNC
,
4232 stub_entry
->branch_type
,
4233 (struct elf_link_hash_entry
*) stub_entry
->h
, &unresolved_reloc
,
4241 /* Calculate the template, template size and instruction size for a stub.
4242 Return value is the instruction size. */
4245 find_stub_size_and_template (enum elf32_arm_stub_type stub_type
,
4246 const insn_sequence
**stub_template
,
4247 int *stub_template_size
)
4249 const insn_sequence
*template_sequence
= NULL
;
4250 int template_size
= 0, i
;
4253 template_sequence
= stub_definitions
[stub_type
].template_sequence
;
4255 *stub_template
= template_sequence
;
4257 template_size
= stub_definitions
[stub_type
].template_size
;
4258 if (stub_template_size
)
4259 *stub_template_size
= template_size
;
4262 for (i
= 0; i
< template_size
; i
++)
4264 switch (template_sequence
[i
].type
)
4285 /* As above, but don't actually build the stub. Just bump offset so
4286 we know stub section sizes. */
4289 arm_size_one_stub (struct bfd_hash_entry
*gen_entry
,
4290 void *in_arg ATTRIBUTE_UNUSED
)
4292 struct elf32_arm_stub_hash_entry
*stub_entry
;
4293 const insn_sequence
*template_sequence
;
4294 int template_size
, size
;
4296 /* Massage our args to the form they really have. */
4297 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
4299 BFD_ASSERT((stub_entry
->stub_type
> arm_stub_none
)
4300 && stub_entry
->stub_type
< ARRAY_SIZE(stub_definitions
));
4302 size
= find_stub_size_and_template (stub_entry
->stub_type
, &template_sequence
,
4305 stub_entry
->stub_size
= size
;
4306 stub_entry
->stub_template
= template_sequence
;
4307 stub_entry
->stub_template_size
= template_size
;
4309 size
= (size
+ 7) & ~7;
4310 stub_entry
->stub_sec
->size
+= size
;
4315 /* External entry points for sizing and building linker stubs. */
4317 /* Set up various things so that we can make a list of input sections
4318 for each output section included in the link. Returns -1 on error,
4319 0 when no stubs will be needed, and 1 on success. */
4322 elf32_arm_setup_section_lists (bfd
*output_bfd
,
4323 struct bfd_link_info
*info
)
4326 unsigned int bfd_count
;
4327 int top_id
, top_index
;
4329 asection
**input_list
, **list
;
4331 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
4335 if (! is_elf_hash_table (htab
))
4338 /* Count the number of input BFDs and find the top input section id. */
4339 for (input_bfd
= info
->input_bfds
, bfd_count
= 0, top_id
= 0;
4341 input_bfd
= input_bfd
->link_next
)
4344 for (section
= input_bfd
->sections
;
4346 section
= section
->next
)
4348 if (top_id
< section
->id
)
4349 top_id
= section
->id
;
4352 htab
->bfd_count
= bfd_count
;
4354 amt
= sizeof (struct map_stub
) * (top_id
+ 1);
4355 htab
->stub_group
= (struct map_stub
*) bfd_zmalloc (amt
);
4356 if (htab
->stub_group
== NULL
)
4358 htab
->top_id
= top_id
;
4360 /* We can't use output_bfd->section_count here to find the top output
4361 section index as some sections may have been removed, and
4362 _bfd_strip_section_from_output doesn't renumber the indices. */
4363 for (section
= output_bfd
->sections
, top_index
= 0;
4365 section
= section
->next
)
4367 if (top_index
< section
->index
)
4368 top_index
= section
->index
;
4371 htab
->top_index
= top_index
;
4372 amt
= sizeof (asection
*) * (top_index
+ 1);
4373 input_list
= (asection
**) bfd_malloc (amt
);
4374 htab
->input_list
= input_list
;
4375 if (input_list
== NULL
)
4378 /* For sections we aren't interested in, mark their entries with a
4379 value we can check later. */
4380 list
= input_list
+ top_index
;
4382 *list
= bfd_abs_section_ptr
;
4383 while (list
-- != input_list
);
4385 for (section
= output_bfd
->sections
;
4387 section
= section
->next
)
4389 if ((section
->flags
& SEC_CODE
) != 0)
4390 input_list
[section
->index
] = NULL
;
4396 /* The linker repeatedly calls this function for each input section,
4397 in the order that input sections are linked into output sections.
4398 Build lists of input sections to determine groupings between which
4399 we may insert linker stubs. */
4402 elf32_arm_next_input_section (struct bfd_link_info
*info
,
4405 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
4410 if (isec
->output_section
->index
<= htab
->top_index
)
4412 asection
**list
= htab
->input_list
+ isec
->output_section
->index
;
4414 if (*list
!= bfd_abs_section_ptr
&& (isec
->flags
& SEC_CODE
) != 0)
4416 /* Steal the link_sec pointer for our list. */
4417 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
4418 /* This happens to make the list in reverse order,
4419 which we reverse later. */
4420 PREV_SEC (isec
) = *list
;
4426 /* See whether we can group stub sections together. Grouping stub
4427 sections may result in fewer stubs. More importantly, we need to
4428 put all .init* and .fini* stubs at the end of the .init or
4429 .fini output sections respectively, because glibc splits the
4430 _init and _fini functions into multiple parts. Putting a stub in
4431 the middle of a function is not a good idea. */
4434 group_sections (struct elf32_arm_link_hash_table
*htab
,
4435 bfd_size_type stub_group_size
,
4436 bfd_boolean stubs_always_after_branch
)
4438 asection
**list
= htab
->input_list
;
4442 asection
*tail
= *list
;
4445 if (tail
== bfd_abs_section_ptr
)
4448 /* Reverse the list: we must avoid placing stubs at the
4449 beginning of the section because the beginning of the text
4450 section may be required for an interrupt vector in bare metal
4452 #define NEXT_SEC PREV_SEC
4454 while (tail
!= NULL
)
4456 /* Pop from tail. */
4457 asection
*item
= tail
;
4458 tail
= PREV_SEC (item
);
4461 NEXT_SEC (item
) = head
;
4465 while (head
!= NULL
)
4469 bfd_vma stub_group_start
= head
->output_offset
;
4470 bfd_vma end_of_next
;
4473 while (NEXT_SEC (curr
) != NULL
)
4475 next
= NEXT_SEC (curr
);
4476 end_of_next
= next
->output_offset
+ next
->size
;
4477 if (end_of_next
- stub_group_start
>= stub_group_size
)
4478 /* End of NEXT is too far from start, so stop. */
4480 /* Add NEXT to the group. */
4484 /* OK, the size from the start to the start of CURR is less
4485 than stub_group_size and thus can be handled by one stub
4486 section. (Or the head section is itself larger than
4487 stub_group_size, in which case we may be toast.)
4488 We should really be keeping track of the total size of
4489 stubs added here, as stubs contribute to the final output
4493 next
= NEXT_SEC (head
);
4494 /* Set up this stub group. */
4495 htab
->stub_group
[head
->id
].link_sec
= curr
;
4497 while (head
!= curr
&& (head
= next
) != NULL
);
4499 /* But wait, there's more! Input sections up to stub_group_size
4500 bytes after the stub section can be handled by it too. */
4501 if (!stubs_always_after_branch
)
4503 stub_group_start
= curr
->output_offset
+ curr
->size
;
4505 while (next
!= NULL
)
4507 end_of_next
= next
->output_offset
+ next
->size
;
4508 if (end_of_next
- stub_group_start
>= stub_group_size
)
4509 /* End of NEXT is too far from stubs, so stop. */
4511 /* Add NEXT to the stub group. */
4513 next
= NEXT_SEC (head
);
4514 htab
->stub_group
[head
->id
].link_sec
= curr
;
4520 while (list
++ != htab
->input_list
+ htab
->top_index
);
4522 free (htab
->input_list
);
4527 /* Comparison function for sorting/searching relocations relating to Cortex-A8
4531 a8_reloc_compare (const void *a
, const void *b
)
4533 const struct a8_erratum_reloc
*ra
= (const struct a8_erratum_reloc
*) a
;
4534 const struct a8_erratum_reloc
*rb
= (const struct a8_erratum_reloc
*) b
;
4536 if (ra
->from
< rb
->from
)
4538 else if (ra
->from
> rb
->from
)
4544 static struct elf_link_hash_entry
*find_thumb_glue (struct bfd_link_info
*,
4545 const char *, char **);
4547 /* Helper function to scan code for sequences which might trigger the Cortex-A8
4548 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
4549 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
4553 cortex_a8_erratum_scan (bfd
*input_bfd
,
4554 struct bfd_link_info
*info
,
4555 struct a8_erratum_fix
**a8_fixes_p
,
4556 unsigned int *num_a8_fixes_p
,
4557 unsigned int *a8_fix_table_size_p
,
4558 struct a8_erratum_reloc
*a8_relocs
,
4559 unsigned int num_a8_relocs
,
4560 unsigned prev_num_a8_fixes
,
4561 bfd_boolean
*stub_changed_p
)
4564 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
4565 struct a8_erratum_fix
*a8_fixes
= *a8_fixes_p
;
4566 unsigned int num_a8_fixes
= *num_a8_fixes_p
;
4567 unsigned int a8_fix_table_size
= *a8_fix_table_size_p
;
4572 for (section
= input_bfd
->sections
;
4574 section
= section
->next
)
4576 bfd_byte
*contents
= NULL
;
4577 struct _arm_elf_section_data
*sec_data
;
4581 if (elf_section_type (section
) != SHT_PROGBITS
4582 || (elf_section_flags (section
) & SHF_EXECINSTR
) == 0
4583 || (section
->flags
& SEC_EXCLUDE
) != 0
4584 || (section
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
)
4585 || (section
->output_section
== bfd_abs_section_ptr
))
4588 base_vma
= section
->output_section
->vma
+ section
->output_offset
;
4590 if (elf_section_data (section
)->this_hdr
.contents
!= NULL
)
4591 contents
= elf_section_data (section
)->this_hdr
.contents
;
4592 else if (! bfd_malloc_and_get_section (input_bfd
, section
, &contents
))
4595 sec_data
= elf32_arm_section_data (section
);
4597 for (span
= 0; span
< sec_data
->mapcount
; span
++)
4599 unsigned int span_start
= sec_data
->map
[span
].vma
;
4600 unsigned int span_end
= (span
== sec_data
->mapcount
- 1)
4601 ? section
->size
: sec_data
->map
[span
+ 1].vma
;
4603 char span_type
= sec_data
->map
[span
].type
;
4604 bfd_boolean last_was_32bit
= FALSE
, last_was_branch
= FALSE
;
4606 if (span_type
!= 't')
4609 /* Span is entirely within a single 4KB region: skip scanning. */
4610 if (((base_vma
+ span_start
) & ~0xfff)
4611 == ((base_vma
+ span_end
) & ~0xfff))
4614 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
4616 * The opcode is BLX.W, BL.W, B.W, Bcc.W
4617 * The branch target is in the same 4KB region as the
4618 first half of the branch.
4619 * The instruction before the branch is a 32-bit
4620 length non-branch instruction. */
4621 for (i
= span_start
; i
< span_end
;)
4623 unsigned int insn
= bfd_getl16 (&contents
[i
]);
4624 bfd_boolean insn_32bit
= FALSE
, is_blx
= FALSE
, is_b
= FALSE
;
4625 bfd_boolean is_bl
= FALSE
, is_bcc
= FALSE
, is_32bit_branch
;
4627 if ((insn
& 0xe000) == 0xe000 && (insn
& 0x1800) != 0x0000)
4632 /* Load the rest of the insn (in manual-friendly order). */
4633 insn
= (insn
<< 16) | bfd_getl16 (&contents
[i
+ 2]);
4635 /* Encoding T4: B<c>.W. */
4636 is_b
= (insn
& 0xf800d000) == 0xf0009000;
4637 /* Encoding T1: BL<c>.W. */
4638 is_bl
= (insn
& 0xf800d000) == 0xf000d000;
4639 /* Encoding T2: BLX<c>.W. */
4640 is_blx
= (insn
& 0xf800d000) == 0xf000c000;
4641 /* Encoding T3: B<c>.W (not permitted in IT block). */
4642 is_bcc
= (insn
& 0xf800d000) == 0xf0008000
4643 && (insn
& 0x07f00000) != 0x03800000;
4646 is_32bit_branch
= is_b
|| is_bl
|| is_blx
|| is_bcc
;
4648 if (((base_vma
+ i
) & 0xfff) == 0xffe
4652 && ! last_was_branch
)
4654 bfd_signed_vma offset
= 0;
4655 bfd_boolean force_target_arm
= FALSE
;
4656 bfd_boolean force_target_thumb
= FALSE
;
4658 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
4659 struct a8_erratum_reloc key
, *found
;
4660 bfd_boolean use_plt
= FALSE
;
4662 key
.from
= base_vma
+ i
;
4663 found
= (struct a8_erratum_reloc
*)
4664 bsearch (&key
, a8_relocs
, num_a8_relocs
,
4665 sizeof (struct a8_erratum_reloc
),
4670 char *error_message
= NULL
;
4671 struct elf_link_hash_entry
*entry
;
4673 /* We don't care about the error returned from this
4674 function, only if there is glue or not. */
4675 entry
= find_thumb_glue (info
, found
->sym_name
,
4679 found
->non_a8_stub
= TRUE
;
4681 /* Keep a simpler condition, for the sake of clarity. */
4682 if (htab
->root
.splt
!= NULL
&& found
->hash
!= NULL
4683 && found
->hash
->root
.plt
.offset
!= (bfd_vma
) -1)
4686 if (found
->r_type
== R_ARM_THM_CALL
)
4688 if (found
->branch_type
== ST_BRANCH_TO_ARM
4690 force_target_arm
= TRUE
;
4692 force_target_thumb
= TRUE
;
4696 /* Check if we have an offending branch instruction. */
4698 if (found
&& found
->non_a8_stub
)
4699 /* We've already made a stub for this instruction, e.g.
4700 it's a long branch or a Thumb->ARM stub. Assume that
4701 stub will suffice to work around the A8 erratum (see
4702 setting of always_after_branch above). */
4706 offset
= (insn
& 0x7ff) << 1;
4707 offset
|= (insn
& 0x3f0000) >> 4;
4708 offset
|= (insn
& 0x2000) ? 0x40000 : 0;
4709 offset
|= (insn
& 0x800) ? 0x80000 : 0;
4710 offset
|= (insn
& 0x4000000) ? 0x100000 : 0;
4711 if (offset
& 0x100000)
4712 offset
|= ~ ((bfd_signed_vma
) 0xfffff);
4713 stub_type
= arm_stub_a8_veneer_b_cond
;
4715 else if (is_b
|| is_bl
|| is_blx
)
4717 int s
= (insn
& 0x4000000) != 0;
4718 int j1
= (insn
& 0x2000) != 0;
4719 int j2
= (insn
& 0x800) != 0;
4723 offset
= (insn
& 0x7ff) << 1;
4724 offset
|= (insn
& 0x3ff0000) >> 4;
4728 if (offset
& 0x1000000)
4729 offset
|= ~ ((bfd_signed_vma
) 0xffffff);
4732 offset
&= ~ ((bfd_signed_vma
) 3);
4734 stub_type
= is_blx
? arm_stub_a8_veneer_blx
:
4735 is_bl
? arm_stub_a8_veneer_bl
: arm_stub_a8_veneer_b
;
4738 if (stub_type
!= arm_stub_none
)
4740 bfd_vma pc_for_insn
= base_vma
+ i
+ 4;
4742 /* The original instruction is a BL, but the target is
4743 an ARM instruction. If we were not making a stub,
4744 the BL would have been converted to a BLX. Use the
4745 BLX stub instead in that case. */
4746 if (htab
->use_blx
&& force_target_arm
4747 && stub_type
== arm_stub_a8_veneer_bl
)
4749 stub_type
= arm_stub_a8_veneer_blx
;
4753 /* Conversely, if the original instruction was
4754 BLX but the target is Thumb mode, use the BL
4756 else if (force_target_thumb
4757 && stub_type
== arm_stub_a8_veneer_blx
)
4759 stub_type
= arm_stub_a8_veneer_bl
;
4765 pc_for_insn
&= ~ ((bfd_vma
) 3);
4767 /* If we found a relocation, use the proper destination,
4768 not the offset in the (unrelocated) instruction.
4769 Note this is always done if we switched the stub type
4773 (bfd_signed_vma
) (found
->destination
- pc_for_insn
);
4775 /* If the stub will use a Thumb-mode branch to a
4776 PLT target, redirect it to the preceding Thumb
4778 if (stub_type
!= arm_stub_a8_veneer_blx
&& use_plt
)
4779 offset
-= PLT_THUMB_STUB_SIZE
;
4781 target
= pc_for_insn
+ offset
;
4783 /* The BLX stub is ARM-mode code. Adjust the offset to
4784 take the different PC value (+8 instead of +4) into
4786 if (stub_type
== arm_stub_a8_veneer_blx
)
4789 if (((base_vma
+ i
) & ~0xfff) == (target
& ~0xfff))
4791 char *stub_name
= NULL
;
4793 if (num_a8_fixes
== a8_fix_table_size
)
4795 a8_fix_table_size
*= 2;
4796 a8_fixes
= (struct a8_erratum_fix
*)
4797 bfd_realloc (a8_fixes
,
4798 sizeof (struct a8_erratum_fix
)
4799 * a8_fix_table_size
);
4802 if (num_a8_fixes
< prev_num_a8_fixes
)
4804 /* If we're doing a subsequent scan,
4805 check if we've found the same fix as
4806 before, and try and reuse the stub
4808 stub_name
= a8_fixes
[num_a8_fixes
].stub_name
;
4809 if ((a8_fixes
[num_a8_fixes
].section
!= section
)
4810 || (a8_fixes
[num_a8_fixes
].offset
!= i
))
4814 *stub_changed_p
= TRUE
;
4820 stub_name
= (char *) bfd_malloc (8 + 1 + 8 + 1);
4821 if (stub_name
!= NULL
)
4822 sprintf (stub_name
, "%x:%x", section
->id
, i
);
4825 a8_fixes
[num_a8_fixes
].input_bfd
= input_bfd
;
4826 a8_fixes
[num_a8_fixes
].section
= section
;
4827 a8_fixes
[num_a8_fixes
].offset
= i
;
4828 a8_fixes
[num_a8_fixes
].addend
= offset
;
4829 a8_fixes
[num_a8_fixes
].orig_insn
= insn
;
4830 a8_fixes
[num_a8_fixes
].stub_name
= stub_name
;
4831 a8_fixes
[num_a8_fixes
].stub_type
= stub_type
;
4832 a8_fixes
[num_a8_fixes
].branch_type
=
4833 is_blx
? ST_BRANCH_TO_ARM
: ST_BRANCH_TO_THUMB
;
4840 i
+= insn_32bit
? 4 : 2;
4841 last_was_32bit
= insn_32bit
;
4842 last_was_branch
= is_32bit_branch
;
4846 if (elf_section_data (section
)->this_hdr
.contents
== NULL
)
4850 *a8_fixes_p
= a8_fixes
;
4851 *num_a8_fixes_p
= num_a8_fixes
;
4852 *a8_fix_table_size_p
= a8_fix_table_size
;
4857 /* Determine and set the size of the stub section for a final link.
4859 The basic idea here is to examine all the relocations looking for
4860 PC-relative calls to a target that is unreachable with a "bl"
4864 elf32_arm_size_stubs (bfd
*output_bfd
,
4866 struct bfd_link_info
*info
,
4867 bfd_signed_vma group_size
,
4868 asection
* (*add_stub_section
) (const char *, asection
*),
4869 void (*layout_sections_again
) (void))
4871 bfd_size_type stub_group_size
;
4872 bfd_boolean stubs_always_after_branch
;
4873 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
4874 struct a8_erratum_fix
*a8_fixes
= NULL
;
4875 unsigned int num_a8_fixes
= 0, a8_fix_table_size
= 10;
4876 struct a8_erratum_reloc
*a8_relocs
= NULL
;
4877 unsigned int num_a8_relocs
= 0, a8_reloc_table_size
= 10, i
;
4882 if (htab
->fix_cortex_a8
)
4884 a8_fixes
= (struct a8_erratum_fix
*)
4885 bfd_zmalloc (sizeof (struct a8_erratum_fix
) * a8_fix_table_size
);
4886 a8_relocs
= (struct a8_erratum_reloc
*)
4887 bfd_zmalloc (sizeof (struct a8_erratum_reloc
) * a8_reloc_table_size
);
4890 /* Propagate mach to stub bfd, because it may not have been
4891 finalized when we created stub_bfd. */
4892 bfd_set_arch_mach (stub_bfd
, bfd_get_arch (output_bfd
),
4893 bfd_get_mach (output_bfd
));
4895 /* Stash our params away. */
4896 htab
->stub_bfd
= stub_bfd
;
4897 htab
->add_stub_section
= add_stub_section
;
4898 htab
->layout_sections_again
= layout_sections_again
;
4899 stubs_always_after_branch
= group_size
< 0;
4901 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
4902 as the first half of a 32-bit branch straddling two 4K pages. This is a
4903 crude way of enforcing that. */
4904 if (htab
->fix_cortex_a8
)
4905 stubs_always_after_branch
= 1;
4908 stub_group_size
= -group_size
;
4910 stub_group_size
= group_size
;
4912 if (stub_group_size
== 1)
4914 /* Default values. */
4915 /* Thumb branch range is +-4MB has to be used as the default
4916 maximum size (a given section can contain both ARM and Thumb
4917 code, so the worst case has to be taken into account).
4919 This value is 24K less than that, which allows for 2025
4920 12-byte stubs. If we exceed that, then we will fail to link.
4921 The user will have to relink with an explicit group size
4923 stub_group_size
= 4170000;
4926 group_sections (htab
, stub_group_size
, stubs_always_after_branch
);
4928 /* If we're applying the cortex A8 fix, we need to determine the
4929 program header size now, because we cannot change it later --
4930 that could alter section placements. Notice the A8 erratum fix
4931 ends up requiring the section addresses to remain unchanged
4932 modulo the page size. That's something we cannot represent
4933 inside BFD, and we don't want to force the section alignment to
4934 be the page size. */
4935 if (htab
->fix_cortex_a8
)
4936 (*htab
->layout_sections_again
) ();
4941 unsigned int bfd_indx
;
4943 bfd_boolean stub_changed
= FALSE
;
4944 unsigned prev_num_a8_fixes
= num_a8_fixes
;
4947 for (input_bfd
= info
->input_bfds
, bfd_indx
= 0;
4949 input_bfd
= input_bfd
->link_next
, bfd_indx
++)
4951 Elf_Internal_Shdr
*symtab_hdr
;
4953 Elf_Internal_Sym
*local_syms
= NULL
;
4955 if (!is_arm_elf (input_bfd
))
4960 /* We'll need the symbol table in a second. */
4961 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
4962 if (symtab_hdr
->sh_info
== 0)
4965 /* Walk over each section attached to the input bfd. */
4966 for (section
= input_bfd
->sections
;
4968 section
= section
->next
)
4970 Elf_Internal_Rela
*internal_relocs
, *irelaend
, *irela
;
4972 /* If there aren't any relocs, then there's nothing more
4974 if ((section
->flags
& SEC_RELOC
) == 0
4975 || section
->reloc_count
== 0
4976 || (section
->flags
& SEC_CODE
) == 0)
4979 /* If this section is a link-once section that will be
4980 discarded, then don't create any stubs. */
4981 if (section
->output_section
== NULL
4982 || section
->output_section
->owner
!= output_bfd
)
4985 /* Get the relocs. */
4987 = _bfd_elf_link_read_relocs (input_bfd
, section
, NULL
,
4988 NULL
, info
->keep_memory
);
4989 if (internal_relocs
== NULL
)
4990 goto error_ret_free_local
;
4992 /* Now examine each relocation. */
4993 irela
= internal_relocs
;
4994 irelaend
= irela
+ section
->reloc_count
;
4995 for (; irela
< irelaend
; irela
++)
4997 unsigned int r_type
, r_indx
;
4998 enum elf32_arm_stub_type stub_type
;
4999 struct elf32_arm_stub_hash_entry
*stub_entry
;
5002 bfd_vma destination
;
5003 struct elf32_arm_link_hash_entry
*hash
;
5004 const char *sym_name
;
5006 const asection
*id_sec
;
5007 unsigned char st_type
;
5008 enum arm_st_branch_type branch_type
;
5009 bfd_boolean created_stub
= FALSE
;
5011 r_type
= ELF32_R_TYPE (irela
->r_info
);
5012 r_indx
= ELF32_R_SYM (irela
->r_info
);
5014 if (r_type
>= (unsigned int) R_ARM_max
)
5016 bfd_set_error (bfd_error_bad_value
);
5017 error_ret_free_internal
:
5018 if (elf_section_data (section
)->relocs
== NULL
)
5019 free (internal_relocs
);
5020 goto error_ret_free_local
;
5024 if (r_indx
>= symtab_hdr
->sh_info
)
5025 hash
= elf32_arm_hash_entry
5026 (elf_sym_hashes (input_bfd
)
5027 [r_indx
- symtab_hdr
->sh_info
]);
5029 /* Only look for stubs on branch instructions, or
5030 non-relaxed TLSCALL */
5031 if ((r_type
!= (unsigned int) R_ARM_CALL
)
5032 && (r_type
!= (unsigned int) R_ARM_THM_CALL
)
5033 && (r_type
!= (unsigned int) R_ARM_JUMP24
)
5034 && (r_type
!= (unsigned int) R_ARM_THM_JUMP19
)
5035 && (r_type
!= (unsigned int) R_ARM_THM_XPC22
)
5036 && (r_type
!= (unsigned int) R_ARM_THM_JUMP24
)
5037 && (r_type
!= (unsigned int) R_ARM_PLT32
)
5038 && !((r_type
== (unsigned int) R_ARM_TLS_CALL
5039 || r_type
== (unsigned int) R_ARM_THM_TLS_CALL
)
5040 && r_type
== elf32_arm_tls_transition
5041 (info
, r_type
, &hash
->root
)
5042 && ((hash
? hash
->tls_type
5043 : (elf32_arm_local_got_tls_type
5044 (input_bfd
)[r_indx
]))
5045 & GOT_TLS_GDESC
) != 0))
5048 /* Now determine the call target, its name, value,
5055 if (r_type
== (unsigned int) R_ARM_TLS_CALL
5056 || r_type
== (unsigned int) R_ARM_THM_TLS_CALL
)
5058 /* A non-relaxed TLS call. The target is the
5059 plt-resident trampoline and nothing to do
5061 BFD_ASSERT (htab
->tls_trampoline
> 0);
5062 sym_sec
= htab
->root
.splt
;
5063 sym_value
= htab
->tls_trampoline
;
5066 branch_type
= ST_BRANCH_TO_ARM
;
5070 /* It's a local symbol. */
5071 Elf_Internal_Sym
*sym
;
5073 if (local_syms
== NULL
)
5076 = (Elf_Internal_Sym
*) symtab_hdr
->contents
;
5077 if (local_syms
== NULL
)
5079 = bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
,
5080 symtab_hdr
->sh_info
, 0,
5082 if (local_syms
== NULL
)
5083 goto error_ret_free_internal
;
5086 sym
= local_syms
+ r_indx
;
5087 if (sym
->st_shndx
== SHN_UNDEF
)
5088 sym_sec
= bfd_und_section_ptr
;
5089 else if (sym
->st_shndx
== SHN_ABS
)
5090 sym_sec
= bfd_abs_section_ptr
;
5091 else if (sym
->st_shndx
== SHN_COMMON
)
5092 sym_sec
= bfd_com_section_ptr
;
5095 bfd_section_from_elf_index (input_bfd
, sym
->st_shndx
);
5098 /* This is an undefined symbol. It can never
5102 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
)
5103 sym_value
= sym
->st_value
;
5104 destination
= (sym_value
+ irela
->r_addend
5105 + sym_sec
->output_offset
5106 + sym_sec
->output_section
->vma
);
5107 st_type
= ELF_ST_TYPE (sym
->st_info
);
5108 branch_type
= ARM_SYM_BRANCH_TYPE (sym
);
5110 = bfd_elf_string_from_elf_section (input_bfd
,
5111 symtab_hdr
->sh_link
,
5116 /* It's an external symbol. */
5117 while (hash
->root
.root
.type
== bfd_link_hash_indirect
5118 || hash
->root
.root
.type
== bfd_link_hash_warning
)
5119 hash
= ((struct elf32_arm_link_hash_entry
*)
5120 hash
->root
.root
.u
.i
.link
);
5122 if (hash
->root
.root
.type
== bfd_link_hash_defined
5123 || hash
->root
.root
.type
== bfd_link_hash_defweak
)
5125 sym_sec
= hash
->root
.root
.u
.def
.section
;
5126 sym_value
= hash
->root
.root
.u
.def
.value
;
5128 struct elf32_arm_link_hash_table
*globals
=
5129 elf32_arm_hash_table (info
);
5131 /* For a destination in a shared library,
5132 use the PLT stub as target address to
5133 decide whether a branch stub is
5136 && globals
->root
.splt
!= NULL
5138 && hash
->root
.plt
.offset
!= (bfd_vma
) -1)
5140 sym_sec
= globals
->root
.splt
;
5141 sym_value
= hash
->root
.plt
.offset
;
5142 if (sym_sec
->output_section
!= NULL
)
5143 destination
= (sym_value
5144 + sym_sec
->output_offset
5145 + sym_sec
->output_section
->vma
);
5147 else if (sym_sec
->output_section
!= NULL
)
5148 destination
= (sym_value
+ irela
->r_addend
5149 + sym_sec
->output_offset
5150 + sym_sec
->output_section
->vma
);
5152 else if ((hash
->root
.root
.type
== bfd_link_hash_undefined
)
5153 || (hash
->root
.root
.type
== bfd_link_hash_undefweak
))
5155 /* For a shared library, use the PLT stub as
5156 target address to decide whether a long
5157 branch stub is needed.
5158 For absolute code, they cannot be handled. */
5159 struct elf32_arm_link_hash_table
*globals
=
5160 elf32_arm_hash_table (info
);
5163 && globals
->root
.splt
!= NULL
5165 && hash
->root
.plt
.offset
!= (bfd_vma
) -1)
5167 sym_sec
= globals
->root
.splt
;
5168 sym_value
= hash
->root
.plt
.offset
;
5169 if (sym_sec
->output_section
!= NULL
)
5170 destination
= (sym_value
5171 + sym_sec
->output_offset
5172 + sym_sec
->output_section
->vma
);
5179 bfd_set_error (bfd_error_bad_value
);
5180 goto error_ret_free_internal
;
5182 st_type
= hash
->root
.type
;
5183 branch_type
= hash
->root
.target_internal
;
5184 sym_name
= hash
->root
.root
.root
.string
;
5189 /* Determine what (if any) linker stub is needed. */
5190 stub_type
= arm_type_of_stub (info
, section
, irela
,
5191 st_type
, &branch_type
,
5192 hash
, destination
, sym_sec
,
5193 input_bfd
, sym_name
);
5194 if (stub_type
== arm_stub_none
)
5197 /* Support for grouping stub sections. */
5198 id_sec
= htab
->stub_group
[section
->id
].link_sec
;
5200 /* Get the name of this stub. */
5201 stub_name
= elf32_arm_stub_name (id_sec
, sym_sec
, hash
,
5204 goto error_ret_free_internal
;
5206 /* We've either created a stub for this reloc already,
5207 or we are about to. */
5208 created_stub
= TRUE
;
5210 stub_entry
= arm_stub_hash_lookup
5211 (&htab
->stub_hash_table
, stub_name
,
5213 if (stub_entry
!= NULL
)
5215 /* The proper stub has already been created. */
5217 stub_entry
->target_value
= sym_value
;
5221 stub_entry
= elf32_arm_add_stub (stub_name
, section
,
5223 if (stub_entry
== NULL
)
5226 goto error_ret_free_internal
;
5229 stub_entry
->target_value
= sym_value
;
5230 stub_entry
->target_section
= sym_sec
;
5231 stub_entry
->stub_type
= stub_type
;
5232 stub_entry
->h
= hash
;
5233 stub_entry
->branch_type
= branch_type
;
5235 if (sym_name
== NULL
)
5236 sym_name
= "unnamed";
5237 stub_entry
->output_name
= (char *)
5238 bfd_alloc (htab
->stub_bfd
,
5239 sizeof (THUMB2ARM_GLUE_ENTRY_NAME
)
5240 + strlen (sym_name
));
5241 if (stub_entry
->output_name
== NULL
)
5244 goto error_ret_free_internal
;
5247 /* For historical reasons, use the existing names for
5248 ARM-to-Thumb and Thumb-to-ARM stubs. */
5249 if ((r_type
== (unsigned int) R_ARM_THM_CALL
5250 || r_type
== (unsigned int) R_ARM_THM_JUMP24
)
5251 && branch_type
== ST_BRANCH_TO_ARM
)
5252 sprintf (stub_entry
->output_name
,
5253 THUMB2ARM_GLUE_ENTRY_NAME
, sym_name
);
5254 else if ((r_type
== (unsigned int) R_ARM_CALL
5255 || r_type
== (unsigned int) R_ARM_JUMP24
)
5256 && branch_type
== ST_BRANCH_TO_THUMB
)
5257 sprintf (stub_entry
->output_name
,
5258 ARM2THUMB_GLUE_ENTRY_NAME
, sym_name
);
5260 sprintf (stub_entry
->output_name
, STUB_ENTRY_NAME
,
5263 stub_changed
= TRUE
;
5267 /* Look for relocations which might trigger Cortex-A8
5269 if (htab
->fix_cortex_a8
5270 && (r_type
== (unsigned int) R_ARM_THM_JUMP24
5271 || r_type
== (unsigned int) R_ARM_THM_JUMP19
5272 || r_type
== (unsigned int) R_ARM_THM_CALL
5273 || r_type
== (unsigned int) R_ARM_THM_XPC22
))
5275 bfd_vma from
= section
->output_section
->vma
5276 + section
->output_offset
5279 if ((from
& 0xfff) == 0xffe)
5281 /* Found a candidate. Note we haven't checked the
5282 destination is within 4K here: if we do so (and
5283 don't create an entry in a8_relocs) we can't tell
5284 that a branch should have been relocated when
5286 if (num_a8_relocs
== a8_reloc_table_size
)
5288 a8_reloc_table_size
*= 2;
5289 a8_relocs
= (struct a8_erratum_reloc
*)
5290 bfd_realloc (a8_relocs
,
5291 sizeof (struct a8_erratum_reloc
)
5292 * a8_reloc_table_size
);
5295 a8_relocs
[num_a8_relocs
].from
= from
;
5296 a8_relocs
[num_a8_relocs
].destination
= destination
;
5297 a8_relocs
[num_a8_relocs
].r_type
= r_type
;
5298 a8_relocs
[num_a8_relocs
].branch_type
= branch_type
;
5299 a8_relocs
[num_a8_relocs
].sym_name
= sym_name
;
5300 a8_relocs
[num_a8_relocs
].non_a8_stub
= created_stub
;
5301 a8_relocs
[num_a8_relocs
].hash
= hash
;
5308 /* We're done with the internal relocs, free them. */
5309 if (elf_section_data (section
)->relocs
== NULL
)
5310 free (internal_relocs
);
5313 if (htab
->fix_cortex_a8
)
5315 /* Sort relocs which might apply to Cortex-A8 erratum. */
5316 qsort (a8_relocs
, num_a8_relocs
,
5317 sizeof (struct a8_erratum_reloc
),
5320 /* Scan for branches which might trigger Cortex-A8 erratum. */
5321 if (cortex_a8_erratum_scan (input_bfd
, info
, &a8_fixes
,
5322 &num_a8_fixes
, &a8_fix_table_size
,
5323 a8_relocs
, num_a8_relocs
,
5324 prev_num_a8_fixes
, &stub_changed
)
5326 goto error_ret_free_local
;
5330 if (prev_num_a8_fixes
!= num_a8_fixes
)
5331 stub_changed
= TRUE
;
5336 /* OK, we've added some stubs. Find out the new size of the
5338 for (stub_sec
= htab
->stub_bfd
->sections
;
5340 stub_sec
= stub_sec
->next
)
5342 /* Ignore non-stub sections. */
5343 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
5349 bfd_hash_traverse (&htab
->stub_hash_table
, arm_size_one_stub
, htab
);
5351 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
5352 if (htab
->fix_cortex_a8
)
5353 for (i
= 0; i
< num_a8_fixes
; i
++)
5355 stub_sec
= elf32_arm_create_or_find_stub_sec (NULL
,
5356 a8_fixes
[i
].section
, htab
);
5358 if (stub_sec
== NULL
)
5359 goto error_ret_free_local
;
5362 += find_stub_size_and_template (a8_fixes
[i
].stub_type
, NULL
,
5367 /* Ask the linker to do its stuff. */
5368 (*htab
->layout_sections_again
) ();
5371 /* Add stubs for Cortex-A8 erratum fixes now. */
5372 if (htab
->fix_cortex_a8
)
5374 for (i
= 0; i
< num_a8_fixes
; i
++)
5376 struct elf32_arm_stub_hash_entry
*stub_entry
;
5377 char *stub_name
= a8_fixes
[i
].stub_name
;
5378 asection
*section
= a8_fixes
[i
].section
;
5379 unsigned int section_id
= a8_fixes
[i
].section
->id
;
5380 asection
*link_sec
= htab
->stub_group
[section_id
].link_sec
;
5381 asection
*stub_sec
= htab
->stub_group
[section_id
].stub_sec
;
5382 const insn_sequence
*template_sequence
;
5383 int template_size
, size
= 0;
5385 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
5387 if (stub_entry
== NULL
)
5389 (*_bfd_error_handler
) (_("%s: cannot create stub entry %s"),
5395 stub_entry
->stub_sec
= stub_sec
;
5396 stub_entry
->stub_offset
= 0;
5397 stub_entry
->id_sec
= link_sec
;
5398 stub_entry
->stub_type
= a8_fixes
[i
].stub_type
;
5399 stub_entry
->target_section
= a8_fixes
[i
].section
;
5400 stub_entry
->target_value
= a8_fixes
[i
].offset
;
5401 stub_entry
->target_addend
= a8_fixes
[i
].addend
;
5402 stub_entry
->orig_insn
= a8_fixes
[i
].orig_insn
;
5403 stub_entry
->branch_type
= a8_fixes
[i
].branch_type
;
5405 size
= find_stub_size_and_template (a8_fixes
[i
].stub_type
,
5409 stub_entry
->stub_size
= size
;
5410 stub_entry
->stub_template
= template_sequence
;
5411 stub_entry
->stub_template_size
= template_size
;
5414 /* Stash the Cortex-A8 erratum fix array for use later in
5415 elf32_arm_write_section(). */
5416 htab
->a8_erratum_fixes
= a8_fixes
;
5417 htab
->num_a8_erratum_fixes
= num_a8_fixes
;
5421 htab
->a8_erratum_fixes
= NULL
;
5422 htab
->num_a8_erratum_fixes
= 0;
5426 error_ret_free_local
:
5430 /* Build all the stubs associated with the current output file. The
5431 stubs are kept in a hash table attached to the main linker hash
5432 table. We also set up the .plt entries for statically linked PIC
5433 functions here. This function is called via arm_elf_finish in the
5437 elf32_arm_build_stubs (struct bfd_link_info
*info
)
5440 struct bfd_hash_table
*table
;
5441 struct elf32_arm_link_hash_table
*htab
;
5443 htab
= elf32_arm_hash_table (info
);
5447 for (stub_sec
= htab
->stub_bfd
->sections
;
5449 stub_sec
= stub_sec
->next
)
5453 /* Ignore non-stub sections. */
5454 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
5457 /* Allocate memory to hold the linker stubs. */
5458 size
= stub_sec
->size
;
5459 stub_sec
->contents
= (unsigned char *) bfd_zalloc (htab
->stub_bfd
, size
);
5460 if (stub_sec
->contents
== NULL
&& size
!= 0)
5465 /* Build the stubs as directed by the stub hash table. */
5466 table
= &htab
->stub_hash_table
;
5467 bfd_hash_traverse (table
, arm_build_one_stub
, info
);
5468 if (htab
->fix_cortex_a8
)
5470 /* Place the cortex a8 stubs last. */
5471 htab
->fix_cortex_a8
= -1;
5472 bfd_hash_traverse (table
, arm_build_one_stub
, info
);
5478 /* Locate the Thumb encoded calling stub for NAME. */
5480 static struct elf_link_hash_entry
*
5481 find_thumb_glue (struct bfd_link_info
*link_info
,
5483 char **error_message
)
5486 struct elf_link_hash_entry
*hash
;
5487 struct elf32_arm_link_hash_table
*hash_table
;
5489 /* We need a pointer to the armelf specific hash table. */
5490 hash_table
= elf32_arm_hash_table (link_info
);
5491 if (hash_table
== NULL
)
5494 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen (name
)
5495 + strlen (THUMB2ARM_GLUE_ENTRY_NAME
) + 1);
5497 BFD_ASSERT (tmp_name
);
5499 sprintf (tmp_name
, THUMB2ARM_GLUE_ENTRY_NAME
, name
);
5501 hash
= elf_link_hash_lookup
5502 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
5505 && asprintf (error_message
, _("unable to find THUMB glue '%s' for '%s'"),
5506 tmp_name
, name
) == -1)
5507 *error_message
= (char *) bfd_errmsg (bfd_error_system_call
);
5514 /* Locate the ARM encoded calling stub for NAME. */
5516 static struct elf_link_hash_entry
*
5517 find_arm_glue (struct bfd_link_info
*link_info
,
5519 char **error_message
)
5522 struct elf_link_hash_entry
*myh
;
5523 struct elf32_arm_link_hash_table
*hash_table
;
5525 /* We need a pointer to the elfarm specific hash table. */
5526 hash_table
= elf32_arm_hash_table (link_info
);
5527 if (hash_table
== NULL
)
5530 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen (name
)
5531 + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
5533 BFD_ASSERT (tmp_name
);
5535 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
5537 myh
= elf_link_hash_lookup
5538 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
5541 && asprintf (error_message
, _("unable to find ARM glue '%s' for '%s'"),
5542 tmp_name
, name
) == -1)
5543 *error_message
= (char *) bfd_errmsg (bfd_error_system_call
);
5550 /* ARM->Thumb glue (static images):
5554 ldr r12, __func_addr
5557 .word func @ behave as if you saw a ARM_32 reloc.
5564 .word func @ behave as if you saw a ARM_32 reloc.
5566 (relocatable images)
5569 ldr r12, __func_offset
5575 #define ARM2THUMB_STATIC_GLUE_SIZE 12
5576 static const insn32 a2t1_ldr_insn
= 0xe59fc000;
5577 static const insn32 a2t2_bx_r12_insn
= 0xe12fff1c;
5578 static const insn32 a2t3_func_addr_insn
= 0x00000001;
5580 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
5581 static const insn32 a2t1v5_ldr_insn
= 0xe51ff004;
5582 static const insn32 a2t2v5_func_addr_insn
= 0x00000001;
5584 #define ARM2THUMB_PIC_GLUE_SIZE 16
5585 static const insn32 a2t1p_ldr_insn
= 0xe59fc004;
5586 static const insn32 a2t2p_add_pc_insn
= 0xe08cc00f;
5587 static const insn32 a2t3p_bx_r12_insn
= 0xe12fff1c;
5589 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
5593 __func_from_thumb: __func_from_thumb:
5595 nop ldr r6, __func_addr
5605 #define THUMB2ARM_GLUE_SIZE 8
5606 static const insn16 t2a1_bx_pc_insn
= 0x4778;
5607 static const insn16 t2a2_noop_insn
= 0x46c0;
5608 static const insn32 t2a3_b_insn
= 0xea000000;
5610 #define VFP11_ERRATUM_VENEER_SIZE 8
5612 #define ARM_BX_VENEER_SIZE 12
5613 static const insn32 armbx1_tst_insn
= 0xe3100001;
5614 static const insn32 armbx2_moveq_insn
= 0x01a0f000;
5615 static const insn32 armbx3_bx_insn
= 0xe12fff10;
5617 #ifndef ELFARM_NABI_C_INCLUDED
5619 arm_allocate_glue_section_space (bfd
* abfd
, bfd_size_type size
, const char * name
)
5622 bfd_byte
* contents
;
5626 /* Do not include empty glue sections in the output. */
5629 s
= bfd_get_linker_section (abfd
, name
);
5631 s
->flags
|= SEC_EXCLUDE
;
5636 BFD_ASSERT (abfd
!= NULL
);
5638 s
= bfd_get_linker_section (abfd
, name
);
5639 BFD_ASSERT (s
!= NULL
);
5641 contents
= (bfd_byte
*) bfd_alloc (abfd
, size
);
5643 BFD_ASSERT (s
->size
== size
);
5644 s
->contents
= contents
;
5648 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info
* info
)
5650 struct elf32_arm_link_hash_table
* globals
;
5652 globals
= elf32_arm_hash_table (info
);
5653 BFD_ASSERT (globals
!= NULL
);
5655 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
5656 globals
->arm_glue_size
,
5657 ARM2THUMB_GLUE_SECTION_NAME
);
5659 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
5660 globals
->thumb_glue_size
,
5661 THUMB2ARM_GLUE_SECTION_NAME
);
5663 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
5664 globals
->vfp11_erratum_glue_size
,
5665 VFP11_ERRATUM_VENEER_SECTION_NAME
);
5667 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
5668 globals
->bx_glue_size
,
5669 ARM_BX_GLUE_SECTION_NAME
);
5674 /* Allocate space and symbols for calling a Thumb function from Arm mode.
5675 returns the symbol identifying the stub. */
5677 static struct elf_link_hash_entry
*
5678 record_arm_to_thumb_glue (struct bfd_link_info
* link_info
,
5679 struct elf_link_hash_entry
* h
)
5681 const char * name
= h
->root
.root
.string
;
5684 struct elf_link_hash_entry
* myh
;
5685 struct bfd_link_hash_entry
* bh
;
5686 struct elf32_arm_link_hash_table
* globals
;
5690 globals
= elf32_arm_hash_table (link_info
);
5691 BFD_ASSERT (globals
!= NULL
);
5692 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
5694 s
= bfd_get_linker_section
5695 (globals
->bfd_of_glue_owner
, ARM2THUMB_GLUE_SECTION_NAME
);
5697 BFD_ASSERT (s
!= NULL
);
5699 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen (name
)
5700 + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
5702 BFD_ASSERT (tmp_name
);
5704 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
5706 myh
= elf_link_hash_lookup
5707 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
5711 /* We've already seen this guy. */
5716 /* The only trick here is using hash_table->arm_glue_size as the value.
5717 Even though the section isn't allocated yet, this is where we will be
5718 putting it. The +1 on the value marks that the stub has not been
5719 output yet - not that it is a Thumb function. */
5721 val
= globals
->arm_glue_size
+ 1;
5722 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
,
5723 tmp_name
, BSF_GLOBAL
, s
, val
,
5724 NULL
, TRUE
, FALSE
, &bh
);
5726 myh
= (struct elf_link_hash_entry
*) bh
;
5727 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5728 myh
->forced_local
= 1;
5732 if (link_info
->shared
|| globals
->root
.is_relocatable_executable
5733 || globals
->pic_veneer
)
5734 size
= ARM2THUMB_PIC_GLUE_SIZE
;
5735 else if (globals
->use_blx
)
5736 size
= ARM2THUMB_V5_STATIC_GLUE_SIZE
;
5738 size
= ARM2THUMB_STATIC_GLUE_SIZE
;
5741 globals
->arm_glue_size
+= size
;
5746 /* Allocate space for ARMv4 BX veneers. */
5749 record_arm_bx_glue (struct bfd_link_info
* link_info
, int reg
)
5752 struct elf32_arm_link_hash_table
*globals
;
5754 struct elf_link_hash_entry
*myh
;
5755 struct bfd_link_hash_entry
*bh
;
5758 /* BX PC does not need a veneer. */
5762 globals
= elf32_arm_hash_table (link_info
);
5763 BFD_ASSERT (globals
!= NULL
);
5764 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
5766 /* Check if this veneer has already been allocated. */
5767 if (globals
->bx_glue_offset
[reg
])
5770 s
= bfd_get_linker_section
5771 (globals
->bfd_of_glue_owner
, ARM_BX_GLUE_SECTION_NAME
);
5773 BFD_ASSERT (s
!= NULL
);
5775 /* Add symbol for veneer. */
5777 bfd_malloc ((bfd_size_type
) strlen (ARM_BX_GLUE_ENTRY_NAME
) + 1);
5779 BFD_ASSERT (tmp_name
);
5781 sprintf (tmp_name
, ARM_BX_GLUE_ENTRY_NAME
, reg
);
5783 myh
= elf_link_hash_lookup
5784 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
5786 BFD_ASSERT (myh
== NULL
);
5789 val
= globals
->bx_glue_size
;
5790 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
,
5791 tmp_name
, BSF_FUNCTION
| BSF_LOCAL
, s
, val
,
5792 NULL
, TRUE
, FALSE
, &bh
);
5794 myh
= (struct elf_link_hash_entry
*) bh
;
5795 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5796 myh
->forced_local
= 1;
5798 s
->size
+= ARM_BX_VENEER_SIZE
;
5799 globals
->bx_glue_offset
[reg
] = globals
->bx_glue_size
| 2;
5800 globals
->bx_glue_size
+= ARM_BX_VENEER_SIZE
;
5804 /* Add an entry to the code/data map for section SEC. */
5807 elf32_arm_section_map_add (asection
*sec
, char type
, bfd_vma vma
)
5809 struct _arm_elf_section_data
*sec_data
= elf32_arm_section_data (sec
);
5810 unsigned int newidx
;
5812 if (sec_data
->map
== NULL
)
5814 sec_data
->map
= (elf32_arm_section_map
*)
5815 bfd_malloc (sizeof (elf32_arm_section_map
));
5816 sec_data
->mapcount
= 0;
5817 sec_data
->mapsize
= 1;
5820 newidx
= sec_data
->mapcount
++;
5822 if (sec_data
->mapcount
> sec_data
->mapsize
)
5824 sec_data
->mapsize
*= 2;
5825 sec_data
->map
= (elf32_arm_section_map
*)
5826 bfd_realloc_or_free (sec_data
->map
, sec_data
->mapsize
5827 * sizeof (elf32_arm_section_map
));
5832 sec_data
->map
[newidx
].vma
= vma
;
5833 sec_data
->map
[newidx
].type
= type
;
5838 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
5839 veneers are handled for now. */
5842 record_vfp11_erratum_veneer (struct bfd_link_info
*link_info
,
5843 elf32_vfp11_erratum_list
*branch
,
5845 asection
*branch_sec
,
5846 unsigned int offset
)
5849 struct elf32_arm_link_hash_table
*hash_table
;
5851 struct elf_link_hash_entry
*myh
;
5852 struct bfd_link_hash_entry
*bh
;
5854 struct _arm_elf_section_data
*sec_data
;
5855 elf32_vfp11_erratum_list
*newerr
;
5857 hash_table
= elf32_arm_hash_table (link_info
);
5858 BFD_ASSERT (hash_table
!= NULL
);
5859 BFD_ASSERT (hash_table
->bfd_of_glue_owner
!= NULL
);
5861 s
= bfd_get_linker_section
5862 (hash_table
->bfd_of_glue_owner
, VFP11_ERRATUM_VENEER_SECTION_NAME
);
5864 sec_data
= elf32_arm_section_data (s
);
5866 BFD_ASSERT (s
!= NULL
);
5868 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen
5869 (VFP11_ERRATUM_VENEER_ENTRY_NAME
) + 10);
5871 BFD_ASSERT (tmp_name
);
5873 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
,
5874 hash_table
->num_vfp11_fixes
);
5876 myh
= elf_link_hash_lookup
5877 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
5879 BFD_ASSERT (myh
== NULL
);
5882 val
= hash_table
->vfp11_erratum_glue_size
;
5883 _bfd_generic_link_add_one_symbol (link_info
, hash_table
->bfd_of_glue_owner
,
5884 tmp_name
, BSF_FUNCTION
| BSF_LOCAL
, s
, val
,
5885 NULL
, TRUE
, FALSE
, &bh
);
5887 myh
= (struct elf_link_hash_entry
*) bh
;
5888 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5889 myh
->forced_local
= 1;
5891 /* Link veneer back to calling location. */
5892 sec_data
->erratumcount
+= 1;
5893 newerr
= (elf32_vfp11_erratum_list
*)
5894 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list
));
5896 newerr
->type
= VFP11_ERRATUM_ARM_VENEER
;
5898 newerr
->u
.v
.branch
= branch
;
5899 newerr
->u
.v
.id
= hash_table
->num_vfp11_fixes
;
5900 branch
->u
.b
.veneer
= newerr
;
5902 newerr
->next
= sec_data
->erratumlist
;
5903 sec_data
->erratumlist
= newerr
;
5905 /* A symbol for the return from the veneer. */
5906 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
"_r",
5907 hash_table
->num_vfp11_fixes
);
5909 myh
= elf_link_hash_lookup
5910 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
5917 _bfd_generic_link_add_one_symbol (link_info
, branch_bfd
, tmp_name
, BSF_LOCAL
,
5918 branch_sec
, val
, NULL
, TRUE
, FALSE
, &bh
);
5920 myh
= (struct elf_link_hash_entry
*) bh
;
5921 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
5922 myh
->forced_local
= 1;
5926 /* Generate a mapping symbol for the veneer section, and explicitly add an
5927 entry for that symbol to the code/data map for the section. */
5928 if (hash_table
->vfp11_erratum_glue_size
== 0)
5931 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
5932 ever requires this erratum fix. */
5933 _bfd_generic_link_add_one_symbol (link_info
,
5934 hash_table
->bfd_of_glue_owner
, "$a",
5935 BSF_LOCAL
, s
, 0, NULL
,
5938 myh
= (struct elf_link_hash_entry
*) bh
;
5939 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
5940 myh
->forced_local
= 1;
5942 /* The elf32_arm_init_maps function only cares about symbols from input
5943 BFDs. We must make a note of this generated mapping symbol
5944 ourselves so that code byteswapping works properly in
5945 elf32_arm_write_section. */
5946 elf32_arm_section_map_add (s
, 'a', 0);
5949 s
->size
+= VFP11_ERRATUM_VENEER_SIZE
;
5950 hash_table
->vfp11_erratum_glue_size
+= VFP11_ERRATUM_VENEER_SIZE
;
5951 hash_table
->num_vfp11_fixes
++;
5953 /* The offset of the veneer. */
5957 #define ARM_GLUE_SECTION_FLAGS \
5958 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
5959 | SEC_READONLY | SEC_LINKER_CREATED)
5961 /* Create a fake section for use by the ARM backend of the linker. */
5964 arm_make_glue_section (bfd
* abfd
, const char * name
)
5968 sec
= bfd_get_linker_section (abfd
, name
);
5973 sec
= bfd_make_section_anyway_with_flags (abfd
, name
, ARM_GLUE_SECTION_FLAGS
);
5976 || !bfd_set_section_alignment (abfd
, sec
, 2))
5979 /* Set the gc mark to prevent the section from being removed by garbage
5980 collection, despite the fact that no relocs refer to this section. */
5986 /* Add the glue sections to ABFD. This function is called from the
5987 linker scripts in ld/emultempl/{armelf}.em. */
5990 bfd_elf32_arm_add_glue_sections_to_bfd (bfd
*abfd
,
5991 struct bfd_link_info
*info
)
5993 /* If we are only performing a partial
5994 link do not bother adding the glue. */
5995 if (info
->relocatable
)
5998 return arm_make_glue_section (abfd
, ARM2THUMB_GLUE_SECTION_NAME
)
5999 && arm_make_glue_section (abfd
, THUMB2ARM_GLUE_SECTION_NAME
)
6000 && arm_make_glue_section (abfd
, VFP11_ERRATUM_VENEER_SECTION_NAME
)
6001 && arm_make_glue_section (abfd
, ARM_BX_GLUE_SECTION_NAME
);
6004 /* Select a BFD to be used to hold the sections used by the glue code.
6005 This function is called from the linker scripts in ld/emultempl/
6009 bfd_elf32_arm_get_bfd_for_interworking (bfd
*abfd
, struct bfd_link_info
*info
)
6011 struct elf32_arm_link_hash_table
*globals
;
6013 /* If we are only performing a partial link
6014 do not bother getting a bfd to hold the glue. */
6015 if (info
->relocatable
)
6018 /* Make sure we don't attach the glue sections to a dynamic object. */
6019 BFD_ASSERT (!(abfd
->flags
& DYNAMIC
));
6021 globals
= elf32_arm_hash_table (info
);
6022 BFD_ASSERT (globals
!= NULL
);
6024 if (globals
->bfd_of_glue_owner
!= NULL
)
6027 /* Save the bfd for later use. */
6028 globals
->bfd_of_glue_owner
= abfd
;
6034 check_use_blx (struct elf32_arm_link_hash_table
*globals
)
6038 cpu_arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
6041 if (globals
->fix_arm1176
)
6043 if (cpu_arch
== TAG_CPU_ARCH_V6T2
|| cpu_arch
> TAG_CPU_ARCH_V6K
)
6044 globals
->use_blx
= 1;
6048 if (cpu_arch
> TAG_CPU_ARCH_V4T
)
6049 globals
->use_blx
= 1;
6054 bfd_elf32_arm_process_before_allocation (bfd
*abfd
,
6055 struct bfd_link_info
*link_info
)
6057 Elf_Internal_Shdr
*symtab_hdr
;
6058 Elf_Internal_Rela
*internal_relocs
= NULL
;
6059 Elf_Internal_Rela
*irel
, *irelend
;
6060 bfd_byte
*contents
= NULL
;
6063 struct elf32_arm_link_hash_table
*globals
;
6065 /* If we are only performing a partial link do not bother
6066 to construct any glue. */
6067 if (link_info
->relocatable
)
6070 /* Here we have a bfd that is to be included on the link. We have a
6071 hook to do reloc rummaging, before section sizes are nailed down. */
6072 globals
= elf32_arm_hash_table (link_info
);
6073 BFD_ASSERT (globals
!= NULL
);
6075 check_use_blx (globals
);
6077 if (globals
->byteswap_code
&& !bfd_big_endian (abfd
))
6079 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
6084 /* PR 5398: If we have not decided to include any loadable sections in
6085 the output then we will not have a glue owner bfd. This is OK, it
6086 just means that there is nothing else for us to do here. */
6087 if (globals
->bfd_of_glue_owner
== NULL
)
6090 /* Rummage around all the relocs and map the glue vectors. */
6091 sec
= abfd
->sections
;
6096 for (; sec
!= NULL
; sec
= sec
->next
)
6098 if (sec
->reloc_count
== 0)
6101 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
6104 symtab_hdr
= & elf_symtab_hdr (abfd
);
6106 /* Load the relocs. */
6108 = _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
, FALSE
);
6110 if (internal_relocs
== NULL
)
6113 irelend
= internal_relocs
+ sec
->reloc_count
;
6114 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
6117 unsigned long r_index
;
6119 struct elf_link_hash_entry
*h
;
6121 r_type
= ELF32_R_TYPE (irel
->r_info
);
6122 r_index
= ELF32_R_SYM (irel
->r_info
);
6124 /* These are the only relocation types we care about. */
6125 if ( r_type
!= R_ARM_PC24
6126 && (r_type
!= R_ARM_V4BX
|| globals
->fix_v4bx
< 2))
6129 /* Get the section contents if we haven't done so already. */
6130 if (contents
== NULL
)
6132 /* Get cached copy if it exists. */
6133 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
6134 contents
= elf_section_data (sec
)->this_hdr
.contents
;
6137 /* Go get them off disk. */
6138 if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
6143 if (r_type
== R_ARM_V4BX
)
6147 reg
= bfd_get_32 (abfd
, contents
+ irel
->r_offset
) & 0xf;
6148 record_arm_bx_glue (link_info
, reg
);
6152 /* If the relocation is not against a symbol it cannot concern us. */
6155 /* We don't care about local symbols. */
6156 if (r_index
< symtab_hdr
->sh_info
)
6159 /* This is an external symbol. */
6160 r_index
-= symtab_hdr
->sh_info
;
6161 h
= (struct elf_link_hash_entry
*)
6162 elf_sym_hashes (abfd
)[r_index
];
6164 /* If the relocation is against a static symbol it must be within
6165 the current section and so cannot be a cross ARM/Thumb relocation. */
6169 /* If the call will go through a PLT entry then we do not need
6171 if (globals
->root
.splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
6177 /* This one is a call from arm code. We need to look up
6178 the target of the call. If it is a thumb target, we
6180 if (h
->target_internal
== ST_BRANCH_TO_THUMB
)
6181 record_arm_to_thumb_glue (link_info
, h
);
6189 if (contents
!= NULL
6190 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6194 if (internal_relocs
!= NULL
6195 && elf_section_data (sec
)->relocs
!= internal_relocs
)
6196 free (internal_relocs
);
6197 internal_relocs
= NULL
;
6203 if (contents
!= NULL
6204 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6206 if (internal_relocs
!= NULL
6207 && elf_section_data (sec
)->relocs
!= internal_relocs
)
6208 free (internal_relocs
);
6215 /* Initialise maps of ARM/Thumb/data for input BFDs. */
6218 bfd_elf32_arm_init_maps (bfd
*abfd
)
6220 Elf_Internal_Sym
*isymbuf
;
6221 Elf_Internal_Shdr
*hdr
;
6222 unsigned int i
, localsyms
;
6224 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
6225 if (! is_arm_elf (abfd
))
6228 if ((abfd
->flags
& DYNAMIC
) != 0)
6231 hdr
= & elf_symtab_hdr (abfd
);
6232 localsyms
= hdr
->sh_info
;
6234 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
6235 should contain the number of local symbols, which should come before any
6236 global symbols. Mapping symbols are always local. */
6237 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, localsyms
, 0, NULL
, NULL
,
6240 /* No internal symbols read? Skip this BFD. */
6241 if (isymbuf
== NULL
)
6244 for (i
= 0; i
< localsyms
; i
++)
6246 Elf_Internal_Sym
*isym
= &isymbuf
[i
];
6247 asection
*sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
6251 && ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
)
6253 name
= bfd_elf_string_from_elf_section (abfd
,
6254 hdr
->sh_link
, isym
->st_name
);
6256 if (bfd_is_arm_special_symbol_name (name
,
6257 BFD_ARM_SPECIAL_SYM_TYPE_MAP
))
6258 elf32_arm_section_map_add (sec
, name
[1], isym
->st_value
);
6264 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
6265 say what they wanted. */
6268 bfd_elf32_arm_set_cortex_a8_fix (bfd
*obfd
, struct bfd_link_info
*link_info
)
6270 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
6271 obj_attribute
*out_attr
= elf_known_obj_attributes_proc (obfd
);
6273 if (globals
== NULL
)
6276 if (globals
->fix_cortex_a8
== -1)
6278 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
6279 if (out_attr
[Tag_CPU_arch
].i
== TAG_CPU_ARCH_V7
6280 && (out_attr
[Tag_CPU_arch_profile
].i
== 'A'
6281 || out_attr
[Tag_CPU_arch_profile
].i
== 0))
6282 globals
->fix_cortex_a8
= 1;
6284 globals
->fix_cortex_a8
= 0;
6290 bfd_elf32_arm_set_vfp11_fix (bfd
*obfd
, struct bfd_link_info
*link_info
)
6292 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
6293 obj_attribute
*out_attr
= elf_known_obj_attributes_proc (obfd
);
6295 if (globals
== NULL
)
6297 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
6298 if (out_attr
[Tag_CPU_arch
].i
>= TAG_CPU_ARCH_V7
)
6300 switch (globals
->vfp11_fix
)
6302 case BFD_ARM_VFP11_FIX_DEFAULT
:
6303 case BFD_ARM_VFP11_FIX_NONE
:
6304 globals
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
6308 /* Give a warning, but do as the user requests anyway. */
6309 (*_bfd_error_handler
) (_("%B: warning: selected VFP11 erratum "
6310 "workaround is not necessary for target architecture"), obfd
);
6313 else if (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_DEFAULT
)
6314 /* For earlier architectures, we might need the workaround, but do not
6315 enable it by default. If users is running with broken hardware, they
6316 must enable the erratum fix explicitly. */
6317 globals
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
6321 enum bfd_arm_vfp11_pipe
6329 /* Return a VFP register number. This is encoded as RX:X for single-precision
6330 registers, or X:RX for double-precision registers, where RX is the group of
6331 four bits in the instruction encoding and X is the single extension bit.
6332 RX and X fields are specified using their lowest (starting) bit. The return
6335 0...31: single-precision registers s0...s31
6336 32...63: double-precision registers d0...d31.
6338 Although X should be zero for VFP11 (encoding d0...d15 only), we might
6339 encounter VFP3 instructions, so we allow the full range for DP registers. */
6342 bfd_arm_vfp11_regno (unsigned int insn
, bfd_boolean is_double
, unsigned int rx
,
6346 return (((insn
>> rx
) & 0xf) | (((insn
>> x
) & 1) << 4)) + 32;
6348 return (((insn
>> rx
) & 0xf) << 1) | ((insn
>> x
) & 1);
6351 /* Set bits in *WMASK according to a register number REG as encoded by
6352 bfd_arm_vfp11_regno(). Ignore d16-d31. */
6355 bfd_arm_vfp11_write_mask (unsigned int *wmask
, unsigned int reg
)
6360 *wmask
|= 3 << ((reg
- 32) * 2);
6363 /* Return TRUE if WMASK overwrites anything in REGS. */
6366 bfd_arm_vfp11_antidependency (unsigned int wmask
, int *regs
, int numregs
)
6370 for (i
= 0; i
< numregs
; i
++)
6372 unsigned int reg
= regs
[i
];
6374 if (reg
< 32 && (wmask
& (1 << reg
)) != 0)
6382 if ((wmask
& (3 << (reg
* 2))) != 0)
6389 /* In this function, we're interested in two things: finding input registers
6390 for VFP data-processing instructions, and finding the set of registers which
6391 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
6392 hold the written set, so FLDM etc. are easy to deal with (we're only
6393 interested in 32 SP registers or 16 dp registers, due to the VFP version
6394 implemented by the chip in question). DP registers are marked by setting
6395 both SP registers in the write mask). */
6397 static enum bfd_arm_vfp11_pipe
6398 bfd_arm_vfp11_insn_decode (unsigned int insn
, unsigned int *destmask
, int *regs
,
6401 enum bfd_arm_vfp11_pipe vpipe
= VFP11_BAD
;
6402 bfd_boolean is_double
= ((insn
& 0xf00) == 0xb00) ? 1 : 0;
6404 if ((insn
& 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
6407 unsigned int fd
= bfd_arm_vfp11_regno (insn
, is_double
, 12, 22);
6408 unsigned int fm
= bfd_arm_vfp11_regno (insn
, is_double
, 0, 5);
6410 pqrs
= ((insn
& 0x00800000) >> 20)
6411 | ((insn
& 0x00300000) >> 19)
6412 | ((insn
& 0x00000040) >> 6);
6416 case 0: /* fmac[sd]. */
6417 case 1: /* fnmac[sd]. */
6418 case 2: /* fmsc[sd]. */
6419 case 3: /* fnmsc[sd]. */
6421 bfd_arm_vfp11_write_mask (destmask
, fd
);
6423 regs
[1] = bfd_arm_vfp11_regno (insn
, is_double
, 16, 7); /* Fn. */
6428 case 4: /* fmul[sd]. */
6429 case 5: /* fnmul[sd]. */
6430 case 6: /* fadd[sd]. */
6431 case 7: /* fsub[sd]. */
6435 case 8: /* fdiv[sd]. */
6438 bfd_arm_vfp11_write_mask (destmask
, fd
);
6439 regs
[0] = bfd_arm_vfp11_regno (insn
, is_double
, 16, 7); /* Fn. */
6444 case 15: /* extended opcode. */
6446 unsigned int extn
= ((insn
>> 15) & 0x1e)
6447 | ((insn
>> 7) & 1);
6451 case 0: /* fcpy[sd]. */
6452 case 1: /* fabs[sd]. */
6453 case 2: /* fneg[sd]. */
6454 case 8: /* fcmp[sd]. */
6455 case 9: /* fcmpe[sd]. */
6456 case 10: /* fcmpz[sd]. */
6457 case 11: /* fcmpez[sd]. */
6458 case 16: /* fuito[sd]. */
6459 case 17: /* fsito[sd]. */
6460 case 24: /* ftoui[sd]. */
6461 case 25: /* ftouiz[sd]. */
6462 case 26: /* ftosi[sd]. */
6463 case 27: /* ftosiz[sd]. */
6464 /* These instructions will not bounce due to underflow. */
6469 case 3: /* fsqrt[sd]. */
6470 /* fsqrt cannot underflow, but it can (perhaps) overwrite
6471 registers to cause the erratum in previous instructions. */
6472 bfd_arm_vfp11_write_mask (destmask
, fd
);
6476 case 15: /* fcvt{ds,sd}. */
6480 bfd_arm_vfp11_write_mask (destmask
, fd
);
6482 /* Only FCVTSD can underflow. */
6483 if ((insn
& 0x100) != 0)
6502 /* Two-register transfer. */
6503 else if ((insn
& 0x0fe00ed0) == 0x0c400a10)
6505 unsigned int fm
= bfd_arm_vfp11_regno (insn
, is_double
, 0, 5);
6507 if ((insn
& 0x100000) == 0)
6510 bfd_arm_vfp11_write_mask (destmask
, fm
);
6513 bfd_arm_vfp11_write_mask (destmask
, fm
);
6514 bfd_arm_vfp11_write_mask (destmask
, fm
+ 1);
6520 else if ((insn
& 0x0e100e00) == 0x0c100a00) /* A load insn. */
6522 int fd
= bfd_arm_vfp11_regno (insn
, is_double
, 12, 22);
6523 unsigned int puw
= ((insn
>> 21) & 0x1) | (((insn
>> 23) & 3) << 1);
6527 case 0: /* Two-reg transfer. We should catch these above. */
6530 case 2: /* fldm[sdx]. */
6534 unsigned int i
, offset
= insn
& 0xff;
6539 for (i
= fd
; i
< fd
+ offset
; i
++)
6540 bfd_arm_vfp11_write_mask (destmask
, i
);
6544 case 4: /* fld[sd]. */
6546 bfd_arm_vfp11_write_mask (destmask
, fd
);
6555 /* Single-register transfer. Note L==0. */
6556 else if ((insn
& 0x0f100e10) == 0x0e000a10)
6558 unsigned int opcode
= (insn
>> 21) & 7;
6559 unsigned int fn
= bfd_arm_vfp11_regno (insn
, is_double
, 16, 7);
6563 case 0: /* fmsr/fmdlr. */
6564 case 1: /* fmdhr. */
6565 /* Mark fmdhr and fmdlr as writing to the whole of the DP
6566 destination register. I don't know if this is exactly right,
6567 but it is the conservative choice. */
6568 bfd_arm_vfp11_write_mask (destmask
, fn
);
6582 static int elf32_arm_compare_mapping (const void * a
, const void * b
);
6585 /* Look for potentially-troublesome code sequences which might trigger the
6586 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
6587 (available from ARM) for details of the erratum. A short version is
6588 described in ld.texinfo. */
6591 bfd_elf32_arm_vfp11_erratum_scan (bfd
*abfd
, struct bfd_link_info
*link_info
)
6594 bfd_byte
*contents
= NULL
;
6596 int regs
[3], numregs
= 0;
6597 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
6598 int use_vector
= (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_VECTOR
);
6600 if (globals
== NULL
)
6603 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
6604 The states transition as follows:
6606 0 -> 1 (vector) or 0 -> 2 (scalar)
6607 A VFP FMAC-pipeline instruction has been seen. Fill
6608 regs[0]..regs[numregs-1] with its input operands. Remember this
6609 instruction in 'first_fmac'.
6612 Any instruction, except for a VFP instruction which overwrites
6617 A VFP instruction has been seen which overwrites any of regs[*].
6618 We must make a veneer! Reset state to 0 before examining next
6622 If we fail to match anything in state 2, reset to state 0 and reset
6623 the instruction pointer to the instruction after 'first_fmac'.
6625 If the VFP11 vector mode is in use, there must be at least two unrelated
6626 instructions between anti-dependent VFP11 instructions to properly avoid
6627 triggering the erratum, hence the use of the extra state 1. */
6629 /* If we are only performing a partial link do not bother
6630 to construct any glue. */
6631 if (link_info
->relocatable
)
6634 /* Skip if this bfd does not correspond to an ELF image. */
6635 if (! is_arm_elf (abfd
))
6638 /* We should have chosen a fix type by the time we get here. */
6639 BFD_ASSERT (globals
->vfp11_fix
!= BFD_ARM_VFP11_FIX_DEFAULT
);
6641 if (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_NONE
)
6644 /* Skip this BFD if it corresponds to an executable or dynamic object. */
6645 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
6648 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6650 unsigned int i
, span
, first_fmac
= 0, veneer_of_insn
= 0;
6651 struct _arm_elf_section_data
*sec_data
;
6653 /* If we don't have executable progbits, we're not interested in this
6654 section. Also skip if section is to be excluded. */
6655 if (elf_section_type (sec
) != SHT_PROGBITS
6656 || (elf_section_flags (sec
) & SHF_EXECINSTR
) == 0
6657 || (sec
->flags
& SEC_EXCLUDE
) != 0
6658 || sec
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
6659 || sec
->output_section
== bfd_abs_section_ptr
6660 || strcmp (sec
->name
, VFP11_ERRATUM_VENEER_SECTION_NAME
) == 0)
6663 sec_data
= elf32_arm_section_data (sec
);
6665 if (sec_data
->mapcount
== 0)
6668 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
6669 contents
= elf_section_data (sec
)->this_hdr
.contents
;
6670 else if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
6673 qsort (sec_data
->map
, sec_data
->mapcount
, sizeof (elf32_arm_section_map
),
6674 elf32_arm_compare_mapping
);
6676 for (span
= 0; span
< sec_data
->mapcount
; span
++)
6678 unsigned int span_start
= sec_data
->map
[span
].vma
;
6679 unsigned int span_end
= (span
== sec_data
->mapcount
- 1)
6680 ? sec
->size
: sec_data
->map
[span
+ 1].vma
;
6681 char span_type
= sec_data
->map
[span
].type
;
6683 /* FIXME: Only ARM mode is supported at present. We may need to
6684 support Thumb-2 mode also at some point. */
6685 if (span_type
!= 'a')
6688 for (i
= span_start
; i
< span_end
;)
6690 unsigned int next_i
= i
+ 4;
6691 unsigned int insn
= bfd_big_endian (abfd
)
6692 ? (contents
[i
] << 24)
6693 | (contents
[i
+ 1] << 16)
6694 | (contents
[i
+ 2] << 8)
6696 : (contents
[i
+ 3] << 24)
6697 | (contents
[i
+ 2] << 16)
6698 | (contents
[i
+ 1] << 8)
6700 unsigned int writemask
= 0;
6701 enum bfd_arm_vfp11_pipe vpipe
;
6706 vpipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
, regs
,
6708 /* I'm assuming the VFP11 erratum can trigger with denorm
6709 operands on either the FMAC or the DS pipeline. This might
6710 lead to slightly overenthusiastic veneer insertion. */
6711 if (vpipe
== VFP11_FMAC
|| vpipe
== VFP11_DS
)
6713 state
= use_vector
? 1 : 2;
6715 veneer_of_insn
= insn
;
6721 int other_regs
[3], other_numregs
;
6722 vpipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
,
6725 if (vpipe
!= VFP11_BAD
6726 && bfd_arm_vfp11_antidependency (writemask
, regs
,
6736 int other_regs
[3], other_numregs
;
6737 vpipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
,
6740 if (vpipe
!= VFP11_BAD
6741 && bfd_arm_vfp11_antidependency (writemask
, regs
,
6747 next_i
= first_fmac
+ 4;
6753 abort (); /* Should be unreachable. */
6758 elf32_vfp11_erratum_list
*newerr
=(elf32_vfp11_erratum_list
*)
6759 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list
));
6761 elf32_arm_section_data (sec
)->erratumcount
+= 1;
6763 newerr
->u
.b
.vfp_insn
= veneer_of_insn
;
6768 newerr
->type
= VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
;
6775 record_vfp11_erratum_veneer (link_info
, newerr
, abfd
, sec
,
6780 newerr
->next
= sec_data
->erratumlist
;
6781 sec_data
->erratumlist
= newerr
;
6790 if (contents
!= NULL
6791 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6799 if (contents
!= NULL
6800 && elf_section_data (sec
)->this_hdr
.contents
!= contents
)
6806 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6807 after sections have been laid out, using specially-named symbols. */
6810 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd
*abfd
,
6811 struct bfd_link_info
*link_info
)
6814 struct elf32_arm_link_hash_table
*globals
;
6817 if (link_info
->relocatable
)
6820 /* Skip if this bfd does not correspond to an ELF image. */
6821 if (! is_arm_elf (abfd
))
6824 globals
= elf32_arm_hash_table (link_info
);
6825 if (globals
== NULL
)
6828 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen
6829 (VFP11_ERRATUM_VENEER_ENTRY_NAME
) + 10);
6831 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
6833 struct _arm_elf_section_data
*sec_data
= elf32_arm_section_data (sec
);
6834 elf32_vfp11_erratum_list
*errnode
= sec_data
->erratumlist
;
6836 for (; errnode
!= NULL
; errnode
= errnode
->next
)
6838 struct elf_link_hash_entry
*myh
;
6841 switch (errnode
->type
)
6843 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
:
6844 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER
:
6845 /* Find veneer symbol. */
6846 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
,
6847 errnode
->u
.b
.veneer
->u
.v
.id
);
6849 myh
= elf_link_hash_lookup
6850 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
6853 (*_bfd_error_handler
) (_("%B: unable to find VFP11 veneer "
6854 "`%s'"), abfd
, tmp_name
);
6856 vma
= myh
->root
.u
.def
.section
->output_section
->vma
6857 + myh
->root
.u
.def
.section
->output_offset
6858 + myh
->root
.u
.def
.value
;
6860 errnode
->u
.b
.veneer
->vma
= vma
;
6863 case VFP11_ERRATUM_ARM_VENEER
:
6864 case VFP11_ERRATUM_THUMB_VENEER
:
6865 /* Find return location. */
6866 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
"_r",
6869 myh
= elf_link_hash_lookup
6870 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
6873 (*_bfd_error_handler
) (_("%B: unable to find VFP11 veneer "
6874 "`%s'"), abfd
, tmp_name
);
6876 vma
= myh
->root
.u
.def
.section
->output_section
->vma
6877 + myh
->root
.u
.def
.section
->output_offset
6878 + myh
->root
.u
.def
.value
;
6880 errnode
->u
.v
.branch
->vma
= vma
;
6893 /* Set target relocation values needed during linking. */
6896 bfd_elf32_arm_set_target_relocs (struct bfd
*output_bfd
,
6897 struct bfd_link_info
*link_info
,
6899 char * target2_type
,
6902 bfd_arm_vfp11_fix vfp11_fix
,
6903 int no_enum_warn
, int no_wchar_warn
,
6904 int pic_veneer
, int fix_cortex_a8
,
6907 struct elf32_arm_link_hash_table
*globals
;
6909 globals
= elf32_arm_hash_table (link_info
);
6910 if (globals
== NULL
)
6913 globals
->target1_is_rel
= target1_is_rel
;
6914 if (strcmp (target2_type
, "rel") == 0)
6915 globals
->target2_reloc
= R_ARM_REL32
;
6916 else if (strcmp (target2_type
, "abs") == 0)
6917 globals
->target2_reloc
= R_ARM_ABS32
;
6918 else if (strcmp (target2_type
, "got-rel") == 0)
6919 globals
->target2_reloc
= R_ARM_GOT_PREL
;
6922 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
6925 globals
->fix_v4bx
= fix_v4bx
;
6926 globals
->use_blx
|= use_blx
;
6927 globals
->vfp11_fix
= vfp11_fix
;
6928 globals
->pic_veneer
= pic_veneer
;
6929 globals
->fix_cortex_a8
= fix_cortex_a8
;
6930 globals
->fix_arm1176
= fix_arm1176
;
6932 BFD_ASSERT (is_arm_elf (output_bfd
));
6933 elf_arm_tdata (output_bfd
)->no_enum_size_warning
= no_enum_warn
;
6934 elf_arm_tdata (output_bfd
)->no_wchar_size_warning
= no_wchar_warn
;
6937 /* Replace the target offset of a Thumb bl or b.w instruction. */
6940 insert_thumb_branch (bfd
*abfd
, long int offset
, bfd_byte
*insn
)
6946 BFD_ASSERT ((offset
& 1) == 0);
6948 upper
= bfd_get_16 (abfd
, insn
);
6949 lower
= bfd_get_16 (abfd
, insn
+ 2);
6950 reloc_sign
= (offset
< 0) ? 1 : 0;
6951 upper
= (upper
& ~(bfd_vma
) 0x7ff)
6952 | ((offset
>> 12) & 0x3ff)
6953 | (reloc_sign
<< 10);
6954 lower
= (lower
& ~(bfd_vma
) 0x2fff)
6955 | (((!((offset
>> 23) & 1)) ^ reloc_sign
) << 13)
6956 | (((!((offset
>> 22) & 1)) ^ reloc_sign
) << 11)
6957 | ((offset
>> 1) & 0x7ff);
6958 bfd_put_16 (abfd
, upper
, insn
);
6959 bfd_put_16 (abfd
, lower
, insn
+ 2);
6962 /* Thumb code calling an ARM function. */
6965 elf32_thumb_to_arm_stub (struct bfd_link_info
* info
,
6969 asection
* input_section
,
6970 bfd_byte
* hit_data
,
6973 bfd_signed_vma addend
,
6975 char **error_message
)
6979 long int ret_offset
;
6980 struct elf_link_hash_entry
* myh
;
6981 struct elf32_arm_link_hash_table
* globals
;
6983 myh
= find_thumb_glue (info
, name
, error_message
);
6987 globals
= elf32_arm_hash_table (info
);
6988 BFD_ASSERT (globals
!= NULL
);
6989 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
6991 my_offset
= myh
->root
.u
.def
.value
;
6993 s
= bfd_get_linker_section (globals
->bfd_of_glue_owner
,
6994 THUMB2ARM_GLUE_SECTION_NAME
);
6996 BFD_ASSERT (s
!= NULL
);
6997 BFD_ASSERT (s
->contents
!= NULL
);
6998 BFD_ASSERT (s
->output_section
!= NULL
);
7000 if ((my_offset
& 0x01) == 0x01)
7003 && sym_sec
->owner
!= NULL
7004 && !INTERWORK_FLAG (sym_sec
->owner
))
7006 (*_bfd_error_handler
)
7007 (_("%B(%s): warning: interworking not enabled.\n"
7008 " first occurrence: %B: Thumb call to ARM"),
7009 sym_sec
->owner
, input_bfd
, name
);
7015 myh
->root
.u
.def
.value
= my_offset
;
7017 put_thumb_insn (globals
, output_bfd
, (bfd_vma
) t2a1_bx_pc_insn
,
7018 s
->contents
+ my_offset
);
7020 put_thumb_insn (globals
, output_bfd
, (bfd_vma
) t2a2_noop_insn
,
7021 s
->contents
+ my_offset
+ 2);
7024 /* Address of destination of the stub. */
7025 ((bfd_signed_vma
) val
)
7027 /* Offset from the start of the current section
7028 to the start of the stubs. */
7030 /* Offset of the start of this stub from the start of the stubs. */
7032 /* Address of the start of the current section. */
7033 + s
->output_section
->vma
)
7034 /* The branch instruction is 4 bytes into the stub. */
7036 /* ARM branches work from the pc of the instruction + 8. */
7039 put_arm_insn (globals
, output_bfd
,
7040 (bfd_vma
) t2a3_b_insn
| ((ret_offset
>> 2) & 0x00FFFFFF),
7041 s
->contents
+ my_offset
+ 4);
7044 BFD_ASSERT (my_offset
<= globals
->thumb_glue_size
);
7046 /* Now go back and fix up the original BL insn to point to here. */
7048 /* Address of where the stub is located. */
7049 (s
->output_section
->vma
+ s
->output_offset
+ my_offset
)
7050 /* Address of where the BL is located. */
7051 - (input_section
->output_section
->vma
+ input_section
->output_offset
7053 /* Addend in the relocation. */
7055 /* Biassing for PC-relative addressing. */
7058 insert_thumb_branch (input_bfd
, ret_offset
, hit_data
- input_section
->vma
);
7063 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
7065 static struct elf_link_hash_entry
*
7066 elf32_arm_create_thumb_stub (struct bfd_link_info
* info
,
7073 char ** error_message
)
7076 long int ret_offset
;
7077 struct elf_link_hash_entry
* myh
;
7078 struct elf32_arm_link_hash_table
* globals
;
7080 myh
= find_arm_glue (info
, name
, error_message
);
7084 globals
= elf32_arm_hash_table (info
);
7085 BFD_ASSERT (globals
!= NULL
);
7086 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
7088 my_offset
= myh
->root
.u
.def
.value
;
7090 if ((my_offset
& 0x01) == 0x01)
7093 && sym_sec
->owner
!= NULL
7094 && !INTERWORK_FLAG (sym_sec
->owner
))
7096 (*_bfd_error_handler
)
7097 (_("%B(%s): warning: interworking not enabled.\n"
7098 " first occurrence: %B: arm call to thumb"),
7099 sym_sec
->owner
, input_bfd
, name
);
7103 myh
->root
.u
.def
.value
= my_offset
;
7105 if (info
->shared
|| globals
->root
.is_relocatable_executable
7106 || globals
->pic_veneer
)
7108 /* For relocatable objects we can't use absolute addresses,
7109 so construct the address from a relative offset. */
7110 /* TODO: If the offset is small it's probably worth
7111 constructing the address with adds. */
7112 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1p_ldr_insn
,
7113 s
->contents
+ my_offset
);
7114 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t2p_add_pc_insn
,
7115 s
->contents
+ my_offset
+ 4);
7116 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t3p_bx_r12_insn
,
7117 s
->contents
+ my_offset
+ 8);
7118 /* Adjust the offset by 4 for the position of the add,
7119 and 8 for the pipeline offset. */
7120 ret_offset
= (val
- (s
->output_offset
7121 + s
->output_section
->vma
7124 bfd_put_32 (output_bfd
, ret_offset
,
7125 s
->contents
+ my_offset
+ 12);
7127 else if (globals
->use_blx
)
7129 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1v5_ldr_insn
,
7130 s
->contents
+ my_offset
);
7132 /* It's a thumb address. Add the low order bit. */
7133 bfd_put_32 (output_bfd
, val
| a2t2v5_func_addr_insn
,
7134 s
->contents
+ my_offset
+ 4);
7138 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1_ldr_insn
,
7139 s
->contents
+ my_offset
);
7141 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t2_bx_r12_insn
,
7142 s
->contents
+ my_offset
+ 4);
7144 /* It's a thumb address. Add the low order bit. */
7145 bfd_put_32 (output_bfd
, val
| a2t3_func_addr_insn
,
7146 s
->contents
+ my_offset
+ 8);
7152 BFD_ASSERT (my_offset
<= globals
->arm_glue_size
);
7157 /* Arm code calling a Thumb function. */
7160 elf32_arm_to_thumb_stub (struct bfd_link_info
* info
,
7164 asection
* input_section
,
7165 bfd_byte
* hit_data
,
7168 bfd_signed_vma addend
,
7170 char **error_message
)
7172 unsigned long int tmp
;
7175 long int ret_offset
;
7176 struct elf_link_hash_entry
* myh
;
7177 struct elf32_arm_link_hash_table
* globals
;
7179 globals
= elf32_arm_hash_table (info
);
7180 BFD_ASSERT (globals
!= NULL
);
7181 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
7183 s
= bfd_get_linker_section (globals
->bfd_of_glue_owner
,
7184 ARM2THUMB_GLUE_SECTION_NAME
);
7185 BFD_ASSERT (s
!= NULL
);
7186 BFD_ASSERT (s
->contents
!= NULL
);
7187 BFD_ASSERT (s
->output_section
!= NULL
);
7189 myh
= elf32_arm_create_thumb_stub (info
, name
, input_bfd
, output_bfd
,
7190 sym_sec
, val
, s
, error_message
);
7194 my_offset
= myh
->root
.u
.def
.value
;
7195 tmp
= bfd_get_32 (input_bfd
, hit_data
);
7196 tmp
= tmp
& 0xFF000000;
7198 /* Somehow these are both 4 too far, so subtract 8. */
7199 ret_offset
= (s
->output_offset
7201 + s
->output_section
->vma
7202 - (input_section
->output_offset
7203 + input_section
->output_section
->vma
7207 tmp
= tmp
| ((ret_offset
>> 2) & 0x00FFFFFF);
7209 bfd_put_32 (output_bfd
, (bfd_vma
) tmp
, hit_data
- input_section
->vma
);
7214 /* Populate Arm stub for an exported Thumb function. */
7217 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry
*h
, void * inf
)
7219 struct bfd_link_info
* info
= (struct bfd_link_info
*) inf
;
7221 struct elf_link_hash_entry
* myh
;
7222 struct elf32_arm_link_hash_entry
*eh
;
7223 struct elf32_arm_link_hash_table
* globals
;
7226 char *error_message
;
7228 eh
= elf32_arm_hash_entry (h
);
7229 /* Allocate stubs for exported Thumb functions on v4t. */
7230 if (eh
->export_glue
== NULL
)
7233 globals
= elf32_arm_hash_table (info
);
7234 BFD_ASSERT (globals
!= NULL
);
7235 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
7237 s
= bfd_get_linker_section (globals
->bfd_of_glue_owner
,
7238 ARM2THUMB_GLUE_SECTION_NAME
);
7239 BFD_ASSERT (s
!= NULL
);
7240 BFD_ASSERT (s
->contents
!= NULL
);
7241 BFD_ASSERT (s
->output_section
!= NULL
);
7243 sec
= eh
->export_glue
->root
.u
.def
.section
;
7245 BFD_ASSERT (sec
->output_section
!= NULL
);
7247 val
= eh
->export_glue
->root
.u
.def
.value
+ sec
->output_offset
7248 + sec
->output_section
->vma
;
7250 myh
= elf32_arm_create_thumb_stub (info
, h
->root
.root
.string
,
7251 h
->root
.u
.def
.section
->owner
,
7252 globals
->obfd
, sec
, val
, s
,
7258 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
7261 elf32_arm_bx_glue (struct bfd_link_info
* info
, int reg
)
7266 struct elf32_arm_link_hash_table
*globals
;
7268 globals
= elf32_arm_hash_table (info
);
7269 BFD_ASSERT (globals
!= NULL
);
7270 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
7272 s
= bfd_get_linker_section (globals
->bfd_of_glue_owner
,
7273 ARM_BX_GLUE_SECTION_NAME
);
7274 BFD_ASSERT (s
!= NULL
);
7275 BFD_ASSERT (s
->contents
!= NULL
);
7276 BFD_ASSERT (s
->output_section
!= NULL
);
7278 BFD_ASSERT (globals
->bx_glue_offset
[reg
] & 2);
7280 glue_addr
= globals
->bx_glue_offset
[reg
] & ~(bfd_vma
)3;
7282 if ((globals
->bx_glue_offset
[reg
] & 1) == 0)
7284 p
= s
->contents
+ glue_addr
;
7285 bfd_put_32 (globals
->obfd
, armbx1_tst_insn
+ (reg
<< 16), p
);
7286 bfd_put_32 (globals
->obfd
, armbx2_moveq_insn
+ reg
, p
+ 4);
7287 bfd_put_32 (globals
->obfd
, armbx3_bx_insn
+ reg
, p
+ 8);
7288 globals
->bx_glue_offset
[reg
] |= 1;
7291 return glue_addr
+ s
->output_section
->vma
+ s
->output_offset
;
7294 /* Generate Arm stubs for exported Thumb symbols. */
7296 elf32_arm_begin_write_processing (bfd
*abfd ATTRIBUTE_UNUSED
,
7297 struct bfd_link_info
*link_info
)
7299 struct elf32_arm_link_hash_table
* globals
;
7301 if (link_info
== NULL
)
7302 /* Ignore this if we are not called by the ELF backend linker. */
7305 globals
= elf32_arm_hash_table (link_info
);
7306 if (globals
== NULL
)
7309 /* If blx is available then exported Thumb symbols are OK and there is
7311 if (globals
->use_blx
)
7314 elf_link_hash_traverse (&globals
->root
, elf32_arm_to_thumb_export_stub
,
7318 /* Reserve space for COUNT dynamic relocations in relocation selection
7322 elf32_arm_allocate_dynrelocs (struct bfd_link_info
*info
, asection
*sreloc
,
7323 bfd_size_type count
)
7325 struct elf32_arm_link_hash_table
*htab
;
7327 htab
= elf32_arm_hash_table (info
);
7328 BFD_ASSERT (htab
->root
.dynamic_sections_created
);
7331 sreloc
->size
+= RELOC_SIZE (htab
) * count
;
7334 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
7335 dynamic, the relocations should go in SRELOC, otherwise they should
7336 go in the special .rel.iplt section. */
7339 elf32_arm_allocate_irelocs (struct bfd_link_info
*info
, asection
*sreloc
,
7340 bfd_size_type count
)
7342 struct elf32_arm_link_hash_table
*htab
;
7344 htab
= elf32_arm_hash_table (info
);
7345 if (!htab
->root
.dynamic_sections_created
)
7346 htab
->root
.irelplt
->size
+= RELOC_SIZE (htab
) * count
;
7349 BFD_ASSERT (sreloc
!= NULL
);
7350 sreloc
->size
+= RELOC_SIZE (htab
) * count
;
7354 /* Add relocation REL to the end of relocation section SRELOC. */
7357 elf32_arm_add_dynreloc (bfd
*output_bfd
, struct bfd_link_info
*info
,
7358 asection
*sreloc
, Elf_Internal_Rela
*rel
)
7361 struct elf32_arm_link_hash_table
*htab
;
7363 htab
= elf32_arm_hash_table (info
);
7364 if (!htab
->root
.dynamic_sections_created
7365 && ELF32_R_TYPE (rel
->r_info
) == R_ARM_IRELATIVE
)
7366 sreloc
= htab
->root
.irelplt
;
7369 loc
= sreloc
->contents
;
7370 loc
+= sreloc
->reloc_count
++ * RELOC_SIZE (htab
);
7371 if (sreloc
->reloc_count
* RELOC_SIZE (htab
) > sreloc
->size
)
7373 SWAP_RELOC_OUT (htab
) (output_bfd
, rel
, loc
);
7376 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
7377 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
7381 elf32_arm_allocate_plt_entry (struct bfd_link_info
*info
,
7382 bfd_boolean is_iplt_entry
,
7383 union gotplt_union
*root_plt
,
7384 struct arm_plt_info
*arm_plt
)
7386 struct elf32_arm_link_hash_table
*htab
;
7390 htab
= elf32_arm_hash_table (info
);
7394 splt
= htab
->root
.iplt
;
7395 sgotplt
= htab
->root
.igotplt
;
7397 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
7398 elf32_arm_allocate_irelocs (info
, htab
->root
.irelplt
, 1);
7402 splt
= htab
->root
.splt
;
7403 sgotplt
= htab
->root
.sgotplt
;
7405 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
7406 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelplt
, 1);
7408 /* If this is the first .plt entry, make room for the special
7410 if (splt
->size
== 0)
7411 splt
->size
+= htab
->plt_header_size
;
7414 /* Allocate the PLT entry itself, including any leading Thumb stub. */
7415 if (elf32_arm_plt_needs_thumb_stub_p (info
, arm_plt
))
7416 splt
->size
+= PLT_THUMB_STUB_SIZE
;
7417 root_plt
->offset
= splt
->size
;
7418 splt
->size
+= htab
->plt_entry_size
;
7420 if (!htab
->symbian_p
)
7422 /* We also need to make an entry in the .got.plt section, which
7423 will be placed in the .got section by the linker script. */
7424 arm_plt
->got_offset
= sgotplt
->size
- 8 * htab
->num_tls_desc
;
7430 arm_movw_immediate (bfd_vma value
)
7432 return (value
& 0x00000fff) | ((value
& 0x0000f000) << 4);
7436 arm_movt_immediate (bfd_vma value
)
7438 return ((value
& 0x0fff0000) >> 16) | ((value
& 0xf0000000) >> 12);
7441 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
7442 the entry lives in .iplt and resolves to (*SYM_VALUE)().
7443 Otherwise, DYNINDX is the index of the symbol in the dynamic
7444 symbol table and SYM_VALUE is undefined.
7446 ROOT_PLT points to the offset of the PLT entry from the start of its
7447 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
7448 bookkeeping information. */
7451 elf32_arm_populate_plt_entry (bfd
*output_bfd
, struct bfd_link_info
*info
,
7452 union gotplt_union
*root_plt
,
7453 struct arm_plt_info
*arm_plt
,
7454 int dynindx
, bfd_vma sym_value
)
7456 struct elf32_arm_link_hash_table
*htab
;
7462 Elf_Internal_Rela rel
;
7463 bfd_vma plt_header_size
;
7464 bfd_vma got_header_size
;
7466 htab
= elf32_arm_hash_table (info
);
7468 /* Pick the appropriate sections and sizes. */
7471 splt
= htab
->root
.iplt
;
7472 sgot
= htab
->root
.igotplt
;
7473 srel
= htab
->root
.irelplt
;
7475 /* There are no reserved entries in .igot.plt, and no special
7476 first entry in .iplt. */
7477 got_header_size
= 0;
7478 plt_header_size
= 0;
7482 splt
= htab
->root
.splt
;
7483 sgot
= htab
->root
.sgotplt
;
7484 srel
= htab
->root
.srelplt
;
7486 got_header_size
= get_elf_backend_data (output_bfd
)->got_header_size
;
7487 plt_header_size
= htab
->plt_header_size
;
7489 BFD_ASSERT (splt
!= NULL
&& srel
!= NULL
);
7491 /* Fill in the entry in the procedure linkage table. */
7492 if (htab
->symbian_p
)
7494 BFD_ASSERT (dynindx
>= 0);
7495 put_arm_insn (htab
, output_bfd
,
7496 elf32_arm_symbian_plt_entry
[0],
7497 splt
->contents
+ root_plt
->offset
);
7498 bfd_put_32 (output_bfd
,
7499 elf32_arm_symbian_plt_entry
[1],
7500 splt
->contents
+ root_plt
->offset
+ 4);
7502 /* Fill in the entry in the .rel.plt section. */
7503 rel
.r_offset
= (splt
->output_section
->vma
7504 + splt
->output_offset
7505 + root_plt
->offset
+ 4);
7506 rel
.r_info
= ELF32_R_INFO (dynindx
, R_ARM_GLOB_DAT
);
7508 /* Get the index in the procedure linkage table which
7509 corresponds to this symbol. This is the index of this symbol
7510 in all the symbols for which we are making plt entries. The
7511 first entry in the procedure linkage table is reserved. */
7512 plt_index
= ((root_plt
->offset
- plt_header_size
)
7513 / htab
->plt_entry_size
);
7517 bfd_vma got_offset
, got_address
, plt_address
;
7518 bfd_vma got_displacement
, initial_got_entry
;
7521 BFD_ASSERT (sgot
!= NULL
);
7523 /* Get the offset into the .(i)got.plt table of the entry that
7524 corresponds to this function. */
7525 got_offset
= (arm_plt
->got_offset
& -2);
7527 /* Get the index in the procedure linkage table which
7528 corresponds to this symbol. This is the index of this symbol
7529 in all the symbols for which we are making plt entries.
7530 After the reserved .got.plt entries, all symbols appear in
7531 the same order as in .plt. */
7532 plt_index
= (got_offset
- got_header_size
) / 4;
7534 /* Calculate the address of the GOT entry. */
7535 got_address
= (sgot
->output_section
->vma
7536 + sgot
->output_offset
7539 /* ...and the address of the PLT entry. */
7540 plt_address
= (splt
->output_section
->vma
7541 + splt
->output_offset
7542 + root_plt
->offset
);
7544 ptr
= splt
->contents
+ root_plt
->offset
;
7545 if (htab
->vxworks_p
&& info
->shared
)
7550 for (i
= 0; i
!= htab
->plt_entry_size
/ 4; i
++, ptr
+= 4)
7552 val
= elf32_arm_vxworks_shared_plt_entry
[i
];
7554 val
|= got_address
- sgot
->output_section
->vma
;
7556 val
|= plt_index
* RELOC_SIZE (htab
);
7557 if (i
== 2 || i
== 5)
7558 bfd_put_32 (output_bfd
, val
, ptr
);
7560 put_arm_insn (htab
, output_bfd
, val
, ptr
);
7563 else if (htab
->vxworks_p
)
7568 for (i
= 0; i
!= htab
->plt_entry_size
/ 4; i
++, ptr
+= 4)
7570 val
= elf32_arm_vxworks_exec_plt_entry
[i
];
7574 val
|= 0xffffff & -((root_plt
->offset
+ i
* 4 + 8) >> 2);
7576 val
|= plt_index
* RELOC_SIZE (htab
);
7577 if (i
== 2 || i
== 5)
7578 bfd_put_32 (output_bfd
, val
, ptr
);
7580 put_arm_insn (htab
, output_bfd
, val
, ptr
);
7583 loc
= (htab
->srelplt2
->contents
7584 + (plt_index
* 2 + 1) * RELOC_SIZE (htab
));
7586 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
7587 referencing the GOT for this PLT entry. */
7588 rel
.r_offset
= plt_address
+ 8;
7589 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
7590 rel
.r_addend
= got_offset
;
7591 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
7592 loc
+= RELOC_SIZE (htab
);
7594 /* Create the R_ARM_ABS32 relocation referencing the
7595 beginning of the PLT for this GOT entry. */
7596 rel
.r_offset
= got_address
;
7597 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_ARM_ABS32
);
7599 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
7601 else if (htab
->nacl_p
)
7603 /* Calculate the displacement between the PLT slot and the
7604 common tail that's part of the special initial PLT slot. */
7605 int32_t tail_displacement
7606 = ((splt
->output_section
->vma
+ splt
->output_offset
7607 + ARM_NACL_PLT_TAIL_OFFSET
)
7608 - (plt_address
+ htab
->plt_entry_size
+ 4));
7609 BFD_ASSERT ((tail_displacement
& 3) == 0);
7610 tail_displacement
>>= 2;
7612 BFD_ASSERT ((tail_displacement
& 0xff000000) == 0
7613 || (-tail_displacement
& 0xff000000) == 0);
7615 /* Calculate the displacement between the PLT slot and the entry
7616 in the GOT. The offset accounts for the value produced by
7617 adding to pc in the penultimate instruction of the PLT stub. */
7618 got_displacement
= (got_address
7619 - (plt_address
+ htab
->plt_entry_size
));
7621 /* NaCl does not support interworking at all. */
7622 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info
, arm_plt
));
7624 put_arm_insn (htab
, output_bfd
,
7625 elf32_arm_nacl_plt_entry
[0]
7626 | arm_movw_immediate (got_displacement
),
7628 put_arm_insn (htab
, output_bfd
,
7629 elf32_arm_nacl_plt_entry
[1]
7630 | arm_movt_immediate (got_displacement
),
7632 put_arm_insn (htab
, output_bfd
,
7633 elf32_arm_nacl_plt_entry
[2],
7635 put_arm_insn (htab
, output_bfd
,
7636 elf32_arm_nacl_plt_entry
[3]
7637 | (tail_displacement
& 0x00ffffff),
7642 /* Calculate the displacement between the PLT slot and the
7643 entry in the GOT. The eight-byte offset accounts for the
7644 value produced by adding to pc in the first instruction
7646 got_displacement
= got_address
- (plt_address
+ 8);
7648 BFD_ASSERT ((got_displacement
& 0xf0000000) == 0);
7650 if (elf32_arm_plt_needs_thumb_stub_p (info
, arm_plt
))
7652 put_thumb_insn (htab
, output_bfd
,
7653 elf32_arm_plt_thumb_stub
[0], ptr
- 4);
7654 put_thumb_insn (htab
, output_bfd
,
7655 elf32_arm_plt_thumb_stub
[1], ptr
- 2);
7658 put_arm_insn (htab
, output_bfd
,
7659 elf32_arm_plt_entry
[0]
7660 | ((got_displacement
& 0x0ff00000) >> 20),
7662 put_arm_insn (htab
, output_bfd
,
7663 elf32_arm_plt_entry
[1]
7664 | ((got_displacement
& 0x000ff000) >> 12),
7666 put_arm_insn (htab
, output_bfd
,
7667 elf32_arm_plt_entry
[2]
7668 | (got_displacement
& 0x00000fff),
7670 #ifdef FOUR_WORD_PLT
7671 bfd_put_32 (output_bfd
, elf32_arm_plt_entry
[3], ptr
+ 12);
7675 /* Fill in the entry in the .rel(a).(i)plt section. */
7676 rel
.r_offset
= got_address
;
7680 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
7681 The dynamic linker or static executable then calls SYM_VALUE
7682 to determine the correct run-time value of the .igot.plt entry. */
7683 rel
.r_info
= ELF32_R_INFO (0, R_ARM_IRELATIVE
);
7684 initial_got_entry
= sym_value
;
7688 rel
.r_info
= ELF32_R_INFO (dynindx
, R_ARM_JUMP_SLOT
);
7689 initial_got_entry
= (splt
->output_section
->vma
7690 + splt
->output_offset
);
7693 /* Fill in the entry in the global offset table. */
7694 bfd_put_32 (output_bfd
, initial_got_entry
,
7695 sgot
->contents
+ got_offset
);
7698 loc
= srel
->contents
+ plt_index
* RELOC_SIZE (htab
);
7699 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
7702 /* Some relocations map to different relocations depending on the
7703 target. Return the real relocation. */
7706 arm_real_reloc_type (struct elf32_arm_link_hash_table
* globals
,
7712 if (globals
->target1_is_rel
)
7718 return globals
->target2_reloc
;
7725 /* Return the base VMA address which should be subtracted from real addresses
7726 when resolving @dtpoff relocation.
7727 This is PT_TLS segment p_vaddr. */
7730 dtpoff_base (struct bfd_link_info
*info
)
7732 /* If tls_sec is NULL, we should have signalled an error already. */
7733 if (elf_hash_table (info
)->tls_sec
== NULL
)
7735 return elf_hash_table (info
)->tls_sec
->vma
;
7738 /* Return the relocation value for @tpoff relocation
7739 if STT_TLS virtual address is ADDRESS. */
7742 tpoff (struct bfd_link_info
*info
, bfd_vma address
)
7744 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
7747 /* If tls_sec is NULL, we should have signalled an error already. */
7748 if (htab
->tls_sec
== NULL
)
7750 base
= align_power ((bfd_vma
) TCB_SIZE
, htab
->tls_sec
->alignment_power
);
7751 return address
- htab
->tls_sec
->vma
+ base
;
7754 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
7755 VALUE is the relocation value. */
7757 static bfd_reloc_status_type
7758 elf32_arm_abs12_reloc (bfd
*abfd
, void *data
, bfd_vma value
)
7761 return bfd_reloc_overflow
;
7763 value
|= bfd_get_32 (abfd
, data
) & 0xfffff000;
7764 bfd_put_32 (abfd
, value
, data
);
7765 return bfd_reloc_ok
;
7768 /* Handle TLS relaxations. Relaxing is possible for symbols that use
7769 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
7770 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
7772 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
7773 is to then call final_link_relocate. Return other values in the
7776 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
7777 the pre-relaxed code. It would be nice if the relocs were updated
7778 to match the optimization. */
7780 static bfd_reloc_status_type
7781 elf32_arm_tls_relax (struct elf32_arm_link_hash_table
*globals
,
7782 bfd
*input_bfd
, asection
*input_sec
, bfd_byte
*contents
,
7783 Elf_Internal_Rela
*rel
, unsigned long is_local
)
7787 switch (ELF32_R_TYPE (rel
->r_info
))
7790 return bfd_reloc_notsupported
;
7792 case R_ARM_TLS_GOTDESC
:
7797 insn
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
7799 insn
-= 5; /* THUMB */
7801 insn
-= 8; /* ARM */
7803 bfd_put_32 (input_bfd
, insn
, contents
+ rel
->r_offset
);
7804 return bfd_reloc_continue
;
7806 case R_ARM_THM_TLS_DESCSEQ
:
7808 insn
= bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
);
7809 if ((insn
& 0xff78) == 0x4478) /* add rx, pc */
7813 bfd_put_16 (input_bfd
, 0x46c0, contents
+ rel
->r_offset
);
7815 else if ((insn
& 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
7819 bfd_put_16 (input_bfd
, 0x46c0, contents
+ rel
->r_offset
);
7822 bfd_put_16 (input_bfd
, insn
& 0xf83f, contents
+ rel
->r_offset
);
7824 else if ((insn
& 0xff87) == 0x4780) /* blx rx */
7828 bfd_put_16 (input_bfd
, 0x46c0, contents
+ rel
->r_offset
);
7831 bfd_put_16 (input_bfd
, 0x4600 | (insn
& 0x78),
7832 contents
+ rel
->r_offset
);
7836 if ((insn
& 0xf000) == 0xf000 || (insn
& 0xf800) == 0xe800)
7837 /* It's a 32 bit instruction, fetch the rest of it for
7838 error generation. */
7840 | bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
+ 2);
7841 (*_bfd_error_handler
)
7842 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
7843 input_bfd
, input_sec
, (unsigned long)rel
->r_offset
, insn
);
7844 return bfd_reloc_notsupported
;
7848 case R_ARM_TLS_DESCSEQ
:
7850 insn
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
7851 if ((insn
& 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
7855 bfd_put_32 (input_bfd
, 0xe1a00000 | (insn
& 0xffff),
7856 contents
+ rel
->r_offset
);
7858 else if ((insn
& 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
7862 bfd_put_32 (input_bfd
, 0xe1a00000, contents
+ rel
->r_offset
);
7865 bfd_put_32 (input_bfd
, insn
& 0xfffff000,
7866 contents
+ rel
->r_offset
);
7868 else if ((insn
& 0xfffffff0) == 0xe12fff30) /* blx rx */
7872 bfd_put_32 (input_bfd
, 0xe1a00000, contents
+ rel
->r_offset
);
7875 bfd_put_32 (input_bfd
, 0xe1a00000 | (insn
& 0xf),
7876 contents
+ rel
->r_offset
);
7880 (*_bfd_error_handler
)
7881 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
7882 input_bfd
, input_sec
, (unsigned long)rel
->r_offset
, insn
);
7883 return bfd_reloc_notsupported
;
7887 case R_ARM_TLS_CALL
:
7888 /* GD->IE relaxation, turn the instruction into 'nop' or
7889 'ldr r0, [pc,r0]' */
7890 insn
= is_local
? 0xe1a00000 : 0xe79f0000;
7891 bfd_put_32 (input_bfd
, insn
, contents
+ rel
->r_offset
);
7894 case R_ARM_THM_TLS_CALL
:
7895 /* GD->IE relaxation */
7897 /* add r0,pc; ldr r0, [r0] */
7899 else if (arch_has_thumb2_nop (globals
))
7906 bfd_put_16 (input_bfd
, insn
>> 16, contents
+ rel
->r_offset
);
7907 bfd_put_16 (input_bfd
, insn
& 0xffff, contents
+ rel
->r_offset
+ 2);
7910 return bfd_reloc_ok
;
7913 /* For a given value of n, calculate the value of G_n as required to
7914 deal with group relocations. We return it in the form of an
7915 encoded constant-and-rotation, together with the final residual. If n is
7916 specified as less than zero, then final_residual is filled with the
7917 input value and no further action is performed. */
7920 calculate_group_reloc_mask (bfd_vma value
, int n
, bfd_vma
*final_residual
)
7924 bfd_vma encoded_g_n
= 0;
7925 bfd_vma residual
= value
; /* Also known as Y_n. */
7927 for (current_n
= 0; current_n
<= n
; current_n
++)
7931 /* Calculate which part of the value to mask. */
7938 /* Determine the most significant bit in the residual and
7939 align the resulting value to a 2-bit boundary. */
7940 for (msb
= 30; msb
>= 0; msb
-= 2)
7941 if (residual
& (3 << msb
))
7944 /* The desired shift is now (msb - 6), or zero, whichever
7951 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
7952 g_n
= residual
& (0xff << shift
);
7953 encoded_g_n
= (g_n
>> shift
)
7954 | ((g_n
<= 0xff ? 0 : (32 - shift
) / 2) << 8);
7956 /* Calculate the residual for the next time around. */
7960 *final_residual
= residual
;
7965 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
7966 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
7969 identify_add_or_sub (bfd_vma insn
)
7971 int opcode
= insn
& 0x1e00000;
7973 if (opcode
== 1 << 23) /* ADD */
7976 if (opcode
== 1 << 22) /* SUB */
7982 /* Perform a relocation as part of a final link. */
7984 static bfd_reloc_status_type
7985 elf32_arm_final_link_relocate (reloc_howto_type
* howto
,
7988 asection
* input_section
,
7989 bfd_byte
* contents
,
7990 Elf_Internal_Rela
* rel
,
7992 struct bfd_link_info
* info
,
7994 const char * sym_name
,
7995 unsigned char st_type
,
7996 enum arm_st_branch_type branch_type
,
7997 struct elf_link_hash_entry
* h
,
7998 bfd_boolean
* unresolved_reloc_p
,
7999 char ** error_message
)
8001 unsigned long r_type
= howto
->type
;
8002 unsigned long r_symndx
;
8003 bfd_byte
* hit_data
= contents
+ rel
->r_offset
;
8004 bfd_vma
* local_got_offsets
;
8005 bfd_vma
* local_tlsdesc_gotents
;
8008 asection
* sreloc
= NULL
;
8011 bfd_signed_vma signed_addend
;
8012 unsigned char dynreloc_st_type
;
8013 bfd_vma dynreloc_value
;
8014 struct elf32_arm_link_hash_table
* globals
;
8015 struct elf32_arm_link_hash_entry
*eh
;
8016 union gotplt_union
*root_plt
;
8017 struct arm_plt_info
*arm_plt
;
8019 bfd_vma gotplt_offset
;
8020 bfd_boolean has_iplt_entry
;
8022 globals
= elf32_arm_hash_table (info
);
8023 if (globals
== NULL
)
8024 return bfd_reloc_notsupported
;
8026 BFD_ASSERT (is_arm_elf (input_bfd
));
8028 /* Some relocation types map to different relocations depending on the
8029 target. We pick the right one here. */
8030 r_type
= arm_real_reloc_type (globals
, r_type
);
8032 /* It is possible to have linker relaxations on some TLS access
8033 models. Update our information here. */
8034 r_type
= elf32_arm_tls_transition (info
, r_type
, h
);
8036 if (r_type
!= howto
->type
)
8037 howto
= elf32_arm_howto_from_type (r_type
);
8039 /* If the start address has been set, then set the EF_ARM_HASENTRY
8040 flag. Setting this more than once is redundant, but the cost is
8041 not too high, and it keeps the code simple.
8043 The test is done here, rather than somewhere else, because the
8044 start address is only set just before the final link commences.
8046 Note - if the user deliberately sets a start address of 0, the
8047 flag will not be set. */
8048 if (bfd_get_start_address (output_bfd
) != 0)
8049 elf_elfheader (output_bfd
)->e_flags
|= EF_ARM_HASENTRY
;
8051 eh
= (struct elf32_arm_link_hash_entry
*) h
;
8052 sgot
= globals
->root
.sgot
;
8053 local_got_offsets
= elf_local_got_offsets (input_bfd
);
8054 local_tlsdesc_gotents
= elf32_arm_local_tlsdesc_gotent (input_bfd
);
8056 if (globals
->root
.dynamic_sections_created
)
8057 srelgot
= globals
->root
.srelgot
;
8061 r_symndx
= ELF32_R_SYM (rel
->r_info
);
8063 if (globals
->use_rel
)
8065 addend
= bfd_get_32 (input_bfd
, hit_data
) & howto
->src_mask
;
8067 if (addend
& ((howto
->src_mask
+ 1) >> 1))
8070 signed_addend
&= ~ howto
->src_mask
;
8071 signed_addend
|= addend
;
8074 signed_addend
= addend
;
8077 addend
= signed_addend
= rel
->r_addend
;
8079 /* Record the symbol information that should be used in dynamic
8081 dynreloc_st_type
= st_type
;
8082 dynreloc_value
= value
;
8083 if (branch_type
== ST_BRANCH_TO_THUMB
)
8084 dynreloc_value
|= 1;
8086 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
8087 VALUE appropriately for relocations that we resolve at link time. */
8088 has_iplt_entry
= FALSE
;
8089 if (elf32_arm_get_plt_info (input_bfd
, eh
, r_symndx
, &root_plt
, &arm_plt
)
8090 && root_plt
->offset
!= (bfd_vma
) -1)
8092 plt_offset
= root_plt
->offset
;
8093 gotplt_offset
= arm_plt
->got_offset
;
8095 if (h
== NULL
|| eh
->is_iplt
)
8097 has_iplt_entry
= TRUE
;
8098 splt
= globals
->root
.iplt
;
8100 /* Populate .iplt entries here, because not all of them will
8101 be seen by finish_dynamic_symbol. The lower bit is set if
8102 we have already populated the entry. */
8107 elf32_arm_populate_plt_entry (output_bfd
, info
, root_plt
, arm_plt
,
8108 -1, dynreloc_value
);
8109 root_plt
->offset
|= 1;
8112 /* Static relocations always resolve to the .iplt entry. */
8114 value
= (splt
->output_section
->vma
8115 + splt
->output_offset
8117 branch_type
= ST_BRANCH_TO_ARM
;
8119 /* If there are non-call relocations that resolve to the .iplt
8120 entry, then all dynamic ones must too. */
8121 if (arm_plt
->noncall_refcount
!= 0)
8123 dynreloc_st_type
= st_type
;
8124 dynreloc_value
= value
;
8128 /* We populate the .plt entry in finish_dynamic_symbol. */
8129 splt
= globals
->root
.splt
;
8134 plt_offset
= (bfd_vma
) -1;
8135 gotplt_offset
= (bfd_vma
) -1;
8141 /* We don't need to find a value for this symbol. It's just a
8143 *unresolved_reloc_p
= FALSE
;
8144 return bfd_reloc_ok
;
8147 if (!globals
->vxworks_p
)
8148 return elf32_arm_abs12_reloc (input_bfd
, hit_data
, value
+ addend
);
8152 case R_ARM_ABS32_NOI
:
8154 case R_ARM_REL32_NOI
:
8160 /* Handle relocations which should use the PLT entry. ABS32/REL32
8161 will use the symbol's value, which may point to a PLT entry, but we
8162 don't need to handle that here. If we created a PLT entry, all
8163 branches in this object should go to it, except if the PLT is too
8164 far away, in which case a long branch stub should be inserted. */
8165 if ((r_type
!= R_ARM_ABS32
&& r_type
!= R_ARM_REL32
8166 && r_type
!= R_ARM_ABS32_NOI
&& r_type
!= R_ARM_REL32_NOI
8167 && r_type
!= R_ARM_CALL
8168 && r_type
!= R_ARM_JUMP24
8169 && r_type
!= R_ARM_PLT32
)
8170 && plt_offset
!= (bfd_vma
) -1)
8172 /* If we've created a .plt section, and assigned a PLT entry
8173 to this function, it must either be a STT_GNU_IFUNC reference
8174 or not be known to bind locally. In other cases, we should
8175 have cleared the PLT entry by now. */
8176 BFD_ASSERT (has_iplt_entry
|| !SYMBOL_CALLS_LOCAL (info
, h
));
8178 value
= (splt
->output_section
->vma
8179 + splt
->output_offset
8181 *unresolved_reloc_p
= FALSE
;
8182 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
8183 contents
, rel
->r_offset
, value
,
8187 /* When generating a shared object or relocatable executable, these
8188 relocations are copied into the output file to be resolved at
8190 if ((info
->shared
|| globals
->root
.is_relocatable_executable
)
8191 && (input_section
->flags
& SEC_ALLOC
)
8192 && !(globals
->vxworks_p
8193 && strcmp (input_section
->output_section
->name
,
8195 && ((r_type
!= R_ARM_REL32
&& r_type
!= R_ARM_REL32_NOI
)
8196 || !SYMBOL_CALLS_LOCAL (info
, h
))
8197 && !(input_bfd
== globals
->stub_bfd
8198 && strstr (input_section
->name
, STUB_SUFFIX
))
8200 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
8201 || h
->root
.type
!= bfd_link_hash_undefweak
)
8202 && r_type
!= R_ARM_PC24
8203 && r_type
!= R_ARM_CALL
8204 && r_type
!= R_ARM_JUMP24
8205 && r_type
!= R_ARM_PREL31
8206 && r_type
!= R_ARM_PLT32
)
8208 Elf_Internal_Rela outrel
;
8209 bfd_boolean skip
, relocate
;
8211 *unresolved_reloc_p
= FALSE
;
8213 if (sreloc
== NULL
&& globals
->root
.dynamic_sections_created
)
8215 sreloc
= _bfd_elf_get_dynamic_reloc_section (input_bfd
, input_section
,
8216 ! globals
->use_rel
);
8219 return bfd_reloc_notsupported
;
8225 outrel
.r_addend
= addend
;
8227 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
8229 if (outrel
.r_offset
== (bfd_vma
) -1)
8231 else if (outrel
.r_offset
== (bfd_vma
) -2)
8232 skip
= TRUE
, relocate
= TRUE
;
8233 outrel
.r_offset
+= (input_section
->output_section
->vma
8234 + input_section
->output_offset
);
8237 memset (&outrel
, 0, sizeof outrel
);
8242 || !h
->def_regular
))
8243 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, r_type
);
8248 /* This symbol is local, or marked to become local. */
8249 BFD_ASSERT (r_type
== R_ARM_ABS32
|| r_type
== R_ARM_ABS32_NOI
);
8250 if (globals
->symbian_p
)
8254 /* On Symbian OS, the data segment and text segement
8255 can be relocated independently. Therefore, we
8256 must indicate the segment to which this
8257 relocation is relative. The BPABI allows us to
8258 use any symbol in the right segment; we just use
8259 the section symbol as it is convenient. (We
8260 cannot use the symbol given by "h" directly as it
8261 will not appear in the dynamic symbol table.)
8263 Note that the dynamic linker ignores the section
8264 symbol value, so we don't subtract osec->vma
8265 from the emitted reloc addend. */
8267 osec
= sym_sec
->output_section
;
8269 osec
= input_section
->output_section
;
8270 symbol
= elf_section_data (osec
)->dynindx
;
8273 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
8275 if ((osec
->flags
& SEC_READONLY
) == 0
8276 && htab
->data_index_section
!= NULL
)
8277 osec
= htab
->data_index_section
;
8279 osec
= htab
->text_index_section
;
8280 symbol
= elf_section_data (osec
)->dynindx
;
8282 BFD_ASSERT (symbol
!= 0);
8285 /* On SVR4-ish systems, the dynamic loader cannot
8286 relocate the text and data segments independently,
8287 so the symbol does not matter. */
8289 if (dynreloc_st_type
== STT_GNU_IFUNC
)
8290 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
8291 to the .iplt entry. Instead, every non-call reference
8292 must use an R_ARM_IRELATIVE relocation to obtain the
8293 correct run-time address. */
8294 outrel
.r_info
= ELF32_R_INFO (symbol
, R_ARM_IRELATIVE
);
8296 outrel
.r_info
= ELF32_R_INFO (symbol
, R_ARM_RELATIVE
);
8297 if (globals
->use_rel
)
8300 outrel
.r_addend
+= dynreloc_value
;
8303 elf32_arm_add_dynreloc (output_bfd
, info
, sreloc
, &outrel
);
8305 /* If this reloc is against an external symbol, we do not want to
8306 fiddle with the addend. Otherwise, we need to include the symbol
8307 value so that it becomes an addend for the dynamic reloc. */
8309 return bfd_reloc_ok
;
8311 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
8312 contents
, rel
->r_offset
,
8313 dynreloc_value
, (bfd_vma
) 0);
8315 else switch (r_type
)
8318 return elf32_arm_abs12_reloc (input_bfd
, hit_data
, value
+ addend
);
8320 case R_ARM_XPC25
: /* Arm BLX instruction. */
8323 case R_ARM_PC24
: /* Arm B/BL instruction. */
8326 struct elf32_arm_stub_hash_entry
*stub_entry
= NULL
;
8328 if (r_type
== R_ARM_XPC25
)
8330 /* Check for Arm calling Arm function. */
8331 /* FIXME: Should we translate the instruction into a BL
8332 instruction instead ? */
8333 if (branch_type
!= ST_BRANCH_TO_THUMB
)
8334 (*_bfd_error_handler
)
8335 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
8337 h
? h
->root
.root
.string
: "(local)");
8339 else if (r_type
== R_ARM_PC24
)
8341 /* Check for Arm calling Thumb function. */
8342 if (branch_type
== ST_BRANCH_TO_THUMB
)
8344 if (elf32_arm_to_thumb_stub (info
, sym_name
, input_bfd
,
8345 output_bfd
, input_section
,
8346 hit_data
, sym_sec
, rel
->r_offset
,
8347 signed_addend
, value
,
8349 return bfd_reloc_ok
;
8351 return bfd_reloc_dangerous
;
8355 /* Check if a stub has to be inserted because the
8356 destination is too far or we are changing mode. */
8357 if ( r_type
== R_ARM_CALL
8358 || r_type
== R_ARM_JUMP24
8359 || r_type
== R_ARM_PLT32
)
8361 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
8362 struct elf32_arm_link_hash_entry
*hash
;
8364 hash
= (struct elf32_arm_link_hash_entry
*) h
;
8365 stub_type
= arm_type_of_stub (info
, input_section
, rel
,
8366 st_type
, &branch_type
,
8367 hash
, value
, sym_sec
,
8368 input_bfd
, sym_name
);
8370 if (stub_type
!= arm_stub_none
)
8372 /* The target is out of reach, so redirect the
8373 branch to the local stub for this function. */
8374 stub_entry
= elf32_arm_get_stub_entry (input_section
,
8379 if (stub_entry
!= NULL
)
8380 value
= (stub_entry
->stub_offset
8381 + stub_entry
->stub_sec
->output_offset
8382 + stub_entry
->stub_sec
->output_section
->vma
);
8384 if (plt_offset
!= (bfd_vma
) -1)
8385 *unresolved_reloc_p
= FALSE
;
8390 /* If the call goes through a PLT entry, make sure to
8391 check distance to the right destination address. */
8392 if (plt_offset
!= (bfd_vma
) -1)
8394 value
= (splt
->output_section
->vma
8395 + splt
->output_offset
8397 *unresolved_reloc_p
= FALSE
;
8398 /* The PLT entry is in ARM mode, regardless of the
8400 branch_type
= ST_BRANCH_TO_ARM
;
8405 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
8407 S is the address of the symbol in the relocation.
8408 P is address of the instruction being relocated.
8409 A is the addend (extracted from the instruction) in bytes.
8411 S is held in 'value'.
8412 P is the base address of the section containing the
8413 instruction plus the offset of the reloc into that
8415 (input_section->output_section->vma +
8416 input_section->output_offset +
8418 A is the addend, converted into bytes, ie:
8421 Note: None of these operations have knowledge of the pipeline
8422 size of the processor, thus it is up to the assembler to
8423 encode this information into the addend. */
8424 value
-= (input_section
->output_section
->vma
8425 + input_section
->output_offset
);
8426 value
-= rel
->r_offset
;
8427 if (globals
->use_rel
)
8428 value
+= (signed_addend
<< howto
->size
);
8430 /* RELA addends do not have to be adjusted by howto->size. */
8431 value
+= signed_addend
;
8433 signed_addend
= value
;
8434 signed_addend
>>= howto
->rightshift
;
8436 /* A branch to an undefined weak symbol is turned into a jump to
8437 the next instruction unless a PLT entry will be created.
8438 Do the same for local undefined symbols (but not for STN_UNDEF).
8439 The jump to the next instruction is optimized as a NOP depending
8440 on the architecture. */
8441 if (h
? (h
->root
.type
== bfd_link_hash_undefweak
8442 && plt_offset
== (bfd_vma
) -1)
8443 : r_symndx
!= STN_UNDEF
&& bfd_is_und_section (sym_sec
))
8445 value
= (bfd_get_32 (input_bfd
, hit_data
) & 0xf0000000);
8447 if (arch_has_arm_nop (globals
))
8448 value
|= 0x0320f000;
8450 value
|= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
8454 /* Perform a signed range check. */
8455 if ( signed_addend
> ((bfd_signed_vma
) (howto
->dst_mask
>> 1))
8456 || signed_addend
< - ((bfd_signed_vma
) ((howto
->dst_mask
+ 1) >> 1)))
8457 return bfd_reloc_overflow
;
8459 addend
= (value
& 2);
8461 value
= (signed_addend
& howto
->dst_mask
)
8462 | (bfd_get_32 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
8464 if (r_type
== R_ARM_CALL
)
8466 /* Set the H bit in the BLX instruction. */
8467 if (branch_type
== ST_BRANCH_TO_THUMB
)
8472 value
&= ~(bfd_vma
)(1 << 24);
8475 /* Select the correct instruction (BL or BLX). */
8476 /* Only if we are not handling a BL to a stub. In this
8477 case, mode switching is performed by the stub. */
8478 if (branch_type
== ST_BRANCH_TO_THUMB
&& !stub_entry
)
8480 else if (stub_entry
|| branch_type
!= ST_BRANCH_UNKNOWN
)
8482 value
&= ~(bfd_vma
)(1 << 28);
8492 if (branch_type
== ST_BRANCH_TO_THUMB
)
8496 case R_ARM_ABS32_NOI
:
8502 if (branch_type
== ST_BRANCH_TO_THUMB
)
8504 value
-= (input_section
->output_section
->vma
8505 + input_section
->output_offset
+ rel
->r_offset
);
8508 case R_ARM_REL32_NOI
:
8510 value
-= (input_section
->output_section
->vma
8511 + input_section
->output_offset
+ rel
->r_offset
);
8515 value
-= (input_section
->output_section
->vma
8516 + input_section
->output_offset
+ rel
->r_offset
);
8517 value
+= signed_addend
;
8518 if (! h
|| h
->root
.type
!= bfd_link_hash_undefweak
)
8520 /* Check for overflow. */
8521 if ((value
^ (value
>> 1)) & (1 << 30))
8522 return bfd_reloc_overflow
;
8524 value
&= 0x7fffffff;
8525 value
|= (bfd_get_32 (input_bfd
, hit_data
) & 0x80000000);
8526 if (branch_type
== ST_BRANCH_TO_THUMB
)
8531 bfd_put_32 (input_bfd
, value
, hit_data
);
8532 return bfd_reloc_ok
;
8537 /* There is no way to tell whether the user intended to use a signed or
8538 unsigned addend. When checking for overflow we accept either,
8539 as specified by the AAELF. */
8540 if ((long) value
> 0xff || (long) value
< -0x80)
8541 return bfd_reloc_overflow
;
8543 bfd_put_8 (input_bfd
, value
, hit_data
);
8544 return bfd_reloc_ok
;
8549 /* See comment for R_ARM_ABS8. */
8550 if ((long) value
> 0xffff || (long) value
< -0x8000)
8551 return bfd_reloc_overflow
;
8553 bfd_put_16 (input_bfd
, value
, hit_data
);
8554 return bfd_reloc_ok
;
8556 case R_ARM_THM_ABS5
:
8557 /* Support ldr and str instructions for the thumb. */
8558 if (globals
->use_rel
)
8560 /* Need to refetch addend. */
8561 addend
= bfd_get_16 (input_bfd
, hit_data
) & howto
->src_mask
;
8562 /* ??? Need to determine shift amount from operand size. */
8563 addend
>>= howto
->rightshift
;
8567 /* ??? Isn't value unsigned? */
8568 if ((long) value
> 0x1f || (long) value
< -0x10)
8569 return bfd_reloc_overflow
;
8571 /* ??? Value needs to be properly shifted into place first. */
8572 value
|= bfd_get_16 (input_bfd
, hit_data
) & 0xf83f;
8573 bfd_put_16 (input_bfd
, value
, hit_data
);
8574 return bfd_reloc_ok
;
8576 case R_ARM_THM_ALU_PREL_11_0
:
8577 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
8580 bfd_signed_vma relocation
;
8582 insn
= (bfd_get_16 (input_bfd
, hit_data
) << 16)
8583 | bfd_get_16 (input_bfd
, hit_data
+ 2);
8585 if (globals
->use_rel
)
8587 signed_addend
= (insn
& 0xff) | ((insn
& 0x7000) >> 4)
8588 | ((insn
& (1 << 26)) >> 15);
8589 if (insn
& 0xf00000)
8590 signed_addend
= -signed_addend
;
8593 relocation
= value
+ signed_addend
;
8594 relocation
-= Pa (input_section
->output_section
->vma
8595 + input_section
->output_offset
8598 value
= abs (relocation
);
8600 if (value
>= 0x1000)
8601 return bfd_reloc_overflow
;
8603 insn
= (insn
& 0xfb0f8f00) | (value
& 0xff)
8604 | ((value
& 0x700) << 4)
8605 | ((value
& 0x800) << 15);
8609 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
8610 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
8612 return bfd_reloc_ok
;
8616 /* PR 10073: This reloc is not generated by the GNU toolchain,
8617 but it is supported for compatibility with third party libraries
8618 generated by other compilers, specifically the ARM/IAR. */
8621 bfd_signed_vma relocation
;
8623 insn
= bfd_get_16 (input_bfd
, hit_data
);
8625 if (globals
->use_rel
)
8626 addend
= ((((insn
& 0x00ff) << 2) + 4) & 0x3ff) -4;
8628 relocation
= value
+ addend
;
8629 relocation
-= Pa (input_section
->output_section
->vma
8630 + input_section
->output_offset
8633 value
= abs (relocation
);
8635 /* We do not check for overflow of this reloc. Although strictly
8636 speaking this is incorrect, it appears to be necessary in order
8637 to work with IAR generated relocs. Since GCC and GAS do not
8638 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
8639 a problem for them. */
8642 insn
= (insn
& 0xff00) | (value
>> 2);
8644 bfd_put_16 (input_bfd
, insn
, hit_data
);
8646 return bfd_reloc_ok
;
8649 case R_ARM_THM_PC12
:
8650 /* Corresponds to: ldr.w reg, [pc, #offset]. */
8653 bfd_signed_vma relocation
;
8655 insn
= (bfd_get_16 (input_bfd
, hit_data
) << 16)
8656 | bfd_get_16 (input_bfd
, hit_data
+ 2);
8658 if (globals
->use_rel
)
8660 signed_addend
= insn
& 0xfff;
8661 if (!(insn
& (1 << 23)))
8662 signed_addend
= -signed_addend
;
8665 relocation
= value
+ signed_addend
;
8666 relocation
-= Pa (input_section
->output_section
->vma
8667 + input_section
->output_offset
8670 value
= abs (relocation
);
8672 if (value
>= 0x1000)
8673 return bfd_reloc_overflow
;
8675 insn
= (insn
& 0xff7ff000) | value
;
8676 if (relocation
>= 0)
8679 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
8680 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
8682 return bfd_reloc_ok
;
8685 case R_ARM_THM_XPC22
:
8686 case R_ARM_THM_CALL
:
8687 case R_ARM_THM_JUMP24
:
8688 /* Thumb BL (branch long instruction). */
8692 bfd_boolean overflow
= FALSE
;
8693 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
8694 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
8695 bfd_signed_vma reloc_signed_max
;
8696 bfd_signed_vma reloc_signed_min
;
8698 bfd_signed_vma signed_check
;
8700 const int thumb2
= using_thumb2 (globals
);
8702 /* A branch to an undefined weak symbol is turned into a jump to
8703 the next instruction unless a PLT entry will be created.
8704 The jump to the next instruction is optimized as a NOP.W for
8705 Thumb-2 enabled architectures. */
8706 if (h
&& h
->root
.type
== bfd_link_hash_undefweak
8707 && plt_offset
== (bfd_vma
) -1)
8709 if (arch_has_thumb2_nop (globals
))
8711 bfd_put_16 (input_bfd
, 0xf3af, hit_data
);
8712 bfd_put_16 (input_bfd
, 0x8000, hit_data
+ 2);
8716 bfd_put_16 (input_bfd
, 0xe000, hit_data
);
8717 bfd_put_16 (input_bfd
, 0xbf00, hit_data
+ 2);
8719 return bfd_reloc_ok
;
8722 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
8723 with Thumb-1) involving the J1 and J2 bits. */
8724 if (globals
->use_rel
)
8726 bfd_vma s
= (upper_insn
& (1 << 10)) >> 10;
8727 bfd_vma upper
= upper_insn
& 0x3ff;
8728 bfd_vma lower
= lower_insn
& 0x7ff;
8729 bfd_vma j1
= (lower_insn
& (1 << 13)) >> 13;
8730 bfd_vma j2
= (lower_insn
& (1 << 11)) >> 11;
8731 bfd_vma i1
= j1
^ s
? 0 : 1;
8732 bfd_vma i2
= j2
^ s
? 0 : 1;
8734 addend
= (i1
<< 23) | (i2
<< 22) | (upper
<< 12) | (lower
<< 1);
8736 addend
= (addend
| ((s
? 0 : 1) << 24)) - (1 << 24);
8738 signed_addend
= addend
;
8741 if (r_type
== R_ARM_THM_XPC22
)
8743 /* Check for Thumb to Thumb call. */
8744 /* FIXME: Should we translate the instruction into a BL
8745 instruction instead ? */
8746 if (branch_type
== ST_BRANCH_TO_THUMB
)
8747 (*_bfd_error_handler
)
8748 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
8750 h
? h
->root
.root
.string
: "(local)");
8754 /* If it is not a call to Thumb, assume call to Arm.
8755 If it is a call relative to a section name, then it is not a
8756 function call at all, but rather a long jump. Calls through
8757 the PLT do not require stubs. */
8758 if (branch_type
== ST_BRANCH_TO_ARM
&& plt_offset
== (bfd_vma
) -1)
8760 if (globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
8762 /* Convert BL to BLX. */
8763 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
8765 else if (( r_type
!= R_ARM_THM_CALL
)
8766 && (r_type
!= R_ARM_THM_JUMP24
))
8768 if (elf32_thumb_to_arm_stub
8769 (info
, sym_name
, input_bfd
, output_bfd
, input_section
,
8770 hit_data
, sym_sec
, rel
->r_offset
, signed_addend
, value
,
8772 return bfd_reloc_ok
;
8774 return bfd_reloc_dangerous
;
8777 else if (branch_type
== ST_BRANCH_TO_THUMB
8779 && r_type
== R_ARM_THM_CALL
)
8781 /* Make sure this is a BL. */
8782 lower_insn
|= 0x1800;
8786 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
8787 if (r_type
== R_ARM_THM_CALL
|| r_type
== R_ARM_THM_JUMP24
)
8789 /* Check if a stub has to be inserted because the destination
8791 struct elf32_arm_stub_hash_entry
*stub_entry
;
8792 struct elf32_arm_link_hash_entry
*hash
;
8794 hash
= (struct elf32_arm_link_hash_entry
*) h
;
8796 stub_type
= arm_type_of_stub (info
, input_section
, rel
,
8797 st_type
, &branch_type
,
8798 hash
, value
, sym_sec
,
8799 input_bfd
, sym_name
);
8801 if (stub_type
!= arm_stub_none
)
8803 /* The target is out of reach or we are changing modes, so
8804 redirect the branch to the local stub for this
8806 stub_entry
= elf32_arm_get_stub_entry (input_section
,
8810 if (stub_entry
!= NULL
)
8812 value
= (stub_entry
->stub_offset
8813 + stub_entry
->stub_sec
->output_offset
8814 + stub_entry
->stub_sec
->output_section
->vma
);
8816 if (plt_offset
!= (bfd_vma
) -1)
8817 *unresolved_reloc_p
= FALSE
;
8820 /* If this call becomes a call to Arm, force BLX. */
8821 if (globals
->use_blx
&& (r_type
== R_ARM_THM_CALL
))
8824 && !arm_stub_is_thumb (stub_entry
->stub_type
))
8825 || branch_type
!= ST_BRANCH_TO_THUMB
)
8826 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
8831 /* Handle calls via the PLT. */
8832 if (stub_type
== arm_stub_none
&& plt_offset
!= (bfd_vma
) -1)
8834 value
= (splt
->output_section
->vma
8835 + splt
->output_offset
8838 if (globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
8840 /* If the Thumb BLX instruction is available, convert
8841 the BL to a BLX instruction to call the ARM-mode
8843 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
8844 branch_type
= ST_BRANCH_TO_ARM
;
8848 /* Target the Thumb stub before the ARM PLT entry. */
8849 value
-= PLT_THUMB_STUB_SIZE
;
8850 branch_type
= ST_BRANCH_TO_THUMB
;
8852 *unresolved_reloc_p
= FALSE
;
8855 relocation
= value
+ signed_addend
;
8857 relocation
-= (input_section
->output_section
->vma
8858 + input_section
->output_offset
8861 check
= relocation
>> howto
->rightshift
;
8863 /* If this is a signed value, the rightshift just dropped
8864 leading 1 bits (assuming twos complement). */
8865 if ((bfd_signed_vma
) relocation
>= 0)
8866 signed_check
= check
;
8868 signed_check
= check
| ~((bfd_vma
) -1 >> howto
->rightshift
);
8870 /* Calculate the permissable maximum and minimum values for
8871 this relocation according to whether we're relocating for
8873 bitsize
= howto
->bitsize
;
8876 reloc_signed_max
= (1 << (bitsize
- 1)) - 1;
8877 reloc_signed_min
= ~reloc_signed_max
;
8879 /* Assumes two's complement. */
8880 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
8883 if ((lower_insn
& 0x5000) == 0x4000)
8884 /* For a BLX instruction, make sure that the relocation is rounded up
8885 to a word boundary. This follows the semantics of the instruction
8886 which specifies that bit 1 of the target address will come from bit
8887 1 of the base address. */
8888 relocation
= (relocation
+ 2) & ~ 3;
8890 /* Put RELOCATION back into the insn. Assumes two's complement.
8891 We use the Thumb-2 encoding, which is safe even if dealing with
8892 a Thumb-1 instruction by virtue of our overflow check above. */
8893 reloc_sign
= (signed_check
< 0) ? 1 : 0;
8894 upper_insn
= (upper_insn
& ~(bfd_vma
) 0x7ff)
8895 | ((relocation
>> 12) & 0x3ff)
8896 | (reloc_sign
<< 10);
8897 lower_insn
= (lower_insn
& ~(bfd_vma
) 0x2fff)
8898 | (((!((relocation
>> 23) & 1)) ^ reloc_sign
) << 13)
8899 | (((!((relocation
>> 22) & 1)) ^ reloc_sign
) << 11)
8900 | ((relocation
>> 1) & 0x7ff);
8902 /* Put the relocated value back in the object file: */
8903 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
8904 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
8906 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
8910 case R_ARM_THM_JUMP19
:
8911 /* Thumb32 conditional branch instruction. */
8914 bfd_boolean overflow
= FALSE
;
8915 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
8916 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
8917 bfd_signed_vma reloc_signed_max
= 0xffffe;
8918 bfd_signed_vma reloc_signed_min
= -0x100000;
8919 bfd_signed_vma signed_check
;
8921 /* Need to refetch the addend, reconstruct the top three bits,
8922 and squish the two 11 bit pieces together. */
8923 if (globals
->use_rel
)
8925 bfd_vma S
= (upper_insn
& 0x0400) >> 10;
8926 bfd_vma upper
= (upper_insn
& 0x003f);
8927 bfd_vma J1
= (lower_insn
& 0x2000) >> 13;
8928 bfd_vma J2
= (lower_insn
& 0x0800) >> 11;
8929 bfd_vma lower
= (lower_insn
& 0x07ff);
8934 upper
-= 0x0100; /* Sign extend. */
8936 addend
= (upper
<< 12) | (lower
<< 1);
8937 signed_addend
= addend
;
8940 /* Handle calls via the PLT. */
8941 if (plt_offset
!= (bfd_vma
) -1)
8943 value
= (splt
->output_section
->vma
8944 + splt
->output_offset
8946 /* Target the Thumb stub before the ARM PLT entry. */
8947 value
-= PLT_THUMB_STUB_SIZE
;
8948 *unresolved_reloc_p
= FALSE
;
8951 /* ??? Should handle interworking? GCC might someday try to
8952 use this for tail calls. */
8954 relocation
= value
+ signed_addend
;
8955 relocation
-= (input_section
->output_section
->vma
8956 + input_section
->output_offset
8958 signed_check
= (bfd_signed_vma
) relocation
;
8960 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
8963 /* Put RELOCATION back into the insn. */
8965 bfd_vma S
= (relocation
& 0x00100000) >> 20;
8966 bfd_vma J2
= (relocation
& 0x00080000) >> 19;
8967 bfd_vma J1
= (relocation
& 0x00040000) >> 18;
8968 bfd_vma hi
= (relocation
& 0x0003f000) >> 12;
8969 bfd_vma lo
= (relocation
& 0x00000ffe) >> 1;
8971 upper_insn
= (upper_insn
& 0xfbc0) | (S
<< 10) | hi
;
8972 lower_insn
= (lower_insn
& 0xd000) | (J1
<< 13) | (J2
<< 11) | lo
;
8975 /* Put the relocated value back in the object file: */
8976 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
8977 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
8979 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
8982 case R_ARM_THM_JUMP11
:
8983 case R_ARM_THM_JUMP8
:
8984 case R_ARM_THM_JUMP6
:
8985 /* Thumb B (branch) instruction). */
8987 bfd_signed_vma relocation
;
8988 bfd_signed_vma reloc_signed_max
= (1 << (howto
->bitsize
- 1)) - 1;
8989 bfd_signed_vma reloc_signed_min
= ~ reloc_signed_max
;
8990 bfd_signed_vma signed_check
;
8992 /* CZB cannot jump backward. */
8993 if (r_type
== R_ARM_THM_JUMP6
)
8994 reloc_signed_min
= 0;
8996 if (globals
->use_rel
)
8998 /* Need to refetch addend. */
8999 addend
= bfd_get_16 (input_bfd
, hit_data
) & howto
->src_mask
;
9000 if (addend
& ((howto
->src_mask
+ 1) >> 1))
9003 signed_addend
&= ~ howto
->src_mask
;
9004 signed_addend
|= addend
;
9007 signed_addend
= addend
;
9008 /* The value in the insn has been right shifted. We need to
9009 undo this, so that we can perform the address calculation
9010 in terms of bytes. */
9011 signed_addend
<<= howto
->rightshift
;
9013 relocation
= value
+ signed_addend
;
9015 relocation
-= (input_section
->output_section
->vma
9016 + input_section
->output_offset
9019 relocation
>>= howto
->rightshift
;
9020 signed_check
= relocation
;
9022 if (r_type
== R_ARM_THM_JUMP6
)
9023 relocation
= ((relocation
& 0x0020) << 4) | ((relocation
& 0x001f) << 3);
9025 relocation
&= howto
->dst_mask
;
9026 relocation
|= (bfd_get_16 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
9028 bfd_put_16 (input_bfd
, relocation
, hit_data
);
9030 /* Assumes two's complement. */
9031 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
9032 return bfd_reloc_overflow
;
9034 return bfd_reloc_ok
;
9037 case R_ARM_ALU_PCREL7_0
:
9038 case R_ARM_ALU_PCREL15_8
:
9039 case R_ARM_ALU_PCREL23_15
:
9044 insn
= bfd_get_32 (input_bfd
, hit_data
);
9045 if (globals
->use_rel
)
9047 /* Extract the addend. */
9048 addend
= (insn
& 0xff) << ((insn
& 0xf00) >> 7);
9049 signed_addend
= addend
;
9051 relocation
= value
+ signed_addend
;
9053 relocation
-= (input_section
->output_section
->vma
9054 + input_section
->output_offset
9056 insn
= (insn
& ~0xfff)
9057 | ((howto
->bitpos
<< 7) & 0xf00)
9058 | ((relocation
>> howto
->bitpos
) & 0xff);
9059 bfd_put_32 (input_bfd
, value
, hit_data
);
9061 return bfd_reloc_ok
;
9063 case R_ARM_GNU_VTINHERIT
:
9064 case R_ARM_GNU_VTENTRY
:
9065 return bfd_reloc_ok
;
9067 case R_ARM_GOTOFF32
:
9068 /* Relocation is relative to the start of the
9069 global offset table. */
9071 BFD_ASSERT (sgot
!= NULL
);
9073 return bfd_reloc_notsupported
;
9075 /* If we are addressing a Thumb function, we need to adjust the
9076 address by one, so that attempts to call the function pointer will
9077 correctly interpret it as Thumb code. */
9078 if (branch_type
== ST_BRANCH_TO_THUMB
)
9081 /* Note that sgot->output_offset is not involved in this
9082 calculation. We always want the start of .got. If we
9083 define _GLOBAL_OFFSET_TABLE in a different way, as is
9084 permitted by the ABI, we might have to change this
9086 value
-= sgot
->output_section
->vma
;
9087 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
9088 contents
, rel
->r_offset
, value
,
9092 /* Use global offset table as symbol value. */
9093 BFD_ASSERT (sgot
!= NULL
);
9096 return bfd_reloc_notsupported
;
9098 *unresolved_reloc_p
= FALSE
;
9099 value
= sgot
->output_section
->vma
;
9100 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
9101 contents
, rel
->r_offset
, value
,
9105 case R_ARM_GOT_PREL
:
9106 /* Relocation is to the entry for this symbol in the
9107 global offset table. */
9109 return bfd_reloc_notsupported
;
9111 if (dynreloc_st_type
== STT_GNU_IFUNC
9112 && plt_offset
!= (bfd_vma
) -1
9113 && (h
== NULL
|| SYMBOL_REFERENCES_LOCAL (info
, h
)))
9115 /* We have a relocation against a locally-binding STT_GNU_IFUNC
9116 symbol, and the relocation resolves directly to the runtime
9117 target rather than to the .iplt entry. This means that any
9118 .got entry would be the same value as the .igot.plt entry,
9119 so there's no point creating both. */
9120 sgot
= globals
->root
.igotplt
;
9121 value
= sgot
->output_offset
+ gotplt_offset
;
9127 off
= h
->got
.offset
;
9128 BFD_ASSERT (off
!= (bfd_vma
) -1);
9131 /* We have already processsed one GOT relocation against
9134 if (globals
->root
.dynamic_sections_created
9135 && !SYMBOL_REFERENCES_LOCAL (info
, h
))
9136 *unresolved_reloc_p
= FALSE
;
9140 Elf_Internal_Rela outrel
;
9142 if (!SYMBOL_REFERENCES_LOCAL (info
, h
))
9144 /* If the symbol doesn't resolve locally in a static
9145 object, we have an undefined reference. If the
9146 symbol doesn't resolve locally in a dynamic object,
9147 it should be resolved by the dynamic linker. */
9148 if (globals
->root
.dynamic_sections_created
)
9150 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_GLOB_DAT
);
9151 *unresolved_reloc_p
= FALSE
;
9155 outrel
.r_addend
= 0;
9159 if (dynreloc_st_type
== STT_GNU_IFUNC
)
9160 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_IRELATIVE
);
9161 else if (info
->shared
)
9162 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
9165 outrel
.r_addend
= dynreloc_value
;
9168 /* The GOT entry is initialized to zero by default.
9169 See if we should install a different value. */
9170 if (outrel
.r_addend
!= 0
9171 && (outrel
.r_info
== 0 || globals
->use_rel
))
9173 bfd_put_32 (output_bfd
, outrel
.r_addend
,
9174 sgot
->contents
+ off
);
9175 outrel
.r_addend
= 0;
9178 if (outrel
.r_info
!= 0)
9180 outrel
.r_offset
= (sgot
->output_section
->vma
9181 + sgot
->output_offset
9183 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
9187 value
= sgot
->output_offset
+ off
;
9193 BFD_ASSERT (local_got_offsets
!= NULL
&&
9194 local_got_offsets
[r_symndx
] != (bfd_vma
) -1);
9196 off
= local_got_offsets
[r_symndx
];
9198 /* The offset must always be a multiple of 4. We use the
9199 least significant bit to record whether we have already
9200 generated the necessary reloc. */
9205 if (globals
->use_rel
)
9206 bfd_put_32 (output_bfd
, dynreloc_value
, sgot
->contents
+ off
);
9208 if (info
->shared
|| dynreloc_st_type
== STT_GNU_IFUNC
)
9210 Elf_Internal_Rela outrel
;
9212 outrel
.r_addend
= addend
+ dynreloc_value
;
9213 outrel
.r_offset
= (sgot
->output_section
->vma
9214 + sgot
->output_offset
9216 if (dynreloc_st_type
== STT_GNU_IFUNC
)
9217 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_IRELATIVE
);
9219 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
9220 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
9223 local_got_offsets
[r_symndx
] |= 1;
9226 value
= sgot
->output_offset
+ off
;
9228 if (r_type
!= R_ARM_GOT32
)
9229 value
+= sgot
->output_section
->vma
;
9231 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
9232 contents
, rel
->r_offset
, value
,
9235 case R_ARM_TLS_LDO32
:
9236 value
= value
- dtpoff_base (info
);
9238 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
9239 contents
, rel
->r_offset
, value
,
9242 case R_ARM_TLS_LDM32
:
9249 off
= globals
->tls_ldm_got
.offset
;
9255 /* If we don't know the module number, create a relocation
9259 Elf_Internal_Rela outrel
;
9261 if (srelgot
== NULL
)
9264 outrel
.r_addend
= 0;
9265 outrel
.r_offset
= (sgot
->output_section
->vma
9266 + sgot
->output_offset
+ off
);
9267 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32
);
9269 if (globals
->use_rel
)
9270 bfd_put_32 (output_bfd
, outrel
.r_addend
,
9271 sgot
->contents
+ off
);
9273 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
9276 bfd_put_32 (output_bfd
, 1, sgot
->contents
+ off
);
9278 globals
->tls_ldm_got
.offset
|= 1;
9281 value
= sgot
->output_section
->vma
+ sgot
->output_offset
+ off
9282 - (input_section
->output_section
->vma
+ input_section
->output_offset
+ rel
->r_offset
);
9284 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
9285 contents
, rel
->r_offset
, value
,
9289 case R_ARM_TLS_CALL
:
9290 case R_ARM_THM_TLS_CALL
:
9291 case R_ARM_TLS_GD32
:
9292 case R_ARM_TLS_IE32
:
9293 case R_ARM_TLS_GOTDESC
:
9294 case R_ARM_TLS_DESCSEQ
:
9295 case R_ARM_THM_TLS_DESCSEQ
:
9297 bfd_vma off
, offplt
;
9301 BFD_ASSERT (sgot
!= NULL
);
9306 dyn
= globals
->root
.dynamic_sections_created
;
9307 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
9309 || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
9311 *unresolved_reloc_p
= FALSE
;
9314 off
= h
->got
.offset
;
9315 offplt
= elf32_arm_hash_entry (h
)->tlsdesc_got
;
9316 tls_type
= ((struct elf32_arm_link_hash_entry
*) h
)->tls_type
;
9320 BFD_ASSERT (local_got_offsets
!= NULL
);
9321 off
= local_got_offsets
[r_symndx
];
9322 offplt
= local_tlsdesc_gotents
[r_symndx
];
9323 tls_type
= elf32_arm_local_got_tls_type (input_bfd
)[r_symndx
];
9326 /* Linker relaxations happens from one of the
9327 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
9328 if (ELF32_R_TYPE(rel
->r_info
) != r_type
)
9329 tls_type
= GOT_TLS_IE
;
9331 BFD_ASSERT (tls_type
!= GOT_UNKNOWN
);
9337 bfd_boolean need_relocs
= FALSE
;
9338 Elf_Internal_Rela outrel
;
9341 /* The GOT entries have not been initialized yet. Do it
9342 now, and emit any relocations. If both an IE GOT and a
9343 GD GOT are necessary, we emit the GD first. */
9345 if ((info
->shared
|| indx
!= 0)
9347 || ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
9348 || h
->root
.type
!= bfd_link_hash_undefweak
))
9351 BFD_ASSERT (srelgot
!= NULL
);
9354 if (tls_type
& GOT_TLS_GDESC
)
9358 /* We should have relaxed, unless this is an undefined
9360 BFD_ASSERT ((h
&& (h
->root
.type
== bfd_link_hash_undefweak
))
9362 BFD_ASSERT (globals
->sgotplt_jump_table_size
+ offplt
+ 8
9363 <= globals
->root
.sgotplt
->size
);
9365 outrel
.r_addend
= 0;
9366 outrel
.r_offset
= (globals
->root
.sgotplt
->output_section
->vma
9367 + globals
->root
.sgotplt
->output_offset
9369 + globals
->sgotplt_jump_table_size
);
9371 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_DESC
);
9372 sreloc
= globals
->root
.srelplt
;
9373 loc
= sreloc
->contents
;
9374 loc
+= globals
->next_tls_desc_index
++ * RELOC_SIZE (globals
);
9375 BFD_ASSERT (loc
+ RELOC_SIZE (globals
)
9376 <= sreloc
->contents
+ sreloc
->size
);
9378 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
9380 /* For globals, the first word in the relocation gets
9381 the relocation index and the top bit set, or zero,
9382 if we're binding now. For locals, it gets the
9383 symbol's offset in the tls section. */
9384 bfd_put_32 (output_bfd
,
9385 !h
? value
- elf_hash_table (info
)->tls_sec
->vma
9386 : info
->flags
& DF_BIND_NOW
? 0
9387 : 0x80000000 | ELF32_R_SYM (outrel
.r_info
),
9388 globals
->root
.sgotplt
->contents
+ offplt
9389 + globals
->sgotplt_jump_table_size
);
9391 /* Second word in the relocation is always zero. */
9392 bfd_put_32 (output_bfd
, 0,
9393 globals
->root
.sgotplt
->contents
+ offplt
9394 + globals
->sgotplt_jump_table_size
+ 4);
9396 if (tls_type
& GOT_TLS_GD
)
9400 outrel
.r_addend
= 0;
9401 outrel
.r_offset
= (sgot
->output_section
->vma
9402 + sgot
->output_offset
9404 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_DTPMOD32
);
9406 if (globals
->use_rel
)
9407 bfd_put_32 (output_bfd
, outrel
.r_addend
,
9408 sgot
->contents
+ cur_off
);
9410 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
9413 bfd_put_32 (output_bfd
, value
- dtpoff_base (info
),
9414 sgot
->contents
+ cur_off
+ 4);
9417 outrel
.r_addend
= 0;
9418 outrel
.r_info
= ELF32_R_INFO (indx
,
9419 R_ARM_TLS_DTPOFF32
);
9420 outrel
.r_offset
+= 4;
9422 if (globals
->use_rel
)
9423 bfd_put_32 (output_bfd
, outrel
.r_addend
,
9424 sgot
->contents
+ cur_off
+ 4);
9426 elf32_arm_add_dynreloc (output_bfd
, info
,
9432 /* If we are not emitting relocations for a
9433 general dynamic reference, then we must be in a
9434 static link or an executable link with the
9435 symbol binding locally. Mark it as belonging
9436 to module 1, the executable. */
9437 bfd_put_32 (output_bfd
, 1,
9438 sgot
->contents
+ cur_off
);
9439 bfd_put_32 (output_bfd
, value
- dtpoff_base (info
),
9440 sgot
->contents
+ cur_off
+ 4);
9446 if (tls_type
& GOT_TLS_IE
)
9451 outrel
.r_addend
= value
- dtpoff_base (info
);
9453 outrel
.r_addend
= 0;
9454 outrel
.r_offset
= (sgot
->output_section
->vma
9455 + sgot
->output_offset
9457 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_TPOFF32
);
9459 if (globals
->use_rel
)
9460 bfd_put_32 (output_bfd
, outrel
.r_addend
,
9461 sgot
->contents
+ cur_off
);
9463 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
9466 bfd_put_32 (output_bfd
, tpoff (info
, value
),
9467 sgot
->contents
+ cur_off
);
9474 local_got_offsets
[r_symndx
] |= 1;
9477 if ((tls_type
& GOT_TLS_GD
) && r_type
!= R_ARM_TLS_GD32
)
9479 else if (tls_type
& GOT_TLS_GDESC
)
9482 if (ELF32_R_TYPE(rel
->r_info
) == R_ARM_TLS_CALL
9483 || ELF32_R_TYPE(rel
->r_info
) == R_ARM_THM_TLS_CALL
)
9485 bfd_signed_vma offset
;
9486 /* TLS stubs are arm mode. The original symbol is a
9487 data object, so branch_type is bogus. */
9488 branch_type
= ST_BRANCH_TO_ARM
;
9489 enum elf32_arm_stub_type stub_type
9490 = arm_type_of_stub (info
, input_section
, rel
,
9491 st_type
, &branch_type
,
9492 (struct elf32_arm_link_hash_entry
*)h
,
9493 globals
->tls_trampoline
, globals
->root
.splt
,
9494 input_bfd
, sym_name
);
9496 if (stub_type
!= arm_stub_none
)
9498 struct elf32_arm_stub_hash_entry
*stub_entry
9499 = elf32_arm_get_stub_entry
9500 (input_section
, globals
->root
.splt
, 0, rel
,
9501 globals
, stub_type
);
9502 offset
= (stub_entry
->stub_offset
9503 + stub_entry
->stub_sec
->output_offset
9504 + stub_entry
->stub_sec
->output_section
->vma
);
9507 offset
= (globals
->root
.splt
->output_section
->vma
9508 + globals
->root
.splt
->output_offset
9509 + globals
->tls_trampoline
);
9511 if (ELF32_R_TYPE(rel
->r_info
) == R_ARM_TLS_CALL
)
9515 offset
-= (input_section
->output_section
->vma
9516 + input_section
->output_offset
9517 + rel
->r_offset
+ 8);
9521 value
= inst
| (globals
->use_blx
? 0xfa000000 : 0xeb000000);
9525 /* Thumb blx encodes the offset in a complicated
9527 unsigned upper_insn
, lower_insn
;
9530 offset
-= (input_section
->output_section
->vma
9531 + input_section
->output_offset
9532 + rel
->r_offset
+ 4);
9534 if (stub_type
!= arm_stub_none
9535 && arm_stub_is_thumb (stub_type
))
9537 lower_insn
= 0xd000;
9541 lower_insn
= 0xc000;
9542 /* Round up the offset to a word boundary */
9543 offset
= (offset
+ 2) & ~2;
9547 upper_insn
= (0xf000
9548 | ((offset
>> 12) & 0x3ff)
9550 lower_insn
|= (((!((offset
>> 23) & 1)) ^ neg
) << 13)
9551 | (((!((offset
>> 22) & 1)) ^ neg
) << 11)
9552 | ((offset
>> 1) & 0x7ff);
9553 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
9554 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
9555 return bfd_reloc_ok
;
9558 /* These relocations needs special care, as besides the fact
9559 they point somewhere in .gotplt, the addend must be
9560 adjusted accordingly depending on the type of instruction
9562 else if ((r_type
== R_ARM_TLS_GOTDESC
) && (tls_type
& GOT_TLS_GDESC
))
9564 unsigned long data
, insn
;
9567 data
= bfd_get_32 (input_bfd
, hit_data
);
9573 insn
= bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
- data
);
9574 if ((insn
& 0xf000) == 0xf000 || (insn
& 0xf800) == 0xe800)
9576 | bfd_get_16 (input_bfd
,
9577 contents
+ rel
->r_offset
- data
+ 2);
9578 if ((insn
& 0xf800c000) == 0xf000c000)
9581 else if ((insn
& 0xffffff00) == 0x4400)
9586 (*_bfd_error_handler
)
9587 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
9588 input_bfd
, input_section
,
9589 (unsigned long)rel
->r_offset
, insn
);
9590 return bfd_reloc_notsupported
;
9595 insn
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
- data
);
9600 case 0xfa: /* blx */
9604 case 0xe0: /* add */
9609 (*_bfd_error_handler
)
9610 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
9611 input_bfd
, input_section
,
9612 (unsigned long)rel
->r_offset
, insn
);
9613 return bfd_reloc_notsupported
;
9617 value
+= ((globals
->root
.sgotplt
->output_section
->vma
9618 + globals
->root
.sgotplt
->output_offset
+ off
)
9619 - (input_section
->output_section
->vma
9620 + input_section
->output_offset
9622 + globals
->sgotplt_jump_table_size
);
9625 value
= ((globals
->root
.sgot
->output_section
->vma
9626 + globals
->root
.sgot
->output_offset
+ off
)
9627 - (input_section
->output_section
->vma
9628 + input_section
->output_offset
+ rel
->r_offset
));
9630 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
9631 contents
, rel
->r_offset
, value
,
9635 case R_ARM_TLS_LE32
:
9636 if (info
->shared
&& !info
->pie
)
9638 (*_bfd_error_handler
)
9639 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
9640 input_bfd
, input_section
,
9641 (long) rel
->r_offset
, howto
->name
);
9642 return bfd_reloc_notsupported
;
9645 value
= tpoff (info
, value
);
9647 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
9648 contents
, rel
->r_offset
, value
,
9652 if (globals
->fix_v4bx
)
9654 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
9656 /* Ensure that we have a BX instruction. */
9657 BFD_ASSERT ((insn
& 0x0ffffff0) == 0x012fff10);
9659 if (globals
->fix_v4bx
== 2 && (insn
& 0xf) != 0xf)
9661 /* Branch to veneer. */
9663 glue_addr
= elf32_arm_bx_glue (info
, insn
& 0xf);
9664 glue_addr
-= input_section
->output_section
->vma
9665 + input_section
->output_offset
9666 + rel
->r_offset
+ 8;
9667 insn
= (insn
& 0xf0000000) | 0x0a000000
9668 | ((glue_addr
>> 2) & 0x00ffffff);
9672 /* Preserve Rm (lowest four bits) and the condition code
9673 (highest four bits). Other bits encode MOV PC,Rm. */
9674 insn
= (insn
& 0xf000000f) | 0x01a0f000;
9677 bfd_put_32 (input_bfd
, insn
, hit_data
);
9679 return bfd_reloc_ok
;
9681 case R_ARM_MOVW_ABS_NC
:
9682 case R_ARM_MOVT_ABS
:
9683 case R_ARM_MOVW_PREL_NC
:
9684 case R_ARM_MOVT_PREL
:
9685 /* Until we properly support segment-base-relative addressing then
9686 we assume the segment base to be zero, as for the group relocations.
9687 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
9688 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
9689 case R_ARM_MOVW_BREL_NC
:
9690 case R_ARM_MOVW_BREL
:
9691 case R_ARM_MOVT_BREL
:
9693 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
9695 if (globals
->use_rel
)
9697 addend
= ((insn
>> 4) & 0xf000) | (insn
& 0xfff);
9698 signed_addend
= (addend
^ 0x8000) - 0x8000;
9701 value
+= signed_addend
;
9703 if (r_type
== R_ARM_MOVW_PREL_NC
|| r_type
== R_ARM_MOVT_PREL
)
9704 value
-= (input_section
->output_section
->vma
9705 + input_section
->output_offset
+ rel
->r_offset
);
9707 if (r_type
== R_ARM_MOVW_BREL
&& value
>= 0x10000)
9708 return bfd_reloc_overflow
;
9710 if (branch_type
== ST_BRANCH_TO_THUMB
)
9713 if (r_type
== R_ARM_MOVT_ABS
|| r_type
== R_ARM_MOVT_PREL
9714 || r_type
== R_ARM_MOVT_BREL
)
9718 insn
|= value
& 0xfff;
9719 insn
|= (value
& 0xf000) << 4;
9720 bfd_put_32 (input_bfd
, insn
, hit_data
);
9722 return bfd_reloc_ok
;
9724 case R_ARM_THM_MOVW_ABS_NC
:
9725 case R_ARM_THM_MOVT_ABS
:
9726 case R_ARM_THM_MOVW_PREL_NC
:
9727 case R_ARM_THM_MOVT_PREL
:
9728 /* Until we properly support segment-base-relative addressing then
9729 we assume the segment base to be zero, as for the above relocations.
9730 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
9731 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
9732 as R_ARM_THM_MOVT_ABS. */
9733 case R_ARM_THM_MOVW_BREL_NC
:
9734 case R_ARM_THM_MOVW_BREL
:
9735 case R_ARM_THM_MOVT_BREL
:
9739 insn
= bfd_get_16 (input_bfd
, hit_data
) << 16;
9740 insn
|= bfd_get_16 (input_bfd
, hit_data
+ 2);
9742 if (globals
->use_rel
)
9744 addend
= ((insn
>> 4) & 0xf000)
9745 | ((insn
>> 15) & 0x0800)
9746 | ((insn
>> 4) & 0x0700)
9748 signed_addend
= (addend
^ 0x8000) - 0x8000;
9751 value
+= signed_addend
;
9753 if (r_type
== R_ARM_THM_MOVW_PREL_NC
|| r_type
== R_ARM_THM_MOVT_PREL
)
9754 value
-= (input_section
->output_section
->vma
9755 + input_section
->output_offset
+ rel
->r_offset
);
9757 if (r_type
== R_ARM_THM_MOVW_BREL
&& value
>= 0x10000)
9758 return bfd_reloc_overflow
;
9760 if (branch_type
== ST_BRANCH_TO_THUMB
)
9763 if (r_type
== R_ARM_THM_MOVT_ABS
|| r_type
== R_ARM_THM_MOVT_PREL
9764 || r_type
== R_ARM_THM_MOVT_BREL
)
9768 insn
|= (value
& 0xf000) << 4;
9769 insn
|= (value
& 0x0800) << 15;
9770 insn
|= (value
& 0x0700) << 4;
9771 insn
|= (value
& 0x00ff);
9773 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
9774 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
9776 return bfd_reloc_ok
;
9778 case R_ARM_ALU_PC_G0_NC
:
9779 case R_ARM_ALU_PC_G1_NC
:
9780 case R_ARM_ALU_PC_G0
:
9781 case R_ARM_ALU_PC_G1
:
9782 case R_ARM_ALU_PC_G2
:
9783 case R_ARM_ALU_SB_G0_NC
:
9784 case R_ARM_ALU_SB_G1_NC
:
9785 case R_ARM_ALU_SB_G0
:
9786 case R_ARM_ALU_SB_G1
:
9787 case R_ARM_ALU_SB_G2
:
9789 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
9790 bfd_vma pc
= input_section
->output_section
->vma
9791 + input_section
->output_offset
+ rel
->r_offset
;
9792 /* sb should be the origin of the *segment* containing the symbol.
9793 It is not clear how to obtain this OS-dependent value, so we
9794 make an arbitrary choice of zero. */
9798 bfd_signed_vma signed_value
;
9801 /* Determine which group of bits to select. */
9804 case R_ARM_ALU_PC_G0_NC
:
9805 case R_ARM_ALU_PC_G0
:
9806 case R_ARM_ALU_SB_G0_NC
:
9807 case R_ARM_ALU_SB_G0
:
9811 case R_ARM_ALU_PC_G1_NC
:
9812 case R_ARM_ALU_PC_G1
:
9813 case R_ARM_ALU_SB_G1_NC
:
9814 case R_ARM_ALU_SB_G1
:
9818 case R_ARM_ALU_PC_G2
:
9819 case R_ARM_ALU_SB_G2
:
9827 /* If REL, extract the addend from the insn. If RELA, it will
9828 have already been fetched for us. */
9829 if (globals
->use_rel
)
9832 bfd_vma constant
= insn
& 0xff;
9833 bfd_vma rotation
= (insn
& 0xf00) >> 8;
9836 signed_addend
= constant
;
9839 /* Compensate for the fact that in the instruction, the
9840 rotation is stored in multiples of 2 bits. */
9843 /* Rotate "constant" right by "rotation" bits. */
9844 signed_addend
= (constant
>> rotation
) |
9845 (constant
<< (8 * sizeof (bfd_vma
) - rotation
));
9848 /* Determine if the instruction is an ADD or a SUB.
9849 (For REL, this determines the sign of the addend.) */
9850 negative
= identify_add_or_sub (insn
);
9853 (*_bfd_error_handler
)
9854 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
9855 input_bfd
, input_section
,
9856 (long) rel
->r_offset
, howto
->name
);
9857 return bfd_reloc_overflow
;
9860 signed_addend
*= negative
;
9863 /* Compute the value (X) to go in the place. */
9864 if (r_type
== R_ARM_ALU_PC_G0_NC
9865 || r_type
== R_ARM_ALU_PC_G1_NC
9866 || r_type
== R_ARM_ALU_PC_G0
9867 || r_type
== R_ARM_ALU_PC_G1
9868 || r_type
== R_ARM_ALU_PC_G2
)
9870 signed_value
= value
- pc
+ signed_addend
;
9872 /* Section base relative. */
9873 signed_value
= value
- sb
+ signed_addend
;
9875 /* If the target symbol is a Thumb function, then set the
9876 Thumb bit in the address. */
9877 if (branch_type
== ST_BRANCH_TO_THUMB
)
9880 /* Calculate the value of the relevant G_n, in encoded
9881 constant-with-rotation format. */
9882 g_n
= calculate_group_reloc_mask (abs (signed_value
), group
,
9885 /* Check for overflow if required. */
9886 if ((r_type
== R_ARM_ALU_PC_G0
9887 || r_type
== R_ARM_ALU_PC_G1
9888 || r_type
== R_ARM_ALU_PC_G2
9889 || r_type
== R_ARM_ALU_SB_G0
9890 || r_type
== R_ARM_ALU_SB_G1
9891 || r_type
== R_ARM_ALU_SB_G2
) && residual
!= 0)
9893 (*_bfd_error_handler
)
9894 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9895 input_bfd
, input_section
,
9896 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
9897 return bfd_reloc_overflow
;
9900 /* Mask out the value and the ADD/SUB part of the opcode; take care
9901 not to destroy the S bit. */
9904 /* Set the opcode according to whether the value to go in the
9905 place is negative. */
9906 if (signed_value
< 0)
9911 /* Encode the offset. */
9914 bfd_put_32 (input_bfd
, insn
, hit_data
);
9916 return bfd_reloc_ok
;
9918 case R_ARM_LDR_PC_G0
:
9919 case R_ARM_LDR_PC_G1
:
9920 case R_ARM_LDR_PC_G2
:
9921 case R_ARM_LDR_SB_G0
:
9922 case R_ARM_LDR_SB_G1
:
9923 case R_ARM_LDR_SB_G2
:
9925 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
9926 bfd_vma pc
= input_section
->output_section
->vma
9927 + input_section
->output_offset
+ rel
->r_offset
;
9928 bfd_vma sb
= 0; /* See note above. */
9930 bfd_signed_vma signed_value
;
9933 /* Determine which groups of bits to calculate. */
9936 case R_ARM_LDR_PC_G0
:
9937 case R_ARM_LDR_SB_G0
:
9941 case R_ARM_LDR_PC_G1
:
9942 case R_ARM_LDR_SB_G1
:
9946 case R_ARM_LDR_PC_G2
:
9947 case R_ARM_LDR_SB_G2
:
9955 /* If REL, extract the addend from the insn. If RELA, it will
9956 have already been fetched for us. */
9957 if (globals
->use_rel
)
9959 int negative
= (insn
& (1 << 23)) ? 1 : -1;
9960 signed_addend
= negative
* (insn
& 0xfff);
9963 /* Compute the value (X) to go in the place. */
9964 if (r_type
== R_ARM_LDR_PC_G0
9965 || r_type
== R_ARM_LDR_PC_G1
9966 || r_type
== R_ARM_LDR_PC_G2
)
9968 signed_value
= value
- pc
+ signed_addend
;
9970 /* Section base relative. */
9971 signed_value
= value
- sb
+ signed_addend
;
9973 /* Calculate the value of the relevant G_{n-1} to obtain
9974 the residual at that stage. */
9975 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
9977 /* Check for overflow. */
9978 if (residual
>= 0x1000)
9980 (*_bfd_error_handler
)
9981 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9982 input_bfd
, input_section
,
9983 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
9984 return bfd_reloc_overflow
;
9987 /* Mask out the value and U bit. */
9990 /* Set the U bit if the value to go in the place is non-negative. */
9991 if (signed_value
>= 0)
9994 /* Encode the offset. */
9997 bfd_put_32 (input_bfd
, insn
, hit_data
);
9999 return bfd_reloc_ok
;
10001 case R_ARM_LDRS_PC_G0
:
10002 case R_ARM_LDRS_PC_G1
:
10003 case R_ARM_LDRS_PC_G2
:
10004 case R_ARM_LDRS_SB_G0
:
10005 case R_ARM_LDRS_SB_G1
:
10006 case R_ARM_LDRS_SB_G2
:
10008 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
10009 bfd_vma pc
= input_section
->output_section
->vma
10010 + input_section
->output_offset
+ rel
->r_offset
;
10011 bfd_vma sb
= 0; /* See note above. */
10013 bfd_signed_vma signed_value
;
10016 /* Determine which groups of bits to calculate. */
10019 case R_ARM_LDRS_PC_G0
:
10020 case R_ARM_LDRS_SB_G0
:
10024 case R_ARM_LDRS_PC_G1
:
10025 case R_ARM_LDRS_SB_G1
:
10029 case R_ARM_LDRS_PC_G2
:
10030 case R_ARM_LDRS_SB_G2
:
10038 /* If REL, extract the addend from the insn. If RELA, it will
10039 have already been fetched for us. */
10040 if (globals
->use_rel
)
10042 int negative
= (insn
& (1 << 23)) ? 1 : -1;
10043 signed_addend
= negative
* (((insn
& 0xf00) >> 4) + (insn
& 0xf));
10046 /* Compute the value (X) to go in the place. */
10047 if (r_type
== R_ARM_LDRS_PC_G0
10048 || r_type
== R_ARM_LDRS_PC_G1
10049 || r_type
== R_ARM_LDRS_PC_G2
)
10051 signed_value
= value
- pc
+ signed_addend
;
10053 /* Section base relative. */
10054 signed_value
= value
- sb
+ signed_addend
;
10056 /* Calculate the value of the relevant G_{n-1} to obtain
10057 the residual at that stage. */
10058 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
10060 /* Check for overflow. */
10061 if (residual
>= 0x100)
10063 (*_bfd_error_handler
)
10064 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10065 input_bfd
, input_section
,
10066 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
10067 return bfd_reloc_overflow
;
10070 /* Mask out the value and U bit. */
10071 insn
&= 0xff7ff0f0;
10073 /* Set the U bit if the value to go in the place is non-negative. */
10074 if (signed_value
>= 0)
10077 /* Encode the offset. */
10078 insn
|= ((residual
& 0xf0) << 4) | (residual
& 0xf);
10080 bfd_put_32 (input_bfd
, insn
, hit_data
);
10082 return bfd_reloc_ok
;
10084 case R_ARM_LDC_PC_G0
:
10085 case R_ARM_LDC_PC_G1
:
10086 case R_ARM_LDC_PC_G2
:
10087 case R_ARM_LDC_SB_G0
:
10088 case R_ARM_LDC_SB_G1
:
10089 case R_ARM_LDC_SB_G2
:
10091 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
10092 bfd_vma pc
= input_section
->output_section
->vma
10093 + input_section
->output_offset
+ rel
->r_offset
;
10094 bfd_vma sb
= 0; /* See note above. */
10096 bfd_signed_vma signed_value
;
10099 /* Determine which groups of bits to calculate. */
10102 case R_ARM_LDC_PC_G0
:
10103 case R_ARM_LDC_SB_G0
:
10107 case R_ARM_LDC_PC_G1
:
10108 case R_ARM_LDC_SB_G1
:
10112 case R_ARM_LDC_PC_G2
:
10113 case R_ARM_LDC_SB_G2
:
10121 /* If REL, extract the addend from the insn. If RELA, it will
10122 have already been fetched for us. */
10123 if (globals
->use_rel
)
10125 int negative
= (insn
& (1 << 23)) ? 1 : -1;
10126 signed_addend
= negative
* ((insn
& 0xff) << 2);
10129 /* Compute the value (X) to go in the place. */
10130 if (r_type
== R_ARM_LDC_PC_G0
10131 || r_type
== R_ARM_LDC_PC_G1
10132 || r_type
== R_ARM_LDC_PC_G2
)
10134 signed_value
= value
- pc
+ signed_addend
;
10136 /* Section base relative. */
10137 signed_value
= value
- sb
+ signed_addend
;
10139 /* Calculate the value of the relevant G_{n-1} to obtain
10140 the residual at that stage. */
10141 calculate_group_reloc_mask (abs (signed_value
), group
- 1, &residual
);
10143 /* Check for overflow. (The absolute value to go in the place must be
10144 divisible by four and, after having been divided by four, must
10145 fit in eight bits.) */
10146 if ((residual
& 0x3) != 0 || residual
>= 0x400)
10148 (*_bfd_error_handler
)
10149 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10150 input_bfd
, input_section
,
10151 (long) rel
->r_offset
, abs (signed_value
), howto
->name
);
10152 return bfd_reloc_overflow
;
10155 /* Mask out the value and U bit. */
10156 insn
&= 0xff7fff00;
10158 /* Set the U bit if the value to go in the place is non-negative. */
10159 if (signed_value
>= 0)
10162 /* Encode the offset. */
10163 insn
|= residual
>> 2;
10165 bfd_put_32 (input_bfd
, insn
, hit_data
);
10167 return bfd_reloc_ok
;
10170 return bfd_reloc_notsupported
;
10174 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
10176 arm_add_to_rel (bfd
* abfd
,
10177 bfd_byte
* address
,
10178 reloc_howto_type
* howto
,
10179 bfd_signed_vma increment
)
10181 bfd_signed_vma addend
;
10183 if (howto
->type
== R_ARM_THM_CALL
10184 || howto
->type
== R_ARM_THM_JUMP24
)
10186 int upper_insn
, lower_insn
;
10189 upper_insn
= bfd_get_16 (abfd
, address
);
10190 lower_insn
= bfd_get_16 (abfd
, address
+ 2);
10191 upper
= upper_insn
& 0x7ff;
10192 lower
= lower_insn
& 0x7ff;
10194 addend
= (upper
<< 12) | (lower
<< 1);
10195 addend
+= increment
;
10198 upper_insn
= (upper_insn
& 0xf800) | ((addend
>> 11) & 0x7ff);
10199 lower_insn
= (lower_insn
& 0xf800) | (addend
& 0x7ff);
10201 bfd_put_16 (abfd
, (bfd_vma
) upper_insn
, address
);
10202 bfd_put_16 (abfd
, (bfd_vma
) lower_insn
, address
+ 2);
10208 contents
= bfd_get_32 (abfd
, address
);
10210 /* Get the (signed) value from the instruction. */
10211 addend
= contents
& howto
->src_mask
;
10212 if (addend
& ((howto
->src_mask
+ 1) >> 1))
10214 bfd_signed_vma mask
;
10217 mask
&= ~ howto
->src_mask
;
10221 /* Add in the increment, (which is a byte value). */
10222 switch (howto
->type
)
10225 addend
+= increment
;
10232 addend
<<= howto
->size
;
10233 addend
+= increment
;
10235 /* Should we check for overflow here ? */
10237 /* Drop any undesired bits. */
10238 addend
>>= howto
->rightshift
;
10242 contents
= (contents
& ~ howto
->dst_mask
) | (addend
& howto
->dst_mask
);
10244 bfd_put_32 (abfd
, contents
, address
);
10248 #define IS_ARM_TLS_RELOC(R_TYPE) \
10249 ((R_TYPE) == R_ARM_TLS_GD32 \
10250 || (R_TYPE) == R_ARM_TLS_LDO32 \
10251 || (R_TYPE) == R_ARM_TLS_LDM32 \
10252 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
10253 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
10254 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
10255 || (R_TYPE) == R_ARM_TLS_LE32 \
10256 || (R_TYPE) == R_ARM_TLS_IE32 \
10257 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
10259 /* Specific set of relocations for the gnu tls dialect. */
10260 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
10261 ((R_TYPE) == R_ARM_TLS_GOTDESC \
10262 || (R_TYPE) == R_ARM_TLS_CALL \
10263 || (R_TYPE) == R_ARM_THM_TLS_CALL \
10264 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
10265 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
10267 /* Relocate an ARM ELF section. */
10270 elf32_arm_relocate_section (bfd
* output_bfd
,
10271 struct bfd_link_info
* info
,
10273 asection
* input_section
,
10274 bfd_byte
* contents
,
10275 Elf_Internal_Rela
* relocs
,
10276 Elf_Internal_Sym
* local_syms
,
10277 asection
** local_sections
)
10279 Elf_Internal_Shdr
*symtab_hdr
;
10280 struct elf_link_hash_entry
**sym_hashes
;
10281 Elf_Internal_Rela
*rel
;
10282 Elf_Internal_Rela
*relend
;
10284 struct elf32_arm_link_hash_table
* globals
;
10286 globals
= elf32_arm_hash_table (info
);
10287 if (globals
== NULL
)
10290 symtab_hdr
= & elf_symtab_hdr (input_bfd
);
10291 sym_hashes
= elf_sym_hashes (input_bfd
);
10294 relend
= relocs
+ input_section
->reloc_count
;
10295 for (; rel
< relend
; rel
++)
10298 reloc_howto_type
* howto
;
10299 unsigned long r_symndx
;
10300 Elf_Internal_Sym
* sym
;
10302 struct elf_link_hash_entry
* h
;
10303 bfd_vma relocation
;
10304 bfd_reloc_status_type r
;
10307 bfd_boolean unresolved_reloc
= FALSE
;
10308 char *error_message
= NULL
;
10310 r_symndx
= ELF32_R_SYM (rel
->r_info
);
10311 r_type
= ELF32_R_TYPE (rel
->r_info
);
10312 r_type
= arm_real_reloc_type (globals
, r_type
);
10314 if ( r_type
== R_ARM_GNU_VTENTRY
10315 || r_type
== R_ARM_GNU_VTINHERIT
)
10318 bfd_reloc
.howto
= elf32_arm_howto_from_type (r_type
);
10319 howto
= bfd_reloc
.howto
;
10325 if (r_symndx
< symtab_hdr
->sh_info
)
10327 sym
= local_syms
+ r_symndx
;
10328 sym_type
= ELF32_ST_TYPE (sym
->st_info
);
10329 sec
= local_sections
[r_symndx
];
10331 /* An object file might have a reference to a local
10332 undefined symbol. This is a daft object file, but we
10333 should at least do something about it. V4BX & NONE
10334 relocations do not use the symbol and are explicitly
10335 allowed to use the undefined symbol, so allow those.
10336 Likewise for relocations against STN_UNDEF. */
10337 if (r_type
!= R_ARM_V4BX
10338 && r_type
!= R_ARM_NONE
10339 && r_symndx
!= STN_UNDEF
10340 && bfd_is_und_section (sec
)
10341 && ELF_ST_BIND (sym
->st_info
) != STB_WEAK
)
10343 if (!info
->callbacks
->undefined_symbol
10344 (info
, bfd_elf_string_from_elf_section
10345 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
),
10346 input_bfd
, input_section
,
10347 rel
->r_offset
, TRUE
))
10351 if (globals
->use_rel
)
10353 relocation
= (sec
->output_section
->vma
10354 + sec
->output_offset
10356 if (!info
->relocatable
10357 && (sec
->flags
& SEC_MERGE
)
10358 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
10361 bfd_vma addend
, value
;
10365 case R_ARM_MOVW_ABS_NC
:
10366 case R_ARM_MOVT_ABS
:
10367 value
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
10368 addend
= ((value
& 0xf0000) >> 4) | (value
& 0xfff);
10369 addend
= (addend
^ 0x8000) - 0x8000;
10372 case R_ARM_THM_MOVW_ABS_NC
:
10373 case R_ARM_THM_MOVT_ABS
:
10374 value
= bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
)
10376 value
|= bfd_get_16 (input_bfd
,
10377 contents
+ rel
->r_offset
+ 2);
10378 addend
= ((value
& 0xf7000) >> 4) | (value
& 0xff)
10379 | ((value
& 0x04000000) >> 15);
10380 addend
= (addend
^ 0x8000) - 0x8000;
10384 if (howto
->rightshift
10385 || (howto
->src_mask
& (howto
->src_mask
+ 1)))
10387 (*_bfd_error_handler
)
10388 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
10389 input_bfd
, input_section
,
10390 (long) rel
->r_offset
, howto
->name
);
10394 value
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
10396 /* Get the (signed) value from the instruction. */
10397 addend
= value
& howto
->src_mask
;
10398 if (addend
& ((howto
->src_mask
+ 1) >> 1))
10400 bfd_signed_vma mask
;
10403 mask
&= ~ howto
->src_mask
;
10411 _bfd_elf_rel_local_sym (output_bfd
, sym
, &msec
, addend
)
10413 addend
+= msec
->output_section
->vma
+ msec
->output_offset
;
10415 /* Cases here must match those in the preceding
10416 switch statement. */
10419 case R_ARM_MOVW_ABS_NC
:
10420 case R_ARM_MOVT_ABS
:
10421 value
= (value
& 0xfff0f000) | ((addend
& 0xf000) << 4)
10422 | (addend
& 0xfff);
10423 bfd_put_32 (input_bfd
, value
, contents
+ rel
->r_offset
);
10426 case R_ARM_THM_MOVW_ABS_NC
:
10427 case R_ARM_THM_MOVT_ABS
:
10428 value
= (value
& 0xfbf08f00) | ((addend
& 0xf700) << 4)
10429 | (addend
& 0xff) | ((addend
& 0x0800) << 15);
10430 bfd_put_16 (input_bfd
, value
>> 16,
10431 contents
+ rel
->r_offset
);
10432 bfd_put_16 (input_bfd
, value
,
10433 contents
+ rel
->r_offset
+ 2);
10437 value
= (value
& ~ howto
->dst_mask
)
10438 | (addend
& howto
->dst_mask
);
10439 bfd_put_32 (input_bfd
, value
, contents
+ rel
->r_offset
);
10445 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
10449 bfd_boolean warned
;
10451 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
10452 r_symndx
, symtab_hdr
, sym_hashes
,
10453 h
, sec
, relocation
,
10454 unresolved_reloc
, warned
);
10456 sym_type
= h
->type
;
10459 if (sec
!= NULL
&& discarded_section (sec
))
10460 RELOC_AGAINST_DISCARDED_SECTION (info
, input_bfd
, input_section
,
10461 rel
, 1, relend
, howto
, 0, contents
);
10463 if (info
->relocatable
)
10465 /* This is a relocatable link. We don't have to change
10466 anything, unless the reloc is against a section symbol,
10467 in which case we have to adjust according to where the
10468 section symbol winds up in the output section. */
10469 if (sym
!= NULL
&& ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
10471 if (globals
->use_rel
)
10472 arm_add_to_rel (input_bfd
, contents
+ rel
->r_offset
,
10473 howto
, (bfd_signed_vma
) sec
->output_offset
);
10475 rel
->r_addend
+= sec
->output_offset
;
10481 name
= h
->root
.root
.string
;
10484 name
= (bfd_elf_string_from_elf_section
10485 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
));
10486 if (name
== NULL
|| *name
== '\0')
10487 name
= bfd_section_name (input_bfd
, sec
);
10490 if (r_symndx
!= STN_UNDEF
10491 && r_type
!= R_ARM_NONE
10493 || h
->root
.type
== bfd_link_hash_defined
10494 || h
->root
.type
== bfd_link_hash_defweak
)
10495 && IS_ARM_TLS_RELOC (r_type
) != (sym_type
== STT_TLS
))
10497 (*_bfd_error_handler
)
10498 ((sym_type
== STT_TLS
10499 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
10500 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
10503 (long) rel
->r_offset
,
10508 /* We call elf32_arm_final_link_relocate unless we're completely
10509 done, i.e., the relaxation produced the final output we want,
10510 and we won't let anybody mess with it. Also, we have to do
10511 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
10512 both in relaxed and non-relaxed cases */
10513 if ((elf32_arm_tls_transition (info
, r_type
, h
) != (unsigned)r_type
)
10514 || (IS_ARM_TLS_GNU_RELOC (r_type
)
10515 && !((h
? elf32_arm_hash_entry (h
)->tls_type
:
10516 elf32_arm_local_got_tls_type (input_bfd
)[r_symndx
])
10519 r
= elf32_arm_tls_relax (globals
, input_bfd
, input_section
,
10520 contents
, rel
, h
== NULL
);
10521 /* This may have been marked unresolved because it came from
10522 a shared library. But we've just dealt with that. */
10523 unresolved_reloc
= 0;
10526 r
= bfd_reloc_continue
;
10528 if (r
== bfd_reloc_continue
)
10529 r
= elf32_arm_final_link_relocate (howto
, input_bfd
, output_bfd
,
10530 input_section
, contents
, rel
,
10531 relocation
, info
, sec
, name
, sym_type
,
10532 (h
? h
->target_internal
10533 : ARM_SYM_BRANCH_TYPE (sym
)), h
,
10534 &unresolved_reloc
, &error_message
);
10536 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
10537 because such sections are not SEC_ALLOC and thus ld.so will
10538 not process them. */
10539 if (unresolved_reloc
10540 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
10542 && _bfd_elf_section_offset (output_bfd
, info
, input_section
,
10543 rel
->r_offset
) != (bfd_vma
) -1)
10545 (*_bfd_error_handler
)
10546 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
10549 (long) rel
->r_offset
,
10551 h
->root
.root
.string
);
10555 if (r
!= bfd_reloc_ok
)
10559 case bfd_reloc_overflow
:
10560 /* If the overflowing reloc was to an undefined symbol,
10561 we have already printed one error message and there
10562 is no point complaining again. */
10564 h
->root
.type
!= bfd_link_hash_undefined
)
10565 && (!((*info
->callbacks
->reloc_overflow
)
10566 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
10567 (bfd_vma
) 0, input_bfd
, input_section
,
10572 case bfd_reloc_undefined
:
10573 if (!((*info
->callbacks
->undefined_symbol
)
10574 (info
, name
, input_bfd
, input_section
,
10575 rel
->r_offset
, TRUE
)))
10579 case bfd_reloc_outofrange
:
10580 error_message
= _("out of range");
10583 case bfd_reloc_notsupported
:
10584 error_message
= _("unsupported relocation");
10587 case bfd_reloc_dangerous
:
10588 /* error_message should already be set. */
10592 error_message
= _("unknown error");
10593 /* Fall through. */
10596 BFD_ASSERT (error_message
!= NULL
);
10597 if (!((*info
->callbacks
->reloc_dangerous
)
10598 (info
, error_message
, input_bfd
, input_section
,
10609 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
10610 adds the edit to the start of the list. (The list must be built in order of
10611 ascending TINDEX: the function's callers are primarily responsible for
10612 maintaining that condition). */
10615 add_unwind_table_edit (arm_unwind_table_edit
**head
,
10616 arm_unwind_table_edit
**tail
,
10617 arm_unwind_edit_type type
,
10618 asection
*linked_section
,
10619 unsigned int tindex
)
10621 arm_unwind_table_edit
*new_edit
= (arm_unwind_table_edit
*)
10622 xmalloc (sizeof (arm_unwind_table_edit
));
10624 new_edit
->type
= type
;
10625 new_edit
->linked_section
= linked_section
;
10626 new_edit
->index
= tindex
;
10630 new_edit
->next
= NULL
;
10633 (*tail
)->next
= new_edit
;
10635 (*tail
) = new_edit
;
10638 (*head
) = new_edit
;
10642 new_edit
->next
= *head
;
10651 static _arm_elf_section_data
*get_arm_elf_section_data (asection
*);
10653 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
10655 adjust_exidx_size(asection
*exidx_sec
, int adjust
)
10659 if (!exidx_sec
->rawsize
)
10660 exidx_sec
->rawsize
= exidx_sec
->size
;
10662 bfd_set_section_size (exidx_sec
->owner
, exidx_sec
, exidx_sec
->size
+ adjust
);
10663 out_sec
= exidx_sec
->output_section
;
10664 /* Adjust size of output section. */
10665 bfd_set_section_size (out_sec
->owner
, out_sec
, out_sec
->size
+adjust
);
10668 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
10670 insert_cantunwind_after(asection
*text_sec
, asection
*exidx_sec
)
10672 struct _arm_elf_section_data
*exidx_arm_data
;
10674 exidx_arm_data
= get_arm_elf_section_data (exidx_sec
);
10675 add_unwind_table_edit (
10676 &exidx_arm_data
->u
.exidx
.unwind_edit_list
,
10677 &exidx_arm_data
->u
.exidx
.unwind_edit_tail
,
10678 INSERT_EXIDX_CANTUNWIND_AT_END
, text_sec
, UINT_MAX
);
10680 adjust_exidx_size(exidx_sec
, 8);
10683 /* Scan .ARM.exidx tables, and create a list describing edits which should be
10684 made to those tables, such that:
10686 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
10687 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
10688 codes which have been inlined into the index).
10690 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
10692 The edits are applied when the tables are written
10693 (in elf32_arm_write_section). */
10696 elf32_arm_fix_exidx_coverage (asection
**text_section_order
,
10697 unsigned int num_text_sections
,
10698 struct bfd_link_info
*info
,
10699 bfd_boolean merge_exidx_entries
)
10702 unsigned int last_second_word
= 0, i
;
10703 asection
*last_exidx_sec
= NULL
;
10704 asection
*last_text_sec
= NULL
;
10705 int last_unwind_type
= -1;
10707 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
10709 for (inp
= info
->input_bfds
; inp
!= NULL
; inp
= inp
->link_next
)
10713 for (sec
= inp
->sections
; sec
!= NULL
; sec
= sec
->next
)
10715 struct bfd_elf_section_data
*elf_sec
= elf_section_data (sec
);
10716 Elf_Internal_Shdr
*hdr
= &elf_sec
->this_hdr
;
10718 if (!hdr
|| hdr
->sh_type
!= SHT_ARM_EXIDX
)
10721 if (elf_sec
->linked_to
)
10723 Elf_Internal_Shdr
*linked_hdr
10724 = &elf_section_data (elf_sec
->linked_to
)->this_hdr
;
10725 struct _arm_elf_section_data
*linked_sec_arm_data
10726 = get_arm_elf_section_data (linked_hdr
->bfd_section
);
10728 if (linked_sec_arm_data
== NULL
)
10731 /* Link this .ARM.exidx section back from the text section it
10733 linked_sec_arm_data
->u
.text
.arm_exidx_sec
= sec
;
10738 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
10739 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
10740 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
10742 for (i
= 0; i
< num_text_sections
; i
++)
10744 asection
*sec
= text_section_order
[i
];
10745 asection
*exidx_sec
;
10746 struct _arm_elf_section_data
*arm_data
= get_arm_elf_section_data (sec
);
10747 struct _arm_elf_section_data
*exidx_arm_data
;
10748 bfd_byte
*contents
= NULL
;
10749 int deleted_exidx_bytes
= 0;
10751 arm_unwind_table_edit
*unwind_edit_head
= NULL
;
10752 arm_unwind_table_edit
*unwind_edit_tail
= NULL
;
10753 Elf_Internal_Shdr
*hdr
;
10756 if (arm_data
== NULL
)
10759 exidx_sec
= arm_data
->u
.text
.arm_exidx_sec
;
10760 if (exidx_sec
== NULL
)
10762 /* Section has no unwind data. */
10763 if (last_unwind_type
== 0 || !last_exidx_sec
)
10766 /* Ignore zero sized sections. */
10767 if (sec
->size
== 0)
10770 insert_cantunwind_after(last_text_sec
, last_exidx_sec
);
10771 last_unwind_type
= 0;
10775 /* Skip /DISCARD/ sections. */
10776 if (bfd_is_abs_section (exidx_sec
->output_section
))
10779 hdr
= &elf_section_data (exidx_sec
)->this_hdr
;
10780 if (hdr
->sh_type
!= SHT_ARM_EXIDX
)
10783 exidx_arm_data
= get_arm_elf_section_data (exidx_sec
);
10784 if (exidx_arm_data
== NULL
)
10787 ibfd
= exidx_sec
->owner
;
10789 if (hdr
->contents
!= NULL
)
10790 contents
= hdr
->contents
;
10791 else if (! bfd_malloc_and_get_section (ibfd
, exidx_sec
, &contents
))
10795 for (j
= 0; j
< hdr
->sh_size
; j
+= 8)
10797 unsigned int second_word
= bfd_get_32 (ibfd
, contents
+ j
+ 4);
10801 /* An EXIDX_CANTUNWIND entry. */
10802 if (second_word
== 1)
10804 if (last_unwind_type
== 0)
10808 /* Inlined unwinding data. Merge if equal to previous. */
10809 else if ((second_word
& 0x80000000) != 0)
10811 if (merge_exidx_entries
10812 && last_second_word
== second_word
&& last_unwind_type
== 1)
10815 last_second_word
= second_word
;
10817 /* Normal table entry. In theory we could merge these too,
10818 but duplicate entries are likely to be much less common. */
10824 add_unwind_table_edit (&unwind_edit_head
, &unwind_edit_tail
,
10825 DELETE_EXIDX_ENTRY
, NULL
, j
/ 8);
10827 deleted_exidx_bytes
+= 8;
10830 last_unwind_type
= unwind_type
;
10833 /* Free contents if we allocated it ourselves. */
10834 if (contents
!= hdr
->contents
)
10837 /* Record edits to be applied later (in elf32_arm_write_section). */
10838 exidx_arm_data
->u
.exidx
.unwind_edit_list
= unwind_edit_head
;
10839 exidx_arm_data
->u
.exidx
.unwind_edit_tail
= unwind_edit_tail
;
10841 if (deleted_exidx_bytes
> 0)
10842 adjust_exidx_size(exidx_sec
, -deleted_exidx_bytes
);
10844 last_exidx_sec
= exidx_sec
;
10845 last_text_sec
= sec
;
10848 /* Add terminating CANTUNWIND entry. */
10849 if (last_exidx_sec
&& last_unwind_type
!= 0)
10850 insert_cantunwind_after(last_text_sec
, last_exidx_sec
);
10856 elf32_arm_output_glue_section (struct bfd_link_info
*info
, bfd
*obfd
,
10857 bfd
*ibfd
, const char *name
)
10859 asection
*sec
, *osec
;
10861 sec
= bfd_get_linker_section (ibfd
, name
);
10862 if (sec
== NULL
|| (sec
->flags
& SEC_EXCLUDE
) != 0)
10865 osec
= sec
->output_section
;
10866 if (elf32_arm_write_section (obfd
, info
, sec
, sec
->contents
))
10869 if (! bfd_set_section_contents (obfd
, osec
, sec
->contents
,
10870 sec
->output_offset
, sec
->size
))
10877 elf32_arm_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
10879 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (info
);
10880 asection
*sec
, *osec
;
10882 if (globals
== NULL
)
10885 /* Invoke the regular ELF backend linker to do all the work. */
10886 if (!bfd_elf_final_link (abfd
, info
))
10889 /* Process stub sections (eg BE8 encoding, ...). */
10890 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
10892 for (i
=0; i
<htab
->top_id
; i
++)
10894 sec
= htab
->stub_group
[i
].stub_sec
;
10895 /* Only process it once, in its link_sec slot. */
10896 if (sec
&& i
== htab
->stub_group
[i
].link_sec
->id
)
10898 osec
= sec
->output_section
;
10899 elf32_arm_write_section (abfd
, info
, sec
, sec
->contents
);
10900 if (! bfd_set_section_contents (abfd
, osec
, sec
->contents
,
10901 sec
->output_offset
, sec
->size
))
10906 /* Write out any glue sections now that we have created all the
10908 if (globals
->bfd_of_glue_owner
!= NULL
)
10910 if (! elf32_arm_output_glue_section (info
, abfd
,
10911 globals
->bfd_of_glue_owner
,
10912 ARM2THUMB_GLUE_SECTION_NAME
))
10915 if (! elf32_arm_output_glue_section (info
, abfd
,
10916 globals
->bfd_of_glue_owner
,
10917 THUMB2ARM_GLUE_SECTION_NAME
))
10920 if (! elf32_arm_output_glue_section (info
, abfd
,
10921 globals
->bfd_of_glue_owner
,
10922 VFP11_ERRATUM_VENEER_SECTION_NAME
))
10925 if (! elf32_arm_output_glue_section (info
, abfd
,
10926 globals
->bfd_of_glue_owner
,
10927 ARM_BX_GLUE_SECTION_NAME
))
10934 /* Return a best guess for the machine number based on the attributes. */
10936 static unsigned int
10937 bfd_arm_get_mach_from_attributes (bfd
* abfd
)
10939 int arch
= bfd_elf_get_obj_attr_int (abfd
, OBJ_ATTR_PROC
, Tag_CPU_arch
);
10943 case TAG_CPU_ARCH_V4
: return bfd_mach_arm_4
;
10944 case TAG_CPU_ARCH_V4T
: return bfd_mach_arm_4T
;
10945 case TAG_CPU_ARCH_V5T
: return bfd_mach_arm_5T
;
10947 case TAG_CPU_ARCH_V5TE
:
10951 BFD_ASSERT (Tag_CPU_name
< NUM_KNOWN_OBJ_ATTRIBUTES
);
10952 name
= elf_known_obj_attributes (abfd
) [OBJ_ATTR_PROC
][Tag_CPU_name
].s
;
10956 if (strcmp (name
, "IWMMXT2") == 0)
10957 return bfd_mach_arm_iWMMXt2
;
10959 if (strcmp (name
, "IWMMXT") == 0)
10960 return bfd_mach_arm_iWMMXt
;
10963 return bfd_mach_arm_5TE
;
10967 return bfd_mach_arm_unknown
;
10971 /* Set the right machine number. */
10974 elf32_arm_object_p (bfd
*abfd
)
10978 mach
= bfd_arm_get_mach_from_notes (abfd
, ARM_NOTE_SECTION
);
10980 if (mach
== bfd_mach_arm_unknown
)
10982 if (elf_elfheader (abfd
)->e_flags
& EF_ARM_MAVERICK_FLOAT
)
10983 mach
= bfd_mach_arm_ep9312
;
10985 mach
= bfd_arm_get_mach_from_attributes (abfd
);
10988 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, mach
);
10992 /* Function to keep ARM specific flags in the ELF header. */
10995 elf32_arm_set_private_flags (bfd
*abfd
, flagword flags
)
10997 if (elf_flags_init (abfd
)
10998 && elf_elfheader (abfd
)->e_flags
!= flags
)
11000 if (EF_ARM_EABI_VERSION (flags
) == EF_ARM_EABI_UNKNOWN
)
11002 if (flags
& EF_ARM_INTERWORK
)
11003 (*_bfd_error_handler
)
11004 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
11008 (_("Warning: Clearing the interworking flag of %B due to outside request"),
11014 elf_elfheader (abfd
)->e_flags
= flags
;
11015 elf_flags_init (abfd
) = TRUE
;
11021 /* Copy backend specific data from one object module to another. */
11024 elf32_arm_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
11027 flagword out_flags
;
11029 if (! is_arm_elf (ibfd
) || ! is_arm_elf (obfd
))
11032 in_flags
= elf_elfheader (ibfd
)->e_flags
;
11033 out_flags
= elf_elfheader (obfd
)->e_flags
;
11035 if (elf_flags_init (obfd
)
11036 && EF_ARM_EABI_VERSION (out_flags
) == EF_ARM_EABI_UNKNOWN
11037 && in_flags
!= out_flags
)
11039 /* Cannot mix APCS26 and APCS32 code. */
11040 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
11043 /* Cannot mix float APCS and non-float APCS code. */
11044 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
11047 /* If the src and dest have different interworking flags
11048 then turn off the interworking bit. */
11049 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
11051 if (out_flags
& EF_ARM_INTERWORK
)
11053 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
11056 in_flags
&= ~EF_ARM_INTERWORK
;
11059 /* Likewise for PIC, though don't warn for this case. */
11060 if ((in_flags
& EF_ARM_PIC
) != (out_flags
& EF_ARM_PIC
))
11061 in_flags
&= ~EF_ARM_PIC
;
11064 elf_elfheader (obfd
)->e_flags
= in_flags
;
11065 elf_flags_init (obfd
) = TRUE
;
11067 /* Also copy the EI_OSABI field. */
11068 elf_elfheader (obfd
)->e_ident
[EI_OSABI
] =
11069 elf_elfheader (ibfd
)->e_ident
[EI_OSABI
];
11071 /* Copy object attributes. */
11072 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
11077 /* Values for Tag_ABI_PCS_R9_use. */
11086 /* Values for Tag_ABI_PCS_RW_data. */
11089 AEABI_PCS_RW_data_absolute
,
11090 AEABI_PCS_RW_data_PCrel
,
11091 AEABI_PCS_RW_data_SBrel
,
11092 AEABI_PCS_RW_data_unused
11095 /* Values for Tag_ABI_enum_size. */
11101 AEABI_enum_forced_wide
11104 /* Determine whether an object attribute tag takes an integer, a
11108 elf32_arm_obj_attrs_arg_type (int tag
)
11110 if (tag
== Tag_compatibility
)
11111 return ATTR_TYPE_FLAG_INT_VAL
| ATTR_TYPE_FLAG_STR_VAL
;
11112 else if (tag
== Tag_nodefaults
)
11113 return ATTR_TYPE_FLAG_INT_VAL
| ATTR_TYPE_FLAG_NO_DEFAULT
;
11114 else if (tag
== Tag_CPU_raw_name
|| tag
== Tag_CPU_name
)
11115 return ATTR_TYPE_FLAG_STR_VAL
;
11117 return ATTR_TYPE_FLAG_INT_VAL
;
11119 return (tag
& 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL
: ATTR_TYPE_FLAG_INT_VAL
;
11122 /* The ABI defines that Tag_conformance should be emitted first, and that
11123 Tag_nodefaults should be second (if either is defined). This sets those
11124 two positions, and bumps up the position of all the remaining tags to
11127 elf32_arm_obj_attrs_order (int num
)
11129 if (num
== LEAST_KNOWN_OBJ_ATTRIBUTE
)
11130 return Tag_conformance
;
11131 if (num
== LEAST_KNOWN_OBJ_ATTRIBUTE
+ 1)
11132 return Tag_nodefaults
;
11133 if ((num
- 2) < Tag_nodefaults
)
11135 if ((num
- 1) < Tag_conformance
)
11140 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
11142 elf32_arm_obj_attrs_handle_unknown (bfd
*abfd
, int tag
)
11144 if ((tag
& 127) < 64)
11147 (_("%B: Unknown mandatory EABI object attribute %d"),
11149 bfd_set_error (bfd_error_bad_value
);
11155 (_("Warning: %B: Unknown EABI object attribute %d"),
11161 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
11162 Returns -1 if no architecture could be read. */
11165 get_secondary_compatible_arch (bfd
*abfd
)
11167 obj_attribute
*attr
=
11168 &elf_known_obj_attributes_proc (abfd
)[Tag_also_compatible_with
];
11170 /* Note: the tag and its argument below are uleb128 values, though
11171 currently-defined values fit in one byte for each. */
11173 && attr
->s
[0] == Tag_CPU_arch
11174 && (attr
->s
[1] & 128) != 128
11175 && attr
->s
[2] == 0)
11178 /* This tag is "safely ignorable", so don't complain if it looks funny. */
11182 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
11183 The tag is removed if ARCH is -1. */
11186 set_secondary_compatible_arch (bfd
*abfd
, int arch
)
11188 obj_attribute
*attr
=
11189 &elf_known_obj_attributes_proc (abfd
)[Tag_also_compatible_with
];
11197 /* Note: the tag and its argument below are uleb128 values, though
11198 currently-defined values fit in one byte for each. */
11200 attr
->s
= (char *) bfd_alloc (abfd
, 3);
11201 attr
->s
[0] = Tag_CPU_arch
;
11206 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
11210 tag_cpu_arch_combine (bfd
*ibfd
, int oldtag
, int *secondary_compat_out
,
11211 int newtag
, int secondary_compat
)
11213 #define T(X) TAG_CPU_ARCH_##X
11214 int tagl
, tagh
, result
;
11217 T(V6T2
), /* PRE_V4. */
11219 T(V6T2
), /* V4T. */
11220 T(V6T2
), /* V5T. */
11221 T(V6T2
), /* V5TE. */
11222 T(V6T2
), /* V5TEJ. */
11225 T(V6T2
) /* V6T2. */
11229 T(V6K
), /* PRE_V4. */
11233 T(V6K
), /* V5TE. */
11234 T(V6K
), /* V5TEJ. */
11236 T(V6KZ
), /* V6KZ. */
11242 T(V7
), /* PRE_V4. */
11247 T(V7
), /* V5TEJ. */
11260 T(V6K
), /* V5TE. */
11261 T(V6K
), /* V5TEJ. */
11263 T(V6KZ
), /* V6KZ. */
11267 T(V6_M
) /* V6_M. */
11269 const int v6s_m
[] =
11275 T(V6K
), /* V5TE. */
11276 T(V6K
), /* V5TEJ. */
11278 T(V6KZ
), /* V6KZ. */
11282 T(V6S_M
), /* V6_M. */
11283 T(V6S_M
) /* V6S_M. */
11285 const int v7e_m
[] =
11289 T(V7E_M
), /* V4T. */
11290 T(V7E_M
), /* V5T. */
11291 T(V7E_M
), /* V5TE. */
11292 T(V7E_M
), /* V5TEJ. */
11293 T(V7E_M
), /* V6. */
11294 T(V7E_M
), /* V6KZ. */
11295 T(V7E_M
), /* V6T2. */
11296 T(V7E_M
), /* V6K. */
11297 T(V7E_M
), /* V7. */
11298 T(V7E_M
), /* V6_M. */
11299 T(V7E_M
), /* V6S_M. */
11300 T(V7E_M
) /* V7E_M. */
11304 T(V8
), /* PRE_V4. */
11309 T(V8
), /* V5TEJ. */
11316 T(V8
), /* V6S_M. */
11317 T(V8
), /* V7E_M. */
11320 const int v4t_plus_v6_m
[] =
11326 T(V5TE
), /* V5TE. */
11327 T(V5TEJ
), /* V5TEJ. */
11329 T(V6KZ
), /* V6KZ. */
11330 T(V6T2
), /* V6T2. */
11333 T(V6_M
), /* V6_M. */
11334 T(V6S_M
), /* V6S_M. */
11335 T(V7E_M
), /* V7E_M. */
11337 T(V4T_PLUS_V6_M
) /* V4T plus V6_M. */
11339 const int *comb
[] =
11348 /* Pseudo-architecture. */
11352 /* Check we've not got a higher architecture than we know about. */
11354 if (oldtag
> MAX_TAG_CPU_ARCH
|| newtag
> MAX_TAG_CPU_ARCH
)
11356 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd
);
11360 /* Override old tag if we have a Tag_also_compatible_with on the output. */
11362 if ((oldtag
== T(V6_M
) && *secondary_compat_out
== T(V4T
))
11363 || (oldtag
== T(V4T
) && *secondary_compat_out
== T(V6_M
)))
11364 oldtag
= T(V4T_PLUS_V6_M
);
11366 /* And override the new tag if we have a Tag_also_compatible_with on the
11369 if ((newtag
== T(V6_M
) && secondary_compat
== T(V4T
))
11370 || (newtag
== T(V4T
) && secondary_compat
== T(V6_M
)))
11371 newtag
= T(V4T_PLUS_V6_M
);
11373 tagl
= (oldtag
< newtag
) ? oldtag
: newtag
;
11374 result
= tagh
= (oldtag
> newtag
) ? oldtag
: newtag
;
11376 /* Architectures before V6KZ add features monotonically. */
11377 if (tagh
<= TAG_CPU_ARCH_V6KZ
)
11380 result
= comb
[tagh
- T(V6T2
)][tagl
];
11382 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
11383 as the canonical version. */
11384 if (result
== T(V4T_PLUS_V6_M
))
11387 *secondary_compat_out
= T(V6_M
);
11390 *secondary_compat_out
= -1;
11394 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
11395 ibfd
, oldtag
, newtag
);
11403 /* Query attributes object to see if integer divide instructions may be
11404 present in an object. */
11406 elf32_arm_attributes_accept_div (const obj_attribute
*attr
)
11408 int arch
= attr
[Tag_CPU_arch
].i
;
11409 int profile
= attr
[Tag_CPU_arch_profile
].i
;
11411 switch (attr
[Tag_DIV_use
].i
)
11414 /* Integer divide allowed if instruction contained in archetecture. */
11415 if (arch
== TAG_CPU_ARCH_V7
&& (profile
== 'R' || profile
== 'M'))
11417 else if (arch
>= TAG_CPU_ARCH_V7E_M
)
11423 /* Integer divide explicitly prohibited. */
11427 /* Unrecognised case - treat as allowing divide everywhere. */
11429 /* Integer divide allowed in ARM state. */
11434 /* Query attributes object to see if integer divide instructions are
11435 forbidden to be in the object. This is not the inverse of
11436 elf32_arm_attributes_accept_div. */
11438 elf32_arm_attributes_forbid_div (const obj_attribute
*attr
)
11440 return attr
[Tag_DIV_use
].i
== 1;
11443 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
11444 are conflicting attributes. */
11447 elf32_arm_merge_eabi_attributes (bfd
*ibfd
, bfd
*obfd
)
11449 obj_attribute
*in_attr
;
11450 obj_attribute
*out_attr
;
11451 /* Some tags have 0 = don't care, 1 = strong requirement,
11452 2 = weak requirement. */
11453 static const int order_021
[3] = {0, 2, 1};
11455 bfd_boolean result
= TRUE
;
11457 /* Skip the linker stubs file. This preserves previous behavior
11458 of accepting unknown attributes in the first input file - but
11460 if (ibfd
->flags
& BFD_LINKER_CREATED
)
11463 if (!elf_known_obj_attributes_proc (obfd
)[0].i
)
11465 /* This is the first object. Copy the attributes. */
11466 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
11468 out_attr
= elf_known_obj_attributes_proc (obfd
);
11470 /* Use the Tag_null value to indicate the attributes have been
11474 /* We do not output objects with Tag_MPextension_use_legacy - we move
11475 the attribute's value to Tag_MPextension_use. */
11476 if (out_attr
[Tag_MPextension_use_legacy
].i
!= 0)
11478 if (out_attr
[Tag_MPextension_use
].i
!= 0
11479 && out_attr
[Tag_MPextension_use_legacy
].i
11480 != out_attr
[Tag_MPextension_use
].i
)
11483 (_("Error: %B has both the current and legacy "
11484 "Tag_MPextension_use attributes"), ibfd
);
11488 out_attr
[Tag_MPextension_use
] =
11489 out_attr
[Tag_MPextension_use_legacy
];
11490 out_attr
[Tag_MPextension_use_legacy
].type
= 0;
11491 out_attr
[Tag_MPextension_use_legacy
].i
= 0;
11497 in_attr
= elf_known_obj_attributes_proc (ibfd
);
11498 out_attr
= elf_known_obj_attributes_proc (obfd
);
11499 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
11500 if (in_attr
[Tag_ABI_VFP_args
].i
!= out_attr
[Tag_ABI_VFP_args
].i
)
11502 /* Ignore mismatches if the object doesn't use floating point. */
11503 if (out_attr
[Tag_ABI_FP_number_model
].i
== 0)
11504 out_attr
[Tag_ABI_VFP_args
].i
= in_attr
[Tag_ABI_VFP_args
].i
;
11505 else if (in_attr
[Tag_ABI_FP_number_model
].i
!= 0)
11508 (_("error: %B uses VFP register arguments, %B does not"),
11509 in_attr
[Tag_ABI_VFP_args
].i
? ibfd
: obfd
,
11510 in_attr
[Tag_ABI_VFP_args
].i
? obfd
: ibfd
);
11515 for (i
= LEAST_KNOWN_OBJ_ATTRIBUTE
; i
< NUM_KNOWN_OBJ_ATTRIBUTES
; i
++)
11517 /* Merge this attribute with existing attributes. */
11520 case Tag_CPU_raw_name
:
11522 /* These are merged after Tag_CPU_arch. */
11525 case Tag_ABI_optimization_goals
:
11526 case Tag_ABI_FP_optimization_goals
:
11527 /* Use the first value seen. */
11532 int secondary_compat
= -1, secondary_compat_out
= -1;
11533 unsigned int saved_out_attr
= out_attr
[i
].i
;
11534 static const char *name_table
[] = {
11535 /* These aren't real CPU names, but we can't guess
11536 that from the architecture version alone. */
11553 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
11554 secondary_compat
= get_secondary_compatible_arch (ibfd
);
11555 secondary_compat_out
= get_secondary_compatible_arch (obfd
);
11556 out_attr
[i
].i
= tag_cpu_arch_combine (ibfd
, out_attr
[i
].i
,
11557 &secondary_compat_out
,
11560 set_secondary_compatible_arch (obfd
, secondary_compat_out
);
11562 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
11563 if (out_attr
[i
].i
== saved_out_attr
)
11564 ; /* Leave the names alone. */
11565 else if (out_attr
[i
].i
== in_attr
[i
].i
)
11567 /* The output architecture has been changed to match the
11568 input architecture. Use the input names. */
11569 out_attr
[Tag_CPU_name
].s
= in_attr
[Tag_CPU_name
].s
11570 ? _bfd_elf_attr_strdup (obfd
, in_attr
[Tag_CPU_name
].s
)
11572 out_attr
[Tag_CPU_raw_name
].s
= in_attr
[Tag_CPU_raw_name
].s
11573 ? _bfd_elf_attr_strdup (obfd
, in_attr
[Tag_CPU_raw_name
].s
)
11578 out_attr
[Tag_CPU_name
].s
= NULL
;
11579 out_attr
[Tag_CPU_raw_name
].s
= NULL
;
11582 /* If we still don't have a value for Tag_CPU_name,
11583 make one up now. Tag_CPU_raw_name remains blank. */
11584 if (out_attr
[Tag_CPU_name
].s
== NULL
11585 && out_attr
[i
].i
< ARRAY_SIZE (name_table
))
11586 out_attr
[Tag_CPU_name
].s
=
11587 _bfd_elf_attr_strdup (obfd
, name_table
[out_attr
[i
].i
]);
11591 case Tag_ARM_ISA_use
:
11592 case Tag_THUMB_ISA_use
:
11593 case Tag_WMMX_arch
:
11594 case Tag_Advanced_SIMD_arch
:
11595 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
11596 case Tag_ABI_FP_rounding
:
11597 case Tag_ABI_FP_exceptions
:
11598 case Tag_ABI_FP_user_exceptions
:
11599 case Tag_ABI_FP_number_model
:
11600 case Tag_FP_HP_extension
:
11601 case Tag_CPU_unaligned_access
:
11603 case Tag_MPextension_use
:
11604 /* Use the largest value specified. */
11605 if (in_attr
[i
].i
> out_attr
[i
].i
)
11606 out_attr
[i
].i
= in_attr
[i
].i
;
11609 case Tag_ABI_align_preserved
:
11610 case Tag_ABI_PCS_RO_data
:
11611 /* Use the smallest value specified. */
11612 if (in_attr
[i
].i
< out_attr
[i
].i
)
11613 out_attr
[i
].i
= in_attr
[i
].i
;
11616 case Tag_ABI_align_needed
:
11617 if ((in_attr
[i
].i
> 0 || out_attr
[i
].i
> 0)
11618 && (in_attr
[Tag_ABI_align_preserved
].i
== 0
11619 || out_attr
[Tag_ABI_align_preserved
].i
== 0))
11621 /* This error message should be enabled once all non-conformant
11622 binaries in the toolchain have had the attributes set
11625 (_("error: %B: 8-byte data alignment conflicts with %B"),
11629 /* Fall through. */
11630 case Tag_ABI_FP_denormal
:
11631 case Tag_ABI_PCS_GOT_use
:
11632 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
11633 value if greater than 2 (for future-proofing). */
11634 if ((in_attr
[i
].i
> 2 && in_attr
[i
].i
> out_attr
[i
].i
)
11635 || (in_attr
[i
].i
<= 2 && out_attr
[i
].i
<= 2
11636 && order_021
[in_attr
[i
].i
] > order_021
[out_attr
[i
].i
]))
11637 out_attr
[i
].i
= in_attr
[i
].i
;
11640 case Tag_Virtualization_use
:
11641 /* The virtualization tag effectively stores two bits of
11642 information: the intended use of TrustZone (in bit 0), and the
11643 intended use of Virtualization (in bit 1). */
11644 if (out_attr
[i
].i
== 0)
11645 out_attr
[i
].i
= in_attr
[i
].i
;
11646 else if (in_attr
[i
].i
!= 0
11647 && in_attr
[i
].i
!= out_attr
[i
].i
)
11649 if (in_attr
[i
].i
<= 3 && out_attr
[i
].i
<= 3)
11654 (_("error: %B: unable to merge virtualization attributes "
11662 case Tag_CPU_arch_profile
:
11663 if (out_attr
[i
].i
!= in_attr
[i
].i
)
11665 /* 0 will merge with anything.
11666 'A' and 'S' merge to 'A'.
11667 'R' and 'S' merge to 'R'.
11668 'M' and 'A|R|S' is an error. */
11669 if (out_attr
[i
].i
== 0
11670 || (out_attr
[i
].i
== 'S'
11671 && (in_attr
[i
].i
== 'A' || in_attr
[i
].i
== 'R')))
11672 out_attr
[i
].i
= in_attr
[i
].i
;
11673 else if (in_attr
[i
].i
== 0
11674 || (in_attr
[i
].i
== 'S'
11675 && (out_attr
[i
].i
== 'A' || out_attr
[i
].i
== 'R')))
11676 ; /* Do nothing. */
11680 (_("error: %B: Conflicting architecture profiles %c/%c"),
11682 in_attr
[i
].i
? in_attr
[i
].i
: '0',
11683 out_attr
[i
].i
? out_attr
[i
].i
: '0');
11690 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
11691 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
11692 when it's 0. It might mean absence of FP hardware if
11693 Tag_FP_arch is zero, otherwise it is effectively SP + DP. */
11695 #define VFP_VERSION_COUNT 8
11696 static const struct
11700 } vfp_versions
[VFP_VERSION_COUNT
] =
11715 /* If the output has no requirement about FP hardware,
11716 follow the requirement of the input. */
11717 if (out_attr
[i
].i
== 0)
11719 BFD_ASSERT (out_attr
[Tag_ABI_HardFP_use
].i
== 0);
11720 out_attr
[i
].i
= in_attr
[i
].i
;
11721 out_attr
[Tag_ABI_HardFP_use
].i
11722 = in_attr
[Tag_ABI_HardFP_use
].i
;
11725 /* If the input has no requirement about FP hardware, do
11727 else if (in_attr
[i
].i
== 0)
11729 BFD_ASSERT (in_attr
[Tag_ABI_HardFP_use
].i
== 0);
11733 /* Both the input and the output have nonzero Tag_FP_arch.
11734 So Tag_ABI_HardFP_use is (SP & DP) when it's zero. */
11736 /* If both the input and the output have zero Tag_ABI_HardFP_use,
11738 if (in_attr
[Tag_ABI_HardFP_use
].i
== 0
11739 && out_attr
[Tag_ABI_HardFP_use
].i
== 0)
11741 /* If the input and the output have different Tag_ABI_HardFP_use,
11742 the combination of them is 3 (SP & DP). */
11743 else if (in_attr
[Tag_ABI_HardFP_use
].i
11744 != out_attr
[Tag_ABI_HardFP_use
].i
)
11745 out_attr
[Tag_ABI_HardFP_use
].i
= 3;
11747 /* Now we can handle Tag_FP_arch. */
11749 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
11750 pick the biggest. */
11751 if (in_attr
[i
].i
>= VFP_VERSION_COUNT
11752 && in_attr
[i
].i
> out_attr
[i
].i
)
11754 out_attr
[i
] = in_attr
[i
];
11757 /* The output uses the superset of input features
11758 (ISA version) and registers. */
11759 ver
= vfp_versions
[in_attr
[i
].i
].ver
;
11760 if (ver
< vfp_versions
[out_attr
[i
].i
].ver
)
11761 ver
= vfp_versions
[out_attr
[i
].i
].ver
;
11762 regs
= vfp_versions
[in_attr
[i
].i
].regs
;
11763 if (regs
< vfp_versions
[out_attr
[i
].i
].regs
)
11764 regs
= vfp_versions
[out_attr
[i
].i
].regs
;
11765 /* This assumes all possible supersets are also a valid
11767 for (newval
= VFP_VERSION_COUNT
- 1; newval
> 0; newval
--)
11769 if (regs
== vfp_versions
[newval
].regs
11770 && ver
== vfp_versions
[newval
].ver
)
11773 out_attr
[i
].i
= newval
;
11776 case Tag_PCS_config
:
11777 if (out_attr
[i
].i
== 0)
11778 out_attr
[i
].i
= in_attr
[i
].i
;
11779 else if (in_attr
[i
].i
!= 0 && out_attr
[i
].i
!= in_attr
[i
].i
)
11781 /* It's sometimes ok to mix different configs, so this is only
11784 (_("Warning: %B: Conflicting platform configuration"), ibfd
);
11787 case Tag_ABI_PCS_R9_use
:
11788 if (in_attr
[i
].i
!= out_attr
[i
].i
11789 && out_attr
[i
].i
!= AEABI_R9_unused
11790 && in_attr
[i
].i
!= AEABI_R9_unused
)
11793 (_("error: %B: Conflicting use of R9"), ibfd
);
11796 if (out_attr
[i
].i
== AEABI_R9_unused
)
11797 out_attr
[i
].i
= in_attr
[i
].i
;
11799 case Tag_ABI_PCS_RW_data
:
11800 if (in_attr
[i
].i
== AEABI_PCS_RW_data_SBrel
11801 && out_attr
[Tag_ABI_PCS_R9_use
].i
!= AEABI_R9_SB
11802 && out_attr
[Tag_ABI_PCS_R9_use
].i
!= AEABI_R9_unused
)
11805 (_("error: %B: SB relative addressing conflicts with use of R9"),
11809 /* Use the smallest value specified. */
11810 if (in_attr
[i
].i
< out_attr
[i
].i
)
11811 out_attr
[i
].i
= in_attr
[i
].i
;
11813 case Tag_ABI_PCS_wchar_t
:
11814 if (out_attr
[i
].i
&& in_attr
[i
].i
&& out_attr
[i
].i
!= in_attr
[i
].i
11815 && !elf_arm_tdata (obfd
)->no_wchar_size_warning
)
11818 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
11819 ibfd
, in_attr
[i
].i
, out_attr
[i
].i
);
11821 else if (in_attr
[i
].i
&& !out_attr
[i
].i
)
11822 out_attr
[i
].i
= in_attr
[i
].i
;
11824 case Tag_ABI_enum_size
:
11825 if (in_attr
[i
].i
!= AEABI_enum_unused
)
11827 if (out_attr
[i
].i
== AEABI_enum_unused
11828 || out_attr
[i
].i
== AEABI_enum_forced_wide
)
11830 /* The existing object is compatible with anything.
11831 Use whatever requirements the new object has. */
11832 out_attr
[i
].i
= in_attr
[i
].i
;
11834 else if (in_attr
[i
].i
!= AEABI_enum_forced_wide
11835 && out_attr
[i
].i
!= in_attr
[i
].i
11836 && !elf_arm_tdata (obfd
)->no_enum_size_warning
)
11838 static const char *aeabi_enum_names
[] =
11839 { "", "variable-size", "32-bit", "" };
11840 const char *in_name
=
11841 in_attr
[i
].i
< ARRAY_SIZE(aeabi_enum_names
)
11842 ? aeabi_enum_names
[in_attr
[i
].i
]
11844 const char *out_name
=
11845 out_attr
[i
].i
< ARRAY_SIZE(aeabi_enum_names
)
11846 ? aeabi_enum_names
[out_attr
[i
].i
]
11849 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
11850 ibfd
, in_name
, out_name
);
11854 case Tag_ABI_VFP_args
:
11857 case Tag_ABI_WMMX_args
:
11858 if (in_attr
[i
].i
!= out_attr
[i
].i
)
11861 (_("error: %B uses iWMMXt register arguments, %B does not"),
11866 case Tag_compatibility
:
11867 /* Merged in target-independent code. */
11869 case Tag_ABI_HardFP_use
:
11870 /* This is handled along with Tag_FP_arch. */
11872 case Tag_ABI_FP_16bit_format
:
11873 if (in_attr
[i
].i
!= 0 && out_attr
[i
].i
!= 0)
11875 if (in_attr
[i
].i
!= out_attr
[i
].i
)
11878 (_("error: fp16 format mismatch between %B and %B"),
11883 if (in_attr
[i
].i
!= 0)
11884 out_attr
[i
].i
= in_attr
[i
].i
;
11888 /* A value of zero on input means that the divide instruction may
11889 be used if available in the base architecture as specified via
11890 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
11891 the user did not want divide instructions. A value of 2
11892 explicitly means that divide instructions were allowed in ARM
11893 and Thumb state. */
11894 if (in_attr
[i
].i
== out_attr
[i
].i
)
11895 /* Do nothing. */ ;
11896 else if (elf32_arm_attributes_forbid_div (in_attr
)
11897 && !elf32_arm_attributes_accept_div (out_attr
))
11899 else if (elf32_arm_attributes_forbid_div (out_attr
)
11900 && elf32_arm_attributes_accept_div (in_attr
))
11901 out_attr
[i
].i
= in_attr
[i
].i
;
11902 else if (in_attr
[i
].i
== 2)
11903 out_attr
[i
].i
= in_attr
[i
].i
;
11906 case Tag_MPextension_use_legacy
:
11907 /* We don't output objects with Tag_MPextension_use_legacy - we
11908 move the value to Tag_MPextension_use. */
11909 if (in_attr
[i
].i
!= 0 && in_attr
[Tag_MPextension_use
].i
!= 0)
11911 if (in_attr
[Tag_MPextension_use
].i
!= in_attr
[i
].i
)
11914 (_("%B has has both the current and legacy "
11915 "Tag_MPextension_use attributes"),
11921 if (in_attr
[i
].i
> out_attr
[Tag_MPextension_use
].i
)
11922 out_attr
[Tag_MPextension_use
] = in_attr
[i
];
11926 case Tag_nodefaults
:
11927 /* This tag is set if it exists, but the value is unused (and is
11928 typically zero). We don't actually need to do anything here -
11929 the merge happens automatically when the type flags are merged
11932 case Tag_also_compatible_with
:
11933 /* Already done in Tag_CPU_arch. */
11935 case Tag_conformance
:
11936 /* Keep the attribute if it matches. Throw it away otherwise.
11937 No attribute means no claim to conform. */
11938 if (!in_attr
[i
].s
|| !out_attr
[i
].s
11939 || strcmp (in_attr
[i
].s
, out_attr
[i
].s
) != 0)
11940 out_attr
[i
].s
= NULL
;
11945 = result
&& _bfd_elf_merge_unknown_attribute_low (ibfd
, obfd
, i
);
11948 /* If out_attr was copied from in_attr then it won't have a type yet. */
11949 if (in_attr
[i
].type
&& !out_attr
[i
].type
)
11950 out_attr
[i
].type
= in_attr
[i
].type
;
11953 /* Merge Tag_compatibility attributes and any common GNU ones. */
11954 if (!_bfd_elf_merge_object_attributes (ibfd
, obfd
))
11957 /* Check for any attributes not known on ARM. */
11958 result
&= _bfd_elf_merge_unknown_attribute_list (ibfd
, obfd
);
11964 /* Return TRUE if the two EABI versions are incompatible. */
11967 elf32_arm_versions_compatible (unsigned iver
, unsigned over
)
11969 /* v4 and v5 are the same spec before and after it was released,
11970 so allow mixing them. */
11971 if ((iver
== EF_ARM_EABI_VER4
&& over
== EF_ARM_EABI_VER5
)
11972 || (iver
== EF_ARM_EABI_VER5
&& over
== EF_ARM_EABI_VER4
))
11975 return (iver
== over
);
11978 /* Merge backend specific data from an object file to the output
11979 object file when linking. */
11982 elf32_arm_merge_private_bfd_data (bfd
* ibfd
, bfd
* obfd
);
11984 /* Display the flags field. */
11987 elf32_arm_print_private_bfd_data (bfd
*abfd
, void * ptr
)
11989 FILE * file
= (FILE *) ptr
;
11990 unsigned long flags
;
11992 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
11994 /* Print normal ELF private data. */
11995 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
11997 flags
= elf_elfheader (abfd
)->e_flags
;
11998 /* Ignore init flag - it may not be set, despite the flags field
11999 containing valid data. */
12001 /* xgettext:c-format */
12002 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
12004 switch (EF_ARM_EABI_VERSION (flags
))
12006 case EF_ARM_EABI_UNKNOWN
:
12007 /* The following flag bits are GNU extensions and not part of the
12008 official ARM ELF extended ABI. Hence they are only decoded if
12009 the EABI version is not set. */
12010 if (flags
& EF_ARM_INTERWORK
)
12011 fprintf (file
, _(" [interworking enabled]"));
12013 if (flags
& EF_ARM_APCS_26
)
12014 fprintf (file
, " [APCS-26]");
12016 fprintf (file
, " [APCS-32]");
12018 if (flags
& EF_ARM_VFP_FLOAT
)
12019 fprintf (file
, _(" [VFP float format]"));
12020 else if (flags
& EF_ARM_MAVERICK_FLOAT
)
12021 fprintf (file
, _(" [Maverick float format]"));
12023 fprintf (file
, _(" [FPA float format]"));
12025 if (flags
& EF_ARM_APCS_FLOAT
)
12026 fprintf (file
, _(" [floats passed in float registers]"));
12028 if (flags
& EF_ARM_PIC
)
12029 fprintf (file
, _(" [position independent]"));
12031 if (flags
& EF_ARM_NEW_ABI
)
12032 fprintf (file
, _(" [new ABI]"));
12034 if (flags
& EF_ARM_OLD_ABI
)
12035 fprintf (file
, _(" [old ABI]"));
12037 if (flags
& EF_ARM_SOFT_FLOAT
)
12038 fprintf (file
, _(" [software FP]"));
12040 flags
&= ~(EF_ARM_INTERWORK
| EF_ARM_APCS_26
| EF_ARM_APCS_FLOAT
12041 | EF_ARM_PIC
| EF_ARM_NEW_ABI
| EF_ARM_OLD_ABI
12042 | EF_ARM_SOFT_FLOAT
| EF_ARM_VFP_FLOAT
12043 | EF_ARM_MAVERICK_FLOAT
);
12046 case EF_ARM_EABI_VER1
:
12047 fprintf (file
, _(" [Version1 EABI]"));
12049 if (flags
& EF_ARM_SYMSARESORTED
)
12050 fprintf (file
, _(" [sorted symbol table]"));
12052 fprintf (file
, _(" [unsorted symbol table]"));
12054 flags
&= ~ EF_ARM_SYMSARESORTED
;
12057 case EF_ARM_EABI_VER2
:
12058 fprintf (file
, _(" [Version2 EABI]"));
12060 if (flags
& EF_ARM_SYMSARESORTED
)
12061 fprintf (file
, _(" [sorted symbol table]"));
12063 fprintf (file
, _(" [unsorted symbol table]"));
12065 if (flags
& EF_ARM_DYNSYMSUSESEGIDX
)
12066 fprintf (file
, _(" [dynamic symbols use segment index]"));
12068 if (flags
& EF_ARM_MAPSYMSFIRST
)
12069 fprintf (file
, _(" [mapping symbols precede others]"));
12071 flags
&= ~(EF_ARM_SYMSARESORTED
| EF_ARM_DYNSYMSUSESEGIDX
12072 | EF_ARM_MAPSYMSFIRST
);
12075 case EF_ARM_EABI_VER3
:
12076 fprintf (file
, _(" [Version3 EABI]"));
12079 case EF_ARM_EABI_VER4
:
12080 fprintf (file
, _(" [Version4 EABI]"));
12083 case EF_ARM_EABI_VER5
:
12084 fprintf (file
, _(" [Version5 EABI]"));
12086 if (flags
& EF_ARM_ABI_FLOAT_SOFT
)
12087 fprintf (file
, _(" [soft-float ABI]"));
12089 if (flags
& EF_ARM_ABI_FLOAT_HARD
)
12090 fprintf (file
, _(" [hard-float ABI]"));
12092 flags
&= ~(EF_ARM_ABI_FLOAT_SOFT
| EF_ARM_ABI_FLOAT_HARD
);
12095 if (flags
& EF_ARM_BE8
)
12096 fprintf (file
, _(" [BE8]"));
12098 if (flags
& EF_ARM_LE8
)
12099 fprintf (file
, _(" [LE8]"));
12101 flags
&= ~(EF_ARM_LE8
| EF_ARM_BE8
);
12105 fprintf (file
, _(" <EABI version unrecognised>"));
12109 flags
&= ~ EF_ARM_EABIMASK
;
12111 if (flags
& EF_ARM_RELEXEC
)
12112 fprintf (file
, _(" [relocatable executable]"));
12114 if (flags
& EF_ARM_HASENTRY
)
12115 fprintf (file
, _(" [has entry point]"));
12117 flags
&= ~ (EF_ARM_RELEXEC
| EF_ARM_HASENTRY
);
12120 fprintf (file
, _("<Unrecognised flag bits set>"));
12122 fputc ('\n', file
);
12128 elf32_arm_get_symbol_type (Elf_Internal_Sym
* elf_sym
, int type
)
12130 switch (ELF_ST_TYPE (elf_sym
->st_info
))
12132 case STT_ARM_TFUNC
:
12133 return ELF_ST_TYPE (elf_sym
->st_info
);
12135 case STT_ARM_16BIT
:
12136 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
12137 This allows us to distinguish between data used by Thumb instructions
12138 and non-data (which is probably code) inside Thumb regions of an
12140 if (type
!= STT_OBJECT
&& type
!= STT_TLS
)
12141 return ELF_ST_TYPE (elf_sym
->st_info
);
12152 elf32_arm_gc_mark_hook (asection
*sec
,
12153 struct bfd_link_info
*info
,
12154 Elf_Internal_Rela
*rel
,
12155 struct elf_link_hash_entry
*h
,
12156 Elf_Internal_Sym
*sym
)
12159 switch (ELF32_R_TYPE (rel
->r_info
))
12161 case R_ARM_GNU_VTINHERIT
:
12162 case R_ARM_GNU_VTENTRY
:
12166 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
12169 /* Update the got entry reference counts for the section being removed. */
12172 elf32_arm_gc_sweep_hook (bfd
* abfd
,
12173 struct bfd_link_info
* info
,
12175 const Elf_Internal_Rela
* relocs
)
12177 Elf_Internal_Shdr
*symtab_hdr
;
12178 struct elf_link_hash_entry
**sym_hashes
;
12179 bfd_signed_vma
*local_got_refcounts
;
12180 const Elf_Internal_Rela
*rel
, *relend
;
12181 struct elf32_arm_link_hash_table
* globals
;
12183 if (info
->relocatable
)
12186 globals
= elf32_arm_hash_table (info
);
12187 if (globals
== NULL
)
12190 elf_section_data (sec
)->local_dynrel
= NULL
;
12192 symtab_hdr
= & elf_symtab_hdr (abfd
);
12193 sym_hashes
= elf_sym_hashes (abfd
);
12194 local_got_refcounts
= elf_local_got_refcounts (abfd
);
12196 check_use_blx (globals
);
12198 relend
= relocs
+ sec
->reloc_count
;
12199 for (rel
= relocs
; rel
< relend
; rel
++)
12201 unsigned long r_symndx
;
12202 struct elf_link_hash_entry
*h
= NULL
;
12203 struct elf32_arm_link_hash_entry
*eh
;
12205 bfd_boolean call_reloc_p
;
12206 bfd_boolean may_become_dynamic_p
;
12207 bfd_boolean may_need_local_target_p
;
12208 union gotplt_union
*root_plt
;
12209 struct arm_plt_info
*arm_plt
;
12211 r_symndx
= ELF32_R_SYM (rel
->r_info
);
12212 if (r_symndx
>= symtab_hdr
->sh_info
)
12214 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
12215 while (h
->root
.type
== bfd_link_hash_indirect
12216 || h
->root
.type
== bfd_link_hash_warning
)
12217 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
12219 eh
= (struct elf32_arm_link_hash_entry
*) h
;
12221 call_reloc_p
= FALSE
;
12222 may_become_dynamic_p
= FALSE
;
12223 may_need_local_target_p
= FALSE
;
12225 r_type
= ELF32_R_TYPE (rel
->r_info
);
12226 r_type
= arm_real_reloc_type (globals
, r_type
);
12230 case R_ARM_GOT_PREL
:
12231 case R_ARM_TLS_GD32
:
12232 case R_ARM_TLS_IE32
:
12235 if (h
->got
.refcount
> 0)
12236 h
->got
.refcount
-= 1;
12238 else if (local_got_refcounts
!= NULL
)
12240 if (local_got_refcounts
[r_symndx
] > 0)
12241 local_got_refcounts
[r_symndx
] -= 1;
12245 case R_ARM_TLS_LDM32
:
12246 globals
->tls_ldm_got
.refcount
-= 1;
12254 case R_ARM_THM_CALL
:
12255 case R_ARM_THM_JUMP24
:
12256 case R_ARM_THM_JUMP19
:
12257 call_reloc_p
= TRUE
;
12258 may_need_local_target_p
= TRUE
;
12262 if (!globals
->vxworks_p
)
12264 may_need_local_target_p
= TRUE
;
12267 /* Fall through. */
12269 case R_ARM_ABS32_NOI
:
12271 case R_ARM_REL32_NOI
:
12272 case R_ARM_MOVW_ABS_NC
:
12273 case R_ARM_MOVT_ABS
:
12274 case R_ARM_MOVW_PREL_NC
:
12275 case R_ARM_MOVT_PREL
:
12276 case R_ARM_THM_MOVW_ABS_NC
:
12277 case R_ARM_THM_MOVT_ABS
:
12278 case R_ARM_THM_MOVW_PREL_NC
:
12279 case R_ARM_THM_MOVT_PREL
:
12280 /* Should the interworking branches be here also? */
12281 if ((info
->shared
|| globals
->root
.is_relocatable_executable
)
12282 && (sec
->flags
& SEC_ALLOC
) != 0)
12285 && (r_type
== R_ARM_REL32
|| r_type
== R_ARM_REL32_NOI
))
12287 call_reloc_p
= TRUE
;
12288 may_need_local_target_p
= TRUE
;
12291 may_become_dynamic_p
= TRUE
;
12294 may_need_local_target_p
= TRUE
;
12301 if (may_need_local_target_p
12302 && elf32_arm_get_plt_info (abfd
, eh
, r_symndx
, &root_plt
, &arm_plt
))
12304 /* If PLT refcount book-keeping is wrong and too low, we'll
12305 see a zero value (going to -1) for the root PLT reference
12307 if (root_plt
->refcount
>= 0)
12309 BFD_ASSERT (root_plt
->refcount
!= 0);
12310 root_plt
->refcount
-= 1;
12313 /* A value of -1 means the symbol has become local, forced
12314 or seeing a hidden definition. Any other negative value
12316 BFD_ASSERT (root_plt
->refcount
== -1);
12319 arm_plt
->noncall_refcount
--;
12321 if (r_type
== R_ARM_THM_CALL
)
12322 arm_plt
->maybe_thumb_refcount
--;
12324 if (r_type
== R_ARM_THM_JUMP24
12325 || r_type
== R_ARM_THM_JUMP19
)
12326 arm_plt
->thumb_refcount
--;
12329 if (may_become_dynamic_p
)
12331 struct elf_dyn_relocs
**pp
;
12332 struct elf_dyn_relocs
*p
;
12335 pp
= &(eh
->dyn_relocs
);
12338 Elf_Internal_Sym
*isym
;
12340 isym
= bfd_sym_from_r_symndx (&globals
->sym_cache
,
12344 pp
= elf32_arm_get_local_dynreloc_list (abfd
, r_symndx
, isym
);
12348 for (; (p
= *pp
) != NULL
; pp
= &p
->next
)
12351 /* Everything must go for SEC. */
12361 /* Look through the relocs for a section during the first phase. */
12364 elf32_arm_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
12365 asection
*sec
, const Elf_Internal_Rela
*relocs
)
12367 Elf_Internal_Shdr
*symtab_hdr
;
12368 struct elf_link_hash_entry
**sym_hashes
;
12369 const Elf_Internal_Rela
*rel
;
12370 const Elf_Internal_Rela
*rel_end
;
12373 struct elf32_arm_link_hash_table
*htab
;
12374 bfd_boolean call_reloc_p
;
12375 bfd_boolean may_become_dynamic_p
;
12376 bfd_boolean may_need_local_target_p
;
12377 unsigned long nsyms
;
12379 if (info
->relocatable
)
12382 BFD_ASSERT (is_arm_elf (abfd
));
12384 htab
= elf32_arm_hash_table (info
);
12390 /* Create dynamic sections for relocatable executables so that we can
12391 copy relocations. */
12392 if (htab
->root
.is_relocatable_executable
12393 && ! htab
->root
.dynamic_sections_created
)
12395 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
12399 if (htab
->root
.dynobj
== NULL
)
12400 htab
->root
.dynobj
= abfd
;
12401 if (!create_ifunc_sections (info
))
12404 dynobj
= htab
->root
.dynobj
;
12406 symtab_hdr
= & elf_symtab_hdr (abfd
);
12407 sym_hashes
= elf_sym_hashes (abfd
);
12408 nsyms
= NUM_SHDR_ENTRIES (symtab_hdr
);
12410 rel_end
= relocs
+ sec
->reloc_count
;
12411 for (rel
= relocs
; rel
< rel_end
; rel
++)
12413 Elf_Internal_Sym
*isym
;
12414 struct elf_link_hash_entry
*h
;
12415 struct elf32_arm_link_hash_entry
*eh
;
12416 unsigned long r_symndx
;
12419 r_symndx
= ELF32_R_SYM (rel
->r_info
);
12420 r_type
= ELF32_R_TYPE (rel
->r_info
);
12421 r_type
= arm_real_reloc_type (htab
, r_type
);
12423 if (r_symndx
>= nsyms
12424 /* PR 9934: It is possible to have relocations that do not
12425 refer to symbols, thus it is also possible to have an
12426 object file containing relocations but no symbol table. */
12427 && (r_symndx
> STN_UNDEF
|| nsyms
> 0))
12429 (*_bfd_error_handler
) (_("%B: bad symbol index: %d"), abfd
,
12438 if (r_symndx
< symtab_hdr
->sh_info
)
12440 /* A local symbol. */
12441 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
,
12448 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
12449 while (h
->root
.type
== bfd_link_hash_indirect
12450 || h
->root
.type
== bfd_link_hash_warning
)
12451 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
12455 eh
= (struct elf32_arm_link_hash_entry
*) h
;
12457 call_reloc_p
= FALSE
;
12458 may_become_dynamic_p
= FALSE
;
12459 may_need_local_target_p
= FALSE
;
12461 /* Could be done earlier, if h were already available. */
12462 r_type
= elf32_arm_tls_transition (info
, r_type
, h
);
12466 case R_ARM_GOT_PREL
:
12467 case R_ARM_TLS_GD32
:
12468 case R_ARM_TLS_IE32
:
12469 case R_ARM_TLS_GOTDESC
:
12470 case R_ARM_TLS_DESCSEQ
:
12471 case R_ARM_THM_TLS_DESCSEQ
:
12472 case R_ARM_TLS_CALL
:
12473 case R_ARM_THM_TLS_CALL
:
12474 /* This symbol requires a global offset table entry. */
12476 int tls_type
, old_tls_type
;
12480 case R_ARM_TLS_GD32
: tls_type
= GOT_TLS_GD
; break;
12482 case R_ARM_TLS_IE32
: tls_type
= GOT_TLS_IE
; break;
12484 case R_ARM_TLS_GOTDESC
:
12485 case R_ARM_TLS_CALL
: case R_ARM_THM_TLS_CALL
:
12486 case R_ARM_TLS_DESCSEQ
: case R_ARM_THM_TLS_DESCSEQ
:
12487 tls_type
= GOT_TLS_GDESC
; break;
12489 default: tls_type
= GOT_NORMAL
; break;
12495 old_tls_type
= elf32_arm_hash_entry (h
)->tls_type
;
12499 /* This is a global offset table entry for a local symbol. */
12500 if (!elf32_arm_allocate_local_sym_info (abfd
))
12502 elf_local_got_refcounts (abfd
)[r_symndx
] += 1;
12503 old_tls_type
= elf32_arm_local_got_tls_type (abfd
) [r_symndx
];
12506 /* If a variable is accessed with both tls methods, two
12507 slots may be created. */
12508 if (GOT_TLS_GD_ANY_P (old_tls_type
)
12509 && GOT_TLS_GD_ANY_P (tls_type
))
12510 tls_type
|= old_tls_type
;
12512 /* We will already have issued an error message if there
12513 is a TLS/non-TLS mismatch, based on the symbol
12514 type. So just combine any TLS types needed. */
12515 if (old_tls_type
!= GOT_UNKNOWN
&& old_tls_type
!= GOT_NORMAL
12516 && tls_type
!= GOT_NORMAL
)
12517 tls_type
|= old_tls_type
;
12519 /* If the symbol is accessed in both IE and GDESC
12520 method, we're able to relax. Turn off the GDESC flag,
12521 without messing up with any other kind of tls types
12522 that may be involved */
12523 if ((tls_type
& GOT_TLS_IE
) && (tls_type
& GOT_TLS_GDESC
))
12524 tls_type
&= ~GOT_TLS_GDESC
;
12526 if (old_tls_type
!= tls_type
)
12529 elf32_arm_hash_entry (h
)->tls_type
= tls_type
;
12531 elf32_arm_local_got_tls_type (abfd
) [r_symndx
] = tls_type
;
12534 /* Fall through. */
12536 case R_ARM_TLS_LDM32
:
12537 if (r_type
== R_ARM_TLS_LDM32
)
12538 htab
->tls_ldm_got
.refcount
++;
12539 /* Fall through. */
12541 case R_ARM_GOTOFF32
:
12543 if (htab
->root
.sgot
== NULL
12544 && !create_got_section (htab
->root
.dynobj
, info
))
12553 case R_ARM_THM_CALL
:
12554 case R_ARM_THM_JUMP24
:
12555 case R_ARM_THM_JUMP19
:
12556 call_reloc_p
= TRUE
;
12557 may_need_local_target_p
= TRUE
;
12561 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
12562 ldr __GOTT_INDEX__ offsets. */
12563 if (!htab
->vxworks_p
)
12565 may_need_local_target_p
= TRUE
;
12568 /* Fall through. */
12570 case R_ARM_MOVW_ABS_NC
:
12571 case R_ARM_MOVT_ABS
:
12572 case R_ARM_THM_MOVW_ABS_NC
:
12573 case R_ARM_THM_MOVT_ABS
:
12576 (*_bfd_error_handler
)
12577 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
12578 abfd
, elf32_arm_howto_table_1
[r_type
].name
,
12579 (h
) ? h
->root
.root
.string
: "a local symbol");
12580 bfd_set_error (bfd_error_bad_value
);
12584 /* Fall through. */
12586 case R_ARM_ABS32_NOI
:
12588 case R_ARM_REL32_NOI
:
12589 case R_ARM_MOVW_PREL_NC
:
12590 case R_ARM_MOVT_PREL
:
12591 case R_ARM_THM_MOVW_PREL_NC
:
12592 case R_ARM_THM_MOVT_PREL
:
12594 /* Should the interworking branches be listed here? */
12595 if ((info
->shared
|| htab
->root
.is_relocatable_executable
)
12596 && (sec
->flags
& SEC_ALLOC
) != 0)
12599 && (r_type
== R_ARM_REL32
|| r_type
== R_ARM_REL32_NOI
))
12601 /* In shared libraries and relocatable executables,
12602 we treat local relative references as calls;
12603 see the related SYMBOL_CALLS_LOCAL code in
12604 allocate_dynrelocs. */
12605 call_reloc_p
= TRUE
;
12606 may_need_local_target_p
= TRUE
;
12609 /* We are creating a shared library or relocatable
12610 executable, and this is a reloc against a global symbol,
12611 or a non-PC-relative reloc against a local symbol.
12612 We may need to copy the reloc into the output. */
12613 may_become_dynamic_p
= TRUE
;
12616 may_need_local_target_p
= TRUE
;
12619 /* This relocation describes the C++ object vtable hierarchy.
12620 Reconstruct it for later use during GC. */
12621 case R_ARM_GNU_VTINHERIT
:
12622 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
12626 /* This relocation describes which C++ vtable entries are actually
12627 used. Record for later use during GC. */
12628 case R_ARM_GNU_VTENTRY
:
12629 BFD_ASSERT (h
!= NULL
);
12631 && !bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
12639 /* We may need a .plt entry if the function this reloc
12640 refers to is in a different object, regardless of the
12641 symbol's type. We can't tell for sure yet, because
12642 something later might force the symbol local. */
12644 else if (may_need_local_target_p
)
12645 /* If this reloc is in a read-only section, we might
12646 need a copy reloc. We can't check reliably at this
12647 stage whether the section is read-only, as input
12648 sections have not yet been mapped to output sections.
12649 Tentatively set the flag for now, and correct in
12650 adjust_dynamic_symbol. */
12651 h
->non_got_ref
= 1;
12654 if (may_need_local_target_p
12655 && (h
!= NULL
|| ELF32_ST_TYPE (isym
->st_info
) == STT_GNU_IFUNC
))
12657 union gotplt_union
*root_plt
;
12658 struct arm_plt_info
*arm_plt
;
12659 struct arm_local_iplt_info
*local_iplt
;
12663 root_plt
= &h
->plt
;
12664 arm_plt
= &eh
->plt
;
12668 local_iplt
= elf32_arm_create_local_iplt (abfd
, r_symndx
);
12669 if (local_iplt
== NULL
)
12671 root_plt
= &local_iplt
->root
;
12672 arm_plt
= &local_iplt
->arm
;
12675 /* If the symbol is a function that doesn't bind locally,
12676 this relocation will need a PLT entry. */
12677 if (root_plt
->refcount
!= -1)
12678 root_plt
->refcount
+= 1;
12681 arm_plt
->noncall_refcount
++;
12683 /* It's too early to use htab->use_blx here, so we have to
12684 record possible blx references separately from
12685 relocs that definitely need a thumb stub. */
12687 if (r_type
== R_ARM_THM_CALL
)
12688 arm_plt
->maybe_thumb_refcount
+= 1;
12690 if (r_type
== R_ARM_THM_JUMP24
12691 || r_type
== R_ARM_THM_JUMP19
)
12692 arm_plt
->thumb_refcount
+= 1;
12695 if (may_become_dynamic_p
)
12697 struct elf_dyn_relocs
*p
, **head
;
12699 /* Create a reloc section in dynobj. */
12700 if (sreloc
== NULL
)
12702 sreloc
= _bfd_elf_make_dynamic_reloc_section
12703 (sec
, dynobj
, 2, abfd
, ! htab
->use_rel
);
12705 if (sreloc
== NULL
)
12708 /* BPABI objects never have dynamic relocations mapped. */
12709 if (htab
->symbian_p
)
12713 flags
= bfd_get_section_flags (dynobj
, sreloc
);
12714 flags
&= ~(SEC_LOAD
| SEC_ALLOC
);
12715 bfd_set_section_flags (dynobj
, sreloc
, flags
);
12719 /* If this is a global symbol, count the number of
12720 relocations we need for this symbol. */
12722 head
= &((struct elf32_arm_link_hash_entry
*) h
)->dyn_relocs
;
12725 head
= elf32_arm_get_local_dynreloc_list (abfd
, r_symndx
, isym
);
12731 if (p
== NULL
|| p
->sec
!= sec
)
12733 bfd_size_type amt
= sizeof *p
;
12735 p
= (struct elf_dyn_relocs
*) bfd_alloc (htab
->root
.dynobj
, amt
);
12745 if (r_type
== R_ARM_REL32
|| r_type
== R_ARM_REL32_NOI
)
12754 /* Unwinding tables are not referenced directly. This pass marks them as
12755 required if the corresponding code section is marked. */
12758 elf32_arm_gc_mark_extra_sections (struct bfd_link_info
*info
,
12759 elf_gc_mark_hook_fn gc_mark_hook
)
12762 Elf_Internal_Shdr
**elf_shdrp
;
12765 _bfd_elf_gc_mark_extra_sections (info
, gc_mark_hook
);
12767 /* Marking EH data may cause additional code sections to be marked,
12768 requiring multiple passes. */
12773 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link_next
)
12777 if (! is_arm_elf (sub
))
12780 elf_shdrp
= elf_elfsections (sub
);
12781 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
12783 Elf_Internal_Shdr
*hdr
;
12785 hdr
= &elf_section_data (o
)->this_hdr
;
12786 if (hdr
->sh_type
== SHT_ARM_EXIDX
12788 && hdr
->sh_link
< elf_numsections (sub
)
12790 && elf_shdrp
[hdr
->sh_link
]->bfd_section
->gc_mark
)
12793 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
12803 /* Treat mapping symbols as special target symbols. */
12806 elf32_arm_is_target_special_symbol (bfd
* abfd ATTRIBUTE_UNUSED
, asymbol
* sym
)
12808 return bfd_is_arm_special_symbol_name (sym
->name
,
12809 BFD_ARM_SPECIAL_SYM_TYPE_ANY
);
12812 /* This is a copy of elf_find_function() from elf.c except that
12813 ARM mapping symbols are ignored when looking for function names
12814 and STT_ARM_TFUNC is considered to a function type. */
12817 arm_elf_find_function (bfd
* abfd ATTRIBUTE_UNUSED
,
12818 asection
* section
,
12819 asymbol
** symbols
,
12821 const char ** filename_ptr
,
12822 const char ** functionname_ptr
)
12824 const char * filename
= NULL
;
12825 asymbol
* func
= NULL
;
12826 bfd_vma low_func
= 0;
12829 for (p
= symbols
; *p
!= NULL
; p
++)
12831 elf_symbol_type
*q
;
12833 q
= (elf_symbol_type
*) *p
;
12835 switch (ELF_ST_TYPE (q
->internal_elf_sym
.st_info
))
12840 filename
= bfd_asymbol_name (&q
->symbol
);
12843 case STT_ARM_TFUNC
:
12845 /* Skip mapping symbols. */
12846 if ((q
->symbol
.flags
& BSF_LOCAL
)
12847 && bfd_is_arm_special_symbol_name (q
->symbol
.name
,
12848 BFD_ARM_SPECIAL_SYM_TYPE_ANY
))
12850 /* Fall through. */
12851 if (bfd_get_section (&q
->symbol
) == section
12852 && q
->symbol
.value
>= low_func
12853 && q
->symbol
.value
<= offset
)
12855 func
= (asymbol
*) q
;
12856 low_func
= q
->symbol
.value
;
12866 *filename_ptr
= filename
;
12867 if (functionname_ptr
)
12868 *functionname_ptr
= bfd_asymbol_name (func
);
12874 /* Find the nearest line to a particular section and offset, for error
12875 reporting. This code is a duplicate of the code in elf.c, except
12876 that it uses arm_elf_find_function. */
12879 elf32_arm_find_nearest_line (bfd
* abfd
,
12880 asection
* section
,
12881 asymbol
** symbols
,
12883 const char ** filename_ptr
,
12884 const char ** functionname_ptr
,
12885 unsigned int * line_ptr
)
12887 bfd_boolean found
= FALSE
;
12889 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
12891 if (_bfd_dwarf2_find_nearest_line (abfd
, dwarf_debug_sections
,
12892 section
, symbols
, offset
,
12893 filename_ptr
, functionname_ptr
,
12895 & elf_tdata (abfd
)->dwarf2_find_line_info
))
12897 if (!*functionname_ptr
)
12898 arm_elf_find_function (abfd
, section
, symbols
, offset
,
12899 *filename_ptr
? NULL
: filename_ptr
,
12905 if (! _bfd_stab_section_find_nearest_line (abfd
, symbols
, section
, offset
,
12906 & found
, filename_ptr
,
12907 functionname_ptr
, line_ptr
,
12908 & elf_tdata (abfd
)->line_info
))
12911 if (found
&& (*functionname_ptr
|| *line_ptr
))
12914 if (symbols
== NULL
)
12917 if (! arm_elf_find_function (abfd
, section
, symbols
, offset
,
12918 filename_ptr
, functionname_ptr
))
12926 elf32_arm_find_inliner_info (bfd
* abfd
,
12927 const char ** filename_ptr
,
12928 const char ** functionname_ptr
,
12929 unsigned int * line_ptr
)
12932 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
12933 functionname_ptr
, line_ptr
,
12934 & elf_tdata (abfd
)->dwarf2_find_line_info
);
12938 /* Adjust a symbol defined by a dynamic object and referenced by a
12939 regular object. The current definition is in some section of the
12940 dynamic object, but we're not including those sections. We have to
12941 change the definition to something the rest of the link can
12945 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info
* info
,
12946 struct elf_link_hash_entry
* h
)
12950 struct elf32_arm_link_hash_entry
* eh
;
12951 struct elf32_arm_link_hash_table
*globals
;
12953 globals
= elf32_arm_hash_table (info
);
12954 if (globals
== NULL
)
12957 dynobj
= elf_hash_table (info
)->dynobj
;
12959 /* Make sure we know what is going on here. */
12960 BFD_ASSERT (dynobj
!= NULL
12962 || h
->type
== STT_GNU_IFUNC
12963 || h
->u
.weakdef
!= NULL
12966 && !h
->def_regular
)));
12968 eh
= (struct elf32_arm_link_hash_entry
*) h
;
12970 /* If this is a function, put it in the procedure linkage table. We
12971 will fill in the contents of the procedure linkage table later,
12972 when we know the address of the .got section. */
12973 if (h
->type
== STT_FUNC
|| h
->type
== STT_GNU_IFUNC
|| h
->needs_plt
)
12975 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
12976 symbol binds locally. */
12977 if (h
->plt
.refcount
<= 0
12978 || (h
->type
!= STT_GNU_IFUNC
12979 && (SYMBOL_CALLS_LOCAL (info
, h
)
12980 || (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
12981 && h
->root
.type
== bfd_link_hash_undefweak
))))
12983 /* This case can occur if we saw a PLT32 reloc in an input
12984 file, but the symbol was never referred to by a dynamic
12985 object, or if all references were garbage collected. In
12986 such a case, we don't actually need to build a procedure
12987 linkage table, and we can just do a PC24 reloc instead. */
12988 h
->plt
.offset
= (bfd_vma
) -1;
12989 eh
->plt
.thumb_refcount
= 0;
12990 eh
->plt
.maybe_thumb_refcount
= 0;
12991 eh
->plt
.noncall_refcount
= 0;
12999 /* It's possible that we incorrectly decided a .plt reloc was
13000 needed for an R_ARM_PC24 or similar reloc to a non-function sym
13001 in check_relocs. We can't decide accurately between function
13002 and non-function syms in check-relocs; Objects loaded later in
13003 the link may change h->type. So fix it now. */
13004 h
->plt
.offset
= (bfd_vma
) -1;
13005 eh
->plt
.thumb_refcount
= 0;
13006 eh
->plt
.maybe_thumb_refcount
= 0;
13007 eh
->plt
.noncall_refcount
= 0;
13010 /* If this is a weak symbol, and there is a real definition, the
13011 processor independent code will have arranged for us to see the
13012 real definition first, and we can just use the same value. */
13013 if (h
->u
.weakdef
!= NULL
)
13015 BFD_ASSERT (h
->u
.weakdef
->root
.type
== bfd_link_hash_defined
13016 || h
->u
.weakdef
->root
.type
== bfd_link_hash_defweak
);
13017 h
->root
.u
.def
.section
= h
->u
.weakdef
->root
.u
.def
.section
;
13018 h
->root
.u
.def
.value
= h
->u
.weakdef
->root
.u
.def
.value
;
13022 /* If there are no non-GOT references, we do not need a copy
13024 if (!h
->non_got_ref
)
13027 /* This is a reference to a symbol defined by a dynamic object which
13028 is not a function. */
13030 /* If we are creating a shared library, we must presume that the
13031 only references to the symbol are via the global offset table.
13032 For such cases we need not do anything here; the relocations will
13033 be handled correctly by relocate_section. Relocatable executables
13034 can reference data in shared objects directly, so we don't need to
13035 do anything here. */
13036 if (info
->shared
|| globals
->root
.is_relocatable_executable
)
13039 /* We must allocate the symbol in our .dynbss section, which will
13040 become part of the .bss section of the executable. There will be
13041 an entry for this symbol in the .dynsym section. The dynamic
13042 object will contain position independent code, so all references
13043 from the dynamic object to this symbol will go through the global
13044 offset table. The dynamic linker will use the .dynsym entry to
13045 determine the address it must put in the global offset table, so
13046 both the dynamic object and the regular object will refer to the
13047 same memory location for the variable. */
13048 s
= bfd_get_linker_section (dynobj
, ".dynbss");
13049 BFD_ASSERT (s
!= NULL
);
13051 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
13052 copy the initial value out of the dynamic object and into the
13053 runtime process image. We need to remember the offset into the
13054 .rel(a).bss section we are going to use. */
13055 if ((h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0 && h
->size
!= 0)
13059 srel
= bfd_get_linker_section (dynobj
, RELOC_SECTION (globals
, ".bss"));
13060 elf32_arm_allocate_dynrelocs (info
, srel
, 1);
13064 return _bfd_elf_adjust_dynamic_copy (h
, s
);
13067 /* Allocate space in .plt, .got and associated reloc sections for
13071 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry
*h
, void * inf
)
13073 struct bfd_link_info
*info
;
13074 struct elf32_arm_link_hash_table
*htab
;
13075 struct elf32_arm_link_hash_entry
*eh
;
13076 struct elf_dyn_relocs
*p
;
13078 if (h
->root
.type
== bfd_link_hash_indirect
)
13081 eh
= (struct elf32_arm_link_hash_entry
*) h
;
13083 info
= (struct bfd_link_info
*) inf
;
13084 htab
= elf32_arm_hash_table (info
);
13088 if ((htab
->root
.dynamic_sections_created
|| h
->type
== STT_GNU_IFUNC
)
13089 && h
->plt
.refcount
> 0)
13091 /* Make sure this symbol is output as a dynamic symbol.
13092 Undefined weak syms won't yet be marked as dynamic. */
13093 if (h
->dynindx
== -1
13094 && !h
->forced_local
)
13096 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
13100 /* If the call in the PLT entry binds locally, the associated
13101 GOT entry should use an R_ARM_IRELATIVE relocation instead of
13102 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
13103 than the .plt section. */
13104 if (h
->type
== STT_GNU_IFUNC
&& SYMBOL_CALLS_LOCAL (info
, h
))
13107 if (eh
->plt
.noncall_refcount
== 0
13108 && SYMBOL_REFERENCES_LOCAL (info
, h
))
13109 /* All non-call references can be resolved directly.
13110 This means that they can (and in some cases, must)
13111 resolve directly to the run-time target, rather than
13112 to the PLT. That in turns means that any .got entry
13113 would be equal to the .igot.plt entry, so there's
13114 no point having both. */
13115 h
->got
.refcount
= 0;
13120 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h
))
13122 elf32_arm_allocate_plt_entry (info
, eh
->is_iplt
, &h
->plt
, &eh
->plt
);
13124 /* If this symbol is not defined in a regular file, and we are
13125 not generating a shared library, then set the symbol to this
13126 location in the .plt. This is required to make function
13127 pointers compare as equal between the normal executable and
13128 the shared library. */
13130 && !h
->def_regular
)
13132 h
->root
.u
.def
.section
= htab
->root
.splt
;
13133 h
->root
.u
.def
.value
= h
->plt
.offset
;
13135 /* Make sure the function is not marked as Thumb, in case
13136 it is the target of an ABS32 relocation, which will
13137 point to the PLT entry. */
13138 h
->target_internal
= ST_BRANCH_TO_ARM
;
13141 htab
->next_tls_desc_index
++;
13143 /* VxWorks executables have a second set of relocations for
13144 each PLT entry. They go in a separate relocation section,
13145 which is processed by the kernel loader. */
13146 if (htab
->vxworks_p
&& !info
->shared
)
13148 /* There is a relocation for the initial PLT entry:
13149 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
13150 if (h
->plt
.offset
== htab
->plt_header_size
)
13151 elf32_arm_allocate_dynrelocs (info
, htab
->srelplt2
, 1);
13153 /* There are two extra relocations for each subsequent
13154 PLT entry: an R_ARM_32 relocation for the GOT entry,
13155 and an R_ARM_32 relocation for the PLT entry. */
13156 elf32_arm_allocate_dynrelocs (info
, htab
->srelplt2
, 2);
13161 h
->plt
.offset
= (bfd_vma
) -1;
13167 h
->plt
.offset
= (bfd_vma
) -1;
13171 eh
= (struct elf32_arm_link_hash_entry
*) h
;
13172 eh
->tlsdesc_got
= (bfd_vma
) -1;
13174 if (h
->got
.refcount
> 0)
13178 int tls_type
= elf32_arm_hash_entry (h
)->tls_type
;
13181 /* Make sure this symbol is output as a dynamic symbol.
13182 Undefined weak syms won't yet be marked as dynamic. */
13183 if (h
->dynindx
== -1
13184 && !h
->forced_local
)
13186 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
13190 if (!htab
->symbian_p
)
13192 s
= htab
->root
.sgot
;
13193 h
->got
.offset
= s
->size
;
13195 if (tls_type
== GOT_UNKNOWN
)
13198 if (tls_type
== GOT_NORMAL
)
13199 /* Non-TLS symbols need one GOT slot. */
13203 if (tls_type
& GOT_TLS_GDESC
)
13205 /* R_ARM_TLS_DESC needs 2 GOT slots. */
13207 = (htab
->root
.sgotplt
->size
13208 - elf32_arm_compute_jump_table_size (htab
));
13209 htab
->root
.sgotplt
->size
+= 8;
13210 h
->got
.offset
= (bfd_vma
) -2;
13211 /* plt.got_offset needs to know there's a TLS_DESC
13212 reloc in the middle of .got.plt. */
13213 htab
->num_tls_desc
++;
13216 if (tls_type
& GOT_TLS_GD
)
13218 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
13219 the symbol is both GD and GDESC, got.offset may
13220 have been overwritten. */
13221 h
->got
.offset
= s
->size
;
13225 if (tls_type
& GOT_TLS_IE
)
13226 /* R_ARM_TLS_IE32 needs one GOT slot. */
13230 dyn
= htab
->root
.dynamic_sections_created
;
13233 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
, info
->shared
, h
)
13235 || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
13238 if (tls_type
!= GOT_NORMAL
13239 && (info
->shared
|| indx
!= 0)
13240 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
13241 || h
->root
.type
!= bfd_link_hash_undefweak
))
13243 if (tls_type
& GOT_TLS_IE
)
13244 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
13246 if (tls_type
& GOT_TLS_GD
)
13247 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
13249 if (tls_type
& GOT_TLS_GDESC
)
13251 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelplt
, 1);
13252 /* GDESC needs a trampoline to jump to. */
13253 htab
->tls_trampoline
= -1;
13256 /* Only GD needs it. GDESC just emits one relocation per
13258 if ((tls_type
& GOT_TLS_GD
) && indx
!= 0)
13259 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
13261 else if (!SYMBOL_REFERENCES_LOCAL (info
, h
))
13263 if (htab
->root
.dynamic_sections_created
)
13264 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
13265 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
13267 else if (h
->type
== STT_GNU_IFUNC
13268 && eh
->plt
.noncall_refcount
== 0)
13269 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
13270 they all resolve dynamically instead. Reserve room for the
13271 GOT entry's R_ARM_IRELATIVE relocation. */
13272 elf32_arm_allocate_irelocs (info
, htab
->root
.srelgot
, 1);
13273 else if (info
->shared
)
13274 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
13275 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
13279 h
->got
.offset
= (bfd_vma
) -1;
13281 /* Allocate stubs for exported Thumb functions on v4t. */
13282 if (!htab
->use_blx
&& h
->dynindx
!= -1
13284 && h
->target_internal
== ST_BRANCH_TO_THUMB
13285 && ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
13287 struct elf_link_hash_entry
* th
;
13288 struct bfd_link_hash_entry
* bh
;
13289 struct elf_link_hash_entry
* myh
;
13293 /* Create a new symbol to regist the real location of the function. */
13294 s
= h
->root
.u
.def
.section
;
13295 sprintf (name
, "__real_%s", h
->root
.root
.string
);
13296 _bfd_generic_link_add_one_symbol (info
, s
->owner
,
13297 name
, BSF_GLOBAL
, s
,
13298 h
->root
.u
.def
.value
,
13299 NULL
, TRUE
, FALSE
, &bh
);
13301 myh
= (struct elf_link_hash_entry
*) bh
;
13302 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
13303 myh
->forced_local
= 1;
13304 myh
->target_internal
= ST_BRANCH_TO_THUMB
;
13305 eh
->export_glue
= myh
;
13306 th
= record_arm_to_thumb_glue (info
, h
);
13307 /* Point the symbol at the stub. */
13308 h
->type
= ELF_ST_INFO (ELF_ST_BIND (h
->type
), STT_FUNC
);
13309 h
->target_internal
= ST_BRANCH_TO_ARM
;
13310 h
->root
.u
.def
.section
= th
->root
.u
.def
.section
;
13311 h
->root
.u
.def
.value
= th
->root
.u
.def
.value
& ~1;
13314 if (eh
->dyn_relocs
== NULL
)
13317 /* In the shared -Bsymbolic case, discard space allocated for
13318 dynamic pc-relative relocs against symbols which turn out to be
13319 defined in regular objects. For the normal shared case, discard
13320 space for pc-relative relocs that have become local due to symbol
13321 visibility changes. */
13323 if (info
->shared
|| htab
->root
.is_relocatable_executable
)
13325 /* The only relocs that use pc_count are R_ARM_REL32 and
13326 R_ARM_REL32_NOI, which will appear on something like
13327 ".long foo - .". We want calls to protected symbols to resolve
13328 directly to the function rather than going via the plt. If people
13329 want function pointer comparisons to work as expected then they
13330 should avoid writing assembly like ".long foo - .". */
13331 if (SYMBOL_CALLS_LOCAL (info
, h
))
13333 struct elf_dyn_relocs
**pp
;
13335 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; )
13337 p
->count
-= p
->pc_count
;
13346 if (htab
->vxworks_p
)
13348 struct elf_dyn_relocs
**pp
;
13350 for (pp
= &eh
->dyn_relocs
; (p
= *pp
) != NULL
; )
13352 if (strcmp (p
->sec
->output_section
->name
, ".tls_vars") == 0)
13359 /* Also discard relocs on undefined weak syms with non-default
13361 if (eh
->dyn_relocs
!= NULL
13362 && h
->root
.type
== bfd_link_hash_undefweak
)
13364 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
)
13365 eh
->dyn_relocs
= NULL
;
13367 /* Make sure undefined weak symbols are output as a dynamic
13369 else if (h
->dynindx
== -1
13370 && !h
->forced_local
)
13372 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
13377 else if (htab
->root
.is_relocatable_executable
&& h
->dynindx
== -1
13378 && h
->root
.type
== bfd_link_hash_new
)
13380 /* Output absolute symbols so that we can create relocations
13381 against them. For normal symbols we output a relocation
13382 against the section that contains them. */
13383 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
13390 /* For the non-shared case, discard space for relocs against
13391 symbols which turn out to need copy relocs or are not
13394 if (!h
->non_got_ref
13395 && ((h
->def_dynamic
13396 && !h
->def_regular
)
13397 || (htab
->root
.dynamic_sections_created
13398 && (h
->root
.type
== bfd_link_hash_undefweak
13399 || h
->root
.type
== bfd_link_hash_undefined
))))
13401 /* Make sure this symbol is output as a dynamic symbol.
13402 Undefined weak syms won't yet be marked as dynamic. */
13403 if (h
->dynindx
== -1
13404 && !h
->forced_local
)
13406 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
13410 /* If that succeeded, we know we'll be keeping all the
13412 if (h
->dynindx
!= -1)
13416 eh
->dyn_relocs
= NULL
;
13421 /* Finally, allocate space. */
13422 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
13424 asection
*sreloc
= elf_section_data (p
->sec
)->sreloc
;
13425 if (h
->type
== STT_GNU_IFUNC
13426 && eh
->plt
.noncall_refcount
== 0
13427 && SYMBOL_REFERENCES_LOCAL (info
, h
))
13428 elf32_arm_allocate_irelocs (info
, sreloc
, p
->count
);
13430 elf32_arm_allocate_dynrelocs (info
, sreloc
, p
->count
);
13436 /* Find any dynamic relocs that apply to read-only sections. */
13439 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry
* h
, void * inf
)
13441 struct elf32_arm_link_hash_entry
* eh
;
13442 struct elf_dyn_relocs
* p
;
13444 eh
= (struct elf32_arm_link_hash_entry
*) h
;
13445 for (p
= eh
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
13447 asection
*s
= p
->sec
;
13449 if (s
!= NULL
&& (s
->flags
& SEC_READONLY
) != 0)
13451 struct bfd_link_info
*info
= (struct bfd_link_info
*) inf
;
13453 info
->flags
|= DF_TEXTREL
;
13455 /* Not an error, just cut short the traversal. */
13463 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info
*info
,
13466 struct elf32_arm_link_hash_table
*globals
;
13468 globals
= elf32_arm_hash_table (info
);
13469 if (globals
== NULL
)
13472 globals
->byteswap_code
= byteswap_code
;
13475 /* Set the sizes of the dynamic sections. */
13478 elf32_arm_size_dynamic_sections (bfd
* output_bfd ATTRIBUTE_UNUSED
,
13479 struct bfd_link_info
* info
)
13484 bfd_boolean relocs
;
13486 struct elf32_arm_link_hash_table
*htab
;
13488 htab
= elf32_arm_hash_table (info
);
13492 dynobj
= elf_hash_table (info
)->dynobj
;
13493 BFD_ASSERT (dynobj
!= NULL
);
13494 check_use_blx (htab
);
13496 if (elf_hash_table (info
)->dynamic_sections_created
)
13498 /* Set the contents of the .interp section to the interpreter. */
13499 if (info
->executable
)
13501 s
= bfd_get_linker_section (dynobj
, ".interp");
13502 BFD_ASSERT (s
!= NULL
);
13503 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
13504 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
13508 /* Set up .got offsets for local syms, and space for local dynamic
13510 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
13512 bfd_signed_vma
*local_got
;
13513 bfd_signed_vma
*end_local_got
;
13514 struct arm_local_iplt_info
**local_iplt_ptr
, *local_iplt
;
13515 char *local_tls_type
;
13516 bfd_vma
*local_tlsdesc_gotent
;
13517 bfd_size_type locsymcount
;
13518 Elf_Internal_Shdr
*symtab_hdr
;
13520 bfd_boolean is_vxworks
= htab
->vxworks_p
;
13521 unsigned int symndx
;
13523 if (! is_arm_elf (ibfd
))
13526 for (s
= ibfd
->sections
; s
!= NULL
; s
= s
->next
)
13528 struct elf_dyn_relocs
*p
;
13530 for (p
= (struct elf_dyn_relocs
*)
13531 elf_section_data (s
)->local_dynrel
; p
!= NULL
; p
= p
->next
)
13533 if (!bfd_is_abs_section (p
->sec
)
13534 && bfd_is_abs_section (p
->sec
->output_section
))
13536 /* Input section has been discarded, either because
13537 it is a copy of a linkonce section or due to
13538 linker script /DISCARD/, so we'll be discarding
13541 else if (is_vxworks
13542 && strcmp (p
->sec
->output_section
->name
,
13545 /* Relocations in vxworks .tls_vars sections are
13546 handled specially by the loader. */
13548 else if (p
->count
!= 0)
13550 srel
= elf_section_data (p
->sec
)->sreloc
;
13551 elf32_arm_allocate_dynrelocs (info
, srel
, p
->count
);
13552 if ((p
->sec
->output_section
->flags
& SEC_READONLY
) != 0)
13553 info
->flags
|= DF_TEXTREL
;
13558 local_got
= elf_local_got_refcounts (ibfd
);
13562 symtab_hdr
= & elf_symtab_hdr (ibfd
);
13563 locsymcount
= symtab_hdr
->sh_info
;
13564 end_local_got
= local_got
+ locsymcount
;
13565 local_iplt_ptr
= elf32_arm_local_iplt (ibfd
);
13566 local_tls_type
= elf32_arm_local_got_tls_type (ibfd
);
13567 local_tlsdesc_gotent
= elf32_arm_local_tlsdesc_gotent (ibfd
);
13569 s
= htab
->root
.sgot
;
13570 srel
= htab
->root
.srelgot
;
13571 for (; local_got
< end_local_got
;
13572 ++local_got
, ++local_iplt_ptr
, ++local_tls_type
,
13573 ++local_tlsdesc_gotent
, ++symndx
)
13575 *local_tlsdesc_gotent
= (bfd_vma
) -1;
13576 local_iplt
= *local_iplt_ptr
;
13577 if (local_iplt
!= NULL
)
13579 struct elf_dyn_relocs
*p
;
13581 if (local_iplt
->root
.refcount
> 0)
13583 elf32_arm_allocate_plt_entry (info
, TRUE
,
13586 if (local_iplt
->arm
.noncall_refcount
== 0)
13587 /* All references to the PLT are calls, so all
13588 non-call references can resolve directly to the
13589 run-time target. This means that the .got entry
13590 would be the same as the .igot.plt entry, so there's
13591 no point creating both. */
13596 BFD_ASSERT (local_iplt
->arm
.noncall_refcount
== 0);
13597 local_iplt
->root
.offset
= (bfd_vma
) -1;
13600 for (p
= local_iplt
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
13604 psrel
= elf_section_data (p
->sec
)->sreloc
;
13605 if (local_iplt
->arm
.noncall_refcount
== 0)
13606 elf32_arm_allocate_irelocs (info
, psrel
, p
->count
);
13608 elf32_arm_allocate_dynrelocs (info
, psrel
, p
->count
);
13611 if (*local_got
> 0)
13613 Elf_Internal_Sym
*isym
;
13615 *local_got
= s
->size
;
13616 if (*local_tls_type
& GOT_TLS_GD
)
13617 /* TLS_GD relocs need an 8-byte structure in the GOT. */
13619 if (*local_tls_type
& GOT_TLS_GDESC
)
13621 *local_tlsdesc_gotent
= htab
->root
.sgotplt
->size
13622 - elf32_arm_compute_jump_table_size (htab
);
13623 htab
->root
.sgotplt
->size
+= 8;
13624 *local_got
= (bfd_vma
) -2;
13625 /* plt.got_offset needs to know there's a TLS_DESC
13626 reloc in the middle of .got.plt. */
13627 htab
->num_tls_desc
++;
13629 if (*local_tls_type
& GOT_TLS_IE
)
13632 if (*local_tls_type
& GOT_NORMAL
)
13634 /* If the symbol is both GD and GDESC, *local_got
13635 may have been overwritten. */
13636 *local_got
= s
->size
;
13640 isym
= bfd_sym_from_r_symndx (&htab
->sym_cache
, ibfd
, symndx
);
13644 /* If all references to an STT_GNU_IFUNC PLT are calls,
13645 then all non-call references, including this GOT entry,
13646 resolve directly to the run-time target. */
13647 if (ELF32_ST_TYPE (isym
->st_info
) == STT_GNU_IFUNC
13648 && (local_iplt
== NULL
13649 || local_iplt
->arm
.noncall_refcount
== 0))
13650 elf32_arm_allocate_irelocs (info
, srel
, 1);
13651 else if (info
->shared
|| output_bfd
->flags
& DYNAMIC
)
13653 if ((info
->shared
&& !(*local_tls_type
& GOT_TLS_GDESC
))
13654 || *local_tls_type
& GOT_TLS_GD
)
13655 elf32_arm_allocate_dynrelocs (info
, srel
, 1);
13657 if (info
->shared
&& *local_tls_type
& GOT_TLS_GDESC
)
13659 elf32_arm_allocate_dynrelocs (info
,
13660 htab
->root
.srelplt
, 1);
13661 htab
->tls_trampoline
= -1;
13666 *local_got
= (bfd_vma
) -1;
13670 if (htab
->tls_ldm_got
.refcount
> 0)
13672 /* Allocate two GOT entries and one dynamic relocation (if necessary)
13673 for R_ARM_TLS_LDM32 relocations. */
13674 htab
->tls_ldm_got
.offset
= htab
->root
.sgot
->size
;
13675 htab
->root
.sgot
->size
+= 8;
13677 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
13680 htab
->tls_ldm_got
.offset
= -1;
13682 /* Allocate global sym .plt and .got entries, and space for global
13683 sym dynamic relocs. */
13684 elf_link_hash_traverse (& htab
->root
, allocate_dynrelocs_for_symbol
, info
);
13686 /* Here we rummage through the found bfds to collect glue information. */
13687 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link_next
)
13689 if (! is_arm_elf (ibfd
))
13692 /* Initialise mapping tables for code/data. */
13693 bfd_elf32_arm_init_maps (ibfd
);
13695 if (!bfd_elf32_arm_process_before_allocation (ibfd
, info
)
13696 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd
, info
))
13697 /* xgettext:c-format */
13698 _bfd_error_handler (_("Errors encountered processing file %s"),
13702 /* Allocate space for the glue sections now that we've sized them. */
13703 bfd_elf32_arm_allocate_interworking_sections (info
);
13705 /* For every jump slot reserved in the sgotplt, reloc_count is
13706 incremented. However, when we reserve space for TLS descriptors,
13707 it's not incremented, so in order to compute the space reserved
13708 for them, it suffices to multiply the reloc count by the jump
13710 if (htab
->root
.srelplt
)
13711 htab
->sgotplt_jump_table_size
= elf32_arm_compute_jump_table_size(htab
);
13713 if (htab
->tls_trampoline
)
13715 if (htab
->root
.splt
->size
== 0)
13716 htab
->root
.splt
->size
+= htab
->plt_header_size
;
13718 htab
->tls_trampoline
= htab
->root
.splt
->size
;
13719 htab
->root
.splt
->size
+= htab
->plt_entry_size
;
13721 /* If we're not using lazy TLS relocations, don't generate the
13722 PLT and GOT entries they require. */
13723 if (!(info
->flags
& DF_BIND_NOW
))
13725 htab
->dt_tlsdesc_got
= htab
->root
.sgot
->size
;
13726 htab
->root
.sgot
->size
+= 4;
13728 htab
->dt_tlsdesc_plt
= htab
->root
.splt
->size
;
13729 htab
->root
.splt
->size
+= 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline
);
13733 /* The check_relocs and adjust_dynamic_symbol entry points have
13734 determined the sizes of the various dynamic sections. Allocate
13735 memory for them. */
13738 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
13742 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
13745 /* It's OK to base decisions on the section name, because none
13746 of the dynobj section names depend upon the input files. */
13747 name
= bfd_get_section_name (dynobj
, s
);
13749 if (s
== htab
->root
.splt
)
13751 /* Remember whether there is a PLT. */
13752 plt
= s
->size
!= 0;
13754 else if (CONST_STRNEQ (name
, ".rel"))
13758 /* Remember whether there are any reloc sections other
13759 than .rel(a).plt and .rela.plt.unloaded. */
13760 if (s
!= htab
->root
.srelplt
&& s
!= htab
->srelplt2
)
13763 /* We use the reloc_count field as a counter if we need
13764 to copy relocs into the output file. */
13765 s
->reloc_count
= 0;
13768 else if (s
!= htab
->root
.sgot
13769 && s
!= htab
->root
.sgotplt
13770 && s
!= htab
->root
.iplt
13771 && s
!= htab
->root
.igotplt
13772 && s
!= htab
->sdynbss
)
13774 /* It's not one of our sections, so don't allocate space. */
13780 /* If we don't need this section, strip it from the
13781 output file. This is mostly to handle .rel(a).bss and
13782 .rel(a).plt. We must create both sections in
13783 create_dynamic_sections, because they must be created
13784 before the linker maps input sections to output
13785 sections. The linker does that before
13786 adjust_dynamic_symbol is called, and it is that
13787 function which decides whether anything needs to go
13788 into these sections. */
13789 s
->flags
|= SEC_EXCLUDE
;
13793 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
13796 /* Allocate memory for the section contents. */
13797 s
->contents
= (unsigned char *) bfd_zalloc (dynobj
, s
->size
);
13798 if (s
->contents
== NULL
)
13802 if (elf_hash_table (info
)->dynamic_sections_created
)
13804 /* Add some entries to the .dynamic section. We fill in the
13805 values later, in elf32_arm_finish_dynamic_sections, but we
13806 must add the entries now so that we get the correct size for
13807 the .dynamic section. The DT_DEBUG entry is filled in by the
13808 dynamic linker and used by the debugger. */
13809 #define add_dynamic_entry(TAG, VAL) \
13810 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
13812 if (info
->executable
)
13814 if (!add_dynamic_entry (DT_DEBUG
, 0))
13820 if ( !add_dynamic_entry (DT_PLTGOT
, 0)
13821 || !add_dynamic_entry (DT_PLTRELSZ
, 0)
13822 || !add_dynamic_entry (DT_PLTREL
,
13823 htab
->use_rel
? DT_REL
: DT_RELA
)
13824 || !add_dynamic_entry (DT_JMPREL
, 0))
13827 if (htab
->dt_tlsdesc_plt
&&
13828 (!add_dynamic_entry (DT_TLSDESC_PLT
,0)
13829 || !add_dynamic_entry (DT_TLSDESC_GOT
,0)))
13837 if (!add_dynamic_entry (DT_REL
, 0)
13838 || !add_dynamic_entry (DT_RELSZ
, 0)
13839 || !add_dynamic_entry (DT_RELENT
, RELOC_SIZE (htab
)))
13844 if (!add_dynamic_entry (DT_RELA
, 0)
13845 || !add_dynamic_entry (DT_RELASZ
, 0)
13846 || !add_dynamic_entry (DT_RELAENT
, RELOC_SIZE (htab
)))
13851 /* If any dynamic relocs apply to a read-only section,
13852 then we need a DT_TEXTREL entry. */
13853 if ((info
->flags
& DF_TEXTREL
) == 0)
13854 elf_link_hash_traverse (& htab
->root
, elf32_arm_readonly_dynrelocs
,
13857 if ((info
->flags
& DF_TEXTREL
) != 0)
13859 if (!add_dynamic_entry (DT_TEXTREL
, 0))
13862 if (htab
->vxworks_p
13863 && !elf_vxworks_add_dynamic_entries (output_bfd
, info
))
13866 #undef add_dynamic_entry
13871 /* Size sections even though they're not dynamic. We use it to setup
13872 _TLS_MODULE_BASE_, if needed. */
13875 elf32_arm_always_size_sections (bfd
*output_bfd
,
13876 struct bfd_link_info
*info
)
13880 if (info
->relocatable
)
13883 tls_sec
= elf_hash_table (info
)->tls_sec
;
13887 struct elf_link_hash_entry
*tlsbase
;
13889 tlsbase
= elf_link_hash_lookup
13890 (elf_hash_table (info
), "_TLS_MODULE_BASE_", TRUE
, TRUE
, FALSE
);
13894 struct bfd_link_hash_entry
*bh
= NULL
;
13895 const struct elf_backend_data
*bed
13896 = get_elf_backend_data (output_bfd
);
13898 if (!(_bfd_generic_link_add_one_symbol
13899 (info
, output_bfd
, "_TLS_MODULE_BASE_", BSF_LOCAL
,
13900 tls_sec
, 0, NULL
, FALSE
,
13901 bed
->collect
, &bh
)))
13904 tlsbase
->type
= STT_TLS
;
13905 tlsbase
= (struct elf_link_hash_entry
*)bh
;
13906 tlsbase
->def_regular
= 1;
13907 tlsbase
->other
= STV_HIDDEN
;
13908 (*bed
->elf_backend_hide_symbol
) (info
, tlsbase
, TRUE
);
13914 /* Finish up dynamic symbol handling. We set the contents of various
13915 dynamic sections here. */
13918 elf32_arm_finish_dynamic_symbol (bfd
* output_bfd
,
13919 struct bfd_link_info
* info
,
13920 struct elf_link_hash_entry
* h
,
13921 Elf_Internal_Sym
* sym
)
13923 struct elf32_arm_link_hash_table
*htab
;
13924 struct elf32_arm_link_hash_entry
*eh
;
13926 htab
= elf32_arm_hash_table (info
);
13930 eh
= (struct elf32_arm_link_hash_entry
*) h
;
13932 if (h
->plt
.offset
!= (bfd_vma
) -1)
13936 BFD_ASSERT (h
->dynindx
!= -1);
13937 elf32_arm_populate_plt_entry (output_bfd
, info
, &h
->plt
, &eh
->plt
,
13941 if (!h
->def_regular
)
13943 /* Mark the symbol as undefined, rather than as defined in
13944 the .plt section. Leave the value alone. */
13945 sym
->st_shndx
= SHN_UNDEF
;
13946 /* If the symbol is weak, we do need to clear the value.
13947 Otherwise, the PLT entry would provide a definition for
13948 the symbol even if the symbol wasn't defined anywhere,
13949 and so the symbol would never be NULL. */
13950 if (!h
->ref_regular_nonweak
)
13953 else if (eh
->is_iplt
&& eh
->plt
.noncall_refcount
!= 0)
13955 /* At least one non-call relocation references this .iplt entry,
13956 so the .iplt entry is the function's canonical address. */
13957 sym
->st_info
= ELF_ST_INFO (ELF_ST_BIND (sym
->st_info
), STT_FUNC
);
13958 sym
->st_target_internal
= ST_BRANCH_TO_ARM
;
13959 sym
->st_shndx
= (_bfd_elf_section_from_bfd_section
13960 (output_bfd
, htab
->root
.iplt
->output_section
));
13961 sym
->st_value
= (h
->plt
.offset
13962 + htab
->root
.iplt
->output_section
->vma
13963 + htab
->root
.iplt
->output_offset
);
13970 Elf_Internal_Rela rel
;
13972 /* This symbol needs a copy reloc. Set it up. */
13973 BFD_ASSERT (h
->dynindx
!= -1
13974 && (h
->root
.type
== bfd_link_hash_defined
13975 || h
->root
.type
== bfd_link_hash_defweak
));
13978 BFD_ASSERT (s
!= NULL
);
13981 rel
.r_offset
= (h
->root
.u
.def
.value
13982 + h
->root
.u
.def
.section
->output_section
->vma
13983 + h
->root
.u
.def
.section
->output_offset
);
13984 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_COPY
);
13985 elf32_arm_add_dynreloc (output_bfd
, info
, s
, &rel
);
13988 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
13989 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
13990 to the ".got" section. */
13991 if (h
== htab
->root
.hdynamic
13992 || (!htab
->vxworks_p
&& h
== htab
->root
.hgot
))
13993 sym
->st_shndx
= SHN_ABS
;
13999 arm_put_trampoline (struct elf32_arm_link_hash_table
*htab
, bfd
*output_bfd
,
14001 const unsigned long *template, unsigned count
)
14005 for (ix
= 0; ix
!= count
; ix
++)
14007 unsigned long insn
= template[ix
];
14009 /* Emit mov pc,rx if bx is not permitted. */
14010 if (htab
->fix_v4bx
== 1 && (insn
& 0x0ffffff0) == 0x012fff10)
14011 insn
= (insn
& 0xf000000f) | 0x01a0f000;
14012 put_arm_insn (htab
, output_bfd
, insn
, (char *)contents
+ ix
*4);
14016 /* Finish up the dynamic sections. */
14019 elf32_arm_finish_dynamic_sections (bfd
* output_bfd
, struct bfd_link_info
* info
)
14024 struct elf32_arm_link_hash_table
*htab
;
14026 htab
= elf32_arm_hash_table (info
);
14030 dynobj
= elf_hash_table (info
)->dynobj
;
14032 sgot
= htab
->root
.sgotplt
;
14033 /* A broken linker script might have discarded the dynamic sections.
14034 Catch this here so that we do not seg-fault later on. */
14035 if (sgot
!= NULL
&& bfd_is_abs_section (sgot
->output_section
))
14037 sdyn
= bfd_get_linker_section (dynobj
, ".dynamic");
14039 if (elf_hash_table (info
)->dynamic_sections_created
)
14042 Elf32_External_Dyn
*dyncon
, *dynconend
;
14044 splt
= htab
->root
.splt
;
14045 BFD_ASSERT (splt
!= NULL
&& sdyn
!= NULL
);
14046 BFD_ASSERT (htab
->symbian_p
|| sgot
!= NULL
);
14048 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
14049 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
14051 for (; dyncon
< dynconend
; dyncon
++)
14053 Elf_Internal_Dyn dyn
;
14057 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
14064 if (htab
->vxworks_p
14065 && elf_vxworks_finish_dynamic_entry (output_bfd
, &dyn
))
14066 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
14071 goto get_vma_if_bpabi
;
14074 goto get_vma_if_bpabi
;
14077 goto get_vma_if_bpabi
;
14079 name
= ".gnu.version";
14080 goto get_vma_if_bpabi
;
14082 name
= ".gnu.version_d";
14083 goto get_vma_if_bpabi
;
14085 name
= ".gnu.version_r";
14086 goto get_vma_if_bpabi
;
14092 name
= RELOC_SECTION (htab
, ".plt");
14094 s
= bfd_get_section_by_name (output_bfd
, name
);
14097 /* PR ld/14397: Issue an error message if a required section is missing. */
14098 (*_bfd_error_handler
)
14099 (_("error: required section '%s' not found in the linker script"), name
);
14100 bfd_set_error (bfd_error_invalid_operation
);
14103 if (!htab
->symbian_p
)
14104 dyn
.d_un
.d_ptr
= s
->vma
;
14106 /* In the BPABI, tags in the PT_DYNAMIC section point
14107 at the file offset, not the memory address, for the
14108 convenience of the post linker. */
14109 dyn
.d_un
.d_ptr
= s
->filepos
;
14110 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
14114 if (htab
->symbian_p
)
14119 s
= htab
->root
.srelplt
;
14120 BFD_ASSERT (s
!= NULL
);
14121 dyn
.d_un
.d_val
= s
->size
;
14122 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
14127 if (!htab
->symbian_p
)
14129 /* My reading of the SVR4 ABI indicates that the
14130 procedure linkage table relocs (DT_JMPREL) should be
14131 included in the overall relocs (DT_REL). This is
14132 what Solaris does. However, UnixWare can not handle
14133 that case. Therefore, we override the DT_RELSZ entry
14134 here to make it not include the JMPREL relocs. Since
14135 the linker script arranges for .rel(a).plt to follow all
14136 other relocation sections, we don't have to worry
14137 about changing the DT_REL entry. */
14138 s
= htab
->root
.srelplt
;
14140 dyn
.d_un
.d_val
-= s
->size
;
14141 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
14144 /* Fall through. */
14148 /* In the BPABI, the DT_REL tag must point at the file
14149 offset, not the VMA, of the first relocation
14150 section. So, we use code similar to that in
14151 elflink.c, but do not check for SHF_ALLOC on the
14152 relcoation section, since relocations sections are
14153 never allocated under the BPABI. The comments above
14154 about Unixware notwithstanding, we include all of the
14155 relocations here. */
14156 if (htab
->symbian_p
)
14159 type
= ((dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
14160 ? SHT_REL
: SHT_RELA
);
14161 dyn
.d_un
.d_val
= 0;
14162 for (i
= 1; i
< elf_numsections (output_bfd
); i
++)
14164 Elf_Internal_Shdr
*hdr
14165 = elf_elfsections (output_bfd
)[i
];
14166 if (hdr
->sh_type
== type
)
14168 if (dyn
.d_tag
== DT_RELSZ
14169 || dyn
.d_tag
== DT_RELASZ
)
14170 dyn
.d_un
.d_val
+= hdr
->sh_size
;
14171 else if ((ufile_ptr
) hdr
->sh_offset
14172 <= dyn
.d_un
.d_val
- 1)
14173 dyn
.d_un
.d_val
= hdr
->sh_offset
;
14176 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
14180 case DT_TLSDESC_PLT
:
14181 s
= htab
->root
.splt
;
14182 dyn
.d_un
.d_ptr
= (s
->output_section
->vma
+ s
->output_offset
14183 + htab
->dt_tlsdesc_plt
);
14184 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
14187 case DT_TLSDESC_GOT
:
14188 s
= htab
->root
.sgot
;
14189 dyn
.d_un
.d_ptr
= (s
->output_section
->vma
+ s
->output_offset
14190 + htab
->dt_tlsdesc_got
);
14191 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
14194 /* Set the bottom bit of DT_INIT/FINI if the
14195 corresponding function is Thumb. */
14197 name
= info
->init_function
;
14200 name
= info
->fini_function
;
14202 /* If it wasn't set by elf_bfd_final_link
14203 then there is nothing to adjust. */
14204 if (dyn
.d_un
.d_val
!= 0)
14206 struct elf_link_hash_entry
* eh
;
14208 eh
= elf_link_hash_lookup (elf_hash_table (info
), name
,
14209 FALSE
, FALSE
, TRUE
);
14210 if (eh
!= NULL
&& eh
->target_internal
== ST_BRANCH_TO_THUMB
)
14212 dyn
.d_un
.d_val
|= 1;
14213 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
14220 /* Fill in the first entry in the procedure linkage table. */
14221 if (splt
->size
> 0 && htab
->plt_header_size
)
14223 const bfd_vma
*plt0_entry
;
14224 bfd_vma got_address
, plt_address
, got_displacement
;
14226 /* Calculate the addresses of the GOT and PLT. */
14227 got_address
= sgot
->output_section
->vma
+ sgot
->output_offset
;
14228 plt_address
= splt
->output_section
->vma
+ splt
->output_offset
;
14230 if (htab
->vxworks_p
)
14232 /* The VxWorks GOT is relocated by the dynamic linker.
14233 Therefore, we must emit relocations rather than simply
14234 computing the values now. */
14235 Elf_Internal_Rela rel
;
14237 plt0_entry
= elf32_arm_vxworks_exec_plt0_entry
;
14238 put_arm_insn (htab
, output_bfd
, plt0_entry
[0],
14239 splt
->contents
+ 0);
14240 put_arm_insn (htab
, output_bfd
, plt0_entry
[1],
14241 splt
->contents
+ 4);
14242 put_arm_insn (htab
, output_bfd
, plt0_entry
[2],
14243 splt
->contents
+ 8);
14244 bfd_put_32 (output_bfd
, got_address
, splt
->contents
+ 12);
14246 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
14247 rel
.r_offset
= plt_address
+ 12;
14248 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
14250 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
,
14251 htab
->srelplt2
->contents
);
14253 else if (htab
->nacl_p
)
14257 got_displacement
= got_address
+ 8 - (plt_address
+ 16);
14259 put_arm_insn (htab
, output_bfd
,
14260 elf32_arm_nacl_plt0_entry
[0]
14261 | arm_movw_immediate (got_displacement
),
14262 splt
->contents
+ 0);
14263 put_arm_insn (htab
, output_bfd
,
14264 elf32_arm_nacl_plt0_entry
[1]
14265 | arm_movt_immediate (got_displacement
),
14266 splt
->contents
+ 4);
14267 for (i
= 2; i
< ARRAY_SIZE (elf32_arm_nacl_plt0_entry
); ++i
)
14268 put_arm_insn (htab
, output_bfd
,
14269 elf32_arm_nacl_plt0_entry
[i
],
14270 splt
->contents
+ (i
* 4));
14274 got_displacement
= got_address
- (plt_address
+ 16);
14276 plt0_entry
= elf32_arm_plt0_entry
;
14277 put_arm_insn (htab
, output_bfd
, plt0_entry
[0],
14278 splt
->contents
+ 0);
14279 put_arm_insn (htab
, output_bfd
, plt0_entry
[1],
14280 splt
->contents
+ 4);
14281 put_arm_insn (htab
, output_bfd
, plt0_entry
[2],
14282 splt
->contents
+ 8);
14283 put_arm_insn (htab
, output_bfd
, plt0_entry
[3],
14284 splt
->contents
+ 12);
14286 #ifdef FOUR_WORD_PLT
14287 /* The displacement value goes in the otherwise-unused
14288 last word of the second entry. */
14289 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 28);
14291 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 16);
14296 /* UnixWare sets the entsize of .plt to 4, although that doesn't
14297 really seem like the right value. */
14298 if (splt
->output_section
->owner
== output_bfd
)
14299 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
= 4;
14301 if (htab
->dt_tlsdesc_plt
)
14303 bfd_vma got_address
14304 = sgot
->output_section
->vma
+ sgot
->output_offset
;
14305 bfd_vma gotplt_address
= (htab
->root
.sgot
->output_section
->vma
14306 + htab
->root
.sgot
->output_offset
);
14307 bfd_vma plt_address
14308 = splt
->output_section
->vma
+ splt
->output_offset
;
14310 arm_put_trampoline (htab
, output_bfd
,
14311 splt
->contents
+ htab
->dt_tlsdesc_plt
,
14312 dl_tlsdesc_lazy_trampoline
, 6);
14314 bfd_put_32 (output_bfd
,
14315 gotplt_address
+ htab
->dt_tlsdesc_got
14316 - (plt_address
+ htab
->dt_tlsdesc_plt
)
14317 - dl_tlsdesc_lazy_trampoline
[6],
14318 splt
->contents
+ htab
->dt_tlsdesc_plt
+ 24);
14319 bfd_put_32 (output_bfd
,
14320 got_address
- (plt_address
+ htab
->dt_tlsdesc_plt
)
14321 - dl_tlsdesc_lazy_trampoline
[7],
14322 splt
->contents
+ htab
->dt_tlsdesc_plt
+ 24 + 4);
14325 if (htab
->tls_trampoline
)
14327 arm_put_trampoline (htab
, output_bfd
,
14328 splt
->contents
+ htab
->tls_trampoline
,
14329 tls_trampoline
, 3);
14330 #ifdef FOUR_WORD_PLT
14331 bfd_put_32 (output_bfd
, 0x00000000,
14332 splt
->contents
+ htab
->tls_trampoline
+ 12);
14336 if (htab
->vxworks_p
&& !info
->shared
&& htab
->root
.splt
->size
> 0)
14338 /* Correct the .rel(a).plt.unloaded relocations. They will have
14339 incorrect symbol indexes. */
14343 num_plts
= ((htab
->root
.splt
->size
- htab
->plt_header_size
)
14344 / htab
->plt_entry_size
);
14345 p
= htab
->srelplt2
->contents
+ RELOC_SIZE (htab
);
14347 for (; num_plts
; num_plts
--)
14349 Elf_Internal_Rela rel
;
14351 SWAP_RELOC_IN (htab
) (output_bfd
, p
, &rel
);
14352 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
14353 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, p
);
14354 p
+= RELOC_SIZE (htab
);
14356 SWAP_RELOC_IN (htab
) (output_bfd
, p
, &rel
);
14357 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_ARM_ABS32
);
14358 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, p
);
14359 p
+= RELOC_SIZE (htab
);
14364 /* Fill in the first three entries in the global offset table. */
14367 if (sgot
->size
> 0)
14370 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
14372 bfd_put_32 (output_bfd
,
14373 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
14375 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 4);
14376 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 8);
14379 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
= 4;
14386 elf32_arm_post_process_headers (bfd
* abfd
, struct bfd_link_info
* link_info ATTRIBUTE_UNUSED
)
14388 Elf_Internal_Ehdr
* i_ehdrp
; /* ELF file header, internal form. */
14389 struct elf32_arm_link_hash_table
*globals
;
14391 i_ehdrp
= elf_elfheader (abfd
);
14393 if (EF_ARM_EABI_VERSION (i_ehdrp
->e_flags
) == EF_ARM_EABI_UNKNOWN
)
14394 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_ARM
;
14396 i_ehdrp
->e_ident
[EI_OSABI
] = 0;
14397 i_ehdrp
->e_ident
[EI_ABIVERSION
] = ARM_ELF_ABI_VERSION
;
14401 globals
= elf32_arm_hash_table (link_info
);
14402 if (globals
!= NULL
&& globals
->byteswap_code
)
14403 i_ehdrp
->e_flags
|= EF_ARM_BE8
;
14406 if (EF_ARM_EABI_VERSION (i_ehdrp
->e_flags
) == EF_ARM_EABI_VER5
14407 && ((i_ehdrp
->e_type
== ET_DYN
) || (i_ehdrp
->e_type
== ET_EXEC
)))
14409 int abi
= bfd_elf_get_obj_attr_int (abfd
, OBJ_ATTR_PROC
, Tag_ABI_VFP_args
);
14411 i_ehdrp
->e_flags
|= EF_ARM_ABI_FLOAT_HARD
;
14413 i_ehdrp
->e_flags
|= EF_ARM_ABI_FLOAT_SOFT
;
14417 static enum elf_reloc_type_class
14418 elf32_arm_reloc_type_class (const Elf_Internal_Rela
*rela
)
14420 switch ((int) ELF32_R_TYPE (rela
->r_info
))
14422 case R_ARM_RELATIVE
:
14423 return reloc_class_relative
;
14424 case R_ARM_JUMP_SLOT
:
14425 return reloc_class_plt
;
14427 return reloc_class_copy
;
14429 return reloc_class_normal
;
14434 elf32_arm_final_write_processing (bfd
*abfd
, bfd_boolean linker ATTRIBUTE_UNUSED
)
14436 bfd_arm_update_notes (abfd
, ARM_NOTE_SECTION
);
14439 /* Return TRUE if this is an unwinding table entry. */
14442 is_arm_elf_unwind_section_name (bfd
* abfd ATTRIBUTE_UNUSED
, const char * name
)
14444 return (CONST_STRNEQ (name
, ELF_STRING_ARM_unwind
)
14445 || CONST_STRNEQ (name
, ELF_STRING_ARM_unwind_once
));
14449 /* Set the type and flags for an ARM section. We do this by
14450 the section name, which is a hack, but ought to work. */
14453 elf32_arm_fake_sections (bfd
* abfd
, Elf_Internal_Shdr
* hdr
, asection
* sec
)
14457 name
= bfd_get_section_name (abfd
, sec
);
14459 if (is_arm_elf_unwind_section_name (abfd
, name
))
14461 hdr
->sh_type
= SHT_ARM_EXIDX
;
14462 hdr
->sh_flags
|= SHF_LINK_ORDER
;
14467 /* Handle an ARM specific section when reading an object file. This is
14468 called when bfd_section_from_shdr finds a section with an unknown
14472 elf32_arm_section_from_shdr (bfd
*abfd
,
14473 Elf_Internal_Shdr
* hdr
,
14477 /* There ought to be a place to keep ELF backend specific flags, but
14478 at the moment there isn't one. We just keep track of the
14479 sections by their name, instead. Fortunately, the ABI gives
14480 names for all the ARM specific sections, so we will probably get
14482 switch (hdr
->sh_type
)
14484 case SHT_ARM_EXIDX
:
14485 case SHT_ARM_PREEMPTMAP
:
14486 case SHT_ARM_ATTRIBUTES
:
14493 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
14499 static _arm_elf_section_data
*
14500 get_arm_elf_section_data (asection
* sec
)
14502 if (sec
&& sec
->owner
&& is_arm_elf (sec
->owner
))
14503 return elf32_arm_section_data (sec
);
14511 struct bfd_link_info
*info
;
14514 int (*func
) (void *, const char *, Elf_Internal_Sym
*,
14515 asection
*, struct elf_link_hash_entry
*);
14516 } output_arch_syminfo
;
14518 enum map_symbol_type
14526 /* Output a single mapping symbol. */
14529 elf32_arm_output_map_sym (output_arch_syminfo
*osi
,
14530 enum map_symbol_type type
,
14533 static const char *names
[3] = {"$a", "$t", "$d"};
14534 Elf_Internal_Sym sym
;
14536 sym
.st_value
= osi
->sec
->output_section
->vma
14537 + osi
->sec
->output_offset
14541 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
14542 sym
.st_shndx
= osi
->sec_shndx
;
14543 sym
.st_target_internal
= 0;
14544 elf32_arm_section_map_add (osi
->sec
, names
[type
][1], offset
);
14545 return osi
->func (osi
->flaginfo
, names
[type
], &sym
, osi
->sec
, NULL
) == 1;
14548 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
14549 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
14552 elf32_arm_output_plt_map_1 (output_arch_syminfo
*osi
,
14553 bfd_boolean is_iplt_entry_p
,
14554 union gotplt_union
*root_plt
,
14555 struct arm_plt_info
*arm_plt
)
14557 struct elf32_arm_link_hash_table
*htab
;
14558 bfd_vma addr
, plt_header_size
;
14560 if (root_plt
->offset
== (bfd_vma
) -1)
14563 htab
= elf32_arm_hash_table (osi
->info
);
14567 if (is_iplt_entry_p
)
14569 osi
->sec
= htab
->root
.iplt
;
14570 plt_header_size
= 0;
14574 osi
->sec
= htab
->root
.splt
;
14575 plt_header_size
= htab
->plt_header_size
;
14577 osi
->sec_shndx
= (_bfd_elf_section_from_bfd_section
14578 (osi
->info
->output_bfd
, osi
->sec
->output_section
));
14580 addr
= root_plt
->offset
& -2;
14581 if (htab
->symbian_p
)
14583 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
14585 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 4))
14588 else if (htab
->vxworks_p
)
14590 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
14592 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 8))
14594 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
+ 12))
14596 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 20))
14599 else if (htab
->nacl_p
)
14601 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
14606 bfd_boolean thumb_stub_p
;
14608 thumb_stub_p
= elf32_arm_plt_needs_thumb_stub_p (osi
->info
, arm_plt
);
14611 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_THUMB
, addr
- 4))
14614 #ifdef FOUR_WORD_PLT
14615 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
14617 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 12))
14620 /* A three-word PLT with no Thumb thunk contains only Arm code,
14621 so only need to output a mapping symbol for the first PLT entry and
14622 entries with thumb thunks. */
14623 if (thumb_stub_p
|| addr
== plt_header_size
)
14625 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
14634 /* Output mapping symbols for PLT entries associated with H. */
14637 elf32_arm_output_plt_map (struct elf_link_hash_entry
*h
, void *inf
)
14639 output_arch_syminfo
*osi
= (output_arch_syminfo
*) inf
;
14640 struct elf32_arm_link_hash_entry
*eh
;
14642 if (h
->root
.type
== bfd_link_hash_indirect
)
14645 if (h
->root
.type
== bfd_link_hash_warning
)
14646 /* When warning symbols are created, they **replace** the "real"
14647 entry in the hash table, thus we never get to see the real
14648 symbol in a hash traversal. So look at it now. */
14649 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
14651 eh
= (struct elf32_arm_link_hash_entry
*) h
;
14652 return elf32_arm_output_plt_map_1 (osi
, SYMBOL_CALLS_LOCAL (osi
->info
, h
),
14653 &h
->plt
, &eh
->plt
);
14656 /* Output a single local symbol for a generated stub. */
14659 elf32_arm_output_stub_sym (output_arch_syminfo
*osi
, const char *name
,
14660 bfd_vma offset
, bfd_vma size
)
14662 Elf_Internal_Sym sym
;
14664 sym
.st_value
= osi
->sec
->output_section
->vma
14665 + osi
->sec
->output_offset
14667 sym
.st_size
= size
;
14669 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
14670 sym
.st_shndx
= osi
->sec_shndx
;
14671 sym
.st_target_internal
= 0;
14672 return osi
->func (osi
->flaginfo
, name
, &sym
, osi
->sec
, NULL
) == 1;
14676 arm_map_one_stub (struct bfd_hash_entry
* gen_entry
,
14679 struct elf32_arm_stub_hash_entry
*stub_entry
;
14680 asection
*stub_sec
;
14683 output_arch_syminfo
*osi
;
14684 const insn_sequence
*template_sequence
;
14685 enum stub_insn_type prev_type
;
14688 enum map_symbol_type sym_type
;
14690 /* Massage our args to the form they really have. */
14691 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
14692 osi
= (output_arch_syminfo
*) in_arg
;
14694 stub_sec
= stub_entry
->stub_sec
;
14696 /* Ensure this stub is attached to the current section being
14698 if (stub_sec
!= osi
->sec
)
14701 addr
= (bfd_vma
) stub_entry
->stub_offset
;
14702 stub_name
= stub_entry
->output_name
;
14704 template_sequence
= stub_entry
->stub_template
;
14705 switch (template_sequence
[0].type
)
14708 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
, stub_entry
->stub_size
))
14713 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
| 1,
14714 stub_entry
->stub_size
))
14722 prev_type
= DATA_TYPE
;
14724 for (i
= 0; i
< stub_entry
->stub_template_size
; i
++)
14726 switch (template_sequence
[i
].type
)
14729 sym_type
= ARM_MAP_ARM
;
14734 sym_type
= ARM_MAP_THUMB
;
14738 sym_type
= ARM_MAP_DATA
;
14746 if (template_sequence
[i
].type
!= prev_type
)
14748 prev_type
= template_sequence
[i
].type
;
14749 if (!elf32_arm_output_map_sym (osi
, sym_type
, addr
+ size
))
14753 switch (template_sequence
[i
].type
)
14777 /* Output mapping symbols for linker generated sections,
14778 and for those data-only sections that do not have a
14782 elf32_arm_output_arch_local_syms (bfd
*output_bfd
,
14783 struct bfd_link_info
*info
,
14785 int (*func
) (void *, const char *,
14786 Elf_Internal_Sym
*,
14788 struct elf_link_hash_entry
*))
14790 output_arch_syminfo osi
;
14791 struct elf32_arm_link_hash_table
*htab
;
14793 bfd_size_type size
;
14796 htab
= elf32_arm_hash_table (info
);
14800 check_use_blx (htab
);
14802 osi
.flaginfo
= flaginfo
;
14806 /* Add a $d mapping symbol to data-only sections that
14807 don't have any mapping symbol. This may result in (harmless) redundant
14808 mapping symbols. */
14809 for (input_bfd
= info
->input_bfds
;
14811 input_bfd
= input_bfd
->link_next
)
14813 if ((input_bfd
->flags
& (BFD_LINKER_CREATED
| HAS_SYMS
)) == HAS_SYMS
)
14814 for (osi
.sec
= input_bfd
->sections
;
14816 osi
.sec
= osi
.sec
->next
)
14818 if (osi
.sec
->output_section
!= NULL
14819 && ((osi
.sec
->output_section
->flags
& (SEC_ALLOC
| SEC_CODE
))
14821 && (osi
.sec
->flags
& (SEC_HAS_CONTENTS
| SEC_LINKER_CREATED
))
14822 == SEC_HAS_CONTENTS
14823 && get_arm_elf_section_data (osi
.sec
) != NULL
14824 && get_arm_elf_section_data (osi
.sec
)->mapcount
== 0
14825 && osi
.sec
->size
> 0
14826 && (osi
.sec
->flags
& SEC_EXCLUDE
) == 0)
14828 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
14829 (output_bfd
, osi
.sec
->output_section
);
14830 if (osi
.sec_shndx
!= (int)SHN_BAD
)
14831 elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 0);
14836 /* ARM->Thumb glue. */
14837 if (htab
->arm_glue_size
> 0)
14839 osi
.sec
= bfd_get_linker_section (htab
->bfd_of_glue_owner
,
14840 ARM2THUMB_GLUE_SECTION_NAME
);
14842 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
14843 (output_bfd
, osi
.sec
->output_section
);
14844 if (info
->shared
|| htab
->root
.is_relocatable_executable
14845 || htab
->pic_veneer
)
14846 size
= ARM2THUMB_PIC_GLUE_SIZE
;
14847 else if (htab
->use_blx
)
14848 size
= ARM2THUMB_V5_STATIC_GLUE_SIZE
;
14850 size
= ARM2THUMB_STATIC_GLUE_SIZE
;
14852 for (offset
= 0; offset
< htab
->arm_glue_size
; offset
+= size
)
14854 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, offset
);
14855 elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, offset
+ size
- 4);
14859 /* Thumb->ARM glue. */
14860 if (htab
->thumb_glue_size
> 0)
14862 osi
.sec
= bfd_get_linker_section (htab
->bfd_of_glue_owner
,
14863 THUMB2ARM_GLUE_SECTION_NAME
);
14865 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
14866 (output_bfd
, osi
.sec
->output_section
);
14867 size
= THUMB2ARM_GLUE_SIZE
;
14869 for (offset
= 0; offset
< htab
->thumb_glue_size
; offset
+= size
)
14871 elf32_arm_output_map_sym (&osi
, ARM_MAP_THUMB
, offset
);
14872 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, offset
+ 4);
14876 /* ARMv4 BX veneers. */
14877 if (htab
->bx_glue_size
> 0)
14879 osi
.sec
= bfd_get_linker_section (htab
->bfd_of_glue_owner
,
14880 ARM_BX_GLUE_SECTION_NAME
);
14882 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
14883 (output_bfd
, osi
.sec
->output_section
);
14885 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0);
14888 /* Long calls stubs. */
14889 if (htab
->stub_bfd
&& htab
->stub_bfd
->sections
)
14891 asection
* stub_sec
;
14893 for (stub_sec
= htab
->stub_bfd
->sections
;
14895 stub_sec
= stub_sec
->next
)
14897 /* Ignore non-stub sections. */
14898 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
14901 osi
.sec
= stub_sec
;
14903 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
14904 (output_bfd
, osi
.sec
->output_section
);
14906 bfd_hash_traverse (&htab
->stub_hash_table
, arm_map_one_stub
, &osi
);
14910 /* Finally, output mapping symbols for the PLT. */
14911 if (htab
->root
.splt
&& htab
->root
.splt
->size
> 0)
14913 osi
.sec
= htab
->root
.splt
;
14914 osi
.sec_shndx
= (_bfd_elf_section_from_bfd_section
14915 (output_bfd
, osi
.sec
->output_section
));
14917 /* Output mapping symbols for the plt header. SymbianOS does not have a
14919 if (htab
->vxworks_p
)
14921 /* VxWorks shared libraries have no PLT header. */
14924 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
14926 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 12))
14930 else if (htab
->nacl_p
)
14932 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
14935 else if (!htab
->symbian_p
)
14937 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
14939 #ifndef FOUR_WORD_PLT
14940 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 16))
14945 if ((htab
->root
.splt
&& htab
->root
.splt
->size
> 0)
14946 || (htab
->root
.iplt
&& htab
->root
.iplt
->size
> 0))
14948 elf_link_hash_traverse (&htab
->root
, elf32_arm_output_plt_map
, &osi
);
14949 for (input_bfd
= info
->input_bfds
;
14951 input_bfd
= input_bfd
->link_next
)
14953 struct arm_local_iplt_info
**local_iplt
;
14954 unsigned int i
, num_syms
;
14956 local_iplt
= elf32_arm_local_iplt (input_bfd
);
14957 if (local_iplt
!= NULL
)
14959 num_syms
= elf_symtab_hdr (input_bfd
).sh_info
;
14960 for (i
= 0; i
< num_syms
; i
++)
14961 if (local_iplt
[i
] != NULL
14962 && !elf32_arm_output_plt_map_1 (&osi
, TRUE
,
14963 &local_iplt
[i
]->root
,
14964 &local_iplt
[i
]->arm
))
14969 if (htab
->dt_tlsdesc_plt
!= 0)
14971 /* Mapping symbols for the lazy tls trampoline. */
14972 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, htab
->dt_tlsdesc_plt
))
14975 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
,
14976 htab
->dt_tlsdesc_plt
+ 24))
14979 if (htab
->tls_trampoline
!= 0)
14981 /* Mapping symbols for the tls trampoline. */
14982 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, htab
->tls_trampoline
))
14984 #ifdef FOUR_WORD_PLT
14985 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
,
14986 htab
->tls_trampoline
+ 12))
14994 /* Allocate target specific section data. */
14997 elf32_arm_new_section_hook (bfd
*abfd
, asection
*sec
)
14999 if (!sec
->used_by_bfd
)
15001 _arm_elf_section_data
*sdata
;
15002 bfd_size_type amt
= sizeof (*sdata
);
15004 sdata
= (_arm_elf_section_data
*) bfd_zalloc (abfd
, amt
);
15007 sec
->used_by_bfd
= sdata
;
15010 return _bfd_elf_new_section_hook (abfd
, sec
);
15014 /* Used to order a list of mapping symbols by address. */
15017 elf32_arm_compare_mapping (const void * a
, const void * b
)
15019 const elf32_arm_section_map
*amap
= (const elf32_arm_section_map
*) a
;
15020 const elf32_arm_section_map
*bmap
= (const elf32_arm_section_map
*) b
;
15022 if (amap
->vma
> bmap
->vma
)
15024 else if (amap
->vma
< bmap
->vma
)
15026 else if (amap
->type
> bmap
->type
)
15027 /* Ensure results do not depend on the host qsort for objects with
15028 multiple mapping symbols at the same address by sorting on type
15031 else if (amap
->type
< bmap
->type
)
15037 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
15039 static unsigned long
15040 offset_prel31 (unsigned long addr
, bfd_vma offset
)
15042 return (addr
& ~0x7ffffffful
) | ((addr
+ offset
) & 0x7ffffffful
);
15045 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
15049 copy_exidx_entry (bfd
*output_bfd
, bfd_byte
*to
, bfd_byte
*from
, bfd_vma offset
)
15051 unsigned long first_word
= bfd_get_32 (output_bfd
, from
);
15052 unsigned long second_word
= bfd_get_32 (output_bfd
, from
+ 4);
15054 /* High bit of first word is supposed to be zero. */
15055 if ((first_word
& 0x80000000ul
) == 0)
15056 first_word
= offset_prel31 (first_word
, offset
);
15058 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
15059 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
15060 if ((second_word
!= 0x1) && ((second_word
& 0x80000000ul
) == 0))
15061 second_word
= offset_prel31 (second_word
, offset
);
15063 bfd_put_32 (output_bfd
, first_word
, to
);
15064 bfd_put_32 (output_bfd
, second_word
, to
+ 4);
15067 /* Data for make_branch_to_a8_stub(). */
15069 struct a8_branch_to_stub_data
15071 asection
*writing_section
;
15072 bfd_byte
*contents
;
15076 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
15077 places for a particular section. */
15080 make_branch_to_a8_stub (struct bfd_hash_entry
*gen_entry
,
15083 struct elf32_arm_stub_hash_entry
*stub_entry
;
15084 struct a8_branch_to_stub_data
*data
;
15085 bfd_byte
*contents
;
15086 unsigned long branch_insn
;
15087 bfd_vma veneered_insn_loc
, veneer_entry_loc
;
15088 bfd_signed_vma branch_offset
;
15090 unsigned int target
;
15092 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
15093 data
= (struct a8_branch_to_stub_data
*) in_arg
;
15095 if (stub_entry
->target_section
!= data
->writing_section
15096 || stub_entry
->stub_type
< arm_stub_a8_veneer_lwm
)
15099 contents
= data
->contents
;
15101 veneered_insn_loc
= stub_entry
->target_section
->output_section
->vma
15102 + stub_entry
->target_section
->output_offset
15103 + stub_entry
->target_value
;
15105 veneer_entry_loc
= stub_entry
->stub_sec
->output_section
->vma
15106 + stub_entry
->stub_sec
->output_offset
15107 + stub_entry
->stub_offset
;
15109 if (stub_entry
->stub_type
== arm_stub_a8_veneer_blx
)
15110 veneered_insn_loc
&= ~3u;
15112 branch_offset
= veneer_entry_loc
- veneered_insn_loc
- 4;
15114 abfd
= stub_entry
->target_section
->owner
;
15115 target
= stub_entry
->target_value
;
15117 /* We attempt to avoid this condition by setting stubs_always_after_branch
15118 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
15119 This check is just to be on the safe side... */
15120 if ((veneered_insn_loc
& ~0xfff) == (veneer_entry_loc
& ~0xfff))
15122 (*_bfd_error_handler
) (_("%B: error: Cortex-A8 erratum stub is "
15123 "allocated in unsafe location"), abfd
);
15127 switch (stub_entry
->stub_type
)
15129 case arm_stub_a8_veneer_b
:
15130 case arm_stub_a8_veneer_b_cond
:
15131 branch_insn
= 0xf0009000;
15134 case arm_stub_a8_veneer_blx
:
15135 branch_insn
= 0xf000e800;
15138 case arm_stub_a8_veneer_bl
:
15140 unsigned int i1
, j1
, i2
, j2
, s
;
15142 branch_insn
= 0xf000d000;
15145 if (branch_offset
< -16777216 || branch_offset
> 16777214)
15147 /* There's not much we can do apart from complain if this
15149 (*_bfd_error_handler
) (_("%B: error: Cortex-A8 erratum stub out "
15150 "of range (input file too large)"), abfd
);
15154 /* i1 = not(j1 eor s), so:
15156 j1 = (not i1) eor s. */
15158 branch_insn
|= (branch_offset
>> 1) & 0x7ff;
15159 branch_insn
|= ((branch_offset
>> 12) & 0x3ff) << 16;
15160 i2
= (branch_offset
>> 22) & 1;
15161 i1
= (branch_offset
>> 23) & 1;
15162 s
= (branch_offset
>> 24) & 1;
15165 branch_insn
|= j2
<< 11;
15166 branch_insn
|= j1
<< 13;
15167 branch_insn
|= s
<< 26;
15176 bfd_put_16 (abfd
, (branch_insn
>> 16) & 0xffff, &contents
[target
]);
15177 bfd_put_16 (abfd
, branch_insn
& 0xffff, &contents
[target
+ 2]);
15182 /* Do code byteswapping. Return FALSE afterwards so that the section is
15183 written out as normal. */
15186 elf32_arm_write_section (bfd
*output_bfd
,
15187 struct bfd_link_info
*link_info
,
15189 bfd_byte
*contents
)
15191 unsigned int mapcount
, errcount
;
15192 _arm_elf_section_data
*arm_data
;
15193 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
15194 elf32_arm_section_map
*map
;
15195 elf32_vfp11_erratum_list
*errnode
;
15198 bfd_vma offset
= sec
->output_section
->vma
+ sec
->output_offset
;
15202 if (globals
== NULL
)
15205 /* If this section has not been allocated an _arm_elf_section_data
15206 structure then we cannot record anything. */
15207 arm_data
= get_arm_elf_section_data (sec
);
15208 if (arm_data
== NULL
)
15211 mapcount
= arm_data
->mapcount
;
15212 map
= arm_data
->map
;
15213 errcount
= arm_data
->erratumcount
;
15217 unsigned int endianflip
= bfd_big_endian (output_bfd
) ? 3 : 0;
15219 for (errnode
= arm_data
->erratumlist
; errnode
!= 0;
15220 errnode
= errnode
->next
)
15222 bfd_vma target
= errnode
->vma
- offset
;
15224 switch (errnode
->type
)
15226 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
:
15228 bfd_vma branch_to_veneer
;
15229 /* Original condition code of instruction, plus bit mask for
15230 ARM B instruction. */
15231 unsigned int insn
= (errnode
->u
.b
.vfp_insn
& 0xf0000000)
15234 /* The instruction is before the label. */
15237 /* Above offset included in -4 below. */
15238 branch_to_veneer
= errnode
->u
.b
.veneer
->vma
15239 - errnode
->vma
- 4;
15241 if ((signed) branch_to_veneer
< -(1 << 25)
15242 || (signed) branch_to_veneer
>= (1 << 25))
15243 (*_bfd_error_handler
) (_("%B: error: VFP11 veneer out of "
15244 "range"), output_bfd
);
15246 insn
|= (branch_to_veneer
>> 2) & 0xffffff;
15247 contents
[endianflip
^ target
] = insn
& 0xff;
15248 contents
[endianflip
^ (target
+ 1)] = (insn
>> 8) & 0xff;
15249 contents
[endianflip
^ (target
+ 2)] = (insn
>> 16) & 0xff;
15250 contents
[endianflip
^ (target
+ 3)] = (insn
>> 24) & 0xff;
15254 case VFP11_ERRATUM_ARM_VENEER
:
15256 bfd_vma branch_from_veneer
;
15259 /* Take size of veneer into account. */
15260 branch_from_veneer
= errnode
->u
.v
.branch
->vma
15261 - errnode
->vma
- 12;
15263 if ((signed) branch_from_veneer
< -(1 << 25)
15264 || (signed) branch_from_veneer
>= (1 << 25))
15265 (*_bfd_error_handler
) (_("%B: error: VFP11 veneer out of "
15266 "range"), output_bfd
);
15268 /* Original instruction. */
15269 insn
= errnode
->u
.v
.branch
->u
.b
.vfp_insn
;
15270 contents
[endianflip
^ target
] = insn
& 0xff;
15271 contents
[endianflip
^ (target
+ 1)] = (insn
>> 8) & 0xff;
15272 contents
[endianflip
^ (target
+ 2)] = (insn
>> 16) & 0xff;
15273 contents
[endianflip
^ (target
+ 3)] = (insn
>> 24) & 0xff;
15275 /* Branch back to insn after original insn. */
15276 insn
= 0xea000000 | ((branch_from_veneer
>> 2) & 0xffffff);
15277 contents
[endianflip
^ (target
+ 4)] = insn
& 0xff;
15278 contents
[endianflip
^ (target
+ 5)] = (insn
>> 8) & 0xff;
15279 contents
[endianflip
^ (target
+ 6)] = (insn
>> 16) & 0xff;
15280 contents
[endianflip
^ (target
+ 7)] = (insn
>> 24) & 0xff;
15290 if (arm_data
->elf
.this_hdr
.sh_type
== SHT_ARM_EXIDX
)
15292 arm_unwind_table_edit
*edit_node
15293 = arm_data
->u
.exidx
.unwind_edit_list
;
15294 /* Now, sec->size is the size of the section we will write. The original
15295 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
15296 markers) was sec->rawsize. (This isn't the case if we perform no
15297 edits, then rawsize will be zero and we should use size). */
15298 bfd_byte
*edited_contents
= (bfd_byte
*) bfd_malloc (sec
->size
);
15299 unsigned int input_size
= sec
->rawsize
? sec
->rawsize
: sec
->size
;
15300 unsigned int in_index
, out_index
;
15301 bfd_vma add_to_offsets
= 0;
15303 for (in_index
= 0, out_index
= 0; in_index
* 8 < input_size
|| edit_node
;)
15307 unsigned int edit_index
= edit_node
->index
;
15309 if (in_index
< edit_index
&& in_index
* 8 < input_size
)
15311 copy_exidx_entry (output_bfd
, edited_contents
+ out_index
* 8,
15312 contents
+ in_index
* 8, add_to_offsets
);
15316 else if (in_index
== edit_index
15317 || (in_index
* 8 >= input_size
15318 && edit_index
== UINT_MAX
))
15320 switch (edit_node
->type
)
15322 case DELETE_EXIDX_ENTRY
:
15324 add_to_offsets
+= 8;
15327 case INSERT_EXIDX_CANTUNWIND_AT_END
:
15329 asection
*text_sec
= edit_node
->linked_section
;
15330 bfd_vma text_offset
= text_sec
->output_section
->vma
15331 + text_sec
->output_offset
15333 bfd_vma exidx_offset
= offset
+ out_index
* 8;
15334 unsigned long prel31_offset
;
15336 /* Note: this is meant to be equivalent to an
15337 R_ARM_PREL31 relocation. These synthetic
15338 EXIDX_CANTUNWIND markers are not relocated by the
15339 usual BFD method. */
15340 prel31_offset
= (text_offset
- exidx_offset
)
15343 /* First address we can't unwind. */
15344 bfd_put_32 (output_bfd
, prel31_offset
,
15345 &edited_contents
[out_index
* 8]);
15347 /* Code for EXIDX_CANTUNWIND. */
15348 bfd_put_32 (output_bfd
, 0x1,
15349 &edited_contents
[out_index
* 8 + 4]);
15352 add_to_offsets
-= 8;
15357 edit_node
= edit_node
->next
;
15362 /* No more edits, copy remaining entries verbatim. */
15363 copy_exidx_entry (output_bfd
, edited_contents
+ out_index
* 8,
15364 contents
+ in_index
* 8, add_to_offsets
);
15370 if (!(sec
->flags
& SEC_EXCLUDE
) && !(sec
->flags
& SEC_NEVER_LOAD
))
15371 bfd_set_section_contents (output_bfd
, sec
->output_section
,
15373 (file_ptr
) sec
->output_offset
, sec
->size
);
15378 /* Fix code to point to Cortex-A8 erratum stubs. */
15379 if (globals
->fix_cortex_a8
)
15381 struct a8_branch_to_stub_data data
;
15383 data
.writing_section
= sec
;
15384 data
.contents
= contents
;
15386 bfd_hash_traverse (&globals
->stub_hash_table
, make_branch_to_a8_stub
,
15393 if (globals
->byteswap_code
)
15395 qsort (map
, mapcount
, sizeof (* map
), elf32_arm_compare_mapping
);
15398 for (i
= 0; i
< mapcount
; i
++)
15400 if (i
== mapcount
- 1)
15403 end
= map
[i
+ 1].vma
;
15405 switch (map
[i
].type
)
15408 /* Byte swap code words. */
15409 while (ptr
+ 3 < end
)
15411 tmp
= contents
[ptr
];
15412 contents
[ptr
] = contents
[ptr
+ 3];
15413 contents
[ptr
+ 3] = tmp
;
15414 tmp
= contents
[ptr
+ 1];
15415 contents
[ptr
+ 1] = contents
[ptr
+ 2];
15416 contents
[ptr
+ 2] = tmp
;
15422 /* Byte swap code halfwords. */
15423 while (ptr
+ 1 < end
)
15425 tmp
= contents
[ptr
];
15426 contents
[ptr
] = contents
[ptr
+ 1];
15427 contents
[ptr
+ 1] = tmp
;
15433 /* Leave data alone. */
15441 arm_data
->mapcount
= -1;
15442 arm_data
->mapsize
= 0;
15443 arm_data
->map
= NULL
;
15448 /* Mangle thumb function symbols as we read them in. */
15451 elf32_arm_swap_symbol_in (bfd
* abfd
,
15454 Elf_Internal_Sym
*dst
)
15456 if (!bfd_elf32_swap_symbol_in (abfd
, psrc
, pshn
, dst
))
15459 /* New EABI objects mark thumb function symbols by setting the low bit of
15461 if (ELF_ST_TYPE (dst
->st_info
) == STT_FUNC
15462 || ELF_ST_TYPE (dst
->st_info
) == STT_GNU_IFUNC
)
15464 if (dst
->st_value
& 1)
15466 dst
->st_value
&= ~(bfd_vma
) 1;
15467 dst
->st_target_internal
= ST_BRANCH_TO_THUMB
;
15470 dst
->st_target_internal
= ST_BRANCH_TO_ARM
;
15472 else if (ELF_ST_TYPE (dst
->st_info
) == STT_ARM_TFUNC
)
15474 dst
->st_info
= ELF_ST_INFO (ELF_ST_BIND (dst
->st_info
), STT_FUNC
);
15475 dst
->st_target_internal
= ST_BRANCH_TO_THUMB
;
15477 else if (ELF_ST_TYPE (dst
->st_info
) == STT_SECTION
)
15478 dst
->st_target_internal
= ST_BRANCH_LONG
;
15480 dst
->st_target_internal
= ST_BRANCH_UNKNOWN
;
15486 /* Mangle thumb function symbols as we write them out. */
15489 elf32_arm_swap_symbol_out (bfd
*abfd
,
15490 const Elf_Internal_Sym
*src
,
15494 Elf_Internal_Sym newsym
;
15496 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
15497 of the address set, as per the new EABI. We do this unconditionally
15498 because objcopy does not set the elf header flags until after
15499 it writes out the symbol table. */
15500 if (src
->st_target_internal
== ST_BRANCH_TO_THUMB
)
15503 if (ELF_ST_TYPE (src
->st_info
) != STT_GNU_IFUNC
)
15504 newsym
.st_info
= ELF_ST_INFO (ELF_ST_BIND (src
->st_info
), STT_FUNC
);
15505 if (newsym
.st_shndx
!= SHN_UNDEF
)
15507 /* Do this only for defined symbols. At link type, the static
15508 linker will simulate the work of dynamic linker of resolving
15509 symbols and will carry over the thumbness of found symbols to
15510 the output symbol table. It's not clear how it happens, but
15511 the thumbness of undefined symbols can well be different at
15512 runtime, and writing '1' for them will be confusing for users
15513 and possibly for dynamic linker itself.
15515 newsym
.st_value
|= 1;
15520 bfd_elf32_swap_symbol_out (abfd
, src
, cdst
, shndx
);
15523 /* Add the PT_ARM_EXIDX program header. */
15526 elf32_arm_modify_segment_map (bfd
*abfd
,
15527 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
15529 struct elf_segment_map
*m
;
15532 sec
= bfd_get_section_by_name (abfd
, ".ARM.exidx");
15533 if (sec
!= NULL
&& (sec
->flags
& SEC_LOAD
) != 0)
15535 /* If there is already a PT_ARM_EXIDX header, then we do not
15536 want to add another one. This situation arises when running
15537 "strip"; the input binary already has the header. */
15538 m
= elf_seg_map (abfd
);
15539 while (m
&& m
->p_type
!= PT_ARM_EXIDX
)
15543 m
= (struct elf_segment_map
*)
15544 bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
15547 m
->p_type
= PT_ARM_EXIDX
;
15549 m
->sections
[0] = sec
;
15551 m
->next
= elf_seg_map (abfd
);
15552 elf_seg_map (abfd
) = m
;
15559 /* We may add a PT_ARM_EXIDX program header. */
15562 elf32_arm_additional_program_headers (bfd
*abfd
,
15563 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
15567 sec
= bfd_get_section_by_name (abfd
, ".ARM.exidx");
15568 if (sec
!= NULL
&& (sec
->flags
& SEC_LOAD
) != 0)
15574 /* Hook called by the linker routine which adds symbols from an object
15578 elf32_arm_add_symbol_hook (bfd
*abfd
, struct bfd_link_info
*info
,
15579 Elf_Internal_Sym
*sym
, const char **namep
,
15580 flagword
*flagsp
, asection
**secp
, bfd_vma
*valp
)
15582 if ((abfd
->flags
& DYNAMIC
) == 0
15583 && (ELF_ST_TYPE (sym
->st_info
) == STT_GNU_IFUNC
15584 || ELF_ST_BIND (sym
->st_info
) == STB_GNU_UNIQUE
))
15585 elf_tdata (info
->output_bfd
)->has_gnu_symbols
= TRUE
;
15587 if (elf32_arm_hash_table (info
)->vxworks_p
15588 && !elf_vxworks_add_symbol_hook (abfd
, info
, sym
, namep
,
15589 flagsp
, secp
, valp
))
15595 /* We use this to override swap_symbol_in and swap_symbol_out. */
15596 const struct elf_size_info elf32_arm_size_info
=
15598 sizeof (Elf32_External_Ehdr
),
15599 sizeof (Elf32_External_Phdr
),
15600 sizeof (Elf32_External_Shdr
),
15601 sizeof (Elf32_External_Rel
),
15602 sizeof (Elf32_External_Rela
),
15603 sizeof (Elf32_External_Sym
),
15604 sizeof (Elf32_External_Dyn
),
15605 sizeof (Elf_External_Note
),
15609 ELFCLASS32
, EV_CURRENT
,
15610 bfd_elf32_write_out_phdrs
,
15611 bfd_elf32_write_shdrs_and_ehdr
,
15612 bfd_elf32_checksum_contents
,
15613 bfd_elf32_write_relocs
,
15614 elf32_arm_swap_symbol_in
,
15615 elf32_arm_swap_symbol_out
,
15616 bfd_elf32_slurp_reloc_table
,
15617 bfd_elf32_slurp_symbol_table
,
15618 bfd_elf32_swap_dyn_in
,
15619 bfd_elf32_swap_dyn_out
,
15620 bfd_elf32_swap_reloc_in
,
15621 bfd_elf32_swap_reloc_out
,
15622 bfd_elf32_swap_reloca_in
,
15623 bfd_elf32_swap_reloca_out
15626 #define ELF_ARCH bfd_arch_arm
15627 #define ELF_TARGET_ID ARM_ELF_DATA
15628 #define ELF_MACHINE_CODE EM_ARM
15629 #ifdef __QNXTARGET__
15630 #define ELF_MAXPAGESIZE 0x1000
15632 #define ELF_MAXPAGESIZE 0x8000
15634 #define ELF_MINPAGESIZE 0x1000
15635 #define ELF_COMMONPAGESIZE 0x1000
15637 #define bfd_elf32_mkobject elf32_arm_mkobject
15639 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
15640 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
15641 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
15642 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
15643 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
15644 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
15645 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
15646 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
15647 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
15648 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
15649 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
15650 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
15651 #define bfd_elf32_bfd_final_link elf32_arm_final_link
15653 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
15654 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
15655 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
15656 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
15657 #define elf_backend_check_relocs elf32_arm_check_relocs
15658 #define elf_backend_relocate_section elf32_arm_relocate_section
15659 #define elf_backend_write_section elf32_arm_write_section
15660 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
15661 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
15662 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
15663 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
15664 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
15665 #define elf_backend_always_size_sections elf32_arm_always_size_sections
15666 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
15667 #define elf_backend_post_process_headers elf32_arm_post_process_headers
15668 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
15669 #define elf_backend_object_p elf32_arm_object_p
15670 #define elf_backend_fake_sections elf32_arm_fake_sections
15671 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
15672 #define elf_backend_final_write_processing elf32_arm_final_write_processing
15673 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
15674 #define elf_backend_size_info elf32_arm_size_info
15675 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
15676 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
15677 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
15678 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
15679 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
15681 #define elf_backend_can_refcount 1
15682 #define elf_backend_can_gc_sections 1
15683 #define elf_backend_plt_readonly 1
15684 #define elf_backend_want_got_plt 1
15685 #define elf_backend_want_plt_sym 0
15686 #define elf_backend_may_use_rel_p 1
15687 #define elf_backend_may_use_rela_p 0
15688 #define elf_backend_default_use_rela_p 0
15690 #define elf_backend_got_header_size 12
15692 #undef elf_backend_obj_attrs_vendor
15693 #define elf_backend_obj_attrs_vendor "aeabi"
15694 #undef elf_backend_obj_attrs_section
15695 #define elf_backend_obj_attrs_section ".ARM.attributes"
15696 #undef elf_backend_obj_attrs_arg_type
15697 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
15698 #undef elf_backend_obj_attrs_section_type
15699 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
15700 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
15701 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
15703 #include "elf32-target.h"
15705 /* Native Client targets. */
15707 #undef TARGET_LITTLE_SYM
15708 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_nacl_vec
15709 #undef TARGET_LITTLE_NAME
15710 #define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
15711 #undef TARGET_BIG_SYM
15712 #define TARGET_BIG_SYM bfd_elf32_bigarm_nacl_vec
15713 #undef TARGET_BIG_NAME
15714 #define TARGET_BIG_NAME "elf32-bigarm-nacl"
15716 /* Like elf32_arm_link_hash_table_create -- but overrides
15717 appropriately for NaCl. */
15719 static struct bfd_link_hash_table
*
15720 elf32_arm_nacl_link_hash_table_create (bfd
*abfd
)
15722 struct bfd_link_hash_table
*ret
;
15724 ret
= elf32_arm_link_hash_table_create (abfd
);
15727 struct elf32_arm_link_hash_table
*htab
15728 = (struct elf32_arm_link_hash_table
*) ret
;
15732 htab
->plt_header_size
= 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry
);
15733 htab
->plt_entry_size
= 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry
);
15738 /* Since NaCl doesn't use the ARM-specific unwind format, we don't
15739 really need to use elf32_arm_modify_segment_map. But we do it
15740 anyway just to reduce gratuitous differences with the stock ARM backend. */
15743 elf32_arm_nacl_modify_segment_map (bfd
*abfd
, struct bfd_link_info
*info
)
15745 return (elf32_arm_modify_segment_map (abfd
, info
)
15746 && nacl_modify_segment_map (abfd
, info
));
15750 #define elf32_bed elf32_arm_nacl_bed
15751 #undef bfd_elf32_bfd_link_hash_table_create
15752 #define bfd_elf32_bfd_link_hash_table_create \
15753 elf32_arm_nacl_link_hash_table_create
15754 #undef elf_backend_plt_alignment
15755 #define elf_backend_plt_alignment 4
15756 #undef elf_backend_modify_segment_map
15757 #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
15758 #undef elf_backend_modify_program_headers
15759 #define elf_backend_modify_program_headers nacl_modify_program_headers
15761 #undef ELF_MAXPAGESIZE
15762 #define ELF_MAXPAGESIZE 0x10000
15764 #include "elf32-target.h"
15766 /* Reset to defaults. */
15767 #undef elf_backend_plt_alignment
15768 #undef elf_backend_modify_segment_map
15769 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
15770 #undef elf_backend_modify_program_headers
15772 /* VxWorks Targets. */
15774 #undef TARGET_LITTLE_SYM
15775 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
15776 #undef TARGET_LITTLE_NAME
15777 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
15778 #undef TARGET_BIG_SYM
15779 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
15780 #undef TARGET_BIG_NAME
15781 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
15783 /* Like elf32_arm_link_hash_table_create -- but overrides
15784 appropriately for VxWorks. */
15786 static struct bfd_link_hash_table
*
15787 elf32_arm_vxworks_link_hash_table_create (bfd
*abfd
)
15789 struct bfd_link_hash_table
*ret
;
15791 ret
= elf32_arm_link_hash_table_create (abfd
);
15794 struct elf32_arm_link_hash_table
*htab
15795 = (struct elf32_arm_link_hash_table
*) ret
;
15797 htab
->vxworks_p
= 1;
15803 elf32_arm_vxworks_final_write_processing (bfd
*abfd
, bfd_boolean linker
)
15805 elf32_arm_final_write_processing (abfd
, linker
);
15806 elf_vxworks_final_write_processing (abfd
, linker
);
15810 #define elf32_bed elf32_arm_vxworks_bed
15812 #undef bfd_elf32_bfd_link_hash_table_create
15813 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
15814 #undef elf_backend_final_write_processing
15815 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
15816 #undef elf_backend_emit_relocs
15817 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
15819 #undef elf_backend_may_use_rel_p
15820 #define elf_backend_may_use_rel_p 0
15821 #undef elf_backend_may_use_rela_p
15822 #define elf_backend_may_use_rela_p 1
15823 #undef elf_backend_default_use_rela_p
15824 #define elf_backend_default_use_rela_p 1
15825 #undef elf_backend_want_plt_sym
15826 #define elf_backend_want_plt_sym 1
15827 #undef ELF_MAXPAGESIZE
15828 #define ELF_MAXPAGESIZE 0x1000
15830 #include "elf32-target.h"
15833 /* Merge backend specific data from an object file to the output
15834 object file when linking. */
15837 elf32_arm_merge_private_bfd_data (bfd
* ibfd
, bfd
* obfd
)
15839 flagword out_flags
;
15841 bfd_boolean flags_compatible
= TRUE
;
15844 /* Check if we have the same endianness. */
15845 if (! _bfd_generic_verify_endian_match (ibfd
, obfd
))
15848 if (! is_arm_elf (ibfd
) || ! is_arm_elf (obfd
))
15851 if (!elf32_arm_merge_eabi_attributes (ibfd
, obfd
))
15854 /* The input BFD must have had its flags initialised. */
15855 /* The following seems bogus to me -- The flags are initialized in
15856 the assembler but I don't think an elf_flags_init field is
15857 written into the object. */
15858 /* BFD_ASSERT (elf_flags_init (ibfd)); */
15860 in_flags
= elf_elfheader (ibfd
)->e_flags
;
15861 out_flags
= elf_elfheader (obfd
)->e_flags
;
15863 /* In theory there is no reason why we couldn't handle this. However
15864 in practice it isn't even close to working and there is no real
15865 reason to want it. */
15866 if (EF_ARM_EABI_VERSION (in_flags
) >= EF_ARM_EABI_VER4
15867 && !(ibfd
->flags
& DYNAMIC
)
15868 && (in_flags
& EF_ARM_BE8
))
15870 _bfd_error_handler (_("error: %B is already in final BE8 format"),
15875 if (!elf_flags_init (obfd
))
15877 /* If the input is the default architecture and had the default
15878 flags then do not bother setting the flags for the output
15879 architecture, instead allow future merges to do this. If no
15880 future merges ever set these flags then they will retain their
15881 uninitialised values, which surprise surprise, correspond
15882 to the default values. */
15883 if (bfd_get_arch_info (ibfd
)->the_default
15884 && elf_elfheader (ibfd
)->e_flags
== 0)
15887 elf_flags_init (obfd
) = TRUE
;
15888 elf_elfheader (obfd
)->e_flags
= in_flags
;
15890 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
15891 && bfd_get_arch_info (obfd
)->the_default
)
15892 return bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
), bfd_get_mach (ibfd
));
15897 /* Determine what should happen if the input ARM architecture
15898 does not match the output ARM architecture. */
15899 if (! bfd_arm_merge_machines (ibfd
, obfd
))
15902 /* Identical flags must be compatible. */
15903 if (in_flags
== out_flags
)
15906 /* Check to see if the input BFD actually contains any sections. If
15907 not, its flags may not have been initialised either, but it
15908 cannot actually cause any incompatiblity. Do not short-circuit
15909 dynamic objects; their section list may be emptied by
15910 elf_link_add_object_symbols.
15912 Also check to see if there are no code sections in the input.
15913 In this case there is no need to check for code specific flags.
15914 XXX - do we need to worry about floating-point format compatability
15915 in data sections ? */
15916 if (!(ibfd
->flags
& DYNAMIC
))
15918 bfd_boolean null_input_bfd
= TRUE
;
15919 bfd_boolean only_data_sections
= TRUE
;
15921 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
15923 /* Ignore synthetic glue sections. */
15924 if (strcmp (sec
->name
, ".glue_7")
15925 && strcmp (sec
->name
, ".glue_7t"))
15927 if ((bfd_get_section_flags (ibfd
, sec
)
15928 & (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
15929 == (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
15930 only_data_sections
= FALSE
;
15932 null_input_bfd
= FALSE
;
15937 if (null_input_bfd
|| only_data_sections
)
15941 /* Complain about various flag mismatches. */
15942 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags
),
15943 EF_ARM_EABI_VERSION (out_flags
)))
15946 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
15948 (in_flags
& EF_ARM_EABIMASK
) >> 24,
15949 (out_flags
& EF_ARM_EABIMASK
) >> 24);
15953 /* Not sure what needs to be checked for EABI versions >= 1. */
15954 /* VxWorks libraries do not use these flags. */
15955 if (get_elf_backend_data (obfd
) != &elf32_arm_vxworks_bed
15956 && get_elf_backend_data (ibfd
) != &elf32_arm_vxworks_bed
15957 && EF_ARM_EABI_VERSION (in_flags
) == EF_ARM_EABI_UNKNOWN
)
15959 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
15962 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
15964 in_flags
& EF_ARM_APCS_26
? 26 : 32,
15965 out_flags
& EF_ARM_APCS_26
? 26 : 32);
15966 flags_compatible
= FALSE
;
15969 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
15971 if (in_flags
& EF_ARM_APCS_FLOAT
)
15973 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
15977 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
15980 flags_compatible
= FALSE
;
15983 if ((in_flags
& EF_ARM_VFP_FLOAT
) != (out_flags
& EF_ARM_VFP_FLOAT
))
15985 if (in_flags
& EF_ARM_VFP_FLOAT
)
15987 (_("error: %B uses VFP instructions, whereas %B does not"),
15991 (_("error: %B uses FPA instructions, whereas %B does not"),
15994 flags_compatible
= FALSE
;
15997 if ((in_flags
& EF_ARM_MAVERICK_FLOAT
) != (out_flags
& EF_ARM_MAVERICK_FLOAT
))
15999 if (in_flags
& EF_ARM_MAVERICK_FLOAT
)
16001 (_("error: %B uses Maverick instructions, whereas %B does not"),
16005 (_("error: %B does not use Maverick instructions, whereas %B does"),
16008 flags_compatible
= FALSE
;
16011 #ifdef EF_ARM_SOFT_FLOAT
16012 if ((in_flags
& EF_ARM_SOFT_FLOAT
) != (out_flags
& EF_ARM_SOFT_FLOAT
))
16014 /* We can allow interworking between code that is VFP format
16015 layout, and uses either soft float or integer regs for
16016 passing floating point arguments and results. We already
16017 know that the APCS_FLOAT flags match; similarly for VFP
16019 if ((in_flags
& EF_ARM_APCS_FLOAT
) != 0
16020 || (in_flags
& EF_ARM_VFP_FLOAT
) == 0)
16022 if (in_flags
& EF_ARM_SOFT_FLOAT
)
16024 (_("error: %B uses software FP, whereas %B uses hardware FP"),
16028 (_("error: %B uses hardware FP, whereas %B uses software FP"),
16031 flags_compatible
= FALSE
;
16036 /* Interworking mismatch is only a warning. */
16037 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
16039 if (in_flags
& EF_ARM_INTERWORK
)
16042 (_("Warning: %B supports interworking, whereas %B does not"),
16048 (_("Warning: %B does not support interworking, whereas %B does"),
16054 return flags_compatible
;
16058 /* Symbian OS Targets. */
16060 #undef TARGET_LITTLE_SYM
16061 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
16062 #undef TARGET_LITTLE_NAME
16063 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
16064 #undef TARGET_BIG_SYM
16065 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
16066 #undef TARGET_BIG_NAME
16067 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
16069 /* Like elf32_arm_link_hash_table_create -- but overrides
16070 appropriately for Symbian OS. */
16072 static struct bfd_link_hash_table
*
16073 elf32_arm_symbian_link_hash_table_create (bfd
*abfd
)
16075 struct bfd_link_hash_table
*ret
;
16077 ret
= elf32_arm_link_hash_table_create (abfd
);
16080 struct elf32_arm_link_hash_table
*htab
16081 = (struct elf32_arm_link_hash_table
*)ret
;
16082 /* There is no PLT header for Symbian OS. */
16083 htab
->plt_header_size
= 0;
16084 /* The PLT entries are each one instruction and one word. */
16085 htab
->plt_entry_size
= 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry
);
16086 htab
->symbian_p
= 1;
16087 /* Symbian uses armv5t or above, so use_blx is always true. */
16089 htab
->root
.is_relocatable_executable
= 1;
16094 static const struct bfd_elf_special_section
16095 elf32_arm_symbian_special_sections
[] =
16097 /* In a BPABI executable, the dynamic linking sections do not go in
16098 the loadable read-only segment. The post-linker may wish to
16099 refer to these sections, but they are not part of the final
16101 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC
, 0 },
16102 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB
, 0 },
16103 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM
, 0 },
16104 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS
, 0 },
16105 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH
, 0 },
16106 /* These sections do not need to be writable as the SymbianOS
16107 postlinker will arrange things so that no dynamic relocation is
16109 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY
, SHF_ALLOC
},
16110 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY
, SHF_ALLOC
},
16111 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
},
16112 { NULL
, 0, 0, 0, 0 }
16116 elf32_arm_symbian_begin_write_processing (bfd
*abfd
,
16117 struct bfd_link_info
*link_info
)
16119 /* BPABI objects are never loaded directly by an OS kernel; they are
16120 processed by a postlinker first, into an OS-specific format. If
16121 the D_PAGED bit is set on the file, BFD will align segments on
16122 page boundaries, so that an OS can directly map the file. With
16123 BPABI objects, that just results in wasted space. In addition,
16124 because we clear the D_PAGED bit, map_sections_to_segments will
16125 recognize that the program headers should not be mapped into any
16126 loadable segment. */
16127 abfd
->flags
&= ~D_PAGED
;
16128 elf32_arm_begin_write_processing (abfd
, link_info
);
16132 elf32_arm_symbian_modify_segment_map (bfd
*abfd
,
16133 struct bfd_link_info
*info
)
16135 struct elf_segment_map
*m
;
16138 /* BPABI shared libraries and executables should have a PT_DYNAMIC
16139 segment. However, because the .dynamic section is not marked
16140 with SEC_LOAD, the generic ELF code will not create such a
16142 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
16145 for (m
= elf_seg_map (abfd
); m
!= NULL
; m
= m
->next
)
16146 if (m
->p_type
== PT_DYNAMIC
)
16151 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
16152 m
->next
= elf_seg_map (abfd
);
16153 elf_seg_map (abfd
) = m
;
16157 /* Also call the generic arm routine. */
16158 return elf32_arm_modify_segment_map (abfd
, info
);
16161 /* Return address for Ith PLT stub in section PLT, for relocation REL
16162 or (bfd_vma) -1 if it should not be included. */
16165 elf32_arm_symbian_plt_sym_val (bfd_vma i
, const asection
*plt
,
16166 const arelent
*rel ATTRIBUTE_UNUSED
)
16168 return plt
->vma
+ 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry
) * i
;
16173 #define elf32_bed elf32_arm_symbian_bed
16175 /* The dynamic sections are not allocated on SymbianOS; the postlinker
16176 will process them and then discard them. */
16177 #undef ELF_DYNAMIC_SEC_FLAGS
16178 #define ELF_DYNAMIC_SEC_FLAGS \
16179 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
16181 #undef elf_backend_emit_relocs
16183 #undef bfd_elf32_bfd_link_hash_table_create
16184 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
16185 #undef elf_backend_special_sections
16186 #define elf_backend_special_sections elf32_arm_symbian_special_sections
16187 #undef elf_backend_begin_write_processing
16188 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
16189 #undef elf_backend_final_write_processing
16190 #define elf_backend_final_write_processing elf32_arm_final_write_processing
16192 #undef elf_backend_modify_segment_map
16193 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
16195 /* There is no .got section for BPABI objects, and hence no header. */
16196 #undef elf_backend_got_header_size
16197 #define elf_backend_got_header_size 0
16199 /* Similarly, there is no .got.plt section. */
16200 #undef elf_backend_want_got_plt
16201 #define elf_backend_want_got_plt 0
16203 #undef elf_backend_plt_sym_val
16204 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
16206 #undef elf_backend_may_use_rel_p
16207 #define elf_backend_may_use_rel_p 1
16208 #undef elf_backend_may_use_rela_p
16209 #define elf_backend_may_use_rela_p 0
16210 #undef elf_backend_default_use_rela_p
16211 #define elf_backend_default_use_rela_p 0
16212 #undef elf_backend_want_plt_sym
16213 #define elf_backend_want_plt_sym 0
16214 #undef ELF_MAXPAGESIZE
16215 #define ELF_MAXPAGESIZE 0x8000
16217 #include "elf32-target.h"