* config/tc-arm.c (arm_cpus): Add entry for ARM Cortex-M0.
[binutils-gdb.git] / gprof / gprof.texi
blob1f86383de7c155b3a2c1223a224de2c9270fcb63
1 \input texinfo @c -*-texinfo-*-
2 @setfilename gprof.info
3 @c Copyright 1988, 1992, 1993, 1998, 1999, 2000, 2001, 2002, 2003,
4 @c 2004, 2007, 2008
5 @c Free Software Foundation, Inc.
6 @settitle GNU gprof
7 @setchapternewpage odd
9 @c man begin INCLUDE
10 @include bfdver.texi
11 @c man end
13 @ifinfo
14 @c This is a dir.info fragment to support semi-automated addition of
15 @c manuals to an info tree.  zoo@cygnus.com is developing this facility.
16 @format
17 START-INFO-DIR-ENTRY
18 * gprof: (gprof).                Profiling your program's execution
19 END-INFO-DIR-ENTRY
20 @end format
21 @end ifinfo
23 @copying
24 This file documents the gprof profiler of the GNU system.
26 @c man begin COPYRIGHT
27 Copyright @copyright{} 1988, 92, 97, 98, 99, 2000, 2001, 2003, 2007, 2008 Free Software Foundation, Inc.
29 Permission is granted to copy, distribute and/or modify this document
30 under the terms of the GNU Free Documentation License, Version 1.3
31 or any later version published by the Free Software Foundation;
32 with no Invariant Sections, with no Front-Cover Texts, and with no
33 Back-Cover Texts.  A copy of the license is included in the
34 section entitled ``GNU Free Documentation License''.
36 @c man end
37 @end copying
39 @finalout
40 @smallbook
42 @titlepage
43 @title GNU gprof
44 @subtitle The @sc{gnu} Profiler 
45 @ifset VERSION_PACKAGE
46 @subtitle @value{VERSION_PACKAGE}
47 @end ifset
48 @subtitle Version @value{VERSION}
49 @author Jay Fenlason and Richard Stallman
51 @page
53 This manual describes the @sc{gnu} profiler, @code{gprof}, and how you
54 can use it to determine which parts of a program are taking most of the
55 execution time.  We assume that you know how to write, compile, and
56 execute programs.  @sc{gnu} @code{gprof} was written by Jay Fenlason.
57 Eric S. Raymond made some minor corrections and additions in 2003.
59 @vskip 0pt plus 1filll
60 Copyright @copyright{} 1988, 92, 97, 98, 99, 2000, 2003, 2008 Free Software Foundation, Inc.
62       Permission is granted to copy, distribute and/or modify this document
63       under the terms of the GNU Free Documentation License, Version 1.3
64       or any later version published by the Free Software Foundation;
65       with no Invariant Sections, with no Front-Cover Texts, and with no
66       Back-Cover Texts.  A copy of the license is included in the
67       section entitled ``GNU Free Documentation License''.
69 @end titlepage
70 @contents
72 @ifnottex
73 @node Top
74 @top Profiling a Program: Where Does It Spend Its Time?
76 This manual describes the @sc{gnu} profiler, @code{gprof}, and how you
77 can use it to determine which parts of a program are taking most of the
78 execution time.  We assume that you know how to write, compile, and
79 execute programs.  @sc{gnu} @code{gprof} was written by Jay Fenlason.
81 This manual is for @code{gprof}
82 @ifset VERSION_PACKAGE
83 @value{VERSION_PACKAGE}
84 @end ifset
85 version @value{VERSION}.
87 This document is distributed under the terms of the GNU Free
88 Documentation License version 1.3.  A copy of the license is included
89 in the section entitled ``GNU Free Documentation License''.
91 @menu
92 * Introduction::        What profiling means, and why it is useful.
94 * Compiling::           How to compile your program for profiling.
95 * Executing::           Executing your program to generate profile data
96 * Invoking::            How to run @code{gprof}, and its options
98 * Output::              Interpreting @code{gprof}'s output
100 * Inaccuracy::          Potential problems you should be aware of
101 * How do I?::           Answers to common questions
102 * Incompatibilities::   (between @sc{gnu} @code{gprof} and Unix @code{gprof}.)
103 * Details::             Details of how profiling is done
104 * GNU Free Documentation License::  GNU Free Documentation License
105 @end menu
106 @end ifnottex
108 @node Introduction
109 @chapter Introduction to Profiling
111 @ifset man
112 @c man title gprof display call graph profile data
114 @smallexample
115 @c man begin SYNOPSIS
116 gprof [ -[abcDhilLrsTvwxyz] ] [ -[ACeEfFJnNOpPqQZ][@var{name}] ] 
117  [ -I @var{dirs} ] [ -d[@var{num}] ] [ -k @var{from/to} ]
118  [ -m @var{min-count} ] [ -R @var{map_file} ] [ -t @var{table-length} ]
119  [ --[no-]annotated-source[=@var{name}] ] 
120  [ --[no-]exec-counts[=@var{name}] ]
121  [ --[no-]flat-profile[=@var{name}] ] [ --[no-]graph[=@var{name}] ]
122  [ --[no-]time=@var{name}] [ --all-lines ] [ --brief ] 
123  [ --debug[=@var{level}] ] [ --function-ordering ] 
124  [ --file-ordering @var{map_file} ] [ --directory-path=@var{dirs} ]
125  [ --display-unused-functions ] [ --file-format=@var{name} ]
126  [ --file-info ] [ --help ] [ --line ] [ --min-count=@var{n} ]
127  [ --no-static ] [ --print-path ] [ --separate-files ]
128  [ --static-call-graph ] [ --sum ] [ --table-length=@var{len} ]
129  [ --traditional ] [ --version ] [ --width=@var{n} ]
130  [ --ignore-non-functions ] [ --demangle[=@var{STYLE}] ]
131  [ --no-demangle ] [ @var{image-file} ] [ @var{profile-file} @dots{} ]
132 @c man end
133 @end smallexample
135 @c man begin DESCRIPTION
136 @code{gprof} produces an execution profile of C, Pascal, or Fortran77 
137 programs.  The effect of called routines is incorporated in the profile 
138 of each caller.  The profile data is taken from the call graph profile file
139 (@file{gmon.out} default) which is created by programs
140 that are compiled with the @samp{-pg} option of
141 @code{cc}, @code{pc}, and @code{f77}.
142 The @samp{-pg} option also links in versions of the library routines
143 that are compiled for profiling.  @code{Gprof} reads the given object 
144 file (the default is @code{a.out}) and establishes the relation between
145 its symbol table and the call graph profile from @file{gmon.out}.
146 If more than one profile file is specified, the @code{gprof}
147 output shows the sum of the profile information in the given profile files.
149 @code{Gprof} calculates the amount of time spent in each routine.
150 Next, these times are propagated along the edges of the call graph.
151 Cycles are discovered, and calls into a cycle are made to share the time
152 of the cycle.
154 @c man end
156 @c man begin BUGS
157 The granularity of the sampling is shown, but remains
158 statistical at best.
159 We assume that the time for each execution of a function
160 can be expressed by the total time for the function divided
161 by the number of times the function is called.
162 Thus the time propagated along the call graph arcs to the function's
163 parents is directly proportional to the number of times that
164 arc is traversed.
166 Parents that are not themselves profiled will have the time of
167 their profiled children propagated to them, but they will appear
168 to be spontaneously invoked in the call graph listing, and will
169 not have their time propagated further.
170 Similarly, signal catchers, even though profiled, will appear
171 to be spontaneous (although for more obscure reasons).
172 Any profiled children of signal catchers should have their times
173 propagated properly, unless the signal catcher was invoked during
174 the execution of the profiling routine, in which case all is lost.
176 The profiled program must call @code{exit}(2)
177 or return normally for the profiling information to be saved
178 in the @file{gmon.out} file.
179 @c man end
181 @c man begin FILES
182 @table @code
183 @item @file{a.out}
184 the namelist and text space.
185 @item @file{gmon.out}
186 dynamic call graph and profile.
187 @item @file{gmon.sum}
188 summarized dynamic call graph and profile.  
189 @end table
190 @c man end
192 @c man begin SEEALSO
193 monitor(3), profil(2), cc(1), prof(1), and the Info entry for @file{gprof}.
195 ``An Execution Profiler for Modular Programs'',
196 by S. Graham, P. Kessler, M. McKusick;
197 Software - Practice and Experience,
198 Vol. 13, pp. 671-685, 1983.
200 ``gprof: A Call Graph Execution Profiler'',
201 by S. Graham, P. Kessler, M. McKusick;
202 Proceedings of the SIGPLAN '82 Symposium on Compiler Construction,
203 SIGPLAN Notices, Vol. 17, No  6, pp. 120-126, June 1982.
204 @c man end
205 @end ifset
207 Profiling allows you to learn where your program spent its time and which
208 functions called which other functions while it was executing.  This
209 information can show you which pieces of your program are slower than you
210 expected, and might be candidates for rewriting to make your program
211 execute faster.  It can also tell you which functions are being called more
212 or less often than you expected.  This may help you spot bugs that had
213 otherwise been unnoticed.
215 Since the profiler uses information collected during the actual execution
216 of your program, it can be used on programs that are too large or too
217 complex to analyze by reading the source.  However, how your program is run
218 will affect the information that shows up in the profile data.  If you
219 don't use some feature of your program while it is being profiled, no
220 profile information will be generated for that feature.
222 Profiling has several steps:
224 @itemize @bullet
225 @item
226 You must compile and link your program with profiling enabled.
227 @xref{Compiling, ,Compiling a Program for Profiling}.
229 @item
230 You must execute your program to generate a profile data file.
231 @xref{Executing, ,Executing the Program}.
233 @item
234 You must run @code{gprof} to analyze the profile data.
235 @xref{Invoking, ,@code{gprof} Command Summary}.
236 @end itemize
238 The next three chapters explain these steps in greater detail.
240 @c man begin DESCRIPTION
242 Several forms of output are available from the analysis.
244 The @dfn{flat profile} shows how much time your program spent in each function,
245 and how many times that function was called.  If you simply want to know
246 which functions burn most of the cycles, it is stated concisely here.
247 @xref{Flat Profile, ,The Flat Profile}.
249 The @dfn{call graph} shows, for each function, which functions called it, which
250 other functions it called, and how many times.  There is also an estimate
251 of how much time was spent in the subroutines of each function.  This can
252 suggest places where you might try to eliminate function calls that use a
253 lot of time.  @xref{Call Graph, ,The Call Graph}.
255 The @dfn{annotated source} listing is a copy of the program's
256 source code, labeled with the number of times each line of the
257 program was executed.  @xref{Annotated Source, ,The Annotated Source
258 Listing}.
259 @c man end
261 To better understand how profiling works, you may wish to read
262 a description of its implementation.
263 @xref{Implementation, ,Implementation of Profiling}.
265 @node Compiling
266 @chapter Compiling a Program for Profiling
268 The first step in generating profile information for your program is
269 to compile and link it with profiling enabled.
271 To compile a source file for profiling, specify the @samp{-pg} option when
272 you run the compiler.  (This is in addition to the options you normally
273 use.)
275 To link the program for profiling, if you use a compiler such as @code{cc}
276 to do the linking, simply specify @samp{-pg} in addition to your usual
277 options.  The same option, @samp{-pg}, alters either compilation or linking
278 to do what is necessary for profiling.  Here are examples:
280 @example
281 cc -g -c myprog.c utils.c -pg
282 cc -o myprog myprog.o utils.o -pg
283 @end example
285 The @samp{-pg} option also works with a command that both compiles and links:
287 @example
288 cc -o myprog myprog.c utils.c -g -pg
289 @end example
291 Note: The @samp{-pg} option must be part of your compilation options
292 as well as your link options.  If it is not then no call-graph data
293 will be gathered and when you run @code{gprof} you will get an error
294 message like this:
296 @example
297 gprof: gmon.out file is missing call-graph data
298 @end example
300 If you add the @samp{-Q} switch to suppress the printing of the call
301 graph data you will still be able to see the time samples:
303 @example
304 Flat profile:
306 Each sample counts as 0.01 seconds.
307   %   cumulative   self              self     total           
308  time   seconds   seconds    calls  Ts/call  Ts/call  name    
309  44.12      0.07     0.07                             zazLoop
310  35.29      0.14     0.06                             main
311  20.59      0.17     0.04                             bazMillion
312 @end example
314 If you run the linker @code{ld} directly instead of through a compiler
315 such as @code{cc}, you may have to specify a profiling startup file
316 @file{gcrt0.o} as the first input file instead of the usual startup
317 file @file{crt0.o}.  In addition, you would probably want to
318 specify the profiling C library, @file{libc_p.a}, by writing
319 @samp{-lc_p} instead of the usual @samp{-lc}.  This is not absolutely
320 necessary, but doing this gives you number-of-calls information for
321 standard library functions such as @code{read} and @code{open}.  For
322 example:
324 @example
325 ld -o myprog /lib/gcrt0.o myprog.o utils.o -lc_p
326 @end example
328 If you are running the program on a system which supports shared
329 libraries you may run into problems with the profiling support code in
330 a shared library being called before that library has been fully
331 initialised.  This is usually detected by the program encountering a
332 segmentation fault as soon as it is run.  The solution is to link
333 against a static version of the library containing the profiling
334 support code, which for @code{gcc} users can be done via the
335 @samp{-static} or @samp{-static-libgcc} command line option.  For
336 example:
338 @example
339 gcc -g -pg -static-libgcc myprog.c utils.c -o myprog
340 @end example
342 If you compile only some of the modules of the program with @samp{-pg}, you
343 can still profile the program, but you won't get complete information about
344 the modules that were compiled without @samp{-pg}.  The only information
345 you get for the functions in those modules is the total time spent in them;
346 there is no record of how many times they were called, or from where.  This
347 will not affect the flat profile (except that the @code{calls} field for
348 the functions will be blank), but will greatly reduce the usefulness of the
349 call graph.
351 If you wish to perform line-by-line profiling you should use the
352 @code{gcov} tool instead of @code{gprof}.  See that tool's manual or
353 info pages for more details of how to do this.
355 Note, older versions of @code{gcc} produce line-by-line profiling
356 information that works with @code{gprof} rather than @code{gcov} so
357 there is still support for displaying this kind of information in
358 @code{gprof}. @xref{Line-by-line, ,Line-by-line Profiling}.
360 It also worth noting that @code{gcc} implements a
361 @samp{-finstrument-functions} command line option which will insert
362 calls to special user supplied instrumentation routines at the entry
363 and exit of every function in their program.  This can be used to
364 implement an alternative profiling scheme.
366 @node Executing
367 @chapter Executing the Program
369 Once the program is compiled for profiling, you must run it in order to
370 generate the information that @code{gprof} needs.  Simply run the program
371 as usual, using the normal arguments, file names, etc.  The program should
372 run normally, producing the same output as usual.  It will, however, run
373 somewhat slower than normal because of the time spent collecting and
374 writing the profile data.
376 The way you run the program---the arguments and input that you give
377 it---may have a dramatic effect on what the profile information shows.  The
378 profile data will describe the parts of the program that were activated for
379 the particular input you use.  For example, if the first command you give
380 to your program is to quit, the profile data will show the time used in
381 initialization and in cleanup, but not much else.
383 Your program will write the profile data into a file called @file{gmon.out}
384 just before exiting.  If there is already a file called @file{gmon.out},
385 its contents are overwritten.  There is currently no way to tell the
386 program to write the profile data under a different name, but you can rename
387 the file afterwards if you are concerned that it may be overwritten.
389 In order to write the @file{gmon.out} file properly, your program must exit
390 normally: by returning from @code{main} or by calling @code{exit}.  Calling
391 the low-level function @code{_exit} does not write the profile data, and
392 neither does abnormal termination due to an unhandled signal.
394 The @file{gmon.out} file is written in the program's @emph{current working
395 directory} at the time it exits.  This means that if your program calls
396 @code{chdir}, the @file{gmon.out} file will be left in the last directory
397 your program @code{chdir}'d to.  If you don't have permission to write in
398 this directory, the file is not written, and you will get an error message.
400 Older versions of the @sc{gnu} profiling library may also write a file
401 called @file{bb.out}.  This file, if present, contains an human-readable
402 listing of the basic-block execution counts.  Unfortunately, the
403 appearance of a human-readable @file{bb.out} means the basic-block
404 counts didn't get written into @file{gmon.out}.
405 The Perl script @code{bbconv.pl}, included with the @code{gprof}
406 source distribution, will convert a @file{bb.out} file into
407 a format readable by @code{gprof}.  Invoke it like this:
409 @smallexample
410 bbconv.pl < bb.out > @var{bh-data}
411 @end smallexample
413 This translates the information in @file{bb.out} into a form that
414 @code{gprof} can understand.  But you still need to tell @code{gprof}
415 about the existence of this translated information.  To do that, include
416 @var{bb-data} on the @code{gprof} command line, @emph{along with
417 @file{gmon.out}}, like this:
419 @smallexample
420 gprof @var{options} @var{executable-file} gmon.out @var{bb-data} [@var{yet-more-profile-data-files}@dots{}] [> @var{outfile}]
421 @end smallexample
423 @node Invoking
424 @chapter @code{gprof} Command Summary
426 After you have a profile data file @file{gmon.out}, you can run @code{gprof}
427 to interpret the information in it.  The @code{gprof} program prints a
428 flat profile and a call graph on standard output.  Typically you would
429 redirect the output of @code{gprof} into a file with @samp{>}.
431 You run @code{gprof} like this:
433 @smallexample
434 gprof @var{options} [@var{executable-file} [@var{profile-data-files}@dots{}]] [> @var{outfile}]
435 @end smallexample
437 @noindent
438 Here square-brackets indicate optional arguments.
440 If you omit the executable file name, the file @file{a.out} is used.  If
441 you give no profile data file name, the file @file{gmon.out} is used.  If
442 any file is not in the proper format, or if the profile data file does not
443 appear to belong to the executable file, an error message is printed.
445 You can give more than one profile data file by entering all their names
446 after the executable file name; then the statistics in all the data files
447 are summed together.
449 The order of these options does not matter.
451 @menu
452 * Output Options::      Controlling @code{gprof}'s output style
453 * Analysis Options::    Controlling how @code{gprof} analyzes its data
454 * Miscellaneous Options::
455 * Deprecated Options::  Options you no longer need to use, but which
456                             have been retained for compatibility
457 * Symspecs::            Specifying functions to include or exclude
458 @end menu
460 @node Output Options
461 @section Output Options
463 @c man begin OPTIONS
464 These options specify which of several output formats
465 @code{gprof} should produce.
467 Many of these options take an optional @dfn{symspec} to specify
468 functions to be included or excluded.  These options can be
469 specified multiple times, with different symspecs, to include
470 or exclude sets of symbols.  @xref{Symspecs, ,Symspecs}.
472 Specifying any of these options overrides the default (@samp{-p -q}),
473 which prints a flat profile and call graph analysis
474 for all functions.
476 @table @code
478 @item -A[@var{symspec}]
479 @itemx --annotated-source[=@var{symspec}]
480 The @samp{-A} option causes @code{gprof} to print annotated source code.
481 If @var{symspec} is specified, print output only for matching symbols.
482 @xref{Annotated Source, ,The Annotated Source Listing}.
484 @item -b
485 @itemx --brief
486 If the @samp{-b} option is given, @code{gprof} doesn't print the
487 verbose blurbs that try to explain the meaning of all of the fields in
488 the tables.  This is useful if you intend to print out the output, or
489 are tired of seeing the blurbs.
491 @item -C[@var{symspec}]
492 @itemx --exec-counts[=@var{symspec}]
493 The @samp{-C} option causes @code{gprof} to
494 print a tally of functions and the number of times each was called.
495 If @var{symspec} is specified, print tally only for matching symbols.
497 If the profile data file contains basic-block count records, specifying
498 the @samp{-l} option, along with @samp{-C}, will cause basic-block
499 execution counts to be tallied and displayed.
501 @item -i
502 @itemx --file-info
503 The @samp{-i} option causes @code{gprof} to display summary information
504 about the profile data file(s) and then exit.  The number of histogram,
505 call graph, and basic-block count records is displayed.
507 @item -I @var{dirs}
508 @itemx --directory-path=@var{dirs}
509 The @samp{-I} option specifies a list of search directories in
510 which to find source files.  Environment variable @var{GPROF_PATH}
511 can also be used to convey this information.
512 Used mostly for annotated source output.
514 @item -J[@var{symspec}]
515 @itemx --no-annotated-source[=@var{symspec}]
516 The @samp{-J} option causes @code{gprof} not to
517 print annotated source code.
518 If @var{symspec} is specified, @code{gprof} prints annotated source,
519 but excludes matching symbols.
521 @item -L
522 @itemx --print-path
523 Normally, source filenames are printed with the path
524 component suppressed.  The @samp{-L} option causes @code{gprof}
525 to print the full pathname of
526 source filenames, which is determined
527 from symbolic debugging information in the image file
528 and is relative to the directory in which the compiler
529 was invoked.
531 @item -p[@var{symspec}]
532 @itemx --flat-profile[=@var{symspec}]
533 The @samp{-p} option causes @code{gprof} to print a flat profile.
534 If @var{symspec} is specified, print flat profile only for matching symbols.
535 @xref{Flat Profile, ,The Flat Profile}.
537 @item -P[@var{symspec}]
538 @itemx --no-flat-profile[=@var{symspec}]
539 The @samp{-P} option causes @code{gprof} to suppress printing a flat profile.
540 If @var{symspec} is specified, @code{gprof} prints a flat profile,
541 but excludes matching symbols.
543 @item -q[@var{symspec}]
544 @itemx --graph[=@var{symspec}]
545 The @samp{-q} option causes @code{gprof} to print the call graph analysis.
546 If @var{symspec} is specified, print call graph only for matching symbols
547 and their children.
548 @xref{Call Graph, ,The Call Graph}.
550 @item -Q[@var{symspec}]
551 @itemx --no-graph[=@var{symspec}]
552 The @samp{-Q} option causes @code{gprof} to suppress printing the
553 call graph.
554 If @var{symspec} is specified, @code{gprof} prints a call graph,
555 but excludes matching symbols.
557 @item -t
558 @itemx --table-length=@var{num}
559 The @samp{-t} option causes the @var{num} most active source lines in
560 each source file to be listed when source annotation is enabled.  The
561 default is 10.
563 @item -y
564 @itemx --separate-files
565 This option affects annotated source output only.
566 Normally, @code{gprof} prints annotated source files
567 to standard-output.  If this option is specified,
568 annotated source for a file named @file{path/@var{filename}}
569 is generated in the file @file{@var{filename}-ann}.  If the underlying
570 file system would truncate @file{@var{filename}-ann} so that it
571 overwrites the original @file{@var{filename}}, @code{gprof} generates
572 annotated source in the file @file{@var{filename}.ann} instead (if the
573 original file name has an extension, that extension is @emph{replaced}
574 with @file{.ann}).
576 @item -Z[@var{symspec}]
577 @itemx --no-exec-counts[=@var{symspec}]
578 The @samp{-Z} option causes @code{gprof} not to
579 print a tally of functions and the number of times each was called.
580 If @var{symspec} is specified, print tally, but exclude matching symbols.
582 @item -r
583 @itemx --function-ordering
584 The @samp{--function-ordering} option causes @code{gprof} to print a
585 suggested function ordering for the program based on profiling data.
586 This option suggests an ordering which may improve paging, tlb and
587 cache behavior for the program on systems which support arbitrary
588 ordering of functions in an executable.
590 The exact details of how to force the linker to place functions
591 in a particular order is system dependent and out of the scope of this
592 manual.
594 @item -R @var{map_file}
595 @itemx --file-ordering @var{map_file}
596 The @samp{--file-ordering} option causes @code{gprof} to print a
597 suggested .o link line ordering for the program based on profiling data.
598 This option suggests an ordering which may improve paging, tlb and
599 cache behavior for the program on systems which do not support arbitrary
600 ordering of functions in an executable.
602 Use of the @samp{-a} argument is highly recommended with this option.
604 The @var{map_file} argument is a pathname to a file which provides
605 function name to object file mappings.  The format of the file is similar to
606 the output of the program @code{nm}.
608 @smallexample
609 @group
610 c-parse.o:00000000 T yyparse
611 c-parse.o:00000004 C yyerrflag
612 c-lang.o:00000000 T maybe_objc_method_name
613 c-lang.o:00000000 T print_lang_statistics
614 c-lang.o:00000000 T recognize_objc_keyword
615 c-decl.o:00000000 T print_lang_identifier
616 c-decl.o:00000000 T print_lang_type
617 @dots{}
619 @end group
620 @end smallexample
622 To create a @var{map_file} with @sc{gnu} @code{nm}, type a command like
623 @kbd{nm --extern-only --defined-only -v --print-file-name program-name}.
625 @item -T
626 @itemx --traditional
627 The @samp{-T} option causes @code{gprof} to print its output in
628 ``traditional'' BSD style.
630 @item -w @var{width}
631 @itemx --width=@var{width}
632 Sets width of output lines to @var{width}.
633 Currently only used when printing the function index at the bottom
634 of the call graph.
636 @item -x
637 @itemx --all-lines
638 This option affects annotated source output only.
639 By default, only the lines at the beginning of a basic-block
640 are annotated.  If this option is specified, every line in
641 a basic-block is annotated by repeating the annotation for the
642 first line.  This behavior is similar to @code{tcov}'s @samp{-a}.
644 @item --demangle[=@var{style}]
645 @itemx --no-demangle
646 These options control whether C++ symbol names should be demangled when
647 printing output.  The default is to demangle symbols.  The
648 @code{--no-demangle} option may be used to turn off demangling. Different 
649 compilers have different mangling styles.  The optional demangling style 
650 argument can be used to choose an appropriate demangling style for your 
651 compiler.
652 @end table
654 @node Analysis Options
655 @section Analysis Options
657 @table @code
659 @item -a
660 @itemx --no-static
661 The @samp{-a} option causes @code{gprof} to suppress the printing of
662 statically declared (private) functions.  (These are functions whose
663 names are not listed as global, and which are not visible outside the
664 file/function/block where they were defined.)  Time spent in these
665 functions, calls to/from them, etc., will all be attributed to the
666 function that was loaded directly before it in the executable file.
667 @c This is compatible with Unix @code{gprof}, but a bad idea.  
668 This option affects both the flat profile and the call graph.
670 @item -c
671 @itemx --static-call-graph
672 The @samp{-c} option causes the call graph of the program to be
673 augmented by a heuristic which examines the text space of the object
674 file and identifies function calls in the binary machine code.
675 Since normal call graph records are only generated when functions are
676 entered, this option identifies children that could have been called,
677 but never were.  Calls to functions that were not compiled with
678 profiling enabled are also identified, but only if symbol table
679 entries are present for them.
680 Calls to dynamic library routines are typically @emph{not} found
681 by this option.
682 Parents or children identified via this heuristic
683 are indicated in the call graph with call counts of @samp{0}.
685 @item -D
686 @itemx --ignore-non-functions
687 The @samp{-D} option causes @code{gprof} to ignore symbols which
688 are not known to be functions.  This option will give more accurate
689 profile data on systems where it is supported (Solaris and HPUX for
690 example).
692 @item -k @var{from}/@var{to}
693 The @samp{-k} option allows you to delete from the call graph any arcs from
694 symbols matching symspec @var{from} to those matching symspec @var{to}.
696 @item -l
697 @itemx --line
698 The @samp{-l} option enables line-by-line profiling, which causes
699 histogram hits to be charged to individual source code lines,
700 instead of functions.  This feature only works with programs compiled
701 by older versions of the @code{gcc} compiler.  Newer versions of
702 @code{gcc} are designed to work with the @code{gcov} tool instead.
704 If the program was compiled with basic-block counting enabled,
705 this option will also identify how many times each line of
706 code was executed.
707 While line-by-line profiling can help isolate where in a large function
708 a program is spending its time, it also significantly increases
709 the running time of @code{gprof}, and magnifies statistical
710 inaccuracies.
711 @xref{Sampling Error, ,Statistical Sampling Error}.
713 @item -m @var{num}
714 @itemx --min-count=@var{num}
715 This option affects execution count output only.
716 Symbols that are executed less than @var{num} times are suppressed.
718 @item -n@var{symspec}
719 @itemx --time=@var{symspec}
720 The @samp{-n} option causes @code{gprof}, in its call graph analysis,
721 to only propagate times for symbols matching @var{symspec}.
723 @item -N@var{symspec}
724 @itemx --no-time=@var{symspec}
725 The @samp{-n} option causes @code{gprof}, in its call graph analysis,
726 not to propagate times for symbols matching @var{symspec}.
728 @item -z
729 @itemx --display-unused-functions
730 If you give the @samp{-z} option, @code{gprof} will mention all
731 functions in the flat profile, even those that were never called, and
732 that had no time spent in them.  This is useful in conjunction with the
733 @samp{-c} option for discovering which routines were never called.
735 @end table
737 @node Miscellaneous Options
738 @section Miscellaneous Options
740 @table @code
742 @item -d[@var{num}]
743 @itemx --debug[=@var{num}]
744 The @samp{-d @var{num}} option specifies debugging options.
745 If @var{num} is not specified, enable all debugging.
746 @xref{Debugging, ,Debugging @code{gprof}}.
748 @item -h
749 @itemx --help
750 The @samp{-h} option prints command line usage.
752 @item -O@var{name}
753 @itemx --file-format=@var{name}
754 Selects the format of the profile data files.  Recognized formats are
755 @samp{auto} (the default), @samp{bsd}, @samp{4.4bsd}, @samp{magic}, and
756 @samp{prof} (not yet supported).
758 @item -s
759 @itemx --sum
760 The @samp{-s} option causes @code{gprof} to summarize the information
761 in the profile data files it read in, and write out a profile data
762 file called @file{gmon.sum}, which contains all the information from
763 the profile data files that @code{gprof} read in.  The file @file{gmon.sum}
764 may be one of the specified input files; the effect of this is to
765 merge the data in the other input files into @file{gmon.sum}.
767 Eventually you can run @code{gprof} again without @samp{-s} to analyze the
768 cumulative data in the file @file{gmon.sum}.
770 @item -v
771 @itemx --version
772 The @samp{-v} flag causes @code{gprof} to print the current version
773 number, and then exit.
775 @end table
777 @node Deprecated Options
778 @section Deprecated Options
780 @table @code
782 These options have been replaced with newer versions that use symspecs.
784 @item -e @var{function_name}
785 The @samp{-e @var{function}} option tells @code{gprof} to not print
786 information about the function @var{function_name} (and its
787 children@dots{}) in the call graph.  The function will still be listed
788 as a child of any functions that call it, but its index number will be
789 shown as @samp{[not printed]}.  More than one @samp{-e} option may be
790 given; only one @var{function_name} may be indicated with each @samp{-e}
791 option. 
793 @item -E @var{function_name}
794 The @code{-E @var{function}} option works like the @code{-e} option, but
795 time spent in the function (and children who were not called from
796 anywhere else), will not be used to compute the percentages-of-time for
797 the call graph.  More than one @samp{-E} option may be given; only one
798 @var{function_name} may be indicated with each @samp{-E} option.
800 @item -f @var{function_name}
801 The @samp{-f @var{function}} option causes @code{gprof} to limit the
802 call graph to the function @var{function_name} and its children (and
803 their children@dots{}).  More than one @samp{-f} option may be given;
804 only one @var{function_name} may be indicated with each @samp{-f}
805 option.  
807 @item -F @var{function_name}
808 The @samp{-F @var{function}} option works like the @code{-f} option, but
809 only time spent in the function and its children (and their
810 children@dots{}) will be used to determine total-time and
811 percentages-of-time for the call graph.  More than one @samp{-F} option
812 may be given; only one @var{function_name} may be indicated with each
813 @samp{-F} option.  The @samp{-F} option overrides the @samp{-E} option.
815 @end table
817 @c man end
819 Note that only one function can be specified with each @code{-e},
820 @code{-E}, @code{-f} or @code{-F} option.  To specify more than one
821 function, use multiple options.  For example, this command:
823 @example
824 gprof -e boring -f foo -f bar myprogram > gprof.output
825 @end example
827 @noindent
828 lists in the call graph all functions that were reached from either
829 @code{foo} or @code{bar} and were not reachable from @code{boring}.
831 @node Symspecs
832 @section Symspecs
834 Many of the output options allow functions to be included or excluded
835 using @dfn{symspecs} (symbol specifications), which observe the
836 following syntax:
838 @example
839   filename_containing_a_dot
840 | funcname_not_containing_a_dot
841 | linenumber
842 | ( [ any_filename ] `:' ( any_funcname | linenumber ) )
843 @end example
845 Here are some sample symspecs:
847 @table @samp
848 @item main.c
849 Selects everything in file @file{main.c}---the
850 dot in the string tells @code{gprof} to interpret
851 the string as a filename, rather than as
852 a function name.  To select a file whose
853 name does not contain a dot, a trailing colon
854 should be specified.  For example, @samp{odd:} is
855 interpreted as the file named @file{odd}.
857 @item main
858 Selects all functions named @samp{main}.
860 Note that there may be multiple instances of the same function name
861 because some of the definitions may be local (i.e., static).  Unless a
862 function name is unique in a program, you must use the colon notation
863 explained below to specify a function from a specific source file.
865 Sometimes, function names contain dots.  In such cases, it is necessary
866 to add a leading colon to the name.  For example, @samp{:.mul} selects
867 function @samp{.mul}.
869 In some object file formats, symbols have a leading underscore.
870 @code{gprof} will normally not print these underscores.  When you name a
871 symbol in a symspec, you should type it exactly as @code{gprof} prints
872 it in its output.  For example, if the compiler produces a symbol
873 @samp{_main} from your @code{main} function, @code{gprof} still prints
874 it as @samp{main} in its output, so you should use @samp{main} in
875 symspecs.
877 @item main.c:main
878 Selects function @samp{main} in file @file{main.c}.
880 @item main.c:134
881 Selects line 134 in file @file{main.c}.
882 @end table
884 @node Output
885 @chapter Interpreting @code{gprof}'s Output
887 @code{gprof} can produce several different output styles, the
888 most important of which are described below.  The simplest output
889 styles (file information, execution count, and function and file ordering)
890 are not described here, but are documented with the respective options
891 that trigger them.
892 @xref{Output Options, ,Output Options}.
894 @menu
895 * Flat Profile::        The flat profile shows how much time was spent
896                             executing directly in each function.
897 * Call Graph::          The call graph shows which functions called which
898                             others, and how much time each function used
899                             when its subroutine calls are included.
900 * Line-by-line::        @code{gprof} can analyze individual source code lines
901 * Annotated Source::    The annotated source listing displays source code
902                             labeled with execution counts
903 @end menu
906 @node Flat Profile
907 @section The Flat Profile
908 @cindex flat profile
910 The @dfn{flat profile} shows the total amount of time your program
911 spent executing each function.  Unless the @samp{-z} option is given,
912 functions with no apparent time spent in them, and no apparent calls
913 to them, are not mentioned.  Note that if a function was not compiled
914 for profiling, and didn't run long enough to show up on the program
915 counter histogram, it will be indistinguishable from a function that
916 was never called.
918 This is part of a flat profile for a small program:
920 @smallexample
921 @group
922 Flat profile:
924 Each sample counts as 0.01 seconds.
925   %   cumulative   self              self     total           
926  time   seconds   seconds    calls  ms/call  ms/call  name    
927  33.34      0.02     0.02     7208     0.00     0.00  open
928  16.67      0.03     0.01      244     0.04     0.12  offtime
929  16.67      0.04     0.01        8     1.25     1.25  memccpy
930  16.67      0.05     0.01        7     1.43     1.43  write
931  16.67      0.06     0.01                             mcount
932   0.00      0.06     0.00      236     0.00     0.00  tzset
933   0.00      0.06     0.00      192     0.00     0.00  tolower
934   0.00      0.06     0.00       47     0.00     0.00  strlen
935   0.00      0.06     0.00       45     0.00     0.00  strchr
936   0.00      0.06     0.00        1     0.00    50.00  main
937   0.00      0.06     0.00        1     0.00     0.00  memcpy
938   0.00      0.06     0.00        1     0.00    10.11  print
939   0.00      0.06     0.00        1     0.00     0.00  profil
940   0.00      0.06     0.00        1     0.00    50.00  report
941 @dots{}
942 @end group
943 @end smallexample
945 @noindent
946 The functions are sorted first by decreasing run-time spent in them,
947 then by decreasing number of calls, then alphabetically by name.  The
948 functions @samp{mcount} and @samp{profil} are part of the profiling
949 apparatus and appear in every flat profile; their time gives a measure of
950 the amount of overhead due to profiling.
952 Just before the column headers, a statement appears indicating
953 how much time each sample counted as.
954 This @dfn{sampling period} estimates the margin of error in each of the time
955 figures.  A time figure that is not much larger than this is not
956 reliable.  In this example, each sample counted as 0.01 seconds,
957 suggesting a 100 Hz sampling rate.
958 The program's total execution time was 0.06
959 seconds, as indicated by the @samp{cumulative seconds} field.  Since
960 each sample counted for 0.01 seconds, this means only six samples
961 were taken during the run.  Two of the samples occurred while the
962 program was in the @samp{open} function, as indicated by the
963 @samp{self seconds} field.  Each of the other four samples
964 occurred one each in @samp{offtime}, @samp{memccpy}, @samp{write},
965 and @samp{mcount}.
966 Since only six samples were taken, none of these values can
967 be regarded as particularly reliable.
968 In another run,
969 the @samp{self seconds} field for
970 @samp{mcount} might well be @samp{0.00} or @samp{0.02}.
971 @xref{Sampling Error, ,Statistical Sampling Error},
972 for a complete discussion.
974 The remaining functions in the listing (those whose
975 @samp{self seconds} field is @samp{0.00}) didn't appear
976 in the histogram samples at all.  However, the call graph
977 indicated that they were called, so therefore they are listed,
978 sorted in decreasing order by the @samp{calls} field.
979 Clearly some time was spent executing these functions,
980 but the paucity of histogram samples prevents any
981 determination of how much time each took.
983 Here is what the fields in each line mean:
985 @table @code
986 @item % time
987 This is the percentage of the total execution time your program spent
988 in this function.  These should all add up to 100%.
990 @item cumulative seconds
991 This is the cumulative total number of seconds the computer spent
992 executing this functions, plus the time spent in all the functions
993 above this one in this table.
995 @item self seconds
996 This is the number of seconds accounted for by this function alone.
997 The flat profile listing is sorted first by this number.
999 @item calls
1000 This is the total number of times the function was called.  If the
1001 function was never called, or the number of times it was called cannot
1002 be determined (probably because the function was not compiled with
1003 profiling enabled), the @dfn{calls} field is blank.
1005 @item self ms/call
1006 This represents the average number of milliseconds spent in this
1007 function per call, if this function is profiled.  Otherwise, this field
1008 is blank for this function.
1010 @item total ms/call
1011 This represents the average number of milliseconds spent in this
1012 function and its descendants per call, if this function is profiled.
1013 Otherwise, this field is blank for this function.
1014 This is the only field in the flat profile that uses call graph analysis.
1016 @item name
1017 This is the name of the function.   The flat profile is sorted by this
1018 field alphabetically after the @dfn{self seconds} and @dfn{calls}
1019 fields are sorted.
1020 @end table
1022 @node Call Graph
1023 @section The Call Graph
1024 @cindex call graph
1026 The @dfn{call graph} shows how much time was spent in each function
1027 and its children.  From this information, you can find functions that,
1028 while they themselves may not have used much time, called other
1029 functions that did use unusual amounts of time.
1031 Here is a sample call from a small program.  This call came from the
1032 same @code{gprof} run as the flat profile example in the previous
1033 section.
1035 @smallexample
1036 @group
1037 granularity: each sample hit covers 2 byte(s) for 20.00% of 0.05 seconds
1039 index % time    self  children    called     name
1040                                                  <spontaneous>
1041 [1]    100.0    0.00    0.05                 start [1]
1042                 0.00    0.05       1/1           main [2]
1043                 0.00    0.00       1/2           on_exit [28]
1044                 0.00    0.00       1/1           exit [59]
1045 -----------------------------------------------
1046                 0.00    0.05       1/1           start [1]
1047 [2]    100.0    0.00    0.05       1         main [2]
1048                 0.00    0.05       1/1           report [3]
1049 -----------------------------------------------
1050                 0.00    0.05       1/1           main [2]
1051 [3]    100.0    0.00    0.05       1         report [3]
1052                 0.00    0.03       8/8           timelocal [6]
1053                 0.00    0.01       1/1           print [9]
1054                 0.00    0.01       9/9           fgets [12]
1055                 0.00    0.00      12/34          strncmp <cycle 1> [40]
1056                 0.00    0.00       8/8           lookup [20]
1057                 0.00    0.00       1/1           fopen [21]
1058                 0.00    0.00       8/8           chewtime [24]
1059                 0.00    0.00       8/16          skipspace [44]
1060 -----------------------------------------------
1061 [4]     59.8    0.01        0.02       8+472     <cycle 2 as a whole> [4]
1062                 0.01        0.02     244+260         offtime <cycle 2> [7]
1063                 0.00        0.00     236+1           tzset <cycle 2> [26]
1064 -----------------------------------------------
1065 @end group
1066 @end smallexample
1068 The lines full of dashes divide this table into @dfn{entries}, one for each
1069 function.  Each entry has one or more lines.
1071 In each entry, the primary line is the one that starts with an index number
1072 in square brackets.  The end of this line says which function the entry is
1073 for.  The preceding lines in the entry describe the callers of this
1074 function and the following lines describe its subroutines (also called
1075 @dfn{children} when we speak of the call graph).
1077 The entries are sorted by time spent in the function and its subroutines.
1079 The internal profiling function @code{mcount} (@pxref{Flat Profile, ,The 
1080 Flat Profile}) is never mentioned in the call graph.
1082 @menu
1083 * Primary::       Details of the primary line's contents.
1084 * Callers::       Details of caller-lines' contents.
1085 * Subroutines::   Details of subroutine-lines' contents.
1086 * Cycles::        When there are cycles of recursion,
1087                    such as @code{a} calls @code{b} calls @code{a}@dots{}
1088 @end menu
1090 @node Primary
1091 @subsection The Primary Line
1093 The @dfn{primary line} in a call graph entry is the line that
1094 describes the function which the entry is about and gives the overall
1095 statistics for this function.
1097 For reference, we repeat the primary line from the entry for function
1098 @code{report} in our main example, together with the heading line that
1099 shows the names of the fields:
1101 @smallexample
1102 @group
1103 index  % time    self  children called     name
1104 @dots{}
1105 [3]    100.0    0.00    0.05       1         report [3]
1106 @end group
1107 @end smallexample
1109 Here is what the fields in the primary line mean:
1111 @table @code
1112 @item index
1113 Entries are numbered with consecutive integers.  Each function
1114 therefore has an index number, which appears at the beginning of its
1115 primary line.
1117 Each cross-reference to a function, as a caller or subroutine of
1118 another, gives its index number as well as its name.  The index number
1119 guides you if you wish to look for the entry for that function.
1121 @item % time
1122 This is the percentage of the total time that was spent in this
1123 function, including time spent in subroutines called from this
1124 function.
1126 The time spent in this function is counted again for the callers of
1127 this function.  Therefore, adding up these percentages is meaningless.
1129 @item self
1130 This is the total amount of time spent in this function.  This
1131 should be identical to the number printed in the @code{seconds} field
1132 for this function in the flat profile.
1134 @item children
1135 This is the total amount of time spent in the subroutine calls made by
1136 this function.  This should be equal to the sum of all the @code{self}
1137 and @code{children} entries of the children listed directly below this
1138 function.
1140 @item called
1141 This is the number of times the function was called.
1143 If the function called itself recursively, there are two numbers,
1144 separated by a @samp{+}.  The first number counts non-recursive calls,
1145 and the second counts recursive calls.
1147 In the example above, the function @code{report} was called once from
1148 @code{main}.
1150 @item name
1151 This is the name of the current function.  The index number is
1152 repeated after it.
1154 If the function is part of a cycle of recursion, the cycle number is
1155 printed between the function's name and the index number
1156 (@pxref{Cycles, ,How Mutually Recursive Functions Are Described}).
1157 For example, if function @code{gnurr} is part of
1158 cycle number one, and has index number twelve, its primary line would
1159 be end like this:
1161 @example
1162 gnurr <cycle 1> [12]
1163 @end example
1164 @end table
1166 @node Callers
1167 @subsection Lines for a Function's Callers
1169 A function's entry has a line for each function it was called by.
1170 These lines' fields correspond to the fields of the primary line, but
1171 their meanings are different because of the difference in context.
1173 For reference, we repeat two lines from the entry for the function
1174 @code{report}, the primary line and one caller-line preceding it, together
1175 with the heading line that shows the names of the fields:
1177 @smallexample
1178 index  % time    self  children called     name
1179 @dots{}
1180                 0.00    0.05       1/1           main [2]
1181 [3]    100.0    0.00    0.05       1         report [3]
1182 @end smallexample
1184 Here are the meanings of the fields in the caller-line for @code{report}
1185 called from @code{main}:
1187 @table @code
1188 @item self
1189 An estimate of the amount of time spent in @code{report} itself when it was
1190 called from @code{main}.
1192 @item children
1193 An estimate of the amount of time spent in subroutines of @code{report}
1194 when @code{report} was called from @code{main}.
1196 The sum of the @code{self} and @code{children} fields is an estimate
1197 of the amount of time spent within calls to @code{report} from @code{main}.
1199 @item called
1200 Two numbers: the number of times @code{report} was called from @code{main},
1201 followed by the total number of non-recursive calls to @code{report} from
1202 all its callers.
1204 @item name and index number
1205 The name of the caller of @code{report} to which this line applies,
1206 followed by the caller's index number.
1208 Not all functions have entries in the call graph; some
1209 options to @code{gprof} request the omission of certain functions.
1210 When a caller has no entry of its own, it still has caller-lines
1211 in the entries of the functions it calls.
1213 If the caller is part of a recursion cycle, the cycle number is
1214 printed between the name and the index number.
1215 @end table
1217 If the identity of the callers of a function cannot be determined, a
1218 dummy caller-line is printed which has @samp{<spontaneous>} as the
1219 ``caller's name'' and all other fields blank.  This can happen for
1220 signal handlers.
1221 @c What if some calls have determinable callers' names but not all?
1222 @c FIXME - still relevant?
1224 @node Subroutines
1225 @subsection Lines for a Function's Subroutines
1227 A function's entry has a line for each of its subroutines---in other
1228 words, a line for each other function that it called.  These lines'
1229 fields correspond to the fields of the primary line, but their meanings
1230 are different because of the difference in context.
1232 For reference, we repeat two lines from the entry for the function
1233 @code{main}, the primary line and a line for a subroutine, together
1234 with the heading line that shows the names of the fields:
1236 @smallexample
1237 index  % time    self  children called     name
1238 @dots{}
1239 [2]    100.0    0.00    0.05       1         main [2]
1240                 0.00    0.05       1/1           report [3]
1241 @end smallexample
1243 Here are the meanings of the fields in the subroutine-line for @code{main}
1244 calling @code{report}:
1246 @table @code
1247 @item self
1248 An estimate of the amount of time spent directly within @code{report}
1249 when @code{report} was called from @code{main}.
1251 @item children
1252 An estimate of the amount of time spent in subroutines of @code{report}
1253 when @code{report} was called from @code{main}.
1255 The sum of the @code{self} and @code{children} fields is an estimate
1256 of the total time spent in calls to @code{report} from @code{main}.
1258 @item called
1259 Two numbers, the number of calls to @code{report} from @code{main}
1260 followed by the total number of non-recursive calls to @code{report}.
1261 This ratio is used to determine how much of @code{report}'s @code{self}
1262 and @code{children} time gets credited to @code{main}.
1263 @xref{Assumptions, ,Estimating @code{children} Times}.
1265 @item name
1266 The name of the subroutine of @code{main} to which this line applies,
1267 followed by the subroutine's index number.
1269 If the caller is part of a recursion cycle, the cycle number is
1270 printed between the name and the index number.
1271 @end table
1273 @node Cycles
1274 @subsection How Mutually Recursive Functions Are Described
1275 @cindex cycle
1276 @cindex recursion cycle
1278 The graph may be complicated by the presence of @dfn{cycles of
1279 recursion} in the call graph.  A cycle exists if a function calls
1280 another function that (directly or indirectly) calls (or appears to
1281 call) the original function.  For example: if @code{a} calls @code{b},
1282 and @code{b} calls @code{a}, then @code{a} and @code{b} form a cycle.
1284 Whenever there are call paths both ways between a pair of functions, they
1285 belong to the same cycle.  If @code{a} and @code{b} call each other and
1286 @code{b} and @code{c} call each other, all three make one cycle.  Note that
1287 even if @code{b} only calls @code{a} if it was not called from @code{a},
1288 @code{gprof} cannot determine this, so @code{a} and @code{b} are still
1289 considered a cycle.
1291 The cycles are numbered with consecutive integers.  When a function
1292 belongs to a cycle, each time the function name appears in the call graph
1293 it is followed by @samp{<cycle @var{number}>}.
1295 The reason cycles matter is that they make the time values in the call
1296 graph paradoxical.  The ``time spent in children'' of @code{a} should
1297 include the time spent in its subroutine @code{b} and in @code{b}'s
1298 subroutines---but one of @code{b}'s subroutines is @code{a}!  How much of
1299 @code{a}'s time should be included in the children of @code{a}, when
1300 @code{a} is indirectly recursive?
1302 The way @code{gprof} resolves this paradox is by creating a single entry
1303 for the cycle as a whole.  The primary line of this entry describes the
1304 total time spent directly in the functions of the cycle.  The
1305 ``subroutines'' of the cycle are the individual functions of the cycle, and
1306 all other functions that were called directly by them.  The ``callers'' of
1307 the cycle are the functions, outside the cycle, that called functions in
1308 the cycle.
1310 Here is an example portion of a call graph which shows a cycle containing
1311 functions @code{a} and @code{b}.  The cycle was entered by a call to
1312 @code{a} from @code{main}; both @code{a} and @code{b} called @code{c}.
1314 @smallexample
1315 index  % time    self  children called     name
1316 ----------------------------------------
1317                  1.77        0    1/1        main [2]
1318 [3]     91.71    1.77        0    1+5    <cycle 1 as a whole> [3]
1319                  1.02        0    3          b <cycle 1> [4]
1320                  0.75        0    2          a <cycle 1> [5]
1321 ----------------------------------------
1322                                   3          a <cycle 1> [5]
1323 [4]     52.85    1.02        0    0      b <cycle 1> [4]
1324                                   2          a <cycle 1> [5]
1325                     0        0    3/6        c [6]
1326 ----------------------------------------
1327                  1.77        0    1/1        main [2]
1328                                   2          b <cycle 1> [4]
1329 [5]     38.86    0.75        0    1      a <cycle 1> [5]
1330                                   3          b <cycle 1> [4]
1331                     0        0    3/6        c [6]
1332 ----------------------------------------
1333 @end smallexample
1335 @noindent
1336 (The entire call graph for this program contains in addition an entry for
1337 @code{main}, which calls @code{a}, and an entry for @code{c}, with callers
1338 @code{a} and @code{b}.)
1340 @smallexample
1341 index  % time    self  children called     name
1342                                              <spontaneous>
1343 [1]    100.00       0     1.93    0      start [1]
1344                  0.16     1.77    1/1        main [2]
1345 ----------------------------------------
1346                  0.16     1.77    1/1        start [1]
1347 [2]    100.00    0.16     1.77    1      main [2]
1348                  1.77        0    1/1        a <cycle 1> [5]
1349 ----------------------------------------
1350                  1.77        0    1/1        main [2]
1351 [3]     91.71    1.77        0    1+5    <cycle 1 as a whole> [3]
1352                  1.02        0    3          b <cycle 1> [4]
1353                  0.75        0    2          a <cycle 1> [5]
1354                     0        0    6/6        c [6]
1355 ----------------------------------------
1356                                   3          a <cycle 1> [5]
1357 [4]     52.85    1.02        0    0      b <cycle 1> [4]
1358                                   2          a <cycle 1> [5]
1359                     0        0    3/6        c [6]
1360 ----------------------------------------
1361                  1.77        0    1/1        main [2]
1362                                   2          b <cycle 1> [4]
1363 [5]     38.86    0.75        0    1      a <cycle 1> [5]
1364                                   3          b <cycle 1> [4]
1365                     0        0    3/6        c [6]
1366 ----------------------------------------
1367                     0        0    3/6        b <cycle 1> [4]
1368                     0        0    3/6        a <cycle 1> [5]
1369 [6]      0.00       0        0    6      c [6]
1370 ----------------------------------------
1371 @end smallexample
1373 The @code{self} field of the cycle's primary line is the total time
1374 spent in all the functions of the cycle.  It equals the sum of the
1375 @code{self} fields for the individual functions in the cycle, found
1376 in the entry in the subroutine lines for these functions.
1378 The @code{children} fields of the cycle's primary line and subroutine lines
1379 count only subroutines outside the cycle.  Even though @code{a} calls
1380 @code{b}, the time spent in those calls to @code{b} is not counted in
1381 @code{a}'s @code{children} time.  Thus, we do not encounter the problem of
1382 what to do when the time in those calls to @code{b} includes indirect
1383 recursive calls back to @code{a}.
1385 The @code{children} field of a caller-line in the cycle's entry estimates
1386 the amount of time spent @emph{in the whole cycle}, and its other
1387 subroutines, on the times when that caller called a function in the cycle.
1389 The @code{called} field in the primary line for the cycle has two numbers:
1390 first, the number of times functions in the cycle were called by functions
1391 outside the cycle; second, the number of times they were called by
1392 functions in the cycle (including times when a function in the cycle calls
1393 itself).  This is a generalization of the usual split into non-recursive and
1394 recursive calls.
1396 The @code{called} field of a subroutine-line for a cycle member in the
1397 cycle's entry says how many time that function was called from functions in
1398 the cycle.  The total of all these is the second number in the primary line's
1399 @code{called} field.
1401 In the individual entry for a function in a cycle, the other functions in
1402 the same cycle can appear as subroutines and as callers.  These lines show
1403 how many times each function in the cycle called or was called from each other
1404 function in the cycle.  The @code{self} and @code{children} fields in these
1405 lines are blank because of the difficulty of defining meanings for them
1406 when recursion is going on.
1408 @node Line-by-line
1409 @section Line-by-line Profiling
1411 @code{gprof}'s @samp{-l} option causes the program to perform
1412 @dfn{line-by-line} profiling.  In this mode, histogram
1413 samples are assigned not to functions, but to individual
1414 lines of source code.  This only works with programs compiled with
1415 older versions of the @code{gcc} compiler.  Newer versions of @code{gcc}
1416 use a different program - @code{gcov} - to display line-by-line
1417 profiling information.
1419 With the older versions of @code{gcc} the program usually has to be
1420 compiled with a @samp{-g} option, in addition to @samp{-pg}, in order
1421 to generate debugging symbols for tracking source code lines.
1422 Note, in much older versions of @code{gcc} the program had to be
1423 compiled with the @samp{-a} command line option as well.
1425 The flat profile is the most useful output table
1426 in line-by-line mode.
1427 The call graph isn't as useful as normal, since
1428 the current version of @code{gprof} does not propagate
1429 call graph arcs from source code lines to the enclosing function.
1430 The call graph does, however, show each line of code
1431 that called each function, along with a count.
1433 Here is a section of @code{gprof}'s output, without line-by-line profiling.
1434 Note that @code{ct_init} accounted for four histogram hits, and
1435 13327 calls to @code{init_block}.
1437 @smallexample
1438 Flat profile:
1440 Each sample counts as 0.01 seconds.
1441   %   cumulative   self              self     total           
1442  time   seconds   seconds    calls  us/call  us/call  name    
1443  30.77      0.13     0.04     6335     6.31     6.31  ct_init
1446                      Call graph (explanation follows)
1449 granularity: each sample hit covers 4 byte(s) for 7.69% of 0.13 seconds
1451 index % time    self  children    called     name
1453                 0.00    0.00       1/13496       name_too_long
1454                 0.00    0.00      40/13496       deflate
1455                 0.00    0.00     128/13496       deflate_fast
1456                 0.00    0.00   13327/13496       ct_init
1457 [7]      0.0    0.00    0.00   13496         init_block
1459 @end smallexample
1461 Now let's look at some of @code{gprof}'s output from the same program run,
1462 this time with line-by-line profiling enabled.  Note that @code{ct_init}'s
1463 four histogram hits are broken down into four lines of source code---one hit
1464 occurred on each of lines 349, 351, 382 and 385.  In the call graph,
1465 note how
1466 @code{ct_init}'s 13327 calls to @code{init_block} are broken down
1467 into one call from line 396, 3071 calls from line 384, 3730 calls
1468 from line 385, and 6525 calls from 387.
1470 @smallexample
1471 Flat profile:
1473 Each sample counts as 0.01 seconds.
1474   %   cumulative   self                    
1475  time   seconds   seconds    calls  name    
1476   7.69      0.10     0.01           ct_init (trees.c:349)
1477   7.69      0.11     0.01           ct_init (trees.c:351)
1478   7.69      0.12     0.01           ct_init (trees.c:382)
1479   7.69      0.13     0.01           ct_init (trees.c:385)
1482                      Call graph (explanation follows)
1485 granularity: each sample hit covers 4 byte(s) for 7.69% of 0.13 seconds
1487   % time    self  children    called     name
1489             0.00    0.00       1/13496       name_too_long (gzip.c:1440)
1490             0.00    0.00       1/13496       deflate (deflate.c:763)
1491             0.00    0.00       1/13496       ct_init (trees.c:396)
1492             0.00    0.00       2/13496       deflate (deflate.c:727)
1493             0.00    0.00       4/13496       deflate (deflate.c:686)
1494             0.00    0.00       5/13496       deflate (deflate.c:675)
1495             0.00    0.00      12/13496       deflate (deflate.c:679)
1496             0.00    0.00      16/13496       deflate (deflate.c:730)
1497             0.00    0.00     128/13496       deflate_fast (deflate.c:654)
1498             0.00    0.00    3071/13496       ct_init (trees.c:384)
1499             0.00    0.00    3730/13496       ct_init (trees.c:385)
1500             0.00    0.00    6525/13496       ct_init (trees.c:387)
1501 [6]  0.0    0.00    0.00   13496         init_block (trees.c:408)
1503 @end smallexample
1506 @node Annotated Source
1507 @section The Annotated Source Listing
1509 @code{gprof}'s @samp{-A} option triggers an annotated source listing,
1510 which lists the program's source code, each function labeled with the
1511 number of times it was called.  You may also need to specify the
1512 @samp{-I} option, if @code{gprof} can't find the source code files.
1514 With older versions of @code{gcc} compiling with @samp{gcc @dots{} -g
1515 -pg -a} augments your program with basic-block counting code, in
1516 addition to function counting code.  This enables @code{gprof} to
1517 determine how many times each line of code was executed.  With newer
1518 versions of @code{gcc} support for displaying basic-block counts is
1519 provided by the @code{gcov} program.
1521 For example, consider the following function, taken from gzip,
1522 with line numbers added:
1524 @smallexample
1525  1 ulg updcrc(s, n)
1526  2     uch *s;
1527  3     unsigned n;
1528  4 @{
1529  5     register ulg c;
1531  7     static ulg crc = (ulg)0xffffffffL;
1533  9     if (s == NULL) @{
1534 10         c = 0xffffffffL;
1535 11     @} else @{
1536 12         c = crc;
1537 13         if (n) do @{
1538 14             c = crc_32_tab[...];
1539 15         @} while (--n);
1540 16     @}
1541 17     crc = c;
1542 18     return c ^ 0xffffffffL;
1543 19 @}
1545 @end smallexample
1547 @code{updcrc} has at least five basic-blocks.
1548 One is the function itself.  The
1549 @code{if} statement on line 9 generates two more basic-blocks, one
1550 for each branch of the @code{if}.  A fourth basic-block results from
1551 the @code{if} on line 13, and the contents of the @code{do} loop form
1552 the fifth basic-block.  The compiler may also generate additional
1553 basic-blocks to handle various special cases.
1555 A program augmented for basic-block counting can be analyzed with
1556 @samp{gprof -l -A}.
1557 The @samp{-x} option is also helpful,
1558 to ensure that each line of code is labeled at least once.
1559 Here is @code{updcrc}'s
1560 annotated source listing for a sample @code{gzip} run:
1562 @smallexample
1563                 ulg updcrc(s, n)
1564                     uch *s;
1565                     unsigned n;
1566             2 ->@{
1567                     register ulg c;
1568                 
1569                     static ulg crc = (ulg)0xffffffffL;
1570                 
1571             2 ->    if (s == NULL) @{
1572             1 ->        c = 0xffffffffL;
1573             1 ->    @} else @{
1574             1 ->        c = crc;
1575             1 ->        if (n) do @{
1576         26312 ->            c = crc_32_tab[...];
1577 26312,1,26311 ->        @} while (--n);
1578                     @}
1579             2 ->    crc = c;
1580             2 ->    return c ^ 0xffffffffL;
1581             2 ->@}
1582 @end smallexample
1584 In this example, the function was called twice, passing once through
1585 each branch of the @code{if} statement.  The body of the @code{do}
1586 loop was executed a total of 26312 times.  Note how the @code{while}
1587 statement is annotated.  It began execution 26312 times, once for
1588 each iteration through the loop.  One of those times (the last time)
1589 it exited, while it branched back to the beginning of the loop 26311 times.
1591 @node Inaccuracy
1592 @chapter Inaccuracy of @code{gprof} Output
1594 @menu
1595 * Sampling Error::      Statistical margins of error
1596 * Assumptions::         Estimating children times
1597 @end menu
1599 @node Sampling Error
1600 @section Statistical Sampling Error
1602 The run-time figures that @code{gprof} gives you are based on a sampling
1603 process, so they are subject to statistical inaccuracy.  If a function runs
1604 only a small amount of time, so that on the average the sampling process
1605 ought to catch that function in the act only once, there is a pretty good
1606 chance it will actually find that function zero times, or twice.
1608 By contrast, the number-of-calls and basic-block figures
1609 are derived by counting, not
1610 sampling.  They are completely accurate and will not vary from run to run
1611 if your program is deterministic.
1613 The @dfn{sampling period} that is printed at the beginning of the flat
1614 profile says how often samples are taken.  The rule of thumb is that a
1615 run-time figure is accurate if it is considerably bigger than the sampling
1616 period.
1618 The actual amount of error can be predicted.
1619 For @var{n} samples, the @emph{expected} error
1620 is the square-root of @var{n}.  For example,
1621 if the sampling period is 0.01 seconds and @code{foo}'s run-time is 1 second,
1622 @var{n} is 100 samples (1 second/0.01 seconds), sqrt(@var{n}) is 10 samples, so
1623 the expected error in @code{foo}'s run-time is 0.1 seconds (10*0.01 seconds),
1624 or ten percent of the observed value.
1625 Again, if the sampling period is 0.01 seconds and @code{bar}'s run-time is
1626 100 seconds, @var{n} is 10000 samples, sqrt(@var{n}) is 100 samples, so
1627 the expected error in @code{bar}'s run-time is 1 second,
1628 or one percent of the observed value.
1629 It is likely to
1630 vary this much @emph{on the average} from one profiling run to the next.
1631 (@emph{Sometimes} it will vary more.)
1633 This does not mean that a small run-time figure is devoid of information.
1634 If the program's @emph{total} run-time is large, a small run-time for one
1635 function does tell you that that function used an insignificant fraction of
1636 the whole program's time.  Usually this means it is not worth optimizing.
1638 One way to get more accuracy is to give your program more (but similar)
1639 input data so it will take longer.  Another way is to combine the data from
1640 several runs, using the @samp{-s} option of @code{gprof}.  Here is how:
1642 @enumerate
1643 @item
1644 Run your program once.
1646 @item
1647 Issue the command @samp{mv gmon.out gmon.sum}.
1649 @item
1650 Run your program again, the same as before.
1652 @item
1653 Merge the new data in @file{gmon.out} into @file{gmon.sum} with this command:
1655 @example
1656 gprof -s @var{executable-file} gmon.out gmon.sum
1657 @end example
1659 @item
1660 Repeat the last two steps as often as you wish.
1662 @item
1663 Analyze the cumulative data using this command:
1665 @example
1666 gprof @var{executable-file} gmon.sum > @var{output-file}
1667 @end example
1668 @end enumerate
1670 @node Assumptions
1671 @section Estimating @code{children} Times
1673 Some of the figures in the call graph are estimates---for example, the
1674 @code{children} time values and all the time figures in caller and
1675 subroutine lines.
1677 There is no direct information about these measurements in the profile
1678 data itself.  Instead, @code{gprof} estimates them by making an assumption
1679 about your program that might or might not be true.
1681 The assumption made is that the average time spent in each call to any
1682 function @code{foo} is not correlated with who called @code{foo}.  If
1683 @code{foo} used 5 seconds in all, and 2/5 of the calls to @code{foo} came
1684 from @code{a}, then @code{foo} contributes 2 seconds to @code{a}'s
1685 @code{children} time, by assumption.
1687 This assumption is usually true enough, but for some programs it is far
1688 from true.  Suppose that @code{foo} returns very quickly when its argument
1689 is zero; suppose that @code{a} always passes zero as an argument, while
1690 other callers of @code{foo} pass other arguments.  In this program, all the
1691 time spent in @code{foo} is in the calls from callers other than @code{a}.
1692 But @code{gprof} has no way of knowing this; it will blindly and
1693 incorrectly charge 2 seconds of time in @code{foo} to the children of
1694 @code{a}.
1696 @c FIXME - has this been fixed?
1697 We hope some day to put more complete data into @file{gmon.out}, so that
1698 this assumption is no longer needed, if we can figure out how.  For the
1699 novice, the estimated figures are usually more useful than misleading.
1701 @node How do I?
1702 @chapter Answers to Common Questions
1704 @table @asis
1705 @item How can I get more exact information about hot spots in my program?
1707 Looking at the per-line call counts only tells part of the story.
1708 Because @code{gprof} can only report call times and counts by function,
1709 the best way to get finer-grained information on where the program
1710 is spending its time is to re-factor large functions into sequences
1711 of calls to smaller ones.  Beware however that this can introduce
1712 artificial hot spots since compiling with @samp{-pg} adds a significant
1713 overhead to function calls.  An alternative solution is to use a
1714 non-intrusive profiler, e.g.@: oprofile.
1716 @item How do I find which lines in my program were executed the most times?
1718 Use the @code{gcov} program.
1720 @item How do I find which lines in my program called a particular function?
1722 Use @samp{gprof -l} and lookup the function in the call graph.
1723 The callers will be broken down by function and line number.
1725 @item How do I analyze a program that runs for less than a second?
1727 Try using a shell script like this one:
1729 @example
1730 for i in `seq 1 100`; do
1731   fastprog
1732   mv gmon.out gmon.out.$i
1733 done
1735 gprof -s fastprog gmon.out.*
1737 gprof fastprog gmon.sum
1738 @end example
1740 If your program is completely deterministic, all the call counts
1741 will be simple multiples of 100 (i.e., a function called once in
1742 each run will appear with a call count of 100).
1744 @end table
1746 @node Incompatibilities
1747 @chapter Incompatibilities with Unix @code{gprof}
1749 @sc{gnu} @code{gprof} and Berkeley Unix @code{gprof} use the same data
1750 file @file{gmon.out}, and provide essentially the same information.  But
1751 there are a few differences.
1753 @itemize @bullet
1754 @item
1755 @sc{gnu} @code{gprof} uses a new, generalized file format with support
1756 for basic-block execution counts and non-realtime histograms.  A magic
1757 cookie and version number allows @code{gprof} to easily identify
1758 new style files.  Old BSD-style files can still be read.
1759 @xref{File Format, ,Profiling Data File Format}.
1761 @item
1762 For a recursive function, Unix @code{gprof} lists the function as a
1763 parent and as a child, with a @code{calls} field that lists the number
1764 of recursive calls.  @sc{gnu} @code{gprof} omits these lines and puts
1765 the number of recursive calls in the primary line.
1767 @item
1768 When a function is suppressed from the call graph with @samp{-e}, @sc{gnu}
1769 @code{gprof} still lists it as a subroutine of functions that call it.
1771 @item
1772 @sc{gnu} @code{gprof} accepts the @samp{-k} with its argument
1773 in the form @samp{from/to}, instead of @samp{from to}.
1775 @item
1776 In the annotated source listing,
1777 if there are multiple basic blocks on the same line,
1778 @sc{gnu} @code{gprof} prints all of their counts, separated by commas.
1780 @ignore - it does this now
1781 @item
1782 The function names printed in @sc{gnu} @code{gprof} output do not include
1783 the leading underscores that are added internally to the front of all
1784 C identifiers on many operating systems.
1785 @end ignore
1787 @item
1788 The blurbs, field widths, and output formats are different.  @sc{gnu}
1789 @code{gprof} prints blurbs after the tables, so that you can see the
1790 tables without skipping the blurbs.
1791 @end itemize
1793 @node Details
1794 @chapter Details of Profiling
1796 @menu
1797 * Implementation::      How a program collects profiling information
1798 * File Format::         Format of @samp{gmon.out} files
1799 * Internals::           @code{gprof}'s internal operation
1800 * Debugging::           Using @code{gprof}'s @samp{-d} option
1801 @end menu
1803 @node Implementation
1804 @section Implementation of Profiling
1806 Profiling works by changing how every function in your program is compiled
1807 so that when it is called, it will stash away some information about where
1808 it was called from.  From this, the profiler can figure out what function
1809 called it, and can count how many times it was called.  This change is made
1810 by the compiler when your program is compiled with the @samp{-pg} option,
1811 which causes every function to call @code{mcount}
1812 (or @code{_mcount}, or @code{__mcount}, depending on the OS and compiler)
1813 as one of its first operations.
1815 The @code{mcount} routine, included in the profiling library,
1816 is responsible for recording in an in-memory call graph table
1817 both its parent routine (the child) and its parent's parent.  This is
1818 typically done by examining the stack frame to find both
1819 the address of the child, and the return address in the original parent.
1820 Since this is a very machine-dependent operation, @code{mcount}
1821 itself is typically a short assembly-language stub routine
1822 that extracts the required
1823 information, and then calls @code{__mcount_internal}
1824 (a normal C function) with two arguments---@code{frompc} and @code{selfpc}.
1825 @code{__mcount_internal} is responsible for maintaining
1826 the in-memory call graph, which records @code{frompc}, @code{selfpc},
1827 and the number of times each of these call arcs was traversed.
1829 GCC Version 2 provides a magical function (@code{__builtin_return_address}),
1830 which allows a generic @code{mcount} function to extract the
1831 required information from the stack frame.  However, on some
1832 architectures, most notably the SPARC, using this builtin can be
1833 very computationally expensive, and an assembly language version
1834 of @code{mcount} is used for performance reasons.
1836 Number-of-calls information for library routines is collected by using a
1837 special version of the C library.  The programs in it are the same as in
1838 the usual C library, but they were compiled with @samp{-pg}.  If you
1839 link your program with @samp{gcc @dots{} -pg}, it automatically uses the
1840 profiling version of the library.
1842 Profiling also involves watching your program as it runs, and keeping a
1843 histogram of where the program counter happens to be every now and then.
1844 Typically the program counter is looked at around 100 times per second of
1845 run time, but the exact frequency may vary from system to system.
1847 This is done is one of two ways.  Most UNIX-like operating systems
1848 provide a @code{profil()} system call, which registers a memory
1849 array with the kernel, along with a scale
1850 factor that determines how the program's address space maps
1851 into the array.
1852 Typical scaling values cause every 2 to 8 bytes of address space
1853 to map into a single array slot.
1854 On every tick of the system clock
1855 (assuming the profiled program is running), the value of the
1856 program counter is examined and the corresponding slot in
1857 the memory array is incremented.  Since this is done in the kernel,
1858 which had to interrupt the process anyway to handle the clock
1859 interrupt, very little additional system overhead is required.
1861 However, some operating systems, most notably Linux 2.0 (and earlier),
1862 do not provide a @code{profil()} system call.  On such a system,
1863 arrangements are made for the kernel to periodically deliver
1864 a signal to the process (typically via @code{setitimer()}),
1865 which then performs the same operation of examining the
1866 program counter and incrementing a slot in the memory array.
1867 Since this method requires a signal to be delivered to
1868 user space every time a sample is taken, it uses considerably
1869 more overhead than kernel-based profiling.  Also, due to the
1870 added delay required to deliver the signal, this method is
1871 less accurate as well.
1873 A special startup routine allocates memory for the histogram and 
1874 either calls @code{profil()} or sets up
1875 a clock signal handler.
1876 This routine (@code{monstartup}) can be invoked in several ways.
1877 On Linux systems, a special profiling startup file @code{gcrt0.o},
1878 which invokes @code{monstartup} before @code{main},
1879 is used instead of the default @code{crt0.o}.
1880 Use of this special startup file is one of the effects
1881 of using @samp{gcc @dots{} -pg} to link.
1882 On SPARC systems, no special startup files are used.
1883 Rather, the @code{mcount} routine, when it is invoked for
1884 the first time (typically when @code{main} is called),
1885 calls @code{monstartup}.
1887 If the compiler's @samp{-a} option was used, basic-block counting
1888 is also enabled.  Each object file is then compiled with a static array
1889 of counts, initially zero.
1890 In the executable code, every time a new basic-block begins
1891 (i.e., when an @code{if} statement appears), an extra instruction
1892 is inserted to increment the corresponding count in the array.
1893 At compile time, a paired array was constructed that recorded
1894 the starting address of each basic-block.  Taken together,
1895 the two arrays record the starting address of every basic-block,
1896 along with the number of times it was executed.
1898 The profiling library also includes a function (@code{mcleanup}) which is
1899 typically registered using @code{atexit()} to be called as the
1900 program exits, and is responsible for writing the file @file{gmon.out}.
1901 Profiling is turned off, various headers are output, and the histogram
1902 is written, followed by the call-graph arcs and the basic-block counts.
1904 The output from @code{gprof} gives no indication of parts of your program that
1905 are limited by I/O or swapping bandwidth.  This is because samples of the
1906 program counter are taken at fixed intervals of the program's run time.
1907 Therefore, the
1908 time measurements in @code{gprof} output say nothing about time that your
1909 program was not running.  For example, a part of the program that creates
1910 so much data that it cannot all fit in physical memory at once may run very
1911 slowly due to thrashing, but @code{gprof} will say it uses little time.  On
1912 the other hand, sampling by run time has the advantage that the amount of
1913 load due to other users won't directly affect the output you get.
1915 @node File Format
1916 @section Profiling Data File Format
1918 The old BSD-derived file format used for profile data does not contain a
1919 magic cookie that allows to check whether a data file really is a
1920 @code{gprof} file.  Furthermore, it does not provide a version number, thus
1921 rendering changes to the file format almost impossible.  @sc{gnu} @code{gprof}
1922 uses a new file format that provides these features.  For backward
1923 compatibility, @sc{gnu} @code{gprof} continues to support the old BSD-derived
1924 format, but not all features are supported with it.  For example,
1925 basic-block execution counts cannot be accommodated by the old file
1926 format.
1928 The new file format is defined in header file @file{gmon_out.h}.  It
1929 consists of a header containing the magic cookie and a version number,
1930 as well as some spare bytes available for future extensions.  All data
1931 in a profile data file is in the native format of the target for which
1932 the profile was collected.  @sc{gnu} @code{gprof} adapts automatically
1933 to the byte-order in use.
1935 In the new file format, the header is followed by a sequence of
1936 records.  Currently, there are three different record types: histogram
1937 records, call-graph arc records, and basic-block execution count
1938 records.  Each file can contain any number of each record type.  When
1939 reading a file, @sc{gnu} @code{gprof} will ensure records of the same type are
1940 compatible with each other and compute the union of all records.  For
1941 example, for basic-block execution counts, the union is simply the sum
1942 of all execution counts for each basic-block.
1944 @subsection Histogram Records
1946 Histogram records consist of a header that is followed by an array of
1947 bins.  The header contains the text-segment range that the histogram
1948 spans, the size of the histogram in bytes (unlike in the old BSD
1949 format, this does not include the size of the header), the rate of the
1950 profiling clock, and the physical dimension that the bin counts
1951 represent after being scaled by the profiling clock rate.  The
1952 physical dimension is specified in two parts: a long name of up to 15
1953 characters and a single character abbreviation.  For example, a
1954 histogram representing real-time would specify the long name as
1955 ``seconds'' and the abbreviation as ``s''.  This feature is useful for
1956 architectures that support performance monitor hardware (which,
1957 fortunately, is becoming increasingly common).  For example, under DEC
1958 OSF/1, the ``uprofile'' command can be used to produce a histogram of,
1959 say, instruction cache misses.  In this case, the dimension in the
1960 histogram header could be set to ``i-cache misses'' and the abbreviation
1961 could be set to ``1'' (because it is simply a count, not a physical
1962 dimension).  Also, the profiling rate would have to be set to 1 in
1963 this case.
1965 Histogram bins are 16-bit numbers and each bin represent an equal
1966 amount of text-space.  For example, if the text-segment is one
1967 thousand bytes long and if there are ten bins in the histogram, each
1968 bin represents one hundred bytes.
1971 @subsection Call-Graph Records
1973 Call-graph records have a format that is identical to the one used in
1974 the BSD-derived file format.  It consists of an arc in the call graph
1975 and a count indicating the number of times the arc was traversed
1976 during program execution.  Arcs are specified by a pair of addresses:
1977 the first must be within caller's function and the second must be
1978 within the callee's function.  When performing profiling at the
1979 function level, these addresses can point anywhere within the
1980 respective function.  However, when profiling at the line-level, it is
1981 better if the addresses are as close to the call-site/entry-point as
1982 possible.  This will ensure that the line-level call-graph is able to
1983 identify exactly which line of source code performed calls to a
1984 function.
1986 @subsection Basic-Block Execution Count Records
1988 Basic-block execution count records consist of a header followed by a
1989 sequence of address/count pairs.  The header simply specifies the
1990 length of the sequence.  In an address/count pair, the address
1991 identifies a basic-block and the count specifies the number of times
1992 that basic-block was executed.  Any address within the basic-address can
1993 be used.
1995 @node Internals
1996 @section @code{gprof}'s Internal Operation
1998 Like most programs, @code{gprof} begins by processing its options.
1999 During this stage, it may building its symspec list
2000 (@code{sym_ids.c:@-sym_id_add}), if
2001 options are specified which use symspecs.
2002 @code{gprof} maintains a single linked list of symspecs,
2003 which will eventually get turned into 12 symbol tables,
2004 organized into six include/exclude pairs---one
2005 pair each for the flat profile (INCL_FLAT/EXCL_FLAT),
2006 the call graph arcs (INCL_ARCS/EXCL_ARCS),
2007 printing in the call graph (INCL_GRAPH/EXCL_GRAPH),
2008 timing propagation in the call graph (INCL_TIME/EXCL_TIME),
2009 the annotated source listing (INCL_ANNO/EXCL_ANNO),
2010 and the execution count listing (INCL_EXEC/EXCL_EXEC).
2012 After option processing, @code{gprof} finishes
2013 building the symspec list by adding all the symspecs in
2014 @code{default_excluded_list} to the exclude lists
2015 EXCL_TIME and EXCL_GRAPH, and if line-by-line profiling is specified,
2016 EXCL_FLAT as well.
2017 These default excludes are not added to EXCL_ANNO, EXCL_ARCS, and EXCL_EXEC.
2019 Next, the BFD library is called to open the object file,
2020 verify that it is an object file,
2021 and read its symbol table (@code{core.c:@-core_init}),
2022 using @code{bfd_canonicalize_symtab} after mallocing
2023 an appropriately sized array of symbols.  At this point,
2024 function mappings are read (if the @samp{--file-ordering} option
2025 has been specified), and the core text space is read into
2026 memory (if the @samp{-c} option was given).
2028 @code{gprof}'s own symbol table, an array of Sym structures,
2029 is now built.
2030 This is done in one of two ways, by one of two routines, depending
2031 on whether line-by-line profiling (@samp{-l} option) has been
2032 enabled.
2033 For normal profiling, the BFD canonical symbol table is scanned.
2034 For line-by-line profiling, every
2035 text space address is examined, and a new symbol table entry
2036 gets created every time the line number changes.
2037 In either case, two passes are made through the symbol
2038 table---one to count the size of the symbol table required,
2039 and the other to actually read the symbols.  In between the
2040 two passes, a single array of type @code{Sym} is created of
2041 the appropriate length.
2042 Finally, @code{symtab.c:@-symtab_finalize}
2043 is called to sort the symbol table and remove duplicate entries
2044 (entries with the same memory address).
2046 The symbol table must be a contiguous array for two reasons.
2047 First, the @code{qsort} library function (which sorts an array)
2048 will be used to sort the symbol table.
2049 Also, the symbol lookup routine (@code{symtab.c:@-sym_lookup}),
2050 which finds symbols
2051 based on memory address, uses a binary search algorithm
2052 which requires the symbol table to be a sorted array.
2053 Function symbols are indicated with an @code{is_func} flag.
2054 Line number symbols have no special flags set.
2055 Additionally, a symbol can have an @code{is_static} flag
2056 to indicate that it is a local symbol.
2058 With the symbol table read, the symspecs can now be translated
2059 into Syms (@code{sym_ids.c:@-sym_id_parse}).  Remember that a single
2060 symspec can match multiple symbols.
2061 An array of symbol tables
2062 (@code{syms}) is created, each entry of which is a symbol table
2063 of Syms to be included or excluded from a particular listing.
2064 The master symbol table and the symspecs are examined by nested
2065 loops, and every symbol that matches a symspec is inserted
2066 into the appropriate syms table.  This is done twice, once to
2067 count the size of each required symbol table, and again to build
2068 the tables, which have been malloced between passes.
2069 From now on, to determine whether a symbol is on an include
2070 or exclude symspec list, @code{gprof} simply uses its
2071 standard symbol lookup routine on the appropriate table
2072 in the @code{syms} array.
2074 Now the profile data file(s) themselves are read
2075 (@code{gmon_io.c:@-gmon_out_read}),
2076 first by checking for a new-style @samp{gmon.out} header,
2077 then assuming this is an old-style BSD @samp{gmon.out}
2078 if the magic number test failed.
2080 New-style histogram records are read by @code{hist.c:@-hist_read_rec}.
2081 For the first histogram record, allocate a memory array to hold
2082 all the bins, and read them in.
2083 When multiple profile data files (or files with multiple histogram
2084 records) are read, the memory ranges of each pair of histogram records
2085 must be either equal, or non-overlapping.  For each pair of histogram
2086 records, the resolution (memory region size divided by the number of
2087 bins) must be the same.  The time unit must be the same for all 
2088 histogram records. If the above containts are met, all histograms
2089 for the same memory range are merged.
2091 As each call graph record is read (@code{call_graph.c:@-cg_read_rec}),
2092 the parent and child addresses
2093 are matched to symbol table entries, and a call graph arc is
2094 created by @code{cg_arcs.c:@-arc_add}, unless the arc fails a symspec
2095 check against INCL_ARCS/EXCL_ARCS.  As each arc is added,
2096 a linked list is maintained of the parent's child arcs, and of the child's
2097 parent arcs.
2098 Both the child's call count and the arc's call count are
2099 incremented by the record's call count.
2101 Basic-block records are read (@code{basic_blocks.c:@-bb_read_rec}),
2102 but only if line-by-line profiling has been selected.
2103 Each basic-block address is matched to a corresponding line
2104 symbol in the symbol table, and an entry made in the symbol's
2105 bb_addr and bb_calls arrays.  Again, if multiple basic-block
2106 records are present for the same address, the call counts
2107 are cumulative.
2109 A gmon.sum file is dumped, if requested (@code{gmon_io.c:@-gmon_out_write}).
2111 If histograms were present in the data files, assign them to symbols
2112 (@code{hist.c:@-hist_assign_samples}) by iterating over all the sample
2113 bins and assigning them to symbols.  Since the symbol table
2114 is sorted in order of ascending memory addresses, we can
2115 simple follow along in the symbol table as we make our pass
2116 over the sample bins.
2117 This step includes a symspec check against INCL_FLAT/EXCL_FLAT.
2118 Depending on the histogram
2119 scale factor, a sample bin may span multiple symbols,
2120 in which case a fraction of the sample count is allocated
2121 to each symbol, proportional to the degree of overlap.
2122 This effect is rare for normal profiling, but overlaps
2123 are more common during line-by-line profiling, and can
2124 cause each of two adjacent lines to be credited with half
2125 a hit, for example.
2127 If call graph data is present, @code{cg_arcs.c:@-cg_assemble} is called.
2128 First, if @samp{-c} was specified, a machine-dependent
2129 routine (@code{find_call}) scans through each symbol's machine code,
2130 looking for subroutine call instructions, and adding them
2131 to the call graph with a zero call count.
2132 A topological sort is performed by depth-first numbering
2133 all the symbols (@code{cg_dfn.c:@-cg_dfn}), so that
2134 children are always numbered less than their parents,
2135 then making a array of pointers into the symbol table and sorting it into
2136 numerical order, which is reverse topological
2137 order (children appear before parents).
2138 Cycles are also detected at this point, all members
2139 of which are assigned the same topological number.
2140 Two passes are now made through this sorted array of symbol pointers.
2141 The first pass, from end to beginning (parents to children),
2142 computes the fraction of child time to propagate to each parent
2143 and a print flag.
2144 The print flag reflects symspec handling of INCL_GRAPH/EXCL_GRAPH,
2145 with a parent's include or exclude (print or no print) property
2146 being propagated to its children, unless they themselves explicitly appear
2147 in INCL_GRAPH or EXCL_GRAPH.
2148 A second pass, from beginning to end (children to parents) actually
2149 propagates the timings along the call graph, subject
2150 to a check against INCL_TIME/EXCL_TIME.
2151 With the print flag, fractions, and timings now stored in the symbol
2152 structures, the topological sort array is now discarded, and a
2153 new array of pointers is assembled, this time sorted by propagated time.
2155 Finally, print the various outputs the user requested, which is now fairly
2156 straightforward.  The call graph (@code{cg_print.c:@-cg_print}) and
2157 flat profile (@code{hist.c:@-hist_print}) are regurgitations of values
2158 already computed.  The annotated source listing
2159 (@code{basic_blocks.c:@-print_annotated_source}) uses basic-block
2160 information, if present, to label each line of code with call counts,
2161 otherwise only the function call counts are presented.
2163 The function ordering code is marginally well documented
2164 in the source code itself (@code{cg_print.c}).  Basically,
2165 the functions with the most use and the most parents are
2166 placed first, followed by other functions with the most use,
2167 followed by lower use functions, followed by unused functions
2168 at the end.
2170 @node Debugging
2171 @section Debugging @code{gprof}
2173 If @code{gprof} was compiled with debugging enabled,
2174 the @samp{-d} option triggers debugging output
2175 (to stdout) which can be helpful in understanding its operation.
2176 The debugging number specified is interpreted as a sum of the following
2177 options:
2179 @table @asis
2180 @item 2 - Topological sort
2181 Monitor depth-first numbering of symbols during call graph analysis
2182 @item 4 - Cycles
2183 Shows symbols as they are identified as cycle heads
2184 @item 16 - Tallying
2185 As the call graph arcs are read, show each arc and how
2186 the total calls to each function are tallied
2187 @item 32 - Call graph arc sorting
2188 Details sorting individual parents/children within each call graph entry
2189 @item 64 - Reading histogram and call graph records
2190 Shows address ranges of histograms as they are read, and each
2191 call graph arc
2192 @item 128 - Symbol table
2193 Reading, classifying, and sorting the symbol table from the object file.
2194 For line-by-line profiling (@samp{-l} option), also shows line numbers
2195 being assigned to memory addresses.
2196 @item 256 - Static call graph
2197 Trace operation of @samp{-c} option
2198 @item 512 - Symbol table and arc table lookups
2199 Detail operation of lookup routines
2200 @item 1024 - Call graph propagation
2201 Shows how function times are propagated along the call graph
2202 @item 2048 - Basic-blocks
2203 Shows basic-block records as they are read from profile data
2204 (only meaningful with @samp{-l} option)
2205 @item 4096 - Symspecs
2206 Shows symspec-to-symbol pattern matching operation
2207 @item 8192 - Annotate source
2208 Tracks operation of @samp{-A} option
2209 @end table
2211 @node GNU Free Documentation License
2212 @appendix GNU Free Documentation License
2213 @include fdl.texi
2215 @bye
2217 NEEDS AN INDEX
2219 -T - "traditional BSD style": How is it different?  Should the
2220 differences be documented?
2222 example flat file adds up to 100.01%...
2224 note: time estimates now only go out to one decimal place (0.0), where
2225 they used to extend two (78.67).