1 /* 32-bit ELF support for ARM
2 Copyright (C) 1998-2020 Free Software Foundation, Inc.
4 This file is part of BFD, the Binary File Descriptor library.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
25 #include "libiberty.h"
29 #include "elf-vxworks.h"
31 #include "elf32-arm.h"
34 /* Return the relocation section associated with NAME. HTAB is the
35 bfd's elf32_arm_link_hash_entry. */
36 #define RELOC_SECTION(HTAB, NAME) \
37 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
39 /* Return size of a relocation entry. HTAB is the bfd's
40 elf32_arm_link_hash_entry. */
41 #define RELOC_SIZE(HTAB) \
43 ? sizeof (Elf32_External_Rel) \
44 : sizeof (Elf32_External_Rela))
46 /* Return function to swap relocations in. HTAB is the bfd's
47 elf32_arm_link_hash_entry. */
48 #define SWAP_RELOC_IN(HTAB) \
50 ? bfd_elf32_swap_reloc_in \
51 : bfd_elf32_swap_reloca_in)
53 /* Return function to swap relocations out. HTAB is the bfd's
54 elf32_arm_link_hash_entry. */
55 #define SWAP_RELOC_OUT(HTAB) \
57 ? bfd_elf32_swap_reloc_out \
58 : bfd_elf32_swap_reloca_out)
60 #define elf_info_to_howto NULL
61 #define elf_info_to_howto_rel elf32_arm_info_to_howto
63 #define ARM_ELF_ABI_VERSION 0
64 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
66 /* The Adjusted Place, as defined by AAELF. */
67 #define Pa(X) ((X) & 0xfffffffc)
69 static bfd_boolean
elf32_arm_write_section (bfd
*output_bfd
,
70 struct bfd_link_info
*link_info
,
74 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
75 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
78 static reloc_howto_type elf32_arm_howto_table_1
[] =
81 HOWTO (R_ARM_NONE
, /* type */
83 3, /* size (0 = byte, 1 = short, 2 = long) */
85 FALSE
, /* pc_relative */
87 complain_overflow_dont
,/* complain_on_overflow */
88 bfd_elf_generic_reloc
, /* special_function */
89 "R_ARM_NONE", /* name */
90 FALSE
, /* partial_inplace */
93 FALSE
), /* pcrel_offset */
95 HOWTO (R_ARM_PC24
, /* type */
97 2, /* size (0 = byte, 1 = short, 2 = long) */
99 TRUE
, /* pc_relative */
101 complain_overflow_signed
,/* complain_on_overflow */
102 bfd_elf_generic_reloc
, /* special_function */
103 "R_ARM_PC24", /* name */
104 FALSE
, /* partial_inplace */
105 0x00ffffff, /* src_mask */
106 0x00ffffff, /* dst_mask */
107 TRUE
), /* pcrel_offset */
109 /* 32 bit absolute */
110 HOWTO (R_ARM_ABS32
, /* type */
112 2, /* size (0 = byte, 1 = short, 2 = long) */
114 FALSE
, /* pc_relative */
116 complain_overflow_bitfield
,/* complain_on_overflow */
117 bfd_elf_generic_reloc
, /* special_function */
118 "R_ARM_ABS32", /* name */
119 FALSE
, /* partial_inplace */
120 0xffffffff, /* src_mask */
121 0xffffffff, /* dst_mask */
122 FALSE
), /* pcrel_offset */
124 /* standard 32bit pc-relative reloc */
125 HOWTO (R_ARM_REL32
, /* type */
127 2, /* size (0 = byte, 1 = short, 2 = long) */
129 TRUE
, /* pc_relative */
131 complain_overflow_bitfield
,/* complain_on_overflow */
132 bfd_elf_generic_reloc
, /* special_function */
133 "R_ARM_REL32", /* name */
134 FALSE
, /* partial_inplace */
135 0xffffffff, /* src_mask */
136 0xffffffff, /* dst_mask */
137 TRUE
), /* pcrel_offset */
139 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
140 HOWTO (R_ARM_LDR_PC_G0
, /* type */
142 0, /* size (0 = byte, 1 = short, 2 = long) */
144 TRUE
, /* pc_relative */
146 complain_overflow_dont
,/* complain_on_overflow */
147 bfd_elf_generic_reloc
, /* special_function */
148 "R_ARM_LDR_PC_G0", /* name */
149 FALSE
, /* partial_inplace */
150 0xffffffff, /* src_mask */
151 0xffffffff, /* dst_mask */
152 TRUE
), /* pcrel_offset */
154 /* 16 bit absolute */
155 HOWTO (R_ARM_ABS16
, /* type */
157 1, /* size (0 = byte, 1 = short, 2 = long) */
159 FALSE
, /* pc_relative */
161 complain_overflow_bitfield
,/* complain_on_overflow */
162 bfd_elf_generic_reloc
, /* special_function */
163 "R_ARM_ABS16", /* name */
164 FALSE
, /* partial_inplace */
165 0x0000ffff, /* src_mask */
166 0x0000ffff, /* dst_mask */
167 FALSE
), /* pcrel_offset */
169 /* 12 bit absolute */
170 HOWTO (R_ARM_ABS12
, /* type */
172 2, /* size (0 = byte, 1 = short, 2 = long) */
174 FALSE
, /* pc_relative */
176 complain_overflow_bitfield
,/* complain_on_overflow */
177 bfd_elf_generic_reloc
, /* special_function */
178 "R_ARM_ABS12", /* name */
179 FALSE
, /* partial_inplace */
180 0x00000fff, /* src_mask */
181 0x00000fff, /* dst_mask */
182 FALSE
), /* pcrel_offset */
184 HOWTO (R_ARM_THM_ABS5
, /* type */
186 1, /* size (0 = byte, 1 = short, 2 = long) */
188 FALSE
, /* pc_relative */
190 complain_overflow_bitfield
,/* complain_on_overflow */
191 bfd_elf_generic_reloc
, /* special_function */
192 "R_ARM_THM_ABS5", /* name */
193 FALSE
, /* partial_inplace */
194 0x000007e0, /* src_mask */
195 0x000007e0, /* dst_mask */
196 FALSE
), /* pcrel_offset */
199 HOWTO (R_ARM_ABS8
, /* type */
201 0, /* size (0 = byte, 1 = short, 2 = long) */
203 FALSE
, /* pc_relative */
205 complain_overflow_bitfield
,/* complain_on_overflow */
206 bfd_elf_generic_reloc
, /* special_function */
207 "R_ARM_ABS8", /* name */
208 FALSE
, /* partial_inplace */
209 0x000000ff, /* src_mask */
210 0x000000ff, /* dst_mask */
211 FALSE
), /* pcrel_offset */
213 HOWTO (R_ARM_SBREL32
, /* type */
215 2, /* size (0 = byte, 1 = short, 2 = long) */
217 FALSE
, /* pc_relative */
219 complain_overflow_dont
,/* complain_on_overflow */
220 bfd_elf_generic_reloc
, /* special_function */
221 "R_ARM_SBREL32", /* name */
222 FALSE
, /* partial_inplace */
223 0xffffffff, /* src_mask */
224 0xffffffff, /* dst_mask */
225 FALSE
), /* pcrel_offset */
227 HOWTO (R_ARM_THM_CALL
, /* type */
229 2, /* size (0 = byte, 1 = short, 2 = long) */
231 TRUE
, /* pc_relative */
233 complain_overflow_signed
,/* complain_on_overflow */
234 bfd_elf_generic_reloc
, /* special_function */
235 "R_ARM_THM_CALL", /* name */
236 FALSE
, /* partial_inplace */
237 0x07ff2fff, /* src_mask */
238 0x07ff2fff, /* dst_mask */
239 TRUE
), /* pcrel_offset */
241 HOWTO (R_ARM_THM_PC8
, /* type */
243 1, /* size (0 = byte, 1 = short, 2 = long) */
245 TRUE
, /* pc_relative */
247 complain_overflow_signed
,/* complain_on_overflow */
248 bfd_elf_generic_reloc
, /* special_function */
249 "R_ARM_THM_PC8", /* name */
250 FALSE
, /* partial_inplace */
251 0x000000ff, /* src_mask */
252 0x000000ff, /* dst_mask */
253 TRUE
), /* pcrel_offset */
255 HOWTO (R_ARM_BREL_ADJ
, /* type */
257 1, /* size (0 = byte, 1 = short, 2 = long) */
259 FALSE
, /* pc_relative */
261 complain_overflow_signed
,/* complain_on_overflow */
262 bfd_elf_generic_reloc
, /* special_function */
263 "R_ARM_BREL_ADJ", /* name */
264 FALSE
, /* partial_inplace */
265 0xffffffff, /* src_mask */
266 0xffffffff, /* dst_mask */
267 FALSE
), /* pcrel_offset */
269 HOWTO (R_ARM_TLS_DESC
, /* type */
271 2, /* size (0 = byte, 1 = short, 2 = long) */
273 FALSE
, /* pc_relative */
275 complain_overflow_bitfield
,/* complain_on_overflow */
276 bfd_elf_generic_reloc
, /* special_function */
277 "R_ARM_TLS_DESC", /* name */
278 FALSE
, /* partial_inplace */
279 0xffffffff, /* src_mask */
280 0xffffffff, /* dst_mask */
281 FALSE
), /* pcrel_offset */
283 HOWTO (R_ARM_THM_SWI8
, /* type */
285 0, /* size (0 = byte, 1 = short, 2 = long) */
287 FALSE
, /* pc_relative */
289 complain_overflow_signed
,/* complain_on_overflow */
290 bfd_elf_generic_reloc
, /* special_function */
291 "R_ARM_SWI8", /* name */
292 FALSE
, /* partial_inplace */
293 0x00000000, /* src_mask */
294 0x00000000, /* dst_mask */
295 FALSE
), /* pcrel_offset */
297 /* BLX instruction for the ARM. */
298 HOWTO (R_ARM_XPC25
, /* type */
300 2, /* size (0 = byte, 1 = short, 2 = long) */
302 TRUE
, /* pc_relative */
304 complain_overflow_signed
,/* complain_on_overflow */
305 bfd_elf_generic_reloc
, /* special_function */
306 "R_ARM_XPC25", /* name */
307 FALSE
, /* partial_inplace */
308 0x00ffffff, /* src_mask */
309 0x00ffffff, /* dst_mask */
310 TRUE
), /* pcrel_offset */
312 /* BLX instruction for the Thumb. */
313 HOWTO (R_ARM_THM_XPC22
, /* type */
315 2, /* size (0 = byte, 1 = short, 2 = long) */
317 TRUE
, /* pc_relative */
319 complain_overflow_signed
,/* complain_on_overflow */
320 bfd_elf_generic_reloc
, /* special_function */
321 "R_ARM_THM_XPC22", /* name */
322 FALSE
, /* partial_inplace */
323 0x07ff2fff, /* src_mask */
324 0x07ff2fff, /* dst_mask */
325 TRUE
), /* pcrel_offset */
327 /* Dynamic TLS relocations. */
329 HOWTO (R_ARM_TLS_DTPMOD32
, /* type */
331 2, /* size (0 = byte, 1 = short, 2 = long) */
333 FALSE
, /* pc_relative */
335 complain_overflow_bitfield
,/* complain_on_overflow */
336 bfd_elf_generic_reloc
, /* special_function */
337 "R_ARM_TLS_DTPMOD32", /* name */
338 TRUE
, /* partial_inplace */
339 0xffffffff, /* src_mask */
340 0xffffffff, /* dst_mask */
341 FALSE
), /* pcrel_offset */
343 HOWTO (R_ARM_TLS_DTPOFF32
, /* type */
345 2, /* size (0 = byte, 1 = short, 2 = long) */
347 FALSE
, /* pc_relative */
349 complain_overflow_bitfield
,/* complain_on_overflow */
350 bfd_elf_generic_reloc
, /* special_function */
351 "R_ARM_TLS_DTPOFF32", /* name */
352 TRUE
, /* partial_inplace */
353 0xffffffff, /* src_mask */
354 0xffffffff, /* dst_mask */
355 FALSE
), /* pcrel_offset */
357 HOWTO (R_ARM_TLS_TPOFF32
, /* type */
359 2, /* size (0 = byte, 1 = short, 2 = long) */
361 FALSE
, /* pc_relative */
363 complain_overflow_bitfield
,/* complain_on_overflow */
364 bfd_elf_generic_reloc
, /* special_function */
365 "R_ARM_TLS_TPOFF32", /* name */
366 TRUE
, /* partial_inplace */
367 0xffffffff, /* src_mask */
368 0xffffffff, /* dst_mask */
369 FALSE
), /* pcrel_offset */
371 /* Relocs used in ARM Linux */
373 HOWTO (R_ARM_COPY
, /* type */
375 2, /* size (0 = byte, 1 = short, 2 = long) */
377 FALSE
, /* pc_relative */
379 complain_overflow_bitfield
,/* complain_on_overflow */
380 bfd_elf_generic_reloc
, /* special_function */
381 "R_ARM_COPY", /* name */
382 TRUE
, /* partial_inplace */
383 0xffffffff, /* src_mask */
384 0xffffffff, /* dst_mask */
385 FALSE
), /* pcrel_offset */
387 HOWTO (R_ARM_GLOB_DAT
, /* type */
389 2, /* size (0 = byte, 1 = short, 2 = long) */
391 FALSE
, /* pc_relative */
393 complain_overflow_bitfield
,/* complain_on_overflow */
394 bfd_elf_generic_reloc
, /* special_function */
395 "R_ARM_GLOB_DAT", /* name */
396 TRUE
, /* partial_inplace */
397 0xffffffff, /* src_mask */
398 0xffffffff, /* dst_mask */
399 FALSE
), /* pcrel_offset */
401 HOWTO (R_ARM_JUMP_SLOT
, /* type */
403 2, /* size (0 = byte, 1 = short, 2 = long) */
405 FALSE
, /* pc_relative */
407 complain_overflow_bitfield
,/* complain_on_overflow */
408 bfd_elf_generic_reloc
, /* special_function */
409 "R_ARM_JUMP_SLOT", /* name */
410 TRUE
, /* partial_inplace */
411 0xffffffff, /* src_mask */
412 0xffffffff, /* dst_mask */
413 FALSE
), /* pcrel_offset */
415 HOWTO (R_ARM_RELATIVE
, /* type */
417 2, /* size (0 = byte, 1 = short, 2 = long) */
419 FALSE
, /* pc_relative */
421 complain_overflow_bitfield
,/* complain_on_overflow */
422 bfd_elf_generic_reloc
, /* special_function */
423 "R_ARM_RELATIVE", /* name */
424 TRUE
, /* partial_inplace */
425 0xffffffff, /* src_mask */
426 0xffffffff, /* dst_mask */
427 FALSE
), /* pcrel_offset */
429 HOWTO (R_ARM_GOTOFF32
, /* type */
431 2, /* size (0 = byte, 1 = short, 2 = long) */
433 FALSE
, /* pc_relative */
435 complain_overflow_bitfield
,/* complain_on_overflow */
436 bfd_elf_generic_reloc
, /* special_function */
437 "R_ARM_GOTOFF32", /* name */
438 TRUE
, /* partial_inplace */
439 0xffffffff, /* src_mask */
440 0xffffffff, /* dst_mask */
441 FALSE
), /* pcrel_offset */
443 HOWTO (R_ARM_GOTPC
, /* type */
445 2, /* size (0 = byte, 1 = short, 2 = long) */
447 TRUE
, /* pc_relative */
449 complain_overflow_bitfield
,/* complain_on_overflow */
450 bfd_elf_generic_reloc
, /* special_function */
451 "R_ARM_GOTPC", /* name */
452 TRUE
, /* partial_inplace */
453 0xffffffff, /* src_mask */
454 0xffffffff, /* dst_mask */
455 TRUE
), /* pcrel_offset */
457 HOWTO (R_ARM_GOT32
, /* type */
459 2, /* size (0 = byte, 1 = short, 2 = long) */
461 FALSE
, /* pc_relative */
463 complain_overflow_bitfield
,/* complain_on_overflow */
464 bfd_elf_generic_reloc
, /* special_function */
465 "R_ARM_GOT32", /* name */
466 TRUE
, /* partial_inplace */
467 0xffffffff, /* src_mask */
468 0xffffffff, /* dst_mask */
469 FALSE
), /* pcrel_offset */
471 HOWTO (R_ARM_PLT32
, /* type */
473 2, /* size (0 = byte, 1 = short, 2 = long) */
475 TRUE
, /* pc_relative */
477 complain_overflow_bitfield
,/* complain_on_overflow */
478 bfd_elf_generic_reloc
, /* special_function */
479 "R_ARM_PLT32", /* name */
480 FALSE
, /* partial_inplace */
481 0x00ffffff, /* src_mask */
482 0x00ffffff, /* dst_mask */
483 TRUE
), /* pcrel_offset */
485 HOWTO (R_ARM_CALL
, /* type */
487 2, /* size (0 = byte, 1 = short, 2 = long) */
489 TRUE
, /* pc_relative */
491 complain_overflow_signed
,/* complain_on_overflow */
492 bfd_elf_generic_reloc
, /* special_function */
493 "R_ARM_CALL", /* name */
494 FALSE
, /* partial_inplace */
495 0x00ffffff, /* src_mask */
496 0x00ffffff, /* dst_mask */
497 TRUE
), /* pcrel_offset */
499 HOWTO (R_ARM_JUMP24
, /* type */
501 2, /* size (0 = byte, 1 = short, 2 = long) */
503 TRUE
, /* pc_relative */
505 complain_overflow_signed
,/* complain_on_overflow */
506 bfd_elf_generic_reloc
, /* special_function */
507 "R_ARM_JUMP24", /* name */
508 FALSE
, /* partial_inplace */
509 0x00ffffff, /* src_mask */
510 0x00ffffff, /* dst_mask */
511 TRUE
), /* pcrel_offset */
513 HOWTO (R_ARM_THM_JUMP24
, /* type */
515 2, /* size (0 = byte, 1 = short, 2 = long) */
517 TRUE
, /* pc_relative */
519 complain_overflow_signed
,/* complain_on_overflow */
520 bfd_elf_generic_reloc
, /* special_function */
521 "R_ARM_THM_JUMP24", /* name */
522 FALSE
, /* partial_inplace */
523 0x07ff2fff, /* src_mask */
524 0x07ff2fff, /* dst_mask */
525 TRUE
), /* pcrel_offset */
527 HOWTO (R_ARM_BASE_ABS
, /* type */
529 2, /* size (0 = byte, 1 = short, 2 = long) */
531 FALSE
, /* pc_relative */
533 complain_overflow_dont
,/* complain_on_overflow */
534 bfd_elf_generic_reloc
, /* special_function */
535 "R_ARM_BASE_ABS", /* name */
536 FALSE
, /* partial_inplace */
537 0xffffffff, /* src_mask */
538 0xffffffff, /* dst_mask */
539 FALSE
), /* pcrel_offset */
541 HOWTO (R_ARM_ALU_PCREL7_0
, /* type */
543 2, /* size (0 = byte, 1 = short, 2 = long) */
545 TRUE
, /* pc_relative */
547 complain_overflow_dont
,/* complain_on_overflow */
548 bfd_elf_generic_reloc
, /* special_function */
549 "R_ARM_ALU_PCREL_7_0", /* name */
550 FALSE
, /* partial_inplace */
551 0x00000fff, /* src_mask */
552 0x00000fff, /* dst_mask */
553 TRUE
), /* pcrel_offset */
555 HOWTO (R_ARM_ALU_PCREL15_8
, /* type */
557 2, /* size (0 = byte, 1 = short, 2 = long) */
559 TRUE
, /* pc_relative */
561 complain_overflow_dont
,/* complain_on_overflow */
562 bfd_elf_generic_reloc
, /* special_function */
563 "R_ARM_ALU_PCREL_15_8",/* name */
564 FALSE
, /* partial_inplace */
565 0x00000fff, /* src_mask */
566 0x00000fff, /* dst_mask */
567 TRUE
), /* pcrel_offset */
569 HOWTO (R_ARM_ALU_PCREL23_15
, /* type */
571 2, /* size (0 = byte, 1 = short, 2 = long) */
573 TRUE
, /* pc_relative */
575 complain_overflow_dont
,/* complain_on_overflow */
576 bfd_elf_generic_reloc
, /* special_function */
577 "R_ARM_ALU_PCREL_23_15",/* name */
578 FALSE
, /* partial_inplace */
579 0x00000fff, /* src_mask */
580 0x00000fff, /* dst_mask */
581 TRUE
), /* pcrel_offset */
583 HOWTO (R_ARM_LDR_SBREL_11_0
, /* type */
585 2, /* size (0 = byte, 1 = short, 2 = long) */
587 FALSE
, /* pc_relative */
589 complain_overflow_dont
,/* complain_on_overflow */
590 bfd_elf_generic_reloc
, /* special_function */
591 "R_ARM_LDR_SBREL_11_0",/* name */
592 FALSE
, /* partial_inplace */
593 0x00000fff, /* src_mask */
594 0x00000fff, /* dst_mask */
595 FALSE
), /* pcrel_offset */
597 HOWTO (R_ARM_ALU_SBREL_19_12
, /* type */
599 2, /* size (0 = byte, 1 = short, 2 = long) */
601 FALSE
, /* pc_relative */
603 complain_overflow_dont
,/* complain_on_overflow */
604 bfd_elf_generic_reloc
, /* special_function */
605 "R_ARM_ALU_SBREL_19_12",/* name */
606 FALSE
, /* partial_inplace */
607 0x000ff000, /* src_mask */
608 0x000ff000, /* dst_mask */
609 FALSE
), /* pcrel_offset */
611 HOWTO (R_ARM_ALU_SBREL_27_20
, /* type */
613 2, /* size (0 = byte, 1 = short, 2 = long) */
615 FALSE
, /* pc_relative */
617 complain_overflow_dont
,/* complain_on_overflow */
618 bfd_elf_generic_reloc
, /* special_function */
619 "R_ARM_ALU_SBREL_27_20",/* name */
620 FALSE
, /* partial_inplace */
621 0x0ff00000, /* src_mask */
622 0x0ff00000, /* dst_mask */
623 FALSE
), /* pcrel_offset */
625 HOWTO (R_ARM_TARGET1
, /* type */
627 2, /* size (0 = byte, 1 = short, 2 = long) */
629 FALSE
, /* pc_relative */
631 complain_overflow_dont
,/* complain_on_overflow */
632 bfd_elf_generic_reloc
, /* special_function */
633 "R_ARM_TARGET1", /* name */
634 FALSE
, /* partial_inplace */
635 0xffffffff, /* src_mask */
636 0xffffffff, /* dst_mask */
637 FALSE
), /* pcrel_offset */
639 HOWTO (R_ARM_ROSEGREL32
, /* type */
641 2, /* size (0 = byte, 1 = short, 2 = long) */
643 FALSE
, /* pc_relative */
645 complain_overflow_dont
,/* complain_on_overflow */
646 bfd_elf_generic_reloc
, /* special_function */
647 "R_ARM_ROSEGREL32", /* name */
648 FALSE
, /* partial_inplace */
649 0xffffffff, /* src_mask */
650 0xffffffff, /* dst_mask */
651 FALSE
), /* pcrel_offset */
653 HOWTO (R_ARM_V4BX
, /* type */
655 2, /* size (0 = byte, 1 = short, 2 = long) */
657 FALSE
, /* pc_relative */
659 complain_overflow_dont
,/* complain_on_overflow */
660 bfd_elf_generic_reloc
, /* special_function */
661 "R_ARM_V4BX", /* name */
662 FALSE
, /* partial_inplace */
663 0xffffffff, /* src_mask */
664 0xffffffff, /* dst_mask */
665 FALSE
), /* pcrel_offset */
667 HOWTO (R_ARM_TARGET2
, /* type */
669 2, /* size (0 = byte, 1 = short, 2 = long) */
671 FALSE
, /* pc_relative */
673 complain_overflow_signed
,/* complain_on_overflow */
674 bfd_elf_generic_reloc
, /* special_function */
675 "R_ARM_TARGET2", /* name */
676 FALSE
, /* partial_inplace */
677 0xffffffff, /* src_mask */
678 0xffffffff, /* dst_mask */
679 TRUE
), /* pcrel_offset */
681 HOWTO (R_ARM_PREL31
, /* type */
683 2, /* size (0 = byte, 1 = short, 2 = long) */
685 TRUE
, /* pc_relative */
687 complain_overflow_signed
,/* complain_on_overflow */
688 bfd_elf_generic_reloc
, /* special_function */
689 "R_ARM_PREL31", /* name */
690 FALSE
, /* partial_inplace */
691 0x7fffffff, /* src_mask */
692 0x7fffffff, /* dst_mask */
693 TRUE
), /* pcrel_offset */
695 HOWTO (R_ARM_MOVW_ABS_NC
, /* type */
697 2, /* size (0 = byte, 1 = short, 2 = long) */
699 FALSE
, /* pc_relative */
701 complain_overflow_dont
,/* complain_on_overflow */
702 bfd_elf_generic_reloc
, /* special_function */
703 "R_ARM_MOVW_ABS_NC", /* name */
704 FALSE
, /* partial_inplace */
705 0x000f0fff, /* src_mask */
706 0x000f0fff, /* dst_mask */
707 FALSE
), /* pcrel_offset */
709 HOWTO (R_ARM_MOVT_ABS
, /* type */
711 2, /* size (0 = byte, 1 = short, 2 = long) */
713 FALSE
, /* pc_relative */
715 complain_overflow_bitfield
,/* complain_on_overflow */
716 bfd_elf_generic_reloc
, /* special_function */
717 "R_ARM_MOVT_ABS", /* name */
718 FALSE
, /* partial_inplace */
719 0x000f0fff, /* src_mask */
720 0x000f0fff, /* dst_mask */
721 FALSE
), /* pcrel_offset */
723 HOWTO (R_ARM_MOVW_PREL_NC
, /* type */
725 2, /* size (0 = byte, 1 = short, 2 = long) */
727 TRUE
, /* pc_relative */
729 complain_overflow_dont
,/* complain_on_overflow */
730 bfd_elf_generic_reloc
, /* special_function */
731 "R_ARM_MOVW_PREL_NC", /* name */
732 FALSE
, /* partial_inplace */
733 0x000f0fff, /* src_mask */
734 0x000f0fff, /* dst_mask */
735 TRUE
), /* pcrel_offset */
737 HOWTO (R_ARM_MOVT_PREL
, /* type */
739 2, /* size (0 = byte, 1 = short, 2 = long) */
741 TRUE
, /* pc_relative */
743 complain_overflow_bitfield
,/* complain_on_overflow */
744 bfd_elf_generic_reloc
, /* special_function */
745 "R_ARM_MOVT_PREL", /* name */
746 FALSE
, /* partial_inplace */
747 0x000f0fff, /* src_mask */
748 0x000f0fff, /* dst_mask */
749 TRUE
), /* pcrel_offset */
751 HOWTO (R_ARM_THM_MOVW_ABS_NC
, /* type */
753 2, /* size (0 = byte, 1 = short, 2 = long) */
755 FALSE
, /* pc_relative */
757 complain_overflow_dont
,/* complain_on_overflow */
758 bfd_elf_generic_reloc
, /* special_function */
759 "R_ARM_THM_MOVW_ABS_NC",/* name */
760 FALSE
, /* partial_inplace */
761 0x040f70ff, /* src_mask */
762 0x040f70ff, /* dst_mask */
763 FALSE
), /* pcrel_offset */
765 HOWTO (R_ARM_THM_MOVT_ABS
, /* type */
767 2, /* size (0 = byte, 1 = short, 2 = long) */
769 FALSE
, /* pc_relative */
771 complain_overflow_bitfield
,/* complain_on_overflow */
772 bfd_elf_generic_reloc
, /* special_function */
773 "R_ARM_THM_MOVT_ABS", /* name */
774 FALSE
, /* partial_inplace */
775 0x040f70ff, /* src_mask */
776 0x040f70ff, /* dst_mask */
777 FALSE
), /* pcrel_offset */
779 HOWTO (R_ARM_THM_MOVW_PREL_NC
,/* type */
781 2, /* size (0 = byte, 1 = short, 2 = long) */
783 TRUE
, /* pc_relative */
785 complain_overflow_dont
,/* complain_on_overflow */
786 bfd_elf_generic_reloc
, /* special_function */
787 "R_ARM_THM_MOVW_PREL_NC",/* name */
788 FALSE
, /* partial_inplace */
789 0x040f70ff, /* src_mask */
790 0x040f70ff, /* dst_mask */
791 TRUE
), /* pcrel_offset */
793 HOWTO (R_ARM_THM_MOVT_PREL
, /* type */
795 2, /* size (0 = byte, 1 = short, 2 = long) */
797 TRUE
, /* pc_relative */
799 complain_overflow_bitfield
,/* complain_on_overflow */
800 bfd_elf_generic_reloc
, /* special_function */
801 "R_ARM_THM_MOVT_PREL", /* name */
802 FALSE
, /* partial_inplace */
803 0x040f70ff, /* src_mask */
804 0x040f70ff, /* dst_mask */
805 TRUE
), /* pcrel_offset */
807 HOWTO (R_ARM_THM_JUMP19
, /* type */
809 2, /* size (0 = byte, 1 = short, 2 = long) */
811 TRUE
, /* pc_relative */
813 complain_overflow_signed
,/* complain_on_overflow */
814 bfd_elf_generic_reloc
, /* special_function */
815 "R_ARM_THM_JUMP19", /* name */
816 FALSE
, /* partial_inplace */
817 0x043f2fff, /* src_mask */
818 0x043f2fff, /* dst_mask */
819 TRUE
), /* pcrel_offset */
821 HOWTO (R_ARM_THM_JUMP6
, /* type */
823 1, /* size (0 = byte, 1 = short, 2 = long) */
825 TRUE
, /* pc_relative */
827 complain_overflow_unsigned
,/* complain_on_overflow */
828 bfd_elf_generic_reloc
, /* special_function */
829 "R_ARM_THM_JUMP6", /* name */
830 FALSE
, /* partial_inplace */
831 0x02f8, /* src_mask */
832 0x02f8, /* dst_mask */
833 TRUE
), /* pcrel_offset */
835 /* These are declared as 13-bit signed relocations because we can
836 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
838 HOWTO (R_ARM_THM_ALU_PREL_11_0
,/* type */
840 2, /* size (0 = byte, 1 = short, 2 = long) */
842 TRUE
, /* pc_relative */
844 complain_overflow_dont
,/* complain_on_overflow */
845 bfd_elf_generic_reloc
, /* special_function */
846 "R_ARM_THM_ALU_PREL_11_0",/* name */
847 FALSE
, /* partial_inplace */
848 0xffffffff, /* src_mask */
849 0xffffffff, /* dst_mask */
850 TRUE
), /* pcrel_offset */
852 HOWTO (R_ARM_THM_PC12
, /* type */
854 2, /* size (0 = byte, 1 = short, 2 = long) */
856 TRUE
, /* pc_relative */
858 complain_overflow_dont
,/* complain_on_overflow */
859 bfd_elf_generic_reloc
, /* special_function */
860 "R_ARM_THM_PC12", /* name */
861 FALSE
, /* partial_inplace */
862 0xffffffff, /* src_mask */
863 0xffffffff, /* dst_mask */
864 TRUE
), /* pcrel_offset */
866 HOWTO (R_ARM_ABS32_NOI
, /* type */
868 2, /* size (0 = byte, 1 = short, 2 = long) */
870 FALSE
, /* pc_relative */
872 complain_overflow_dont
,/* complain_on_overflow */
873 bfd_elf_generic_reloc
, /* special_function */
874 "R_ARM_ABS32_NOI", /* name */
875 FALSE
, /* partial_inplace */
876 0xffffffff, /* src_mask */
877 0xffffffff, /* dst_mask */
878 FALSE
), /* pcrel_offset */
880 HOWTO (R_ARM_REL32_NOI
, /* type */
882 2, /* size (0 = byte, 1 = short, 2 = long) */
884 TRUE
, /* pc_relative */
886 complain_overflow_dont
,/* complain_on_overflow */
887 bfd_elf_generic_reloc
, /* special_function */
888 "R_ARM_REL32_NOI", /* name */
889 FALSE
, /* partial_inplace */
890 0xffffffff, /* src_mask */
891 0xffffffff, /* dst_mask */
892 FALSE
), /* pcrel_offset */
894 /* Group relocations. */
896 HOWTO (R_ARM_ALU_PC_G0_NC
, /* type */
898 2, /* size (0 = byte, 1 = short, 2 = long) */
900 TRUE
, /* pc_relative */
902 complain_overflow_dont
,/* complain_on_overflow */
903 bfd_elf_generic_reloc
, /* special_function */
904 "R_ARM_ALU_PC_G0_NC", /* name */
905 FALSE
, /* partial_inplace */
906 0xffffffff, /* src_mask */
907 0xffffffff, /* dst_mask */
908 TRUE
), /* pcrel_offset */
910 HOWTO (R_ARM_ALU_PC_G0
, /* type */
912 2, /* size (0 = byte, 1 = short, 2 = long) */
914 TRUE
, /* pc_relative */
916 complain_overflow_dont
,/* complain_on_overflow */
917 bfd_elf_generic_reloc
, /* special_function */
918 "R_ARM_ALU_PC_G0", /* name */
919 FALSE
, /* partial_inplace */
920 0xffffffff, /* src_mask */
921 0xffffffff, /* dst_mask */
922 TRUE
), /* pcrel_offset */
924 HOWTO (R_ARM_ALU_PC_G1_NC
, /* type */
926 2, /* size (0 = byte, 1 = short, 2 = long) */
928 TRUE
, /* pc_relative */
930 complain_overflow_dont
,/* complain_on_overflow */
931 bfd_elf_generic_reloc
, /* special_function */
932 "R_ARM_ALU_PC_G1_NC", /* name */
933 FALSE
, /* partial_inplace */
934 0xffffffff, /* src_mask */
935 0xffffffff, /* dst_mask */
936 TRUE
), /* pcrel_offset */
938 HOWTO (R_ARM_ALU_PC_G1
, /* type */
940 2, /* size (0 = byte, 1 = short, 2 = long) */
942 TRUE
, /* pc_relative */
944 complain_overflow_dont
,/* complain_on_overflow */
945 bfd_elf_generic_reloc
, /* special_function */
946 "R_ARM_ALU_PC_G1", /* name */
947 FALSE
, /* partial_inplace */
948 0xffffffff, /* src_mask */
949 0xffffffff, /* dst_mask */
950 TRUE
), /* pcrel_offset */
952 HOWTO (R_ARM_ALU_PC_G2
, /* type */
954 2, /* size (0 = byte, 1 = short, 2 = long) */
956 TRUE
, /* pc_relative */
958 complain_overflow_dont
,/* complain_on_overflow */
959 bfd_elf_generic_reloc
, /* special_function */
960 "R_ARM_ALU_PC_G2", /* name */
961 FALSE
, /* partial_inplace */
962 0xffffffff, /* src_mask */
963 0xffffffff, /* dst_mask */
964 TRUE
), /* pcrel_offset */
966 HOWTO (R_ARM_LDR_PC_G1
, /* type */
968 2, /* size (0 = byte, 1 = short, 2 = long) */
970 TRUE
, /* pc_relative */
972 complain_overflow_dont
,/* complain_on_overflow */
973 bfd_elf_generic_reloc
, /* special_function */
974 "R_ARM_LDR_PC_G1", /* name */
975 FALSE
, /* partial_inplace */
976 0xffffffff, /* src_mask */
977 0xffffffff, /* dst_mask */
978 TRUE
), /* pcrel_offset */
980 HOWTO (R_ARM_LDR_PC_G2
, /* type */
982 2, /* size (0 = byte, 1 = short, 2 = long) */
984 TRUE
, /* pc_relative */
986 complain_overflow_dont
,/* complain_on_overflow */
987 bfd_elf_generic_reloc
, /* special_function */
988 "R_ARM_LDR_PC_G2", /* name */
989 FALSE
, /* partial_inplace */
990 0xffffffff, /* src_mask */
991 0xffffffff, /* dst_mask */
992 TRUE
), /* pcrel_offset */
994 HOWTO (R_ARM_LDRS_PC_G0
, /* type */
996 2, /* size (0 = byte, 1 = short, 2 = long) */
998 TRUE
, /* pc_relative */
1000 complain_overflow_dont
,/* complain_on_overflow */
1001 bfd_elf_generic_reloc
, /* special_function */
1002 "R_ARM_LDRS_PC_G0", /* name */
1003 FALSE
, /* partial_inplace */
1004 0xffffffff, /* src_mask */
1005 0xffffffff, /* dst_mask */
1006 TRUE
), /* pcrel_offset */
1008 HOWTO (R_ARM_LDRS_PC_G1
, /* type */
1010 2, /* size (0 = byte, 1 = short, 2 = long) */
1012 TRUE
, /* pc_relative */
1014 complain_overflow_dont
,/* complain_on_overflow */
1015 bfd_elf_generic_reloc
, /* special_function */
1016 "R_ARM_LDRS_PC_G1", /* name */
1017 FALSE
, /* partial_inplace */
1018 0xffffffff, /* src_mask */
1019 0xffffffff, /* dst_mask */
1020 TRUE
), /* pcrel_offset */
1022 HOWTO (R_ARM_LDRS_PC_G2
, /* type */
1024 2, /* size (0 = byte, 1 = short, 2 = long) */
1026 TRUE
, /* pc_relative */
1028 complain_overflow_dont
,/* complain_on_overflow */
1029 bfd_elf_generic_reloc
, /* special_function */
1030 "R_ARM_LDRS_PC_G2", /* name */
1031 FALSE
, /* partial_inplace */
1032 0xffffffff, /* src_mask */
1033 0xffffffff, /* dst_mask */
1034 TRUE
), /* pcrel_offset */
1036 HOWTO (R_ARM_LDC_PC_G0
, /* type */
1038 2, /* size (0 = byte, 1 = short, 2 = long) */
1040 TRUE
, /* pc_relative */
1042 complain_overflow_dont
,/* complain_on_overflow */
1043 bfd_elf_generic_reloc
, /* special_function */
1044 "R_ARM_LDC_PC_G0", /* name */
1045 FALSE
, /* partial_inplace */
1046 0xffffffff, /* src_mask */
1047 0xffffffff, /* dst_mask */
1048 TRUE
), /* pcrel_offset */
1050 HOWTO (R_ARM_LDC_PC_G1
, /* type */
1052 2, /* size (0 = byte, 1 = short, 2 = long) */
1054 TRUE
, /* pc_relative */
1056 complain_overflow_dont
,/* complain_on_overflow */
1057 bfd_elf_generic_reloc
, /* special_function */
1058 "R_ARM_LDC_PC_G1", /* name */
1059 FALSE
, /* partial_inplace */
1060 0xffffffff, /* src_mask */
1061 0xffffffff, /* dst_mask */
1062 TRUE
), /* pcrel_offset */
1064 HOWTO (R_ARM_LDC_PC_G2
, /* type */
1066 2, /* size (0 = byte, 1 = short, 2 = long) */
1068 TRUE
, /* pc_relative */
1070 complain_overflow_dont
,/* complain_on_overflow */
1071 bfd_elf_generic_reloc
, /* special_function */
1072 "R_ARM_LDC_PC_G2", /* name */
1073 FALSE
, /* partial_inplace */
1074 0xffffffff, /* src_mask */
1075 0xffffffff, /* dst_mask */
1076 TRUE
), /* pcrel_offset */
1078 HOWTO (R_ARM_ALU_SB_G0_NC
, /* type */
1080 2, /* size (0 = byte, 1 = short, 2 = long) */
1082 TRUE
, /* pc_relative */
1084 complain_overflow_dont
,/* complain_on_overflow */
1085 bfd_elf_generic_reloc
, /* special_function */
1086 "R_ARM_ALU_SB_G0_NC", /* name */
1087 FALSE
, /* partial_inplace */
1088 0xffffffff, /* src_mask */
1089 0xffffffff, /* dst_mask */
1090 TRUE
), /* pcrel_offset */
1092 HOWTO (R_ARM_ALU_SB_G0
, /* type */
1094 2, /* size (0 = byte, 1 = short, 2 = long) */
1096 TRUE
, /* pc_relative */
1098 complain_overflow_dont
,/* complain_on_overflow */
1099 bfd_elf_generic_reloc
, /* special_function */
1100 "R_ARM_ALU_SB_G0", /* name */
1101 FALSE
, /* partial_inplace */
1102 0xffffffff, /* src_mask */
1103 0xffffffff, /* dst_mask */
1104 TRUE
), /* pcrel_offset */
1106 HOWTO (R_ARM_ALU_SB_G1_NC
, /* type */
1108 2, /* size (0 = byte, 1 = short, 2 = long) */
1110 TRUE
, /* pc_relative */
1112 complain_overflow_dont
,/* complain_on_overflow */
1113 bfd_elf_generic_reloc
, /* special_function */
1114 "R_ARM_ALU_SB_G1_NC", /* name */
1115 FALSE
, /* partial_inplace */
1116 0xffffffff, /* src_mask */
1117 0xffffffff, /* dst_mask */
1118 TRUE
), /* pcrel_offset */
1120 HOWTO (R_ARM_ALU_SB_G1
, /* type */
1122 2, /* size (0 = byte, 1 = short, 2 = long) */
1124 TRUE
, /* pc_relative */
1126 complain_overflow_dont
,/* complain_on_overflow */
1127 bfd_elf_generic_reloc
, /* special_function */
1128 "R_ARM_ALU_SB_G1", /* name */
1129 FALSE
, /* partial_inplace */
1130 0xffffffff, /* src_mask */
1131 0xffffffff, /* dst_mask */
1132 TRUE
), /* pcrel_offset */
1134 HOWTO (R_ARM_ALU_SB_G2
, /* type */
1136 2, /* size (0 = byte, 1 = short, 2 = long) */
1138 TRUE
, /* pc_relative */
1140 complain_overflow_dont
,/* complain_on_overflow */
1141 bfd_elf_generic_reloc
, /* special_function */
1142 "R_ARM_ALU_SB_G2", /* name */
1143 FALSE
, /* partial_inplace */
1144 0xffffffff, /* src_mask */
1145 0xffffffff, /* dst_mask */
1146 TRUE
), /* pcrel_offset */
1148 HOWTO (R_ARM_LDR_SB_G0
, /* type */
1150 2, /* size (0 = byte, 1 = short, 2 = long) */
1152 TRUE
, /* pc_relative */
1154 complain_overflow_dont
,/* complain_on_overflow */
1155 bfd_elf_generic_reloc
, /* special_function */
1156 "R_ARM_LDR_SB_G0", /* name */
1157 FALSE
, /* partial_inplace */
1158 0xffffffff, /* src_mask */
1159 0xffffffff, /* dst_mask */
1160 TRUE
), /* pcrel_offset */
1162 HOWTO (R_ARM_LDR_SB_G1
, /* type */
1164 2, /* size (0 = byte, 1 = short, 2 = long) */
1166 TRUE
, /* pc_relative */
1168 complain_overflow_dont
,/* complain_on_overflow */
1169 bfd_elf_generic_reloc
, /* special_function */
1170 "R_ARM_LDR_SB_G1", /* name */
1171 FALSE
, /* partial_inplace */
1172 0xffffffff, /* src_mask */
1173 0xffffffff, /* dst_mask */
1174 TRUE
), /* pcrel_offset */
1176 HOWTO (R_ARM_LDR_SB_G2
, /* type */
1178 2, /* size (0 = byte, 1 = short, 2 = long) */
1180 TRUE
, /* pc_relative */
1182 complain_overflow_dont
,/* complain_on_overflow */
1183 bfd_elf_generic_reloc
, /* special_function */
1184 "R_ARM_LDR_SB_G2", /* name */
1185 FALSE
, /* partial_inplace */
1186 0xffffffff, /* src_mask */
1187 0xffffffff, /* dst_mask */
1188 TRUE
), /* pcrel_offset */
1190 HOWTO (R_ARM_LDRS_SB_G0
, /* type */
1192 2, /* size (0 = byte, 1 = short, 2 = long) */
1194 TRUE
, /* pc_relative */
1196 complain_overflow_dont
,/* complain_on_overflow */
1197 bfd_elf_generic_reloc
, /* special_function */
1198 "R_ARM_LDRS_SB_G0", /* name */
1199 FALSE
, /* partial_inplace */
1200 0xffffffff, /* src_mask */
1201 0xffffffff, /* dst_mask */
1202 TRUE
), /* pcrel_offset */
1204 HOWTO (R_ARM_LDRS_SB_G1
, /* type */
1206 2, /* size (0 = byte, 1 = short, 2 = long) */
1208 TRUE
, /* pc_relative */
1210 complain_overflow_dont
,/* complain_on_overflow */
1211 bfd_elf_generic_reloc
, /* special_function */
1212 "R_ARM_LDRS_SB_G1", /* name */
1213 FALSE
, /* partial_inplace */
1214 0xffffffff, /* src_mask */
1215 0xffffffff, /* dst_mask */
1216 TRUE
), /* pcrel_offset */
1218 HOWTO (R_ARM_LDRS_SB_G2
, /* type */
1220 2, /* size (0 = byte, 1 = short, 2 = long) */
1222 TRUE
, /* pc_relative */
1224 complain_overflow_dont
,/* complain_on_overflow */
1225 bfd_elf_generic_reloc
, /* special_function */
1226 "R_ARM_LDRS_SB_G2", /* name */
1227 FALSE
, /* partial_inplace */
1228 0xffffffff, /* src_mask */
1229 0xffffffff, /* dst_mask */
1230 TRUE
), /* pcrel_offset */
1232 HOWTO (R_ARM_LDC_SB_G0
, /* type */
1234 2, /* size (0 = byte, 1 = short, 2 = long) */
1236 TRUE
, /* pc_relative */
1238 complain_overflow_dont
,/* complain_on_overflow */
1239 bfd_elf_generic_reloc
, /* special_function */
1240 "R_ARM_LDC_SB_G0", /* name */
1241 FALSE
, /* partial_inplace */
1242 0xffffffff, /* src_mask */
1243 0xffffffff, /* dst_mask */
1244 TRUE
), /* pcrel_offset */
1246 HOWTO (R_ARM_LDC_SB_G1
, /* type */
1248 2, /* size (0 = byte, 1 = short, 2 = long) */
1250 TRUE
, /* pc_relative */
1252 complain_overflow_dont
,/* complain_on_overflow */
1253 bfd_elf_generic_reloc
, /* special_function */
1254 "R_ARM_LDC_SB_G1", /* name */
1255 FALSE
, /* partial_inplace */
1256 0xffffffff, /* src_mask */
1257 0xffffffff, /* dst_mask */
1258 TRUE
), /* pcrel_offset */
1260 HOWTO (R_ARM_LDC_SB_G2
, /* type */
1262 2, /* size (0 = byte, 1 = short, 2 = long) */
1264 TRUE
, /* pc_relative */
1266 complain_overflow_dont
,/* complain_on_overflow */
1267 bfd_elf_generic_reloc
, /* special_function */
1268 "R_ARM_LDC_SB_G2", /* name */
1269 FALSE
, /* partial_inplace */
1270 0xffffffff, /* src_mask */
1271 0xffffffff, /* dst_mask */
1272 TRUE
), /* pcrel_offset */
1274 /* End of group relocations. */
1276 HOWTO (R_ARM_MOVW_BREL_NC
, /* type */
1278 2, /* size (0 = byte, 1 = short, 2 = long) */
1280 FALSE
, /* pc_relative */
1282 complain_overflow_dont
,/* complain_on_overflow */
1283 bfd_elf_generic_reloc
, /* special_function */
1284 "R_ARM_MOVW_BREL_NC", /* name */
1285 FALSE
, /* partial_inplace */
1286 0x0000ffff, /* src_mask */
1287 0x0000ffff, /* dst_mask */
1288 FALSE
), /* pcrel_offset */
1290 HOWTO (R_ARM_MOVT_BREL
, /* type */
1292 2, /* size (0 = byte, 1 = short, 2 = long) */
1294 FALSE
, /* pc_relative */
1296 complain_overflow_bitfield
,/* complain_on_overflow */
1297 bfd_elf_generic_reloc
, /* special_function */
1298 "R_ARM_MOVT_BREL", /* name */
1299 FALSE
, /* partial_inplace */
1300 0x0000ffff, /* src_mask */
1301 0x0000ffff, /* dst_mask */
1302 FALSE
), /* pcrel_offset */
1304 HOWTO (R_ARM_MOVW_BREL
, /* type */
1306 2, /* size (0 = byte, 1 = short, 2 = long) */
1308 FALSE
, /* pc_relative */
1310 complain_overflow_dont
,/* complain_on_overflow */
1311 bfd_elf_generic_reloc
, /* special_function */
1312 "R_ARM_MOVW_BREL", /* name */
1313 FALSE
, /* partial_inplace */
1314 0x0000ffff, /* src_mask */
1315 0x0000ffff, /* dst_mask */
1316 FALSE
), /* pcrel_offset */
1318 HOWTO (R_ARM_THM_MOVW_BREL_NC
,/* type */
1320 2, /* size (0 = byte, 1 = short, 2 = long) */
1322 FALSE
, /* pc_relative */
1324 complain_overflow_dont
,/* complain_on_overflow */
1325 bfd_elf_generic_reloc
, /* special_function */
1326 "R_ARM_THM_MOVW_BREL_NC",/* name */
1327 FALSE
, /* partial_inplace */
1328 0x040f70ff, /* src_mask */
1329 0x040f70ff, /* dst_mask */
1330 FALSE
), /* pcrel_offset */
1332 HOWTO (R_ARM_THM_MOVT_BREL
, /* type */
1334 2, /* size (0 = byte, 1 = short, 2 = long) */
1336 FALSE
, /* pc_relative */
1338 complain_overflow_bitfield
,/* complain_on_overflow */
1339 bfd_elf_generic_reloc
, /* special_function */
1340 "R_ARM_THM_MOVT_BREL", /* name */
1341 FALSE
, /* partial_inplace */
1342 0x040f70ff, /* src_mask */
1343 0x040f70ff, /* dst_mask */
1344 FALSE
), /* pcrel_offset */
1346 HOWTO (R_ARM_THM_MOVW_BREL
, /* type */
1348 2, /* size (0 = byte, 1 = short, 2 = long) */
1350 FALSE
, /* pc_relative */
1352 complain_overflow_dont
,/* complain_on_overflow */
1353 bfd_elf_generic_reloc
, /* special_function */
1354 "R_ARM_THM_MOVW_BREL", /* name */
1355 FALSE
, /* partial_inplace */
1356 0x040f70ff, /* src_mask */
1357 0x040f70ff, /* dst_mask */
1358 FALSE
), /* pcrel_offset */
1360 HOWTO (R_ARM_TLS_GOTDESC
, /* type */
1362 2, /* size (0 = byte, 1 = short, 2 = long) */
1364 FALSE
, /* pc_relative */
1366 complain_overflow_bitfield
,/* complain_on_overflow */
1367 NULL
, /* special_function */
1368 "R_ARM_TLS_GOTDESC", /* name */
1369 TRUE
, /* partial_inplace */
1370 0xffffffff, /* src_mask */
1371 0xffffffff, /* dst_mask */
1372 FALSE
), /* pcrel_offset */
1374 HOWTO (R_ARM_TLS_CALL
, /* type */
1376 2, /* size (0 = byte, 1 = short, 2 = long) */
1378 FALSE
, /* pc_relative */
1380 complain_overflow_dont
,/* complain_on_overflow */
1381 bfd_elf_generic_reloc
, /* special_function */
1382 "R_ARM_TLS_CALL", /* name */
1383 FALSE
, /* partial_inplace */
1384 0x00ffffff, /* src_mask */
1385 0x00ffffff, /* dst_mask */
1386 FALSE
), /* pcrel_offset */
1388 HOWTO (R_ARM_TLS_DESCSEQ
, /* type */
1390 2, /* size (0 = byte, 1 = short, 2 = long) */
1392 FALSE
, /* pc_relative */
1394 complain_overflow_dont
,/* complain_on_overflow */
1395 bfd_elf_generic_reloc
, /* special_function */
1396 "R_ARM_TLS_DESCSEQ", /* name */
1397 FALSE
, /* partial_inplace */
1398 0x00000000, /* src_mask */
1399 0x00000000, /* dst_mask */
1400 FALSE
), /* pcrel_offset */
1402 HOWTO (R_ARM_THM_TLS_CALL
, /* type */
1404 2, /* size (0 = byte, 1 = short, 2 = long) */
1406 FALSE
, /* pc_relative */
1408 complain_overflow_dont
,/* complain_on_overflow */
1409 bfd_elf_generic_reloc
, /* special_function */
1410 "R_ARM_THM_TLS_CALL", /* name */
1411 FALSE
, /* partial_inplace */
1412 0x07ff07ff, /* src_mask */
1413 0x07ff07ff, /* dst_mask */
1414 FALSE
), /* pcrel_offset */
1416 HOWTO (R_ARM_PLT32_ABS
, /* type */
1418 2, /* size (0 = byte, 1 = short, 2 = long) */
1420 FALSE
, /* pc_relative */
1422 complain_overflow_dont
,/* complain_on_overflow */
1423 bfd_elf_generic_reloc
, /* special_function */
1424 "R_ARM_PLT32_ABS", /* name */
1425 FALSE
, /* partial_inplace */
1426 0xffffffff, /* src_mask */
1427 0xffffffff, /* dst_mask */
1428 FALSE
), /* pcrel_offset */
1430 HOWTO (R_ARM_GOT_ABS
, /* type */
1432 2, /* size (0 = byte, 1 = short, 2 = long) */
1434 FALSE
, /* pc_relative */
1436 complain_overflow_dont
,/* complain_on_overflow */
1437 bfd_elf_generic_reloc
, /* special_function */
1438 "R_ARM_GOT_ABS", /* name */
1439 FALSE
, /* partial_inplace */
1440 0xffffffff, /* src_mask */
1441 0xffffffff, /* dst_mask */
1442 FALSE
), /* pcrel_offset */
1444 HOWTO (R_ARM_GOT_PREL
, /* type */
1446 2, /* size (0 = byte, 1 = short, 2 = long) */
1448 TRUE
, /* pc_relative */
1450 complain_overflow_dont
, /* complain_on_overflow */
1451 bfd_elf_generic_reloc
, /* special_function */
1452 "R_ARM_GOT_PREL", /* name */
1453 FALSE
, /* partial_inplace */
1454 0xffffffff, /* src_mask */
1455 0xffffffff, /* dst_mask */
1456 TRUE
), /* pcrel_offset */
1458 HOWTO (R_ARM_GOT_BREL12
, /* type */
1460 2, /* size (0 = byte, 1 = short, 2 = long) */
1462 FALSE
, /* pc_relative */
1464 complain_overflow_bitfield
,/* complain_on_overflow */
1465 bfd_elf_generic_reloc
, /* special_function */
1466 "R_ARM_GOT_BREL12", /* name */
1467 FALSE
, /* partial_inplace */
1468 0x00000fff, /* src_mask */
1469 0x00000fff, /* dst_mask */
1470 FALSE
), /* pcrel_offset */
1472 HOWTO (R_ARM_GOTOFF12
, /* type */
1474 2, /* size (0 = byte, 1 = short, 2 = long) */
1476 FALSE
, /* pc_relative */
1478 complain_overflow_bitfield
,/* complain_on_overflow */
1479 bfd_elf_generic_reloc
, /* special_function */
1480 "R_ARM_GOTOFF12", /* name */
1481 FALSE
, /* partial_inplace */
1482 0x00000fff, /* src_mask */
1483 0x00000fff, /* dst_mask */
1484 FALSE
), /* pcrel_offset */
1486 EMPTY_HOWTO (R_ARM_GOTRELAX
), /* reserved for future GOT-load optimizations */
1488 /* GNU extension to record C++ vtable member usage */
1489 HOWTO (R_ARM_GNU_VTENTRY
, /* type */
1491 2, /* size (0 = byte, 1 = short, 2 = long) */
1493 FALSE
, /* pc_relative */
1495 complain_overflow_dont
, /* complain_on_overflow */
1496 _bfd_elf_rel_vtable_reloc_fn
, /* special_function */
1497 "R_ARM_GNU_VTENTRY", /* name */
1498 FALSE
, /* partial_inplace */
1501 FALSE
), /* pcrel_offset */
1503 /* GNU extension to record C++ vtable hierarchy */
1504 HOWTO (R_ARM_GNU_VTINHERIT
, /* type */
1506 2, /* size (0 = byte, 1 = short, 2 = long) */
1508 FALSE
, /* pc_relative */
1510 complain_overflow_dont
, /* complain_on_overflow */
1511 NULL
, /* special_function */
1512 "R_ARM_GNU_VTINHERIT", /* name */
1513 FALSE
, /* partial_inplace */
1516 FALSE
), /* pcrel_offset */
1518 HOWTO (R_ARM_THM_JUMP11
, /* type */
1520 1, /* size (0 = byte, 1 = short, 2 = long) */
1522 TRUE
, /* pc_relative */
1524 complain_overflow_signed
, /* complain_on_overflow */
1525 bfd_elf_generic_reloc
, /* special_function */
1526 "R_ARM_THM_JUMP11", /* name */
1527 FALSE
, /* partial_inplace */
1528 0x000007ff, /* src_mask */
1529 0x000007ff, /* dst_mask */
1530 TRUE
), /* pcrel_offset */
1532 HOWTO (R_ARM_THM_JUMP8
, /* type */
1534 1, /* size (0 = byte, 1 = short, 2 = long) */
1536 TRUE
, /* pc_relative */
1538 complain_overflow_signed
, /* complain_on_overflow */
1539 bfd_elf_generic_reloc
, /* special_function */
1540 "R_ARM_THM_JUMP8", /* name */
1541 FALSE
, /* partial_inplace */
1542 0x000000ff, /* src_mask */
1543 0x000000ff, /* dst_mask */
1544 TRUE
), /* pcrel_offset */
1546 /* TLS relocations */
1547 HOWTO (R_ARM_TLS_GD32
, /* type */
1549 2, /* size (0 = byte, 1 = short, 2 = long) */
1551 FALSE
, /* pc_relative */
1553 complain_overflow_bitfield
,/* complain_on_overflow */
1554 NULL
, /* special_function */
1555 "R_ARM_TLS_GD32", /* name */
1556 TRUE
, /* partial_inplace */
1557 0xffffffff, /* src_mask */
1558 0xffffffff, /* dst_mask */
1559 FALSE
), /* pcrel_offset */
1561 HOWTO (R_ARM_TLS_LDM32
, /* type */
1563 2, /* size (0 = byte, 1 = short, 2 = long) */
1565 FALSE
, /* pc_relative */
1567 complain_overflow_bitfield
,/* complain_on_overflow */
1568 bfd_elf_generic_reloc
, /* special_function */
1569 "R_ARM_TLS_LDM32", /* name */
1570 TRUE
, /* partial_inplace */
1571 0xffffffff, /* src_mask */
1572 0xffffffff, /* dst_mask */
1573 FALSE
), /* pcrel_offset */
1575 HOWTO (R_ARM_TLS_LDO32
, /* type */
1577 2, /* size (0 = byte, 1 = short, 2 = long) */
1579 FALSE
, /* pc_relative */
1581 complain_overflow_bitfield
,/* complain_on_overflow */
1582 bfd_elf_generic_reloc
, /* special_function */
1583 "R_ARM_TLS_LDO32", /* name */
1584 TRUE
, /* partial_inplace */
1585 0xffffffff, /* src_mask */
1586 0xffffffff, /* dst_mask */
1587 FALSE
), /* pcrel_offset */
1589 HOWTO (R_ARM_TLS_IE32
, /* type */
1591 2, /* size (0 = byte, 1 = short, 2 = long) */
1593 FALSE
, /* pc_relative */
1595 complain_overflow_bitfield
,/* complain_on_overflow */
1596 NULL
, /* special_function */
1597 "R_ARM_TLS_IE32", /* name */
1598 TRUE
, /* partial_inplace */
1599 0xffffffff, /* src_mask */
1600 0xffffffff, /* dst_mask */
1601 FALSE
), /* pcrel_offset */
1603 HOWTO (R_ARM_TLS_LE32
, /* type */
1605 2, /* size (0 = byte, 1 = short, 2 = long) */
1607 FALSE
, /* pc_relative */
1609 complain_overflow_bitfield
,/* complain_on_overflow */
1610 NULL
, /* special_function */
1611 "R_ARM_TLS_LE32", /* name */
1612 TRUE
, /* partial_inplace */
1613 0xffffffff, /* src_mask */
1614 0xffffffff, /* dst_mask */
1615 FALSE
), /* pcrel_offset */
1617 HOWTO (R_ARM_TLS_LDO12
, /* type */
1619 2, /* size (0 = byte, 1 = short, 2 = long) */
1621 FALSE
, /* pc_relative */
1623 complain_overflow_bitfield
,/* complain_on_overflow */
1624 bfd_elf_generic_reloc
, /* special_function */
1625 "R_ARM_TLS_LDO12", /* name */
1626 FALSE
, /* partial_inplace */
1627 0x00000fff, /* src_mask */
1628 0x00000fff, /* dst_mask */
1629 FALSE
), /* pcrel_offset */
1631 HOWTO (R_ARM_TLS_LE12
, /* type */
1633 2, /* size (0 = byte, 1 = short, 2 = long) */
1635 FALSE
, /* pc_relative */
1637 complain_overflow_bitfield
,/* complain_on_overflow */
1638 bfd_elf_generic_reloc
, /* special_function */
1639 "R_ARM_TLS_LE12", /* name */
1640 FALSE
, /* partial_inplace */
1641 0x00000fff, /* src_mask */
1642 0x00000fff, /* dst_mask */
1643 FALSE
), /* pcrel_offset */
1645 HOWTO (R_ARM_TLS_IE12GP
, /* type */
1647 2, /* size (0 = byte, 1 = short, 2 = long) */
1649 FALSE
, /* pc_relative */
1651 complain_overflow_bitfield
,/* complain_on_overflow */
1652 bfd_elf_generic_reloc
, /* special_function */
1653 "R_ARM_TLS_IE12GP", /* name */
1654 FALSE
, /* partial_inplace */
1655 0x00000fff, /* src_mask */
1656 0x00000fff, /* dst_mask */
1657 FALSE
), /* pcrel_offset */
1659 /* 112-127 private relocations. */
1677 /* R_ARM_ME_TOO, obsolete. */
1680 HOWTO (R_ARM_THM_TLS_DESCSEQ
, /* type */
1682 1, /* size (0 = byte, 1 = short, 2 = long) */
1684 FALSE
, /* pc_relative */
1686 complain_overflow_dont
,/* complain_on_overflow */
1687 bfd_elf_generic_reloc
, /* special_function */
1688 "R_ARM_THM_TLS_DESCSEQ",/* name */
1689 FALSE
, /* partial_inplace */
1690 0x00000000, /* src_mask */
1691 0x00000000, /* dst_mask */
1692 FALSE
), /* pcrel_offset */
1695 HOWTO (R_ARM_THM_ALU_ABS_G0_NC
,/* type. */
1696 0, /* rightshift. */
1697 1, /* size (0 = byte, 1 = short, 2 = long). */
1699 FALSE
, /* pc_relative. */
1701 complain_overflow_bitfield
,/* complain_on_overflow. */
1702 bfd_elf_generic_reloc
, /* special_function. */
1703 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */
1704 FALSE
, /* partial_inplace. */
1705 0x00000000, /* src_mask. */
1706 0x00000000, /* dst_mask. */
1707 FALSE
), /* pcrel_offset. */
1708 HOWTO (R_ARM_THM_ALU_ABS_G1_NC
,/* type. */
1709 0, /* rightshift. */
1710 1, /* size (0 = byte, 1 = short, 2 = long). */
1712 FALSE
, /* pc_relative. */
1714 complain_overflow_bitfield
,/* complain_on_overflow. */
1715 bfd_elf_generic_reloc
, /* special_function. */
1716 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */
1717 FALSE
, /* partial_inplace. */
1718 0x00000000, /* src_mask. */
1719 0x00000000, /* dst_mask. */
1720 FALSE
), /* pcrel_offset. */
1721 HOWTO (R_ARM_THM_ALU_ABS_G2_NC
,/* type. */
1722 0, /* rightshift. */
1723 1, /* size (0 = byte, 1 = short, 2 = long). */
1725 FALSE
, /* pc_relative. */
1727 complain_overflow_bitfield
,/* complain_on_overflow. */
1728 bfd_elf_generic_reloc
, /* special_function. */
1729 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */
1730 FALSE
, /* partial_inplace. */
1731 0x00000000, /* src_mask. */
1732 0x00000000, /* dst_mask. */
1733 FALSE
), /* pcrel_offset. */
1734 HOWTO (R_ARM_THM_ALU_ABS_G3_NC
,/* type. */
1735 0, /* rightshift. */
1736 1, /* size (0 = byte, 1 = short, 2 = long). */
1738 FALSE
, /* pc_relative. */
1740 complain_overflow_bitfield
,/* complain_on_overflow. */
1741 bfd_elf_generic_reloc
, /* special_function. */
1742 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */
1743 FALSE
, /* partial_inplace. */
1744 0x00000000, /* src_mask. */
1745 0x00000000, /* dst_mask. */
1746 FALSE
), /* pcrel_offset. */
1747 /* Relocations for Armv8.1-M Mainline. */
1748 HOWTO (R_ARM_THM_BF16
, /* type. */
1749 0, /* rightshift. */
1750 1, /* size (0 = byte, 1 = short, 2 = long). */
1752 TRUE
, /* pc_relative. */
1754 complain_overflow_dont
,/* do not complain_on_overflow. */
1755 bfd_elf_generic_reloc
, /* special_function. */
1756 "R_ARM_THM_BF16", /* name. */
1757 FALSE
, /* partial_inplace. */
1758 0x001f0ffe, /* src_mask. */
1759 0x001f0ffe, /* dst_mask. */
1760 TRUE
), /* pcrel_offset. */
1761 HOWTO (R_ARM_THM_BF12
, /* type. */
1762 0, /* rightshift. */
1763 1, /* size (0 = byte, 1 = short, 2 = long). */
1765 TRUE
, /* pc_relative. */
1767 complain_overflow_dont
,/* do not complain_on_overflow. */
1768 bfd_elf_generic_reloc
, /* special_function. */
1769 "R_ARM_THM_BF12", /* name. */
1770 FALSE
, /* partial_inplace. */
1771 0x00010ffe, /* src_mask. */
1772 0x00010ffe, /* dst_mask. */
1773 TRUE
), /* pcrel_offset. */
1774 HOWTO (R_ARM_THM_BF18
, /* type. */
1775 0, /* rightshift. */
1776 1, /* size (0 = byte, 1 = short, 2 = long). */
1778 TRUE
, /* pc_relative. */
1780 complain_overflow_dont
,/* do not complain_on_overflow. */
1781 bfd_elf_generic_reloc
, /* special_function. */
1782 "R_ARM_THM_BF18", /* name. */
1783 FALSE
, /* partial_inplace. */
1784 0x007f0ffe, /* src_mask. */
1785 0x007f0ffe, /* dst_mask. */
1786 TRUE
), /* pcrel_offset. */
1790 static reloc_howto_type elf32_arm_howto_table_2
[8] =
1792 HOWTO (R_ARM_IRELATIVE
, /* type */
1794 2, /* size (0 = byte, 1 = short, 2 = long) */
1796 FALSE
, /* pc_relative */
1798 complain_overflow_bitfield
,/* complain_on_overflow */
1799 bfd_elf_generic_reloc
, /* special_function */
1800 "R_ARM_IRELATIVE", /* name */
1801 TRUE
, /* partial_inplace */
1802 0xffffffff, /* src_mask */
1803 0xffffffff, /* dst_mask */
1804 FALSE
), /* pcrel_offset */
1805 HOWTO (R_ARM_GOTFUNCDESC
, /* type */
1807 2, /* size (0 = byte, 1 = short, 2 = long) */
1809 FALSE
, /* pc_relative */
1811 complain_overflow_bitfield
,/* complain_on_overflow */
1812 bfd_elf_generic_reloc
, /* special_function */
1813 "R_ARM_GOTFUNCDESC", /* name */
1814 FALSE
, /* partial_inplace */
1816 0xffffffff, /* dst_mask */
1817 FALSE
), /* pcrel_offset */
1818 HOWTO (R_ARM_GOTOFFFUNCDESC
, /* type */
1820 2, /* size (0 = byte, 1 = short, 2 = long) */
1822 FALSE
, /* pc_relative */
1824 complain_overflow_bitfield
,/* complain_on_overflow */
1825 bfd_elf_generic_reloc
, /* special_function */
1826 "R_ARM_GOTOFFFUNCDESC",/* name */
1827 FALSE
, /* partial_inplace */
1829 0xffffffff, /* dst_mask */
1830 FALSE
), /* pcrel_offset */
1831 HOWTO (R_ARM_FUNCDESC
, /* type */
1833 2, /* size (0 = byte, 1 = short, 2 = long) */
1835 FALSE
, /* pc_relative */
1837 complain_overflow_bitfield
,/* complain_on_overflow */
1838 bfd_elf_generic_reloc
, /* special_function */
1839 "R_ARM_FUNCDESC", /* name */
1840 FALSE
, /* partial_inplace */
1842 0xffffffff, /* dst_mask */
1843 FALSE
), /* pcrel_offset */
1844 HOWTO (R_ARM_FUNCDESC_VALUE
, /* type */
1846 2, /* size (0 = byte, 1 = short, 2 = long) */
1848 FALSE
, /* pc_relative */
1850 complain_overflow_bitfield
,/* complain_on_overflow */
1851 bfd_elf_generic_reloc
, /* special_function */
1852 "R_ARM_FUNCDESC_VALUE",/* name */
1853 FALSE
, /* partial_inplace */
1855 0xffffffff, /* dst_mask */
1856 FALSE
), /* pcrel_offset */
1857 HOWTO (R_ARM_TLS_GD32_FDPIC
, /* type */
1859 2, /* size (0 = byte, 1 = short, 2 = long) */
1861 FALSE
, /* pc_relative */
1863 complain_overflow_bitfield
,/* complain_on_overflow */
1864 bfd_elf_generic_reloc
, /* special_function */
1865 "R_ARM_TLS_GD32_FDPIC",/* name */
1866 FALSE
, /* partial_inplace */
1868 0xffffffff, /* dst_mask */
1869 FALSE
), /* pcrel_offset */
1870 HOWTO (R_ARM_TLS_LDM32_FDPIC
, /* type */
1872 2, /* size (0 = byte, 1 = short, 2 = long) */
1874 FALSE
, /* pc_relative */
1876 complain_overflow_bitfield
,/* complain_on_overflow */
1877 bfd_elf_generic_reloc
, /* special_function */
1878 "R_ARM_TLS_LDM32_FDPIC",/* name */
1879 FALSE
, /* partial_inplace */
1881 0xffffffff, /* dst_mask */
1882 FALSE
), /* pcrel_offset */
1883 HOWTO (R_ARM_TLS_IE32_FDPIC
, /* type */
1885 2, /* size (0 = byte, 1 = short, 2 = long) */
1887 FALSE
, /* pc_relative */
1889 complain_overflow_bitfield
,/* complain_on_overflow */
1890 bfd_elf_generic_reloc
, /* special_function */
1891 "R_ARM_TLS_IE32_FDPIC",/* name */
1892 FALSE
, /* partial_inplace */
1894 0xffffffff, /* dst_mask */
1895 FALSE
), /* pcrel_offset */
1898 /* 249-255 extended, currently unused, relocations: */
1899 static reloc_howto_type elf32_arm_howto_table_3
[4] =
1901 HOWTO (R_ARM_RREL32
, /* type */
1903 0, /* size (0 = byte, 1 = short, 2 = long) */
1905 FALSE
, /* pc_relative */
1907 complain_overflow_dont
,/* complain_on_overflow */
1908 bfd_elf_generic_reloc
, /* special_function */
1909 "R_ARM_RREL32", /* name */
1910 FALSE
, /* partial_inplace */
1913 FALSE
), /* pcrel_offset */
1915 HOWTO (R_ARM_RABS32
, /* type */
1917 0, /* size (0 = byte, 1 = short, 2 = long) */
1919 FALSE
, /* pc_relative */
1921 complain_overflow_dont
,/* complain_on_overflow */
1922 bfd_elf_generic_reloc
, /* special_function */
1923 "R_ARM_RABS32", /* name */
1924 FALSE
, /* partial_inplace */
1927 FALSE
), /* pcrel_offset */
1929 HOWTO (R_ARM_RPC24
, /* type */
1931 0, /* size (0 = byte, 1 = short, 2 = long) */
1933 FALSE
, /* pc_relative */
1935 complain_overflow_dont
,/* complain_on_overflow */
1936 bfd_elf_generic_reloc
, /* special_function */
1937 "R_ARM_RPC24", /* name */
1938 FALSE
, /* partial_inplace */
1941 FALSE
), /* pcrel_offset */
1943 HOWTO (R_ARM_RBASE
, /* type */
1945 0, /* size (0 = byte, 1 = short, 2 = long) */
1947 FALSE
, /* pc_relative */
1949 complain_overflow_dont
,/* complain_on_overflow */
1950 bfd_elf_generic_reloc
, /* special_function */
1951 "R_ARM_RBASE", /* name */
1952 FALSE
, /* partial_inplace */
1955 FALSE
) /* pcrel_offset */
1958 static reloc_howto_type
*
1959 elf32_arm_howto_from_type (unsigned int r_type
)
1961 if (r_type
< ARRAY_SIZE (elf32_arm_howto_table_1
))
1962 return &elf32_arm_howto_table_1
[r_type
];
1964 if (r_type
>= R_ARM_IRELATIVE
1965 && r_type
< R_ARM_IRELATIVE
+ ARRAY_SIZE (elf32_arm_howto_table_2
))
1966 return &elf32_arm_howto_table_2
[r_type
- R_ARM_IRELATIVE
];
1968 if (r_type
>= R_ARM_RREL32
1969 && r_type
< R_ARM_RREL32
+ ARRAY_SIZE (elf32_arm_howto_table_3
))
1970 return &elf32_arm_howto_table_3
[r_type
- R_ARM_RREL32
];
1976 elf32_arm_info_to_howto (bfd
* abfd
, arelent
* bfd_reloc
,
1977 Elf_Internal_Rela
* elf_reloc
)
1979 unsigned int r_type
;
1981 r_type
= ELF32_R_TYPE (elf_reloc
->r_info
);
1982 if ((bfd_reloc
->howto
= elf32_arm_howto_from_type (r_type
)) == NULL
)
1984 /* xgettext:c-format */
1985 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1987 bfd_set_error (bfd_error_bad_value
);
1993 struct elf32_arm_reloc_map
1995 bfd_reloc_code_real_type bfd_reloc_val
;
1996 unsigned char elf_reloc_val
;
1999 /* All entries in this list must also be present in elf32_arm_howto_table. */
2000 static const struct elf32_arm_reloc_map elf32_arm_reloc_map
[] =
2002 {BFD_RELOC_NONE
, R_ARM_NONE
},
2003 {BFD_RELOC_ARM_PCREL_BRANCH
, R_ARM_PC24
},
2004 {BFD_RELOC_ARM_PCREL_CALL
, R_ARM_CALL
},
2005 {BFD_RELOC_ARM_PCREL_JUMP
, R_ARM_JUMP24
},
2006 {BFD_RELOC_ARM_PCREL_BLX
, R_ARM_XPC25
},
2007 {BFD_RELOC_THUMB_PCREL_BLX
, R_ARM_THM_XPC22
},
2008 {BFD_RELOC_32
, R_ARM_ABS32
},
2009 {BFD_RELOC_32_PCREL
, R_ARM_REL32
},
2010 {BFD_RELOC_8
, R_ARM_ABS8
},
2011 {BFD_RELOC_16
, R_ARM_ABS16
},
2012 {BFD_RELOC_ARM_OFFSET_IMM
, R_ARM_ABS12
},
2013 {BFD_RELOC_ARM_THUMB_OFFSET
, R_ARM_THM_ABS5
},
2014 {BFD_RELOC_THUMB_PCREL_BRANCH25
, R_ARM_THM_JUMP24
},
2015 {BFD_RELOC_THUMB_PCREL_BRANCH23
, R_ARM_THM_CALL
},
2016 {BFD_RELOC_THUMB_PCREL_BRANCH12
, R_ARM_THM_JUMP11
},
2017 {BFD_RELOC_THUMB_PCREL_BRANCH20
, R_ARM_THM_JUMP19
},
2018 {BFD_RELOC_THUMB_PCREL_BRANCH9
, R_ARM_THM_JUMP8
},
2019 {BFD_RELOC_THUMB_PCREL_BRANCH7
, R_ARM_THM_JUMP6
},
2020 {BFD_RELOC_ARM_GLOB_DAT
, R_ARM_GLOB_DAT
},
2021 {BFD_RELOC_ARM_JUMP_SLOT
, R_ARM_JUMP_SLOT
},
2022 {BFD_RELOC_ARM_RELATIVE
, R_ARM_RELATIVE
},
2023 {BFD_RELOC_ARM_GOTOFF
, R_ARM_GOTOFF32
},
2024 {BFD_RELOC_ARM_GOTPC
, R_ARM_GOTPC
},
2025 {BFD_RELOC_ARM_GOT_PREL
, R_ARM_GOT_PREL
},
2026 {BFD_RELOC_ARM_GOT32
, R_ARM_GOT32
},
2027 {BFD_RELOC_ARM_PLT32
, R_ARM_PLT32
},
2028 {BFD_RELOC_ARM_TARGET1
, R_ARM_TARGET1
},
2029 {BFD_RELOC_ARM_ROSEGREL32
, R_ARM_ROSEGREL32
},
2030 {BFD_RELOC_ARM_SBREL32
, R_ARM_SBREL32
},
2031 {BFD_RELOC_ARM_PREL31
, R_ARM_PREL31
},
2032 {BFD_RELOC_ARM_TARGET2
, R_ARM_TARGET2
},
2033 {BFD_RELOC_ARM_PLT32
, R_ARM_PLT32
},
2034 {BFD_RELOC_ARM_TLS_GOTDESC
, R_ARM_TLS_GOTDESC
},
2035 {BFD_RELOC_ARM_TLS_CALL
, R_ARM_TLS_CALL
},
2036 {BFD_RELOC_ARM_THM_TLS_CALL
, R_ARM_THM_TLS_CALL
},
2037 {BFD_RELOC_ARM_TLS_DESCSEQ
, R_ARM_TLS_DESCSEQ
},
2038 {BFD_RELOC_ARM_THM_TLS_DESCSEQ
, R_ARM_THM_TLS_DESCSEQ
},
2039 {BFD_RELOC_ARM_TLS_DESC
, R_ARM_TLS_DESC
},
2040 {BFD_RELOC_ARM_TLS_GD32
, R_ARM_TLS_GD32
},
2041 {BFD_RELOC_ARM_TLS_LDO32
, R_ARM_TLS_LDO32
},
2042 {BFD_RELOC_ARM_TLS_LDM32
, R_ARM_TLS_LDM32
},
2043 {BFD_RELOC_ARM_TLS_DTPMOD32
, R_ARM_TLS_DTPMOD32
},
2044 {BFD_RELOC_ARM_TLS_DTPOFF32
, R_ARM_TLS_DTPOFF32
},
2045 {BFD_RELOC_ARM_TLS_TPOFF32
, R_ARM_TLS_TPOFF32
},
2046 {BFD_RELOC_ARM_TLS_IE32
, R_ARM_TLS_IE32
},
2047 {BFD_RELOC_ARM_TLS_LE32
, R_ARM_TLS_LE32
},
2048 {BFD_RELOC_ARM_IRELATIVE
, R_ARM_IRELATIVE
},
2049 {BFD_RELOC_ARM_GOTFUNCDESC
, R_ARM_GOTFUNCDESC
},
2050 {BFD_RELOC_ARM_GOTOFFFUNCDESC
, R_ARM_GOTOFFFUNCDESC
},
2051 {BFD_RELOC_ARM_FUNCDESC
, R_ARM_FUNCDESC
},
2052 {BFD_RELOC_ARM_FUNCDESC_VALUE
, R_ARM_FUNCDESC_VALUE
},
2053 {BFD_RELOC_ARM_TLS_GD32_FDPIC
, R_ARM_TLS_GD32_FDPIC
},
2054 {BFD_RELOC_ARM_TLS_LDM32_FDPIC
, R_ARM_TLS_LDM32_FDPIC
},
2055 {BFD_RELOC_ARM_TLS_IE32_FDPIC
, R_ARM_TLS_IE32_FDPIC
},
2056 {BFD_RELOC_VTABLE_INHERIT
, R_ARM_GNU_VTINHERIT
},
2057 {BFD_RELOC_VTABLE_ENTRY
, R_ARM_GNU_VTENTRY
},
2058 {BFD_RELOC_ARM_MOVW
, R_ARM_MOVW_ABS_NC
},
2059 {BFD_RELOC_ARM_MOVT
, R_ARM_MOVT_ABS
},
2060 {BFD_RELOC_ARM_MOVW_PCREL
, R_ARM_MOVW_PREL_NC
},
2061 {BFD_RELOC_ARM_MOVT_PCREL
, R_ARM_MOVT_PREL
},
2062 {BFD_RELOC_ARM_THUMB_MOVW
, R_ARM_THM_MOVW_ABS_NC
},
2063 {BFD_RELOC_ARM_THUMB_MOVT
, R_ARM_THM_MOVT_ABS
},
2064 {BFD_RELOC_ARM_THUMB_MOVW_PCREL
, R_ARM_THM_MOVW_PREL_NC
},
2065 {BFD_RELOC_ARM_THUMB_MOVT_PCREL
, R_ARM_THM_MOVT_PREL
},
2066 {BFD_RELOC_ARM_ALU_PC_G0_NC
, R_ARM_ALU_PC_G0_NC
},
2067 {BFD_RELOC_ARM_ALU_PC_G0
, R_ARM_ALU_PC_G0
},
2068 {BFD_RELOC_ARM_ALU_PC_G1_NC
, R_ARM_ALU_PC_G1_NC
},
2069 {BFD_RELOC_ARM_ALU_PC_G1
, R_ARM_ALU_PC_G1
},
2070 {BFD_RELOC_ARM_ALU_PC_G2
, R_ARM_ALU_PC_G2
},
2071 {BFD_RELOC_ARM_LDR_PC_G0
, R_ARM_LDR_PC_G0
},
2072 {BFD_RELOC_ARM_LDR_PC_G1
, R_ARM_LDR_PC_G1
},
2073 {BFD_RELOC_ARM_LDR_PC_G2
, R_ARM_LDR_PC_G2
},
2074 {BFD_RELOC_ARM_LDRS_PC_G0
, R_ARM_LDRS_PC_G0
},
2075 {BFD_RELOC_ARM_LDRS_PC_G1
, R_ARM_LDRS_PC_G1
},
2076 {BFD_RELOC_ARM_LDRS_PC_G2
, R_ARM_LDRS_PC_G2
},
2077 {BFD_RELOC_ARM_LDC_PC_G0
, R_ARM_LDC_PC_G0
},
2078 {BFD_RELOC_ARM_LDC_PC_G1
, R_ARM_LDC_PC_G1
},
2079 {BFD_RELOC_ARM_LDC_PC_G2
, R_ARM_LDC_PC_G2
},
2080 {BFD_RELOC_ARM_ALU_SB_G0_NC
, R_ARM_ALU_SB_G0_NC
},
2081 {BFD_RELOC_ARM_ALU_SB_G0
, R_ARM_ALU_SB_G0
},
2082 {BFD_RELOC_ARM_ALU_SB_G1_NC
, R_ARM_ALU_SB_G1_NC
},
2083 {BFD_RELOC_ARM_ALU_SB_G1
, R_ARM_ALU_SB_G1
},
2084 {BFD_RELOC_ARM_ALU_SB_G2
, R_ARM_ALU_SB_G2
},
2085 {BFD_RELOC_ARM_LDR_SB_G0
, R_ARM_LDR_SB_G0
},
2086 {BFD_RELOC_ARM_LDR_SB_G1
, R_ARM_LDR_SB_G1
},
2087 {BFD_RELOC_ARM_LDR_SB_G2
, R_ARM_LDR_SB_G2
},
2088 {BFD_RELOC_ARM_LDRS_SB_G0
, R_ARM_LDRS_SB_G0
},
2089 {BFD_RELOC_ARM_LDRS_SB_G1
, R_ARM_LDRS_SB_G1
},
2090 {BFD_RELOC_ARM_LDRS_SB_G2
, R_ARM_LDRS_SB_G2
},
2091 {BFD_RELOC_ARM_LDC_SB_G0
, R_ARM_LDC_SB_G0
},
2092 {BFD_RELOC_ARM_LDC_SB_G1
, R_ARM_LDC_SB_G1
},
2093 {BFD_RELOC_ARM_LDC_SB_G2
, R_ARM_LDC_SB_G2
},
2094 {BFD_RELOC_ARM_V4BX
, R_ARM_V4BX
},
2095 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC
, R_ARM_THM_ALU_ABS_G3_NC
},
2096 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC
, R_ARM_THM_ALU_ABS_G2_NC
},
2097 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC
, R_ARM_THM_ALU_ABS_G1_NC
},
2098 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC
, R_ARM_THM_ALU_ABS_G0_NC
},
2099 {BFD_RELOC_ARM_THUMB_BF17
, R_ARM_THM_BF16
},
2100 {BFD_RELOC_ARM_THUMB_BF13
, R_ARM_THM_BF12
},
2101 {BFD_RELOC_ARM_THUMB_BF19
, R_ARM_THM_BF18
}
2104 static reloc_howto_type
*
2105 elf32_arm_reloc_type_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
2106 bfd_reloc_code_real_type code
)
2110 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_reloc_map
); i
++)
2111 if (elf32_arm_reloc_map
[i
].bfd_reloc_val
== code
)
2112 return elf32_arm_howto_from_type (elf32_arm_reloc_map
[i
].elf_reloc_val
);
2117 static reloc_howto_type
*
2118 elf32_arm_reloc_name_lookup (bfd
*abfd ATTRIBUTE_UNUSED
,
2123 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_1
); i
++)
2124 if (elf32_arm_howto_table_1
[i
].name
!= NULL
2125 && strcasecmp (elf32_arm_howto_table_1
[i
].name
, r_name
) == 0)
2126 return &elf32_arm_howto_table_1
[i
];
2128 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_2
); i
++)
2129 if (elf32_arm_howto_table_2
[i
].name
!= NULL
2130 && strcasecmp (elf32_arm_howto_table_2
[i
].name
, r_name
) == 0)
2131 return &elf32_arm_howto_table_2
[i
];
2133 for (i
= 0; i
< ARRAY_SIZE (elf32_arm_howto_table_3
); i
++)
2134 if (elf32_arm_howto_table_3
[i
].name
!= NULL
2135 && strcasecmp (elf32_arm_howto_table_3
[i
].name
, r_name
) == 0)
2136 return &elf32_arm_howto_table_3
[i
];
2141 /* Support for core dump NOTE sections. */
2144 elf32_arm_nabi_grok_prstatus (bfd
*abfd
, Elf_Internal_Note
*note
)
2149 switch (note
->descsz
)
2154 case 148: /* Linux/ARM 32-bit. */
2156 elf_tdata (abfd
)->core
->signal
= bfd_get_16 (abfd
, note
->descdata
+ 12);
2159 elf_tdata (abfd
)->core
->lwpid
= bfd_get_32 (abfd
, note
->descdata
+ 24);
2168 /* Make a ".reg/999" section. */
2169 return _bfd_elfcore_make_pseudosection (abfd
, ".reg",
2170 size
, note
->descpos
+ offset
);
2174 elf32_arm_nabi_grok_psinfo (bfd
*abfd
, Elf_Internal_Note
*note
)
2176 switch (note
->descsz
)
2181 case 124: /* Linux/ARM elf_prpsinfo. */
2182 elf_tdata (abfd
)->core
->pid
2183 = bfd_get_32 (abfd
, note
->descdata
+ 12);
2184 elf_tdata (abfd
)->core
->program
2185 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 28, 16);
2186 elf_tdata (abfd
)->core
->command
2187 = _bfd_elfcore_strndup (abfd
, note
->descdata
+ 44, 80);
2190 /* Note that for some reason, a spurious space is tacked
2191 onto the end of the args in some (at least one anyway)
2192 implementations, so strip it off if it exists. */
2194 char *command
= elf_tdata (abfd
)->core
->command
;
2195 int n
= strlen (command
);
2197 if (0 < n
&& command
[n
- 1] == ' ')
2198 command
[n
- 1] = '\0';
2205 elf32_arm_nabi_write_core_note (bfd
*abfd
, char *buf
, int *bufsiz
,
2215 char data
[124] ATTRIBUTE_NONSTRING
;
2218 va_start (ap
, note_type
);
2219 memset (data
, 0, sizeof (data
));
2220 strncpy (data
+ 28, va_arg (ap
, const char *), 16);
2221 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
2223 /* GCC 8.0 and 8.1 warn about 80 equals destination size with
2224 -Wstringop-truncation:
2225 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643
2227 DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION
;
2229 strncpy (data
+ 44, va_arg (ap
, const char *), 80);
2230 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
2235 return elfcore_write_note (abfd
, buf
, bufsiz
,
2236 "CORE", note_type
, data
, sizeof (data
));
2247 va_start (ap
, note_type
);
2248 memset (data
, 0, sizeof (data
));
2249 pid
= va_arg (ap
, long);
2250 bfd_put_32 (abfd
, pid
, data
+ 24);
2251 cursig
= va_arg (ap
, int);
2252 bfd_put_16 (abfd
, cursig
, data
+ 12);
2253 greg
= va_arg (ap
, const void *);
2254 memcpy (data
+ 72, greg
, 72);
2257 return elfcore_write_note (abfd
, buf
, bufsiz
,
2258 "CORE", note_type
, data
, sizeof (data
));
2263 #define TARGET_LITTLE_SYM arm_elf32_le_vec
2264 #define TARGET_LITTLE_NAME "elf32-littlearm"
2265 #define TARGET_BIG_SYM arm_elf32_be_vec
2266 #define TARGET_BIG_NAME "elf32-bigarm"
2268 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2269 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
2270 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note
2272 typedef unsigned long int insn32
;
2273 typedef unsigned short int insn16
;
2275 /* In lieu of proper flags, assume all EABIv4 or later objects are
2277 #define INTERWORK_FLAG(abfd) \
2278 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2279 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2280 || ((abfd)->flags & BFD_LINKER_CREATED))
2282 /* The linker script knows the section names for placement.
2283 The entry_names are used to do simple name mangling on the stubs.
2284 Given a function name, and its type, the stub can be found. The
2285 name can be changed. The only requirement is the %s be present. */
2286 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2287 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2289 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2290 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2292 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2293 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2295 #define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer"
2296 #define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x"
2298 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2299 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2301 #define STUB_ENTRY_NAME "__%s_veneer"
2303 #define CMSE_PREFIX "__acle_se_"
2305 #define CMSE_STUB_NAME ".gnu.sgstubs"
2307 /* The name of the dynamic interpreter. This is put in the .interp
2309 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2311 /* FDPIC default stack size. */
2312 #define DEFAULT_STACK_SIZE 0x8000
2314 static const unsigned long tls_trampoline
[] =
2316 0xe08e0000, /* add r0, lr, r0 */
2317 0xe5901004, /* ldr r1, [r0,#4] */
2318 0xe12fff11, /* bx r1 */
2321 static const unsigned long dl_tlsdesc_lazy_trampoline
[] =
2323 0xe52d2004, /* push {r2} */
2324 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2325 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2326 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2327 0xe081100f, /* 2: add r1, pc */
2328 0xe12fff12, /* bx r2 */
2329 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2330 + dl_tlsdesc_lazy_resolver(GOT) */
2331 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2334 /* NOTE: [Thumb nop sequence]
2335 When adding code that transitions from Thumb to Arm the instruction that
2336 should be used for the alignment padding should be 0xe7fd (b .-2) instead of
2337 a nop for performance reasons. */
2339 /* ARM FDPIC PLT entry. */
2340 /* The last 5 words contain PLT lazy fragment code and data. */
2341 static const bfd_vma elf32_arm_fdpic_plt_entry
[] =
2343 0xe59fc008, /* ldr r12, .L1 */
2344 0xe08cc009, /* add r12, r12, r9 */
2345 0xe59c9004, /* ldr r9, [r12, #4] */
2346 0xe59cf000, /* ldr pc, [r12] */
2347 0x00000000, /* L1. .word foo(GOTOFFFUNCDESC) */
2348 0x00000000, /* L1. .word foo(funcdesc_value_reloc_offset) */
2349 0xe51fc00c, /* ldr r12, [pc, #-12] */
2350 0xe92d1000, /* push {r12} */
2351 0xe599c004, /* ldr r12, [r9, #4] */
2352 0xe599f000, /* ldr pc, [r9] */
2355 /* Thumb FDPIC PLT entry. */
2356 /* The last 5 words contain PLT lazy fragment code and data. */
2357 static const bfd_vma elf32_arm_fdpic_thumb_plt_entry
[] =
2359 0xc00cf8df, /* ldr.w r12, .L1 */
2360 0x0c09eb0c, /* add.w r12, r12, r9 */
2361 0x9004f8dc, /* ldr.w r9, [r12, #4] */
2362 0xf000f8dc, /* ldr.w pc, [r12] */
2363 0x00000000, /* .L1 .word foo(GOTOFFFUNCDESC) */
2364 0x00000000, /* .L2 .word foo(funcdesc_value_reloc_offset) */
2365 0xc008f85f, /* ldr.w r12, .L2 */
2366 0xcd04f84d, /* push {r12} */
2367 0xc004f8d9, /* ldr.w r12, [r9, #4] */
2368 0xf000f8d9, /* ldr.w pc, [r9] */
2371 #ifdef FOUR_WORD_PLT
2373 /* The first entry in a procedure linkage table looks like
2374 this. It is set up so that any shared library function that is
2375 called before the relocation has been set up calls the dynamic
2377 static const bfd_vma elf32_arm_plt0_entry
[] =
2379 0xe52de004, /* str lr, [sp, #-4]! */
2380 0xe59fe010, /* ldr lr, [pc, #16] */
2381 0xe08fe00e, /* add lr, pc, lr */
2382 0xe5bef008, /* ldr pc, [lr, #8]! */
2385 /* Subsequent entries in a procedure linkage table look like
2387 static const bfd_vma elf32_arm_plt_entry
[] =
2389 0xe28fc600, /* add ip, pc, #NN */
2390 0xe28cca00, /* add ip, ip, #NN */
2391 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2392 0x00000000, /* unused */
2395 #else /* not FOUR_WORD_PLT */
2397 /* The first entry in a procedure linkage table looks like
2398 this. It is set up so that any shared library function that is
2399 called before the relocation has been set up calls the dynamic
2401 static const bfd_vma elf32_arm_plt0_entry
[] =
2403 0xe52de004, /* str lr, [sp, #-4]! */
2404 0xe59fe004, /* ldr lr, [pc, #4] */
2405 0xe08fe00e, /* add lr, pc, lr */
2406 0xe5bef008, /* ldr pc, [lr, #8]! */
2407 0x00000000, /* &GOT[0] - . */
2410 /* By default subsequent entries in a procedure linkage table look like
2411 this. Offsets that don't fit into 28 bits will cause link error. */
2412 static const bfd_vma elf32_arm_plt_entry_short
[] =
2414 0xe28fc600, /* add ip, pc, #0xNN00000 */
2415 0xe28cca00, /* add ip, ip, #0xNN000 */
2416 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2419 /* When explicitly asked, we'll use this "long" entry format
2420 which can cope with arbitrary displacements. */
2421 static const bfd_vma elf32_arm_plt_entry_long
[] =
2423 0xe28fc200, /* add ip, pc, #0xN0000000 */
2424 0xe28cc600, /* add ip, ip, #0xNN00000 */
2425 0xe28cca00, /* add ip, ip, #0xNN000 */
2426 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2429 static bfd_boolean elf32_arm_use_long_plt_entry
= FALSE
;
2431 #endif /* not FOUR_WORD_PLT */
2433 /* The first entry in a procedure linkage table looks like this.
2434 It is set up so that any shared library function that is called before the
2435 relocation has been set up calls the dynamic linker first. */
2436 static const bfd_vma elf32_thumb2_plt0_entry
[] =
2438 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2439 an instruction maybe encoded to one or two array elements. */
2440 0xf8dfb500, /* push {lr} */
2441 0x44fee008, /* ldr.w lr, [pc, #8] */
2443 0xff08f85e, /* ldr.w pc, [lr, #8]! */
2444 0x00000000, /* &GOT[0] - . */
2447 /* Subsequent entries in a procedure linkage table for thumb only target
2449 static const bfd_vma elf32_thumb2_plt_entry
[] =
2451 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2452 an instruction maybe encoded to one or two array elements. */
2453 0x0c00f240, /* movw ip, #0xNNNN */
2454 0x0c00f2c0, /* movt ip, #0xNNNN */
2455 0xf8dc44fc, /* add ip, pc */
2456 0xe7fcf000 /* ldr.w pc, [ip] */
2460 /* The format of the first entry in the procedure linkage table
2461 for a VxWorks executable. */
2462 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry
[] =
2464 0xe52dc008, /* str ip,[sp,#-8]! */
2465 0xe59fc000, /* ldr ip,[pc] */
2466 0xe59cf008, /* ldr pc,[ip,#8] */
2467 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2470 /* The format of subsequent entries in a VxWorks executable. */
2471 static const bfd_vma elf32_arm_vxworks_exec_plt_entry
[] =
2473 0xe59fc000, /* ldr ip,[pc] */
2474 0xe59cf000, /* ldr pc,[ip] */
2475 0x00000000, /* .long @got */
2476 0xe59fc000, /* ldr ip,[pc] */
2477 0xea000000, /* b _PLT */
2478 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2481 /* The format of entries in a VxWorks shared library. */
2482 static const bfd_vma elf32_arm_vxworks_shared_plt_entry
[] =
2484 0xe59fc000, /* ldr ip,[pc] */
2485 0xe79cf009, /* ldr pc,[ip,r9] */
2486 0x00000000, /* .long @got */
2487 0xe59fc000, /* ldr ip,[pc] */
2488 0xe599f008, /* ldr pc,[r9,#8] */
2489 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2492 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2493 #define PLT_THUMB_STUB_SIZE 4
2494 static const bfd_vma elf32_arm_plt_thumb_stub
[] =
2500 /* The entries in a PLT when using a DLL-based target with multiple
2502 static const bfd_vma elf32_arm_symbian_plt_entry
[] =
2504 0xe51ff004, /* ldr pc, [pc, #-4] */
2505 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2508 /* The first entry in a procedure linkage table looks like
2509 this. It is set up so that any shared library function that is
2510 called before the relocation has been set up calls the dynamic
2512 static const bfd_vma elf32_arm_nacl_plt0_entry
[] =
2515 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2516 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2517 0xe08cc00f, /* add ip, ip, pc */
2518 0xe52dc008, /* str ip, [sp, #-8]! */
2519 /* Second bundle: */
2520 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2521 0xe59cc000, /* ldr ip, [ip] */
2522 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2523 0xe12fff1c, /* bx ip */
2525 0xe320f000, /* nop */
2526 0xe320f000, /* nop */
2527 0xe320f000, /* nop */
2529 0xe50dc004, /* str ip, [sp, #-4] */
2530 /* Fourth bundle: */
2531 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2532 0xe59cc000, /* ldr ip, [ip] */
2533 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2534 0xe12fff1c, /* bx ip */
2536 #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2538 /* Subsequent entries in a procedure linkage table look like this. */
2539 static const bfd_vma elf32_arm_nacl_plt_entry
[] =
2541 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2542 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2543 0xe08cc00f, /* add ip, ip, pc */
2544 0xea000000, /* b .Lplt_tail */
2547 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2548 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2549 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2550 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2551 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2552 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2553 #define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2554 #define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
2564 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2565 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2566 is inserted in arm_build_one_stub(). */
2567 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2568 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2569 #define THUMB32_MOVT(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVT_ABS, 0}
2570 #define THUMB32_MOVW(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVW_ABS_NC, 0}
2571 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2572 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2573 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2574 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2579 enum stub_insn_type type
;
2580 unsigned int r_type
;
2584 /* See note [Thumb nop sequence] when adding a veneer. */
2586 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2587 to reach the stub if necessary. */
2588 static const insn_sequence elf32_arm_stub_long_branch_any_any
[] =
2590 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2591 DATA_WORD (0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2594 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2596 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb
[] =
2598 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2599 ARM_INSN (0xe12fff1c), /* bx ip */
2600 DATA_WORD (0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2603 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2604 static const insn_sequence elf32_arm_stub_long_branch_thumb_only
[] =
2606 THUMB16_INSN (0xb401), /* push {r0} */
2607 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2608 THUMB16_INSN (0x4684), /* mov ip, r0 */
2609 THUMB16_INSN (0xbc01), /* pop {r0} */
2610 THUMB16_INSN (0x4760), /* bx ip */
2611 THUMB16_INSN (0xbf00), /* nop */
2612 DATA_WORD (0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2615 /* Thumb -> Thumb long branch stub in thumb2 encoding. Used on armv7. */
2616 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only
[] =
2618 THUMB32_INSN (0xf85ff000), /* ldr.w pc, [pc, #-0] */
2619 DATA_WORD (0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(x) */
2622 /* Thumb -> Thumb long branch stub. Used for PureCode sections on Thumb2
2623 M-profile architectures. */
2624 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only_pure
[] =
2626 THUMB32_MOVW (0xf2400c00), /* mov.w ip, R_ARM_MOVW_ABS_NC */
2627 THUMB32_MOVT (0xf2c00c00), /* movt ip, R_ARM_MOVT_ABS << 16 */
2628 THUMB16_INSN (0x4760), /* bx ip */
2631 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2633 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb
[] =
2635 THUMB16_INSN (0x4778), /* bx pc */
2636 THUMB16_INSN (0xe7fd), /* b .-2 */
2637 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2638 ARM_INSN (0xe12fff1c), /* bx ip */
2639 DATA_WORD (0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2642 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2644 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm
[] =
2646 THUMB16_INSN (0x4778), /* bx pc */
2647 THUMB16_INSN (0xe7fd), /* b .-2 */
2648 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2649 DATA_WORD (0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2652 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2653 one, when the destination is close enough. */
2654 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm
[] =
2656 THUMB16_INSN (0x4778), /* bx pc */
2657 THUMB16_INSN (0xe7fd), /* b .-2 */
2658 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2661 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2662 blx to reach the stub if necessary. */
2663 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic
[] =
2665 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2666 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2667 DATA_WORD (0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X-4) */
2670 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2671 blx to reach the stub if necessary. We can not add into pc;
2672 it is not guaranteed to mode switch (different in ARMv6 and
2674 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic
[] =
2676 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2677 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2678 ARM_INSN (0xe12fff1c), /* bx ip */
2679 DATA_WORD (0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2682 /* V4T ARM -> ARM long branch stub, PIC. */
2683 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic
[] =
2685 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2686 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2687 ARM_INSN (0xe12fff1c), /* bx ip */
2688 DATA_WORD (0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2691 /* V4T Thumb -> ARM long branch stub, PIC. */
2692 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic
[] =
2694 THUMB16_INSN (0x4778), /* bx pc */
2695 THUMB16_INSN (0xe7fd), /* b .-2 */
2696 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2697 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2698 DATA_WORD (0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X) */
2701 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2703 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic
[] =
2705 THUMB16_INSN (0xb401), /* push {r0} */
2706 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2707 THUMB16_INSN (0x46fc), /* mov ip, pc */
2708 THUMB16_INSN (0x4484), /* add ip, r0 */
2709 THUMB16_INSN (0xbc01), /* pop {r0} */
2710 THUMB16_INSN (0x4760), /* bx ip */
2711 DATA_WORD (0, R_ARM_REL32
, 4), /* dcd R_ARM_REL32(X) */
2714 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2716 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic
[] =
2718 THUMB16_INSN (0x4778), /* bx pc */
2719 THUMB16_INSN (0xe7fd), /* b .-2 */
2720 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2721 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2722 ARM_INSN (0xe12fff1c), /* bx ip */
2723 DATA_WORD (0, R_ARM_REL32
, 0), /* dcd R_ARM_REL32(X) */
2726 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2727 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2728 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic
[] =
2730 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2731 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2732 DATA_WORD (0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X-4) */
2735 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2736 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2737 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic
[] =
2739 THUMB16_INSN (0x4778), /* bx pc */
2740 THUMB16_INSN (0xe7fd), /* b .-2 */
2741 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2742 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2743 DATA_WORD (0, R_ARM_REL32
, -4), /* dcd R_ARM_REL32(X) */
2746 /* NaCl ARM -> ARM long branch stub. */
2747 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl
[] =
2749 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2750 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2751 ARM_INSN (0xe12fff1c), /* bx ip */
2752 ARM_INSN (0xe320f000), /* nop */
2753 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2754 DATA_WORD (0, R_ARM_ABS32
, 0), /* dcd R_ARM_ABS32(X) */
2755 DATA_WORD (0, R_ARM_NONE
, 0), /* .word 0 */
2756 DATA_WORD (0, R_ARM_NONE
, 0), /* .word 0 */
2759 /* NaCl ARM -> ARM long branch stub, PIC. */
2760 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic
[] =
2762 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2763 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
2764 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2765 ARM_INSN (0xe12fff1c), /* bx ip */
2766 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2767 DATA_WORD (0, R_ARM_REL32
, 8), /* dcd R_ARM_REL32(X+8) */
2768 DATA_WORD (0, R_ARM_NONE
, 0), /* .word 0 */
2769 DATA_WORD (0, R_ARM_NONE
, 0), /* .word 0 */
2772 /* Stub used for transition to secure state (aka SG veneer). */
2773 static const insn_sequence elf32_arm_stub_cmse_branch_thumb_only
[] =
2775 THUMB32_INSN (0xe97fe97f), /* sg. */
2776 THUMB32_B_INSN (0xf000b800, -4), /* b.w original_branch_dest. */
2780 /* Cortex-A8 erratum-workaround stubs. */
2782 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2783 can't use a conditional branch to reach this stub). */
2785 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond
[] =
2787 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2788 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2789 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2792 /* Stub used for b.w and bl.w instructions. */
2794 static const insn_sequence elf32_arm_stub_a8_veneer_b
[] =
2796 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2799 static const insn_sequence elf32_arm_stub_a8_veneer_bl
[] =
2801 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2804 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2805 instruction (which switches to ARM mode) to point to this stub. Jump to the
2806 real destination using an ARM-mode branch. */
2808 static const insn_sequence elf32_arm_stub_a8_veneer_blx
[] =
2810 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2813 /* For each section group there can be a specially created linker section
2814 to hold the stubs for that group. The name of the stub section is based
2815 upon the name of another section within that group with the suffix below
2818 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2819 create what appeared to be a linker stub section when it actually
2820 contained user code/data. For example, consider this fragment:
2822 const char * stubborn_problems[] = { "np" };
2824 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2827 .data.rel.local.stubborn_problems
2829 This then causes problems in arm32_arm_build_stubs() as it triggers:
2831 // Ignore non-stub sections.
2832 if (!strstr (stub_sec->name, STUB_SUFFIX))
2835 And so the section would be ignored instead of being processed. Hence
2836 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2838 #define STUB_SUFFIX ".__stub"
2840 /* One entry per long/short branch stub defined above. */
2842 DEF_STUB(long_branch_any_any) \
2843 DEF_STUB(long_branch_v4t_arm_thumb) \
2844 DEF_STUB(long_branch_thumb_only) \
2845 DEF_STUB(long_branch_v4t_thumb_thumb) \
2846 DEF_STUB(long_branch_v4t_thumb_arm) \
2847 DEF_STUB(short_branch_v4t_thumb_arm) \
2848 DEF_STUB(long_branch_any_arm_pic) \
2849 DEF_STUB(long_branch_any_thumb_pic) \
2850 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2851 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2852 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2853 DEF_STUB(long_branch_thumb_only_pic) \
2854 DEF_STUB(long_branch_any_tls_pic) \
2855 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2856 DEF_STUB(long_branch_arm_nacl) \
2857 DEF_STUB(long_branch_arm_nacl_pic) \
2858 DEF_STUB(cmse_branch_thumb_only) \
2859 DEF_STUB(a8_veneer_b_cond) \
2860 DEF_STUB(a8_veneer_b) \
2861 DEF_STUB(a8_veneer_bl) \
2862 DEF_STUB(a8_veneer_blx) \
2863 DEF_STUB(long_branch_thumb2_only) \
2864 DEF_STUB(long_branch_thumb2_only_pure)
2866 #define DEF_STUB(x) arm_stub_##x,
2867 enum elf32_arm_stub_type
2875 /* Note the first a8_veneer type. */
2876 const unsigned arm_stub_a8_veneer_lwm
= arm_stub_a8_veneer_b_cond
;
2880 const insn_sequence
* template_sequence
;
2884 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2885 static const stub_def stub_definitions
[] =
2891 struct elf32_arm_stub_hash_entry
2893 /* Base hash table entry structure. */
2894 struct bfd_hash_entry root
;
2896 /* The stub section. */
2899 /* Offset within stub_sec of the beginning of this stub. */
2900 bfd_vma stub_offset
;
2902 /* Given the symbol's value and its section we can determine its final
2903 value when building the stubs (so the stub knows where to jump). */
2904 bfd_vma target_value
;
2905 asection
*target_section
;
2907 /* Same as above but for the source of the branch to the stub. Used for
2908 Cortex-A8 erratum workaround to patch it to branch to the stub. As
2909 such, source section does not need to be recorded since Cortex-A8 erratum
2910 workaround stubs are only generated when both source and target are in the
2912 bfd_vma source_value
;
2914 /* The instruction which caused this stub to be generated (only valid for
2915 Cortex-A8 erratum workaround stubs at present). */
2916 unsigned long orig_insn
;
2918 /* The stub type. */
2919 enum elf32_arm_stub_type stub_type
;
2920 /* Its encoding size in bytes. */
2923 const insn_sequence
*stub_template
;
2924 /* The size of the template (number of entries). */
2925 int stub_template_size
;
2927 /* The symbol table entry, if any, that this was derived from. */
2928 struct elf32_arm_link_hash_entry
*h
;
2930 /* Type of branch. */
2931 enum arm_st_branch_type branch_type
;
2933 /* Where this stub is being called from, or, in the case of combined
2934 stub sections, the first input section in the group. */
2937 /* The name for the local symbol at the start of this stub. The
2938 stub name in the hash table has to be unique; this does not, so
2939 it can be friendlier. */
2943 /* Used to build a map of a section. This is required for mixed-endian
2946 typedef struct elf32_elf_section_map
2951 elf32_arm_section_map
;
2953 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2957 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
,
2958 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER
,
2959 VFP11_ERRATUM_ARM_VENEER
,
2960 VFP11_ERRATUM_THUMB_VENEER
2962 elf32_vfp11_erratum_type
;
2964 typedef struct elf32_vfp11_erratum_list
2966 struct elf32_vfp11_erratum_list
*next
;
2972 struct elf32_vfp11_erratum_list
*veneer
;
2973 unsigned int vfp_insn
;
2977 struct elf32_vfp11_erratum_list
*branch
;
2981 elf32_vfp11_erratum_type type
;
2983 elf32_vfp11_erratum_list
;
2985 /* Information about a STM32L4XX erratum veneer, or a branch to such a
2989 STM32L4XX_ERRATUM_BRANCH_TO_VENEER
,
2990 STM32L4XX_ERRATUM_VENEER
2992 elf32_stm32l4xx_erratum_type
;
2994 typedef struct elf32_stm32l4xx_erratum_list
2996 struct elf32_stm32l4xx_erratum_list
*next
;
3002 struct elf32_stm32l4xx_erratum_list
*veneer
;
3007 struct elf32_stm32l4xx_erratum_list
*branch
;
3011 elf32_stm32l4xx_erratum_type type
;
3013 elf32_stm32l4xx_erratum_list
;
3018 INSERT_EXIDX_CANTUNWIND_AT_END
3020 arm_unwind_edit_type
;
3022 /* A (sorted) list of edits to apply to an unwind table. */
3023 typedef struct arm_unwind_table_edit
3025 arm_unwind_edit_type type
;
3026 /* Note: we sometimes want to insert an unwind entry corresponding to a
3027 section different from the one we're currently writing out, so record the
3028 (text) section this edit relates to here. */
3029 asection
*linked_section
;
3031 struct arm_unwind_table_edit
*next
;
3033 arm_unwind_table_edit
;
3035 typedef struct _arm_elf_section_data
3037 /* Information about mapping symbols. */
3038 struct bfd_elf_section_data elf
;
3039 unsigned int mapcount
;
3040 unsigned int mapsize
;
3041 elf32_arm_section_map
*map
;
3042 /* Information about CPU errata. */
3043 unsigned int erratumcount
;
3044 elf32_vfp11_erratum_list
*erratumlist
;
3045 unsigned int stm32l4xx_erratumcount
;
3046 elf32_stm32l4xx_erratum_list
*stm32l4xx_erratumlist
;
3047 unsigned int additional_reloc_count
;
3048 /* Information about unwind tables. */
3051 /* Unwind info attached to a text section. */
3054 asection
*arm_exidx_sec
;
3057 /* Unwind info attached to an .ARM.exidx section. */
3060 arm_unwind_table_edit
*unwind_edit_list
;
3061 arm_unwind_table_edit
*unwind_edit_tail
;
3065 _arm_elf_section_data
;
3067 #define elf32_arm_section_data(sec) \
3068 ((_arm_elf_section_data *) elf_section_data (sec))
3070 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
3071 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
3072 so may be created multiple times: we use an array of these entries whilst
3073 relaxing which we can refresh easily, then create stubs for each potentially
3074 erratum-triggering instruction once we've settled on a solution. */
3076 struct a8_erratum_fix
3081 bfd_vma target_offset
;
3082 unsigned long orig_insn
;
3084 enum elf32_arm_stub_type stub_type
;
3085 enum arm_st_branch_type branch_type
;
3088 /* A table of relocs applied to branches which might trigger Cortex-A8
3091 struct a8_erratum_reloc
3094 bfd_vma destination
;
3095 struct elf32_arm_link_hash_entry
*hash
;
3096 const char *sym_name
;
3097 unsigned int r_type
;
3098 enum arm_st_branch_type branch_type
;
3099 bfd_boolean non_a8_stub
;
3102 /* The size of the thread control block. */
3105 /* ARM-specific information about a PLT entry, over and above the usual
3109 /* We reference count Thumb references to a PLT entry separately,
3110 so that we can emit the Thumb trampoline only if needed. */
3111 bfd_signed_vma thumb_refcount
;
3113 /* Some references from Thumb code may be eliminated by BL->BLX
3114 conversion, so record them separately. */
3115 bfd_signed_vma maybe_thumb_refcount
;
3117 /* How many of the recorded PLT accesses were from non-call relocations.
3118 This information is useful when deciding whether anything takes the
3119 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
3120 non-call references to the function should resolve directly to the
3121 real runtime target. */
3122 unsigned int noncall_refcount
;
3124 /* Since PLT entries have variable size if the Thumb prologue is
3125 used, we need to record the index into .got.plt instead of
3126 recomputing it from the PLT offset. */
3127 bfd_signed_vma got_offset
;
3130 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
3131 struct arm_local_iplt_info
3133 /* The information that is usually found in the generic ELF part of
3134 the hash table entry. */
3135 union gotplt_union root
;
3137 /* The information that is usually found in the ARM-specific part of
3138 the hash table entry. */
3139 struct arm_plt_info arm
;
3141 /* A list of all potential dynamic relocations against this symbol. */
3142 struct elf_dyn_relocs
*dyn_relocs
;
3145 /* Structure to handle FDPIC support for local functions. */
3146 struct fdpic_local
{
3147 unsigned int funcdesc_cnt
;
3148 unsigned int gotofffuncdesc_cnt
;
3149 int funcdesc_offset
;
3152 struct elf_arm_obj_tdata
3154 struct elf_obj_tdata root
;
3156 /* tls_type for each local got entry. */
3157 char *local_got_tls_type
;
3159 /* GOTPLT entries for TLS descriptors. */
3160 bfd_vma
*local_tlsdesc_gotent
;
3162 /* Information for local symbols that need entries in .iplt. */
3163 struct arm_local_iplt_info
**local_iplt
;
3165 /* Zero to warn when linking objects with incompatible enum sizes. */
3166 int no_enum_size_warning
;
3168 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
3169 int no_wchar_size_warning
;
3171 /* Maintains FDPIC counters and funcdesc info. */
3172 struct fdpic_local
*local_fdpic_cnts
;
3175 #define elf_arm_tdata(bfd) \
3176 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
3178 #define elf32_arm_local_got_tls_type(bfd) \
3179 (elf_arm_tdata (bfd)->local_got_tls_type)
3181 #define elf32_arm_local_tlsdesc_gotent(bfd) \
3182 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
3184 #define elf32_arm_local_iplt(bfd) \
3185 (elf_arm_tdata (bfd)->local_iplt)
3187 #define elf32_arm_local_fdpic_cnts(bfd) \
3188 (elf_arm_tdata (bfd)->local_fdpic_cnts)
3190 #define is_arm_elf(bfd) \
3191 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
3192 && elf_tdata (bfd) != NULL \
3193 && elf_object_id (bfd) == ARM_ELF_DATA)
3196 elf32_arm_mkobject (bfd
*abfd
)
3198 return bfd_elf_allocate_object (abfd
, sizeof (struct elf_arm_obj_tdata
),
3202 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
3204 /* Structure to handle FDPIC support for extern functions. */
3205 struct fdpic_global
{
3206 unsigned int gotofffuncdesc_cnt
;
3207 unsigned int gotfuncdesc_cnt
;
3208 unsigned int funcdesc_cnt
;
3209 int funcdesc_offset
;
3210 int gotfuncdesc_offset
;
3213 /* Arm ELF linker hash entry. */
3214 struct elf32_arm_link_hash_entry
3216 struct elf_link_hash_entry root
;
3218 /* ARM-specific PLT information. */
3219 struct arm_plt_info plt
;
3221 #define GOT_UNKNOWN 0
3222 #define GOT_NORMAL 1
3223 #define GOT_TLS_GD 2
3224 #define GOT_TLS_IE 4
3225 #define GOT_TLS_GDESC 8
3226 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
3227 unsigned int tls_type
: 8;
3229 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
3230 unsigned int is_iplt
: 1;
3232 unsigned int unused
: 23;
3234 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
3235 starting at the end of the jump table. */
3236 bfd_vma tlsdesc_got
;
3238 /* The symbol marking the real symbol location for exported thumb
3239 symbols with Arm stubs. */
3240 struct elf_link_hash_entry
*export_glue
;
3242 /* A pointer to the most recently used stub hash entry against this
3244 struct elf32_arm_stub_hash_entry
*stub_cache
;
3246 /* Counter for FDPIC relocations against this symbol. */
3247 struct fdpic_global fdpic_cnts
;
3250 /* Traverse an arm ELF linker hash table. */
3251 #define elf32_arm_link_hash_traverse(table, func, info) \
3252 (elf_link_hash_traverse \
3254 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
3257 /* Get the ARM elf linker hash table from a link_info structure. */
3258 #define elf32_arm_hash_table(p) \
3259 ((is_elf_hash_table ((p)->hash) \
3260 && elf_hash_table_id (elf_hash_table (p)) == ARM_ELF_DATA) \
3261 ? (struct elf32_arm_link_hash_table *) (p)->hash : NULL)
3263 #define arm_stub_hash_lookup(table, string, create, copy) \
3264 ((struct elf32_arm_stub_hash_entry *) \
3265 bfd_hash_lookup ((table), (string), (create), (copy)))
3267 /* Array to keep track of which stub sections have been created, and
3268 information on stub grouping. */
3271 /* This is the section to which stubs in the group will be
3274 /* The stub section. */
3278 #define elf32_arm_compute_jump_table_size(htab) \
3279 ((htab)->next_tls_desc_index * 4)
3281 /* ARM ELF linker hash table. */
3282 struct elf32_arm_link_hash_table
3284 /* The main hash table. */
3285 struct elf_link_hash_table root
;
3287 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
3288 bfd_size_type thumb_glue_size
;
3290 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
3291 bfd_size_type arm_glue_size
;
3293 /* The size in bytes of section containing the ARMv4 BX veneers. */
3294 bfd_size_type bx_glue_size
;
3296 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
3297 veneer has been populated. */
3298 bfd_vma bx_glue_offset
[15];
3300 /* The size in bytes of the section containing glue for VFP11 erratum
3302 bfd_size_type vfp11_erratum_glue_size
;
3304 /* The size in bytes of the section containing glue for STM32L4XX erratum
3306 bfd_size_type stm32l4xx_erratum_glue_size
;
3308 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
3309 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
3310 elf32_arm_write_section(). */
3311 struct a8_erratum_fix
*a8_erratum_fixes
;
3312 unsigned int num_a8_erratum_fixes
;
3314 /* An arbitrary input BFD chosen to hold the glue sections. */
3315 bfd
* bfd_of_glue_owner
;
3317 /* Nonzero to output a BE8 image. */
3320 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
3321 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
3324 /* The relocation to use for R_ARM_TARGET2 relocations. */
3327 /* 0 = Ignore R_ARM_V4BX.
3328 1 = Convert BX to MOV PC.
3329 2 = Generate v4 interworing stubs. */
3332 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
3335 /* Whether we should fix the ARM1176 BLX immediate issue. */
3338 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
3341 /* What sort of code sequences we should look for which may trigger the
3342 VFP11 denorm erratum. */
3343 bfd_arm_vfp11_fix vfp11_fix
;
3345 /* Global counter for the number of fixes we have emitted. */
3346 int num_vfp11_fixes
;
3348 /* What sort of code sequences we should look for which may trigger the
3349 STM32L4XX erratum. */
3350 bfd_arm_stm32l4xx_fix stm32l4xx_fix
;
3352 /* Global counter for the number of fixes we have emitted. */
3353 int num_stm32l4xx_fixes
;
3355 /* Nonzero to force PIC branch veneers. */
3358 /* The number of bytes in the initial entry in the PLT. */
3359 bfd_size_type plt_header_size
;
3361 /* The number of bytes in the subsequent PLT etries. */
3362 bfd_size_type plt_entry_size
;
3364 /* True if the target uses REL relocations. */
3365 bfd_boolean use_rel
;
3367 /* Nonzero if import library must be a secure gateway import library
3368 as per ARMv8-M Security Extensions. */
3371 /* The import library whose symbols' address must remain stable in
3372 the import library generated. */
3375 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3376 bfd_vma next_tls_desc_index
;
3378 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3379 bfd_vma num_tls_desc
;
3381 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3384 /* Offset in .plt section of tls_arm_trampoline. */
3385 bfd_vma tls_trampoline
;
3387 /* Data for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
3390 bfd_signed_vma refcount
;
3394 /* For convenience in allocate_dynrelocs. */
3397 /* The amount of space used by the reserved portion of the sgotplt
3398 section, plus whatever space is used by the jump slots. */
3399 bfd_vma sgotplt_jump_table_size
;
3401 /* The stub hash table. */
3402 struct bfd_hash_table stub_hash_table
;
3404 /* Linker stub bfd. */
3407 /* Linker call-backs. */
3408 asection
* (*add_stub_section
) (const char *, asection
*, asection
*,
3410 void (*layout_sections_again
) (void);
3412 /* Array to keep track of which stub sections have been created, and
3413 information on stub grouping. */
3414 struct map_stub
*stub_group
;
3416 /* Input stub section holding secure gateway veneers. */
3417 asection
*cmse_stub_sec
;
3419 /* Offset in cmse_stub_sec where new SG veneers (not in input import library)
3420 start to be allocated. */
3421 bfd_vma new_cmse_stub_offset
;
3423 /* Number of elements in stub_group. */
3424 unsigned int top_id
;
3426 /* Assorted information used by elf32_arm_size_stubs. */
3427 unsigned int bfd_count
;
3428 unsigned int top_index
;
3429 asection
**input_list
;
3431 /* True if the target system uses FDPIC. */
3434 /* Fixup section. Used for FDPIC. */
3438 /* Add an FDPIC read-only fixup. */
3440 arm_elf_add_rofixup (bfd
*output_bfd
, asection
*srofixup
, bfd_vma offset
)
3442 bfd_vma fixup_offset
;
3444 fixup_offset
= srofixup
->reloc_count
++ * 4;
3445 BFD_ASSERT (fixup_offset
< srofixup
->size
);
3446 bfd_put_32 (output_bfd
, offset
, srofixup
->contents
+ fixup_offset
);
3450 ctz (unsigned int mask
)
3452 #if GCC_VERSION >= 3004
3453 return __builtin_ctz (mask
);
3457 for (i
= 0; i
< 8 * sizeof (mask
); i
++)
3468 elf32_arm_popcount (unsigned int mask
)
3470 #if GCC_VERSION >= 3004
3471 return __builtin_popcount (mask
);
3476 for (i
= 0; i
< 8 * sizeof (mask
); i
++)
3486 static void elf32_arm_add_dynreloc (bfd
*output_bfd
, struct bfd_link_info
*info
,
3487 asection
*sreloc
, Elf_Internal_Rela
*rel
);
3490 arm_elf_fill_funcdesc(bfd
*output_bfd
,
3491 struct bfd_link_info
*info
,
3492 int *funcdesc_offset
,
3496 bfd_vma dynreloc_value
,
3499 if ((*funcdesc_offset
& 1) == 0)
3501 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (info
);
3502 asection
*sgot
= globals
->root
.sgot
;
3504 if (bfd_link_pic(info
))
3506 asection
*srelgot
= globals
->root
.srelgot
;
3507 Elf_Internal_Rela outrel
;
3509 outrel
.r_info
= ELF32_R_INFO (dynindx
, R_ARM_FUNCDESC_VALUE
);
3510 outrel
.r_offset
= sgot
->output_section
->vma
+ sgot
->output_offset
+ offset
;
3511 outrel
.r_addend
= 0;
3513 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
3514 bfd_put_32 (output_bfd
, addr
, sgot
->contents
+ offset
);
3515 bfd_put_32 (output_bfd
, seg
, sgot
->contents
+ offset
+ 4);
3519 struct elf_link_hash_entry
*hgot
= globals
->root
.hgot
;
3520 bfd_vma got_value
= hgot
->root
.u
.def
.value
3521 + hgot
->root
.u
.def
.section
->output_section
->vma
3522 + hgot
->root
.u
.def
.section
->output_offset
;
3524 arm_elf_add_rofixup(output_bfd
, globals
->srofixup
,
3525 sgot
->output_section
->vma
+ sgot
->output_offset
3527 arm_elf_add_rofixup(output_bfd
, globals
->srofixup
,
3528 sgot
->output_section
->vma
+ sgot
->output_offset
3530 bfd_put_32 (output_bfd
, dynreloc_value
, sgot
->contents
+ offset
);
3531 bfd_put_32 (output_bfd
, got_value
, sgot
->contents
+ offset
+ 4);
3533 *funcdesc_offset
|= 1;
3537 /* Create an entry in an ARM ELF linker hash table. */
3539 static struct bfd_hash_entry
*
3540 elf32_arm_link_hash_newfunc (struct bfd_hash_entry
* entry
,
3541 struct bfd_hash_table
* table
,
3542 const char * string
)
3544 struct elf32_arm_link_hash_entry
* ret
=
3545 (struct elf32_arm_link_hash_entry
*) entry
;
3547 /* Allocate the structure if it has not already been allocated by a
3550 ret
= (struct elf32_arm_link_hash_entry
*)
3551 bfd_hash_allocate (table
, sizeof (struct elf32_arm_link_hash_entry
));
3553 return (struct bfd_hash_entry
*) ret
;
3555 /* Call the allocation method of the superclass. */
3556 ret
= ((struct elf32_arm_link_hash_entry
*)
3557 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry
*) ret
,
3561 ret
->tls_type
= GOT_UNKNOWN
;
3562 ret
->tlsdesc_got
= (bfd_vma
) -1;
3563 ret
->plt
.thumb_refcount
= 0;
3564 ret
->plt
.maybe_thumb_refcount
= 0;
3565 ret
->plt
.noncall_refcount
= 0;
3566 ret
->plt
.got_offset
= -1;
3567 ret
->is_iplt
= FALSE
;
3568 ret
->export_glue
= NULL
;
3570 ret
->stub_cache
= NULL
;
3572 ret
->fdpic_cnts
.gotofffuncdesc_cnt
= 0;
3573 ret
->fdpic_cnts
.gotfuncdesc_cnt
= 0;
3574 ret
->fdpic_cnts
.funcdesc_cnt
= 0;
3575 ret
->fdpic_cnts
.funcdesc_offset
= -1;
3576 ret
->fdpic_cnts
.gotfuncdesc_offset
= -1;
3579 return (struct bfd_hash_entry
*) ret
;
3582 /* Ensure that we have allocated bookkeeping structures for ABFD's local
3586 elf32_arm_allocate_local_sym_info (bfd
*abfd
)
3588 if (elf_local_got_refcounts (abfd
) == NULL
)
3590 bfd_size_type num_syms
;
3594 num_syms
= elf_tdata (abfd
)->symtab_hdr
.sh_info
;
3595 size
= num_syms
* (sizeof (bfd_signed_vma
)
3597 + sizeof (struct arm_local_iplt_info
*)
3598 + sizeof (struct fdpic_local
)
3600 data
= bfd_zalloc (abfd
, size
);
3604 /* It is important that these all be allocated in descending
3605 order of required alignment, so that arrays allocated later
3606 will be sufficiently aligned. */
3607 elf_local_got_refcounts (abfd
) = (bfd_signed_vma
*) data
;
3608 data
+= num_syms
* sizeof (bfd_signed_vma
);
3610 elf32_arm_local_tlsdesc_gotent (abfd
) = (bfd_vma
*) data
;
3611 data
+= num_syms
* sizeof (bfd_vma
);
3613 elf32_arm_local_iplt (abfd
) = (struct arm_local_iplt_info
**) data
;
3614 data
+= num_syms
* sizeof (struct arm_local_iplt_info
*);
3616 elf32_arm_local_fdpic_cnts (abfd
) = (struct fdpic_local
*) data
;
3617 data
+= num_syms
* sizeof (struct fdpic_local
);
3619 elf32_arm_local_got_tls_type (abfd
) = data
;
3620 #if GCC_VERSION >= 3000
3621 BFD_ASSERT (__alignof__ (*elf32_arm_local_tlsdesc_gotent (abfd
))
3622 <= __alignof__ (*elf_local_got_refcounts (abfd
)));
3623 BFD_ASSERT (__alignof__ (*elf32_arm_local_iplt (abfd
))
3624 <= __alignof__ (*elf32_arm_local_tlsdesc_gotent (abfd
)));
3625 BFD_ASSERT (__alignof__ (*elf32_arm_local_fdpic_cnts (abfd
))
3626 <= __alignof__ (*elf32_arm_local_iplt (abfd
)));
3627 BFD_ASSERT (__alignof__ (*elf32_arm_local_got_tls_type (abfd
))
3628 <= __alignof__ (*elf32_arm_local_fdpic_cnts (abfd
)));
3634 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
3635 to input bfd ABFD. Create the information if it doesn't already exist.
3636 Return null if an allocation fails. */
3638 static struct arm_local_iplt_info
*
3639 elf32_arm_create_local_iplt (bfd
*abfd
, unsigned long r_symndx
)
3641 struct arm_local_iplt_info
**ptr
;
3643 if (!elf32_arm_allocate_local_sym_info (abfd
))
3646 BFD_ASSERT (r_symndx
< elf_tdata (abfd
)->symtab_hdr
.sh_info
);
3647 ptr
= &elf32_arm_local_iplt (abfd
)[r_symndx
];
3649 *ptr
= bfd_zalloc (abfd
, sizeof (**ptr
));
3653 /* Try to obtain PLT information for the symbol with index R_SYMNDX
3654 in ABFD's symbol table. If the symbol is global, H points to its
3655 hash table entry, otherwise H is null.
3657 Return true if the symbol does have PLT information. When returning
3658 true, point *ROOT_PLT at the target-independent reference count/offset
3659 union and *ARM_PLT at the ARM-specific information. */
3662 elf32_arm_get_plt_info (bfd
*abfd
, struct elf32_arm_link_hash_table
*globals
,
3663 struct elf32_arm_link_hash_entry
*h
,
3664 unsigned long r_symndx
, union gotplt_union
**root_plt
,
3665 struct arm_plt_info
**arm_plt
)
3667 struct arm_local_iplt_info
*local_iplt
;
3669 if (globals
->root
.splt
== NULL
&& globals
->root
.iplt
== NULL
)
3674 *root_plt
= &h
->root
.plt
;
3679 if (elf32_arm_local_iplt (abfd
) == NULL
)
3682 local_iplt
= elf32_arm_local_iplt (abfd
)[r_symndx
];
3683 if (local_iplt
== NULL
)
3686 *root_plt
= &local_iplt
->root
;
3687 *arm_plt
= &local_iplt
->arm
;
3691 static bfd_boolean
using_thumb_only (struct elf32_arm_link_hash_table
*globals
);
3693 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3697 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info
*info
,
3698 struct arm_plt_info
*arm_plt
)
3700 struct elf32_arm_link_hash_table
*htab
;
3702 htab
= elf32_arm_hash_table (info
);
3704 return (!using_thumb_only(htab
) && (arm_plt
->thumb_refcount
!= 0
3705 || (!htab
->use_blx
&& arm_plt
->maybe_thumb_refcount
!= 0)));
3708 /* Return a pointer to the head of the dynamic reloc list that should
3709 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3710 ABFD's symbol table. Return null if an error occurs. */
3712 static struct elf_dyn_relocs
**
3713 elf32_arm_get_local_dynreloc_list (bfd
*abfd
, unsigned long r_symndx
,
3714 Elf_Internal_Sym
*isym
)
3716 if (ELF32_ST_TYPE (isym
->st_info
) == STT_GNU_IFUNC
)
3718 struct arm_local_iplt_info
*local_iplt
;
3720 local_iplt
= elf32_arm_create_local_iplt (abfd
, r_symndx
);
3721 if (local_iplt
== NULL
)
3723 return &local_iplt
->dyn_relocs
;
3727 /* Track dynamic relocs needed for local syms too.
3728 We really need local syms available to do this
3733 s
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
3737 vpp
= &elf_section_data (s
)->local_dynrel
;
3738 return (struct elf_dyn_relocs
**) vpp
;
3742 /* Initialize an entry in the stub hash table. */
3744 static struct bfd_hash_entry
*
3745 stub_hash_newfunc (struct bfd_hash_entry
*entry
,
3746 struct bfd_hash_table
*table
,
3749 /* Allocate the structure if it has not already been allocated by a
3753 entry
= (struct bfd_hash_entry
*)
3754 bfd_hash_allocate (table
, sizeof (struct elf32_arm_stub_hash_entry
));
3759 /* Call the allocation method of the superclass. */
3760 entry
= bfd_hash_newfunc (entry
, table
, string
);
3763 struct elf32_arm_stub_hash_entry
*eh
;
3765 /* Initialize the local fields. */
3766 eh
= (struct elf32_arm_stub_hash_entry
*) entry
;
3767 eh
->stub_sec
= NULL
;
3768 eh
->stub_offset
= (bfd_vma
) -1;
3769 eh
->source_value
= 0;
3770 eh
->target_value
= 0;
3771 eh
->target_section
= NULL
;
3773 eh
->stub_type
= arm_stub_none
;
3775 eh
->stub_template
= NULL
;
3776 eh
->stub_template_size
= -1;
3779 eh
->output_name
= NULL
;
3785 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3786 shortcuts to them in our hash table. */
3789 create_got_section (bfd
*dynobj
, struct bfd_link_info
*info
)
3791 struct elf32_arm_link_hash_table
*htab
;
3793 htab
= elf32_arm_hash_table (info
);
3797 /* BPABI objects never have a GOT, or associated sections. */
3798 if (htab
->root
.target_os
== is_symbian
)
3801 if (! _bfd_elf_create_got_section (dynobj
, info
))
3804 /* Also create .rofixup. */
3807 htab
->srofixup
= bfd_make_section_with_flags (dynobj
, ".rofixup",
3808 (SEC_ALLOC
| SEC_LOAD
| SEC_HAS_CONTENTS
3809 | SEC_IN_MEMORY
| SEC_LINKER_CREATED
| SEC_READONLY
));
3810 if (htab
->srofixup
== NULL
3811 || !bfd_set_section_alignment (htab
->srofixup
, 2))
3818 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3821 create_ifunc_sections (struct bfd_link_info
*info
)
3823 struct elf32_arm_link_hash_table
*htab
;
3824 const struct elf_backend_data
*bed
;
3829 htab
= elf32_arm_hash_table (info
);
3830 dynobj
= htab
->root
.dynobj
;
3831 bed
= get_elf_backend_data (dynobj
);
3832 flags
= bed
->dynamic_sec_flags
;
3834 if (htab
->root
.iplt
== NULL
)
3836 s
= bfd_make_section_anyway_with_flags (dynobj
, ".iplt",
3837 flags
| SEC_READONLY
| SEC_CODE
);
3839 || !bfd_set_section_alignment (s
, bed
->plt_alignment
))
3841 htab
->root
.iplt
= s
;
3844 if (htab
->root
.irelplt
== NULL
)
3846 s
= bfd_make_section_anyway_with_flags (dynobj
,
3847 RELOC_SECTION (htab
, ".iplt"),
3848 flags
| SEC_READONLY
);
3850 || !bfd_set_section_alignment (s
, bed
->s
->log_file_align
))
3852 htab
->root
.irelplt
= s
;
3855 if (htab
->root
.igotplt
== NULL
)
3857 s
= bfd_make_section_anyway_with_flags (dynobj
, ".igot.plt", flags
);
3859 || !bfd_set_section_alignment (s
, bed
->s
->log_file_align
))
3861 htab
->root
.igotplt
= s
;
3866 /* Determine if we're dealing with a Thumb only architecture. */
3869 using_thumb_only (struct elf32_arm_link_hash_table
*globals
)
3872 int profile
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3873 Tag_CPU_arch_profile
);
3876 return profile
== 'M';
3878 arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
, Tag_CPU_arch
);
3880 /* Force return logic to be reviewed for each new architecture. */
3881 BFD_ASSERT (arch
<= TAG_CPU_ARCH_V8_1M_MAIN
);
3883 if (arch
== TAG_CPU_ARCH_V6_M
3884 || arch
== TAG_CPU_ARCH_V6S_M
3885 || arch
== TAG_CPU_ARCH_V7E_M
3886 || arch
== TAG_CPU_ARCH_V8M_BASE
3887 || arch
== TAG_CPU_ARCH_V8M_MAIN
3888 || arch
== TAG_CPU_ARCH_V8_1M_MAIN
)
3894 /* Determine if we're dealing with a Thumb-2 object. */
3897 using_thumb2 (struct elf32_arm_link_hash_table
*globals
)
3900 int thumb_isa
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
3904 return thumb_isa
== 2;
3906 arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
, Tag_CPU_arch
);
3908 /* Force return logic to be reviewed for each new architecture. */
3909 BFD_ASSERT (arch
<= TAG_CPU_ARCH_V8_1M_MAIN
);
3911 return (arch
== TAG_CPU_ARCH_V6T2
3912 || arch
== TAG_CPU_ARCH_V7
3913 || arch
== TAG_CPU_ARCH_V7E_M
3914 || arch
== TAG_CPU_ARCH_V8
3915 || arch
== TAG_CPU_ARCH_V8R
3916 || arch
== TAG_CPU_ARCH_V8M_MAIN
3917 || arch
== TAG_CPU_ARCH_V8_1M_MAIN
);
3920 /* Determine whether Thumb-2 BL instruction is available. */
3923 using_thumb2_bl (struct elf32_arm_link_hash_table
*globals
)
3926 bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
, Tag_CPU_arch
);
3928 /* Force return logic to be reviewed for each new architecture. */
3929 BFD_ASSERT (arch
<= TAG_CPU_ARCH_V8_1M_MAIN
);
3931 /* Architecture was introduced after ARMv6T2 (eg. ARMv6-M). */
3932 return (arch
== TAG_CPU_ARCH_V6T2
3933 || arch
>= TAG_CPU_ARCH_V7
);
3936 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3937 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3941 elf32_arm_create_dynamic_sections (bfd
*dynobj
, struct bfd_link_info
*info
)
3943 struct elf32_arm_link_hash_table
*htab
;
3945 htab
= elf32_arm_hash_table (info
);
3949 if (!htab
->root
.sgot
&& !create_got_section (dynobj
, info
))
3952 if (!_bfd_elf_create_dynamic_sections (dynobj
, info
))
3955 if (htab
->root
.target_os
== is_vxworks
)
3957 if (!elf_vxworks_create_dynamic_sections (dynobj
, info
, &htab
->srelplt2
))
3960 if (bfd_link_pic (info
))
3962 htab
->plt_header_size
= 0;
3963 htab
->plt_entry_size
3964 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry
);
3968 htab
->plt_header_size
3969 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry
);
3970 htab
->plt_entry_size
3971 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry
);
3974 if (elf_elfheader (dynobj
))
3975 elf_elfheader (dynobj
)->e_ident
[EI_CLASS
] = ELFCLASS32
;
3980 Test for thumb only architectures. Note - we cannot just call
3981 using_thumb_only() as the attributes in the output bfd have not been
3982 initialised at this point, so instead we use the input bfd. */
3983 bfd
* saved_obfd
= htab
->obfd
;
3985 htab
->obfd
= dynobj
;
3986 if (using_thumb_only (htab
))
3988 htab
->plt_header_size
= 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry
);
3989 htab
->plt_entry_size
= 4 * ARRAY_SIZE (elf32_thumb2_plt_entry
);
3991 htab
->obfd
= saved_obfd
;
3994 if (htab
->fdpic_p
) {
3995 htab
->plt_header_size
= 0;
3996 if (info
->flags
& DF_BIND_NOW
)
3997 htab
->plt_entry_size
= 4 * (ARRAY_SIZE(elf32_arm_fdpic_plt_entry
) - 5);
3999 htab
->plt_entry_size
= 4 * ARRAY_SIZE(elf32_arm_fdpic_plt_entry
);
4002 if (!htab
->root
.splt
4003 || !htab
->root
.srelplt
4004 || !htab
->root
.sdynbss
4005 || (!bfd_link_pic (info
) && !htab
->root
.srelbss
))
4011 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4014 elf32_arm_copy_indirect_symbol (struct bfd_link_info
*info
,
4015 struct elf_link_hash_entry
*dir
,
4016 struct elf_link_hash_entry
*ind
)
4018 struct elf32_arm_link_hash_entry
*edir
, *eind
;
4020 edir
= (struct elf32_arm_link_hash_entry
*) dir
;
4021 eind
= (struct elf32_arm_link_hash_entry
*) ind
;
4023 if (ind
->root
.type
== bfd_link_hash_indirect
)
4025 /* Copy over PLT info. */
4026 edir
->plt
.thumb_refcount
+= eind
->plt
.thumb_refcount
;
4027 eind
->plt
.thumb_refcount
= 0;
4028 edir
->plt
.maybe_thumb_refcount
+= eind
->plt
.maybe_thumb_refcount
;
4029 eind
->plt
.maybe_thumb_refcount
= 0;
4030 edir
->plt
.noncall_refcount
+= eind
->plt
.noncall_refcount
;
4031 eind
->plt
.noncall_refcount
= 0;
4033 /* Copy FDPIC counters. */
4034 edir
->fdpic_cnts
.gotofffuncdesc_cnt
+= eind
->fdpic_cnts
.gotofffuncdesc_cnt
;
4035 edir
->fdpic_cnts
.gotfuncdesc_cnt
+= eind
->fdpic_cnts
.gotfuncdesc_cnt
;
4036 edir
->fdpic_cnts
.funcdesc_cnt
+= eind
->fdpic_cnts
.funcdesc_cnt
;
4038 /* We should only allocate a function to .iplt once the final
4039 symbol information is known. */
4040 BFD_ASSERT (!eind
->is_iplt
);
4042 if (dir
->got
.refcount
<= 0)
4044 edir
->tls_type
= eind
->tls_type
;
4045 eind
->tls_type
= GOT_UNKNOWN
;
4049 _bfd_elf_link_hash_copy_indirect (info
, dir
, ind
);
4052 /* Destroy an ARM elf linker hash table. */
4055 elf32_arm_link_hash_table_free (bfd
*obfd
)
4057 struct elf32_arm_link_hash_table
*ret
4058 = (struct elf32_arm_link_hash_table
*) obfd
->link
.hash
;
4060 bfd_hash_table_free (&ret
->stub_hash_table
);
4061 _bfd_elf_link_hash_table_free (obfd
);
4064 /* Create an ARM elf linker hash table. */
4066 static struct bfd_link_hash_table
*
4067 elf32_arm_link_hash_table_create (bfd
*abfd
)
4069 struct elf32_arm_link_hash_table
*ret
;
4070 size_t amt
= sizeof (struct elf32_arm_link_hash_table
);
4072 ret
= (struct elf32_arm_link_hash_table
*) bfd_zmalloc (amt
);
4076 if (!_bfd_elf_link_hash_table_init (& ret
->root
, abfd
,
4077 elf32_arm_link_hash_newfunc
,
4078 sizeof (struct elf32_arm_link_hash_entry
),
4085 ret
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
4086 ret
->stm32l4xx_fix
= BFD_ARM_STM32L4XX_FIX_NONE
;
4087 #ifdef FOUR_WORD_PLT
4088 ret
->plt_header_size
= 16;
4089 ret
->plt_entry_size
= 16;
4091 ret
->plt_header_size
= 20;
4092 ret
->plt_entry_size
= elf32_arm_use_long_plt_entry
? 16 : 12;
4094 ret
->use_rel
= TRUE
;
4098 if (!bfd_hash_table_init (&ret
->stub_hash_table
, stub_hash_newfunc
,
4099 sizeof (struct elf32_arm_stub_hash_entry
)))
4101 _bfd_elf_link_hash_table_free (abfd
);
4104 ret
->root
.root
.hash_table_free
= elf32_arm_link_hash_table_free
;
4106 return &ret
->root
.root
;
4109 /* Determine what kind of NOPs are available. */
4112 arch_has_arm_nop (struct elf32_arm_link_hash_table
*globals
)
4114 const int arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
4117 /* Force return logic to be reviewed for each new architecture. */
4118 BFD_ASSERT (arch
<= TAG_CPU_ARCH_V8_1M_MAIN
);
4120 return (arch
== TAG_CPU_ARCH_V6T2
4121 || arch
== TAG_CPU_ARCH_V6K
4122 || arch
== TAG_CPU_ARCH_V7
4123 || arch
== TAG_CPU_ARCH_V8
4124 || arch
== TAG_CPU_ARCH_V8R
);
4128 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type
)
4132 case arm_stub_long_branch_thumb_only
:
4133 case arm_stub_long_branch_thumb2_only
:
4134 case arm_stub_long_branch_thumb2_only_pure
:
4135 case arm_stub_long_branch_v4t_thumb_arm
:
4136 case arm_stub_short_branch_v4t_thumb_arm
:
4137 case arm_stub_long_branch_v4t_thumb_arm_pic
:
4138 case arm_stub_long_branch_v4t_thumb_tls_pic
:
4139 case arm_stub_long_branch_thumb_only_pic
:
4140 case arm_stub_cmse_branch_thumb_only
:
4151 /* Determine the type of stub needed, if any, for a call. */
4153 static enum elf32_arm_stub_type
4154 arm_type_of_stub (struct bfd_link_info
*info
,
4155 asection
*input_sec
,
4156 const Elf_Internal_Rela
*rel
,
4157 unsigned char st_type
,
4158 enum arm_st_branch_type
*actual_branch_type
,
4159 struct elf32_arm_link_hash_entry
*hash
,
4160 bfd_vma destination
,
4166 bfd_signed_vma branch_offset
;
4167 unsigned int r_type
;
4168 struct elf32_arm_link_hash_table
* globals
;
4169 bfd_boolean thumb2
, thumb2_bl
, thumb_only
;
4170 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
4172 enum arm_st_branch_type branch_type
= *actual_branch_type
;
4173 union gotplt_union
*root_plt
;
4174 struct arm_plt_info
*arm_plt
;
4178 if (branch_type
== ST_BRANCH_LONG
)
4181 globals
= elf32_arm_hash_table (info
);
4182 if (globals
== NULL
)
4185 thumb_only
= using_thumb_only (globals
);
4186 thumb2
= using_thumb2 (globals
);
4187 thumb2_bl
= using_thumb2_bl (globals
);
4189 arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
, Tag_CPU_arch
);
4191 /* True for architectures that implement the thumb2 movw instruction. */
4192 thumb2_movw
= thumb2
|| (arch
== TAG_CPU_ARCH_V8M_BASE
);
4194 /* Determine where the call point is. */
4195 location
= (input_sec
->output_offset
4196 + input_sec
->output_section
->vma
4199 r_type
= ELF32_R_TYPE (rel
->r_info
);
4201 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
4202 are considering a function call relocation. */
4203 if (thumb_only
&& (r_type
== R_ARM_THM_CALL
|| r_type
== R_ARM_THM_JUMP24
4204 || r_type
== R_ARM_THM_JUMP19
)
4205 && branch_type
== ST_BRANCH_TO_ARM
)
4206 branch_type
= ST_BRANCH_TO_THUMB
;
4208 /* For TLS call relocs, it is the caller's responsibility to provide
4209 the address of the appropriate trampoline. */
4210 if (r_type
!= R_ARM_TLS_CALL
4211 && r_type
!= R_ARM_THM_TLS_CALL
4212 && elf32_arm_get_plt_info (input_bfd
, globals
, hash
,
4213 ELF32_R_SYM (rel
->r_info
), &root_plt
,
4215 && root_plt
->offset
!= (bfd_vma
) -1)
4219 if (hash
== NULL
|| hash
->is_iplt
)
4220 splt
= globals
->root
.iplt
;
4222 splt
= globals
->root
.splt
;
4227 /* Note when dealing with PLT entries: the main PLT stub is in
4228 ARM mode, so if the branch is in Thumb mode, another
4229 Thumb->ARM stub will be inserted later just before the ARM
4230 PLT stub. If a long branch stub is needed, we'll add a
4231 Thumb->Arm one and branch directly to the ARM PLT entry.
4232 Here, we have to check if a pre-PLT Thumb->ARM stub
4233 is needed and if it will be close enough. */
4235 destination
= (splt
->output_section
->vma
4236 + splt
->output_offset
4237 + root_plt
->offset
);
4240 /* Thumb branch/call to PLT: it can become a branch to ARM
4241 or to Thumb. We must perform the same checks and
4242 corrections as in elf32_arm_final_link_relocate. */
4243 if ((r_type
== R_ARM_THM_CALL
)
4244 || (r_type
== R_ARM_THM_JUMP24
))
4246 if (globals
->use_blx
4247 && r_type
== R_ARM_THM_CALL
4250 /* If the Thumb BLX instruction is available, convert
4251 the BL to a BLX instruction to call the ARM-mode
4253 branch_type
= ST_BRANCH_TO_ARM
;
4258 /* Target the Thumb stub before the ARM PLT entry. */
4259 destination
-= PLT_THUMB_STUB_SIZE
;
4260 branch_type
= ST_BRANCH_TO_THUMB
;
4265 branch_type
= ST_BRANCH_TO_ARM
;
4269 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
4270 BFD_ASSERT (st_type
!= STT_GNU_IFUNC
);
4272 branch_offset
= (bfd_signed_vma
)(destination
- location
);
4274 if (r_type
== R_ARM_THM_CALL
|| r_type
== R_ARM_THM_JUMP24
4275 || r_type
== R_ARM_THM_TLS_CALL
|| r_type
== R_ARM_THM_JUMP19
)
4277 /* Handle cases where:
4278 - this call goes too far (different Thumb/Thumb2 max
4280 - it's a Thumb->Arm call and blx is not available, or it's a
4281 Thumb->Arm branch (not bl). A stub is needed in this case,
4282 but only if this call is not through a PLT entry. Indeed,
4283 PLT stubs handle mode switching already. */
4285 && (branch_offset
> THM_MAX_FWD_BRANCH_OFFSET
4286 || (branch_offset
< THM_MAX_BWD_BRANCH_OFFSET
)))
4288 && (branch_offset
> THM2_MAX_FWD_BRANCH_OFFSET
4289 || (branch_offset
< THM2_MAX_BWD_BRANCH_OFFSET
)))
4291 && (branch_offset
> THM2_MAX_FWD_COND_BRANCH_OFFSET
4292 || (branch_offset
< THM2_MAX_BWD_COND_BRANCH_OFFSET
))
4293 && (r_type
== R_ARM_THM_JUMP19
))
4294 || (branch_type
== ST_BRANCH_TO_ARM
4295 && (((r_type
== R_ARM_THM_CALL
4296 || r_type
== R_ARM_THM_TLS_CALL
) && !globals
->use_blx
)
4297 || (r_type
== R_ARM_THM_JUMP24
)
4298 || (r_type
== R_ARM_THM_JUMP19
))
4301 /* If we need to insert a Thumb-Thumb long branch stub to a
4302 PLT, use one that branches directly to the ARM PLT
4303 stub. If we pretended we'd use the pre-PLT Thumb->ARM
4304 stub, undo this now. */
4305 if ((branch_type
== ST_BRANCH_TO_THUMB
) && use_plt
&& !thumb_only
)
4307 branch_type
= ST_BRANCH_TO_ARM
;
4308 branch_offset
+= PLT_THUMB_STUB_SIZE
;
4311 if (branch_type
== ST_BRANCH_TO_THUMB
)
4313 /* Thumb to thumb. */
4316 if (input_sec
->flags
& SEC_ELF_PURECODE
)
4318 (_("%pB(%pA): warning: long branch veneers used in"
4319 " section with SHF_ARM_PURECODE section"
4320 " attribute is only supported for M-profile"
4321 " targets that implement the movw instruction"),
4322 input_bfd
, input_sec
);
4324 stub_type
= (bfd_link_pic (info
) | globals
->pic_veneer
)
4326 ? ((globals
->use_blx
4327 && (r_type
== R_ARM_THM_CALL
))
4328 /* V5T and above. Stub starts with ARM code, so
4329 we must be able to switch mode before
4330 reaching it, which is only possible for 'bl'
4331 (ie R_ARM_THM_CALL relocation). */
4332 ? arm_stub_long_branch_any_thumb_pic
4333 /* On V4T, use Thumb code only. */
4334 : arm_stub_long_branch_v4t_thumb_thumb_pic
)
4336 /* non-PIC stubs. */
4337 : ((globals
->use_blx
4338 && (r_type
== R_ARM_THM_CALL
))
4339 /* V5T and above. */
4340 ? arm_stub_long_branch_any_any
4342 : arm_stub_long_branch_v4t_thumb_thumb
);
4346 if (thumb2_movw
&& (input_sec
->flags
& SEC_ELF_PURECODE
))
4347 stub_type
= arm_stub_long_branch_thumb2_only_pure
;
4350 if (input_sec
->flags
& SEC_ELF_PURECODE
)
4352 (_("%pB(%pA): warning: long branch veneers used in"
4353 " section with SHF_ARM_PURECODE section"
4354 " attribute is only supported for M-profile"
4355 " targets that implement the movw instruction"),
4356 input_bfd
, input_sec
);
4358 stub_type
= (bfd_link_pic (info
) | globals
->pic_veneer
)
4360 ? arm_stub_long_branch_thumb_only_pic
4362 : (thumb2
? arm_stub_long_branch_thumb2_only
4363 : arm_stub_long_branch_thumb_only
);
4369 if (input_sec
->flags
& SEC_ELF_PURECODE
)
4371 (_("%pB(%pA): warning: long branch veneers used in"
4372 " section with SHF_ARM_PURECODE section"
4373 " attribute is only supported" " for M-profile"
4374 " targets that implement the movw instruction"),
4375 input_bfd
, input_sec
);
4379 && sym_sec
->owner
!= NULL
4380 && !INTERWORK_FLAG (sym_sec
->owner
))
4383 (_("%pB(%s): warning: interworking not enabled;"
4384 " first occurrence: %pB: %s call to %s"),
4385 sym_sec
->owner
, name
, input_bfd
, "Thumb", "ARM");
4389 (bfd_link_pic (info
) | globals
->pic_veneer
)
4391 ? (r_type
== R_ARM_THM_TLS_CALL
4392 /* TLS PIC stubs. */
4393 ? (globals
->use_blx
? arm_stub_long_branch_any_tls_pic
4394 : arm_stub_long_branch_v4t_thumb_tls_pic
)
4395 : ((globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
4396 /* V5T PIC and above. */
4397 ? arm_stub_long_branch_any_arm_pic
4399 : arm_stub_long_branch_v4t_thumb_arm_pic
))
4401 /* non-PIC stubs. */
4402 : ((globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
4403 /* V5T and above. */
4404 ? arm_stub_long_branch_any_any
4406 : arm_stub_long_branch_v4t_thumb_arm
);
4408 /* Handle v4t short branches. */
4409 if ((stub_type
== arm_stub_long_branch_v4t_thumb_arm
)
4410 && (branch_offset
<= THM_MAX_FWD_BRANCH_OFFSET
)
4411 && (branch_offset
>= THM_MAX_BWD_BRANCH_OFFSET
))
4412 stub_type
= arm_stub_short_branch_v4t_thumb_arm
;
4416 else if (r_type
== R_ARM_CALL
4417 || r_type
== R_ARM_JUMP24
4418 || r_type
== R_ARM_PLT32
4419 || r_type
== R_ARM_TLS_CALL
)
4421 if (input_sec
->flags
& SEC_ELF_PURECODE
)
4423 (_("%pB(%pA): warning: long branch veneers used in"
4424 " section with SHF_ARM_PURECODE section"
4425 " attribute is only supported for M-profile"
4426 " targets that implement the movw instruction"),
4427 input_bfd
, input_sec
);
4428 if (branch_type
== ST_BRANCH_TO_THUMB
)
4433 && sym_sec
->owner
!= NULL
4434 && !INTERWORK_FLAG (sym_sec
->owner
))
4437 (_("%pB(%s): warning: interworking not enabled;"
4438 " first occurrence: %pB: %s call to %s"),
4439 sym_sec
->owner
, name
, input_bfd
, "ARM", "Thumb");
4442 /* We have an extra 2-bytes reach because of
4443 the mode change (bit 24 (H) of BLX encoding). */
4444 if (branch_offset
> (ARM_MAX_FWD_BRANCH_OFFSET
+ 2)
4445 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
)
4446 || (r_type
== R_ARM_CALL
&& !globals
->use_blx
)
4447 || (r_type
== R_ARM_JUMP24
)
4448 || (r_type
== R_ARM_PLT32
))
4450 stub_type
= (bfd_link_pic (info
) | globals
->pic_veneer
)
4452 ? ((globals
->use_blx
)
4453 /* V5T and above. */
4454 ? arm_stub_long_branch_any_thumb_pic
4456 : arm_stub_long_branch_v4t_arm_thumb_pic
)
4458 /* non-PIC stubs. */
4459 : ((globals
->use_blx
)
4460 /* V5T and above. */
4461 ? arm_stub_long_branch_any_any
4463 : arm_stub_long_branch_v4t_arm_thumb
);
4469 if (branch_offset
> ARM_MAX_FWD_BRANCH_OFFSET
4470 || (branch_offset
< ARM_MAX_BWD_BRANCH_OFFSET
))
4473 (bfd_link_pic (info
) | globals
->pic_veneer
)
4475 ? (r_type
== R_ARM_TLS_CALL
4477 ? arm_stub_long_branch_any_tls_pic
4478 : (globals
->root
.target_os
== is_nacl
4479 ? arm_stub_long_branch_arm_nacl_pic
4480 : arm_stub_long_branch_any_arm_pic
))
4481 /* non-PIC stubs. */
4482 : (globals
->root
.target_os
== is_nacl
4483 ? arm_stub_long_branch_arm_nacl
4484 : arm_stub_long_branch_any_any
);
4489 /* If a stub is needed, record the actual destination type. */
4490 if (stub_type
!= arm_stub_none
)
4491 *actual_branch_type
= branch_type
;
4496 /* Build a name for an entry in the stub hash table. */
4499 elf32_arm_stub_name (const asection
*input_section
,
4500 const asection
*sym_sec
,
4501 const struct elf32_arm_link_hash_entry
*hash
,
4502 const Elf_Internal_Rela
*rel
,
4503 enum elf32_arm_stub_type stub_type
)
4510 len
= 8 + 1 + strlen (hash
->root
.root
.root
.string
) + 1 + 8 + 1 + 2 + 1;
4511 stub_name
= (char *) bfd_malloc (len
);
4512 if (stub_name
!= NULL
)
4513 sprintf (stub_name
, "%08x_%s+%x_%d",
4514 input_section
->id
& 0xffffffff,
4515 hash
->root
.root
.root
.string
,
4516 (int) rel
->r_addend
& 0xffffffff,
4521 len
= 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
4522 stub_name
= (char *) bfd_malloc (len
);
4523 if (stub_name
!= NULL
)
4524 sprintf (stub_name
, "%08x_%x:%x+%x_%d",
4525 input_section
->id
& 0xffffffff,
4526 sym_sec
->id
& 0xffffffff,
4527 ELF32_R_TYPE (rel
->r_info
) == R_ARM_TLS_CALL
4528 || ELF32_R_TYPE (rel
->r_info
) == R_ARM_THM_TLS_CALL
4529 ? 0 : (int) ELF32_R_SYM (rel
->r_info
) & 0xffffffff,
4530 (int) rel
->r_addend
& 0xffffffff,
4537 /* Look up an entry in the stub hash. Stub entries are cached because
4538 creating the stub name takes a bit of time. */
4540 static struct elf32_arm_stub_hash_entry
*
4541 elf32_arm_get_stub_entry (const asection
*input_section
,
4542 const asection
*sym_sec
,
4543 struct elf_link_hash_entry
*hash
,
4544 const Elf_Internal_Rela
*rel
,
4545 struct elf32_arm_link_hash_table
*htab
,
4546 enum elf32_arm_stub_type stub_type
)
4548 struct elf32_arm_stub_hash_entry
*stub_entry
;
4549 struct elf32_arm_link_hash_entry
*h
= (struct elf32_arm_link_hash_entry
*) hash
;
4550 const asection
*id_sec
;
4552 if ((input_section
->flags
& SEC_CODE
) == 0)
4555 /* If the input section is the CMSE stubs one and it needs a long
4556 branch stub to reach it's final destination, give up with an
4557 error message: this is not supported. See PR ld/24709. */
4558 if (!strncmp (input_section
->name
, CMSE_STUB_NAME
, strlen(CMSE_STUB_NAME
)))
4560 bfd
*output_bfd
= htab
->obfd
;
4561 asection
*out_sec
= bfd_get_section_by_name (output_bfd
, CMSE_STUB_NAME
);
4563 _bfd_error_handler (_("ERROR: CMSE stub (%s section) too far "
4564 "(%#" PRIx64
") from destination (%#" PRIx64
")"),
4566 (uint64_t)out_sec
->output_section
->vma
4567 + out_sec
->output_offset
,
4568 (uint64_t)sym_sec
->output_section
->vma
4569 + sym_sec
->output_offset
4570 + h
->root
.root
.u
.def
.value
);
4571 /* Exit, rather than leave incompletely processed
4576 /* If this input section is part of a group of sections sharing one
4577 stub section, then use the id of the first section in the group.
4578 Stub names need to include a section id, as there may well be
4579 more than one stub used to reach say, printf, and we need to
4580 distinguish between them. */
4581 BFD_ASSERT (input_section
->id
<= htab
->top_id
);
4582 id_sec
= htab
->stub_group
[input_section
->id
].link_sec
;
4584 if (h
!= NULL
&& h
->stub_cache
!= NULL
4585 && h
->stub_cache
->h
== h
4586 && h
->stub_cache
->id_sec
== id_sec
4587 && h
->stub_cache
->stub_type
== stub_type
)
4589 stub_entry
= h
->stub_cache
;
4595 stub_name
= elf32_arm_stub_name (id_sec
, sym_sec
, h
, rel
, stub_type
);
4596 if (stub_name
== NULL
)
4599 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
,
4600 stub_name
, FALSE
, FALSE
);
4602 h
->stub_cache
= stub_entry
;
4610 /* Whether veneers of type STUB_TYPE require to be in a dedicated output
4614 arm_dedicated_stub_output_section_required (enum elf32_arm_stub_type stub_type
)
4616 if (stub_type
>= max_stub_type
)
4617 abort (); /* Should be unreachable. */
4621 case arm_stub_cmse_branch_thumb_only
:
4628 abort (); /* Should be unreachable. */
4631 /* Required alignment (as a power of 2) for the dedicated section holding
4632 veneers of type STUB_TYPE, or 0 if veneers of this type are interspersed
4633 with input sections. */
4636 arm_dedicated_stub_output_section_required_alignment
4637 (enum elf32_arm_stub_type stub_type
)
4639 if (stub_type
>= max_stub_type
)
4640 abort (); /* Should be unreachable. */
4644 /* Vectors of Secure Gateway veneers must be aligned on 32byte
4646 case arm_stub_cmse_branch_thumb_only
:
4650 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type
));
4654 abort (); /* Should be unreachable. */
4657 /* Name of the dedicated output section to put veneers of type STUB_TYPE, or
4658 NULL if veneers of this type are interspersed with input sections. */
4661 arm_dedicated_stub_output_section_name (enum elf32_arm_stub_type stub_type
)
4663 if (stub_type
>= max_stub_type
)
4664 abort (); /* Should be unreachable. */
4668 case arm_stub_cmse_branch_thumb_only
:
4669 return CMSE_STUB_NAME
;
4672 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type
));
4676 abort (); /* Should be unreachable. */
4679 /* If veneers of type STUB_TYPE should go in a dedicated output section,
4680 returns the address of the hash table field in HTAB holding a pointer to the
4681 corresponding input section. Otherwise, returns NULL. */
4684 arm_dedicated_stub_input_section_ptr (struct elf32_arm_link_hash_table
*htab
,
4685 enum elf32_arm_stub_type stub_type
)
4687 if (stub_type
>= max_stub_type
)
4688 abort (); /* Should be unreachable. */
4692 case arm_stub_cmse_branch_thumb_only
:
4693 return &htab
->cmse_stub_sec
;
4696 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type
));
4700 abort (); /* Should be unreachable. */
4703 /* Find or create a stub section to contain a stub of type STUB_TYPE. SECTION
4704 is the section that branch into veneer and can be NULL if stub should go in
4705 a dedicated output section. Returns a pointer to the stub section, and the
4706 section to which the stub section will be attached (in *LINK_SEC_P).
4707 LINK_SEC_P may be NULL. */
4710 elf32_arm_create_or_find_stub_sec (asection
**link_sec_p
, asection
*section
,
4711 struct elf32_arm_link_hash_table
*htab
,
4712 enum elf32_arm_stub_type stub_type
)
4714 asection
*link_sec
, *out_sec
, **stub_sec_p
;
4715 const char *stub_sec_prefix
;
4716 bfd_boolean dedicated_output_section
=
4717 arm_dedicated_stub_output_section_required (stub_type
);
4720 if (dedicated_output_section
)
4722 bfd
*output_bfd
= htab
->obfd
;
4723 const char *out_sec_name
=
4724 arm_dedicated_stub_output_section_name (stub_type
);
4726 stub_sec_p
= arm_dedicated_stub_input_section_ptr (htab
, stub_type
);
4727 stub_sec_prefix
= out_sec_name
;
4728 align
= arm_dedicated_stub_output_section_required_alignment (stub_type
);
4729 out_sec
= bfd_get_section_by_name (output_bfd
, out_sec_name
);
4730 if (out_sec
== NULL
)
4732 _bfd_error_handler (_("no address assigned to the veneers output "
4733 "section %s"), out_sec_name
);
4739 BFD_ASSERT (section
->id
<= htab
->top_id
);
4740 link_sec
= htab
->stub_group
[section
->id
].link_sec
;
4741 BFD_ASSERT (link_sec
!= NULL
);
4742 stub_sec_p
= &htab
->stub_group
[section
->id
].stub_sec
;
4743 if (*stub_sec_p
== NULL
)
4744 stub_sec_p
= &htab
->stub_group
[link_sec
->id
].stub_sec
;
4745 stub_sec_prefix
= link_sec
->name
;
4746 out_sec
= link_sec
->output_section
;
4747 align
= htab
->root
.target_os
== is_nacl
? 4 : 3;
4750 if (*stub_sec_p
== NULL
)
4756 namelen
= strlen (stub_sec_prefix
);
4757 len
= namelen
+ sizeof (STUB_SUFFIX
);
4758 s_name
= (char *) bfd_alloc (htab
->stub_bfd
, len
);
4762 memcpy (s_name
, stub_sec_prefix
, namelen
);
4763 memcpy (s_name
+ namelen
, STUB_SUFFIX
, sizeof (STUB_SUFFIX
));
4764 *stub_sec_p
= (*htab
->add_stub_section
) (s_name
, out_sec
, link_sec
,
4766 if (*stub_sec_p
== NULL
)
4769 out_sec
->flags
|= SEC_ALLOC
| SEC_LOAD
| SEC_READONLY
| SEC_CODE
4770 | SEC_HAS_CONTENTS
| SEC_RELOC
| SEC_IN_MEMORY
4774 if (!dedicated_output_section
)
4775 htab
->stub_group
[section
->id
].stub_sec
= *stub_sec_p
;
4778 *link_sec_p
= link_sec
;
4783 /* Add a new stub entry to the stub hash. Not all fields of the new
4784 stub entry are initialised. */
4786 static struct elf32_arm_stub_hash_entry
*
4787 elf32_arm_add_stub (const char *stub_name
, asection
*section
,
4788 struct elf32_arm_link_hash_table
*htab
,
4789 enum elf32_arm_stub_type stub_type
)
4793 struct elf32_arm_stub_hash_entry
*stub_entry
;
4795 stub_sec
= elf32_arm_create_or_find_stub_sec (&link_sec
, section
, htab
,
4797 if (stub_sec
== NULL
)
4800 /* Enter this entry into the linker stub hash table. */
4801 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
4803 if (stub_entry
== NULL
)
4805 if (section
== NULL
)
4807 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
4808 section
->owner
, stub_name
);
4812 stub_entry
->stub_sec
= stub_sec
;
4813 stub_entry
->stub_offset
= (bfd_vma
) -1;
4814 stub_entry
->id_sec
= link_sec
;
4819 /* Store an Arm insn into an output section not processed by
4820 elf32_arm_write_section. */
4823 put_arm_insn (struct elf32_arm_link_hash_table
* htab
,
4824 bfd
* output_bfd
, bfd_vma val
, void * ptr
)
4826 if (htab
->byteswap_code
!= bfd_little_endian (output_bfd
))
4827 bfd_putl32 (val
, ptr
);
4829 bfd_putb32 (val
, ptr
);
4832 /* Store a 16-bit Thumb insn into an output section not processed by
4833 elf32_arm_write_section. */
4836 put_thumb_insn (struct elf32_arm_link_hash_table
* htab
,
4837 bfd
* output_bfd
, bfd_vma val
, void * ptr
)
4839 if (htab
->byteswap_code
!= bfd_little_endian (output_bfd
))
4840 bfd_putl16 (val
, ptr
);
4842 bfd_putb16 (val
, ptr
);
4845 /* Store a Thumb2 insn into an output section not processed by
4846 elf32_arm_write_section. */
4849 put_thumb2_insn (struct elf32_arm_link_hash_table
* htab
,
4850 bfd
* output_bfd
, bfd_vma val
, bfd_byte
* ptr
)
4852 /* T2 instructions are 16-bit streamed. */
4853 if (htab
->byteswap_code
!= bfd_little_endian (output_bfd
))
4855 bfd_putl16 ((val
>> 16) & 0xffff, ptr
);
4856 bfd_putl16 ((val
& 0xffff), ptr
+ 2);
4860 bfd_putb16 ((val
>> 16) & 0xffff, ptr
);
4861 bfd_putb16 ((val
& 0xffff), ptr
+ 2);
4865 /* If it's possible to change R_TYPE to a more efficient access
4866 model, return the new reloc type. */
4869 elf32_arm_tls_transition (struct bfd_link_info
*info
, int r_type
,
4870 struct elf_link_hash_entry
*h
)
4872 int is_local
= (h
== NULL
);
4874 if (bfd_link_dll (info
)
4875 || (h
&& h
->root
.type
== bfd_link_hash_undefweak
))
4878 /* We do not support relaxations for Old TLS models. */
4881 case R_ARM_TLS_GOTDESC
:
4882 case R_ARM_TLS_CALL
:
4883 case R_ARM_THM_TLS_CALL
:
4884 case R_ARM_TLS_DESCSEQ
:
4885 case R_ARM_THM_TLS_DESCSEQ
:
4886 return is_local
? R_ARM_TLS_LE32
: R_ARM_TLS_IE32
;
4892 static bfd_reloc_status_type elf32_arm_final_link_relocate
4893 (reloc_howto_type
*, bfd
*, bfd
*, asection
*, bfd_byte
*,
4894 Elf_Internal_Rela
*, bfd_vma
, struct bfd_link_info
*, asection
*,
4895 const char *, unsigned char, enum arm_st_branch_type
,
4896 struct elf_link_hash_entry
*, bfd_boolean
*, char **);
4899 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type
)
4903 case arm_stub_a8_veneer_b_cond
:
4904 case arm_stub_a8_veneer_b
:
4905 case arm_stub_a8_veneer_bl
:
4908 case arm_stub_long_branch_any_any
:
4909 case arm_stub_long_branch_v4t_arm_thumb
:
4910 case arm_stub_long_branch_thumb_only
:
4911 case arm_stub_long_branch_thumb2_only
:
4912 case arm_stub_long_branch_thumb2_only_pure
:
4913 case arm_stub_long_branch_v4t_thumb_thumb
:
4914 case arm_stub_long_branch_v4t_thumb_arm
:
4915 case arm_stub_short_branch_v4t_thumb_arm
:
4916 case arm_stub_long_branch_any_arm_pic
:
4917 case arm_stub_long_branch_any_thumb_pic
:
4918 case arm_stub_long_branch_v4t_thumb_thumb_pic
:
4919 case arm_stub_long_branch_v4t_arm_thumb_pic
:
4920 case arm_stub_long_branch_v4t_thumb_arm_pic
:
4921 case arm_stub_long_branch_thumb_only_pic
:
4922 case arm_stub_long_branch_any_tls_pic
:
4923 case arm_stub_long_branch_v4t_thumb_tls_pic
:
4924 case arm_stub_cmse_branch_thumb_only
:
4925 case arm_stub_a8_veneer_blx
:
4928 case arm_stub_long_branch_arm_nacl
:
4929 case arm_stub_long_branch_arm_nacl_pic
:
4933 abort (); /* Should be unreachable. */
4937 /* Returns whether stubs of type STUB_TYPE take over the symbol they are
4938 veneering (TRUE) or have their own symbol (FALSE). */
4941 arm_stub_sym_claimed (enum elf32_arm_stub_type stub_type
)
4943 if (stub_type
>= max_stub_type
)
4944 abort (); /* Should be unreachable. */
4948 case arm_stub_cmse_branch_thumb_only
:
4955 abort (); /* Should be unreachable. */
4958 /* Returns the padding needed for the dedicated section used stubs of type
4962 arm_dedicated_stub_section_padding (enum elf32_arm_stub_type stub_type
)
4964 if (stub_type
>= max_stub_type
)
4965 abort (); /* Should be unreachable. */
4969 case arm_stub_cmse_branch_thumb_only
:
4976 abort (); /* Should be unreachable. */
4979 /* If veneers of type STUB_TYPE should go in a dedicated output section,
4980 returns the address of the hash table field in HTAB holding the offset at
4981 which new veneers should be layed out in the stub section. */
4984 arm_new_stubs_start_offset_ptr (struct elf32_arm_link_hash_table
*htab
,
4985 enum elf32_arm_stub_type stub_type
)
4989 case arm_stub_cmse_branch_thumb_only
:
4990 return &htab
->new_cmse_stub_offset
;
4993 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type
));
4999 arm_build_one_stub (struct bfd_hash_entry
*gen_entry
,
5003 bfd_boolean removed_sg_veneer
;
5004 struct elf32_arm_stub_hash_entry
*stub_entry
;
5005 struct elf32_arm_link_hash_table
*globals
;
5006 struct bfd_link_info
*info
;
5013 const insn_sequence
*template_sequence
;
5015 int stub_reloc_idx
[MAXRELOCS
] = {-1, -1};
5016 int stub_reloc_offset
[MAXRELOCS
] = {0, 0};
5018 int just_allocated
= 0;
5020 /* Massage our args to the form they really have. */
5021 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
5022 info
= (struct bfd_link_info
*) in_arg
;
5024 /* Fail if the target section could not be assigned to an output
5025 section. The user should fix his linker script. */
5026 if (stub_entry
->target_section
->output_section
== NULL
5027 && info
->non_contiguous_regions
)
5028 info
->callbacks
->einfo (_("%F%P: Could not assign '%pA' to an output section. "
5029 "Retry without --enable-non-contiguous-regions.\n"),
5030 stub_entry
->target_section
);
5032 globals
= elf32_arm_hash_table (info
);
5033 if (globals
== NULL
)
5036 stub_sec
= stub_entry
->stub_sec
;
5038 if ((globals
->fix_cortex_a8
< 0)
5039 != (arm_stub_required_alignment (stub_entry
->stub_type
) == 2))
5040 /* We have to do less-strictly-aligned fixes last. */
5043 /* Assign a slot at the end of section if none assigned yet. */
5044 if (stub_entry
->stub_offset
== (bfd_vma
) -1)
5046 stub_entry
->stub_offset
= stub_sec
->size
;
5049 loc
= stub_sec
->contents
+ stub_entry
->stub_offset
;
5051 stub_bfd
= stub_sec
->owner
;
5053 /* This is the address of the stub destination. */
5054 sym_value
= (stub_entry
->target_value
5055 + stub_entry
->target_section
->output_offset
5056 + stub_entry
->target_section
->output_section
->vma
);
5058 template_sequence
= stub_entry
->stub_template
;
5059 template_size
= stub_entry
->stub_template_size
;
5062 for (i
= 0; i
< template_size
; i
++)
5064 switch (template_sequence
[i
].type
)
5068 bfd_vma data
= (bfd_vma
) template_sequence
[i
].data
;
5069 if (template_sequence
[i
].reloc_addend
!= 0)
5071 /* We've borrowed the reloc_addend field to mean we should
5072 insert a condition code into this (Thumb-1 branch)
5073 instruction. See THUMB16_BCOND_INSN. */
5074 BFD_ASSERT ((data
& 0xff00) == 0xd000);
5075 data
|= ((stub_entry
->orig_insn
>> 22) & 0xf) << 8;
5077 bfd_put_16 (stub_bfd
, data
, loc
+ size
);
5083 bfd_put_16 (stub_bfd
,
5084 (template_sequence
[i
].data
>> 16) & 0xffff,
5086 bfd_put_16 (stub_bfd
, template_sequence
[i
].data
& 0xffff,
5088 if (template_sequence
[i
].r_type
!= R_ARM_NONE
)
5090 stub_reloc_idx
[nrelocs
] = i
;
5091 stub_reloc_offset
[nrelocs
++] = size
;
5097 bfd_put_32 (stub_bfd
, template_sequence
[i
].data
,
5099 /* Handle cases where the target is encoded within the
5101 if (template_sequence
[i
].r_type
== R_ARM_JUMP24
)
5103 stub_reloc_idx
[nrelocs
] = i
;
5104 stub_reloc_offset
[nrelocs
++] = size
;
5110 bfd_put_32 (stub_bfd
, template_sequence
[i
].data
, loc
+ size
);
5111 stub_reloc_idx
[nrelocs
] = i
;
5112 stub_reloc_offset
[nrelocs
++] = size
;
5123 stub_sec
->size
+= size
;
5125 /* Stub size has already been computed in arm_size_one_stub. Check
5127 BFD_ASSERT (size
== stub_entry
->stub_size
);
5129 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
5130 if (stub_entry
->branch_type
== ST_BRANCH_TO_THUMB
)
5133 /* Assume non empty slots have at least one and at most MAXRELOCS entries
5134 to relocate in each stub. */
5136 (size
== 0 && stub_entry
->stub_type
== arm_stub_cmse_branch_thumb_only
);
5137 BFD_ASSERT (removed_sg_veneer
|| (nrelocs
!= 0 && nrelocs
<= MAXRELOCS
));
5139 for (i
= 0; i
< nrelocs
; i
++)
5141 Elf_Internal_Rela rel
;
5142 bfd_boolean unresolved_reloc
;
5143 char *error_message
;
5145 sym_value
+ template_sequence
[stub_reloc_idx
[i
]].reloc_addend
;
5147 rel
.r_offset
= stub_entry
->stub_offset
+ stub_reloc_offset
[i
];
5148 rel
.r_info
= ELF32_R_INFO (0,
5149 template_sequence
[stub_reloc_idx
[i
]].r_type
);
5152 if (stub_entry
->stub_type
== arm_stub_a8_veneer_b_cond
&& i
== 0)
5153 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
5154 template should refer back to the instruction after the original
5155 branch. We use target_section as Cortex-A8 erratum workaround stubs
5156 are only generated when both source and target are in the same
5158 points_to
= stub_entry
->target_section
->output_section
->vma
5159 + stub_entry
->target_section
->output_offset
5160 + stub_entry
->source_value
;
5162 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
5163 (template_sequence
[stub_reloc_idx
[i
]].r_type
),
5164 stub_bfd
, info
->output_bfd
, stub_sec
, stub_sec
->contents
, &rel
,
5165 points_to
, info
, stub_entry
->target_section
, "", STT_FUNC
,
5166 stub_entry
->branch_type
,
5167 (struct elf_link_hash_entry
*) stub_entry
->h
, &unresolved_reloc
,
5175 /* Calculate the template, template size and instruction size for a stub.
5176 Return value is the instruction size. */
5179 find_stub_size_and_template (enum elf32_arm_stub_type stub_type
,
5180 const insn_sequence
**stub_template
,
5181 int *stub_template_size
)
5183 const insn_sequence
*template_sequence
= NULL
;
5184 int template_size
= 0, i
;
5187 template_sequence
= stub_definitions
[stub_type
].template_sequence
;
5189 *stub_template
= template_sequence
;
5191 template_size
= stub_definitions
[stub_type
].template_size
;
5192 if (stub_template_size
)
5193 *stub_template_size
= template_size
;
5196 for (i
= 0; i
< template_size
; i
++)
5198 switch (template_sequence
[i
].type
)
5219 /* As above, but don't actually build the stub. Just bump offset so
5220 we know stub section sizes. */
5223 arm_size_one_stub (struct bfd_hash_entry
*gen_entry
,
5224 void *in_arg ATTRIBUTE_UNUSED
)
5226 struct elf32_arm_stub_hash_entry
*stub_entry
;
5227 const insn_sequence
*template_sequence
;
5228 int template_size
, size
;
5230 /* Massage our args to the form they really have. */
5231 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
5233 BFD_ASSERT((stub_entry
->stub_type
> arm_stub_none
)
5234 && stub_entry
->stub_type
< ARRAY_SIZE(stub_definitions
));
5236 size
= find_stub_size_and_template (stub_entry
->stub_type
, &template_sequence
,
5239 /* Initialized to -1. Null size indicates an empty slot full of zeros. */
5240 if (stub_entry
->stub_template_size
)
5242 stub_entry
->stub_size
= size
;
5243 stub_entry
->stub_template
= template_sequence
;
5244 stub_entry
->stub_template_size
= template_size
;
5247 /* Already accounted for. */
5248 if (stub_entry
->stub_offset
!= (bfd_vma
) -1)
5251 size
= (size
+ 7) & ~7;
5252 stub_entry
->stub_sec
->size
+= size
;
5257 /* External entry points for sizing and building linker stubs. */
5259 /* Set up various things so that we can make a list of input sections
5260 for each output section included in the link. Returns -1 on error,
5261 0 when no stubs will be needed, and 1 on success. */
5264 elf32_arm_setup_section_lists (bfd
*output_bfd
,
5265 struct bfd_link_info
*info
)
5268 unsigned int bfd_count
;
5269 unsigned int top_id
, top_index
;
5271 asection
**input_list
, **list
;
5273 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
5277 if (! is_elf_hash_table (htab
))
5280 /* Count the number of input BFDs and find the top input section id. */
5281 for (input_bfd
= info
->input_bfds
, bfd_count
= 0, top_id
= 0;
5283 input_bfd
= input_bfd
->link
.next
)
5286 for (section
= input_bfd
->sections
;
5288 section
= section
->next
)
5290 if (top_id
< section
->id
)
5291 top_id
= section
->id
;
5294 htab
->bfd_count
= bfd_count
;
5296 amt
= sizeof (struct map_stub
) * (top_id
+ 1);
5297 htab
->stub_group
= (struct map_stub
*) bfd_zmalloc (amt
);
5298 if (htab
->stub_group
== NULL
)
5300 htab
->top_id
= top_id
;
5302 /* We can't use output_bfd->section_count here to find the top output
5303 section index as some sections may have been removed, and
5304 _bfd_strip_section_from_output doesn't renumber the indices. */
5305 for (section
= output_bfd
->sections
, top_index
= 0;
5307 section
= section
->next
)
5309 if (top_index
< section
->index
)
5310 top_index
= section
->index
;
5313 htab
->top_index
= top_index
;
5314 amt
= sizeof (asection
*) * (top_index
+ 1);
5315 input_list
= (asection
**) bfd_malloc (amt
);
5316 htab
->input_list
= input_list
;
5317 if (input_list
== NULL
)
5320 /* For sections we aren't interested in, mark their entries with a
5321 value we can check later. */
5322 list
= input_list
+ top_index
;
5324 *list
= bfd_abs_section_ptr
;
5325 while (list
-- != input_list
);
5327 for (section
= output_bfd
->sections
;
5329 section
= section
->next
)
5331 if ((section
->flags
& SEC_CODE
) != 0)
5332 input_list
[section
->index
] = NULL
;
5338 /* The linker repeatedly calls this function for each input section,
5339 in the order that input sections are linked into output sections.
5340 Build lists of input sections to determine groupings between which
5341 we may insert linker stubs. */
5344 elf32_arm_next_input_section (struct bfd_link_info
*info
,
5347 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
5352 if (isec
->output_section
->index
<= htab
->top_index
)
5354 asection
**list
= htab
->input_list
+ isec
->output_section
->index
;
5356 if (*list
!= bfd_abs_section_ptr
&& (isec
->flags
& SEC_CODE
) != 0)
5358 /* Steal the link_sec pointer for our list. */
5359 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
5360 /* This happens to make the list in reverse order,
5361 which we reverse later. */
5362 PREV_SEC (isec
) = *list
;
5368 /* See whether we can group stub sections together. Grouping stub
5369 sections may result in fewer stubs. More importantly, we need to
5370 put all .init* and .fini* stubs at the end of the .init or
5371 .fini output sections respectively, because glibc splits the
5372 _init and _fini functions into multiple parts. Putting a stub in
5373 the middle of a function is not a good idea. */
5376 group_sections (struct elf32_arm_link_hash_table
*htab
,
5377 bfd_size_type stub_group_size
,
5378 bfd_boolean stubs_always_after_branch
)
5380 asection
**list
= htab
->input_list
;
5384 asection
*tail
= *list
;
5387 if (tail
== bfd_abs_section_ptr
)
5390 /* Reverse the list: we must avoid placing stubs at the
5391 beginning of the section because the beginning of the text
5392 section may be required for an interrupt vector in bare metal
5394 #define NEXT_SEC PREV_SEC
5396 while (tail
!= NULL
)
5398 /* Pop from tail. */
5399 asection
*item
= tail
;
5400 tail
= PREV_SEC (item
);
5403 NEXT_SEC (item
) = head
;
5407 while (head
!= NULL
)
5411 bfd_vma stub_group_start
= head
->output_offset
;
5412 bfd_vma end_of_next
;
5415 while (NEXT_SEC (curr
) != NULL
)
5417 next
= NEXT_SEC (curr
);
5418 end_of_next
= next
->output_offset
+ next
->size
;
5419 if (end_of_next
- stub_group_start
>= stub_group_size
)
5420 /* End of NEXT is too far from start, so stop. */
5422 /* Add NEXT to the group. */
5426 /* OK, the size from the start to the start of CURR is less
5427 than stub_group_size and thus can be handled by one stub
5428 section. (Or the head section is itself larger than
5429 stub_group_size, in which case we may be toast.)
5430 We should really be keeping track of the total size of
5431 stubs added here, as stubs contribute to the final output
5435 next
= NEXT_SEC (head
);
5436 /* Set up this stub group. */
5437 htab
->stub_group
[head
->id
].link_sec
= curr
;
5439 while (head
!= curr
&& (head
= next
) != NULL
);
5441 /* But wait, there's more! Input sections up to stub_group_size
5442 bytes after the stub section can be handled by it too. */
5443 if (!stubs_always_after_branch
)
5445 stub_group_start
= curr
->output_offset
+ curr
->size
;
5447 while (next
!= NULL
)
5449 end_of_next
= next
->output_offset
+ next
->size
;
5450 if (end_of_next
- stub_group_start
>= stub_group_size
)
5451 /* End of NEXT is too far from stubs, so stop. */
5453 /* Add NEXT to the stub group. */
5455 next
= NEXT_SEC (head
);
5456 htab
->stub_group
[head
->id
].link_sec
= curr
;
5462 while (list
++ != htab
->input_list
+ htab
->top_index
);
5464 free (htab
->input_list
);
5469 /* Comparison function for sorting/searching relocations relating to Cortex-A8
5473 a8_reloc_compare (const void *a
, const void *b
)
5475 const struct a8_erratum_reloc
*ra
= (const struct a8_erratum_reloc
*) a
;
5476 const struct a8_erratum_reloc
*rb
= (const struct a8_erratum_reloc
*) b
;
5478 if (ra
->from
< rb
->from
)
5480 else if (ra
->from
> rb
->from
)
5486 static struct elf_link_hash_entry
*find_thumb_glue (struct bfd_link_info
*,
5487 const char *, char **);
5489 /* Helper function to scan code for sequences which might trigger the Cortex-A8
5490 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
5491 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
5495 cortex_a8_erratum_scan (bfd
*input_bfd
,
5496 struct bfd_link_info
*info
,
5497 struct a8_erratum_fix
**a8_fixes_p
,
5498 unsigned int *num_a8_fixes_p
,
5499 unsigned int *a8_fix_table_size_p
,
5500 struct a8_erratum_reloc
*a8_relocs
,
5501 unsigned int num_a8_relocs
,
5502 unsigned prev_num_a8_fixes
,
5503 bfd_boolean
*stub_changed_p
)
5506 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
5507 struct a8_erratum_fix
*a8_fixes
= *a8_fixes_p
;
5508 unsigned int num_a8_fixes
= *num_a8_fixes_p
;
5509 unsigned int a8_fix_table_size
= *a8_fix_table_size_p
;
5514 for (section
= input_bfd
->sections
;
5516 section
= section
->next
)
5518 bfd_byte
*contents
= NULL
;
5519 struct _arm_elf_section_data
*sec_data
;
5523 if (elf_section_type (section
) != SHT_PROGBITS
5524 || (elf_section_flags (section
) & SHF_EXECINSTR
) == 0
5525 || (section
->flags
& SEC_EXCLUDE
) != 0
5526 || (section
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
)
5527 || (section
->output_section
== bfd_abs_section_ptr
))
5530 base_vma
= section
->output_section
->vma
+ section
->output_offset
;
5532 if (elf_section_data (section
)->this_hdr
.contents
!= NULL
)
5533 contents
= elf_section_data (section
)->this_hdr
.contents
;
5534 else if (! bfd_malloc_and_get_section (input_bfd
, section
, &contents
))
5537 sec_data
= elf32_arm_section_data (section
);
5539 for (span
= 0; span
< sec_data
->mapcount
; span
++)
5541 unsigned int span_start
= sec_data
->map
[span
].vma
;
5542 unsigned int span_end
= (span
== sec_data
->mapcount
- 1)
5543 ? section
->size
: sec_data
->map
[span
+ 1].vma
;
5545 char span_type
= sec_data
->map
[span
].type
;
5546 bfd_boolean last_was_32bit
= FALSE
, last_was_branch
= FALSE
;
5548 if (span_type
!= 't')
5551 /* Span is entirely within a single 4KB region: skip scanning. */
5552 if (((base_vma
+ span_start
) & ~0xfff)
5553 == ((base_vma
+ span_end
) & ~0xfff))
5556 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
5558 * The opcode is BLX.W, BL.W, B.W, Bcc.W
5559 * The branch target is in the same 4KB region as the
5560 first half of the branch.
5561 * The instruction before the branch is a 32-bit
5562 length non-branch instruction. */
5563 for (i
= span_start
; i
< span_end
;)
5565 unsigned int insn
= bfd_getl16 (&contents
[i
]);
5566 bfd_boolean insn_32bit
= FALSE
, is_blx
= FALSE
, is_b
= FALSE
;
5567 bfd_boolean is_bl
= FALSE
, is_bcc
= FALSE
, is_32bit_branch
;
5569 if ((insn
& 0xe000) == 0xe000 && (insn
& 0x1800) != 0x0000)
5574 /* Load the rest of the insn (in manual-friendly order). */
5575 insn
= (insn
<< 16) | bfd_getl16 (&contents
[i
+ 2]);
5577 /* Encoding T4: B<c>.W. */
5578 is_b
= (insn
& 0xf800d000) == 0xf0009000;
5579 /* Encoding T1: BL<c>.W. */
5580 is_bl
= (insn
& 0xf800d000) == 0xf000d000;
5581 /* Encoding T2: BLX<c>.W. */
5582 is_blx
= (insn
& 0xf800d000) == 0xf000c000;
5583 /* Encoding T3: B<c>.W (not permitted in IT block). */
5584 is_bcc
= (insn
& 0xf800d000) == 0xf0008000
5585 && (insn
& 0x07f00000) != 0x03800000;
5588 is_32bit_branch
= is_b
|| is_bl
|| is_blx
|| is_bcc
;
5590 if (((base_vma
+ i
) & 0xfff) == 0xffe
5594 && ! last_was_branch
)
5596 bfd_signed_vma offset
= 0;
5597 bfd_boolean force_target_arm
= FALSE
;
5598 bfd_boolean force_target_thumb
= FALSE
;
5600 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
5601 struct a8_erratum_reloc key
, *found
;
5602 bfd_boolean use_plt
= FALSE
;
5604 key
.from
= base_vma
+ i
;
5605 found
= (struct a8_erratum_reloc
*)
5606 bsearch (&key
, a8_relocs
, num_a8_relocs
,
5607 sizeof (struct a8_erratum_reloc
),
5612 char *error_message
= NULL
;
5613 struct elf_link_hash_entry
*entry
;
5615 /* We don't care about the error returned from this
5616 function, only if there is glue or not. */
5617 entry
= find_thumb_glue (info
, found
->sym_name
,
5621 found
->non_a8_stub
= TRUE
;
5623 /* Keep a simpler condition, for the sake of clarity. */
5624 if (htab
->root
.splt
!= NULL
&& found
->hash
!= NULL
5625 && found
->hash
->root
.plt
.offset
!= (bfd_vma
) -1)
5628 if (found
->r_type
== R_ARM_THM_CALL
)
5630 if (found
->branch_type
== ST_BRANCH_TO_ARM
5632 force_target_arm
= TRUE
;
5634 force_target_thumb
= TRUE
;
5638 /* Check if we have an offending branch instruction. */
5640 if (found
&& found
->non_a8_stub
)
5641 /* We've already made a stub for this instruction, e.g.
5642 it's a long branch or a Thumb->ARM stub. Assume that
5643 stub will suffice to work around the A8 erratum (see
5644 setting of always_after_branch above). */
5648 offset
= (insn
& 0x7ff) << 1;
5649 offset
|= (insn
& 0x3f0000) >> 4;
5650 offset
|= (insn
& 0x2000) ? 0x40000 : 0;
5651 offset
|= (insn
& 0x800) ? 0x80000 : 0;
5652 offset
|= (insn
& 0x4000000) ? 0x100000 : 0;
5653 if (offset
& 0x100000)
5654 offset
|= ~ ((bfd_signed_vma
) 0xfffff);
5655 stub_type
= arm_stub_a8_veneer_b_cond
;
5657 else if (is_b
|| is_bl
|| is_blx
)
5659 int s
= (insn
& 0x4000000) != 0;
5660 int j1
= (insn
& 0x2000) != 0;
5661 int j2
= (insn
& 0x800) != 0;
5665 offset
= (insn
& 0x7ff) << 1;
5666 offset
|= (insn
& 0x3ff0000) >> 4;
5670 if (offset
& 0x1000000)
5671 offset
|= ~ ((bfd_signed_vma
) 0xffffff);
5674 offset
&= ~ ((bfd_signed_vma
) 3);
5676 stub_type
= is_blx
? arm_stub_a8_veneer_blx
:
5677 is_bl
? arm_stub_a8_veneer_bl
: arm_stub_a8_veneer_b
;
5680 if (stub_type
!= arm_stub_none
)
5682 bfd_vma pc_for_insn
= base_vma
+ i
+ 4;
5684 /* The original instruction is a BL, but the target is
5685 an ARM instruction. If we were not making a stub,
5686 the BL would have been converted to a BLX. Use the
5687 BLX stub instead in that case. */
5688 if (htab
->use_blx
&& force_target_arm
5689 && stub_type
== arm_stub_a8_veneer_bl
)
5691 stub_type
= arm_stub_a8_veneer_blx
;
5695 /* Conversely, if the original instruction was
5696 BLX but the target is Thumb mode, use the BL
5698 else if (force_target_thumb
5699 && stub_type
== arm_stub_a8_veneer_blx
)
5701 stub_type
= arm_stub_a8_veneer_bl
;
5707 pc_for_insn
&= ~ ((bfd_vma
) 3);
5709 /* If we found a relocation, use the proper destination,
5710 not the offset in the (unrelocated) instruction.
5711 Note this is always done if we switched the stub type
5715 (bfd_signed_vma
) (found
->destination
- pc_for_insn
);
5717 /* If the stub will use a Thumb-mode branch to a
5718 PLT target, redirect it to the preceding Thumb
5720 if (stub_type
!= arm_stub_a8_veneer_blx
&& use_plt
)
5721 offset
-= PLT_THUMB_STUB_SIZE
;
5723 target
= pc_for_insn
+ offset
;
5725 /* The BLX stub is ARM-mode code. Adjust the offset to
5726 take the different PC value (+8 instead of +4) into
5728 if (stub_type
== arm_stub_a8_veneer_blx
)
5731 if (((base_vma
+ i
) & ~0xfff) == (target
& ~0xfff))
5733 char *stub_name
= NULL
;
5735 if (num_a8_fixes
== a8_fix_table_size
)
5737 a8_fix_table_size
*= 2;
5738 a8_fixes
= (struct a8_erratum_fix
*)
5739 bfd_realloc (a8_fixes
,
5740 sizeof (struct a8_erratum_fix
)
5741 * a8_fix_table_size
);
5744 if (num_a8_fixes
< prev_num_a8_fixes
)
5746 /* If we're doing a subsequent scan,
5747 check if we've found the same fix as
5748 before, and try and reuse the stub
5750 stub_name
= a8_fixes
[num_a8_fixes
].stub_name
;
5751 if ((a8_fixes
[num_a8_fixes
].section
!= section
)
5752 || (a8_fixes
[num_a8_fixes
].offset
!= i
))
5756 *stub_changed_p
= TRUE
;
5762 stub_name
= (char *) bfd_malloc (8 + 1 + 8 + 1);
5763 if (stub_name
!= NULL
)
5764 sprintf (stub_name
, "%x:%x", section
->id
, i
);
5767 a8_fixes
[num_a8_fixes
].input_bfd
= input_bfd
;
5768 a8_fixes
[num_a8_fixes
].section
= section
;
5769 a8_fixes
[num_a8_fixes
].offset
= i
;
5770 a8_fixes
[num_a8_fixes
].target_offset
=
5772 a8_fixes
[num_a8_fixes
].orig_insn
= insn
;
5773 a8_fixes
[num_a8_fixes
].stub_name
= stub_name
;
5774 a8_fixes
[num_a8_fixes
].stub_type
= stub_type
;
5775 a8_fixes
[num_a8_fixes
].branch_type
=
5776 is_blx
? ST_BRANCH_TO_ARM
: ST_BRANCH_TO_THUMB
;
5783 i
+= insn_32bit
? 4 : 2;
5784 last_was_32bit
= insn_32bit
;
5785 last_was_branch
= is_32bit_branch
;
5789 if (elf_section_data (section
)->this_hdr
.contents
== NULL
)
5793 *a8_fixes_p
= a8_fixes
;
5794 *num_a8_fixes_p
= num_a8_fixes
;
5795 *a8_fix_table_size_p
= a8_fix_table_size
;
5800 /* Create or update a stub entry depending on whether the stub can already be
5801 found in HTAB. The stub is identified by:
5802 - its type STUB_TYPE
5803 - its source branch (note that several can share the same stub) whose
5804 section and relocation (if any) are given by SECTION and IRELA
5806 - its target symbol whose input section, hash, name, value and branch type
5807 are given in SYM_SEC, HASH, SYM_NAME, SYM_VALUE and BRANCH_TYPE
5810 If found, the value of the stub's target symbol is updated from SYM_VALUE
5811 and *NEW_STUB is set to FALSE. Otherwise, *NEW_STUB is set to
5812 TRUE and the stub entry is initialized.
5814 Returns the stub that was created or updated, or NULL if an error
5817 static struct elf32_arm_stub_hash_entry
*
5818 elf32_arm_create_stub (struct elf32_arm_link_hash_table
*htab
,
5819 enum elf32_arm_stub_type stub_type
, asection
*section
,
5820 Elf_Internal_Rela
*irela
, asection
*sym_sec
,
5821 struct elf32_arm_link_hash_entry
*hash
, char *sym_name
,
5822 bfd_vma sym_value
, enum arm_st_branch_type branch_type
,
5823 bfd_boolean
*new_stub
)
5825 const asection
*id_sec
;
5827 struct elf32_arm_stub_hash_entry
*stub_entry
;
5828 unsigned int r_type
;
5829 bfd_boolean sym_claimed
= arm_stub_sym_claimed (stub_type
);
5831 BFD_ASSERT (stub_type
!= arm_stub_none
);
5835 stub_name
= sym_name
;
5839 BFD_ASSERT (section
);
5840 BFD_ASSERT (section
->id
<= htab
->top_id
);
5842 /* Support for grouping stub sections. */
5843 id_sec
= htab
->stub_group
[section
->id
].link_sec
;
5845 /* Get the name of this stub. */
5846 stub_name
= elf32_arm_stub_name (id_sec
, sym_sec
, hash
, irela
,
5852 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
, FALSE
,
5854 /* The proper stub has already been created, just update its value. */
5855 if (stub_entry
!= NULL
)
5859 stub_entry
->target_value
= sym_value
;
5863 stub_entry
= elf32_arm_add_stub (stub_name
, section
, htab
, stub_type
);
5864 if (stub_entry
== NULL
)
5871 stub_entry
->target_value
= sym_value
;
5872 stub_entry
->target_section
= sym_sec
;
5873 stub_entry
->stub_type
= stub_type
;
5874 stub_entry
->h
= hash
;
5875 stub_entry
->branch_type
= branch_type
;
5878 stub_entry
->output_name
= sym_name
;
5881 if (sym_name
== NULL
)
5882 sym_name
= "unnamed";
5883 stub_entry
->output_name
= (char *)
5884 bfd_alloc (htab
->stub_bfd
, sizeof (THUMB2ARM_GLUE_ENTRY_NAME
)
5885 + strlen (sym_name
));
5886 if (stub_entry
->output_name
== NULL
)
5892 /* For historical reasons, use the existing names for ARM-to-Thumb and
5893 Thumb-to-ARM stubs. */
5894 r_type
= ELF32_R_TYPE (irela
->r_info
);
5895 if ((r_type
== (unsigned int) R_ARM_THM_CALL
5896 || r_type
== (unsigned int) R_ARM_THM_JUMP24
5897 || r_type
== (unsigned int) R_ARM_THM_JUMP19
)
5898 && branch_type
== ST_BRANCH_TO_ARM
)
5899 sprintf (stub_entry
->output_name
, THUMB2ARM_GLUE_ENTRY_NAME
, sym_name
);
5900 else if ((r_type
== (unsigned int) R_ARM_CALL
5901 || r_type
== (unsigned int) R_ARM_JUMP24
)
5902 && branch_type
== ST_BRANCH_TO_THUMB
)
5903 sprintf (stub_entry
->output_name
, ARM2THUMB_GLUE_ENTRY_NAME
, sym_name
);
5905 sprintf (stub_entry
->output_name
, STUB_ENTRY_NAME
, sym_name
);
5912 /* Scan symbols in INPUT_BFD to identify secure entry functions needing a
5913 gateway veneer to transition from non secure to secure state and create them
5916 "ARMv8-M Security Extensions: Requirements on Development Tools" document
5917 defines the conditions that govern Secure Gateway veneer creation for a
5918 given symbol <SYM> as follows:
5919 - it has function type
5920 - it has non local binding
5921 - a symbol named __acle_se_<SYM> (called special symbol) exists with the
5922 same type, binding and value as <SYM> (called normal symbol).
5923 An entry function can handle secure state transition itself in which case
5924 its special symbol would have a different value from the normal symbol.
5926 OUT_ATTR gives the output attributes, SYM_HASHES the symbol index to hash
5927 entry mapping while HTAB gives the name to hash entry mapping.
5928 *CMSE_STUB_CREATED is increased by the number of secure gateway veneer
5931 The return value gives whether a stub failed to be allocated. */
5934 cmse_scan (bfd
*input_bfd
, struct elf32_arm_link_hash_table
*htab
,
5935 obj_attribute
*out_attr
, struct elf_link_hash_entry
**sym_hashes
,
5936 int *cmse_stub_created
)
5938 const struct elf_backend_data
*bed
;
5939 Elf_Internal_Shdr
*symtab_hdr
;
5940 unsigned i
, j
, sym_count
, ext_start
;
5941 Elf_Internal_Sym
*cmse_sym
, *local_syms
;
5942 struct elf32_arm_link_hash_entry
*hash
, *cmse_hash
= NULL
;
5943 enum arm_st_branch_type branch_type
;
5944 char *sym_name
, *lsym_name
;
5947 struct elf32_arm_stub_hash_entry
*stub_entry
;
5948 bfd_boolean is_v8m
, new_stub
, cmse_invalid
, ret
= TRUE
;
5950 bed
= get_elf_backend_data (input_bfd
);
5951 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
5952 sym_count
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
5953 ext_start
= symtab_hdr
->sh_info
;
5954 is_v8m
= (out_attr
[Tag_CPU_arch
].i
>= TAG_CPU_ARCH_V8M_BASE
5955 && out_attr
[Tag_CPU_arch_profile
].i
== 'M');
5957 local_syms
= (Elf_Internal_Sym
*) symtab_hdr
->contents
;
5958 if (local_syms
== NULL
)
5959 local_syms
= bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
,
5960 symtab_hdr
->sh_info
, 0, NULL
, NULL
,
5962 if (symtab_hdr
->sh_info
&& local_syms
== NULL
)
5966 for (i
= 0; i
< sym_count
; i
++)
5968 cmse_invalid
= FALSE
;
5972 cmse_sym
= &local_syms
[i
];
5973 sym_name
= bfd_elf_string_from_elf_section (input_bfd
,
5974 symtab_hdr
->sh_link
,
5976 if (!sym_name
|| !CONST_STRNEQ (sym_name
, CMSE_PREFIX
))
5979 /* Special symbol with local binding. */
5980 cmse_invalid
= TRUE
;
5984 cmse_hash
= elf32_arm_hash_entry (sym_hashes
[i
- ext_start
]);
5985 sym_name
= (char *) cmse_hash
->root
.root
.root
.string
;
5986 if (!CONST_STRNEQ (sym_name
, CMSE_PREFIX
))
5989 /* Special symbol has incorrect binding or type. */
5990 if ((cmse_hash
->root
.root
.type
!= bfd_link_hash_defined
5991 && cmse_hash
->root
.root
.type
!= bfd_link_hash_defweak
)
5992 || cmse_hash
->root
.type
!= STT_FUNC
)
5993 cmse_invalid
= TRUE
;
5998 _bfd_error_handler (_("%pB: special symbol `%s' only allowed for "
5999 "ARMv8-M architecture or later"),
6000 input_bfd
, sym_name
);
6001 is_v8m
= TRUE
; /* Avoid multiple warning. */
6007 _bfd_error_handler (_("%pB: invalid special symbol `%s'; it must be"
6008 " a global or weak function symbol"),
6009 input_bfd
, sym_name
);
6015 sym_name
+= strlen (CMSE_PREFIX
);
6016 hash
= (struct elf32_arm_link_hash_entry
*)
6017 elf_link_hash_lookup (&(htab
)->root
, sym_name
, FALSE
, FALSE
, TRUE
);
6019 /* No associated normal symbol or it is neither global nor weak. */
6021 || (hash
->root
.root
.type
!= bfd_link_hash_defined
6022 && hash
->root
.root
.type
!= bfd_link_hash_defweak
)
6023 || hash
->root
.type
!= STT_FUNC
)
6025 /* Initialize here to avoid warning about use of possibly
6026 uninitialized variable. */
6031 /* Searching for a normal symbol with local binding. */
6032 for (; j
< ext_start
; j
++)
6035 bfd_elf_string_from_elf_section (input_bfd
,
6036 symtab_hdr
->sh_link
,
6037 local_syms
[j
].st_name
);
6038 if (!strcmp (sym_name
, lsym_name
))
6043 if (hash
|| j
< ext_start
)
6046 (_("%pB: invalid standard symbol `%s'; it must be "
6047 "a global or weak function symbol"),
6048 input_bfd
, sym_name
);
6052 (_("%pB: absent standard symbol `%s'"), input_bfd
, sym_name
);
6058 sym_value
= hash
->root
.root
.u
.def
.value
;
6059 section
= hash
->root
.root
.u
.def
.section
;
6061 if (cmse_hash
->root
.root
.u
.def
.section
!= section
)
6064 (_("%pB: `%s' and its special symbol are in different sections"),
6065 input_bfd
, sym_name
);
6068 if (cmse_hash
->root
.root
.u
.def
.value
!= sym_value
)
6069 continue; /* Ignore: could be an entry function starting with SG. */
6071 /* If this section is a link-once section that will be discarded, then
6072 don't create any stubs. */
6073 if (section
->output_section
== NULL
)
6076 (_("%pB: entry function `%s' not output"), input_bfd
, sym_name
);
6080 if (hash
->root
.size
== 0)
6083 (_("%pB: entry function `%s' is empty"), input_bfd
, sym_name
);
6089 branch_type
= ARM_GET_SYM_BRANCH_TYPE (hash
->root
.target_internal
);
6091 = elf32_arm_create_stub (htab
, arm_stub_cmse_branch_thumb_only
,
6092 NULL
, NULL
, section
, hash
, sym_name
,
6093 sym_value
, branch_type
, &new_stub
);
6095 if (stub_entry
== NULL
)
6099 BFD_ASSERT (new_stub
);
6100 (*cmse_stub_created
)++;
6104 if (!symtab_hdr
->contents
)
6109 /* Return TRUE iff a symbol identified by its linker HASH entry is a secure
6110 code entry function, ie can be called from non secure code without using a
6114 cmse_entry_fct_p (struct elf32_arm_link_hash_entry
*hash
)
6116 bfd_byte contents
[4];
6117 uint32_t first_insn
;
6122 /* Defined symbol of function type. */
6123 if (hash
->root
.root
.type
!= bfd_link_hash_defined
6124 && hash
->root
.root
.type
!= bfd_link_hash_defweak
)
6126 if (hash
->root
.type
!= STT_FUNC
)
6129 /* Read first instruction. */
6130 section
= hash
->root
.root
.u
.def
.section
;
6131 abfd
= section
->owner
;
6132 offset
= hash
->root
.root
.u
.def
.value
- section
->vma
;
6133 if (!bfd_get_section_contents (abfd
, section
, contents
, offset
,
6137 first_insn
= bfd_get_32 (abfd
, contents
);
6139 /* Starts by SG instruction. */
6140 return first_insn
== 0xe97fe97f;
6143 /* Output the name (in symbol table) of the veneer GEN_ENTRY if it is a new
6144 secure gateway veneers (ie. the veneers was not in the input import library)
6145 and there is no output import library (GEN_INFO->out_implib_bfd is NULL. */
6148 arm_list_new_cmse_stub (struct bfd_hash_entry
*gen_entry
, void *gen_info
)
6150 struct elf32_arm_stub_hash_entry
*stub_entry
;
6151 struct bfd_link_info
*info
;
6153 /* Massage our args to the form they really have. */
6154 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
6155 info
= (struct bfd_link_info
*) gen_info
;
6157 if (info
->out_implib_bfd
)
6160 if (stub_entry
->stub_type
!= arm_stub_cmse_branch_thumb_only
)
6163 if (stub_entry
->stub_offset
== (bfd_vma
) -1)
6164 _bfd_error_handler (" %s", stub_entry
->output_name
);
6169 /* Set offset of each secure gateway veneers so that its address remain
6170 identical to the one in the input import library referred by
6171 HTAB->in_implib_bfd. A warning is issued for veneers that disappeared
6172 (present in input import library but absent from the executable being
6173 linked) or if new veneers appeared and there is no output import library
6174 (INFO->out_implib_bfd is NULL and *CMSE_STUB_CREATED is bigger than the
6175 number of secure gateway veneers found in the input import library.
6177 The function returns whether an error occurred. If no error occurred,
6178 *CMSE_STUB_CREATED gives the number of SG veneers created by both cmse_scan
6179 and this function and HTAB->new_cmse_stub_offset is set to the biggest
6180 veneer observed set for new veneers to be layed out after. */
6183 set_cmse_veneer_addr_from_implib (struct bfd_link_info
*info
,
6184 struct elf32_arm_link_hash_table
*htab
,
6185 int *cmse_stub_created
)
6192 asection
*stub_out_sec
;
6193 bfd_boolean ret
= TRUE
;
6194 Elf_Internal_Sym
*intsym
;
6195 const char *out_sec_name
;
6196 bfd_size_type cmse_stub_size
;
6197 asymbol
**sympp
= NULL
, *sym
;
6198 struct elf32_arm_link_hash_entry
*hash
;
6199 const insn_sequence
*cmse_stub_template
;
6200 struct elf32_arm_stub_hash_entry
*stub_entry
;
6201 int cmse_stub_template_size
, new_cmse_stubs_created
= *cmse_stub_created
;
6202 bfd_vma veneer_value
, stub_offset
, next_cmse_stub_offset
;
6203 bfd_vma cmse_stub_array_start
= (bfd_vma
) -1, cmse_stub_sec_vma
= 0;
6205 /* No input secure gateway import library. */
6206 if (!htab
->in_implib_bfd
)
6209 in_implib_bfd
= htab
->in_implib_bfd
;
6210 if (!htab
->cmse_implib
)
6212 _bfd_error_handler (_("%pB: --in-implib only supported for Secure "
6213 "Gateway import libraries"), in_implib_bfd
);
6217 /* Get symbol table size. */
6218 symsize
= bfd_get_symtab_upper_bound (in_implib_bfd
);
6222 /* Read in the input secure gateway import library's symbol table. */
6223 sympp
= (asymbol
**) bfd_malloc (symsize
);
6227 symcount
= bfd_canonicalize_symtab (in_implib_bfd
, sympp
);
6234 htab
->new_cmse_stub_offset
= 0;
6236 find_stub_size_and_template (arm_stub_cmse_branch_thumb_only
,
6237 &cmse_stub_template
,
6238 &cmse_stub_template_size
);
6240 arm_dedicated_stub_output_section_name (arm_stub_cmse_branch_thumb_only
);
6242 bfd_get_section_by_name (htab
->obfd
, out_sec_name
);
6243 if (stub_out_sec
!= NULL
)
6244 cmse_stub_sec_vma
= stub_out_sec
->vma
;
6246 /* Set addresses of veneers mentionned in input secure gateway import
6247 library's symbol table. */
6248 for (i
= 0; i
< symcount
; i
++)
6252 sym_name
= (char *) bfd_asymbol_name (sym
);
6253 intsym
= &((elf_symbol_type
*) sym
)->internal_elf_sym
;
6255 if (sym
->section
!= bfd_abs_section_ptr
6256 || !(flags
& (BSF_GLOBAL
| BSF_WEAK
))
6257 || (flags
& BSF_FUNCTION
) != BSF_FUNCTION
6258 || (ARM_GET_SYM_BRANCH_TYPE (intsym
->st_target_internal
)
6259 != ST_BRANCH_TO_THUMB
))
6261 _bfd_error_handler (_("%pB: invalid import library entry: `%s'; "
6262 "symbol should be absolute, global and "
6263 "refer to Thumb functions"),
6264 in_implib_bfd
, sym_name
);
6269 veneer_value
= bfd_asymbol_value (sym
);
6270 stub_offset
= veneer_value
- cmse_stub_sec_vma
;
6271 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
, sym_name
,
6273 hash
= (struct elf32_arm_link_hash_entry
*)
6274 elf_link_hash_lookup (&(htab
)->root
, sym_name
, FALSE
, FALSE
, TRUE
);
6276 /* Stub entry should have been created by cmse_scan or the symbol be of
6277 a secure function callable from non secure code. */
6278 if (!stub_entry
&& !hash
)
6280 bfd_boolean new_stub
;
6283 (_("entry function `%s' disappeared from secure code"), sym_name
);
6284 hash
= (struct elf32_arm_link_hash_entry
*)
6285 elf_link_hash_lookup (&(htab
)->root
, sym_name
, TRUE
, TRUE
, TRUE
);
6287 = elf32_arm_create_stub (htab
, arm_stub_cmse_branch_thumb_only
,
6288 NULL
, NULL
, bfd_abs_section_ptr
, hash
,
6289 sym_name
, veneer_value
,
6290 ST_BRANCH_TO_THUMB
, &new_stub
);
6291 if (stub_entry
== NULL
)
6295 BFD_ASSERT (new_stub
);
6296 new_cmse_stubs_created
++;
6297 (*cmse_stub_created
)++;
6299 stub_entry
->stub_template_size
= stub_entry
->stub_size
= 0;
6300 stub_entry
->stub_offset
= stub_offset
;
6302 /* Symbol found is not callable from non secure code. */
6303 else if (!stub_entry
)
6305 if (!cmse_entry_fct_p (hash
))
6307 _bfd_error_handler (_("`%s' refers to a non entry function"),
6315 /* Only stubs for SG veneers should have been created. */
6316 BFD_ASSERT (stub_entry
->stub_type
== arm_stub_cmse_branch_thumb_only
);
6318 /* Check visibility hasn't changed. */
6319 if (!!(flags
& BSF_GLOBAL
)
6320 != (hash
->root
.root
.type
== bfd_link_hash_defined
))
6322 (_("%pB: visibility of symbol `%s' has changed"), in_implib_bfd
,
6325 stub_entry
->stub_offset
= stub_offset
;
6328 /* Size should match that of a SG veneer. */
6329 if (intsym
->st_size
!= cmse_stub_size
)
6331 _bfd_error_handler (_("%pB: incorrect size for symbol `%s'"),
6332 in_implib_bfd
, sym_name
);
6336 /* Previous veneer address is before current SG veneer section. */
6337 if (veneer_value
< cmse_stub_sec_vma
)
6339 /* Avoid offset underflow. */
6341 stub_entry
->stub_offset
= 0;
6346 /* Complain if stub offset not a multiple of stub size. */
6347 if (stub_offset
% cmse_stub_size
)
6350 (_("offset of veneer for entry function `%s' not a multiple of "
6351 "its size"), sym_name
);
6358 new_cmse_stubs_created
--;
6359 if (veneer_value
< cmse_stub_array_start
)
6360 cmse_stub_array_start
= veneer_value
;
6361 next_cmse_stub_offset
= stub_offset
+ ((cmse_stub_size
+ 7) & ~7);
6362 if (next_cmse_stub_offset
> htab
->new_cmse_stub_offset
)
6363 htab
->new_cmse_stub_offset
= next_cmse_stub_offset
;
6366 if (!info
->out_implib_bfd
&& new_cmse_stubs_created
!= 0)
6368 BFD_ASSERT (new_cmse_stubs_created
> 0);
6370 (_("new entry function(s) introduced but no output import library "
6372 bfd_hash_traverse (&htab
->stub_hash_table
, arm_list_new_cmse_stub
, info
);
6375 if (cmse_stub_array_start
!= cmse_stub_sec_vma
)
6378 (_("start address of `%s' is different from previous link"),
6388 /* Determine and set the size of the stub section for a final link.
6390 The basic idea here is to examine all the relocations looking for
6391 PC-relative calls to a target that is unreachable with a "bl"
6395 elf32_arm_size_stubs (bfd
*output_bfd
,
6397 struct bfd_link_info
*info
,
6398 bfd_signed_vma group_size
,
6399 asection
* (*add_stub_section
) (const char *, asection
*,
6402 void (*layout_sections_again
) (void))
6404 bfd_boolean ret
= TRUE
;
6405 obj_attribute
*out_attr
;
6406 int cmse_stub_created
= 0;
6407 bfd_size_type stub_group_size
;
6408 bfd_boolean m_profile
, stubs_always_after_branch
, first_veneer_scan
= TRUE
;
6409 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
6410 struct a8_erratum_fix
*a8_fixes
= NULL
;
6411 unsigned int num_a8_fixes
= 0, a8_fix_table_size
= 10;
6412 struct a8_erratum_reloc
*a8_relocs
= NULL
;
6413 unsigned int num_a8_relocs
= 0, a8_reloc_table_size
= 10, i
;
6418 if (htab
->fix_cortex_a8
)
6420 a8_fixes
= (struct a8_erratum_fix
*)
6421 bfd_zmalloc (sizeof (struct a8_erratum_fix
) * a8_fix_table_size
);
6422 a8_relocs
= (struct a8_erratum_reloc
*)
6423 bfd_zmalloc (sizeof (struct a8_erratum_reloc
) * a8_reloc_table_size
);
6426 /* Propagate mach to stub bfd, because it may not have been
6427 finalized when we created stub_bfd. */
6428 bfd_set_arch_mach (stub_bfd
, bfd_get_arch (output_bfd
),
6429 bfd_get_mach (output_bfd
));
6431 /* Stash our params away. */
6432 htab
->stub_bfd
= stub_bfd
;
6433 htab
->add_stub_section
= add_stub_section
;
6434 htab
->layout_sections_again
= layout_sections_again
;
6435 stubs_always_after_branch
= group_size
< 0;
6437 out_attr
= elf_known_obj_attributes_proc (output_bfd
);
6438 m_profile
= out_attr
[Tag_CPU_arch_profile
].i
== 'M';
6440 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
6441 as the first half of a 32-bit branch straddling two 4K pages. This is a
6442 crude way of enforcing that. */
6443 if (htab
->fix_cortex_a8
)
6444 stubs_always_after_branch
= 1;
6447 stub_group_size
= -group_size
;
6449 stub_group_size
= group_size
;
6451 if (stub_group_size
== 1)
6453 /* Default values. */
6454 /* Thumb branch range is +-4MB has to be used as the default
6455 maximum size (a given section can contain both ARM and Thumb
6456 code, so the worst case has to be taken into account).
6458 This value is 24K less than that, which allows for 2025
6459 12-byte stubs. If we exceed that, then we will fail to link.
6460 The user will have to relink with an explicit group size
6462 stub_group_size
= 4170000;
6465 group_sections (htab
, stub_group_size
, stubs_always_after_branch
);
6467 /* If we're applying the cortex A8 fix, we need to determine the
6468 program header size now, because we cannot change it later --
6469 that could alter section placements. Notice the A8 erratum fix
6470 ends up requiring the section addresses to remain unchanged
6471 modulo the page size. That's something we cannot represent
6472 inside BFD, and we don't want to force the section alignment to
6473 be the page size. */
6474 if (htab
->fix_cortex_a8
)
6475 (*htab
->layout_sections_again
) ();
6480 unsigned int bfd_indx
;
6482 enum elf32_arm_stub_type stub_type
;
6483 bfd_boolean stub_changed
= FALSE
;
6484 unsigned prev_num_a8_fixes
= num_a8_fixes
;
6487 for (input_bfd
= info
->input_bfds
, bfd_indx
= 0;
6489 input_bfd
= input_bfd
->link
.next
, bfd_indx
++)
6491 Elf_Internal_Shdr
*symtab_hdr
;
6493 Elf_Internal_Sym
*local_syms
= NULL
;
6495 if (!is_arm_elf (input_bfd
))
6497 if ((input_bfd
->flags
& DYNAMIC
) != 0
6498 && (elf_sym_hashes (input_bfd
) == NULL
6499 || (elf_dyn_lib_class (input_bfd
) & DYN_AS_NEEDED
) != 0))
6504 /* We'll need the symbol table in a second. */
6505 symtab_hdr
= &elf_tdata (input_bfd
)->symtab_hdr
;
6506 if (symtab_hdr
->sh_info
== 0)
6509 /* Limit scan of symbols to object file whose profile is
6510 Microcontroller to not hinder performance in the general case. */
6511 if (m_profile
&& first_veneer_scan
)
6513 struct elf_link_hash_entry
**sym_hashes
;
6515 sym_hashes
= elf_sym_hashes (input_bfd
);
6516 if (!cmse_scan (input_bfd
, htab
, out_attr
, sym_hashes
,
6517 &cmse_stub_created
))
6518 goto error_ret_free_local
;
6520 if (cmse_stub_created
!= 0)
6521 stub_changed
= TRUE
;
6524 /* Walk over each section attached to the input bfd. */
6525 for (section
= input_bfd
->sections
;
6527 section
= section
->next
)
6529 Elf_Internal_Rela
*internal_relocs
, *irelaend
, *irela
;
6531 /* If there aren't any relocs, then there's nothing more
6533 if ((section
->flags
& SEC_RELOC
) == 0
6534 || section
->reloc_count
== 0
6535 || (section
->flags
& SEC_CODE
) == 0)
6538 /* If this section is a link-once section that will be
6539 discarded, then don't create any stubs. */
6540 if (section
->output_section
== NULL
6541 || section
->output_section
->owner
!= output_bfd
)
6544 /* Get the relocs. */
6546 = _bfd_elf_link_read_relocs (input_bfd
, section
, NULL
,
6547 NULL
, info
->keep_memory
);
6548 if (internal_relocs
== NULL
)
6549 goto error_ret_free_local
;
6551 /* Now examine each relocation. */
6552 irela
= internal_relocs
;
6553 irelaend
= irela
+ section
->reloc_count
;
6554 for (; irela
< irelaend
; irela
++)
6556 unsigned int r_type
, r_indx
;
6559 bfd_vma destination
;
6560 struct elf32_arm_link_hash_entry
*hash
;
6561 const char *sym_name
;
6562 unsigned char st_type
;
6563 enum arm_st_branch_type branch_type
;
6564 bfd_boolean created_stub
= FALSE
;
6566 r_type
= ELF32_R_TYPE (irela
->r_info
);
6567 r_indx
= ELF32_R_SYM (irela
->r_info
);
6569 if (r_type
>= (unsigned int) R_ARM_max
)
6571 bfd_set_error (bfd_error_bad_value
);
6572 error_ret_free_internal
:
6573 if (elf_section_data (section
)->relocs
== NULL
)
6574 free (internal_relocs
);
6576 error_ret_free_local
:
6577 if (symtab_hdr
->contents
!= (unsigned char *) local_syms
)
6583 if (r_indx
>= symtab_hdr
->sh_info
)
6584 hash
= elf32_arm_hash_entry
6585 (elf_sym_hashes (input_bfd
)
6586 [r_indx
- symtab_hdr
->sh_info
]);
6588 /* Only look for stubs on branch instructions, or
6589 non-relaxed TLSCALL */
6590 if ((r_type
!= (unsigned int) R_ARM_CALL
)
6591 && (r_type
!= (unsigned int) R_ARM_THM_CALL
)
6592 && (r_type
!= (unsigned int) R_ARM_JUMP24
)
6593 && (r_type
!= (unsigned int) R_ARM_THM_JUMP19
)
6594 && (r_type
!= (unsigned int) R_ARM_THM_XPC22
)
6595 && (r_type
!= (unsigned int) R_ARM_THM_JUMP24
)
6596 && (r_type
!= (unsigned int) R_ARM_PLT32
)
6597 && !((r_type
== (unsigned int) R_ARM_TLS_CALL
6598 || r_type
== (unsigned int) R_ARM_THM_TLS_CALL
)
6599 && r_type
== elf32_arm_tls_transition
6600 (info
, r_type
, &hash
->root
)
6601 && ((hash
? hash
->tls_type
6602 : (elf32_arm_local_got_tls_type
6603 (input_bfd
)[r_indx
]))
6604 & GOT_TLS_GDESC
) != 0))
6607 /* Now determine the call target, its name, value,
6614 if (r_type
== (unsigned int) R_ARM_TLS_CALL
6615 || r_type
== (unsigned int) R_ARM_THM_TLS_CALL
)
6617 /* A non-relaxed TLS call. The target is the
6618 plt-resident trampoline and nothing to do
6620 BFD_ASSERT (htab
->tls_trampoline
> 0);
6621 sym_sec
= htab
->root
.splt
;
6622 sym_value
= htab
->tls_trampoline
;
6625 branch_type
= ST_BRANCH_TO_ARM
;
6629 /* It's a local symbol. */
6630 Elf_Internal_Sym
*sym
;
6632 if (local_syms
== NULL
)
6635 = (Elf_Internal_Sym
*) symtab_hdr
->contents
;
6636 if (local_syms
== NULL
)
6638 = bfd_elf_get_elf_syms (input_bfd
, symtab_hdr
,
6639 symtab_hdr
->sh_info
, 0,
6641 if (local_syms
== NULL
)
6642 goto error_ret_free_internal
;
6645 sym
= local_syms
+ r_indx
;
6646 if (sym
->st_shndx
== SHN_UNDEF
)
6647 sym_sec
= bfd_und_section_ptr
;
6648 else if (sym
->st_shndx
== SHN_ABS
)
6649 sym_sec
= bfd_abs_section_ptr
;
6650 else if (sym
->st_shndx
== SHN_COMMON
)
6651 sym_sec
= bfd_com_section_ptr
;
6654 bfd_section_from_elf_index (input_bfd
, sym
->st_shndx
);
6657 /* This is an undefined symbol. It can never
6661 if (ELF_ST_TYPE (sym
->st_info
) != STT_SECTION
)
6662 sym_value
= sym
->st_value
;
6663 destination
= (sym_value
+ irela
->r_addend
6664 + sym_sec
->output_offset
6665 + sym_sec
->output_section
->vma
);
6666 st_type
= ELF_ST_TYPE (sym
->st_info
);
6668 ARM_GET_SYM_BRANCH_TYPE (sym
->st_target_internal
);
6670 = bfd_elf_string_from_elf_section (input_bfd
,
6671 symtab_hdr
->sh_link
,
6676 /* It's an external symbol. */
6677 while (hash
->root
.root
.type
== bfd_link_hash_indirect
6678 || hash
->root
.root
.type
== bfd_link_hash_warning
)
6679 hash
= ((struct elf32_arm_link_hash_entry
*)
6680 hash
->root
.root
.u
.i
.link
);
6682 if (hash
->root
.root
.type
== bfd_link_hash_defined
6683 || hash
->root
.root
.type
== bfd_link_hash_defweak
)
6685 sym_sec
= hash
->root
.root
.u
.def
.section
;
6686 sym_value
= hash
->root
.root
.u
.def
.value
;
6688 struct elf32_arm_link_hash_table
*globals
=
6689 elf32_arm_hash_table (info
);
6691 /* For a destination in a shared library,
6692 use the PLT stub as target address to
6693 decide whether a branch stub is
6696 && globals
->root
.splt
!= NULL
6698 && hash
->root
.plt
.offset
!= (bfd_vma
) -1)
6700 sym_sec
= globals
->root
.splt
;
6701 sym_value
= hash
->root
.plt
.offset
;
6702 if (sym_sec
->output_section
!= NULL
)
6703 destination
= (sym_value
6704 + sym_sec
->output_offset
6705 + sym_sec
->output_section
->vma
);
6707 else if (sym_sec
->output_section
!= NULL
)
6708 destination
= (sym_value
+ irela
->r_addend
6709 + sym_sec
->output_offset
6710 + sym_sec
->output_section
->vma
);
6712 else if ((hash
->root
.root
.type
== bfd_link_hash_undefined
)
6713 || (hash
->root
.root
.type
== bfd_link_hash_undefweak
))
6715 /* For a shared library, use the PLT stub as
6716 target address to decide whether a long
6717 branch stub is needed.
6718 For absolute code, they cannot be handled. */
6719 struct elf32_arm_link_hash_table
*globals
=
6720 elf32_arm_hash_table (info
);
6723 && globals
->root
.splt
!= NULL
6725 && hash
->root
.plt
.offset
!= (bfd_vma
) -1)
6727 sym_sec
= globals
->root
.splt
;
6728 sym_value
= hash
->root
.plt
.offset
;
6729 if (sym_sec
->output_section
!= NULL
)
6730 destination
= (sym_value
6731 + sym_sec
->output_offset
6732 + sym_sec
->output_section
->vma
);
6739 bfd_set_error (bfd_error_bad_value
);
6740 goto error_ret_free_internal
;
6742 st_type
= hash
->root
.type
;
6744 ARM_GET_SYM_BRANCH_TYPE (hash
->root
.target_internal
);
6745 sym_name
= hash
->root
.root
.root
.string
;
6750 bfd_boolean new_stub
;
6751 struct elf32_arm_stub_hash_entry
*stub_entry
;
6753 /* Determine what (if any) linker stub is needed. */
6754 stub_type
= arm_type_of_stub (info
, section
, irela
,
6755 st_type
, &branch_type
,
6756 hash
, destination
, sym_sec
,
6757 input_bfd
, sym_name
);
6758 if (stub_type
== arm_stub_none
)
6761 /* We've either created a stub for this reloc already,
6762 or we are about to. */
6764 elf32_arm_create_stub (htab
, stub_type
, section
, irela
,
6766 (char *) sym_name
, sym_value
,
6767 branch_type
, &new_stub
);
6769 created_stub
= stub_entry
!= NULL
;
6771 goto error_ret_free_internal
;
6775 stub_changed
= TRUE
;
6779 /* Look for relocations which might trigger Cortex-A8
6781 if (htab
->fix_cortex_a8
6782 && (r_type
== (unsigned int) R_ARM_THM_JUMP24
6783 || r_type
== (unsigned int) R_ARM_THM_JUMP19
6784 || r_type
== (unsigned int) R_ARM_THM_CALL
6785 || r_type
== (unsigned int) R_ARM_THM_XPC22
))
6787 bfd_vma from
= section
->output_section
->vma
6788 + section
->output_offset
6791 if ((from
& 0xfff) == 0xffe)
6793 /* Found a candidate. Note we haven't checked the
6794 destination is within 4K here: if we do so (and
6795 don't create an entry in a8_relocs) we can't tell
6796 that a branch should have been relocated when
6798 if (num_a8_relocs
== a8_reloc_table_size
)
6800 a8_reloc_table_size
*= 2;
6801 a8_relocs
= (struct a8_erratum_reloc
*)
6802 bfd_realloc (a8_relocs
,
6803 sizeof (struct a8_erratum_reloc
)
6804 * a8_reloc_table_size
);
6807 a8_relocs
[num_a8_relocs
].from
= from
;
6808 a8_relocs
[num_a8_relocs
].destination
= destination
;
6809 a8_relocs
[num_a8_relocs
].r_type
= r_type
;
6810 a8_relocs
[num_a8_relocs
].branch_type
= branch_type
;
6811 a8_relocs
[num_a8_relocs
].sym_name
= sym_name
;
6812 a8_relocs
[num_a8_relocs
].non_a8_stub
= created_stub
;
6813 a8_relocs
[num_a8_relocs
].hash
= hash
;
6820 /* We're done with the internal relocs, free them. */
6821 if (elf_section_data (section
)->relocs
== NULL
)
6822 free (internal_relocs
);
6825 if (htab
->fix_cortex_a8
)
6827 /* Sort relocs which might apply to Cortex-A8 erratum. */
6828 qsort (a8_relocs
, num_a8_relocs
,
6829 sizeof (struct a8_erratum_reloc
),
6832 /* Scan for branches which might trigger Cortex-A8 erratum. */
6833 if (cortex_a8_erratum_scan (input_bfd
, info
, &a8_fixes
,
6834 &num_a8_fixes
, &a8_fix_table_size
,
6835 a8_relocs
, num_a8_relocs
,
6836 prev_num_a8_fixes
, &stub_changed
)
6838 goto error_ret_free_local
;
6841 if (local_syms
!= NULL
6842 && symtab_hdr
->contents
!= (unsigned char *) local_syms
)
6844 if (!info
->keep_memory
)
6847 symtab_hdr
->contents
= (unsigned char *) local_syms
;
6851 if (first_veneer_scan
6852 && !set_cmse_veneer_addr_from_implib (info
, htab
,
6853 &cmse_stub_created
))
6856 if (prev_num_a8_fixes
!= num_a8_fixes
)
6857 stub_changed
= TRUE
;
6862 /* OK, we've added some stubs. Find out the new size of the
6864 for (stub_sec
= htab
->stub_bfd
->sections
;
6866 stub_sec
= stub_sec
->next
)
6868 /* Ignore non-stub sections. */
6869 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
6875 /* Add new SG veneers after those already in the input import
6877 for (stub_type
= arm_stub_none
+ 1; stub_type
< max_stub_type
;
6880 bfd_vma
*start_offset_p
;
6881 asection
**stub_sec_p
;
6883 start_offset_p
= arm_new_stubs_start_offset_ptr (htab
, stub_type
);
6884 stub_sec_p
= arm_dedicated_stub_input_section_ptr (htab
, stub_type
);
6885 if (start_offset_p
== NULL
)
6888 BFD_ASSERT (stub_sec_p
!= NULL
);
6889 if (*stub_sec_p
!= NULL
)
6890 (*stub_sec_p
)->size
= *start_offset_p
;
6893 /* Compute stub section size, considering padding. */
6894 bfd_hash_traverse (&htab
->stub_hash_table
, arm_size_one_stub
, htab
);
6895 for (stub_type
= arm_stub_none
+ 1; stub_type
< max_stub_type
;
6899 asection
**stub_sec_p
;
6901 padding
= arm_dedicated_stub_section_padding (stub_type
);
6902 stub_sec_p
= arm_dedicated_stub_input_section_ptr (htab
, stub_type
);
6903 /* Skip if no stub input section or no stub section padding
6905 if ((stub_sec_p
!= NULL
&& *stub_sec_p
== NULL
) || padding
== 0)
6907 /* Stub section padding required but no dedicated section. */
6908 BFD_ASSERT (stub_sec_p
);
6910 size
= (*stub_sec_p
)->size
;
6911 size
= (size
+ padding
- 1) & ~(padding
- 1);
6912 (*stub_sec_p
)->size
= size
;
6915 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
6916 if (htab
->fix_cortex_a8
)
6917 for (i
= 0; i
< num_a8_fixes
; i
++)
6919 stub_sec
= elf32_arm_create_or_find_stub_sec (NULL
,
6920 a8_fixes
[i
].section
, htab
, a8_fixes
[i
].stub_type
);
6922 if (stub_sec
== NULL
)
6926 += find_stub_size_and_template (a8_fixes
[i
].stub_type
, NULL
,
6931 /* Ask the linker to do its stuff. */
6932 (*htab
->layout_sections_again
) ();
6933 first_veneer_scan
= FALSE
;
6936 /* Add stubs for Cortex-A8 erratum fixes now. */
6937 if (htab
->fix_cortex_a8
)
6939 for (i
= 0; i
< num_a8_fixes
; i
++)
6941 struct elf32_arm_stub_hash_entry
*stub_entry
;
6942 char *stub_name
= a8_fixes
[i
].stub_name
;
6943 asection
*section
= a8_fixes
[i
].section
;
6944 unsigned int section_id
= a8_fixes
[i
].section
->id
;
6945 asection
*link_sec
= htab
->stub_group
[section_id
].link_sec
;
6946 asection
*stub_sec
= htab
->stub_group
[section_id
].stub_sec
;
6947 const insn_sequence
*template_sequence
;
6948 int template_size
, size
= 0;
6950 stub_entry
= arm_stub_hash_lookup (&htab
->stub_hash_table
, stub_name
,
6952 if (stub_entry
== NULL
)
6954 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
6955 section
->owner
, stub_name
);
6959 stub_entry
->stub_sec
= stub_sec
;
6960 stub_entry
->stub_offset
= (bfd_vma
) -1;
6961 stub_entry
->id_sec
= link_sec
;
6962 stub_entry
->stub_type
= a8_fixes
[i
].stub_type
;
6963 stub_entry
->source_value
= a8_fixes
[i
].offset
;
6964 stub_entry
->target_section
= a8_fixes
[i
].section
;
6965 stub_entry
->target_value
= a8_fixes
[i
].target_offset
;
6966 stub_entry
->orig_insn
= a8_fixes
[i
].orig_insn
;
6967 stub_entry
->branch_type
= a8_fixes
[i
].branch_type
;
6969 size
= find_stub_size_and_template (a8_fixes
[i
].stub_type
,
6973 stub_entry
->stub_size
= size
;
6974 stub_entry
->stub_template
= template_sequence
;
6975 stub_entry
->stub_template_size
= template_size
;
6978 /* Stash the Cortex-A8 erratum fix array for use later in
6979 elf32_arm_write_section(). */
6980 htab
->a8_erratum_fixes
= a8_fixes
;
6981 htab
->num_a8_erratum_fixes
= num_a8_fixes
;
6985 htab
->a8_erratum_fixes
= NULL
;
6986 htab
->num_a8_erratum_fixes
= 0;
6991 /* Build all the stubs associated with the current output file. The
6992 stubs are kept in a hash table attached to the main linker hash
6993 table. We also set up the .plt entries for statically linked PIC
6994 functions here. This function is called via arm_elf_finish in the
6998 elf32_arm_build_stubs (struct bfd_link_info
*info
)
7001 struct bfd_hash_table
*table
;
7002 enum elf32_arm_stub_type stub_type
;
7003 struct elf32_arm_link_hash_table
*htab
;
7005 htab
= elf32_arm_hash_table (info
);
7009 for (stub_sec
= htab
->stub_bfd
->sections
;
7011 stub_sec
= stub_sec
->next
)
7015 /* Ignore non-stub sections. */
7016 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
7019 /* Allocate memory to hold the linker stubs. Zeroing the stub sections
7020 must at least be done for stub section requiring padding and for SG
7021 veneers to ensure that a non secure code branching to a removed SG
7022 veneer causes an error. */
7023 size
= stub_sec
->size
;
7024 stub_sec
->contents
= (unsigned char *) bfd_zalloc (htab
->stub_bfd
, size
);
7025 if (stub_sec
->contents
== NULL
&& size
!= 0)
7031 /* Add new SG veneers after those already in the input import library. */
7032 for (stub_type
= arm_stub_none
+ 1; stub_type
< max_stub_type
; stub_type
++)
7034 bfd_vma
*start_offset_p
;
7035 asection
**stub_sec_p
;
7037 start_offset_p
= arm_new_stubs_start_offset_ptr (htab
, stub_type
);
7038 stub_sec_p
= arm_dedicated_stub_input_section_ptr (htab
, stub_type
);
7039 if (start_offset_p
== NULL
)
7042 BFD_ASSERT (stub_sec_p
!= NULL
);
7043 if (*stub_sec_p
!= NULL
)
7044 (*stub_sec_p
)->size
= *start_offset_p
;
7047 /* Build the stubs as directed by the stub hash table. */
7048 table
= &htab
->stub_hash_table
;
7049 bfd_hash_traverse (table
, arm_build_one_stub
, info
);
7050 if (htab
->fix_cortex_a8
)
7052 /* Place the cortex a8 stubs last. */
7053 htab
->fix_cortex_a8
= -1;
7054 bfd_hash_traverse (table
, arm_build_one_stub
, info
);
7060 /* Locate the Thumb encoded calling stub for NAME. */
7062 static struct elf_link_hash_entry
*
7063 find_thumb_glue (struct bfd_link_info
*link_info
,
7065 char **error_message
)
7068 struct elf_link_hash_entry
*hash
;
7069 struct elf32_arm_link_hash_table
*hash_table
;
7071 /* We need a pointer to the armelf specific hash table. */
7072 hash_table
= elf32_arm_hash_table (link_info
);
7073 if (hash_table
== NULL
)
7076 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen (name
)
7077 + strlen (THUMB2ARM_GLUE_ENTRY_NAME
) + 1);
7079 BFD_ASSERT (tmp_name
);
7081 sprintf (tmp_name
, THUMB2ARM_GLUE_ENTRY_NAME
, name
);
7083 hash
= elf_link_hash_lookup
7084 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
7087 && asprintf (error_message
, _("unable to find %s glue '%s' for '%s'"),
7088 "Thumb", tmp_name
, name
) == -1)
7089 *error_message
= (char *) bfd_errmsg (bfd_error_system_call
);
7096 /* Locate the ARM encoded calling stub for NAME. */
7098 static struct elf_link_hash_entry
*
7099 find_arm_glue (struct bfd_link_info
*link_info
,
7101 char **error_message
)
7104 struct elf_link_hash_entry
*myh
;
7105 struct elf32_arm_link_hash_table
*hash_table
;
7107 /* We need a pointer to the elfarm specific hash table. */
7108 hash_table
= elf32_arm_hash_table (link_info
);
7109 if (hash_table
== NULL
)
7112 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen (name
)
7113 + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
7114 BFD_ASSERT (tmp_name
);
7116 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
7118 myh
= elf_link_hash_lookup
7119 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
7122 && asprintf (error_message
, _("unable to find %s glue '%s' for '%s'"),
7123 "ARM", tmp_name
, name
) == -1)
7124 *error_message
= (char *) bfd_errmsg (bfd_error_system_call
);
7131 /* ARM->Thumb glue (static images):
7135 ldr r12, __func_addr
7138 .word func @ behave as if you saw a ARM_32 reloc.
7145 .word func @ behave as if you saw a ARM_32 reloc.
7147 (relocatable images)
7150 ldr r12, __func_offset
7156 #define ARM2THUMB_STATIC_GLUE_SIZE 12
7157 static const insn32 a2t1_ldr_insn
= 0xe59fc000;
7158 static const insn32 a2t2_bx_r12_insn
= 0xe12fff1c;
7159 static const insn32 a2t3_func_addr_insn
= 0x00000001;
7161 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
7162 static const insn32 a2t1v5_ldr_insn
= 0xe51ff004;
7163 static const insn32 a2t2v5_func_addr_insn
= 0x00000001;
7165 #define ARM2THUMB_PIC_GLUE_SIZE 16
7166 static const insn32 a2t1p_ldr_insn
= 0xe59fc004;
7167 static const insn32 a2t2p_add_pc_insn
= 0xe08cc00f;
7168 static const insn32 a2t3p_bx_r12_insn
= 0xe12fff1c;
7170 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
7174 __func_from_thumb: __func_from_thumb:
7176 nop ldr r6, __func_addr
7186 #define THUMB2ARM_GLUE_SIZE 8
7187 static const insn16 t2a1_bx_pc_insn
= 0x4778;
7188 static const insn16 t2a2_noop_insn
= 0x46c0;
7189 static const insn32 t2a3_b_insn
= 0xea000000;
7191 #define VFP11_ERRATUM_VENEER_SIZE 8
7192 #define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16
7193 #define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24
7195 #define ARM_BX_VENEER_SIZE 12
7196 static const insn32 armbx1_tst_insn
= 0xe3100001;
7197 static const insn32 armbx2_moveq_insn
= 0x01a0f000;
7198 static const insn32 armbx3_bx_insn
= 0xe12fff10;
7200 #ifndef ELFARM_NABI_C_INCLUDED
7202 arm_allocate_glue_section_space (bfd
* abfd
, bfd_size_type size
, const char * name
)
7205 bfd_byte
* contents
;
7209 /* Do not include empty glue sections in the output. */
7212 s
= bfd_get_linker_section (abfd
, name
);
7214 s
->flags
|= SEC_EXCLUDE
;
7219 BFD_ASSERT (abfd
!= NULL
);
7221 s
= bfd_get_linker_section (abfd
, name
);
7222 BFD_ASSERT (s
!= NULL
);
7224 contents
= (bfd_byte
*) bfd_zalloc (abfd
, size
);
7226 BFD_ASSERT (s
->size
== size
);
7227 s
->contents
= contents
;
7231 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info
* info
)
7233 struct elf32_arm_link_hash_table
* globals
;
7235 globals
= elf32_arm_hash_table (info
);
7236 BFD_ASSERT (globals
!= NULL
);
7238 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
7239 globals
->arm_glue_size
,
7240 ARM2THUMB_GLUE_SECTION_NAME
);
7242 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
7243 globals
->thumb_glue_size
,
7244 THUMB2ARM_GLUE_SECTION_NAME
);
7246 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
7247 globals
->vfp11_erratum_glue_size
,
7248 VFP11_ERRATUM_VENEER_SECTION_NAME
);
7250 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
7251 globals
->stm32l4xx_erratum_glue_size
,
7252 STM32L4XX_ERRATUM_VENEER_SECTION_NAME
);
7254 arm_allocate_glue_section_space (globals
->bfd_of_glue_owner
,
7255 globals
->bx_glue_size
,
7256 ARM_BX_GLUE_SECTION_NAME
);
7261 /* Allocate space and symbols for calling a Thumb function from Arm mode.
7262 returns the symbol identifying the stub. */
7264 static struct elf_link_hash_entry
*
7265 record_arm_to_thumb_glue (struct bfd_link_info
* link_info
,
7266 struct elf_link_hash_entry
* h
)
7268 const char * name
= h
->root
.root
.string
;
7271 struct elf_link_hash_entry
* myh
;
7272 struct bfd_link_hash_entry
* bh
;
7273 struct elf32_arm_link_hash_table
* globals
;
7277 globals
= elf32_arm_hash_table (link_info
);
7278 BFD_ASSERT (globals
!= NULL
);
7279 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
7281 s
= bfd_get_linker_section
7282 (globals
->bfd_of_glue_owner
, ARM2THUMB_GLUE_SECTION_NAME
);
7284 BFD_ASSERT (s
!= NULL
);
7286 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen (name
)
7287 + strlen (ARM2THUMB_GLUE_ENTRY_NAME
) + 1);
7288 BFD_ASSERT (tmp_name
);
7290 sprintf (tmp_name
, ARM2THUMB_GLUE_ENTRY_NAME
, name
);
7292 myh
= elf_link_hash_lookup
7293 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
7297 /* We've already seen this guy. */
7302 /* The only trick here is using hash_table->arm_glue_size as the value.
7303 Even though the section isn't allocated yet, this is where we will be
7304 putting it. The +1 on the value marks that the stub has not been
7305 output yet - not that it is a Thumb function. */
7307 val
= globals
->arm_glue_size
+ 1;
7308 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
,
7309 tmp_name
, BSF_GLOBAL
, s
, val
,
7310 NULL
, TRUE
, FALSE
, &bh
);
7312 myh
= (struct elf_link_hash_entry
*) bh
;
7313 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
7314 myh
->forced_local
= 1;
7318 if (bfd_link_pic (link_info
)
7319 || globals
->root
.is_relocatable_executable
7320 || globals
->pic_veneer
)
7321 size
= ARM2THUMB_PIC_GLUE_SIZE
;
7322 else if (globals
->use_blx
)
7323 size
= ARM2THUMB_V5_STATIC_GLUE_SIZE
;
7325 size
= ARM2THUMB_STATIC_GLUE_SIZE
;
7328 globals
->arm_glue_size
+= size
;
7333 /* Allocate space for ARMv4 BX veneers. */
7336 record_arm_bx_glue (struct bfd_link_info
* link_info
, int reg
)
7339 struct elf32_arm_link_hash_table
*globals
;
7341 struct elf_link_hash_entry
*myh
;
7342 struct bfd_link_hash_entry
*bh
;
7345 /* BX PC does not need a veneer. */
7349 globals
= elf32_arm_hash_table (link_info
);
7350 BFD_ASSERT (globals
!= NULL
);
7351 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
7353 /* Check if this veneer has already been allocated. */
7354 if (globals
->bx_glue_offset
[reg
])
7357 s
= bfd_get_linker_section
7358 (globals
->bfd_of_glue_owner
, ARM_BX_GLUE_SECTION_NAME
);
7360 BFD_ASSERT (s
!= NULL
);
7362 /* Add symbol for veneer. */
7364 bfd_malloc ((bfd_size_type
) strlen (ARM_BX_GLUE_ENTRY_NAME
) + 1);
7365 BFD_ASSERT (tmp_name
);
7367 sprintf (tmp_name
, ARM_BX_GLUE_ENTRY_NAME
, reg
);
7369 myh
= elf_link_hash_lookup
7370 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
7372 BFD_ASSERT (myh
== NULL
);
7375 val
= globals
->bx_glue_size
;
7376 _bfd_generic_link_add_one_symbol (link_info
, globals
->bfd_of_glue_owner
,
7377 tmp_name
, BSF_FUNCTION
| BSF_LOCAL
, s
, val
,
7378 NULL
, TRUE
, FALSE
, &bh
);
7380 myh
= (struct elf_link_hash_entry
*) bh
;
7381 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
7382 myh
->forced_local
= 1;
7384 s
->size
+= ARM_BX_VENEER_SIZE
;
7385 globals
->bx_glue_offset
[reg
] = globals
->bx_glue_size
| 2;
7386 globals
->bx_glue_size
+= ARM_BX_VENEER_SIZE
;
7390 /* Add an entry to the code/data map for section SEC. */
7393 elf32_arm_section_map_add (asection
*sec
, char type
, bfd_vma vma
)
7395 struct _arm_elf_section_data
*sec_data
= elf32_arm_section_data (sec
);
7396 unsigned int newidx
;
7398 if (sec_data
->map
== NULL
)
7400 sec_data
->map
= (elf32_arm_section_map
*)
7401 bfd_malloc (sizeof (elf32_arm_section_map
));
7402 sec_data
->mapcount
= 0;
7403 sec_data
->mapsize
= 1;
7406 newidx
= sec_data
->mapcount
++;
7408 if (sec_data
->mapcount
> sec_data
->mapsize
)
7410 sec_data
->mapsize
*= 2;
7411 sec_data
->map
= (elf32_arm_section_map
*)
7412 bfd_realloc_or_free (sec_data
->map
, sec_data
->mapsize
7413 * sizeof (elf32_arm_section_map
));
7418 sec_data
->map
[newidx
].vma
= vma
;
7419 sec_data
->map
[newidx
].type
= type
;
7424 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
7425 veneers are handled for now. */
7428 record_vfp11_erratum_veneer (struct bfd_link_info
*link_info
,
7429 elf32_vfp11_erratum_list
*branch
,
7431 asection
*branch_sec
,
7432 unsigned int offset
)
7435 struct elf32_arm_link_hash_table
*hash_table
;
7437 struct elf_link_hash_entry
*myh
;
7438 struct bfd_link_hash_entry
*bh
;
7440 struct _arm_elf_section_data
*sec_data
;
7441 elf32_vfp11_erratum_list
*newerr
;
7443 hash_table
= elf32_arm_hash_table (link_info
);
7444 BFD_ASSERT (hash_table
!= NULL
);
7445 BFD_ASSERT (hash_table
->bfd_of_glue_owner
!= NULL
);
7447 s
= bfd_get_linker_section
7448 (hash_table
->bfd_of_glue_owner
, VFP11_ERRATUM_VENEER_SECTION_NAME
);
7450 sec_data
= elf32_arm_section_data (s
);
7452 BFD_ASSERT (s
!= NULL
);
7454 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen
7455 (VFP11_ERRATUM_VENEER_ENTRY_NAME
) + 10);
7456 BFD_ASSERT (tmp_name
);
7458 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
,
7459 hash_table
->num_vfp11_fixes
);
7461 myh
= elf_link_hash_lookup
7462 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
7464 BFD_ASSERT (myh
== NULL
);
7467 val
= hash_table
->vfp11_erratum_glue_size
;
7468 _bfd_generic_link_add_one_symbol (link_info
, hash_table
->bfd_of_glue_owner
,
7469 tmp_name
, BSF_FUNCTION
| BSF_LOCAL
, s
, val
,
7470 NULL
, TRUE
, FALSE
, &bh
);
7472 myh
= (struct elf_link_hash_entry
*) bh
;
7473 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
7474 myh
->forced_local
= 1;
7476 /* Link veneer back to calling location. */
7477 sec_data
->erratumcount
+= 1;
7478 newerr
= (elf32_vfp11_erratum_list
*)
7479 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list
));
7481 newerr
->type
= VFP11_ERRATUM_ARM_VENEER
;
7483 newerr
->u
.v
.branch
= branch
;
7484 newerr
->u
.v
.id
= hash_table
->num_vfp11_fixes
;
7485 branch
->u
.b
.veneer
= newerr
;
7487 newerr
->next
= sec_data
->erratumlist
;
7488 sec_data
->erratumlist
= newerr
;
7490 /* A symbol for the return from the veneer. */
7491 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
"_r",
7492 hash_table
->num_vfp11_fixes
);
7494 myh
= elf_link_hash_lookup
7495 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
7502 _bfd_generic_link_add_one_symbol (link_info
, branch_bfd
, tmp_name
, BSF_LOCAL
,
7503 branch_sec
, val
, NULL
, TRUE
, FALSE
, &bh
);
7505 myh
= (struct elf_link_hash_entry
*) bh
;
7506 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
7507 myh
->forced_local
= 1;
7511 /* Generate a mapping symbol for the veneer section, and explicitly add an
7512 entry for that symbol to the code/data map for the section. */
7513 if (hash_table
->vfp11_erratum_glue_size
== 0)
7516 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
7517 ever requires this erratum fix. */
7518 _bfd_generic_link_add_one_symbol (link_info
,
7519 hash_table
->bfd_of_glue_owner
, "$a",
7520 BSF_LOCAL
, s
, 0, NULL
,
7523 myh
= (struct elf_link_hash_entry
*) bh
;
7524 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
7525 myh
->forced_local
= 1;
7527 /* The elf32_arm_init_maps function only cares about symbols from input
7528 BFDs. We must make a note of this generated mapping symbol
7529 ourselves so that code byteswapping works properly in
7530 elf32_arm_write_section. */
7531 elf32_arm_section_map_add (s
, 'a', 0);
7534 s
->size
+= VFP11_ERRATUM_VENEER_SIZE
;
7535 hash_table
->vfp11_erratum_glue_size
+= VFP11_ERRATUM_VENEER_SIZE
;
7536 hash_table
->num_vfp11_fixes
++;
7538 /* The offset of the veneer. */
7542 /* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode
7543 veneers need to be handled because used only in Cortex-M. */
7546 record_stm32l4xx_erratum_veneer (struct bfd_link_info
*link_info
,
7547 elf32_stm32l4xx_erratum_list
*branch
,
7549 asection
*branch_sec
,
7550 unsigned int offset
,
7551 bfd_size_type veneer_size
)
7554 struct elf32_arm_link_hash_table
*hash_table
;
7556 struct elf_link_hash_entry
*myh
;
7557 struct bfd_link_hash_entry
*bh
;
7559 struct _arm_elf_section_data
*sec_data
;
7560 elf32_stm32l4xx_erratum_list
*newerr
;
7562 hash_table
= elf32_arm_hash_table (link_info
);
7563 BFD_ASSERT (hash_table
!= NULL
);
7564 BFD_ASSERT (hash_table
->bfd_of_glue_owner
!= NULL
);
7566 s
= bfd_get_linker_section
7567 (hash_table
->bfd_of_glue_owner
, STM32L4XX_ERRATUM_VENEER_SECTION_NAME
);
7569 BFD_ASSERT (s
!= NULL
);
7571 sec_data
= elf32_arm_section_data (s
);
7573 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen
7574 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME
) + 10);
7575 BFD_ASSERT (tmp_name
);
7577 sprintf (tmp_name
, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME
,
7578 hash_table
->num_stm32l4xx_fixes
);
7580 myh
= elf_link_hash_lookup
7581 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
7583 BFD_ASSERT (myh
== NULL
);
7586 val
= hash_table
->stm32l4xx_erratum_glue_size
;
7587 _bfd_generic_link_add_one_symbol (link_info
, hash_table
->bfd_of_glue_owner
,
7588 tmp_name
, BSF_FUNCTION
| BSF_LOCAL
, s
, val
,
7589 NULL
, TRUE
, FALSE
, &bh
);
7591 myh
= (struct elf_link_hash_entry
*) bh
;
7592 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
7593 myh
->forced_local
= 1;
7595 /* Link veneer back to calling location. */
7596 sec_data
->stm32l4xx_erratumcount
+= 1;
7597 newerr
= (elf32_stm32l4xx_erratum_list
*)
7598 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list
));
7600 newerr
->type
= STM32L4XX_ERRATUM_VENEER
;
7602 newerr
->u
.v
.branch
= branch
;
7603 newerr
->u
.v
.id
= hash_table
->num_stm32l4xx_fixes
;
7604 branch
->u
.b
.veneer
= newerr
;
7606 newerr
->next
= sec_data
->stm32l4xx_erratumlist
;
7607 sec_data
->stm32l4xx_erratumlist
= newerr
;
7609 /* A symbol for the return from the veneer. */
7610 sprintf (tmp_name
, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME
"_r",
7611 hash_table
->num_stm32l4xx_fixes
);
7613 myh
= elf_link_hash_lookup
7614 (&(hash_table
)->root
, tmp_name
, FALSE
, FALSE
, FALSE
);
7621 _bfd_generic_link_add_one_symbol (link_info
, branch_bfd
, tmp_name
, BSF_LOCAL
,
7622 branch_sec
, val
, NULL
, TRUE
, FALSE
, &bh
);
7624 myh
= (struct elf_link_hash_entry
*) bh
;
7625 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
7626 myh
->forced_local
= 1;
7630 /* Generate a mapping symbol for the veneer section, and explicitly add an
7631 entry for that symbol to the code/data map for the section. */
7632 if (hash_table
->stm32l4xx_erratum_glue_size
== 0)
7635 /* Creates a THUMB symbol since there is no other choice. */
7636 _bfd_generic_link_add_one_symbol (link_info
,
7637 hash_table
->bfd_of_glue_owner
, "$t",
7638 BSF_LOCAL
, s
, 0, NULL
,
7641 myh
= (struct elf_link_hash_entry
*) bh
;
7642 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
7643 myh
->forced_local
= 1;
7645 /* The elf32_arm_init_maps function only cares about symbols from input
7646 BFDs. We must make a note of this generated mapping symbol
7647 ourselves so that code byteswapping works properly in
7648 elf32_arm_write_section. */
7649 elf32_arm_section_map_add (s
, 't', 0);
7652 s
->size
+= veneer_size
;
7653 hash_table
->stm32l4xx_erratum_glue_size
+= veneer_size
;
7654 hash_table
->num_stm32l4xx_fixes
++;
7656 /* The offset of the veneer. */
7660 #define ARM_GLUE_SECTION_FLAGS \
7661 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
7662 | SEC_READONLY | SEC_LINKER_CREATED)
7664 /* Create a fake section for use by the ARM backend of the linker. */
7667 arm_make_glue_section (bfd
* abfd
, const char * name
)
7671 sec
= bfd_get_linker_section (abfd
, name
);
7676 sec
= bfd_make_section_anyway_with_flags (abfd
, name
, ARM_GLUE_SECTION_FLAGS
);
7679 || !bfd_set_section_alignment (sec
, 2))
7682 /* Set the gc mark to prevent the section from being removed by garbage
7683 collection, despite the fact that no relocs refer to this section. */
7689 /* Set size of .plt entries. This function is called from the
7690 linker scripts in ld/emultempl/{armelf}.em. */
7693 bfd_elf32_arm_use_long_plt (void)
7695 elf32_arm_use_long_plt_entry
= TRUE
;
7698 /* Add the glue sections to ABFD. This function is called from the
7699 linker scripts in ld/emultempl/{armelf}.em. */
7702 bfd_elf32_arm_add_glue_sections_to_bfd (bfd
*abfd
,
7703 struct bfd_link_info
*info
)
7705 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (info
);
7706 bfd_boolean dostm32l4xx
= globals
7707 && globals
->stm32l4xx_fix
!= BFD_ARM_STM32L4XX_FIX_NONE
;
7708 bfd_boolean addglue
;
7710 /* If we are only performing a partial
7711 link do not bother adding the glue. */
7712 if (bfd_link_relocatable (info
))
7715 addglue
= arm_make_glue_section (abfd
, ARM2THUMB_GLUE_SECTION_NAME
)
7716 && arm_make_glue_section (abfd
, THUMB2ARM_GLUE_SECTION_NAME
)
7717 && arm_make_glue_section (abfd
, VFP11_ERRATUM_VENEER_SECTION_NAME
)
7718 && arm_make_glue_section (abfd
, ARM_BX_GLUE_SECTION_NAME
);
7724 && arm_make_glue_section (abfd
, STM32L4XX_ERRATUM_VENEER_SECTION_NAME
);
7727 /* Mark output sections of veneers needing a dedicated one with SEC_KEEP. This
7728 ensures they are not marked for deletion by
7729 strip_excluded_output_sections () when veneers are going to be created
7730 later. Not doing so would trigger assert on empty section size in
7731 lang_size_sections_1 (). */
7734 bfd_elf32_arm_keep_private_stub_output_sections (struct bfd_link_info
*info
)
7736 enum elf32_arm_stub_type stub_type
;
7738 /* If we are only performing a partial
7739 link do not bother adding the glue. */
7740 if (bfd_link_relocatable (info
))
7743 for (stub_type
= arm_stub_none
+ 1; stub_type
< max_stub_type
; stub_type
++)
7746 const char *out_sec_name
;
7748 if (!arm_dedicated_stub_output_section_required (stub_type
))
7751 out_sec_name
= arm_dedicated_stub_output_section_name (stub_type
);
7752 out_sec
= bfd_get_section_by_name (info
->output_bfd
, out_sec_name
);
7753 if (out_sec
!= NULL
)
7754 out_sec
->flags
|= SEC_KEEP
;
7758 /* Select a BFD to be used to hold the sections used by the glue code.
7759 This function is called from the linker scripts in ld/emultempl/
7763 bfd_elf32_arm_get_bfd_for_interworking (bfd
*abfd
, struct bfd_link_info
*info
)
7765 struct elf32_arm_link_hash_table
*globals
;
7767 /* If we are only performing a partial link
7768 do not bother getting a bfd to hold the glue. */
7769 if (bfd_link_relocatable (info
))
7772 /* Make sure we don't attach the glue sections to a dynamic object. */
7773 BFD_ASSERT (!(abfd
->flags
& DYNAMIC
));
7775 globals
= elf32_arm_hash_table (info
);
7776 BFD_ASSERT (globals
!= NULL
);
7778 if (globals
->bfd_of_glue_owner
!= NULL
)
7781 /* Save the bfd for later use. */
7782 globals
->bfd_of_glue_owner
= abfd
;
7788 check_use_blx (struct elf32_arm_link_hash_table
*globals
)
7792 cpu_arch
= bfd_elf_get_obj_attr_int (globals
->obfd
, OBJ_ATTR_PROC
,
7795 if (globals
->fix_arm1176
)
7797 if (cpu_arch
== TAG_CPU_ARCH_V6T2
|| cpu_arch
> TAG_CPU_ARCH_V6K
)
7798 globals
->use_blx
= 1;
7802 if (cpu_arch
> TAG_CPU_ARCH_V4T
)
7803 globals
->use_blx
= 1;
7808 bfd_elf32_arm_process_before_allocation (bfd
*abfd
,
7809 struct bfd_link_info
*link_info
)
7811 Elf_Internal_Shdr
*symtab_hdr
;
7812 Elf_Internal_Rela
*internal_relocs
= NULL
;
7813 Elf_Internal_Rela
*irel
, *irelend
;
7814 bfd_byte
*contents
= NULL
;
7817 struct elf32_arm_link_hash_table
*globals
;
7819 /* If we are only performing a partial link do not bother
7820 to construct any glue. */
7821 if (bfd_link_relocatable (link_info
))
7824 /* Here we have a bfd that is to be included on the link. We have a
7825 hook to do reloc rummaging, before section sizes are nailed down. */
7826 globals
= elf32_arm_hash_table (link_info
);
7827 BFD_ASSERT (globals
!= NULL
);
7829 check_use_blx (globals
);
7831 if (globals
->byteswap_code
&& !bfd_big_endian (abfd
))
7833 _bfd_error_handler (_("%pB: BE8 images only valid in big-endian mode"),
7838 /* PR 5398: If we have not decided to include any loadable sections in
7839 the output then we will not have a glue owner bfd. This is OK, it
7840 just means that there is nothing else for us to do here. */
7841 if (globals
->bfd_of_glue_owner
== NULL
)
7844 /* Rummage around all the relocs and map the glue vectors. */
7845 sec
= abfd
->sections
;
7850 for (; sec
!= NULL
; sec
= sec
->next
)
7852 if (sec
->reloc_count
== 0)
7855 if ((sec
->flags
& SEC_EXCLUDE
) != 0)
7858 symtab_hdr
= & elf_symtab_hdr (abfd
);
7860 /* Load the relocs. */
7862 = _bfd_elf_link_read_relocs (abfd
, sec
, NULL
, NULL
, FALSE
);
7864 if (internal_relocs
== NULL
)
7867 irelend
= internal_relocs
+ sec
->reloc_count
;
7868 for (irel
= internal_relocs
; irel
< irelend
; irel
++)
7871 unsigned long r_index
;
7873 struct elf_link_hash_entry
*h
;
7875 r_type
= ELF32_R_TYPE (irel
->r_info
);
7876 r_index
= ELF32_R_SYM (irel
->r_info
);
7878 /* These are the only relocation types we care about. */
7879 if ( r_type
!= R_ARM_PC24
7880 && (r_type
!= R_ARM_V4BX
|| globals
->fix_v4bx
< 2))
7883 /* Get the section contents if we haven't done so already. */
7884 if (contents
== NULL
)
7886 /* Get cached copy if it exists. */
7887 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
7888 contents
= elf_section_data (sec
)->this_hdr
.contents
;
7891 /* Go get them off disk. */
7892 if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
7897 if (r_type
== R_ARM_V4BX
)
7901 reg
= bfd_get_32 (abfd
, contents
+ irel
->r_offset
) & 0xf;
7902 record_arm_bx_glue (link_info
, reg
);
7906 /* If the relocation is not against a symbol it cannot concern us. */
7909 /* We don't care about local symbols. */
7910 if (r_index
< symtab_hdr
->sh_info
)
7913 /* This is an external symbol. */
7914 r_index
-= symtab_hdr
->sh_info
;
7915 h
= (struct elf_link_hash_entry
*)
7916 elf_sym_hashes (abfd
)[r_index
];
7918 /* If the relocation is against a static symbol it must be within
7919 the current section and so cannot be a cross ARM/Thumb relocation. */
7923 /* If the call will go through a PLT entry then we do not need
7925 if (globals
->root
.splt
!= NULL
&& h
->plt
.offset
!= (bfd_vma
) -1)
7931 /* This one is a call from arm code. We need to look up
7932 the target of the call. If it is a thumb target, we
7934 if (ARM_GET_SYM_BRANCH_TYPE (h
->target_internal
)
7935 == ST_BRANCH_TO_THUMB
)
7936 record_arm_to_thumb_glue (link_info
, h
);
7944 if (elf_section_data (sec
)->this_hdr
.contents
!= contents
)
7948 if (elf_section_data (sec
)->relocs
!= internal_relocs
)
7949 free (internal_relocs
);
7950 internal_relocs
= NULL
;
7956 if (elf_section_data (sec
)->this_hdr
.contents
!= contents
)
7958 if (elf_section_data (sec
)->relocs
!= internal_relocs
)
7959 free (internal_relocs
);
7966 /* Initialise maps of ARM/Thumb/data for input BFDs. */
7969 bfd_elf32_arm_init_maps (bfd
*abfd
)
7971 Elf_Internal_Sym
*isymbuf
;
7972 Elf_Internal_Shdr
*hdr
;
7973 unsigned int i
, localsyms
;
7975 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
7976 if (! is_arm_elf (abfd
))
7979 if ((abfd
->flags
& DYNAMIC
) != 0)
7982 hdr
= & elf_symtab_hdr (abfd
);
7983 localsyms
= hdr
->sh_info
;
7985 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
7986 should contain the number of local symbols, which should come before any
7987 global symbols. Mapping symbols are always local. */
7988 isymbuf
= bfd_elf_get_elf_syms (abfd
, hdr
, localsyms
, 0, NULL
, NULL
,
7991 /* No internal symbols read? Skip this BFD. */
7992 if (isymbuf
== NULL
)
7995 for (i
= 0; i
< localsyms
; i
++)
7997 Elf_Internal_Sym
*isym
= &isymbuf
[i
];
7998 asection
*sec
= bfd_section_from_elf_index (abfd
, isym
->st_shndx
);
8002 && ELF_ST_BIND (isym
->st_info
) == STB_LOCAL
)
8004 name
= bfd_elf_string_from_elf_section (abfd
,
8005 hdr
->sh_link
, isym
->st_name
);
8007 if (bfd_is_arm_special_symbol_name (name
,
8008 BFD_ARM_SPECIAL_SYM_TYPE_MAP
))
8009 elf32_arm_section_map_add (sec
, name
[1], isym
->st_value
);
8015 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
8016 say what they wanted. */
8019 bfd_elf32_arm_set_cortex_a8_fix (bfd
*obfd
, struct bfd_link_info
*link_info
)
8021 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
8022 obj_attribute
*out_attr
= elf_known_obj_attributes_proc (obfd
);
8024 if (globals
== NULL
)
8027 if (globals
->fix_cortex_a8
== -1)
8029 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
8030 if (out_attr
[Tag_CPU_arch
].i
== TAG_CPU_ARCH_V7
8031 && (out_attr
[Tag_CPU_arch_profile
].i
== 'A'
8032 || out_attr
[Tag_CPU_arch_profile
].i
== 0))
8033 globals
->fix_cortex_a8
= 1;
8035 globals
->fix_cortex_a8
= 0;
8041 bfd_elf32_arm_set_vfp11_fix (bfd
*obfd
, struct bfd_link_info
*link_info
)
8043 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
8044 obj_attribute
*out_attr
= elf_known_obj_attributes_proc (obfd
);
8046 if (globals
== NULL
)
8048 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
8049 if (out_attr
[Tag_CPU_arch
].i
>= TAG_CPU_ARCH_V7
)
8051 switch (globals
->vfp11_fix
)
8053 case BFD_ARM_VFP11_FIX_DEFAULT
:
8054 case BFD_ARM_VFP11_FIX_NONE
:
8055 globals
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
8059 /* Give a warning, but do as the user requests anyway. */
8060 _bfd_error_handler (_("%pB: warning: selected VFP11 erratum "
8061 "workaround is not necessary for target architecture"), obfd
);
8064 else if (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_DEFAULT
)
8065 /* For earlier architectures, we might need the workaround, but do not
8066 enable it by default. If users is running with broken hardware, they
8067 must enable the erratum fix explicitly. */
8068 globals
->vfp11_fix
= BFD_ARM_VFP11_FIX_NONE
;
8072 bfd_elf32_arm_set_stm32l4xx_fix (bfd
*obfd
, struct bfd_link_info
*link_info
)
8074 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
8075 obj_attribute
*out_attr
= elf_known_obj_attributes_proc (obfd
);
8077 if (globals
== NULL
)
8080 /* We assume only Cortex-M4 may require the fix. */
8081 if (out_attr
[Tag_CPU_arch
].i
!= TAG_CPU_ARCH_V7E_M
8082 || out_attr
[Tag_CPU_arch_profile
].i
!= 'M')
8084 if (globals
->stm32l4xx_fix
!= BFD_ARM_STM32L4XX_FIX_NONE
)
8085 /* Give a warning, but do as the user requests anyway. */
8087 (_("%pB: warning: selected STM32L4XX erratum "
8088 "workaround is not necessary for target architecture"), obfd
);
8092 enum bfd_arm_vfp11_pipe
8100 /* Return a VFP register number. This is encoded as RX:X for single-precision
8101 registers, or X:RX for double-precision registers, where RX is the group of
8102 four bits in the instruction encoding and X is the single extension bit.
8103 RX and X fields are specified using their lowest (starting) bit. The return
8106 0...31: single-precision registers s0...s31
8107 32...63: double-precision registers d0...d31.
8109 Although X should be zero for VFP11 (encoding d0...d15 only), we might
8110 encounter VFP3 instructions, so we allow the full range for DP registers. */
8113 bfd_arm_vfp11_regno (unsigned int insn
, bfd_boolean is_double
, unsigned int rx
,
8117 return (((insn
>> rx
) & 0xf) | (((insn
>> x
) & 1) << 4)) + 32;
8119 return (((insn
>> rx
) & 0xf) << 1) | ((insn
>> x
) & 1);
8122 /* Set bits in *WMASK according to a register number REG as encoded by
8123 bfd_arm_vfp11_regno(). Ignore d16-d31. */
8126 bfd_arm_vfp11_write_mask (unsigned int *wmask
, unsigned int reg
)
8131 *wmask
|= 3 << ((reg
- 32) * 2);
8134 /* Return TRUE if WMASK overwrites anything in REGS. */
8137 bfd_arm_vfp11_antidependency (unsigned int wmask
, int *regs
, int numregs
)
8141 for (i
= 0; i
< numregs
; i
++)
8143 unsigned int reg
= regs
[i
];
8145 if (reg
< 32 && (wmask
& (1 << reg
)) != 0)
8153 if ((wmask
& (3 << (reg
* 2))) != 0)
8160 /* In this function, we're interested in two things: finding input registers
8161 for VFP data-processing instructions, and finding the set of registers which
8162 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
8163 hold the written set, so FLDM etc. are easy to deal with (we're only
8164 interested in 32 SP registers or 16 dp registers, due to the VFP version
8165 implemented by the chip in question). DP registers are marked by setting
8166 both SP registers in the write mask). */
8168 static enum bfd_arm_vfp11_pipe
8169 bfd_arm_vfp11_insn_decode (unsigned int insn
, unsigned int *destmask
, int *regs
,
8172 enum bfd_arm_vfp11_pipe vpipe
= VFP11_BAD
;
8173 bfd_boolean is_double
= ((insn
& 0xf00) == 0xb00) ? 1 : 0;
8175 if ((insn
& 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
8178 unsigned int fd
= bfd_arm_vfp11_regno (insn
, is_double
, 12, 22);
8179 unsigned int fm
= bfd_arm_vfp11_regno (insn
, is_double
, 0, 5);
8181 pqrs
= ((insn
& 0x00800000) >> 20)
8182 | ((insn
& 0x00300000) >> 19)
8183 | ((insn
& 0x00000040) >> 6);
8187 case 0: /* fmac[sd]. */
8188 case 1: /* fnmac[sd]. */
8189 case 2: /* fmsc[sd]. */
8190 case 3: /* fnmsc[sd]. */
8192 bfd_arm_vfp11_write_mask (destmask
, fd
);
8194 regs
[1] = bfd_arm_vfp11_regno (insn
, is_double
, 16, 7); /* Fn. */
8199 case 4: /* fmul[sd]. */
8200 case 5: /* fnmul[sd]. */
8201 case 6: /* fadd[sd]. */
8202 case 7: /* fsub[sd]. */
8206 case 8: /* fdiv[sd]. */
8209 bfd_arm_vfp11_write_mask (destmask
, fd
);
8210 regs
[0] = bfd_arm_vfp11_regno (insn
, is_double
, 16, 7); /* Fn. */
8215 case 15: /* extended opcode. */
8217 unsigned int extn
= ((insn
>> 15) & 0x1e)
8218 | ((insn
>> 7) & 1);
8222 case 0: /* fcpy[sd]. */
8223 case 1: /* fabs[sd]. */
8224 case 2: /* fneg[sd]. */
8225 case 8: /* fcmp[sd]. */
8226 case 9: /* fcmpe[sd]. */
8227 case 10: /* fcmpz[sd]. */
8228 case 11: /* fcmpez[sd]. */
8229 case 16: /* fuito[sd]. */
8230 case 17: /* fsito[sd]. */
8231 case 24: /* ftoui[sd]. */
8232 case 25: /* ftouiz[sd]. */
8233 case 26: /* ftosi[sd]. */
8234 case 27: /* ftosiz[sd]. */
8235 /* These instructions will not bounce due to underflow. */
8240 case 3: /* fsqrt[sd]. */
8241 /* fsqrt cannot underflow, but it can (perhaps) overwrite
8242 registers to cause the erratum in previous instructions. */
8243 bfd_arm_vfp11_write_mask (destmask
, fd
);
8247 case 15: /* fcvt{ds,sd}. */
8251 bfd_arm_vfp11_write_mask (destmask
, fd
);
8253 /* Only FCVTSD can underflow. */
8254 if ((insn
& 0x100) != 0)
8273 /* Two-register transfer. */
8274 else if ((insn
& 0x0fe00ed0) == 0x0c400a10)
8276 unsigned int fm
= bfd_arm_vfp11_regno (insn
, is_double
, 0, 5);
8278 if ((insn
& 0x100000) == 0)
8281 bfd_arm_vfp11_write_mask (destmask
, fm
);
8284 bfd_arm_vfp11_write_mask (destmask
, fm
);
8285 bfd_arm_vfp11_write_mask (destmask
, fm
+ 1);
8291 else if ((insn
& 0x0e100e00) == 0x0c100a00) /* A load insn. */
8293 int fd
= bfd_arm_vfp11_regno (insn
, is_double
, 12, 22);
8294 unsigned int puw
= ((insn
>> 21) & 0x1) | (((insn
>> 23) & 3) << 1);
8298 case 0: /* Two-reg transfer. We should catch these above. */
8301 case 2: /* fldm[sdx]. */
8305 unsigned int i
, offset
= insn
& 0xff;
8310 for (i
= fd
; i
< fd
+ offset
; i
++)
8311 bfd_arm_vfp11_write_mask (destmask
, i
);
8315 case 4: /* fld[sd]. */
8317 bfd_arm_vfp11_write_mask (destmask
, fd
);
8326 /* Single-register transfer. Note L==0. */
8327 else if ((insn
& 0x0f100e10) == 0x0e000a10)
8329 unsigned int opcode
= (insn
>> 21) & 7;
8330 unsigned int fn
= bfd_arm_vfp11_regno (insn
, is_double
, 16, 7);
8334 case 0: /* fmsr/fmdlr. */
8335 case 1: /* fmdhr. */
8336 /* Mark fmdhr and fmdlr as writing to the whole of the DP
8337 destination register. I don't know if this is exactly right,
8338 but it is the conservative choice. */
8339 bfd_arm_vfp11_write_mask (destmask
, fn
);
8353 static int elf32_arm_compare_mapping (const void * a
, const void * b
);
8356 /* Look for potentially-troublesome code sequences which might trigger the
8357 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
8358 (available from ARM) for details of the erratum. A short version is
8359 described in ld.texinfo. */
8362 bfd_elf32_arm_vfp11_erratum_scan (bfd
*abfd
, struct bfd_link_info
*link_info
)
8365 bfd_byte
*contents
= NULL
;
8367 int regs
[3], numregs
= 0;
8368 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
8369 int use_vector
= (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_VECTOR
);
8371 if (globals
== NULL
)
8374 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
8375 The states transition as follows:
8377 0 -> 1 (vector) or 0 -> 2 (scalar)
8378 A VFP FMAC-pipeline instruction has been seen. Fill
8379 regs[0]..regs[numregs-1] with its input operands. Remember this
8380 instruction in 'first_fmac'.
8383 Any instruction, except for a VFP instruction which overwrites
8388 A VFP instruction has been seen which overwrites any of regs[*].
8389 We must make a veneer! Reset state to 0 before examining next
8393 If we fail to match anything in state 2, reset to state 0 and reset
8394 the instruction pointer to the instruction after 'first_fmac'.
8396 If the VFP11 vector mode is in use, there must be at least two unrelated
8397 instructions between anti-dependent VFP11 instructions to properly avoid
8398 triggering the erratum, hence the use of the extra state 1. */
8400 /* If we are only performing a partial link do not bother
8401 to construct any glue. */
8402 if (bfd_link_relocatable (link_info
))
8405 /* Skip if this bfd does not correspond to an ELF image. */
8406 if (! is_arm_elf (abfd
))
8409 /* We should have chosen a fix type by the time we get here. */
8410 BFD_ASSERT (globals
->vfp11_fix
!= BFD_ARM_VFP11_FIX_DEFAULT
);
8412 if (globals
->vfp11_fix
== BFD_ARM_VFP11_FIX_NONE
)
8415 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8416 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
8419 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
8421 unsigned int i
, span
, first_fmac
= 0, veneer_of_insn
= 0;
8422 struct _arm_elf_section_data
*sec_data
;
8424 /* If we don't have executable progbits, we're not interested in this
8425 section. Also skip if section is to be excluded. */
8426 if (elf_section_type (sec
) != SHT_PROGBITS
8427 || (elf_section_flags (sec
) & SHF_EXECINSTR
) == 0
8428 || (sec
->flags
& SEC_EXCLUDE
) != 0
8429 || sec
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
8430 || sec
->output_section
== bfd_abs_section_ptr
8431 || strcmp (sec
->name
, VFP11_ERRATUM_VENEER_SECTION_NAME
) == 0)
8434 sec_data
= elf32_arm_section_data (sec
);
8436 if (sec_data
->mapcount
== 0)
8439 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
8440 contents
= elf_section_data (sec
)->this_hdr
.contents
;
8441 else if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
8444 qsort (sec_data
->map
, sec_data
->mapcount
, sizeof (elf32_arm_section_map
),
8445 elf32_arm_compare_mapping
);
8447 for (span
= 0; span
< sec_data
->mapcount
; span
++)
8449 unsigned int span_start
= sec_data
->map
[span
].vma
;
8450 unsigned int span_end
= (span
== sec_data
->mapcount
- 1)
8451 ? sec
->size
: sec_data
->map
[span
+ 1].vma
;
8452 char span_type
= sec_data
->map
[span
].type
;
8454 /* FIXME: Only ARM mode is supported at present. We may need to
8455 support Thumb-2 mode also at some point. */
8456 if (span_type
!= 'a')
8459 for (i
= span_start
; i
< span_end
;)
8461 unsigned int next_i
= i
+ 4;
8462 unsigned int insn
= bfd_big_endian (abfd
)
8463 ? (((unsigned) contents
[i
] << 24)
8464 | (contents
[i
+ 1] << 16)
8465 | (contents
[i
+ 2] << 8)
8467 : (((unsigned) contents
[i
+ 3] << 24)
8468 | (contents
[i
+ 2] << 16)
8469 | (contents
[i
+ 1] << 8)
8471 unsigned int writemask
= 0;
8472 enum bfd_arm_vfp11_pipe vpipe
;
8477 vpipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
, regs
,
8479 /* I'm assuming the VFP11 erratum can trigger with denorm
8480 operands on either the FMAC or the DS pipeline. This might
8481 lead to slightly overenthusiastic veneer insertion. */
8482 if (vpipe
== VFP11_FMAC
|| vpipe
== VFP11_DS
)
8484 state
= use_vector
? 1 : 2;
8486 veneer_of_insn
= insn
;
8492 int other_regs
[3], other_numregs
;
8493 vpipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
,
8496 if (vpipe
!= VFP11_BAD
8497 && bfd_arm_vfp11_antidependency (writemask
, regs
,
8507 int other_regs
[3], other_numregs
;
8508 vpipe
= bfd_arm_vfp11_insn_decode (insn
, &writemask
,
8511 if (vpipe
!= VFP11_BAD
8512 && bfd_arm_vfp11_antidependency (writemask
, regs
,
8518 next_i
= first_fmac
+ 4;
8524 abort (); /* Should be unreachable. */
8529 elf32_vfp11_erratum_list
*newerr
=(elf32_vfp11_erratum_list
*)
8530 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list
));
8532 elf32_arm_section_data (sec
)->erratumcount
+= 1;
8534 newerr
->u
.b
.vfp_insn
= veneer_of_insn
;
8539 newerr
->type
= VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
;
8546 record_vfp11_erratum_veneer (link_info
, newerr
, abfd
, sec
,
8551 newerr
->next
= sec_data
->erratumlist
;
8552 sec_data
->erratumlist
= newerr
;
8561 if (elf_section_data (sec
)->this_hdr
.contents
!= contents
)
8569 if (elf_section_data (sec
)->this_hdr
.contents
!= contents
)
8575 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
8576 after sections have been laid out, using specially-named symbols. */
8579 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd
*abfd
,
8580 struct bfd_link_info
*link_info
)
8583 struct elf32_arm_link_hash_table
*globals
;
8586 if (bfd_link_relocatable (link_info
))
8589 /* Skip if this bfd does not correspond to an ELF image. */
8590 if (! is_arm_elf (abfd
))
8593 globals
= elf32_arm_hash_table (link_info
);
8594 if (globals
== NULL
)
8597 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen
8598 (VFP11_ERRATUM_VENEER_ENTRY_NAME
) + 10);
8599 BFD_ASSERT (tmp_name
);
8601 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
8603 struct _arm_elf_section_data
*sec_data
= elf32_arm_section_data (sec
);
8604 elf32_vfp11_erratum_list
*errnode
= sec_data
->erratumlist
;
8606 for (; errnode
!= NULL
; errnode
= errnode
->next
)
8608 struct elf_link_hash_entry
*myh
;
8611 switch (errnode
->type
)
8613 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
:
8614 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER
:
8615 /* Find veneer symbol. */
8616 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
,
8617 errnode
->u
.b
.veneer
->u
.v
.id
);
8619 myh
= elf_link_hash_lookup
8620 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
8623 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8624 abfd
, "VFP11", tmp_name
);
8626 vma
= myh
->root
.u
.def
.section
->output_section
->vma
8627 + myh
->root
.u
.def
.section
->output_offset
8628 + myh
->root
.u
.def
.value
;
8630 errnode
->u
.b
.veneer
->vma
= vma
;
8633 case VFP11_ERRATUM_ARM_VENEER
:
8634 case VFP11_ERRATUM_THUMB_VENEER
:
8635 /* Find return location. */
8636 sprintf (tmp_name
, VFP11_ERRATUM_VENEER_ENTRY_NAME
"_r",
8639 myh
= elf_link_hash_lookup
8640 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
8643 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8644 abfd
, "VFP11", tmp_name
);
8646 vma
= myh
->root
.u
.def
.section
->output_section
->vma
8647 + myh
->root
.u
.def
.section
->output_offset
8648 + myh
->root
.u
.def
.value
;
8650 errnode
->u
.v
.branch
->vma
= vma
;
8662 /* Find virtual-memory addresses for STM32L4XX erratum veneers and
8663 return locations after sections have been laid out, using
8664 specially-named symbols. */
8667 bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd
*abfd
,
8668 struct bfd_link_info
*link_info
)
8671 struct elf32_arm_link_hash_table
*globals
;
8674 if (bfd_link_relocatable (link_info
))
8677 /* Skip if this bfd does not correspond to an ELF image. */
8678 if (! is_arm_elf (abfd
))
8681 globals
= elf32_arm_hash_table (link_info
);
8682 if (globals
== NULL
)
8685 tmp_name
= (char *) bfd_malloc ((bfd_size_type
) strlen
8686 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME
) + 10);
8687 BFD_ASSERT (tmp_name
);
8689 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
8691 struct _arm_elf_section_data
*sec_data
= elf32_arm_section_data (sec
);
8692 elf32_stm32l4xx_erratum_list
*errnode
= sec_data
->stm32l4xx_erratumlist
;
8694 for (; errnode
!= NULL
; errnode
= errnode
->next
)
8696 struct elf_link_hash_entry
*myh
;
8699 switch (errnode
->type
)
8701 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER
:
8702 /* Find veneer symbol. */
8703 sprintf (tmp_name
, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME
,
8704 errnode
->u
.b
.veneer
->u
.v
.id
);
8706 myh
= elf_link_hash_lookup
8707 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
8710 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8711 abfd
, "STM32L4XX", tmp_name
);
8713 vma
= myh
->root
.u
.def
.section
->output_section
->vma
8714 + myh
->root
.u
.def
.section
->output_offset
8715 + myh
->root
.u
.def
.value
;
8717 errnode
->u
.b
.veneer
->vma
= vma
;
8720 case STM32L4XX_ERRATUM_VENEER
:
8721 /* Find return location. */
8722 sprintf (tmp_name
, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME
"_r",
8725 myh
= elf_link_hash_lookup
8726 (&(globals
)->root
, tmp_name
, FALSE
, FALSE
, TRUE
);
8729 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8730 abfd
, "STM32L4XX", tmp_name
);
8732 vma
= myh
->root
.u
.def
.section
->output_section
->vma
8733 + myh
->root
.u
.def
.section
->output_offset
8734 + myh
->root
.u
.def
.value
;
8736 errnode
->u
.v
.branch
->vma
= vma
;
8748 static inline bfd_boolean
8749 is_thumb2_ldmia (const insn32 insn
)
8751 /* Encoding T2: LDM<c>.W <Rn>{!},<registers>
8752 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */
8753 return (insn
& 0xffd02000) == 0xe8900000;
8756 static inline bfd_boolean
8757 is_thumb2_ldmdb (const insn32 insn
)
8759 /* Encoding T1: LDMDB<c> <Rn>{!},<registers>
8760 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */
8761 return (insn
& 0xffd02000) == 0xe9100000;
8764 static inline bfd_boolean
8765 is_thumb2_vldm (const insn32 insn
)
8767 /* A6.5 Extension register load or store instruction
8769 We look for SP 32-bit and DP 64-bit registers.
8770 Encoding T1 VLDM{mode}<c> <Rn>{!}, <list>
8771 <list> is consecutive 64-bit registers
8772 1110 - 110P - UDW1 - rrrr - vvvv - 1011 - iiii - iiii
8773 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list>
8774 <list> is consecutive 32-bit registers
8775 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii
8776 if P==0 && U==1 && W==1 && Rn=1101 VPOP
8777 if PUW=010 || PUW=011 || PUW=101 VLDM. */
8779 (((insn
& 0xfe100f00) == 0xec100b00) ||
8780 ((insn
& 0xfe100f00) == 0xec100a00))
8781 && /* (IA without !). */
8782 (((((insn
<< 7) >> 28) & 0xd) == 0x4)
8783 /* (IA with !), includes VPOP (when reg number is SP). */
8784 || ((((insn
<< 7) >> 28) & 0xd) == 0x5)
8786 || ((((insn
<< 7) >> 28) & 0xd) == 0x9));
8789 /* STM STM32L4XX erratum : This function assumes that it receives an LDM or
8791 - computes the number and the mode of memory accesses
8792 - decides if the replacement should be done:
8793 . replaces only if > 8-word accesses
8794 . or (testing purposes only) replaces all accesses. */
8797 stm32l4xx_need_create_replacing_stub (const insn32 insn
,
8798 bfd_arm_stm32l4xx_fix stm32l4xx_fix
)
8802 /* The field encoding the register list is the same for both LDMIA
8803 and LDMDB encodings. */
8804 if (is_thumb2_ldmia (insn
) || is_thumb2_ldmdb (insn
))
8805 nb_words
= elf32_arm_popcount (insn
& 0x0000ffff);
8806 else if (is_thumb2_vldm (insn
))
8807 nb_words
= (insn
& 0xff);
8809 /* DEFAULT mode accounts for the real bug condition situation,
8810 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */
8812 (stm32l4xx_fix
== BFD_ARM_STM32L4XX_FIX_DEFAULT
) ? nb_words
> 8 :
8813 (stm32l4xx_fix
== BFD_ARM_STM32L4XX_FIX_ALL
) ? TRUE
: FALSE
;
8816 /* Look for potentially-troublesome code sequences which might trigger
8817 the STM STM32L4XX erratum. */
8820 bfd_elf32_arm_stm32l4xx_erratum_scan (bfd
*abfd
,
8821 struct bfd_link_info
*link_info
)
8824 bfd_byte
*contents
= NULL
;
8825 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
8827 if (globals
== NULL
)
8830 /* If we are only performing a partial link do not bother
8831 to construct any glue. */
8832 if (bfd_link_relocatable (link_info
))
8835 /* Skip if this bfd does not correspond to an ELF image. */
8836 if (! is_arm_elf (abfd
))
8839 if (globals
->stm32l4xx_fix
== BFD_ARM_STM32L4XX_FIX_NONE
)
8842 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8843 if ((abfd
->flags
& (EXEC_P
| DYNAMIC
)) != 0)
8846 for (sec
= abfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
8848 unsigned int i
, span
;
8849 struct _arm_elf_section_data
*sec_data
;
8851 /* If we don't have executable progbits, we're not interested in this
8852 section. Also skip if section is to be excluded. */
8853 if (elf_section_type (sec
) != SHT_PROGBITS
8854 || (elf_section_flags (sec
) & SHF_EXECINSTR
) == 0
8855 || (sec
->flags
& SEC_EXCLUDE
) != 0
8856 || sec
->sec_info_type
== SEC_INFO_TYPE_JUST_SYMS
8857 || sec
->output_section
== bfd_abs_section_ptr
8858 || strcmp (sec
->name
, STM32L4XX_ERRATUM_VENEER_SECTION_NAME
) == 0)
8861 sec_data
= elf32_arm_section_data (sec
);
8863 if (sec_data
->mapcount
== 0)
8866 if (elf_section_data (sec
)->this_hdr
.contents
!= NULL
)
8867 contents
= elf_section_data (sec
)->this_hdr
.contents
;
8868 else if (! bfd_malloc_and_get_section (abfd
, sec
, &contents
))
8871 qsort (sec_data
->map
, sec_data
->mapcount
, sizeof (elf32_arm_section_map
),
8872 elf32_arm_compare_mapping
);
8874 for (span
= 0; span
< sec_data
->mapcount
; span
++)
8876 unsigned int span_start
= sec_data
->map
[span
].vma
;
8877 unsigned int span_end
= (span
== sec_data
->mapcount
- 1)
8878 ? sec
->size
: sec_data
->map
[span
+ 1].vma
;
8879 char span_type
= sec_data
->map
[span
].type
;
8880 int itblock_current_pos
= 0;
8882 /* Only Thumb2 mode need be supported with this CM4 specific
8883 code, we should not encounter any arm mode eg span_type
8885 if (span_type
!= 't')
8888 for (i
= span_start
; i
< span_end
;)
8890 unsigned int insn
= bfd_get_16 (abfd
, &contents
[i
]);
8891 bfd_boolean insn_32bit
= FALSE
;
8892 bfd_boolean is_ldm
= FALSE
;
8893 bfd_boolean is_vldm
= FALSE
;
8894 bfd_boolean is_not_last_in_it_block
= FALSE
;
8896 /* The first 16-bits of all 32-bit thumb2 instructions start
8897 with opcode[15..13]=0b111 and the encoded op1 can be anything
8898 except opcode[12..11]!=0b00.
8899 See 32-bit Thumb instruction encoding. */
8900 if ((insn
& 0xe000) == 0xe000 && (insn
& 0x1800) != 0x0000)
8903 /* Compute the predicate that tells if the instruction
8904 is concerned by the IT block
8905 - Creates an error if there is a ldm that is not
8906 last in the IT block thus cannot be replaced
8907 - Otherwise we can create a branch at the end of the
8908 IT block, it will be controlled naturally by IT
8909 with the proper pseudo-predicate
8910 - So the only interesting predicate is the one that
8911 tells that we are not on the last item of an IT
8913 if (itblock_current_pos
!= 0)
8914 is_not_last_in_it_block
= !!--itblock_current_pos
;
8918 /* Load the rest of the insn (in manual-friendly order). */
8919 insn
= (insn
<< 16) | bfd_get_16 (abfd
, &contents
[i
+ 2]);
8920 is_ldm
= is_thumb2_ldmia (insn
) || is_thumb2_ldmdb (insn
);
8921 is_vldm
= is_thumb2_vldm (insn
);
8923 /* Veneers are created for (v)ldm depending on
8924 option flags and memory accesses conditions; but
8925 if the instruction is not the last instruction of
8926 an IT block, we cannot create a jump there, so we
8928 if ((is_ldm
|| is_vldm
)
8929 && stm32l4xx_need_create_replacing_stub
8930 (insn
, globals
->stm32l4xx_fix
))
8932 if (is_not_last_in_it_block
)
8935 /* xgettext:c-format */
8936 (_("%pB(%pA+%#x): error: multiple load detected"
8937 " in non-last IT block instruction:"
8938 " STM32L4XX veneer cannot be generated; "
8939 "use gcc option -mrestrict-it to generate"
8940 " only one instruction per IT block"),
8945 elf32_stm32l4xx_erratum_list
*newerr
=
8946 (elf32_stm32l4xx_erratum_list
*)
8948 (sizeof (elf32_stm32l4xx_erratum_list
));
8950 elf32_arm_section_data (sec
)
8951 ->stm32l4xx_erratumcount
+= 1;
8952 newerr
->u
.b
.insn
= insn
;
8953 /* We create only thumb branches. */
8955 STM32L4XX_ERRATUM_BRANCH_TO_VENEER
;
8956 record_stm32l4xx_erratum_veneer
8957 (link_info
, newerr
, abfd
, sec
,
8960 STM32L4XX_ERRATUM_LDM_VENEER_SIZE
:
8961 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE
);
8963 newerr
->next
= sec_data
->stm32l4xx_erratumlist
;
8964 sec_data
->stm32l4xx_erratumlist
= newerr
;
8971 IT blocks are only encoded in T1
8972 Encoding T1: IT{x{y{z}}} <firstcond>
8973 1 0 1 1 - 1 1 1 1 - firstcond - mask
8974 if mask = '0000' then see 'related encodings'
8975 We don't deal with UNPREDICTABLE, just ignore these.
8976 There can be no nested IT blocks so an IT block
8977 is naturally a new one for which it is worth
8978 computing its size. */
8979 bfd_boolean is_newitblock
= ((insn
& 0xff00) == 0xbf00)
8980 && ((insn
& 0x000f) != 0x0000);
8981 /* If we have a new IT block we compute its size. */
8984 /* Compute the number of instructions controlled
8985 by the IT block, it will be used to decide
8986 whether we are inside an IT block or not. */
8987 unsigned int mask
= insn
& 0x000f;
8988 itblock_current_pos
= 4 - ctz (mask
);
8992 i
+= insn_32bit
? 4 : 2;
8996 if (elf_section_data (sec
)->this_hdr
.contents
!= contents
)
9004 if (elf_section_data (sec
)->this_hdr
.contents
!= contents
)
9010 /* Set target relocation values needed during linking. */
9013 bfd_elf32_arm_set_target_params (struct bfd
*output_bfd
,
9014 struct bfd_link_info
*link_info
,
9015 struct elf32_arm_params
*params
)
9017 struct elf32_arm_link_hash_table
*globals
;
9019 globals
= elf32_arm_hash_table (link_info
);
9020 if (globals
== NULL
)
9023 globals
->target1_is_rel
= params
->target1_is_rel
;
9024 if (globals
->fdpic_p
)
9025 globals
->target2_reloc
= R_ARM_GOT32
;
9026 else if (strcmp (params
->target2_type
, "rel") == 0)
9027 globals
->target2_reloc
= R_ARM_REL32
;
9028 else if (strcmp (params
->target2_type
, "abs") == 0)
9029 globals
->target2_reloc
= R_ARM_ABS32
;
9030 else if (strcmp (params
->target2_type
, "got-rel") == 0)
9031 globals
->target2_reloc
= R_ARM_GOT_PREL
;
9034 _bfd_error_handler (_("invalid TARGET2 relocation type '%s'"),
9035 params
->target2_type
);
9037 globals
->fix_v4bx
= params
->fix_v4bx
;
9038 globals
->use_blx
|= params
->use_blx
;
9039 globals
->vfp11_fix
= params
->vfp11_denorm_fix
;
9040 globals
->stm32l4xx_fix
= params
->stm32l4xx_fix
;
9041 if (globals
->fdpic_p
)
9042 globals
->pic_veneer
= 1;
9044 globals
->pic_veneer
= params
->pic_veneer
;
9045 globals
->fix_cortex_a8
= params
->fix_cortex_a8
;
9046 globals
->fix_arm1176
= params
->fix_arm1176
;
9047 globals
->cmse_implib
= params
->cmse_implib
;
9048 globals
->in_implib_bfd
= params
->in_implib_bfd
;
9050 BFD_ASSERT (is_arm_elf (output_bfd
));
9051 elf_arm_tdata (output_bfd
)->no_enum_size_warning
9052 = params
->no_enum_size_warning
;
9053 elf_arm_tdata (output_bfd
)->no_wchar_size_warning
9054 = params
->no_wchar_size_warning
;
9057 /* Replace the target offset of a Thumb bl or b.w instruction. */
9060 insert_thumb_branch (bfd
*abfd
, long int offset
, bfd_byte
*insn
)
9066 BFD_ASSERT ((offset
& 1) == 0);
9068 upper
= bfd_get_16 (abfd
, insn
);
9069 lower
= bfd_get_16 (abfd
, insn
+ 2);
9070 reloc_sign
= (offset
< 0) ? 1 : 0;
9071 upper
= (upper
& ~(bfd_vma
) 0x7ff)
9072 | ((offset
>> 12) & 0x3ff)
9073 | (reloc_sign
<< 10);
9074 lower
= (lower
& ~(bfd_vma
) 0x2fff)
9075 | (((!((offset
>> 23) & 1)) ^ reloc_sign
) << 13)
9076 | (((!((offset
>> 22) & 1)) ^ reloc_sign
) << 11)
9077 | ((offset
>> 1) & 0x7ff);
9078 bfd_put_16 (abfd
, upper
, insn
);
9079 bfd_put_16 (abfd
, lower
, insn
+ 2);
9082 /* Thumb code calling an ARM function. */
9085 elf32_thumb_to_arm_stub (struct bfd_link_info
* info
,
9089 asection
* input_section
,
9090 bfd_byte
* hit_data
,
9093 bfd_signed_vma addend
,
9095 char **error_message
)
9099 long int ret_offset
;
9100 struct elf_link_hash_entry
* myh
;
9101 struct elf32_arm_link_hash_table
* globals
;
9103 myh
= find_thumb_glue (info
, name
, error_message
);
9107 globals
= elf32_arm_hash_table (info
);
9108 BFD_ASSERT (globals
!= NULL
);
9109 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
9111 my_offset
= myh
->root
.u
.def
.value
;
9113 s
= bfd_get_linker_section (globals
->bfd_of_glue_owner
,
9114 THUMB2ARM_GLUE_SECTION_NAME
);
9116 BFD_ASSERT (s
!= NULL
);
9117 BFD_ASSERT (s
->contents
!= NULL
);
9118 BFD_ASSERT (s
->output_section
!= NULL
);
9120 if ((my_offset
& 0x01) == 0x01)
9123 && sym_sec
->owner
!= NULL
9124 && !INTERWORK_FLAG (sym_sec
->owner
))
9127 (_("%pB(%s): warning: interworking not enabled;"
9128 " first occurrence: %pB: %s call to %s"),
9129 sym_sec
->owner
, name
, input_bfd
, "Thumb", "ARM");
9135 myh
->root
.u
.def
.value
= my_offset
;
9137 put_thumb_insn (globals
, output_bfd
, (bfd_vma
) t2a1_bx_pc_insn
,
9138 s
->contents
+ my_offset
);
9140 put_thumb_insn (globals
, output_bfd
, (bfd_vma
) t2a2_noop_insn
,
9141 s
->contents
+ my_offset
+ 2);
9144 /* Address of destination of the stub. */
9145 ((bfd_signed_vma
) val
)
9147 /* Offset from the start of the current section
9148 to the start of the stubs. */
9150 /* Offset of the start of this stub from the start of the stubs. */
9152 /* Address of the start of the current section. */
9153 + s
->output_section
->vma
)
9154 /* The branch instruction is 4 bytes into the stub. */
9156 /* ARM branches work from the pc of the instruction + 8. */
9159 put_arm_insn (globals
, output_bfd
,
9160 (bfd_vma
) t2a3_b_insn
| ((ret_offset
>> 2) & 0x00FFFFFF),
9161 s
->contents
+ my_offset
+ 4);
9164 BFD_ASSERT (my_offset
<= globals
->thumb_glue_size
);
9166 /* Now go back and fix up the original BL insn to point to here. */
9168 /* Address of where the stub is located. */
9169 (s
->output_section
->vma
+ s
->output_offset
+ my_offset
)
9170 /* Address of where the BL is located. */
9171 - (input_section
->output_section
->vma
+ input_section
->output_offset
9173 /* Addend in the relocation. */
9175 /* Biassing for PC-relative addressing. */
9178 insert_thumb_branch (input_bfd
, ret_offset
, hit_data
- input_section
->vma
);
9183 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
9185 static struct elf_link_hash_entry
*
9186 elf32_arm_create_thumb_stub (struct bfd_link_info
* info
,
9193 char ** error_message
)
9196 long int ret_offset
;
9197 struct elf_link_hash_entry
* myh
;
9198 struct elf32_arm_link_hash_table
* globals
;
9200 myh
= find_arm_glue (info
, name
, error_message
);
9204 globals
= elf32_arm_hash_table (info
);
9205 BFD_ASSERT (globals
!= NULL
);
9206 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
9208 my_offset
= myh
->root
.u
.def
.value
;
9210 if ((my_offset
& 0x01) == 0x01)
9213 && sym_sec
->owner
!= NULL
9214 && !INTERWORK_FLAG (sym_sec
->owner
))
9217 (_("%pB(%s): warning: interworking not enabled;"
9218 " first occurrence: %pB: %s call to %s"),
9219 sym_sec
->owner
, name
, input_bfd
, "ARM", "Thumb");
9223 myh
->root
.u
.def
.value
= my_offset
;
9225 if (bfd_link_pic (info
)
9226 || globals
->root
.is_relocatable_executable
9227 || globals
->pic_veneer
)
9229 /* For relocatable objects we can't use absolute addresses,
9230 so construct the address from a relative offset. */
9231 /* TODO: If the offset is small it's probably worth
9232 constructing the address with adds. */
9233 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1p_ldr_insn
,
9234 s
->contents
+ my_offset
);
9235 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t2p_add_pc_insn
,
9236 s
->contents
+ my_offset
+ 4);
9237 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t3p_bx_r12_insn
,
9238 s
->contents
+ my_offset
+ 8);
9239 /* Adjust the offset by 4 for the position of the add,
9240 and 8 for the pipeline offset. */
9241 ret_offset
= (val
- (s
->output_offset
9242 + s
->output_section
->vma
9245 bfd_put_32 (output_bfd
, ret_offset
,
9246 s
->contents
+ my_offset
+ 12);
9248 else if (globals
->use_blx
)
9250 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1v5_ldr_insn
,
9251 s
->contents
+ my_offset
);
9253 /* It's a thumb address. Add the low order bit. */
9254 bfd_put_32 (output_bfd
, val
| a2t2v5_func_addr_insn
,
9255 s
->contents
+ my_offset
+ 4);
9259 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t1_ldr_insn
,
9260 s
->contents
+ my_offset
);
9262 put_arm_insn (globals
, output_bfd
, (bfd_vma
) a2t2_bx_r12_insn
,
9263 s
->contents
+ my_offset
+ 4);
9265 /* It's a thumb address. Add the low order bit. */
9266 bfd_put_32 (output_bfd
, val
| a2t3_func_addr_insn
,
9267 s
->contents
+ my_offset
+ 8);
9273 BFD_ASSERT (my_offset
<= globals
->arm_glue_size
);
9278 /* Arm code calling a Thumb function. */
9281 elf32_arm_to_thumb_stub (struct bfd_link_info
* info
,
9285 asection
* input_section
,
9286 bfd_byte
* hit_data
,
9289 bfd_signed_vma addend
,
9291 char **error_message
)
9293 unsigned long int tmp
;
9296 long int ret_offset
;
9297 struct elf_link_hash_entry
* myh
;
9298 struct elf32_arm_link_hash_table
* globals
;
9300 globals
= elf32_arm_hash_table (info
);
9301 BFD_ASSERT (globals
!= NULL
);
9302 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
9304 s
= bfd_get_linker_section (globals
->bfd_of_glue_owner
,
9305 ARM2THUMB_GLUE_SECTION_NAME
);
9306 BFD_ASSERT (s
!= NULL
);
9307 BFD_ASSERT (s
->contents
!= NULL
);
9308 BFD_ASSERT (s
->output_section
!= NULL
);
9310 myh
= elf32_arm_create_thumb_stub (info
, name
, input_bfd
, output_bfd
,
9311 sym_sec
, val
, s
, error_message
);
9315 my_offset
= myh
->root
.u
.def
.value
;
9316 tmp
= bfd_get_32 (input_bfd
, hit_data
);
9317 tmp
= tmp
& 0xFF000000;
9319 /* Somehow these are both 4 too far, so subtract 8. */
9320 ret_offset
= (s
->output_offset
9322 + s
->output_section
->vma
9323 - (input_section
->output_offset
9324 + input_section
->output_section
->vma
9328 tmp
= tmp
| ((ret_offset
>> 2) & 0x00FFFFFF);
9330 bfd_put_32 (output_bfd
, (bfd_vma
) tmp
, hit_data
- input_section
->vma
);
9335 /* Populate Arm stub for an exported Thumb function. */
9338 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry
*h
, void * inf
)
9340 struct bfd_link_info
* info
= (struct bfd_link_info
*) inf
;
9342 struct elf_link_hash_entry
* myh
;
9343 struct elf32_arm_link_hash_entry
*eh
;
9344 struct elf32_arm_link_hash_table
* globals
;
9347 char *error_message
;
9349 eh
= elf32_arm_hash_entry (h
);
9350 /* Allocate stubs for exported Thumb functions on v4t. */
9351 if (eh
->export_glue
== NULL
)
9354 globals
= elf32_arm_hash_table (info
);
9355 BFD_ASSERT (globals
!= NULL
);
9356 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
9358 s
= bfd_get_linker_section (globals
->bfd_of_glue_owner
,
9359 ARM2THUMB_GLUE_SECTION_NAME
);
9360 BFD_ASSERT (s
!= NULL
);
9361 BFD_ASSERT (s
->contents
!= NULL
);
9362 BFD_ASSERT (s
->output_section
!= NULL
);
9364 sec
= eh
->export_glue
->root
.u
.def
.section
;
9366 BFD_ASSERT (sec
->output_section
!= NULL
);
9368 val
= eh
->export_glue
->root
.u
.def
.value
+ sec
->output_offset
9369 + sec
->output_section
->vma
;
9371 myh
= elf32_arm_create_thumb_stub (info
, h
->root
.root
.string
,
9372 h
->root
.u
.def
.section
->owner
,
9373 globals
->obfd
, sec
, val
, s
,
9379 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
9382 elf32_arm_bx_glue (struct bfd_link_info
* info
, int reg
)
9387 struct elf32_arm_link_hash_table
*globals
;
9389 globals
= elf32_arm_hash_table (info
);
9390 BFD_ASSERT (globals
!= NULL
);
9391 BFD_ASSERT (globals
->bfd_of_glue_owner
!= NULL
);
9393 s
= bfd_get_linker_section (globals
->bfd_of_glue_owner
,
9394 ARM_BX_GLUE_SECTION_NAME
);
9395 BFD_ASSERT (s
!= NULL
);
9396 BFD_ASSERT (s
->contents
!= NULL
);
9397 BFD_ASSERT (s
->output_section
!= NULL
);
9399 BFD_ASSERT (globals
->bx_glue_offset
[reg
] & 2);
9401 glue_addr
= globals
->bx_glue_offset
[reg
] & ~(bfd_vma
)3;
9403 if ((globals
->bx_glue_offset
[reg
] & 1) == 0)
9405 p
= s
->contents
+ glue_addr
;
9406 bfd_put_32 (globals
->obfd
, armbx1_tst_insn
+ (reg
<< 16), p
);
9407 bfd_put_32 (globals
->obfd
, armbx2_moveq_insn
+ reg
, p
+ 4);
9408 bfd_put_32 (globals
->obfd
, armbx3_bx_insn
+ reg
, p
+ 8);
9409 globals
->bx_glue_offset
[reg
] |= 1;
9412 return glue_addr
+ s
->output_section
->vma
+ s
->output_offset
;
9415 /* Generate Arm stubs for exported Thumb symbols. */
9417 elf32_arm_begin_write_processing (bfd
*abfd ATTRIBUTE_UNUSED
,
9418 struct bfd_link_info
*link_info
)
9420 struct elf32_arm_link_hash_table
* globals
;
9422 if (link_info
== NULL
)
9423 /* Ignore this if we are not called by the ELF backend linker. */
9426 globals
= elf32_arm_hash_table (link_info
);
9427 if (globals
== NULL
)
9430 /* If blx is available then exported Thumb symbols are OK and there is
9432 if (globals
->use_blx
)
9435 elf_link_hash_traverse (&globals
->root
, elf32_arm_to_thumb_export_stub
,
9439 /* Reserve space for COUNT dynamic relocations in relocation selection
9443 elf32_arm_allocate_dynrelocs (struct bfd_link_info
*info
, asection
*sreloc
,
9444 bfd_size_type count
)
9446 struct elf32_arm_link_hash_table
*htab
;
9448 htab
= elf32_arm_hash_table (info
);
9449 BFD_ASSERT (htab
->root
.dynamic_sections_created
);
9452 sreloc
->size
+= RELOC_SIZE (htab
) * count
;
9455 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
9456 dynamic, the relocations should go in SRELOC, otherwise they should
9457 go in the special .rel.iplt section. */
9460 elf32_arm_allocate_irelocs (struct bfd_link_info
*info
, asection
*sreloc
,
9461 bfd_size_type count
)
9463 struct elf32_arm_link_hash_table
*htab
;
9465 htab
= elf32_arm_hash_table (info
);
9466 if (!htab
->root
.dynamic_sections_created
)
9467 htab
->root
.irelplt
->size
+= RELOC_SIZE (htab
) * count
;
9470 BFD_ASSERT (sreloc
!= NULL
);
9471 sreloc
->size
+= RELOC_SIZE (htab
) * count
;
9475 /* Add relocation REL to the end of relocation section SRELOC. */
9478 elf32_arm_add_dynreloc (bfd
*output_bfd
, struct bfd_link_info
*info
,
9479 asection
*sreloc
, Elf_Internal_Rela
*rel
)
9482 struct elf32_arm_link_hash_table
*htab
;
9484 htab
= elf32_arm_hash_table (info
);
9485 if (!htab
->root
.dynamic_sections_created
9486 && ELF32_R_TYPE (rel
->r_info
) == R_ARM_IRELATIVE
)
9487 sreloc
= htab
->root
.irelplt
;
9490 loc
= sreloc
->contents
;
9491 loc
+= sreloc
->reloc_count
++ * RELOC_SIZE (htab
);
9492 if (sreloc
->reloc_count
* RELOC_SIZE (htab
) > sreloc
->size
)
9494 SWAP_RELOC_OUT (htab
) (output_bfd
, rel
, loc
);
9497 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
9498 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
9502 elf32_arm_allocate_plt_entry (struct bfd_link_info
*info
,
9503 bfd_boolean is_iplt_entry
,
9504 union gotplt_union
*root_plt
,
9505 struct arm_plt_info
*arm_plt
)
9507 struct elf32_arm_link_hash_table
*htab
;
9511 htab
= elf32_arm_hash_table (info
);
9515 splt
= htab
->root
.iplt
;
9516 sgotplt
= htab
->root
.igotplt
;
9518 /* NaCl uses a special first entry in .iplt too. */
9519 if (htab
->root
.target_os
== is_nacl
&& splt
->size
== 0)
9520 splt
->size
+= htab
->plt_header_size
;
9522 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
9523 elf32_arm_allocate_irelocs (info
, htab
->root
.irelplt
, 1);
9527 splt
= htab
->root
.splt
;
9528 sgotplt
= htab
->root
.sgotplt
;
9532 /* Allocate room for R_ARM_FUNCDESC_VALUE. */
9533 /* For lazy binding, relocations will be put into .rel.plt, in
9534 .rel.got otherwise. */
9535 /* FIXME: today we don't support lazy binding so put it in .rel.got */
9536 if (info
->flags
& DF_BIND_NOW
)
9537 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
9539 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelplt
, 1);
9543 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
9544 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelplt
, 1);
9547 /* If this is the first .plt entry, make room for the special
9549 if (splt
->size
== 0)
9550 splt
->size
+= htab
->plt_header_size
;
9552 htab
->next_tls_desc_index
++;
9555 /* Allocate the PLT entry itself, including any leading Thumb stub. */
9556 if (elf32_arm_plt_needs_thumb_stub_p (info
, arm_plt
))
9557 splt
->size
+= PLT_THUMB_STUB_SIZE
;
9558 root_plt
->offset
= splt
->size
;
9559 splt
->size
+= htab
->plt_entry_size
;
9561 if (htab
->root
.target_os
!= is_symbian
)
9563 /* We also need to make an entry in the .got.plt section, which
9564 will be placed in the .got section by the linker script. */
9566 arm_plt
->got_offset
= sgotplt
->size
;
9568 arm_plt
->got_offset
= sgotplt
->size
- 8 * htab
->num_tls_desc
;
9570 /* Function descriptor takes 64 bits in GOT. */
9578 arm_movw_immediate (bfd_vma value
)
9580 return (value
& 0x00000fff) | ((value
& 0x0000f000) << 4);
9584 arm_movt_immediate (bfd_vma value
)
9586 return ((value
& 0x0fff0000) >> 16) | ((value
& 0xf0000000) >> 12);
9589 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
9590 the entry lives in .iplt and resolves to (*SYM_VALUE)().
9591 Otherwise, DYNINDX is the index of the symbol in the dynamic
9592 symbol table and SYM_VALUE is undefined.
9594 ROOT_PLT points to the offset of the PLT entry from the start of its
9595 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
9596 bookkeeping information.
9598 Returns FALSE if there was a problem. */
9601 elf32_arm_populate_plt_entry (bfd
*output_bfd
, struct bfd_link_info
*info
,
9602 union gotplt_union
*root_plt
,
9603 struct arm_plt_info
*arm_plt
,
9604 int dynindx
, bfd_vma sym_value
)
9606 struct elf32_arm_link_hash_table
*htab
;
9612 Elf_Internal_Rela rel
;
9613 bfd_vma plt_header_size
;
9614 bfd_vma got_header_size
;
9616 htab
= elf32_arm_hash_table (info
);
9618 /* Pick the appropriate sections and sizes. */
9621 splt
= htab
->root
.iplt
;
9622 sgot
= htab
->root
.igotplt
;
9623 srel
= htab
->root
.irelplt
;
9625 /* There are no reserved entries in .igot.plt, and no special
9626 first entry in .iplt. */
9627 got_header_size
= 0;
9628 plt_header_size
= 0;
9632 splt
= htab
->root
.splt
;
9633 sgot
= htab
->root
.sgotplt
;
9634 srel
= htab
->root
.srelplt
;
9636 got_header_size
= get_elf_backend_data (output_bfd
)->got_header_size
;
9637 plt_header_size
= htab
->plt_header_size
;
9639 BFD_ASSERT (splt
!= NULL
&& srel
!= NULL
);
9641 /* Fill in the entry in the procedure linkage table. */
9642 if (htab
->root
.target_os
== is_symbian
)
9644 BFD_ASSERT (dynindx
>= 0);
9645 put_arm_insn (htab
, output_bfd
,
9646 elf32_arm_symbian_plt_entry
[0],
9647 splt
->contents
+ root_plt
->offset
);
9648 bfd_put_32 (output_bfd
,
9649 elf32_arm_symbian_plt_entry
[1],
9650 splt
->contents
+ root_plt
->offset
+ 4);
9652 /* Fill in the entry in the .rel.plt section. */
9653 rel
.r_offset
= (splt
->output_section
->vma
9654 + splt
->output_offset
9655 + root_plt
->offset
+ 4);
9656 rel
.r_info
= ELF32_R_INFO (dynindx
, R_ARM_GLOB_DAT
);
9658 /* Get the index in the procedure linkage table which
9659 corresponds to this symbol. This is the index of this symbol
9660 in all the symbols for which we are making plt entries. The
9661 first entry in the procedure linkage table is reserved. */
9662 plt_index
= ((root_plt
->offset
- plt_header_size
)
9663 / htab
->plt_entry_size
);
9667 bfd_vma got_offset
, got_address
, plt_address
;
9668 bfd_vma got_displacement
, initial_got_entry
;
9671 BFD_ASSERT (sgot
!= NULL
);
9673 /* Get the offset into the .(i)got.plt table of the entry that
9674 corresponds to this function. */
9675 got_offset
= (arm_plt
->got_offset
& -2);
9677 /* Get the index in the procedure linkage table which
9678 corresponds to this symbol. This is the index of this symbol
9679 in all the symbols for which we are making plt entries.
9680 After the reserved .got.plt entries, all symbols appear in
9681 the same order as in .plt. */
9683 /* Function descriptor takes 8 bytes. */
9684 plt_index
= (got_offset
- got_header_size
) / 8;
9686 plt_index
= (got_offset
- got_header_size
) / 4;
9688 /* Calculate the address of the GOT entry. */
9689 got_address
= (sgot
->output_section
->vma
9690 + sgot
->output_offset
9693 /* ...and the address of the PLT entry. */
9694 plt_address
= (splt
->output_section
->vma
9695 + splt
->output_offset
9696 + root_plt
->offset
);
9698 ptr
= splt
->contents
+ root_plt
->offset
;
9699 if (htab
->root
.target_os
== is_vxworks
&& bfd_link_pic (info
))
9704 for (i
= 0; i
!= htab
->plt_entry_size
/ 4; i
++, ptr
+= 4)
9706 val
= elf32_arm_vxworks_shared_plt_entry
[i
];
9708 val
|= got_address
- sgot
->output_section
->vma
;
9710 val
|= plt_index
* RELOC_SIZE (htab
);
9711 if (i
== 2 || i
== 5)
9712 bfd_put_32 (output_bfd
, val
, ptr
);
9714 put_arm_insn (htab
, output_bfd
, val
, ptr
);
9717 else if (htab
->root
.target_os
== is_vxworks
)
9722 for (i
= 0; i
!= htab
->plt_entry_size
/ 4; i
++, ptr
+= 4)
9724 val
= elf32_arm_vxworks_exec_plt_entry
[i
];
9728 val
|= 0xffffff & -((root_plt
->offset
+ i
* 4 + 8) >> 2);
9730 val
|= plt_index
* RELOC_SIZE (htab
);
9731 if (i
== 2 || i
== 5)
9732 bfd_put_32 (output_bfd
, val
, ptr
);
9734 put_arm_insn (htab
, output_bfd
, val
, ptr
);
9737 loc
= (htab
->srelplt2
->contents
9738 + (plt_index
* 2 + 1) * RELOC_SIZE (htab
));
9740 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9741 referencing the GOT for this PLT entry. */
9742 rel
.r_offset
= plt_address
+ 8;
9743 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
9744 rel
.r_addend
= got_offset
;
9745 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
9746 loc
+= RELOC_SIZE (htab
);
9748 /* Create the R_ARM_ABS32 relocation referencing the
9749 beginning of the PLT for this GOT entry. */
9750 rel
.r_offset
= got_address
;
9751 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_ARM_ABS32
);
9753 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
9755 else if (htab
->root
.target_os
== is_nacl
)
9757 /* Calculate the displacement between the PLT slot and the
9758 common tail that's part of the special initial PLT slot. */
9759 int32_t tail_displacement
9760 = ((splt
->output_section
->vma
+ splt
->output_offset
9761 + ARM_NACL_PLT_TAIL_OFFSET
)
9762 - (plt_address
+ htab
->plt_entry_size
+ 4));
9763 BFD_ASSERT ((tail_displacement
& 3) == 0);
9764 tail_displacement
>>= 2;
9766 BFD_ASSERT ((tail_displacement
& 0xff000000) == 0
9767 || (-tail_displacement
& 0xff000000) == 0);
9769 /* Calculate the displacement between the PLT slot and the entry
9770 in the GOT. The offset accounts for the value produced by
9771 adding to pc in the penultimate instruction of the PLT stub. */
9772 got_displacement
= (got_address
9773 - (plt_address
+ htab
->plt_entry_size
));
9775 /* NaCl does not support interworking at all. */
9776 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info
, arm_plt
));
9778 put_arm_insn (htab
, output_bfd
,
9779 elf32_arm_nacl_plt_entry
[0]
9780 | arm_movw_immediate (got_displacement
),
9782 put_arm_insn (htab
, output_bfd
,
9783 elf32_arm_nacl_plt_entry
[1]
9784 | arm_movt_immediate (got_displacement
),
9786 put_arm_insn (htab
, output_bfd
,
9787 elf32_arm_nacl_plt_entry
[2],
9789 put_arm_insn (htab
, output_bfd
,
9790 elf32_arm_nacl_plt_entry
[3]
9791 | (tail_displacement
& 0x00ffffff),
9794 else if (htab
->fdpic_p
)
9796 const bfd_vma
*plt_entry
= using_thumb_only(htab
)
9797 ? elf32_arm_fdpic_thumb_plt_entry
9798 : elf32_arm_fdpic_plt_entry
;
9800 /* Fill-up Thumb stub if needed. */
9801 if (elf32_arm_plt_needs_thumb_stub_p (info
, arm_plt
))
9803 put_thumb_insn (htab
, output_bfd
,
9804 elf32_arm_plt_thumb_stub
[0], ptr
- 4);
9805 put_thumb_insn (htab
, output_bfd
,
9806 elf32_arm_plt_thumb_stub
[1], ptr
- 2);
9808 /* As we are using 32 bit instructions even for the Thumb
9809 version, we have to use 'put_arm_insn' instead of
9810 'put_thumb_insn'. */
9811 put_arm_insn(htab
, output_bfd
, plt_entry
[0], ptr
+ 0);
9812 put_arm_insn(htab
, output_bfd
, plt_entry
[1], ptr
+ 4);
9813 put_arm_insn(htab
, output_bfd
, plt_entry
[2], ptr
+ 8);
9814 put_arm_insn(htab
, output_bfd
, plt_entry
[3], ptr
+ 12);
9815 bfd_put_32 (output_bfd
, got_offset
, ptr
+ 16);
9817 if (!(info
->flags
& DF_BIND_NOW
))
9819 /* funcdesc_value_reloc_offset. */
9820 bfd_put_32 (output_bfd
,
9821 htab
->root
.srelplt
->reloc_count
* RELOC_SIZE (htab
),
9823 put_arm_insn(htab
, output_bfd
, plt_entry
[6], ptr
+ 24);
9824 put_arm_insn(htab
, output_bfd
, plt_entry
[7], ptr
+ 28);
9825 put_arm_insn(htab
, output_bfd
, plt_entry
[8], ptr
+ 32);
9826 put_arm_insn(htab
, output_bfd
, plt_entry
[9], ptr
+ 36);
9829 else if (using_thumb_only (htab
))
9831 /* PR ld/16017: Generate thumb only PLT entries. */
9832 if (!using_thumb2 (htab
))
9834 /* FIXME: We ought to be able to generate thumb-1 PLT
9836 _bfd_error_handler (_("%pB: warning: thumb-1 mode PLT generation not currently supported"),
9841 /* Calculate the displacement between the PLT slot and the entry in
9842 the GOT. The 12-byte offset accounts for the value produced by
9843 adding to pc in the 3rd instruction of the PLT stub. */
9844 got_displacement
= got_address
- (plt_address
+ 12);
9846 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
9847 instead of 'put_thumb_insn'. */
9848 put_arm_insn (htab
, output_bfd
,
9849 elf32_thumb2_plt_entry
[0]
9850 | ((got_displacement
& 0x000000ff) << 16)
9851 | ((got_displacement
& 0x00000700) << 20)
9852 | ((got_displacement
& 0x00000800) >> 1)
9853 | ((got_displacement
& 0x0000f000) >> 12),
9855 put_arm_insn (htab
, output_bfd
,
9856 elf32_thumb2_plt_entry
[1]
9857 | ((got_displacement
& 0x00ff0000) )
9858 | ((got_displacement
& 0x07000000) << 4)
9859 | ((got_displacement
& 0x08000000) >> 17)
9860 | ((got_displacement
& 0xf0000000) >> 28),
9862 put_arm_insn (htab
, output_bfd
,
9863 elf32_thumb2_plt_entry
[2],
9865 put_arm_insn (htab
, output_bfd
,
9866 elf32_thumb2_plt_entry
[3],
9871 /* Calculate the displacement between the PLT slot and the
9872 entry in the GOT. The eight-byte offset accounts for the
9873 value produced by adding to pc in the first instruction
9875 got_displacement
= got_address
- (plt_address
+ 8);
9877 if (elf32_arm_plt_needs_thumb_stub_p (info
, arm_plt
))
9879 put_thumb_insn (htab
, output_bfd
,
9880 elf32_arm_plt_thumb_stub
[0], ptr
- 4);
9881 put_thumb_insn (htab
, output_bfd
,
9882 elf32_arm_plt_thumb_stub
[1], ptr
- 2);
9885 if (!elf32_arm_use_long_plt_entry
)
9887 BFD_ASSERT ((got_displacement
& 0xf0000000) == 0);
9889 put_arm_insn (htab
, output_bfd
,
9890 elf32_arm_plt_entry_short
[0]
9891 | ((got_displacement
& 0x0ff00000) >> 20),
9893 put_arm_insn (htab
, output_bfd
,
9894 elf32_arm_plt_entry_short
[1]
9895 | ((got_displacement
& 0x000ff000) >> 12),
9897 put_arm_insn (htab
, output_bfd
,
9898 elf32_arm_plt_entry_short
[2]
9899 | (got_displacement
& 0x00000fff),
9901 #ifdef FOUR_WORD_PLT
9902 bfd_put_32 (output_bfd
, elf32_arm_plt_entry_short
[3], ptr
+ 12);
9907 put_arm_insn (htab
, output_bfd
,
9908 elf32_arm_plt_entry_long
[0]
9909 | ((got_displacement
& 0xf0000000) >> 28),
9911 put_arm_insn (htab
, output_bfd
,
9912 elf32_arm_plt_entry_long
[1]
9913 | ((got_displacement
& 0x0ff00000) >> 20),
9915 put_arm_insn (htab
, output_bfd
,
9916 elf32_arm_plt_entry_long
[2]
9917 | ((got_displacement
& 0x000ff000) >> 12),
9919 put_arm_insn (htab
, output_bfd
,
9920 elf32_arm_plt_entry_long
[3]
9921 | (got_displacement
& 0x00000fff),
9926 /* Fill in the entry in the .rel(a).(i)plt section. */
9927 rel
.r_offset
= got_address
;
9931 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
9932 The dynamic linker or static executable then calls SYM_VALUE
9933 to determine the correct run-time value of the .igot.plt entry. */
9934 rel
.r_info
= ELF32_R_INFO (0, R_ARM_IRELATIVE
);
9935 initial_got_entry
= sym_value
;
9939 /* For FDPIC we will have to resolve a R_ARM_FUNCDESC_VALUE
9940 used by PLT entry. */
9943 rel
.r_info
= ELF32_R_INFO (dynindx
, R_ARM_FUNCDESC_VALUE
);
9944 initial_got_entry
= 0;
9948 rel
.r_info
= ELF32_R_INFO (dynindx
, R_ARM_JUMP_SLOT
);
9949 initial_got_entry
= (splt
->output_section
->vma
9950 + splt
->output_offset
);
9953 When thumb only we need to set the LSB for any address that
9954 will be used with an interworking branch instruction. */
9955 if (using_thumb_only (htab
))
9956 initial_got_entry
|= 1;
9960 /* Fill in the entry in the global offset table. */
9961 bfd_put_32 (output_bfd
, initial_got_entry
,
9962 sgot
->contents
+ got_offset
);
9964 if (htab
->fdpic_p
&& !(info
->flags
& DF_BIND_NOW
))
9966 /* Setup initial funcdesc value. */
9967 /* FIXME: we don't support lazy binding because there is a
9968 race condition between both words getting written and
9969 some other thread attempting to read them. The ARM
9970 architecture does not have an atomic 64 bit load/store
9971 instruction that could be used to prevent it; it is
9972 recommended that threaded FDPIC applications run with the
9973 LD_BIND_NOW environment variable set. */
9974 bfd_put_32(output_bfd
, plt_address
+ 0x18,
9975 sgot
->contents
+ got_offset
);
9976 bfd_put_32(output_bfd
, -1 /*TODO*/,
9977 sgot
->contents
+ got_offset
+ 4);
9982 elf32_arm_add_dynreloc (output_bfd
, info
, srel
, &rel
);
9987 /* For FDPIC we put PLT relocationss into .rel.got when not
9988 lazy binding otherwise we put them in .rel.plt. For now,
9989 we don't support lazy binding so put it in .rel.got. */
9990 if (info
->flags
& DF_BIND_NOW
)
9991 elf32_arm_add_dynreloc(output_bfd
, info
, htab
->root
.srelgot
, &rel
);
9993 elf32_arm_add_dynreloc(output_bfd
, info
, htab
->root
.srelplt
, &rel
);
9997 loc
= srel
->contents
+ plt_index
* RELOC_SIZE (htab
);
9998 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, loc
);
10005 /* Some relocations map to different relocations depending on the
10006 target. Return the real relocation. */
10009 arm_real_reloc_type (struct elf32_arm_link_hash_table
* globals
,
10014 case R_ARM_TARGET1
:
10015 if (globals
->target1_is_rel
)
10016 return R_ARM_REL32
;
10018 return R_ARM_ABS32
;
10020 case R_ARM_TARGET2
:
10021 return globals
->target2_reloc
;
10028 /* Return the base VMA address which should be subtracted from real addresses
10029 when resolving @dtpoff relocation.
10030 This is PT_TLS segment p_vaddr. */
10033 dtpoff_base (struct bfd_link_info
*info
)
10035 /* If tls_sec is NULL, we should have signalled an error already. */
10036 if (elf_hash_table (info
)->tls_sec
== NULL
)
10038 return elf_hash_table (info
)->tls_sec
->vma
;
10041 /* Return the relocation value for @tpoff relocation
10042 if STT_TLS virtual address is ADDRESS. */
10045 tpoff (struct bfd_link_info
*info
, bfd_vma address
)
10047 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
10050 /* If tls_sec is NULL, we should have signalled an error already. */
10051 if (htab
->tls_sec
== NULL
)
10053 base
= align_power ((bfd_vma
) TCB_SIZE
, htab
->tls_sec
->alignment_power
);
10054 return address
- htab
->tls_sec
->vma
+ base
;
10057 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
10058 VALUE is the relocation value. */
10060 static bfd_reloc_status_type
10061 elf32_arm_abs12_reloc (bfd
*abfd
, void *data
, bfd_vma value
)
10064 return bfd_reloc_overflow
;
10066 value
|= bfd_get_32 (abfd
, data
) & 0xfffff000;
10067 bfd_put_32 (abfd
, value
, data
);
10068 return bfd_reloc_ok
;
10071 /* Handle TLS relaxations. Relaxing is possible for symbols that use
10072 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
10073 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
10075 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
10076 is to then call final_link_relocate. Return other values in the
10079 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
10080 the pre-relaxed code. It would be nice if the relocs were updated
10081 to match the optimization. */
10083 static bfd_reloc_status_type
10084 elf32_arm_tls_relax (struct elf32_arm_link_hash_table
*globals
,
10085 bfd
*input_bfd
, asection
*input_sec
, bfd_byte
*contents
,
10086 Elf_Internal_Rela
*rel
, unsigned long is_local
)
10088 unsigned long insn
;
10090 switch (ELF32_R_TYPE (rel
->r_info
))
10093 return bfd_reloc_notsupported
;
10095 case R_ARM_TLS_GOTDESC
:
10100 insn
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
10102 insn
-= 5; /* THUMB */
10104 insn
-= 8; /* ARM */
10106 bfd_put_32 (input_bfd
, insn
, contents
+ rel
->r_offset
);
10107 return bfd_reloc_continue
;
10109 case R_ARM_THM_TLS_DESCSEQ
:
10111 insn
= bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
);
10112 if ((insn
& 0xff78) == 0x4478) /* add rx, pc */
10116 bfd_put_16 (input_bfd
, 0x46c0, contents
+ rel
->r_offset
);
10118 else if ((insn
& 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
10122 bfd_put_16 (input_bfd
, 0x46c0, contents
+ rel
->r_offset
);
10125 bfd_put_16 (input_bfd
, insn
& 0xf83f, contents
+ rel
->r_offset
);
10127 else if ((insn
& 0xff87) == 0x4780) /* blx rx */
10131 bfd_put_16 (input_bfd
, 0x46c0, contents
+ rel
->r_offset
);
10134 bfd_put_16 (input_bfd
, 0x4600 | (insn
& 0x78),
10135 contents
+ rel
->r_offset
);
10139 if ((insn
& 0xf000) == 0xf000 || (insn
& 0xf800) == 0xe800)
10140 /* It's a 32 bit instruction, fetch the rest of it for
10141 error generation. */
10142 insn
= (insn
<< 16)
10143 | bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
+ 2);
10145 /* xgettext:c-format */
10146 (_("%pB(%pA+%#" PRIx64
"): "
10147 "unexpected %s instruction '%#lx' in TLS trampoline"),
10148 input_bfd
, input_sec
, (uint64_t) rel
->r_offset
,
10150 return bfd_reloc_notsupported
;
10154 case R_ARM_TLS_DESCSEQ
:
10156 insn
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
10157 if ((insn
& 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
10161 bfd_put_32 (input_bfd
, 0xe1a00000 | (insn
& 0xffff),
10162 contents
+ rel
->r_offset
);
10164 else if ((insn
& 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
10168 bfd_put_32 (input_bfd
, 0xe1a00000, contents
+ rel
->r_offset
);
10171 bfd_put_32 (input_bfd
, insn
& 0xfffff000,
10172 contents
+ rel
->r_offset
);
10174 else if ((insn
& 0xfffffff0) == 0xe12fff30) /* blx rx */
10178 bfd_put_32 (input_bfd
, 0xe1a00000, contents
+ rel
->r_offset
);
10181 bfd_put_32 (input_bfd
, 0xe1a00000 | (insn
& 0xf),
10182 contents
+ rel
->r_offset
);
10187 /* xgettext:c-format */
10188 (_("%pB(%pA+%#" PRIx64
"): "
10189 "unexpected %s instruction '%#lx' in TLS trampoline"),
10190 input_bfd
, input_sec
, (uint64_t) rel
->r_offset
,
10192 return bfd_reloc_notsupported
;
10196 case R_ARM_TLS_CALL
:
10197 /* GD->IE relaxation, turn the instruction into 'nop' or
10198 'ldr r0, [pc,r0]' */
10199 insn
= is_local
? 0xe1a00000 : 0xe79f0000;
10200 bfd_put_32 (input_bfd
, insn
, contents
+ rel
->r_offset
);
10203 case R_ARM_THM_TLS_CALL
:
10204 /* GD->IE relaxation. */
10206 /* add r0,pc; ldr r0, [r0] */
10208 else if (using_thumb2 (globals
))
10215 bfd_put_16 (input_bfd
, insn
>> 16, contents
+ rel
->r_offset
);
10216 bfd_put_16 (input_bfd
, insn
& 0xffff, contents
+ rel
->r_offset
+ 2);
10219 return bfd_reloc_ok
;
10222 /* For a given value of n, calculate the value of G_n as required to
10223 deal with group relocations. We return it in the form of an
10224 encoded constant-and-rotation, together with the final residual. If n is
10225 specified as less than zero, then final_residual is filled with the
10226 input value and no further action is performed. */
10229 calculate_group_reloc_mask (bfd_vma value
, int n
, bfd_vma
*final_residual
)
10233 bfd_vma encoded_g_n
= 0;
10234 bfd_vma residual
= value
; /* Also known as Y_n. */
10236 for (current_n
= 0; current_n
<= n
; current_n
++)
10240 /* Calculate which part of the value to mask. */
10247 /* Determine the most significant bit in the residual and
10248 align the resulting value to a 2-bit boundary. */
10249 for (msb
= 30; msb
>= 0; msb
-= 2)
10250 if (residual
& (3u << msb
))
10253 /* The desired shift is now (msb - 6), or zero, whichever
10260 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
10261 g_n
= residual
& (0xff << shift
);
10262 encoded_g_n
= (g_n
>> shift
)
10263 | ((g_n
<= 0xff ? 0 : (32 - shift
) / 2) << 8);
10265 /* Calculate the residual for the next time around. */
10269 *final_residual
= residual
;
10271 return encoded_g_n
;
10274 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
10275 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
10278 identify_add_or_sub (bfd_vma insn
)
10280 int opcode
= insn
& 0x1e00000;
10282 if (opcode
== 1 << 23) /* ADD */
10285 if (opcode
== 1 << 22) /* SUB */
10291 /* Perform a relocation as part of a final link. */
10293 static bfd_reloc_status_type
10294 elf32_arm_final_link_relocate (reloc_howto_type
* howto
,
10297 asection
* input_section
,
10298 bfd_byte
* contents
,
10299 Elf_Internal_Rela
* rel
,
10301 struct bfd_link_info
* info
,
10302 asection
* sym_sec
,
10303 const char * sym_name
,
10304 unsigned char st_type
,
10305 enum arm_st_branch_type branch_type
,
10306 struct elf_link_hash_entry
* h
,
10307 bfd_boolean
* unresolved_reloc_p
,
10308 char ** error_message
)
10310 unsigned long r_type
= howto
->type
;
10311 unsigned long r_symndx
;
10312 bfd_byte
* hit_data
= contents
+ rel
->r_offset
;
10313 bfd_vma
* local_got_offsets
;
10314 bfd_vma
* local_tlsdesc_gotents
;
10317 asection
* sreloc
= NULL
;
10318 asection
* srelgot
;
10320 bfd_signed_vma signed_addend
;
10321 unsigned char dynreloc_st_type
;
10322 bfd_vma dynreloc_value
;
10323 struct elf32_arm_link_hash_table
* globals
;
10324 struct elf32_arm_link_hash_entry
*eh
;
10325 union gotplt_union
*root_plt
;
10326 struct arm_plt_info
*arm_plt
;
10327 bfd_vma plt_offset
;
10328 bfd_vma gotplt_offset
;
10329 bfd_boolean has_iplt_entry
;
10330 bfd_boolean resolved_to_zero
;
10332 globals
= elf32_arm_hash_table (info
);
10333 if (globals
== NULL
)
10334 return bfd_reloc_notsupported
;
10336 BFD_ASSERT (is_arm_elf (input_bfd
));
10337 BFD_ASSERT (howto
!= NULL
);
10339 /* Some relocation types map to different relocations depending on the
10340 target. We pick the right one here. */
10341 r_type
= arm_real_reloc_type (globals
, r_type
);
10343 /* It is possible to have linker relaxations on some TLS access
10344 models. Update our information here. */
10345 r_type
= elf32_arm_tls_transition (info
, r_type
, h
);
10347 if (r_type
!= howto
->type
)
10348 howto
= elf32_arm_howto_from_type (r_type
);
10350 eh
= (struct elf32_arm_link_hash_entry
*) h
;
10351 sgot
= globals
->root
.sgot
;
10352 local_got_offsets
= elf_local_got_offsets (input_bfd
);
10353 local_tlsdesc_gotents
= elf32_arm_local_tlsdesc_gotent (input_bfd
);
10355 if (globals
->root
.dynamic_sections_created
)
10356 srelgot
= globals
->root
.srelgot
;
10360 r_symndx
= ELF32_R_SYM (rel
->r_info
);
10362 if (globals
->use_rel
)
10366 switch (howto
->size
)
10368 case 0: addend
= bfd_get_8 (input_bfd
, hit_data
); break;
10369 case 1: addend
= bfd_get_16 (input_bfd
, hit_data
); break;
10370 case 2: addend
= bfd_get_32 (input_bfd
, hit_data
); break;
10371 default: addend
= 0; break;
10373 /* Note: the addend and signed_addend calculated here are
10374 incorrect for any split field. */
10375 addend
&= howto
->src_mask
;
10376 sign
= howto
->src_mask
& ~(howto
->src_mask
>> 1);
10377 signed_addend
= (addend
^ sign
) - sign
;
10378 signed_addend
= (bfd_vma
) signed_addend
<< howto
->rightshift
;
10379 addend
<<= howto
->rightshift
;
10382 addend
= signed_addend
= rel
->r_addend
;
10384 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
10385 are resolving a function call relocation. */
10386 if (using_thumb_only (globals
)
10387 && (r_type
== R_ARM_THM_CALL
10388 || r_type
== R_ARM_THM_JUMP24
)
10389 && branch_type
== ST_BRANCH_TO_ARM
)
10390 branch_type
= ST_BRANCH_TO_THUMB
;
10392 /* Record the symbol information that should be used in dynamic
10394 dynreloc_st_type
= st_type
;
10395 dynreloc_value
= value
;
10396 if (branch_type
== ST_BRANCH_TO_THUMB
)
10397 dynreloc_value
|= 1;
10399 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
10400 VALUE appropriately for relocations that we resolve at link time. */
10401 has_iplt_entry
= FALSE
;
10402 if (elf32_arm_get_plt_info (input_bfd
, globals
, eh
, r_symndx
, &root_plt
,
10404 && root_plt
->offset
!= (bfd_vma
) -1)
10406 plt_offset
= root_plt
->offset
;
10407 gotplt_offset
= arm_plt
->got_offset
;
10409 if (h
== NULL
|| eh
->is_iplt
)
10411 has_iplt_entry
= TRUE
;
10412 splt
= globals
->root
.iplt
;
10414 /* Populate .iplt entries here, because not all of them will
10415 be seen by finish_dynamic_symbol. The lower bit is set if
10416 we have already populated the entry. */
10417 if (plt_offset
& 1)
10421 if (elf32_arm_populate_plt_entry (output_bfd
, info
, root_plt
, arm_plt
,
10422 -1, dynreloc_value
))
10423 root_plt
->offset
|= 1;
10425 return bfd_reloc_notsupported
;
10428 /* Static relocations always resolve to the .iplt entry. */
10429 st_type
= STT_FUNC
;
10430 value
= (splt
->output_section
->vma
10431 + splt
->output_offset
10433 branch_type
= ST_BRANCH_TO_ARM
;
10435 /* If there are non-call relocations that resolve to the .iplt
10436 entry, then all dynamic ones must too. */
10437 if (arm_plt
->noncall_refcount
!= 0)
10439 dynreloc_st_type
= st_type
;
10440 dynreloc_value
= value
;
10444 /* We populate the .plt entry in finish_dynamic_symbol. */
10445 splt
= globals
->root
.splt
;
10450 plt_offset
= (bfd_vma
) -1;
10451 gotplt_offset
= (bfd_vma
) -1;
10454 resolved_to_zero
= (h
!= NULL
10455 && UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
));
10460 /* We don't need to find a value for this symbol. It's just a
10462 *unresolved_reloc_p
= FALSE
;
10463 return bfd_reloc_ok
;
10466 if (globals
->root
.target_os
!= is_vxworks
)
10467 return elf32_arm_abs12_reloc (input_bfd
, hit_data
, value
+ addend
);
10468 /* Fall through. */
10472 case R_ARM_ABS32_NOI
:
10474 case R_ARM_REL32_NOI
:
10480 /* Handle relocations which should use the PLT entry. ABS32/REL32
10481 will use the symbol's value, which may point to a PLT entry, but we
10482 don't need to handle that here. If we created a PLT entry, all
10483 branches in this object should go to it, except if the PLT is too
10484 far away, in which case a long branch stub should be inserted. */
10485 if ((r_type
!= R_ARM_ABS32
&& r_type
!= R_ARM_REL32
10486 && r_type
!= R_ARM_ABS32_NOI
&& r_type
!= R_ARM_REL32_NOI
10487 && r_type
!= R_ARM_CALL
10488 && r_type
!= R_ARM_JUMP24
10489 && r_type
!= R_ARM_PLT32
)
10490 && plt_offset
!= (bfd_vma
) -1)
10492 /* If we've created a .plt section, and assigned a PLT entry
10493 to this function, it must either be a STT_GNU_IFUNC reference
10494 or not be known to bind locally. In other cases, we should
10495 have cleared the PLT entry by now. */
10496 BFD_ASSERT (has_iplt_entry
|| !SYMBOL_CALLS_LOCAL (info
, h
));
10498 value
= (splt
->output_section
->vma
10499 + splt
->output_offset
10501 *unresolved_reloc_p
= FALSE
;
10502 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
10503 contents
, rel
->r_offset
, value
,
10507 /* When generating a shared object or relocatable executable, these
10508 relocations are copied into the output file to be resolved at
10510 if ((bfd_link_pic (info
)
10511 || globals
->root
.is_relocatable_executable
10512 || globals
->fdpic_p
)
10513 && (input_section
->flags
& SEC_ALLOC
)
10514 && !(globals
->root
.target_os
== is_vxworks
10515 && strcmp (input_section
->output_section
->name
,
10517 && ((r_type
!= R_ARM_REL32
&& r_type
!= R_ARM_REL32_NOI
)
10518 || !SYMBOL_CALLS_LOCAL (info
, h
))
10519 && !(input_bfd
== globals
->stub_bfd
10520 && strstr (input_section
->name
, STUB_SUFFIX
))
10522 || (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
10523 && !resolved_to_zero
)
10524 || h
->root
.type
!= bfd_link_hash_undefweak
)
10525 && r_type
!= R_ARM_PC24
10526 && r_type
!= R_ARM_CALL
10527 && r_type
!= R_ARM_JUMP24
10528 && r_type
!= R_ARM_PREL31
10529 && r_type
!= R_ARM_PLT32
)
10531 Elf_Internal_Rela outrel
;
10532 bfd_boolean skip
, relocate
;
10535 if ((r_type
== R_ARM_REL32
|| r_type
== R_ARM_REL32_NOI
)
10536 && !h
->def_regular
)
10538 char *v
= _("shared object");
10540 if (bfd_link_executable (info
))
10541 v
= _("PIE executable");
10544 (_("%pB: relocation %s against external or undefined symbol `%s'"
10545 " can not be used when making a %s; recompile with -fPIC"), input_bfd
,
10546 elf32_arm_howto_table_1
[r_type
].name
, h
->root
.root
.string
, v
);
10547 return bfd_reloc_notsupported
;
10550 *unresolved_reloc_p
= FALSE
;
10552 if (sreloc
== NULL
&& globals
->root
.dynamic_sections_created
)
10554 sreloc
= _bfd_elf_get_dynamic_reloc_section (input_bfd
, input_section
,
10555 ! globals
->use_rel
);
10557 if (sreloc
== NULL
)
10558 return bfd_reloc_notsupported
;
10564 outrel
.r_addend
= addend
;
10566 _bfd_elf_section_offset (output_bfd
, info
, input_section
,
10568 if (outrel
.r_offset
== (bfd_vma
) -1)
10570 else if (outrel
.r_offset
== (bfd_vma
) -2)
10571 skip
= TRUE
, relocate
= TRUE
;
10572 outrel
.r_offset
+= (input_section
->output_section
->vma
10573 + input_section
->output_offset
);
10576 memset (&outrel
, 0, sizeof outrel
);
10578 && h
->dynindx
!= -1
10579 && (!bfd_link_pic (info
)
10580 || !(bfd_link_pie (info
)
10581 || SYMBOLIC_BIND (info
, h
))
10582 || !h
->def_regular
))
10583 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, r_type
);
10588 /* This symbol is local, or marked to become local. */
10589 BFD_ASSERT (r_type
== R_ARM_ABS32
|| r_type
== R_ARM_ABS32_NOI
10590 || (globals
->fdpic_p
&& !bfd_link_pic(info
)));
10591 if (globals
->root
.target_os
== is_symbian
)
10595 /* On Symbian OS, the data segment and text segement
10596 can be relocated independently. Therefore, we
10597 must indicate the segment to which this
10598 relocation is relative. The BPABI allows us to
10599 use any symbol in the right segment; we just use
10600 the section symbol as it is convenient. (We
10601 cannot use the symbol given by "h" directly as it
10602 will not appear in the dynamic symbol table.)
10604 Note that the dynamic linker ignores the section
10605 symbol value, so we don't subtract osec->vma
10606 from the emitted reloc addend. */
10608 osec
= sym_sec
->output_section
;
10610 osec
= input_section
->output_section
;
10612 if (osec
&& elf_section_data (osec
))
10613 symbol
= elf_section_data (osec
)->dynindx
;
10616 struct elf_link_hash_table
*htab
= elf_hash_table (info
);
10618 if ((osec
->flags
& SEC_READONLY
) == 0
10619 && htab
->data_index_section
!= NULL
)
10620 osec
= htab
->data_index_section
;
10622 osec
= htab
->text_index_section
;
10623 symbol
= elf_section_data (osec
)->dynindx
;
10625 BFD_ASSERT (symbol
!= 0);
10628 /* On SVR4-ish systems, the dynamic loader cannot
10629 relocate the text and data segments independently,
10630 so the symbol does not matter. */
10632 if (dynreloc_st_type
== STT_GNU_IFUNC
)
10633 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
10634 to the .iplt entry. Instead, every non-call reference
10635 must use an R_ARM_IRELATIVE relocation to obtain the
10636 correct run-time address. */
10637 outrel
.r_info
= ELF32_R_INFO (symbol
, R_ARM_IRELATIVE
);
10638 else if (globals
->fdpic_p
&& !bfd_link_pic(info
))
10641 outrel
.r_info
= ELF32_R_INFO (symbol
, R_ARM_RELATIVE
);
10642 if (globals
->use_rel
)
10645 outrel
.r_addend
+= dynreloc_value
;
10649 arm_elf_add_rofixup(output_bfd
, globals
->srofixup
, outrel
.r_offset
);
10651 elf32_arm_add_dynreloc (output_bfd
, info
, sreloc
, &outrel
);
10653 /* If this reloc is against an external symbol, we do not want to
10654 fiddle with the addend. Otherwise, we need to include the symbol
10655 value so that it becomes an addend for the dynamic reloc. */
10657 return bfd_reloc_ok
;
10659 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
10660 contents
, rel
->r_offset
,
10661 dynreloc_value
, (bfd_vma
) 0);
10663 else switch (r_type
)
10666 return elf32_arm_abs12_reloc (input_bfd
, hit_data
, value
+ addend
);
10668 case R_ARM_XPC25
: /* Arm BLX instruction. */
10671 case R_ARM_PC24
: /* Arm B/BL instruction. */
10674 struct elf32_arm_stub_hash_entry
*stub_entry
= NULL
;
10676 if (r_type
== R_ARM_XPC25
)
10678 /* Check for Arm calling Arm function. */
10679 /* FIXME: Should we translate the instruction into a BL
10680 instruction instead ? */
10681 if (branch_type
!= ST_BRANCH_TO_THUMB
)
10683 (_("\%pB: warning: %s BLX instruction targets"
10684 " %s function '%s'"),
10686 "ARM", h
? h
->root
.root
.string
: "(local)");
10688 else if (r_type
== R_ARM_PC24
)
10690 /* Check for Arm calling Thumb function. */
10691 if (branch_type
== ST_BRANCH_TO_THUMB
)
10693 if (elf32_arm_to_thumb_stub (info
, sym_name
, input_bfd
,
10694 output_bfd
, input_section
,
10695 hit_data
, sym_sec
, rel
->r_offset
,
10696 signed_addend
, value
,
10698 return bfd_reloc_ok
;
10700 return bfd_reloc_dangerous
;
10704 /* Check if a stub has to be inserted because the
10705 destination is too far or we are changing mode. */
10706 if ( r_type
== R_ARM_CALL
10707 || r_type
== R_ARM_JUMP24
10708 || r_type
== R_ARM_PLT32
)
10710 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
10711 struct elf32_arm_link_hash_entry
*hash
;
10713 hash
= (struct elf32_arm_link_hash_entry
*) h
;
10714 stub_type
= arm_type_of_stub (info
, input_section
, rel
,
10715 st_type
, &branch_type
,
10716 hash
, value
, sym_sec
,
10717 input_bfd
, sym_name
);
10719 if (stub_type
!= arm_stub_none
)
10721 /* The target is out of reach, so redirect the
10722 branch to the local stub for this function. */
10723 stub_entry
= elf32_arm_get_stub_entry (input_section
,
10728 if (stub_entry
!= NULL
)
10729 value
= (stub_entry
->stub_offset
10730 + stub_entry
->stub_sec
->output_offset
10731 + stub_entry
->stub_sec
->output_section
->vma
);
10733 if (plt_offset
!= (bfd_vma
) -1)
10734 *unresolved_reloc_p
= FALSE
;
10739 /* If the call goes through a PLT entry, make sure to
10740 check distance to the right destination address. */
10741 if (plt_offset
!= (bfd_vma
) -1)
10743 value
= (splt
->output_section
->vma
10744 + splt
->output_offset
10746 *unresolved_reloc_p
= FALSE
;
10747 /* The PLT entry is in ARM mode, regardless of the
10748 target function. */
10749 branch_type
= ST_BRANCH_TO_ARM
;
10754 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
10756 S is the address of the symbol in the relocation.
10757 P is address of the instruction being relocated.
10758 A is the addend (extracted from the instruction) in bytes.
10760 S is held in 'value'.
10761 P is the base address of the section containing the
10762 instruction plus the offset of the reloc into that
10764 (input_section->output_section->vma +
10765 input_section->output_offset +
10767 A is the addend, converted into bytes, ie:
10768 (signed_addend * 4)
10770 Note: None of these operations have knowledge of the pipeline
10771 size of the processor, thus it is up to the assembler to
10772 encode this information into the addend. */
10773 value
-= (input_section
->output_section
->vma
10774 + input_section
->output_offset
);
10775 value
-= rel
->r_offset
;
10776 value
+= signed_addend
;
10778 signed_addend
= value
;
10779 signed_addend
>>= howto
->rightshift
;
10781 /* A branch to an undefined weak symbol is turned into a jump to
10782 the next instruction unless a PLT entry will be created.
10783 Do the same for local undefined symbols (but not for STN_UNDEF).
10784 The jump to the next instruction is optimized as a NOP depending
10785 on the architecture. */
10786 if (h
? (h
->root
.type
== bfd_link_hash_undefweak
10787 && plt_offset
== (bfd_vma
) -1)
10788 : r_symndx
!= STN_UNDEF
&& bfd_is_und_section (sym_sec
))
10790 value
= (bfd_get_32 (input_bfd
, hit_data
) & 0xf0000000);
10792 if (arch_has_arm_nop (globals
))
10793 value
|= 0x0320f000;
10795 value
|= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
10799 /* Perform a signed range check. */
10800 if ( signed_addend
> ((bfd_signed_vma
) (howto
->dst_mask
>> 1))
10801 || signed_addend
< - ((bfd_signed_vma
) ((howto
->dst_mask
+ 1) >> 1)))
10802 return bfd_reloc_overflow
;
10804 addend
= (value
& 2);
10806 value
= (signed_addend
& howto
->dst_mask
)
10807 | (bfd_get_32 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
10809 if (r_type
== R_ARM_CALL
)
10811 /* Set the H bit in the BLX instruction. */
10812 if (branch_type
== ST_BRANCH_TO_THUMB
)
10815 value
|= (1 << 24);
10817 value
&= ~(bfd_vma
)(1 << 24);
10820 /* Select the correct instruction (BL or BLX). */
10821 /* Only if we are not handling a BL to a stub. In this
10822 case, mode switching is performed by the stub. */
10823 if (branch_type
== ST_BRANCH_TO_THUMB
&& !stub_entry
)
10824 value
|= (1 << 28);
10825 else if (stub_entry
|| branch_type
!= ST_BRANCH_UNKNOWN
)
10827 value
&= ~(bfd_vma
)(1 << 28);
10828 value
|= (1 << 24);
10837 if (branch_type
== ST_BRANCH_TO_THUMB
)
10841 case R_ARM_ABS32_NOI
:
10847 if (branch_type
== ST_BRANCH_TO_THUMB
)
10849 value
-= (input_section
->output_section
->vma
10850 + input_section
->output_offset
+ rel
->r_offset
);
10853 case R_ARM_REL32_NOI
:
10855 value
-= (input_section
->output_section
->vma
10856 + input_section
->output_offset
+ rel
->r_offset
);
10860 value
-= (input_section
->output_section
->vma
10861 + input_section
->output_offset
+ rel
->r_offset
);
10862 value
+= signed_addend
;
10863 if (! h
|| h
->root
.type
!= bfd_link_hash_undefweak
)
10865 /* Check for overflow. */
10866 if ((value
^ (value
>> 1)) & (1 << 30))
10867 return bfd_reloc_overflow
;
10869 value
&= 0x7fffffff;
10870 value
|= (bfd_get_32 (input_bfd
, hit_data
) & 0x80000000);
10871 if (branch_type
== ST_BRANCH_TO_THUMB
)
10876 bfd_put_32 (input_bfd
, value
, hit_data
);
10877 return bfd_reloc_ok
;
10882 /* There is no way to tell whether the user intended to use a signed or
10883 unsigned addend. When checking for overflow we accept either,
10884 as specified by the AAELF. */
10885 if ((long) value
> 0xff || (long) value
< -0x80)
10886 return bfd_reloc_overflow
;
10888 bfd_put_8 (input_bfd
, value
, hit_data
);
10889 return bfd_reloc_ok
;
10894 /* See comment for R_ARM_ABS8. */
10895 if ((long) value
> 0xffff || (long) value
< -0x8000)
10896 return bfd_reloc_overflow
;
10898 bfd_put_16 (input_bfd
, value
, hit_data
);
10899 return bfd_reloc_ok
;
10901 case R_ARM_THM_ABS5
:
10902 /* Support ldr and str instructions for the thumb. */
10903 if (globals
->use_rel
)
10905 /* Need to refetch addend. */
10906 addend
= bfd_get_16 (input_bfd
, hit_data
) & howto
->src_mask
;
10907 /* ??? Need to determine shift amount from operand size. */
10908 addend
>>= howto
->rightshift
;
10912 /* ??? Isn't value unsigned? */
10913 if ((long) value
> 0x1f || (long) value
< -0x10)
10914 return bfd_reloc_overflow
;
10916 /* ??? Value needs to be properly shifted into place first. */
10917 value
|= bfd_get_16 (input_bfd
, hit_data
) & 0xf83f;
10918 bfd_put_16 (input_bfd
, value
, hit_data
);
10919 return bfd_reloc_ok
;
10921 case R_ARM_THM_ALU_PREL_11_0
:
10922 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
10925 bfd_signed_vma relocation
;
10927 insn
= (bfd_get_16 (input_bfd
, hit_data
) << 16)
10928 | bfd_get_16 (input_bfd
, hit_data
+ 2);
10930 if (globals
->use_rel
)
10932 signed_addend
= (insn
& 0xff) | ((insn
& 0x7000) >> 4)
10933 | ((insn
& (1 << 26)) >> 15);
10934 if (insn
& 0xf00000)
10935 signed_addend
= -signed_addend
;
10938 relocation
= value
+ signed_addend
;
10939 relocation
-= Pa (input_section
->output_section
->vma
10940 + input_section
->output_offset
10943 /* PR 21523: Use an absolute value. The user of this reloc will
10944 have already selected an ADD or SUB insn appropriately. */
10945 value
= llabs (relocation
);
10947 if (value
>= 0x1000)
10948 return bfd_reloc_overflow
;
10950 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
10951 if (branch_type
== ST_BRANCH_TO_THUMB
)
10954 insn
= (insn
& 0xfb0f8f00) | (value
& 0xff)
10955 | ((value
& 0x700) << 4)
10956 | ((value
& 0x800) << 15);
10957 if (relocation
< 0)
10960 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
10961 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
10963 return bfd_reloc_ok
;
10966 case R_ARM_THM_PC8
:
10967 /* PR 10073: This reloc is not generated by the GNU toolchain,
10968 but it is supported for compatibility with third party libraries
10969 generated by other compilers, specifically the ARM/IAR. */
10972 bfd_signed_vma relocation
;
10974 insn
= bfd_get_16 (input_bfd
, hit_data
);
10976 if (globals
->use_rel
)
10977 addend
= ((((insn
& 0x00ff) << 2) + 4) & 0x3ff) -4;
10979 relocation
= value
+ addend
;
10980 relocation
-= Pa (input_section
->output_section
->vma
10981 + input_section
->output_offset
10984 value
= relocation
;
10986 /* We do not check for overflow of this reloc. Although strictly
10987 speaking this is incorrect, it appears to be necessary in order
10988 to work with IAR generated relocs. Since GCC and GAS do not
10989 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
10990 a problem for them. */
10993 insn
= (insn
& 0xff00) | (value
>> 2);
10995 bfd_put_16 (input_bfd
, insn
, hit_data
);
10997 return bfd_reloc_ok
;
11000 case R_ARM_THM_PC12
:
11001 /* Corresponds to: ldr.w reg, [pc, #offset]. */
11004 bfd_signed_vma relocation
;
11006 insn
= (bfd_get_16 (input_bfd
, hit_data
) << 16)
11007 | bfd_get_16 (input_bfd
, hit_data
+ 2);
11009 if (globals
->use_rel
)
11011 signed_addend
= insn
& 0xfff;
11012 if (!(insn
& (1 << 23)))
11013 signed_addend
= -signed_addend
;
11016 relocation
= value
+ signed_addend
;
11017 relocation
-= Pa (input_section
->output_section
->vma
11018 + input_section
->output_offset
11021 value
= relocation
;
11023 if (value
>= 0x1000)
11024 return bfd_reloc_overflow
;
11026 insn
= (insn
& 0xff7ff000) | value
;
11027 if (relocation
>= 0)
11030 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
11031 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
11033 return bfd_reloc_ok
;
11036 case R_ARM_THM_XPC22
:
11037 case R_ARM_THM_CALL
:
11038 case R_ARM_THM_JUMP24
:
11039 /* Thumb BL (branch long instruction). */
11041 bfd_vma relocation
;
11042 bfd_vma reloc_sign
;
11043 bfd_boolean overflow
= FALSE
;
11044 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
11045 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
11046 bfd_signed_vma reloc_signed_max
;
11047 bfd_signed_vma reloc_signed_min
;
11049 bfd_signed_vma signed_check
;
11051 const int thumb2
= using_thumb2 (globals
);
11052 const int thumb2_bl
= using_thumb2_bl (globals
);
11054 /* A branch to an undefined weak symbol is turned into a jump to
11055 the next instruction unless a PLT entry will be created.
11056 The jump to the next instruction is optimized as a NOP.W for
11057 Thumb-2 enabled architectures. */
11058 if (h
&& h
->root
.type
== bfd_link_hash_undefweak
11059 && plt_offset
== (bfd_vma
) -1)
11063 bfd_put_16 (input_bfd
, 0xf3af, hit_data
);
11064 bfd_put_16 (input_bfd
, 0x8000, hit_data
+ 2);
11068 bfd_put_16 (input_bfd
, 0xe000, hit_data
);
11069 bfd_put_16 (input_bfd
, 0xbf00, hit_data
+ 2);
11071 return bfd_reloc_ok
;
11074 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
11075 with Thumb-1) involving the J1 and J2 bits. */
11076 if (globals
->use_rel
)
11078 bfd_vma s
= (upper_insn
& (1 << 10)) >> 10;
11079 bfd_vma upper
= upper_insn
& 0x3ff;
11080 bfd_vma lower
= lower_insn
& 0x7ff;
11081 bfd_vma j1
= (lower_insn
& (1 << 13)) >> 13;
11082 bfd_vma j2
= (lower_insn
& (1 << 11)) >> 11;
11083 bfd_vma i1
= j1
^ s
? 0 : 1;
11084 bfd_vma i2
= j2
^ s
? 0 : 1;
11086 addend
= (i1
<< 23) | (i2
<< 22) | (upper
<< 12) | (lower
<< 1);
11088 addend
= (addend
| ((s
? 0 : 1) << 24)) - (1 << 24);
11090 signed_addend
= addend
;
11093 if (r_type
== R_ARM_THM_XPC22
)
11095 /* Check for Thumb to Thumb call. */
11096 /* FIXME: Should we translate the instruction into a BL
11097 instruction instead ? */
11098 if (branch_type
== ST_BRANCH_TO_THUMB
)
11100 (_("%pB: warning: %s BLX instruction targets"
11101 " %s function '%s'"),
11102 input_bfd
, "Thumb",
11103 "Thumb", h
? h
->root
.root
.string
: "(local)");
11107 /* If it is not a call to Thumb, assume call to Arm.
11108 If it is a call relative to a section name, then it is not a
11109 function call at all, but rather a long jump. Calls through
11110 the PLT do not require stubs. */
11111 if (branch_type
== ST_BRANCH_TO_ARM
&& plt_offset
== (bfd_vma
) -1)
11113 if (globals
->use_blx
&& r_type
== R_ARM_THM_CALL
)
11115 /* Convert BL to BLX. */
11116 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
11118 else if (( r_type
!= R_ARM_THM_CALL
)
11119 && (r_type
!= R_ARM_THM_JUMP24
))
11121 if (elf32_thumb_to_arm_stub
11122 (info
, sym_name
, input_bfd
, output_bfd
, input_section
,
11123 hit_data
, sym_sec
, rel
->r_offset
, signed_addend
, value
,
11125 return bfd_reloc_ok
;
11127 return bfd_reloc_dangerous
;
11130 else if (branch_type
== ST_BRANCH_TO_THUMB
11131 && globals
->use_blx
11132 && r_type
== R_ARM_THM_CALL
)
11134 /* Make sure this is a BL. */
11135 lower_insn
|= 0x1800;
11139 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
11140 if (r_type
== R_ARM_THM_CALL
|| r_type
== R_ARM_THM_JUMP24
)
11142 /* Check if a stub has to be inserted because the destination
11144 struct elf32_arm_stub_hash_entry
*stub_entry
;
11145 struct elf32_arm_link_hash_entry
*hash
;
11147 hash
= (struct elf32_arm_link_hash_entry
*) h
;
11149 stub_type
= arm_type_of_stub (info
, input_section
, rel
,
11150 st_type
, &branch_type
,
11151 hash
, value
, sym_sec
,
11152 input_bfd
, sym_name
);
11154 if (stub_type
!= arm_stub_none
)
11156 /* The target is out of reach or we are changing modes, so
11157 redirect the branch to the local stub for this
11159 stub_entry
= elf32_arm_get_stub_entry (input_section
,
11163 if (stub_entry
!= NULL
)
11165 value
= (stub_entry
->stub_offset
11166 + stub_entry
->stub_sec
->output_offset
11167 + stub_entry
->stub_sec
->output_section
->vma
);
11169 if (plt_offset
!= (bfd_vma
) -1)
11170 *unresolved_reloc_p
= FALSE
;
11173 /* If this call becomes a call to Arm, force BLX. */
11174 if (globals
->use_blx
&& (r_type
== R_ARM_THM_CALL
))
11177 && !arm_stub_is_thumb (stub_entry
->stub_type
))
11178 || branch_type
!= ST_BRANCH_TO_THUMB
)
11179 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
11184 /* Handle calls via the PLT. */
11185 if (stub_type
== arm_stub_none
&& plt_offset
!= (bfd_vma
) -1)
11187 value
= (splt
->output_section
->vma
11188 + splt
->output_offset
11191 if (globals
->use_blx
11192 && r_type
== R_ARM_THM_CALL
11193 && ! using_thumb_only (globals
))
11195 /* If the Thumb BLX instruction is available, convert
11196 the BL to a BLX instruction to call the ARM-mode
11198 lower_insn
= (lower_insn
& ~0x1000) | 0x0800;
11199 branch_type
= ST_BRANCH_TO_ARM
;
11203 if (! using_thumb_only (globals
))
11204 /* Target the Thumb stub before the ARM PLT entry. */
11205 value
-= PLT_THUMB_STUB_SIZE
;
11206 branch_type
= ST_BRANCH_TO_THUMB
;
11208 *unresolved_reloc_p
= FALSE
;
11211 relocation
= value
+ signed_addend
;
11213 relocation
-= (input_section
->output_section
->vma
11214 + input_section
->output_offset
11217 check
= relocation
>> howto
->rightshift
;
11219 /* If this is a signed value, the rightshift just dropped
11220 leading 1 bits (assuming twos complement). */
11221 if ((bfd_signed_vma
) relocation
>= 0)
11222 signed_check
= check
;
11224 signed_check
= check
| ~((bfd_vma
) -1 >> howto
->rightshift
);
11226 /* Calculate the permissable maximum and minimum values for
11227 this relocation according to whether we're relocating for
11229 bitsize
= howto
->bitsize
;
11232 reloc_signed_max
= (1 << (bitsize
- 1)) - 1;
11233 reloc_signed_min
= ~reloc_signed_max
;
11235 /* Assumes two's complement. */
11236 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
11239 if ((lower_insn
& 0x5000) == 0x4000)
11240 /* For a BLX instruction, make sure that the relocation is rounded up
11241 to a word boundary. This follows the semantics of the instruction
11242 which specifies that bit 1 of the target address will come from bit
11243 1 of the base address. */
11244 relocation
= (relocation
+ 2) & ~ 3;
11246 /* Put RELOCATION back into the insn. Assumes two's complement.
11247 We use the Thumb-2 encoding, which is safe even if dealing with
11248 a Thumb-1 instruction by virtue of our overflow check above. */
11249 reloc_sign
= (signed_check
< 0) ? 1 : 0;
11250 upper_insn
= (upper_insn
& ~(bfd_vma
) 0x7ff)
11251 | ((relocation
>> 12) & 0x3ff)
11252 | (reloc_sign
<< 10);
11253 lower_insn
= (lower_insn
& ~(bfd_vma
) 0x2fff)
11254 | (((!((relocation
>> 23) & 1)) ^ reloc_sign
) << 13)
11255 | (((!((relocation
>> 22) & 1)) ^ reloc_sign
) << 11)
11256 | ((relocation
>> 1) & 0x7ff);
11258 /* Put the relocated value back in the object file: */
11259 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
11260 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
11262 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
11266 case R_ARM_THM_JUMP19
:
11267 /* Thumb32 conditional branch instruction. */
11269 bfd_vma relocation
;
11270 bfd_boolean overflow
= FALSE
;
11271 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
11272 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
11273 bfd_signed_vma reloc_signed_max
= 0xffffe;
11274 bfd_signed_vma reloc_signed_min
= -0x100000;
11275 bfd_signed_vma signed_check
;
11276 enum elf32_arm_stub_type stub_type
= arm_stub_none
;
11277 struct elf32_arm_stub_hash_entry
*stub_entry
;
11278 struct elf32_arm_link_hash_entry
*hash
;
11280 /* Need to refetch the addend, reconstruct the top three bits,
11281 and squish the two 11 bit pieces together. */
11282 if (globals
->use_rel
)
11284 bfd_vma S
= (upper_insn
& 0x0400) >> 10;
11285 bfd_vma upper
= (upper_insn
& 0x003f);
11286 bfd_vma J1
= (lower_insn
& 0x2000) >> 13;
11287 bfd_vma J2
= (lower_insn
& 0x0800) >> 11;
11288 bfd_vma lower
= (lower_insn
& 0x07ff);
11292 upper
|= (!S
) << 8;
11293 upper
-= 0x0100; /* Sign extend. */
11295 addend
= (upper
<< 12) | (lower
<< 1);
11296 signed_addend
= addend
;
11299 /* Handle calls via the PLT. */
11300 if (plt_offset
!= (bfd_vma
) -1)
11302 value
= (splt
->output_section
->vma
11303 + splt
->output_offset
11305 /* Target the Thumb stub before the ARM PLT entry. */
11306 value
-= PLT_THUMB_STUB_SIZE
;
11307 *unresolved_reloc_p
= FALSE
;
11310 hash
= (struct elf32_arm_link_hash_entry
*)h
;
11312 stub_type
= arm_type_of_stub (info
, input_section
, rel
,
11313 st_type
, &branch_type
,
11314 hash
, value
, sym_sec
,
11315 input_bfd
, sym_name
);
11316 if (stub_type
!= arm_stub_none
)
11318 stub_entry
= elf32_arm_get_stub_entry (input_section
,
11322 if (stub_entry
!= NULL
)
11324 value
= (stub_entry
->stub_offset
11325 + stub_entry
->stub_sec
->output_offset
11326 + stub_entry
->stub_sec
->output_section
->vma
);
11330 relocation
= value
+ signed_addend
;
11331 relocation
-= (input_section
->output_section
->vma
11332 + input_section
->output_offset
11334 signed_check
= (bfd_signed_vma
) relocation
;
11336 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
11339 /* Put RELOCATION back into the insn. */
11341 bfd_vma S
= (relocation
& 0x00100000) >> 20;
11342 bfd_vma J2
= (relocation
& 0x00080000) >> 19;
11343 bfd_vma J1
= (relocation
& 0x00040000) >> 18;
11344 bfd_vma hi
= (relocation
& 0x0003f000) >> 12;
11345 bfd_vma lo
= (relocation
& 0x00000ffe) >> 1;
11347 upper_insn
= (upper_insn
& 0xfbc0) | (S
<< 10) | hi
;
11348 lower_insn
= (lower_insn
& 0xd000) | (J1
<< 13) | (J2
<< 11) | lo
;
11351 /* Put the relocated value back in the object file: */
11352 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
11353 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
11355 return (overflow
? bfd_reloc_overflow
: bfd_reloc_ok
);
11358 case R_ARM_THM_JUMP11
:
11359 case R_ARM_THM_JUMP8
:
11360 case R_ARM_THM_JUMP6
:
11361 /* Thumb B (branch) instruction). */
11363 bfd_signed_vma relocation
;
11364 bfd_signed_vma reloc_signed_max
= (1 << (howto
->bitsize
- 1)) - 1;
11365 bfd_signed_vma reloc_signed_min
= ~ reloc_signed_max
;
11366 bfd_signed_vma signed_check
;
11368 /* CZB cannot jump backward. */
11369 if (r_type
== R_ARM_THM_JUMP6
)
11371 reloc_signed_min
= 0;
11372 if (globals
->use_rel
)
11373 signed_addend
= ((addend
& 0x200) >> 3) | ((addend
& 0xf8) >> 2);
11376 relocation
= value
+ signed_addend
;
11378 relocation
-= (input_section
->output_section
->vma
11379 + input_section
->output_offset
11382 relocation
>>= howto
->rightshift
;
11383 signed_check
= relocation
;
11385 if (r_type
== R_ARM_THM_JUMP6
)
11386 relocation
= ((relocation
& 0x0020) << 4) | ((relocation
& 0x001f) << 3);
11388 relocation
&= howto
->dst_mask
;
11389 relocation
|= (bfd_get_16 (input_bfd
, hit_data
) & (~ howto
->dst_mask
));
11391 bfd_put_16 (input_bfd
, relocation
, hit_data
);
11393 /* Assumes two's complement. */
11394 if (signed_check
> reloc_signed_max
|| signed_check
< reloc_signed_min
)
11395 return bfd_reloc_overflow
;
11397 return bfd_reloc_ok
;
11400 case R_ARM_ALU_PCREL7_0
:
11401 case R_ARM_ALU_PCREL15_8
:
11402 case R_ARM_ALU_PCREL23_15
:
11405 bfd_vma relocation
;
11407 insn
= bfd_get_32 (input_bfd
, hit_data
);
11408 if (globals
->use_rel
)
11410 /* Extract the addend. */
11411 addend
= (insn
& 0xff) << ((insn
& 0xf00) >> 7);
11412 signed_addend
= addend
;
11414 relocation
= value
+ signed_addend
;
11416 relocation
-= (input_section
->output_section
->vma
11417 + input_section
->output_offset
11419 insn
= (insn
& ~0xfff)
11420 | ((howto
->bitpos
<< 7) & 0xf00)
11421 | ((relocation
>> howto
->bitpos
) & 0xff);
11422 bfd_put_32 (input_bfd
, value
, hit_data
);
11424 return bfd_reloc_ok
;
11426 case R_ARM_GNU_VTINHERIT
:
11427 case R_ARM_GNU_VTENTRY
:
11428 return bfd_reloc_ok
;
11430 case R_ARM_GOTOFF32
:
11431 /* Relocation is relative to the start of the
11432 global offset table. */
11434 BFD_ASSERT (sgot
!= NULL
);
11436 return bfd_reloc_notsupported
;
11438 /* If we are addressing a Thumb function, we need to adjust the
11439 address by one, so that attempts to call the function pointer will
11440 correctly interpret it as Thumb code. */
11441 if (branch_type
== ST_BRANCH_TO_THUMB
)
11444 /* Note that sgot->output_offset is not involved in this
11445 calculation. We always want the start of .got. If we
11446 define _GLOBAL_OFFSET_TABLE in a different way, as is
11447 permitted by the ABI, we might have to change this
11449 value
-= sgot
->output_section
->vma
;
11450 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
11451 contents
, rel
->r_offset
, value
,
11455 /* Use global offset table as symbol value. */
11456 BFD_ASSERT (sgot
!= NULL
);
11459 return bfd_reloc_notsupported
;
11461 *unresolved_reloc_p
= FALSE
;
11462 value
= sgot
->output_section
->vma
;
11463 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
11464 contents
, rel
->r_offset
, value
,
11468 case R_ARM_GOT_PREL
:
11469 /* Relocation is to the entry for this symbol in the
11470 global offset table. */
11472 return bfd_reloc_notsupported
;
11474 if (dynreloc_st_type
== STT_GNU_IFUNC
11475 && plt_offset
!= (bfd_vma
) -1
11476 && (h
== NULL
|| SYMBOL_REFERENCES_LOCAL (info
, h
)))
11478 /* We have a relocation against a locally-binding STT_GNU_IFUNC
11479 symbol, and the relocation resolves directly to the runtime
11480 target rather than to the .iplt entry. This means that any
11481 .got entry would be the same value as the .igot.plt entry,
11482 so there's no point creating both. */
11483 sgot
= globals
->root
.igotplt
;
11484 value
= sgot
->output_offset
+ gotplt_offset
;
11486 else if (h
!= NULL
)
11490 off
= h
->got
.offset
;
11491 BFD_ASSERT (off
!= (bfd_vma
) -1);
11492 if ((off
& 1) != 0)
11494 /* We have already processsed one GOT relocation against
11497 if (globals
->root
.dynamic_sections_created
11498 && !SYMBOL_REFERENCES_LOCAL (info
, h
))
11499 *unresolved_reloc_p
= FALSE
;
11503 Elf_Internal_Rela outrel
;
11506 if (((h
->dynindx
!= -1) || globals
->fdpic_p
)
11507 && !SYMBOL_REFERENCES_LOCAL (info
, h
))
11509 /* If the symbol doesn't resolve locally in a static
11510 object, we have an undefined reference. If the
11511 symbol doesn't resolve locally in a dynamic object,
11512 it should be resolved by the dynamic linker. */
11513 if (globals
->root
.dynamic_sections_created
)
11515 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_GLOB_DAT
);
11516 *unresolved_reloc_p
= FALSE
;
11520 outrel
.r_addend
= 0;
11524 if (dynreloc_st_type
== STT_GNU_IFUNC
)
11525 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_IRELATIVE
);
11526 else if (bfd_link_pic (info
)
11527 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
))
11528 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
11532 if (globals
->fdpic_p
)
11535 outrel
.r_addend
= dynreloc_value
;
11538 /* The GOT entry is initialized to zero by default.
11539 See if we should install a different value. */
11540 if (outrel
.r_addend
!= 0
11541 && (globals
->use_rel
|| outrel
.r_info
== 0))
11543 bfd_put_32 (output_bfd
, outrel
.r_addend
,
11544 sgot
->contents
+ off
);
11545 outrel
.r_addend
= 0;
11549 arm_elf_add_rofixup (output_bfd
,
11550 elf32_arm_hash_table(info
)->srofixup
,
11551 sgot
->output_section
->vma
11552 + sgot
->output_offset
+ off
);
11554 else if (outrel
.r_info
!= 0)
11556 outrel
.r_offset
= (sgot
->output_section
->vma
11557 + sgot
->output_offset
11559 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
11562 h
->got
.offset
|= 1;
11564 value
= sgot
->output_offset
+ off
;
11570 BFD_ASSERT (local_got_offsets
!= NULL
11571 && local_got_offsets
[r_symndx
] != (bfd_vma
) -1);
11573 off
= local_got_offsets
[r_symndx
];
11575 /* The offset must always be a multiple of 4. We use the
11576 least significant bit to record whether we have already
11577 generated the necessary reloc. */
11578 if ((off
& 1) != 0)
11582 Elf_Internal_Rela outrel
;
11585 if (dynreloc_st_type
== STT_GNU_IFUNC
)
11586 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_IRELATIVE
);
11587 else if (bfd_link_pic (info
))
11588 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
11592 if (globals
->fdpic_p
)
11596 /* The GOT entry is initialized to zero by default.
11597 See if we should install a different value. */
11598 if (globals
->use_rel
|| outrel
.r_info
== 0)
11599 bfd_put_32 (output_bfd
, dynreloc_value
, sgot
->contents
+ off
);
11602 arm_elf_add_rofixup (output_bfd
,
11604 sgot
->output_section
->vma
11605 + sgot
->output_offset
+ off
);
11607 else if (outrel
.r_info
!= 0)
11609 outrel
.r_addend
= addend
+ dynreloc_value
;
11610 outrel
.r_offset
= (sgot
->output_section
->vma
11611 + sgot
->output_offset
11613 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
11616 local_got_offsets
[r_symndx
] |= 1;
11619 value
= sgot
->output_offset
+ off
;
11621 if (r_type
!= R_ARM_GOT32
)
11622 value
+= sgot
->output_section
->vma
;
11624 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
11625 contents
, rel
->r_offset
, value
,
11628 case R_ARM_TLS_LDO32
:
11629 value
= value
- dtpoff_base (info
);
11631 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
11632 contents
, rel
->r_offset
, value
,
11635 case R_ARM_TLS_LDM32
:
11636 case R_ARM_TLS_LDM32_FDPIC
:
11643 off
= globals
->tls_ldm_got
.offset
;
11645 if ((off
& 1) != 0)
11649 /* If we don't know the module number, create a relocation
11651 if (bfd_link_dll (info
))
11653 Elf_Internal_Rela outrel
;
11655 if (srelgot
== NULL
)
11658 outrel
.r_addend
= 0;
11659 outrel
.r_offset
= (sgot
->output_section
->vma
11660 + sgot
->output_offset
+ off
);
11661 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32
);
11663 if (globals
->use_rel
)
11664 bfd_put_32 (output_bfd
, outrel
.r_addend
,
11665 sgot
->contents
+ off
);
11667 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
11670 bfd_put_32 (output_bfd
, 1, sgot
->contents
+ off
);
11672 globals
->tls_ldm_got
.offset
|= 1;
11675 if (r_type
== R_ARM_TLS_LDM32_FDPIC
)
11677 bfd_put_32(output_bfd
,
11678 globals
->root
.sgot
->output_offset
+ off
,
11679 contents
+ rel
->r_offset
);
11681 return bfd_reloc_ok
;
11685 value
= sgot
->output_section
->vma
+ sgot
->output_offset
+ off
11686 - (input_section
->output_section
->vma
11687 + input_section
->output_offset
+ rel
->r_offset
);
11689 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
11690 contents
, rel
->r_offset
, value
,
11695 case R_ARM_TLS_CALL
:
11696 case R_ARM_THM_TLS_CALL
:
11697 case R_ARM_TLS_GD32
:
11698 case R_ARM_TLS_GD32_FDPIC
:
11699 case R_ARM_TLS_IE32
:
11700 case R_ARM_TLS_IE32_FDPIC
:
11701 case R_ARM_TLS_GOTDESC
:
11702 case R_ARM_TLS_DESCSEQ
:
11703 case R_ARM_THM_TLS_DESCSEQ
:
11705 bfd_vma off
, offplt
;
11709 BFD_ASSERT (sgot
!= NULL
);
11714 dyn
= globals
->root
.dynamic_sections_created
;
11715 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
,
11716 bfd_link_pic (info
),
11718 && (!bfd_link_pic (info
)
11719 || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
11721 *unresolved_reloc_p
= FALSE
;
11724 off
= h
->got
.offset
;
11725 offplt
= elf32_arm_hash_entry (h
)->tlsdesc_got
;
11726 tls_type
= ((struct elf32_arm_link_hash_entry
*) h
)->tls_type
;
11730 BFD_ASSERT (local_got_offsets
!= NULL
);
11731 off
= local_got_offsets
[r_symndx
];
11732 offplt
= local_tlsdesc_gotents
[r_symndx
];
11733 tls_type
= elf32_arm_local_got_tls_type (input_bfd
)[r_symndx
];
11736 /* Linker relaxations happens from one of the
11737 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
11738 if (ELF32_R_TYPE(rel
->r_info
) != r_type
)
11739 tls_type
= GOT_TLS_IE
;
11741 BFD_ASSERT (tls_type
!= GOT_UNKNOWN
);
11743 if ((off
& 1) != 0)
11747 bfd_boolean need_relocs
= FALSE
;
11748 Elf_Internal_Rela outrel
;
11751 /* The GOT entries have not been initialized yet. Do it
11752 now, and emit any relocations. If both an IE GOT and a
11753 GD GOT are necessary, we emit the GD first. */
11755 if ((bfd_link_dll (info
) || indx
!= 0)
11757 || (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
11758 && !resolved_to_zero
)
11759 || h
->root
.type
!= bfd_link_hash_undefweak
))
11761 need_relocs
= TRUE
;
11762 BFD_ASSERT (srelgot
!= NULL
);
11765 if (tls_type
& GOT_TLS_GDESC
)
11769 /* We should have relaxed, unless this is an undefined
11771 BFD_ASSERT ((h
&& (h
->root
.type
== bfd_link_hash_undefweak
))
11772 || bfd_link_dll (info
));
11773 BFD_ASSERT (globals
->sgotplt_jump_table_size
+ offplt
+ 8
11774 <= globals
->root
.sgotplt
->size
);
11776 outrel
.r_addend
= 0;
11777 outrel
.r_offset
= (globals
->root
.sgotplt
->output_section
->vma
11778 + globals
->root
.sgotplt
->output_offset
11780 + globals
->sgotplt_jump_table_size
);
11782 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_DESC
);
11783 sreloc
= globals
->root
.srelplt
;
11784 loc
= sreloc
->contents
;
11785 loc
+= globals
->next_tls_desc_index
++ * RELOC_SIZE (globals
);
11786 BFD_ASSERT (loc
+ RELOC_SIZE (globals
)
11787 <= sreloc
->contents
+ sreloc
->size
);
11789 SWAP_RELOC_OUT (globals
) (output_bfd
, &outrel
, loc
);
11791 /* For globals, the first word in the relocation gets
11792 the relocation index and the top bit set, or zero,
11793 if we're binding now. For locals, it gets the
11794 symbol's offset in the tls section. */
11795 bfd_put_32 (output_bfd
,
11796 !h
? value
- elf_hash_table (info
)->tls_sec
->vma
11797 : info
->flags
& DF_BIND_NOW
? 0
11798 : 0x80000000 | ELF32_R_SYM (outrel
.r_info
),
11799 globals
->root
.sgotplt
->contents
+ offplt
11800 + globals
->sgotplt_jump_table_size
);
11802 /* Second word in the relocation is always zero. */
11803 bfd_put_32 (output_bfd
, 0,
11804 globals
->root
.sgotplt
->contents
+ offplt
11805 + globals
->sgotplt_jump_table_size
+ 4);
11807 if (tls_type
& GOT_TLS_GD
)
11811 outrel
.r_addend
= 0;
11812 outrel
.r_offset
= (sgot
->output_section
->vma
11813 + sgot
->output_offset
11815 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_DTPMOD32
);
11817 if (globals
->use_rel
)
11818 bfd_put_32 (output_bfd
, outrel
.r_addend
,
11819 sgot
->contents
+ cur_off
);
11821 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
11824 bfd_put_32 (output_bfd
, value
- dtpoff_base (info
),
11825 sgot
->contents
+ cur_off
+ 4);
11828 outrel
.r_addend
= 0;
11829 outrel
.r_info
= ELF32_R_INFO (indx
,
11830 R_ARM_TLS_DTPOFF32
);
11831 outrel
.r_offset
+= 4;
11833 if (globals
->use_rel
)
11834 bfd_put_32 (output_bfd
, outrel
.r_addend
,
11835 sgot
->contents
+ cur_off
+ 4);
11837 elf32_arm_add_dynreloc (output_bfd
, info
,
11843 /* If we are not emitting relocations for a
11844 general dynamic reference, then we must be in a
11845 static link or an executable link with the
11846 symbol binding locally. Mark it as belonging
11847 to module 1, the executable. */
11848 bfd_put_32 (output_bfd
, 1,
11849 sgot
->contents
+ cur_off
);
11850 bfd_put_32 (output_bfd
, value
- dtpoff_base (info
),
11851 sgot
->contents
+ cur_off
+ 4);
11857 if (tls_type
& GOT_TLS_IE
)
11862 outrel
.r_addend
= value
- dtpoff_base (info
);
11864 outrel
.r_addend
= 0;
11865 outrel
.r_offset
= (sgot
->output_section
->vma
11866 + sgot
->output_offset
11868 outrel
.r_info
= ELF32_R_INFO (indx
, R_ARM_TLS_TPOFF32
);
11870 if (globals
->use_rel
)
11871 bfd_put_32 (output_bfd
, outrel
.r_addend
,
11872 sgot
->contents
+ cur_off
);
11874 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
11877 bfd_put_32 (output_bfd
, tpoff (info
, value
),
11878 sgot
->contents
+ cur_off
);
11883 h
->got
.offset
|= 1;
11885 local_got_offsets
[r_symndx
] |= 1;
11888 if ((tls_type
& GOT_TLS_GD
) && r_type
!= R_ARM_TLS_GD32
&& r_type
!= R_ARM_TLS_GD32_FDPIC
)
11890 else if (tls_type
& GOT_TLS_GDESC
)
11893 if (ELF32_R_TYPE(rel
->r_info
) == R_ARM_TLS_CALL
11894 || ELF32_R_TYPE(rel
->r_info
) == R_ARM_THM_TLS_CALL
)
11896 bfd_signed_vma offset
;
11897 /* TLS stubs are arm mode. The original symbol is a
11898 data object, so branch_type is bogus. */
11899 branch_type
= ST_BRANCH_TO_ARM
;
11900 enum elf32_arm_stub_type stub_type
11901 = arm_type_of_stub (info
, input_section
, rel
,
11902 st_type
, &branch_type
,
11903 (struct elf32_arm_link_hash_entry
*)h
,
11904 globals
->tls_trampoline
, globals
->root
.splt
,
11905 input_bfd
, sym_name
);
11907 if (stub_type
!= arm_stub_none
)
11909 struct elf32_arm_stub_hash_entry
*stub_entry
11910 = elf32_arm_get_stub_entry
11911 (input_section
, globals
->root
.splt
, 0, rel
,
11912 globals
, stub_type
);
11913 offset
= (stub_entry
->stub_offset
11914 + stub_entry
->stub_sec
->output_offset
11915 + stub_entry
->stub_sec
->output_section
->vma
);
11918 offset
= (globals
->root
.splt
->output_section
->vma
11919 + globals
->root
.splt
->output_offset
11920 + globals
->tls_trampoline
);
11922 if (ELF32_R_TYPE(rel
->r_info
) == R_ARM_TLS_CALL
)
11924 unsigned long inst
;
11926 offset
-= (input_section
->output_section
->vma
11927 + input_section
->output_offset
11928 + rel
->r_offset
+ 8);
11930 inst
= offset
>> 2;
11931 inst
&= 0x00ffffff;
11932 value
= inst
| (globals
->use_blx
? 0xfa000000 : 0xeb000000);
11936 /* Thumb blx encodes the offset in a complicated
11938 unsigned upper_insn
, lower_insn
;
11941 offset
-= (input_section
->output_section
->vma
11942 + input_section
->output_offset
11943 + rel
->r_offset
+ 4);
11945 if (stub_type
!= arm_stub_none
11946 && arm_stub_is_thumb (stub_type
))
11948 lower_insn
= 0xd000;
11952 lower_insn
= 0xc000;
11953 /* Round up the offset to a word boundary. */
11954 offset
= (offset
+ 2) & ~2;
11958 upper_insn
= (0xf000
11959 | ((offset
>> 12) & 0x3ff)
11961 lower_insn
|= (((!((offset
>> 23) & 1)) ^ neg
) << 13)
11962 | (((!((offset
>> 22) & 1)) ^ neg
) << 11)
11963 | ((offset
>> 1) & 0x7ff);
11964 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
11965 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
11966 return bfd_reloc_ok
;
11969 /* These relocations needs special care, as besides the fact
11970 they point somewhere in .gotplt, the addend must be
11971 adjusted accordingly depending on the type of instruction
11973 else if ((r_type
== R_ARM_TLS_GOTDESC
) && (tls_type
& GOT_TLS_GDESC
))
11975 unsigned long data
, insn
;
11978 data
= bfd_get_signed_32 (input_bfd
, hit_data
);
11984 insn
= bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
- data
);
11985 if ((insn
& 0xf000) == 0xf000 || (insn
& 0xf800) == 0xe800)
11986 insn
= (insn
<< 16)
11987 | bfd_get_16 (input_bfd
,
11988 contents
+ rel
->r_offset
- data
+ 2);
11989 if ((insn
& 0xf800c000) == 0xf000c000)
11992 else if ((insn
& 0xffffff00) == 0x4400)
11998 /* xgettext:c-format */
11999 (_("%pB(%pA+%#" PRIx64
"): "
12000 "unexpected %s instruction '%#lx' "
12001 "referenced by TLS_GOTDESC"),
12002 input_bfd
, input_section
, (uint64_t) rel
->r_offset
,
12004 return bfd_reloc_notsupported
;
12009 insn
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
- data
);
12011 switch (insn
>> 24)
12013 case 0xeb: /* bl */
12014 case 0xfa: /* blx */
12018 case 0xe0: /* add */
12024 /* xgettext:c-format */
12025 (_("%pB(%pA+%#" PRIx64
"): "
12026 "unexpected %s instruction '%#lx' "
12027 "referenced by TLS_GOTDESC"),
12028 input_bfd
, input_section
, (uint64_t) rel
->r_offset
,
12030 return bfd_reloc_notsupported
;
12034 value
+= ((globals
->root
.sgotplt
->output_section
->vma
12035 + globals
->root
.sgotplt
->output_offset
+ off
)
12036 - (input_section
->output_section
->vma
12037 + input_section
->output_offset
12039 + globals
->sgotplt_jump_table_size
);
12042 value
= ((globals
->root
.sgot
->output_section
->vma
12043 + globals
->root
.sgot
->output_offset
+ off
)
12044 - (input_section
->output_section
->vma
12045 + input_section
->output_offset
+ rel
->r_offset
));
12047 if (globals
->fdpic_p
&& (r_type
== R_ARM_TLS_GD32_FDPIC
||
12048 r_type
== R_ARM_TLS_IE32_FDPIC
))
12050 /* For FDPIC relocations, resolve to the offset of the GOT
12051 entry from the start of GOT. */
12052 bfd_put_32(output_bfd
,
12053 globals
->root
.sgot
->output_offset
+ off
,
12054 contents
+ rel
->r_offset
);
12056 return bfd_reloc_ok
;
12060 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
12061 contents
, rel
->r_offset
, value
,
12066 case R_ARM_TLS_LE32
:
12067 if (bfd_link_dll (info
))
12070 /* xgettext:c-format */
12071 (_("%pB(%pA+%#" PRIx64
"): %s relocation not permitted "
12072 "in shared object"),
12073 input_bfd
, input_section
, (uint64_t) rel
->r_offset
, howto
->name
);
12074 return bfd_reloc_notsupported
;
12077 value
= tpoff (info
, value
);
12079 return _bfd_final_link_relocate (howto
, input_bfd
, input_section
,
12080 contents
, rel
->r_offset
, value
,
12084 if (globals
->fix_v4bx
)
12086 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
12088 /* Ensure that we have a BX instruction. */
12089 BFD_ASSERT ((insn
& 0x0ffffff0) == 0x012fff10);
12091 if (globals
->fix_v4bx
== 2 && (insn
& 0xf) != 0xf)
12093 /* Branch to veneer. */
12095 glue_addr
= elf32_arm_bx_glue (info
, insn
& 0xf);
12096 glue_addr
-= input_section
->output_section
->vma
12097 + input_section
->output_offset
12098 + rel
->r_offset
+ 8;
12099 insn
= (insn
& 0xf0000000) | 0x0a000000
12100 | ((glue_addr
>> 2) & 0x00ffffff);
12104 /* Preserve Rm (lowest four bits) and the condition code
12105 (highest four bits). Other bits encode MOV PC,Rm. */
12106 insn
= (insn
& 0xf000000f) | 0x01a0f000;
12109 bfd_put_32 (input_bfd
, insn
, hit_data
);
12111 return bfd_reloc_ok
;
12113 case R_ARM_MOVW_ABS_NC
:
12114 case R_ARM_MOVT_ABS
:
12115 case R_ARM_MOVW_PREL_NC
:
12116 case R_ARM_MOVT_PREL
:
12117 /* Until we properly support segment-base-relative addressing then
12118 we assume the segment base to be zero, as for the group relocations.
12119 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
12120 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
12121 case R_ARM_MOVW_BREL_NC
:
12122 case R_ARM_MOVW_BREL
:
12123 case R_ARM_MOVT_BREL
:
12125 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
12127 if (globals
->use_rel
)
12129 addend
= ((insn
>> 4) & 0xf000) | (insn
& 0xfff);
12130 signed_addend
= (addend
^ 0x8000) - 0x8000;
12133 value
+= signed_addend
;
12135 if (r_type
== R_ARM_MOVW_PREL_NC
|| r_type
== R_ARM_MOVT_PREL
)
12136 value
-= (input_section
->output_section
->vma
12137 + input_section
->output_offset
+ rel
->r_offset
);
12139 if (r_type
== R_ARM_MOVW_BREL
&& value
>= 0x10000)
12140 return bfd_reloc_overflow
;
12142 if (branch_type
== ST_BRANCH_TO_THUMB
)
12145 if (r_type
== R_ARM_MOVT_ABS
|| r_type
== R_ARM_MOVT_PREL
12146 || r_type
== R_ARM_MOVT_BREL
)
12149 insn
&= 0xfff0f000;
12150 insn
|= value
& 0xfff;
12151 insn
|= (value
& 0xf000) << 4;
12152 bfd_put_32 (input_bfd
, insn
, hit_data
);
12154 return bfd_reloc_ok
;
12156 case R_ARM_THM_MOVW_ABS_NC
:
12157 case R_ARM_THM_MOVT_ABS
:
12158 case R_ARM_THM_MOVW_PREL_NC
:
12159 case R_ARM_THM_MOVT_PREL
:
12160 /* Until we properly support segment-base-relative addressing then
12161 we assume the segment base to be zero, as for the above relocations.
12162 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
12163 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
12164 as R_ARM_THM_MOVT_ABS. */
12165 case R_ARM_THM_MOVW_BREL_NC
:
12166 case R_ARM_THM_MOVW_BREL
:
12167 case R_ARM_THM_MOVT_BREL
:
12171 insn
= bfd_get_16 (input_bfd
, hit_data
) << 16;
12172 insn
|= bfd_get_16 (input_bfd
, hit_data
+ 2);
12174 if (globals
->use_rel
)
12176 addend
= ((insn
>> 4) & 0xf000)
12177 | ((insn
>> 15) & 0x0800)
12178 | ((insn
>> 4) & 0x0700)
12180 signed_addend
= (addend
^ 0x8000) - 0x8000;
12183 value
+= signed_addend
;
12185 if (r_type
== R_ARM_THM_MOVW_PREL_NC
|| r_type
== R_ARM_THM_MOVT_PREL
)
12186 value
-= (input_section
->output_section
->vma
12187 + input_section
->output_offset
+ rel
->r_offset
);
12189 if (r_type
== R_ARM_THM_MOVW_BREL
&& value
>= 0x10000)
12190 return bfd_reloc_overflow
;
12192 if (branch_type
== ST_BRANCH_TO_THUMB
)
12195 if (r_type
== R_ARM_THM_MOVT_ABS
|| r_type
== R_ARM_THM_MOVT_PREL
12196 || r_type
== R_ARM_THM_MOVT_BREL
)
12199 insn
&= 0xfbf08f00;
12200 insn
|= (value
& 0xf000) << 4;
12201 insn
|= (value
& 0x0800) << 15;
12202 insn
|= (value
& 0x0700) << 4;
12203 insn
|= (value
& 0x00ff);
12205 bfd_put_16 (input_bfd
, insn
>> 16, hit_data
);
12206 bfd_put_16 (input_bfd
, insn
& 0xffff, hit_data
+ 2);
12208 return bfd_reloc_ok
;
12210 case R_ARM_ALU_PC_G0_NC
:
12211 case R_ARM_ALU_PC_G1_NC
:
12212 case R_ARM_ALU_PC_G0
:
12213 case R_ARM_ALU_PC_G1
:
12214 case R_ARM_ALU_PC_G2
:
12215 case R_ARM_ALU_SB_G0_NC
:
12216 case R_ARM_ALU_SB_G1_NC
:
12217 case R_ARM_ALU_SB_G0
:
12218 case R_ARM_ALU_SB_G1
:
12219 case R_ARM_ALU_SB_G2
:
12221 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
12222 bfd_vma pc
= input_section
->output_section
->vma
12223 + input_section
->output_offset
+ rel
->r_offset
;
12224 /* sb is the origin of the *segment* containing the symbol. */
12225 bfd_vma sb
= sym_sec
? sym_sec
->output_section
->vma
: 0;
12228 bfd_signed_vma signed_value
;
12231 /* Determine which group of bits to select. */
12234 case R_ARM_ALU_PC_G0_NC
:
12235 case R_ARM_ALU_PC_G0
:
12236 case R_ARM_ALU_SB_G0_NC
:
12237 case R_ARM_ALU_SB_G0
:
12241 case R_ARM_ALU_PC_G1_NC
:
12242 case R_ARM_ALU_PC_G1
:
12243 case R_ARM_ALU_SB_G1_NC
:
12244 case R_ARM_ALU_SB_G1
:
12248 case R_ARM_ALU_PC_G2
:
12249 case R_ARM_ALU_SB_G2
:
12257 /* If REL, extract the addend from the insn. If RELA, it will
12258 have already been fetched for us. */
12259 if (globals
->use_rel
)
12262 bfd_vma constant
= insn
& 0xff;
12263 bfd_vma rotation
= (insn
& 0xf00) >> 8;
12266 signed_addend
= constant
;
12269 /* Compensate for the fact that in the instruction, the
12270 rotation is stored in multiples of 2 bits. */
12273 /* Rotate "constant" right by "rotation" bits. */
12274 signed_addend
= (constant
>> rotation
) |
12275 (constant
<< (8 * sizeof (bfd_vma
) - rotation
));
12278 /* Determine if the instruction is an ADD or a SUB.
12279 (For REL, this determines the sign of the addend.) */
12280 negative
= identify_add_or_sub (insn
);
12284 /* xgettext:c-format */
12285 (_("%pB(%pA+%#" PRIx64
"): only ADD or SUB instructions "
12286 "are allowed for ALU group relocations"),
12287 input_bfd
, input_section
, (uint64_t) rel
->r_offset
);
12288 return bfd_reloc_overflow
;
12291 signed_addend
*= negative
;
12294 /* Compute the value (X) to go in the place. */
12295 if (r_type
== R_ARM_ALU_PC_G0_NC
12296 || r_type
== R_ARM_ALU_PC_G1_NC
12297 || r_type
== R_ARM_ALU_PC_G0
12298 || r_type
== R_ARM_ALU_PC_G1
12299 || r_type
== R_ARM_ALU_PC_G2
)
12301 signed_value
= value
- pc
+ signed_addend
;
12303 /* Section base relative. */
12304 signed_value
= value
- sb
+ signed_addend
;
12306 /* If the target symbol is a Thumb function, then set the
12307 Thumb bit in the address. */
12308 if (branch_type
== ST_BRANCH_TO_THUMB
)
12311 /* Calculate the value of the relevant G_n, in encoded
12312 constant-with-rotation format. */
12313 g_n
= calculate_group_reloc_mask (signed_value
< 0 ? - signed_value
: signed_value
,
12316 /* Check for overflow if required. */
12317 if ((r_type
== R_ARM_ALU_PC_G0
12318 || r_type
== R_ARM_ALU_PC_G1
12319 || r_type
== R_ARM_ALU_PC_G2
12320 || r_type
== R_ARM_ALU_SB_G0
12321 || r_type
== R_ARM_ALU_SB_G1
12322 || r_type
== R_ARM_ALU_SB_G2
) && residual
!= 0)
12325 /* xgettext:c-format */
12326 (_("%pB(%pA+%#" PRIx64
"): overflow whilst "
12327 "splitting %#" PRIx64
" for group relocation %s"),
12328 input_bfd
, input_section
, (uint64_t) rel
->r_offset
,
12329 (uint64_t) (signed_value
< 0 ? -signed_value
: signed_value
),
12331 return bfd_reloc_overflow
;
12334 /* Mask out the value and the ADD/SUB part of the opcode; take care
12335 not to destroy the S bit. */
12336 insn
&= 0xff1ff000;
12338 /* Set the opcode according to whether the value to go in the
12339 place is negative. */
12340 if (signed_value
< 0)
12345 /* Encode the offset. */
12348 bfd_put_32 (input_bfd
, insn
, hit_data
);
12350 return bfd_reloc_ok
;
12352 case R_ARM_LDR_PC_G0
:
12353 case R_ARM_LDR_PC_G1
:
12354 case R_ARM_LDR_PC_G2
:
12355 case R_ARM_LDR_SB_G0
:
12356 case R_ARM_LDR_SB_G1
:
12357 case R_ARM_LDR_SB_G2
:
12359 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
12360 bfd_vma pc
= input_section
->output_section
->vma
12361 + input_section
->output_offset
+ rel
->r_offset
;
12362 /* sb is the origin of the *segment* containing the symbol. */
12363 bfd_vma sb
= sym_sec
? sym_sec
->output_section
->vma
: 0;
12365 bfd_signed_vma signed_value
;
12368 /* Determine which groups of bits to calculate. */
12371 case R_ARM_LDR_PC_G0
:
12372 case R_ARM_LDR_SB_G0
:
12376 case R_ARM_LDR_PC_G1
:
12377 case R_ARM_LDR_SB_G1
:
12381 case R_ARM_LDR_PC_G2
:
12382 case R_ARM_LDR_SB_G2
:
12390 /* If REL, extract the addend from the insn. If RELA, it will
12391 have already been fetched for us. */
12392 if (globals
->use_rel
)
12394 int negative
= (insn
& (1 << 23)) ? 1 : -1;
12395 signed_addend
= negative
* (insn
& 0xfff);
12398 /* Compute the value (X) to go in the place. */
12399 if (r_type
== R_ARM_LDR_PC_G0
12400 || r_type
== R_ARM_LDR_PC_G1
12401 || r_type
== R_ARM_LDR_PC_G2
)
12403 signed_value
= value
- pc
+ signed_addend
;
12405 /* Section base relative. */
12406 signed_value
= value
- sb
+ signed_addend
;
12408 /* Calculate the value of the relevant G_{n-1} to obtain
12409 the residual at that stage. */
12410 calculate_group_reloc_mask (signed_value
< 0 ? - signed_value
: signed_value
,
12411 group
- 1, &residual
);
12413 /* Check for overflow. */
12414 if (residual
>= 0x1000)
12417 /* xgettext:c-format */
12418 (_("%pB(%pA+%#" PRIx64
"): overflow whilst "
12419 "splitting %#" PRIx64
" for group relocation %s"),
12420 input_bfd
, input_section
, (uint64_t) rel
->r_offset
,
12421 (uint64_t) (signed_value
< 0 ? -signed_value
: signed_value
),
12423 return bfd_reloc_overflow
;
12426 /* Mask out the value and U bit. */
12427 insn
&= 0xff7ff000;
12429 /* Set the U bit if the value to go in the place is non-negative. */
12430 if (signed_value
>= 0)
12433 /* Encode the offset. */
12436 bfd_put_32 (input_bfd
, insn
, hit_data
);
12438 return bfd_reloc_ok
;
12440 case R_ARM_LDRS_PC_G0
:
12441 case R_ARM_LDRS_PC_G1
:
12442 case R_ARM_LDRS_PC_G2
:
12443 case R_ARM_LDRS_SB_G0
:
12444 case R_ARM_LDRS_SB_G1
:
12445 case R_ARM_LDRS_SB_G2
:
12447 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
12448 bfd_vma pc
= input_section
->output_section
->vma
12449 + input_section
->output_offset
+ rel
->r_offset
;
12450 /* sb is the origin of the *segment* containing the symbol. */
12451 bfd_vma sb
= sym_sec
? sym_sec
->output_section
->vma
: 0;
12453 bfd_signed_vma signed_value
;
12456 /* Determine which groups of bits to calculate. */
12459 case R_ARM_LDRS_PC_G0
:
12460 case R_ARM_LDRS_SB_G0
:
12464 case R_ARM_LDRS_PC_G1
:
12465 case R_ARM_LDRS_SB_G1
:
12469 case R_ARM_LDRS_PC_G2
:
12470 case R_ARM_LDRS_SB_G2
:
12478 /* If REL, extract the addend from the insn. If RELA, it will
12479 have already been fetched for us. */
12480 if (globals
->use_rel
)
12482 int negative
= (insn
& (1 << 23)) ? 1 : -1;
12483 signed_addend
= negative
* (((insn
& 0xf00) >> 4) + (insn
& 0xf));
12486 /* Compute the value (X) to go in the place. */
12487 if (r_type
== R_ARM_LDRS_PC_G0
12488 || r_type
== R_ARM_LDRS_PC_G1
12489 || r_type
== R_ARM_LDRS_PC_G2
)
12491 signed_value
= value
- pc
+ signed_addend
;
12493 /* Section base relative. */
12494 signed_value
= value
- sb
+ signed_addend
;
12496 /* Calculate the value of the relevant G_{n-1} to obtain
12497 the residual at that stage. */
12498 calculate_group_reloc_mask (signed_value
< 0 ? - signed_value
: signed_value
,
12499 group
- 1, &residual
);
12501 /* Check for overflow. */
12502 if (residual
>= 0x100)
12505 /* xgettext:c-format */
12506 (_("%pB(%pA+%#" PRIx64
"): overflow whilst "
12507 "splitting %#" PRIx64
" for group relocation %s"),
12508 input_bfd
, input_section
, (uint64_t) rel
->r_offset
,
12509 (uint64_t) (signed_value
< 0 ? -signed_value
: signed_value
),
12511 return bfd_reloc_overflow
;
12514 /* Mask out the value and U bit. */
12515 insn
&= 0xff7ff0f0;
12517 /* Set the U bit if the value to go in the place is non-negative. */
12518 if (signed_value
>= 0)
12521 /* Encode the offset. */
12522 insn
|= ((residual
& 0xf0) << 4) | (residual
& 0xf);
12524 bfd_put_32 (input_bfd
, insn
, hit_data
);
12526 return bfd_reloc_ok
;
12528 case R_ARM_LDC_PC_G0
:
12529 case R_ARM_LDC_PC_G1
:
12530 case R_ARM_LDC_PC_G2
:
12531 case R_ARM_LDC_SB_G0
:
12532 case R_ARM_LDC_SB_G1
:
12533 case R_ARM_LDC_SB_G2
:
12535 bfd_vma insn
= bfd_get_32 (input_bfd
, hit_data
);
12536 bfd_vma pc
= input_section
->output_section
->vma
12537 + input_section
->output_offset
+ rel
->r_offset
;
12538 /* sb is the origin of the *segment* containing the symbol. */
12539 bfd_vma sb
= sym_sec
? sym_sec
->output_section
->vma
: 0;
12541 bfd_signed_vma signed_value
;
12544 /* Determine which groups of bits to calculate. */
12547 case R_ARM_LDC_PC_G0
:
12548 case R_ARM_LDC_SB_G0
:
12552 case R_ARM_LDC_PC_G1
:
12553 case R_ARM_LDC_SB_G1
:
12557 case R_ARM_LDC_PC_G2
:
12558 case R_ARM_LDC_SB_G2
:
12566 /* If REL, extract the addend from the insn. If RELA, it will
12567 have already been fetched for us. */
12568 if (globals
->use_rel
)
12570 int negative
= (insn
& (1 << 23)) ? 1 : -1;
12571 signed_addend
= negative
* ((insn
& 0xff) << 2);
12574 /* Compute the value (X) to go in the place. */
12575 if (r_type
== R_ARM_LDC_PC_G0
12576 || r_type
== R_ARM_LDC_PC_G1
12577 || r_type
== R_ARM_LDC_PC_G2
)
12579 signed_value
= value
- pc
+ signed_addend
;
12581 /* Section base relative. */
12582 signed_value
= value
- sb
+ signed_addend
;
12584 /* Calculate the value of the relevant G_{n-1} to obtain
12585 the residual at that stage. */
12586 calculate_group_reloc_mask (signed_value
< 0 ? - signed_value
: signed_value
,
12587 group
- 1, &residual
);
12589 /* Check for overflow. (The absolute value to go in the place must be
12590 divisible by four and, after having been divided by four, must
12591 fit in eight bits.) */
12592 if ((residual
& 0x3) != 0 || residual
>= 0x400)
12595 /* xgettext:c-format */
12596 (_("%pB(%pA+%#" PRIx64
"): overflow whilst "
12597 "splitting %#" PRIx64
" for group relocation %s"),
12598 input_bfd
, input_section
, (uint64_t) rel
->r_offset
,
12599 (uint64_t) (signed_value
< 0 ? -signed_value
: signed_value
),
12601 return bfd_reloc_overflow
;
12604 /* Mask out the value and U bit. */
12605 insn
&= 0xff7fff00;
12607 /* Set the U bit if the value to go in the place is non-negative. */
12608 if (signed_value
>= 0)
12611 /* Encode the offset. */
12612 insn
|= residual
>> 2;
12614 bfd_put_32 (input_bfd
, insn
, hit_data
);
12616 return bfd_reloc_ok
;
12618 case R_ARM_THM_ALU_ABS_G0_NC
:
12619 case R_ARM_THM_ALU_ABS_G1_NC
:
12620 case R_ARM_THM_ALU_ABS_G2_NC
:
12621 case R_ARM_THM_ALU_ABS_G3_NC
:
12623 const int shift_array
[4] = {0, 8, 16, 24};
12624 bfd_vma insn
= bfd_get_16 (input_bfd
, hit_data
);
12625 bfd_vma addr
= value
;
12626 int shift
= shift_array
[r_type
- R_ARM_THM_ALU_ABS_G0_NC
];
12628 /* Compute address. */
12629 if (globals
->use_rel
)
12630 signed_addend
= insn
& 0xff;
12631 addr
+= signed_addend
;
12632 if (branch_type
== ST_BRANCH_TO_THUMB
)
12634 /* Clean imm8 insn. */
12636 /* And update with correct part of address. */
12637 insn
|= (addr
>> shift
) & 0xff;
12639 bfd_put_16 (input_bfd
, insn
, hit_data
);
12642 *unresolved_reloc_p
= FALSE
;
12643 return bfd_reloc_ok
;
12645 case R_ARM_GOTOFFFUNCDESC
:
12649 struct fdpic_local
*local_fdpic_cnts
= elf32_arm_local_fdpic_cnts(input_bfd
);
12650 int dynindx
= elf_section_data (sym_sec
->output_section
)->dynindx
;
12651 int offset
= local_fdpic_cnts
[r_symndx
].funcdesc_offset
& ~1;
12652 bfd_vma addr
= dynreloc_value
- sym_sec
->output_section
->vma
;
12655 if (bfd_link_pic(info
) && dynindx
== 0)
12658 /* Resolve relocation. */
12659 bfd_put_32(output_bfd
, (offset
+ sgot
->output_offset
)
12660 , contents
+ rel
->r_offset
);
12661 /* Emit R_ARM_FUNCDESC_VALUE or two fixups on funcdesc if
12663 arm_elf_fill_funcdesc(output_bfd
, info
,
12664 &local_fdpic_cnts
[r_symndx
].funcdesc_offset
,
12665 dynindx
, offset
, addr
, dynreloc_value
, seg
);
12670 int offset
= eh
->fdpic_cnts
.funcdesc_offset
& ~1;
12674 /* For static binaries, sym_sec can be null. */
12677 dynindx
= elf_section_data (sym_sec
->output_section
)->dynindx
;
12678 addr
= dynreloc_value
- sym_sec
->output_section
->vma
;
12686 if (bfd_link_pic(info
) && dynindx
== 0)
12689 /* This case cannot occur since funcdesc is allocated by
12690 the dynamic loader so we cannot resolve the relocation. */
12691 if (h
->dynindx
!= -1)
12694 /* Resolve relocation. */
12695 bfd_put_32(output_bfd
, (offset
+ sgot
->output_offset
),
12696 contents
+ rel
->r_offset
);
12697 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12698 arm_elf_fill_funcdesc(output_bfd
, info
,
12699 &eh
->fdpic_cnts
.funcdesc_offset
,
12700 dynindx
, offset
, addr
, dynreloc_value
, seg
);
12703 *unresolved_reloc_p
= FALSE
;
12704 return bfd_reloc_ok
;
12706 case R_ARM_GOTFUNCDESC
:
12710 Elf_Internal_Rela outrel
;
12712 /* Resolve relocation. */
12713 bfd_put_32(output_bfd
, ((eh
->fdpic_cnts
.gotfuncdesc_offset
& ~1)
12714 + sgot
->output_offset
),
12715 contents
+ rel
->r_offset
);
12716 /* Add funcdesc and associated R_ARM_FUNCDESC_VALUE. */
12717 if(h
->dynindx
== -1)
12720 int offset
= eh
->fdpic_cnts
.funcdesc_offset
& ~1;
12724 /* For static binaries sym_sec can be null. */
12727 dynindx
= elf_section_data (sym_sec
->output_section
)->dynindx
;
12728 addr
= dynreloc_value
- sym_sec
->output_section
->vma
;
12736 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12737 arm_elf_fill_funcdesc(output_bfd
, info
,
12738 &eh
->fdpic_cnts
.funcdesc_offset
,
12739 dynindx
, offset
, addr
, dynreloc_value
, seg
);
12742 /* Add a dynamic relocation on GOT entry if not already done. */
12743 if ((eh
->fdpic_cnts
.gotfuncdesc_offset
& 1) == 0)
12745 if (h
->dynindx
== -1)
12747 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
12748 if (h
->root
.type
== bfd_link_hash_undefweak
)
12749 bfd_put_32(output_bfd
, 0, sgot
->contents
12750 + (eh
->fdpic_cnts
.gotfuncdesc_offset
& ~1));
12752 bfd_put_32(output_bfd
, sgot
->output_section
->vma
12753 + sgot
->output_offset
12754 + (eh
->fdpic_cnts
.funcdesc_offset
& ~1),
12756 + (eh
->fdpic_cnts
.gotfuncdesc_offset
& ~1));
12760 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_FUNCDESC
);
12762 outrel
.r_offset
= sgot
->output_section
->vma
12763 + sgot
->output_offset
12764 + (eh
->fdpic_cnts
.gotfuncdesc_offset
& ~1);
12765 outrel
.r_addend
= 0;
12766 if (h
->dynindx
== -1 && !bfd_link_pic(info
))
12767 if (h
->root
.type
== bfd_link_hash_undefweak
)
12768 arm_elf_add_rofixup(output_bfd
, globals
->srofixup
, -1);
12770 arm_elf_add_rofixup(output_bfd
, globals
->srofixup
,
12773 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
12774 eh
->fdpic_cnts
.gotfuncdesc_offset
|= 1;
12779 /* Such relocation on static function should not have been
12780 emitted by the compiler. */
12784 *unresolved_reloc_p
= FALSE
;
12785 return bfd_reloc_ok
;
12787 case R_ARM_FUNCDESC
:
12791 struct fdpic_local
*local_fdpic_cnts
= elf32_arm_local_fdpic_cnts(input_bfd
);
12792 Elf_Internal_Rela outrel
;
12793 int dynindx
= elf_section_data (sym_sec
->output_section
)->dynindx
;
12794 int offset
= local_fdpic_cnts
[r_symndx
].funcdesc_offset
& ~1;
12795 bfd_vma addr
= dynreloc_value
- sym_sec
->output_section
->vma
;
12798 if (bfd_link_pic(info
) && dynindx
== 0)
12801 /* Replace static FUNCDESC relocation with a
12802 R_ARM_RELATIVE dynamic relocation or with a rofixup for
12804 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
12805 outrel
.r_offset
= input_section
->output_section
->vma
12806 + input_section
->output_offset
+ rel
->r_offset
;
12807 outrel
.r_addend
= 0;
12808 if (bfd_link_pic(info
))
12809 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
12811 arm_elf_add_rofixup(output_bfd
, globals
->srofixup
, outrel
.r_offset
);
12813 bfd_put_32 (input_bfd
, sgot
->output_section
->vma
12814 + sgot
->output_offset
+ offset
, hit_data
);
12816 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12817 arm_elf_fill_funcdesc(output_bfd
, info
,
12818 &local_fdpic_cnts
[r_symndx
].funcdesc_offset
,
12819 dynindx
, offset
, addr
, dynreloc_value
, seg
);
12823 if (h
->dynindx
== -1)
12826 int offset
= eh
->fdpic_cnts
.funcdesc_offset
& ~1;
12829 Elf_Internal_Rela outrel
;
12831 /* For static binaries sym_sec can be null. */
12834 dynindx
= elf_section_data (sym_sec
->output_section
)->dynindx
;
12835 addr
= dynreloc_value
- sym_sec
->output_section
->vma
;
12843 if (bfd_link_pic(info
) && dynindx
== 0)
12846 /* Replace static FUNCDESC relocation with a
12847 R_ARM_RELATIVE dynamic relocation. */
12848 outrel
.r_info
= ELF32_R_INFO (0, R_ARM_RELATIVE
);
12849 outrel
.r_offset
= input_section
->output_section
->vma
12850 + input_section
->output_offset
+ rel
->r_offset
;
12851 outrel
.r_addend
= 0;
12852 if (bfd_link_pic(info
))
12853 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
12855 arm_elf_add_rofixup(output_bfd
, globals
->srofixup
, outrel
.r_offset
);
12857 bfd_put_32 (input_bfd
, sgot
->output_section
->vma
12858 + sgot
->output_offset
+ offset
, hit_data
);
12860 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12861 arm_elf_fill_funcdesc(output_bfd
, info
,
12862 &eh
->fdpic_cnts
.funcdesc_offset
,
12863 dynindx
, offset
, addr
, dynreloc_value
, seg
);
12867 Elf_Internal_Rela outrel
;
12869 /* Add a dynamic relocation. */
12870 outrel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_FUNCDESC
);
12871 outrel
.r_offset
= input_section
->output_section
->vma
12872 + input_section
->output_offset
+ rel
->r_offset
;
12873 outrel
.r_addend
= 0;
12874 elf32_arm_add_dynreloc (output_bfd
, info
, srelgot
, &outrel
);
12878 *unresolved_reloc_p
= FALSE
;
12879 return bfd_reloc_ok
;
12881 case R_ARM_THM_BF16
:
12883 bfd_vma relocation
;
12884 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
12885 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
12887 if (globals
->use_rel
)
12889 bfd_vma immA
= (upper_insn
& 0x001f);
12890 bfd_vma immB
= (lower_insn
& 0x07fe) >> 1;
12891 bfd_vma immC
= (lower_insn
& 0x0800) >> 11;
12892 addend
= (immA
<< 12);
12893 addend
|= (immB
<< 2);
12894 addend
|= (immC
<< 1);
12897 signed_addend
= (addend
& 0x10000) ? addend
- (1 << 17) : addend
;
12900 relocation
= value
+ signed_addend
;
12901 relocation
-= (input_section
->output_section
->vma
12902 + input_section
->output_offset
12905 /* Put RELOCATION back into the insn. */
12907 bfd_vma immA
= (relocation
& 0x0001f000) >> 12;
12908 bfd_vma immB
= (relocation
& 0x00000ffc) >> 2;
12909 bfd_vma immC
= (relocation
& 0x00000002) >> 1;
12911 upper_insn
= (upper_insn
& 0xffe0) | immA
;
12912 lower_insn
= (lower_insn
& 0xf001) | (immC
<< 11) | (immB
<< 1);
12915 /* Put the relocated value back in the object file: */
12916 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
12917 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
12919 return bfd_reloc_ok
;
12922 case R_ARM_THM_BF12
:
12924 bfd_vma relocation
;
12925 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
12926 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
12928 if (globals
->use_rel
)
12930 bfd_vma immA
= (upper_insn
& 0x0001);
12931 bfd_vma immB
= (lower_insn
& 0x07fe) >> 1;
12932 bfd_vma immC
= (lower_insn
& 0x0800) >> 11;
12933 addend
= (immA
<< 12);
12934 addend
|= (immB
<< 2);
12935 addend
|= (immC
<< 1);
12938 addend
= (addend
& 0x1000) ? addend
- (1 << 13) : addend
;
12939 signed_addend
= addend
;
12942 relocation
= value
+ signed_addend
;
12943 relocation
-= (input_section
->output_section
->vma
12944 + input_section
->output_offset
12947 /* Put RELOCATION back into the insn. */
12949 bfd_vma immA
= (relocation
& 0x00001000) >> 12;
12950 bfd_vma immB
= (relocation
& 0x00000ffc) >> 2;
12951 bfd_vma immC
= (relocation
& 0x00000002) >> 1;
12953 upper_insn
= (upper_insn
& 0xfffe) | immA
;
12954 lower_insn
= (lower_insn
& 0xf001) | (immC
<< 11) | (immB
<< 1);
12957 /* Put the relocated value back in the object file: */
12958 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
12959 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
12961 return bfd_reloc_ok
;
12964 case R_ARM_THM_BF18
:
12966 bfd_vma relocation
;
12967 bfd_vma upper_insn
= bfd_get_16 (input_bfd
, hit_data
);
12968 bfd_vma lower_insn
= bfd_get_16 (input_bfd
, hit_data
+ 2);
12970 if (globals
->use_rel
)
12972 bfd_vma immA
= (upper_insn
& 0x007f);
12973 bfd_vma immB
= (lower_insn
& 0x07fe) >> 1;
12974 bfd_vma immC
= (lower_insn
& 0x0800) >> 11;
12975 addend
= (immA
<< 12);
12976 addend
|= (immB
<< 2);
12977 addend
|= (immC
<< 1);
12980 addend
= (addend
& 0x40000) ? addend
- (1 << 19) : addend
;
12981 signed_addend
= addend
;
12984 relocation
= value
+ signed_addend
;
12985 relocation
-= (input_section
->output_section
->vma
12986 + input_section
->output_offset
12989 /* Put RELOCATION back into the insn. */
12991 bfd_vma immA
= (relocation
& 0x0007f000) >> 12;
12992 bfd_vma immB
= (relocation
& 0x00000ffc) >> 2;
12993 bfd_vma immC
= (relocation
& 0x00000002) >> 1;
12995 upper_insn
= (upper_insn
& 0xff80) | immA
;
12996 lower_insn
= (lower_insn
& 0xf001) | (immC
<< 11) | (immB
<< 1);
12999 /* Put the relocated value back in the object file: */
13000 bfd_put_16 (input_bfd
, upper_insn
, hit_data
);
13001 bfd_put_16 (input_bfd
, lower_insn
, hit_data
+ 2);
13003 return bfd_reloc_ok
;
13007 return bfd_reloc_notsupported
;
13011 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
13013 arm_add_to_rel (bfd
* abfd
,
13014 bfd_byte
* address
,
13015 reloc_howto_type
* howto
,
13016 bfd_signed_vma increment
)
13018 bfd_signed_vma addend
;
13020 if (howto
->type
== R_ARM_THM_CALL
13021 || howto
->type
== R_ARM_THM_JUMP24
)
13023 int upper_insn
, lower_insn
;
13026 upper_insn
= bfd_get_16 (abfd
, address
);
13027 lower_insn
= bfd_get_16 (abfd
, address
+ 2);
13028 upper
= upper_insn
& 0x7ff;
13029 lower
= lower_insn
& 0x7ff;
13031 addend
= (upper
<< 12) | (lower
<< 1);
13032 addend
+= increment
;
13035 upper_insn
= (upper_insn
& 0xf800) | ((addend
>> 11) & 0x7ff);
13036 lower_insn
= (lower_insn
& 0xf800) | (addend
& 0x7ff);
13038 bfd_put_16 (abfd
, (bfd_vma
) upper_insn
, address
);
13039 bfd_put_16 (abfd
, (bfd_vma
) lower_insn
, address
+ 2);
13045 contents
= bfd_get_32 (abfd
, address
);
13047 /* Get the (signed) value from the instruction. */
13048 addend
= contents
& howto
->src_mask
;
13049 if (addend
& ((howto
->src_mask
+ 1) >> 1))
13051 bfd_signed_vma mask
;
13054 mask
&= ~ howto
->src_mask
;
13058 /* Add in the increment, (which is a byte value). */
13059 switch (howto
->type
)
13062 addend
+= increment
;
13069 addend
<<= howto
->size
;
13070 addend
+= increment
;
13072 /* Should we check for overflow here ? */
13074 /* Drop any undesired bits. */
13075 addend
>>= howto
->rightshift
;
13079 contents
= (contents
& ~ howto
->dst_mask
) | (addend
& howto
->dst_mask
);
13081 bfd_put_32 (abfd
, contents
, address
);
13085 #define IS_ARM_TLS_RELOC(R_TYPE) \
13086 ((R_TYPE) == R_ARM_TLS_GD32 \
13087 || (R_TYPE) == R_ARM_TLS_GD32_FDPIC \
13088 || (R_TYPE) == R_ARM_TLS_LDO32 \
13089 || (R_TYPE) == R_ARM_TLS_LDM32 \
13090 || (R_TYPE) == R_ARM_TLS_LDM32_FDPIC \
13091 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
13092 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
13093 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
13094 || (R_TYPE) == R_ARM_TLS_LE32 \
13095 || (R_TYPE) == R_ARM_TLS_IE32 \
13096 || (R_TYPE) == R_ARM_TLS_IE32_FDPIC \
13097 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
13099 /* Specific set of relocations for the gnu tls dialect. */
13100 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
13101 ((R_TYPE) == R_ARM_TLS_GOTDESC \
13102 || (R_TYPE) == R_ARM_TLS_CALL \
13103 || (R_TYPE) == R_ARM_THM_TLS_CALL \
13104 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
13105 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
13107 /* Relocate an ARM ELF section. */
13110 elf32_arm_relocate_section (bfd
* output_bfd
,
13111 struct bfd_link_info
* info
,
13113 asection
* input_section
,
13114 bfd_byte
* contents
,
13115 Elf_Internal_Rela
* relocs
,
13116 Elf_Internal_Sym
* local_syms
,
13117 asection
** local_sections
)
13119 Elf_Internal_Shdr
*symtab_hdr
;
13120 struct elf_link_hash_entry
**sym_hashes
;
13121 Elf_Internal_Rela
*rel
;
13122 Elf_Internal_Rela
*relend
;
13124 struct elf32_arm_link_hash_table
* globals
;
13126 globals
= elf32_arm_hash_table (info
);
13127 if (globals
== NULL
)
13130 symtab_hdr
= & elf_symtab_hdr (input_bfd
);
13131 sym_hashes
= elf_sym_hashes (input_bfd
);
13134 relend
= relocs
+ input_section
->reloc_count
;
13135 for (; rel
< relend
; rel
++)
13138 reloc_howto_type
* howto
;
13139 unsigned long r_symndx
;
13140 Elf_Internal_Sym
* sym
;
13142 struct elf_link_hash_entry
* h
;
13143 bfd_vma relocation
;
13144 bfd_reloc_status_type r
;
13147 bfd_boolean unresolved_reloc
= FALSE
;
13148 char *error_message
= NULL
;
13150 r_symndx
= ELF32_R_SYM (rel
->r_info
);
13151 r_type
= ELF32_R_TYPE (rel
->r_info
);
13152 r_type
= arm_real_reloc_type (globals
, r_type
);
13154 if ( r_type
== R_ARM_GNU_VTENTRY
13155 || r_type
== R_ARM_GNU_VTINHERIT
)
13158 howto
= bfd_reloc
.howto
= elf32_arm_howto_from_type (r_type
);
13161 return _bfd_unrecognized_reloc (input_bfd
, input_section
, r_type
);
13167 if (r_symndx
< symtab_hdr
->sh_info
)
13169 sym
= local_syms
+ r_symndx
;
13170 sym_type
= ELF32_ST_TYPE (sym
->st_info
);
13171 sec
= local_sections
[r_symndx
];
13173 /* An object file might have a reference to a local
13174 undefined symbol. This is a daft object file, but we
13175 should at least do something about it. V4BX & NONE
13176 relocations do not use the symbol and are explicitly
13177 allowed to use the undefined symbol, so allow those.
13178 Likewise for relocations against STN_UNDEF. */
13179 if (r_type
!= R_ARM_V4BX
13180 && r_type
!= R_ARM_NONE
13181 && r_symndx
!= STN_UNDEF
13182 && bfd_is_und_section (sec
)
13183 && ELF_ST_BIND (sym
->st_info
) != STB_WEAK
)
13184 (*info
->callbacks
->undefined_symbol
)
13185 (info
, bfd_elf_string_from_elf_section
13186 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
),
13187 input_bfd
, input_section
,
13188 rel
->r_offset
, TRUE
);
13190 if (globals
->use_rel
)
13192 relocation
= (sec
->output_section
->vma
13193 + sec
->output_offset
13195 if (!bfd_link_relocatable (info
)
13196 && (sec
->flags
& SEC_MERGE
)
13197 && ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
13200 bfd_vma addend
, value
;
13204 case R_ARM_MOVW_ABS_NC
:
13205 case R_ARM_MOVT_ABS
:
13206 value
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
13207 addend
= ((value
& 0xf0000) >> 4) | (value
& 0xfff);
13208 addend
= (addend
^ 0x8000) - 0x8000;
13211 case R_ARM_THM_MOVW_ABS_NC
:
13212 case R_ARM_THM_MOVT_ABS
:
13213 value
= bfd_get_16 (input_bfd
, contents
+ rel
->r_offset
)
13215 value
|= bfd_get_16 (input_bfd
,
13216 contents
+ rel
->r_offset
+ 2);
13217 addend
= ((value
& 0xf7000) >> 4) | (value
& 0xff)
13218 | ((value
& 0x04000000) >> 15);
13219 addend
= (addend
^ 0x8000) - 0x8000;
13223 if (howto
->rightshift
13224 || (howto
->src_mask
& (howto
->src_mask
+ 1)))
13227 /* xgettext:c-format */
13228 (_("%pB(%pA+%#" PRIx64
"): "
13229 "%s relocation against SEC_MERGE section"),
13230 input_bfd
, input_section
,
13231 (uint64_t) rel
->r_offset
, howto
->name
);
13235 value
= bfd_get_32 (input_bfd
, contents
+ rel
->r_offset
);
13237 /* Get the (signed) value from the instruction. */
13238 addend
= value
& howto
->src_mask
;
13239 if (addend
& ((howto
->src_mask
+ 1) >> 1))
13241 bfd_signed_vma mask
;
13244 mask
&= ~ howto
->src_mask
;
13252 _bfd_elf_rel_local_sym (output_bfd
, sym
, &msec
, addend
)
13254 addend
+= msec
->output_section
->vma
+ msec
->output_offset
;
13256 /* Cases here must match those in the preceding
13257 switch statement. */
13260 case R_ARM_MOVW_ABS_NC
:
13261 case R_ARM_MOVT_ABS
:
13262 value
= (value
& 0xfff0f000) | ((addend
& 0xf000) << 4)
13263 | (addend
& 0xfff);
13264 bfd_put_32 (input_bfd
, value
, contents
+ rel
->r_offset
);
13267 case R_ARM_THM_MOVW_ABS_NC
:
13268 case R_ARM_THM_MOVT_ABS
:
13269 value
= (value
& 0xfbf08f00) | ((addend
& 0xf700) << 4)
13270 | (addend
& 0xff) | ((addend
& 0x0800) << 15);
13271 bfd_put_16 (input_bfd
, value
>> 16,
13272 contents
+ rel
->r_offset
);
13273 bfd_put_16 (input_bfd
, value
,
13274 contents
+ rel
->r_offset
+ 2);
13278 value
= (value
& ~ howto
->dst_mask
)
13279 | (addend
& howto
->dst_mask
);
13280 bfd_put_32 (input_bfd
, value
, contents
+ rel
->r_offset
);
13286 relocation
= _bfd_elf_rela_local_sym (output_bfd
, sym
, &sec
, rel
);
13290 bfd_boolean warned
, ignored
;
13292 RELOC_FOR_GLOBAL_SYMBOL (info
, input_bfd
, input_section
, rel
,
13293 r_symndx
, symtab_hdr
, sym_hashes
,
13294 h
, sec
, relocation
,
13295 unresolved_reloc
, warned
, ignored
);
13297 sym_type
= h
->type
;
13300 if (sec
!= NULL
&& discarded_section (sec
))
13301 RELOC_AGAINST_DISCARDED_SECTION (info
, input_bfd
, input_section
,
13302 rel
, 1, relend
, howto
, 0, contents
);
13304 if (bfd_link_relocatable (info
))
13306 /* This is a relocatable link. We don't have to change
13307 anything, unless the reloc is against a section symbol,
13308 in which case we have to adjust according to where the
13309 section symbol winds up in the output section. */
13310 if (sym
!= NULL
&& ELF_ST_TYPE (sym
->st_info
) == STT_SECTION
)
13312 if (globals
->use_rel
)
13313 arm_add_to_rel (input_bfd
, contents
+ rel
->r_offset
,
13314 howto
, (bfd_signed_vma
) sec
->output_offset
);
13316 rel
->r_addend
+= sec
->output_offset
;
13322 name
= h
->root
.root
.string
;
13325 name
= (bfd_elf_string_from_elf_section
13326 (input_bfd
, symtab_hdr
->sh_link
, sym
->st_name
));
13327 if (name
== NULL
|| *name
== '\0')
13328 name
= bfd_section_name (sec
);
13331 if (r_symndx
!= STN_UNDEF
13332 && r_type
!= R_ARM_NONE
13334 || h
->root
.type
== bfd_link_hash_defined
13335 || h
->root
.type
== bfd_link_hash_defweak
)
13336 && IS_ARM_TLS_RELOC (r_type
) != (sym_type
== STT_TLS
))
13339 ((sym_type
== STT_TLS
13340 /* xgettext:c-format */
13341 ? _("%pB(%pA+%#" PRIx64
"): %s used with TLS symbol %s")
13342 /* xgettext:c-format */
13343 : _("%pB(%pA+%#" PRIx64
"): %s used with non-TLS symbol %s")),
13346 (uint64_t) rel
->r_offset
,
13351 /* We call elf32_arm_final_link_relocate unless we're completely
13352 done, i.e., the relaxation produced the final output we want,
13353 and we won't let anybody mess with it. Also, we have to do
13354 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
13355 both in relaxed and non-relaxed cases. */
13356 if ((elf32_arm_tls_transition (info
, r_type
, h
) != (unsigned)r_type
)
13357 || (IS_ARM_TLS_GNU_RELOC (r_type
)
13358 && !((h
? elf32_arm_hash_entry (h
)->tls_type
:
13359 elf32_arm_local_got_tls_type (input_bfd
)[r_symndx
])
13362 r
= elf32_arm_tls_relax (globals
, input_bfd
, input_section
,
13363 contents
, rel
, h
== NULL
);
13364 /* This may have been marked unresolved because it came from
13365 a shared library. But we've just dealt with that. */
13366 unresolved_reloc
= 0;
13369 r
= bfd_reloc_continue
;
13371 if (r
== bfd_reloc_continue
)
13373 unsigned char branch_type
=
13374 h
? ARM_GET_SYM_BRANCH_TYPE (h
->target_internal
)
13375 : ARM_GET_SYM_BRANCH_TYPE (sym
->st_target_internal
);
13377 r
= elf32_arm_final_link_relocate (howto
, input_bfd
, output_bfd
,
13378 input_section
, contents
, rel
,
13379 relocation
, info
, sec
, name
,
13380 sym_type
, branch_type
, h
,
13385 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
13386 because such sections are not SEC_ALLOC and thus ld.so will
13387 not process them. */
13388 if (unresolved_reloc
13389 && !((input_section
->flags
& SEC_DEBUGGING
) != 0
13391 && _bfd_elf_section_offset (output_bfd
, info
, input_section
,
13392 rel
->r_offset
) != (bfd_vma
) -1)
13395 /* xgettext:c-format */
13396 (_("%pB(%pA+%#" PRIx64
"): "
13397 "unresolvable %s relocation against symbol `%s'"),
13400 (uint64_t) rel
->r_offset
,
13402 h
->root
.root
.string
);
13406 if (r
!= bfd_reloc_ok
)
13410 case bfd_reloc_overflow
:
13411 /* If the overflowing reloc was to an undefined symbol,
13412 we have already printed one error message and there
13413 is no point complaining again. */
13414 if (!h
|| h
->root
.type
!= bfd_link_hash_undefined
)
13415 (*info
->callbacks
->reloc_overflow
)
13416 (info
, (h
? &h
->root
: NULL
), name
, howto
->name
,
13417 (bfd_vma
) 0, input_bfd
, input_section
, rel
->r_offset
);
13420 case bfd_reloc_undefined
:
13421 (*info
->callbacks
->undefined_symbol
)
13422 (info
, name
, input_bfd
, input_section
, rel
->r_offset
, TRUE
);
13425 case bfd_reloc_outofrange
:
13426 error_message
= _("out of range");
13429 case bfd_reloc_notsupported
:
13430 error_message
= _("unsupported relocation");
13433 case bfd_reloc_dangerous
:
13434 /* error_message should already be set. */
13438 error_message
= _("unknown error");
13439 /* Fall through. */
13442 BFD_ASSERT (error_message
!= NULL
);
13443 (*info
->callbacks
->reloc_dangerous
)
13444 (info
, error_message
, input_bfd
, input_section
, rel
->r_offset
);
13453 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
13454 adds the edit to the start of the list. (The list must be built in order of
13455 ascending TINDEX: the function's callers are primarily responsible for
13456 maintaining that condition). */
13459 add_unwind_table_edit (arm_unwind_table_edit
**head
,
13460 arm_unwind_table_edit
**tail
,
13461 arm_unwind_edit_type type
,
13462 asection
*linked_section
,
13463 unsigned int tindex
)
13465 arm_unwind_table_edit
*new_edit
= (arm_unwind_table_edit
*)
13466 xmalloc (sizeof (arm_unwind_table_edit
));
13468 new_edit
->type
= type
;
13469 new_edit
->linked_section
= linked_section
;
13470 new_edit
->index
= tindex
;
13474 new_edit
->next
= NULL
;
13477 (*tail
)->next
= new_edit
;
13479 (*tail
) = new_edit
;
13482 (*head
) = new_edit
;
13486 new_edit
->next
= *head
;
13495 static _arm_elf_section_data
*get_arm_elf_section_data (asection
*);
13497 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
13499 adjust_exidx_size(asection
*exidx_sec
, int adjust
)
13503 if (!exidx_sec
->rawsize
)
13504 exidx_sec
->rawsize
= exidx_sec
->size
;
13506 bfd_set_section_size (exidx_sec
, exidx_sec
->size
+ adjust
);
13507 out_sec
= exidx_sec
->output_section
;
13508 /* Adjust size of output section. */
13509 bfd_set_section_size (out_sec
, out_sec
->size
+adjust
);
13512 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
13514 insert_cantunwind_after(asection
*text_sec
, asection
*exidx_sec
)
13516 struct _arm_elf_section_data
*exidx_arm_data
;
13518 exidx_arm_data
= get_arm_elf_section_data (exidx_sec
);
13519 add_unwind_table_edit (
13520 &exidx_arm_data
->u
.exidx
.unwind_edit_list
,
13521 &exidx_arm_data
->u
.exidx
.unwind_edit_tail
,
13522 INSERT_EXIDX_CANTUNWIND_AT_END
, text_sec
, UINT_MAX
);
13524 exidx_arm_data
->additional_reloc_count
++;
13526 adjust_exidx_size(exidx_sec
, 8);
13529 /* Scan .ARM.exidx tables, and create a list describing edits which should be
13530 made to those tables, such that:
13532 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
13533 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
13534 codes which have been inlined into the index).
13536 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
13538 The edits are applied when the tables are written
13539 (in elf32_arm_write_section). */
13542 elf32_arm_fix_exidx_coverage (asection
**text_section_order
,
13543 unsigned int num_text_sections
,
13544 struct bfd_link_info
*info
,
13545 bfd_boolean merge_exidx_entries
)
13548 unsigned int last_second_word
= 0, i
;
13549 asection
*last_exidx_sec
= NULL
;
13550 asection
*last_text_sec
= NULL
;
13551 int last_unwind_type
= -1;
13553 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
13555 for (inp
= info
->input_bfds
; inp
!= NULL
; inp
= inp
->link
.next
)
13559 for (sec
= inp
->sections
; sec
!= NULL
; sec
= sec
->next
)
13561 struct bfd_elf_section_data
*elf_sec
= elf_section_data (sec
);
13562 Elf_Internal_Shdr
*hdr
= &elf_sec
->this_hdr
;
13564 if (!hdr
|| hdr
->sh_type
!= SHT_ARM_EXIDX
)
13567 if (elf_sec
->linked_to
)
13569 Elf_Internal_Shdr
*linked_hdr
13570 = &elf_section_data (elf_sec
->linked_to
)->this_hdr
;
13571 struct _arm_elf_section_data
*linked_sec_arm_data
13572 = get_arm_elf_section_data (linked_hdr
->bfd_section
);
13574 if (linked_sec_arm_data
== NULL
)
13577 /* Link this .ARM.exidx section back from the text section it
13579 linked_sec_arm_data
->u
.text
.arm_exidx_sec
= sec
;
13584 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
13585 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
13586 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
13588 for (i
= 0; i
< num_text_sections
; i
++)
13590 asection
*sec
= text_section_order
[i
];
13591 asection
*exidx_sec
;
13592 struct _arm_elf_section_data
*arm_data
= get_arm_elf_section_data (sec
);
13593 struct _arm_elf_section_data
*exidx_arm_data
;
13594 bfd_byte
*contents
= NULL
;
13595 int deleted_exidx_bytes
= 0;
13597 arm_unwind_table_edit
*unwind_edit_head
= NULL
;
13598 arm_unwind_table_edit
*unwind_edit_tail
= NULL
;
13599 Elf_Internal_Shdr
*hdr
;
13602 if (arm_data
== NULL
)
13605 exidx_sec
= arm_data
->u
.text
.arm_exidx_sec
;
13606 if (exidx_sec
== NULL
)
13608 /* Section has no unwind data. */
13609 if (last_unwind_type
== 0 || !last_exidx_sec
)
13612 /* Ignore zero sized sections. */
13613 if (sec
->size
== 0)
13616 insert_cantunwind_after(last_text_sec
, last_exidx_sec
);
13617 last_unwind_type
= 0;
13621 /* Skip /DISCARD/ sections. */
13622 if (bfd_is_abs_section (exidx_sec
->output_section
))
13625 hdr
= &elf_section_data (exidx_sec
)->this_hdr
;
13626 if (hdr
->sh_type
!= SHT_ARM_EXIDX
)
13629 exidx_arm_data
= get_arm_elf_section_data (exidx_sec
);
13630 if (exidx_arm_data
== NULL
)
13633 ibfd
= exidx_sec
->owner
;
13635 if (hdr
->contents
!= NULL
)
13636 contents
= hdr
->contents
;
13637 else if (! bfd_malloc_and_get_section (ibfd
, exidx_sec
, &contents
))
13641 if (last_unwind_type
> 0)
13643 unsigned int first_word
= bfd_get_32 (ibfd
, contents
);
13644 /* Add cantunwind if first unwind item does not match section
13646 if (first_word
!= sec
->vma
)
13648 insert_cantunwind_after (last_text_sec
, last_exidx_sec
);
13649 last_unwind_type
= 0;
13653 for (j
= 0; j
< hdr
->sh_size
; j
+= 8)
13655 unsigned int second_word
= bfd_get_32 (ibfd
, contents
+ j
+ 4);
13659 /* An EXIDX_CANTUNWIND entry. */
13660 if (second_word
== 1)
13662 if (last_unwind_type
== 0)
13666 /* Inlined unwinding data. Merge if equal to previous. */
13667 else if ((second_word
& 0x80000000) != 0)
13669 if (merge_exidx_entries
13670 && last_second_word
== second_word
&& last_unwind_type
== 1)
13673 last_second_word
= second_word
;
13675 /* Normal table entry. In theory we could merge these too,
13676 but duplicate entries are likely to be much less common. */
13680 if (elide
&& !bfd_link_relocatable (info
))
13682 add_unwind_table_edit (&unwind_edit_head
, &unwind_edit_tail
,
13683 DELETE_EXIDX_ENTRY
, NULL
, j
/ 8);
13685 deleted_exidx_bytes
+= 8;
13688 last_unwind_type
= unwind_type
;
13691 /* Free contents if we allocated it ourselves. */
13692 if (contents
!= hdr
->contents
)
13695 /* Record edits to be applied later (in elf32_arm_write_section). */
13696 exidx_arm_data
->u
.exidx
.unwind_edit_list
= unwind_edit_head
;
13697 exidx_arm_data
->u
.exidx
.unwind_edit_tail
= unwind_edit_tail
;
13699 if (deleted_exidx_bytes
> 0)
13700 adjust_exidx_size(exidx_sec
, -deleted_exidx_bytes
);
13702 last_exidx_sec
= exidx_sec
;
13703 last_text_sec
= sec
;
13706 /* Add terminating CANTUNWIND entry. */
13707 if (!bfd_link_relocatable (info
) && last_exidx_sec
13708 && last_unwind_type
!= 0)
13709 insert_cantunwind_after(last_text_sec
, last_exidx_sec
);
13715 elf32_arm_output_glue_section (struct bfd_link_info
*info
, bfd
*obfd
,
13716 bfd
*ibfd
, const char *name
)
13718 asection
*sec
, *osec
;
13720 sec
= bfd_get_linker_section (ibfd
, name
);
13721 if (sec
== NULL
|| (sec
->flags
& SEC_EXCLUDE
) != 0)
13724 osec
= sec
->output_section
;
13725 if (elf32_arm_write_section (obfd
, info
, sec
, sec
->contents
))
13728 if (! bfd_set_section_contents (obfd
, osec
, sec
->contents
,
13729 sec
->output_offset
, sec
->size
))
13736 elf32_arm_final_link (bfd
*abfd
, struct bfd_link_info
*info
)
13738 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (info
);
13739 asection
*sec
, *osec
;
13741 if (globals
== NULL
)
13744 /* Invoke the regular ELF backend linker to do all the work. */
13745 if (!bfd_elf_final_link (abfd
, info
))
13748 /* Process stub sections (eg BE8 encoding, ...). */
13749 struct elf32_arm_link_hash_table
*htab
= elf32_arm_hash_table (info
);
13751 for (i
=0; i
<htab
->top_id
; i
++)
13753 sec
= htab
->stub_group
[i
].stub_sec
;
13754 /* Only process it once, in its link_sec slot. */
13755 if (sec
&& i
== htab
->stub_group
[i
].link_sec
->id
)
13757 osec
= sec
->output_section
;
13758 elf32_arm_write_section (abfd
, info
, sec
, sec
->contents
);
13759 if (! bfd_set_section_contents (abfd
, osec
, sec
->contents
,
13760 sec
->output_offset
, sec
->size
))
13765 /* Write out any glue sections now that we have created all the
13767 if (globals
->bfd_of_glue_owner
!= NULL
)
13769 if (! elf32_arm_output_glue_section (info
, abfd
,
13770 globals
->bfd_of_glue_owner
,
13771 ARM2THUMB_GLUE_SECTION_NAME
))
13774 if (! elf32_arm_output_glue_section (info
, abfd
,
13775 globals
->bfd_of_glue_owner
,
13776 THUMB2ARM_GLUE_SECTION_NAME
))
13779 if (! elf32_arm_output_glue_section (info
, abfd
,
13780 globals
->bfd_of_glue_owner
,
13781 VFP11_ERRATUM_VENEER_SECTION_NAME
))
13784 if (! elf32_arm_output_glue_section (info
, abfd
,
13785 globals
->bfd_of_glue_owner
,
13786 STM32L4XX_ERRATUM_VENEER_SECTION_NAME
))
13789 if (! elf32_arm_output_glue_section (info
, abfd
,
13790 globals
->bfd_of_glue_owner
,
13791 ARM_BX_GLUE_SECTION_NAME
))
13798 /* Return a best guess for the machine number based on the attributes. */
13800 static unsigned int
13801 bfd_arm_get_mach_from_attributes (bfd
* abfd
)
13803 int arch
= bfd_elf_get_obj_attr_int (abfd
, OBJ_ATTR_PROC
, Tag_CPU_arch
);
13807 case TAG_CPU_ARCH_PRE_V4
: return bfd_mach_arm_3M
;
13808 case TAG_CPU_ARCH_V4
: return bfd_mach_arm_4
;
13809 case TAG_CPU_ARCH_V4T
: return bfd_mach_arm_4T
;
13810 case TAG_CPU_ARCH_V5T
: return bfd_mach_arm_5T
;
13812 case TAG_CPU_ARCH_V5TE
:
13816 BFD_ASSERT (Tag_CPU_name
< NUM_KNOWN_OBJ_ATTRIBUTES
);
13817 name
= elf_known_obj_attributes (abfd
) [OBJ_ATTR_PROC
][Tag_CPU_name
].s
;
13821 if (strcmp (name
, "IWMMXT2") == 0)
13822 return bfd_mach_arm_iWMMXt2
;
13824 if (strcmp (name
, "IWMMXT") == 0)
13825 return bfd_mach_arm_iWMMXt
;
13827 if (strcmp (name
, "XSCALE") == 0)
13831 BFD_ASSERT (Tag_WMMX_arch
< NUM_KNOWN_OBJ_ATTRIBUTES
);
13832 wmmx
= elf_known_obj_attributes (abfd
) [OBJ_ATTR_PROC
][Tag_WMMX_arch
].i
;
13835 case 1: return bfd_mach_arm_iWMMXt
;
13836 case 2: return bfd_mach_arm_iWMMXt2
;
13837 default: return bfd_mach_arm_XScale
;
13842 return bfd_mach_arm_5TE
;
13845 case TAG_CPU_ARCH_V5TEJ
:
13846 return bfd_mach_arm_5TEJ
;
13847 case TAG_CPU_ARCH_V6
:
13848 return bfd_mach_arm_6
;
13849 case TAG_CPU_ARCH_V6KZ
:
13850 return bfd_mach_arm_6KZ
;
13851 case TAG_CPU_ARCH_V6T2
:
13852 return bfd_mach_arm_6T2
;
13853 case TAG_CPU_ARCH_V6K
:
13854 return bfd_mach_arm_6K
;
13855 case TAG_CPU_ARCH_V7
:
13856 return bfd_mach_arm_7
;
13857 case TAG_CPU_ARCH_V6_M
:
13858 return bfd_mach_arm_6M
;
13859 case TAG_CPU_ARCH_V6S_M
:
13860 return bfd_mach_arm_6SM
;
13861 case TAG_CPU_ARCH_V7E_M
:
13862 return bfd_mach_arm_7EM
;
13863 case TAG_CPU_ARCH_V8
:
13864 return bfd_mach_arm_8
;
13865 case TAG_CPU_ARCH_V8R
:
13866 return bfd_mach_arm_8R
;
13867 case TAG_CPU_ARCH_V8M_BASE
:
13868 return bfd_mach_arm_8M_BASE
;
13869 case TAG_CPU_ARCH_V8M_MAIN
:
13870 return bfd_mach_arm_8M_MAIN
;
13871 case TAG_CPU_ARCH_V8_1M_MAIN
:
13872 return bfd_mach_arm_8_1M_MAIN
;
13875 /* Force entry to be added for any new known Tag_CPU_arch value. */
13876 BFD_ASSERT (arch
> MAX_TAG_CPU_ARCH
);
13878 /* Unknown Tag_CPU_arch value. */
13879 return bfd_mach_arm_unknown
;
13883 /* Set the right machine number. */
13886 elf32_arm_object_p (bfd
*abfd
)
13890 mach
= bfd_arm_get_mach_from_notes (abfd
, ARM_NOTE_SECTION
);
13892 if (mach
== bfd_mach_arm_unknown
)
13894 if (elf_elfheader (abfd
)->e_flags
& EF_ARM_MAVERICK_FLOAT
)
13895 mach
= bfd_mach_arm_ep9312
;
13897 mach
= bfd_arm_get_mach_from_attributes (abfd
);
13900 bfd_default_set_arch_mach (abfd
, bfd_arch_arm
, mach
);
13904 /* Function to keep ARM specific flags in the ELF header. */
13907 elf32_arm_set_private_flags (bfd
*abfd
, flagword flags
)
13909 if (elf_flags_init (abfd
)
13910 && elf_elfheader (abfd
)->e_flags
!= flags
)
13912 if (EF_ARM_EABI_VERSION (flags
) == EF_ARM_EABI_UNKNOWN
)
13914 if (flags
& EF_ARM_INTERWORK
)
13916 (_("warning: not setting interworking flag of %pB since it has already been specified as non-interworking"),
13920 (_("warning: clearing the interworking flag of %pB due to outside request"),
13926 elf_elfheader (abfd
)->e_flags
= flags
;
13927 elf_flags_init (abfd
) = TRUE
;
13933 /* Copy backend specific data from one object module to another. */
13936 elf32_arm_copy_private_bfd_data (bfd
*ibfd
, bfd
*obfd
)
13939 flagword out_flags
;
13941 if (! is_arm_elf (ibfd
) || ! is_arm_elf (obfd
))
13944 in_flags
= elf_elfheader (ibfd
)->e_flags
;
13945 out_flags
= elf_elfheader (obfd
)->e_flags
;
13947 if (elf_flags_init (obfd
)
13948 && EF_ARM_EABI_VERSION (out_flags
) == EF_ARM_EABI_UNKNOWN
13949 && in_flags
!= out_flags
)
13951 /* Cannot mix APCS26 and APCS32 code. */
13952 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
13955 /* Cannot mix float APCS and non-float APCS code. */
13956 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
13959 /* If the src and dest have different interworking flags
13960 then turn off the interworking bit. */
13961 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
13963 if (out_flags
& EF_ARM_INTERWORK
)
13965 (_("warning: clearing the interworking flag of %pB because non-interworking code in %pB has been linked with it"),
13968 in_flags
&= ~EF_ARM_INTERWORK
;
13971 /* Likewise for PIC, though don't warn for this case. */
13972 if ((in_flags
& EF_ARM_PIC
) != (out_flags
& EF_ARM_PIC
))
13973 in_flags
&= ~EF_ARM_PIC
;
13976 elf_elfheader (obfd
)->e_flags
= in_flags
;
13977 elf_flags_init (obfd
) = TRUE
;
13979 return _bfd_elf_copy_private_bfd_data (ibfd
, obfd
);
13982 /* Values for Tag_ABI_PCS_R9_use. */
13991 /* Values for Tag_ABI_PCS_RW_data. */
13994 AEABI_PCS_RW_data_absolute
,
13995 AEABI_PCS_RW_data_PCrel
,
13996 AEABI_PCS_RW_data_SBrel
,
13997 AEABI_PCS_RW_data_unused
14000 /* Values for Tag_ABI_enum_size. */
14006 AEABI_enum_forced_wide
14009 /* Determine whether an object attribute tag takes an integer, a
14013 elf32_arm_obj_attrs_arg_type (int tag
)
14015 if (tag
== Tag_compatibility
)
14016 return ATTR_TYPE_FLAG_INT_VAL
| ATTR_TYPE_FLAG_STR_VAL
;
14017 else if (tag
== Tag_nodefaults
)
14018 return ATTR_TYPE_FLAG_INT_VAL
| ATTR_TYPE_FLAG_NO_DEFAULT
;
14019 else if (tag
== Tag_CPU_raw_name
|| tag
== Tag_CPU_name
)
14020 return ATTR_TYPE_FLAG_STR_VAL
;
14022 return ATTR_TYPE_FLAG_INT_VAL
;
14024 return (tag
& 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL
: ATTR_TYPE_FLAG_INT_VAL
;
14027 /* The ABI defines that Tag_conformance should be emitted first, and that
14028 Tag_nodefaults should be second (if either is defined). This sets those
14029 two positions, and bumps up the position of all the remaining tags to
14032 elf32_arm_obj_attrs_order (int num
)
14034 if (num
== LEAST_KNOWN_OBJ_ATTRIBUTE
)
14035 return Tag_conformance
;
14036 if (num
== LEAST_KNOWN_OBJ_ATTRIBUTE
+ 1)
14037 return Tag_nodefaults
;
14038 if ((num
- 2) < Tag_nodefaults
)
14040 if ((num
- 1) < Tag_conformance
)
14045 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
14047 elf32_arm_obj_attrs_handle_unknown (bfd
*abfd
, int tag
)
14049 if ((tag
& 127) < 64)
14052 (_("%pB: unknown mandatory EABI object attribute %d"),
14054 bfd_set_error (bfd_error_bad_value
);
14060 (_("warning: %pB: unknown EABI object attribute %d"),
14066 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
14067 Returns -1 if no architecture could be read. */
14070 get_secondary_compatible_arch (bfd
*abfd
)
14072 obj_attribute
*attr
=
14073 &elf_known_obj_attributes_proc (abfd
)[Tag_also_compatible_with
];
14075 /* Note: the tag and its argument below are uleb128 values, though
14076 currently-defined values fit in one byte for each. */
14078 && attr
->s
[0] == Tag_CPU_arch
14079 && (attr
->s
[1] & 128) != 128
14080 && attr
->s
[2] == 0)
14083 /* This tag is "safely ignorable", so don't complain if it looks funny. */
14087 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
14088 The tag is removed if ARCH is -1. */
14091 set_secondary_compatible_arch (bfd
*abfd
, int arch
)
14093 obj_attribute
*attr
=
14094 &elf_known_obj_attributes_proc (abfd
)[Tag_also_compatible_with
];
14102 /* Note: the tag and its argument below are uleb128 values, though
14103 currently-defined values fit in one byte for each. */
14105 attr
->s
= (char *) bfd_alloc (abfd
, 3);
14106 attr
->s
[0] = Tag_CPU_arch
;
14111 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
14115 tag_cpu_arch_combine (bfd
*ibfd
, int oldtag
, int *secondary_compat_out
,
14116 int newtag
, int secondary_compat
)
14118 #define T(X) TAG_CPU_ARCH_##X
14119 int tagl
, tagh
, result
;
14122 T(V6T2
), /* PRE_V4. */
14124 T(V6T2
), /* V4T. */
14125 T(V6T2
), /* V5T. */
14126 T(V6T2
), /* V5TE. */
14127 T(V6T2
), /* V5TEJ. */
14130 T(V6T2
) /* V6T2. */
14134 T(V6K
), /* PRE_V4. */
14138 T(V6K
), /* V5TE. */
14139 T(V6K
), /* V5TEJ. */
14141 T(V6KZ
), /* V6KZ. */
14147 T(V7
), /* PRE_V4. */
14152 T(V7
), /* V5TEJ. */
14165 T(V6K
), /* V5TE. */
14166 T(V6K
), /* V5TEJ. */
14168 T(V6KZ
), /* V6KZ. */
14172 T(V6_M
) /* V6_M. */
14174 const int v6s_m
[] =
14180 T(V6K
), /* V5TE. */
14181 T(V6K
), /* V5TEJ. */
14183 T(V6KZ
), /* V6KZ. */
14187 T(V6S_M
), /* V6_M. */
14188 T(V6S_M
) /* V6S_M. */
14190 const int v7e_m
[] =
14194 T(V7E_M
), /* V4T. */
14195 T(V7E_M
), /* V5T. */
14196 T(V7E_M
), /* V5TE. */
14197 T(V7E_M
), /* V5TEJ. */
14198 T(V7E_M
), /* V6. */
14199 T(V7E_M
), /* V6KZ. */
14200 T(V7E_M
), /* V6T2. */
14201 T(V7E_M
), /* V6K. */
14202 T(V7E_M
), /* V7. */
14203 T(V7E_M
), /* V6_M. */
14204 T(V7E_M
), /* V6S_M. */
14205 T(V7E_M
) /* V7E_M. */
14209 T(V8
), /* PRE_V4. */
14214 T(V8
), /* V5TEJ. */
14221 T(V8
), /* V6S_M. */
14222 T(V8
), /* V7E_M. */
14227 T(V8R
), /* PRE_V4. */
14231 T(V8R
), /* V5TE. */
14232 T(V8R
), /* V5TEJ. */
14234 T(V8R
), /* V6KZ. */
14235 T(V8R
), /* V6T2. */
14238 T(V8R
), /* V6_M. */
14239 T(V8R
), /* V6S_M. */
14240 T(V8R
), /* V7E_M. */
14244 const int v8m_baseline
[] =
14257 T(V8M_BASE
), /* V6_M. */
14258 T(V8M_BASE
), /* V6S_M. */
14262 T(V8M_BASE
) /* V8-M BASELINE. */
14264 const int v8m_mainline
[] =
14276 T(V8M_MAIN
), /* V7. */
14277 T(V8M_MAIN
), /* V6_M. */
14278 T(V8M_MAIN
), /* V6S_M. */
14279 T(V8M_MAIN
), /* V7E_M. */
14282 T(V8M_MAIN
), /* V8-M BASELINE. */
14283 T(V8M_MAIN
) /* V8-M MAINLINE. */
14285 const int v8_1m_mainline
[] =
14297 T(V8_1M_MAIN
), /* V7. */
14298 T(V8_1M_MAIN
), /* V6_M. */
14299 T(V8_1M_MAIN
), /* V6S_M. */
14300 T(V8_1M_MAIN
), /* V7E_M. */
14303 T(V8_1M_MAIN
), /* V8-M BASELINE. */
14304 T(V8_1M_MAIN
), /* V8-M MAINLINE. */
14305 -1, /* Unused (18). */
14306 -1, /* Unused (19). */
14307 -1, /* Unused (20). */
14308 T(V8_1M_MAIN
) /* V8.1-M MAINLINE. */
14310 const int v4t_plus_v6_m
[] =
14316 T(V5TE
), /* V5TE. */
14317 T(V5TEJ
), /* V5TEJ. */
14319 T(V6KZ
), /* V6KZ. */
14320 T(V6T2
), /* V6T2. */
14323 T(V6_M
), /* V6_M. */
14324 T(V6S_M
), /* V6S_M. */
14325 T(V7E_M
), /* V7E_M. */
14328 T(V8M_BASE
), /* V8-M BASELINE. */
14329 T(V8M_MAIN
), /* V8-M MAINLINE. */
14330 -1, /* Unused (18). */
14331 -1, /* Unused (19). */
14332 -1, /* Unused (20). */
14333 T(V8_1M_MAIN
), /* V8.1-M MAINLINE. */
14334 T(V4T_PLUS_V6_M
) /* V4T plus V6_M. */
14336 const int *comb
[] =
14352 /* Pseudo-architecture. */
14356 /* Check we've not got a higher architecture than we know about. */
14358 if (oldtag
> MAX_TAG_CPU_ARCH
|| newtag
> MAX_TAG_CPU_ARCH
)
14360 _bfd_error_handler (_("error: %pB: unknown CPU architecture"), ibfd
);
14364 /* Override old tag if we have a Tag_also_compatible_with on the output. */
14366 if ((oldtag
== T(V6_M
) && *secondary_compat_out
== T(V4T
))
14367 || (oldtag
== T(V4T
) && *secondary_compat_out
== T(V6_M
)))
14368 oldtag
= T(V4T_PLUS_V6_M
);
14370 /* And override the new tag if we have a Tag_also_compatible_with on the
14373 if ((newtag
== T(V6_M
) && secondary_compat
== T(V4T
))
14374 || (newtag
== T(V4T
) && secondary_compat
== T(V6_M
)))
14375 newtag
= T(V4T_PLUS_V6_M
);
14377 tagl
= (oldtag
< newtag
) ? oldtag
: newtag
;
14378 result
= tagh
= (oldtag
> newtag
) ? oldtag
: newtag
;
14380 /* Architectures before V6KZ add features monotonically. */
14381 if (tagh
<= TAG_CPU_ARCH_V6KZ
)
14384 result
= comb
[tagh
- T(V6T2
)] ? comb
[tagh
- T(V6T2
)][tagl
] : -1;
14386 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
14387 as the canonical version. */
14388 if (result
== T(V4T_PLUS_V6_M
))
14391 *secondary_compat_out
= T(V6_M
);
14394 *secondary_compat_out
= -1;
14398 _bfd_error_handler (_("error: %pB: conflicting CPU architectures %d/%d"),
14399 ibfd
, oldtag
, newtag
);
14407 /* Query attributes object to see if integer divide instructions may be
14408 present in an object. */
14410 elf32_arm_attributes_accept_div (const obj_attribute
*attr
)
14412 int arch
= attr
[Tag_CPU_arch
].i
;
14413 int profile
= attr
[Tag_CPU_arch_profile
].i
;
14415 switch (attr
[Tag_DIV_use
].i
)
14418 /* Integer divide allowed if instruction contained in archetecture. */
14419 if (arch
== TAG_CPU_ARCH_V7
&& (profile
== 'R' || profile
== 'M'))
14421 else if (arch
>= TAG_CPU_ARCH_V7E_M
)
14427 /* Integer divide explicitly prohibited. */
14431 /* Unrecognised case - treat as allowing divide everywhere. */
14433 /* Integer divide allowed in ARM state. */
14438 /* Query attributes object to see if integer divide instructions are
14439 forbidden to be in the object. This is not the inverse of
14440 elf32_arm_attributes_accept_div. */
14442 elf32_arm_attributes_forbid_div (const obj_attribute
*attr
)
14444 return attr
[Tag_DIV_use
].i
== 1;
14447 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
14448 are conflicting attributes. */
14451 elf32_arm_merge_eabi_attributes (bfd
*ibfd
, struct bfd_link_info
*info
)
14453 bfd
*obfd
= info
->output_bfd
;
14454 obj_attribute
*in_attr
;
14455 obj_attribute
*out_attr
;
14456 /* Some tags have 0 = don't care, 1 = strong requirement,
14457 2 = weak requirement. */
14458 static const int order_021
[3] = {0, 2, 1};
14460 bfd_boolean result
= TRUE
;
14461 const char *sec_name
= get_elf_backend_data (ibfd
)->obj_attrs_section
;
14463 /* Skip the linker stubs file. This preserves previous behavior
14464 of accepting unknown attributes in the first input file - but
14466 if (ibfd
->flags
& BFD_LINKER_CREATED
)
14469 /* Skip any input that hasn't attribute section.
14470 This enables to link object files without attribute section with
14472 if (bfd_get_section_by_name (ibfd
, sec_name
) == NULL
)
14475 if (!elf_known_obj_attributes_proc (obfd
)[0].i
)
14477 /* This is the first object. Copy the attributes. */
14478 _bfd_elf_copy_obj_attributes (ibfd
, obfd
);
14480 out_attr
= elf_known_obj_attributes_proc (obfd
);
14482 /* Use the Tag_null value to indicate the attributes have been
14486 /* We do not output objects with Tag_MPextension_use_legacy - we move
14487 the attribute's value to Tag_MPextension_use. */
14488 if (out_attr
[Tag_MPextension_use_legacy
].i
!= 0)
14490 if (out_attr
[Tag_MPextension_use
].i
!= 0
14491 && out_attr
[Tag_MPextension_use_legacy
].i
14492 != out_attr
[Tag_MPextension_use
].i
)
14495 (_("Error: %pB has both the current and legacy "
14496 "Tag_MPextension_use attributes"), ibfd
);
14500 out_attr
[Tag_MPextension_use
] =
14501 out_attr
[Tag_MPextension_use_legacy
];
14502 out_attr
[Tag_MPextension_use_legacy
].type
= 0;
14503 out_attr
[Tag_MPextension_use_legacy
].i
= 0;
14509 in_attr
= elf_known_obj_attributes_proc (ibfd
);
14510 out_attr
= elf_known_obj_attributes_proc (obfd
);
14511 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
14512 if (in_attr
[Tag_ABI_VFP_args
].i
!= out_attr
[Tag_ABI_VFP_args
].i
)
14514 /* Ignore mismatches if the object doesn't use floating point or is
14515 floating point ABI independent. */
14516 if (out_attr
[Tag_ABI_FP_number_model
].i
== AEABI_FP_number_model_none
14517 || (in_attr
[Tag_ABI_FP_number_model
].i
!= AEABI_FP_number_model_none
14518 && out_attr
[Tag_ABI_VFP_args
].i
== AEABI_VFP_args_compatible
))
14519 out_attr
[Tag_ABI_VFP_args
].i
= in_attr
[Tag_ABI_VFP_args
].i
;
14520 else if (in_attr
[Tag_ABI_FP_number_model
].i
!= AEABI_FP_number_model_none
14521 && in_attr
[Tag_ABI_VFP_args
].i
!= AEABI_VFP_args_compatible
)
14524 (_("error: %pB uses VFP register arguments, %pB does not"),
14525 in_attr
[Tag_ABI_VFP_args
].i
? ibfd
: obfd
,
14526 in_attr
[Tag_ABI_VFP_args
].i
? obfd
: ibfd
);
14531 for (i
= LEAST_KNOWN_OBJ_ATTRIBUTE
; i
< NUM_KNOWN_OBJ_ATTRIBUTES
; i
++)
14533 /* Merge this attribute with existing attributes. */
14536 case Tag_CPU_raw_name
:
14538 /* These are merged after Tag_CPU_arch. */
14541 case Tag_ABI_optimization_goals
:
14542 case Tag_ABI_FP_optimization_goals
:
14543 /* Use the first value seen. */
14548 int secondary_compat
= -1, secondary_compat_out
= -1;
14549 unsigned int saved_out_attr
= out_attr
[i
].i
;
14551 static const char *name_table
[] =
14553 /* These aren't real CPU names, but we can't guess
14554 that from the architecture version alone. */
14570 "ARM v8-M.baseline",
14571 "ARM v8-M.mainline",
14574 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
14575 secondary_compat
= get_secondary_compatible_arch (ibfd
);
14576 secondary_compat_out
= get_secondary_compatible_arch (obfd
);
14577 arch_attr
= tag_cpu_arch_combine (ibfd
, out_attr
[i
].i
,
14578 &secondary_compat_out
,
14582 /* Return with error if failed to merge. */
14583 if (arch_attr
== -1)
14586 out_attr
[i
].i
= arch_attr
;
14588 set_secondary_compatible_arch (obfd
, secondary_compat_out
);
14590 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
14591 if (out_attr
[i
].i
== saved_out_attr
)
14592 ; /* Leave the names alone. */
14593 else if (out_attr
[i
].i
== in_attr
[i
].i
)
14595 /* The output architecture has been changed to match the
14596 input architecture. Use the input names. */
14597 out_attr
[Tag_CPU_name
].s
= in_attr
[Tag_CPU_name
].s
14598 ? _bfd_elf_attr_strdup (obfd
, in_attr
[Tag_CPU_name
].s
)
14600 out_attr
[Tag_CPU_raw_name
].s
= in_attr
[Tag_CPU_raw_name
].s
14601 ? _bfd_elf_attr_strdup (obfd
, in_attr
[Tag_CPU_raw_name
].s
)
14606 out_attr
[Tag_CPU_name
].s
= NULL
;
14607 out_attr
[Tag_CPU_raw_name
].s
= NULL
;
14610 /* If we still don't have a value for Tag_CPU_name,
14611 make one up now. Tag_CPU_raw_name remains blank. */
14612 if (out_attr
[Tag_CPU_name
].s
== NULL
14613 && out_attr
[i
].i
< ARRAY_SIZE (name_table
))
14614 out_attr
[Tag_CPU_name
].s
=
14615 _bfd_elf_attr_strdup (obfd
, name_table
[out_attr
[i
].i
]);
14619 case Tag_ARM_ISA_use
:
14620 case Tag_THUMB_ISA_use
:
14621 case Tag_WMMX_arch
:
14622 case Tag_Advanced_SIMD_arch
:
14623 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
14624 case Tag_ABI_FP_rounding
:
14625 case Tag_ABI_FP_exceptions
:
14626 case Tag_ABI_FP_user_exceptions
:
14627 case Tag_ABI_FP_number_model
:
14628 case Tag_FP_HP_extension
:
14629 case Tag_CPU_unaligned_access
:
14631 case Tag_MPextension_use
:
14633 /* Use the largest value specified. */
14634 if (in_attr
[i
].i
> out_attr
[i
].i
)
14635 out_attr
[i
].i
= in_attr
[i
].i
;
14638 case Tag_ABI_align_preserved
:
14639 case Tag_ABI_PCS_RO_data
:
14640 /* Use the smallest value specified. */
14641 if (in_attr
[i
].i
< out_attr
[i
].i
)
14642 out_attr
[i
].i
= in_attr
[i
].i
;
14645 case Tag_ABI_align_needed
:
14646 if ((in_attr
[i
].i
> 0 || out_attr
[i
].i
> 0)
14647 && (in_attr
[Tag_ABI_align_preserved
].i
== 0
14648 || out_attr
[Tag_ABI_align_preserved
].i
== 0))
14650 /* This error message should be enabled once all non-conformant
14651 binaries in the toolchain have had the attributes set
14654 (_("error: %pB: 8-byte data alignment conflicts with %pB"),
14658 /* Fall through. */
14659 case Tag_ABI_FP_denormal
:
14660 case Tag_ABI_PCS_GOT_use
:
14661 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
14662 value if greater than 2 (for future-proofing). */
14663 if ((in_attr
[i
].i
> 2 && in_attr
[i
].i
> out_attr
[i
].i
)
14664 || (in_attr
[i
].i
<= 2 && out_attr
[i
].i
<= 2
14665 && order_021
[in_attr
[i
].i
] > order_021
[out_attr
[i
].i
]))
14666 out_attr
[i
].i
= in_attr
[i
].i
;
14669 case Tag_Virtualization_use
:
14670 /* The virtualization tag effectively stores two bits of
14671 information: the intended use of TrustZone (in bit 0), and the
14672 intended use of Virtualization (in bit 1). */
14673 if (out_attr
[i
].i
== 0)
14674 out_attr
[i
].i
= in_attr
[i
].i
;
14675 else if (in_attr
[i
].i
!= 0
14676 && in_attr
[i
].i
!= out_attr
[i
].i
)
14678 if (in_attr
[i
].i
<= 3 && out_attr
[i
].i
<= 3)
14683 (_("error: %pB: unable to merge virtualization attributes "
14691 case Tag_CPU_arch_profile
:
14692 if (out_attr
[i
].i
!= in_attr
[i
].i
)
14694 /* 0 will merge with anything.
14695 'A' and 'S' merge to 'A'.
14696 'R' and 'S' merge to 'R'.
14697 'M' and 'A|R|S' is an error. */
14698 if (out_attr
[i
].i
== 0
14699 || (out_attr
[i
].i
== 'S'
14700 && (in_attr
[i
].i
== 'A' || in_attr
[i
].i
== 'R')))
14701 out_attr
[i
].i
= in_attr
[i
].i
;
14702 else if (in_attr
[i
].i
== 0
14703 || (in_attr
[i
].i
== 'S'
14704 && (out_attr
[i
].i
== 'A' || out_attr
[i
].i
== 'R')))
14705 ; /* Do nothing. */
14709 (_("error: %pB: conflicting architecture profiles %c/%c"),
14711 in_attr
[i
].i
? in_attr
[i
].i
: '0',
14712 out_attr
[i
].i
? out_attr
[i
].i
: '0');
14718 case Tag_DSP_extension
:
14719 /* No need to change output value if any of:
14720 - pre (<=) ARMv5T input architecture (do not have DSP)
14721 - M input profile not ARMv7E-M and do not have DSP. */
14722 if (in_attr
[Tag_CPU_arch
].i
<= 3
14723 || (in_attr
[Tag_CPU_arch_profile
].i
== 'M'
14724 && in_attr
[Tag_CPU_arch
].i
!= 13
14725 && in_attr
[i
].i
== 0))
14726 ; /* Do nothing. */
14727 /* Output value should be 0 if DSP part of architecture, ie.
14728 - post (>=) ARMv5te architecture output
14729 - A, R or S profile output or ARMv7E-M output architecture. */
14730 else if (out_attr
[Tag_CPU_arch
].i
>= 4
14731 && (out_attr
[Tag_CPU_arch_profile
].i
== 'A'
14732 || out_attr
[Tag_CPU_arch_profile
].i
== 'R'
14733 || out_attr
[Tag_CPU_arch_profile
].i
== 'S'
14734 || out_attr
[Tag_CPU_arch
].i
== 13))
14736 /* Otherwise, DSP instructions are added and not part of output
14744 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
14745 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
14746 when it's 0. It might mean absence of FP hardware if
14747 Tag_FP_arch is zero. */
14749 #define VFP_VERSION_COUNT 9
14750 static const struct
14754 } vfp_versions
[VFP_VERSION_COUNT
] =
14770 /* If the output has no requirement about FP hardware,
14771 follow the requirement of the input. */
14772 if (out_attr
[i
].i
== 0)
14774 /* This assert is still reasonable, we shouldn't
14775 produce the suspicious build attribute
14776 combination (See below for in_attr). */
14777 BFD_ASSERT (out_attr
[Tag_ABI_HardFP_use
].i
== 0);
14778 out_attr
[i
].i
= in_attr
[i
].i
;
14779 out_attr
[Tag_ABI_HardFP_use
].i
14780 = in_attr
[Tag_ABI_HardFP_use
].i
;
14783 /* If the input has no requirement about FP hardware, do
14785 else if (in_attr
[i
].i
== 0)
14787 /* We used to assert that Tag_ABI_HardFP_use was
14788 zero here, but we should never assert when
14789 consuming an object file that has suspicious
14790 build attributes. The single precision variant
14791 of 'no FP architecture' is still 'no FP
14792 architecture', so we just ignore the tag in this
14797 /* Both the input and the output have nonzero Tag_FP_arch.
14798 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */
14800 /* If both the input and the output have zero Tag_ABI_HardFP_use,
14802 if (in_attr
[Tag_ABI_HardFP_use
].i
== 0
14803 && out_attr
[Tag_ABI_HardFP_use
].i
== 0)
14805 /* If the input and the output have different Tag_ABI_HardFP_use,
14806 the combination of them is 0 (implied by Tag_FP_arch). */
14807 else if (in_attr
[Tag_ABI_HardFP_use
].i
14808 != out_attr
[Tag_ABI_HardFP_use
].i
)
14809 out_attr
[Tag_ABI_HardFP_use
].i
= 0;
14811 /* Now we can handle Tag_FP_arch. */
14813 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
14814 pick the biggest. */
14815 if (in_attr
[i
].i
>= VFP_VERSION_COUNT
14816 && in_attr
[i
].i
> out_attr
[i
].i
)
14818 out_attr
[i
] = in_attr
[i
];
14821 /* The output uses the superset of input features
14822 (ISA version) and registers. */
14823 ver
= vfp_versions
[in_attr
[i
].i
].ver
;
14824 if (ver
< vfp_versions
[out_attr
[i
].i
].ver
)
14825 ver
= vfp_versions
[out_attr
[i
].i
].ver
;
14826 regs
= vfp_versions
[in_attr
[i
].i
].regs
;
14827 if (regs
< vfp_versions
[out_attr
[i
].i
].regs
)
14828 regs
= vfp_versions
[out_attr
[i
].i
].regs
;
14829 /* This assumes all possible supersets are also a valid
14831 for (newval
= VFP_VERSION_COUNT
- 1; newval
> 0; newval
--)
14833 if (regs
== vfp_versions
[newval
].regs
14834 && ver
== vfp_versions
[newval
].ver
)
14837 out_attr
[i
].i
= newval
;
14840 case Tag_PCS_config
:
14841 if (out_attr
[i
].i
== 0)
14842 out_attr
[i
].i
= in_attr
[i
].i
;
14843 else if (in_attr
[i
].i
!= 0 && out_attr
[i
].i
!= in_attr
[i
].i
)
14845 /* It's sometimes ok to mix different configs, so this is only
14848 (_("warning: %pB: conflicting platform configuration"), ibfd
);
14851 case Tag_ABI_PCS_R9_use
:
14852 if (in_attr
[i
].i
!= out_attr
[i
].i
14853 && out_attr
[i
].i
!= AEABI_R9_unused
14854 && in_attr
[i
].i
!= AEABI_R9_unused
)
14857 (_("error: %pB: conflicting use of R9"), ibfd
);
14860 if (out_attr
[i
].i
== AEABI_R9_unused
)
14861 out_attr
[i
].i
= in_attr
[i
].i
;
14863 case Tag_ABI_PCS_RW_data
:
14864 if (in_attr
[i
].i
== AEABI_PCS_RW_data_SBrel
14865 && out_attr
[Tag_ABI_PCS_R9_use
].i
!= AEABI_R9_SB
14866 && out_attr
[Tag_ABI_PCS_R9_use
].i
!= AEABI_R9_unused
)
14869 (_("error: %pB: SB relative addressing conflicts with use of R9"),
14873 /* Use the smallest value specified. */
14874 if (in_attr
[i
].i
< out_attr
[i
].i
)
14875 out_attr
[i
].i
= in_attr
[i
].i
;
14877 case Tag_ABI_PCS_wchar_t
:
14878 if (out_attr
[i
].i
&& in_attr
[i
].i
&& out_attr
[i
].i
!= in_attr
[i
].i
14879 && !elf_arm_tdata (obfd
)->no_wchar_size_warning
)
14882 (_("warning: %pB uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
14883 ibfd
, in_attr
[i
].i
, out_attr
[i
].i
);
14885 else if (in_attr
[i
].i
&& !out_attr
[i
].i
)
14886 out_attr
[i
].i
= in_attr
[i
].i
;
14888 case Tag_ABI_enum_size
:
14889 if (in_attr
[i
].i
!= AEABI_enum_unused
)
14891 if (out_attr
[i
].i
== AEABI_enum_unused
14892 || out_attr
[i
].i
== AEABI_enum_forced_wide
)
14894 /* The existing object is compatible with anything.
14895 Use whatever requirements the new object has. */
14896 out_attr
[i
].i
= in_attr
[i
].i
;
14898 else if (in_attr
[i
].i
!= AEABI_enum_forced_wide
14899 && out_attr
[i
].i
!= in_attr
[i
].i
14900 && !elf_arm_tdata (obfd
)->no_enum_size_warning
)
14902 static const char *aeabi_enum_names
[] =
14903 { "", "variable-size", "32-bit", "" };
14904 const char *in_name
=
14905 in_attr
[i
].i
< ARRAY_SIZE(aeabi_enum_names
)
14906 ? aeabi_enum_names
[in_attr
[i
].i
]
14908 const char *out_name
=
14909 out_attr
[i
].i
< ARRAY_SIZE(aeabi_enum_names
)
14910 ? aeabi_enum_names
[out_attr
[i
].i
]
14913 (_("warning: %pB uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
14914 ibfd
, in_name
, out_name
);
14918 case Tag_ABI_VFP_args
:
14921 case Tag_ABI_WMMX_args
:
14922 if (in_attr
[i
].i
!= out_attr
[i
].i
)
14925 (_("error: %pB uses iWMMXt register arguments, %pB does not"),
14930 case Tag_compatibility
:
14931 /* Merged in target-independent code. */
14933 case Tag_ABI_HardFP_use
:
14934 /* This is handled along with Tag_FP_arch. */
14936 case Tag_ABI_FP_16bit_format
:
14937 if (in_attr
[i
].i
!= 0 && out_attr
[i
].i
!= 0)
14939 if (in_attr
[i
].i
!= out_attr
[i
].i
)
14942 (_("error: fp16 format mismatch between %pB and %pB"),
14947 if (in_attr
[i
].i
!= 0)
14948 out_attr
[i
].i
= in_attr
[i
].i
;
14952 /* A value of zero on input means that the divide instruction may
14953 be used if available in the base architecture as specified via
14954 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
14955 the user did not want divide instructions. A value of 2
14956 explicitly means that divide instructions were allowed in ARM
14957 and Thumb state. */
14958 if (in_attr
[i
].i
== out_attr
[i
].i
)
14959 /* Do nothing. */ ;
14960 else if (elf32_arm_attributes_forbid_div (in_attr
)
14961 && !elf32_arm_attributes_accept_div (out_attr
))
14963 else if (elf32_arm_attributes_forbid_div (out_attr
)
14964 && elf32_arm_attributes_accept_div (in_attr
))
14965 out_attr
[i
].i
= in_attr
[i
].i
;
14966 else if (in_attr
[i
].i
== 2)
14967 out_attr
[i
].i
= in_attr
[i
].i
;
14970 case Tag_MPextension_use_legacy
:
14971 /* We don't output objects with Tag_MPextension_use_legacy - we
14972 move the value to Tag_MPextension_use. */
14973 if (in_attr
[i
].i
!= 0 && in_attr
[Tag_MPextension_use
].i
!= 0)
14975 if (in_attr
[Tag_MPextension_use
].i
!= in_attr
[i
].i
)
14978 (_("%pB has both the current and legacy "
14979 "Tag_MPextension_use attributes"),
14985 if (in_attr
[i
].i
> out_attr
[Tag_MPextension_use
].i
)
14986 out_attr
[Tag_MPextension_use
] = in_attr
[i
];
14990 case Tag_nodefaults
:
14991 /* This tag is set if it exists, but the value is unused (and is
14992 typically zero). We don't actually need to do anything here -
14993 the merge happens automatically when the type flags are merged
14996 case Tag_also_compatible_with
:
14997 /* Already done in Tag_CPU_arch. */
14999 case Tag_conformance
:
15000 /* Keep the attribute if it matches. Throw it away otherwise.
15001 No attribute means no claim to conform. */
15002 if (!in_attr
[i
].s
|| !out_attr
[i
].s
15003 || strcmp (in_attr
[i
].s
, out_attr
[i
].s
) != 0)
15004 out_attr
[i
].s
= NULL
;
15009 = result
&& _bfd_elf_merge_unknown_attribute_low (ibfd
, obfd
, i
);
15012 /* If out_attr was copied from in_attr then it won't have a type yet. */
15013 if (in_attr
[i
].type
&& !out_attr
[i
].type
)
15014 out_attr
[i
].type
= in_attr
[i
].type
;
15017 /* Merge Tag_compatibility attributes and any common GNU ones. */
15018 if (!_bfd_elf_merge_object_attributes (ibfd
, info
))
15021 /* Check for any attributes not known on ARM. */
15022 result
&= _bfd_elf_merge_unknown_attribute_list (ibfd
, obfd
);
15028 /* Return TRUE if the two EABI versions are incompatible. */
15031 elf32_arm_versions_compatible (unsigned iver
, unsigned over
)
15033 /* v4 and v5 are the same spec before and after it was released,
15034 so allow mixing them. */
15035 if ((iver
== EF_ARM_EABI_VER4
&& over
== EF_ARM_EABI_VER5
)
15036 || (iver
== EF_ARM_EABI_VER5
&& over
== EF_ARM_EABI_VER4
))
15039 return (iver
== over
);
15042 /* Merge backend specific data from an object file to the output
15043 object file when linking. */
15046 elf32_arm_merge_private_bfd_data (bfd
*, struct bfd_link_info
*);
15048 /* Display the flags field. */
15051 elf32_arm_print_private_bfd_data (bfd
*abfd
, void * ptr
)
15053 FILE * file
= (FILE *) ptr
;
15054 unsigned long flags
;
15056 BFD_ASSERT (abfd
!= NULL
&& ptr
!= NULL
);
15058 /* Print normal ELF private data. */
15059 _bfd_elf_print_private_bfd_data (abfd
, ptr
);
15061 flags
= elf_elfheader (abfd
)->e_flags
;
15062 /* Ignore init flag - it may not be set, despite the flags field
15063 containing valid data. */
15065 fprintf (file
, _("private flags = %lx:"), elf_elfheader (abfd
)->e_flags
);
15067 switch (EF_ARM_EABI_VERSION (flags
))
15069 case EF_ARM_EABI_UNKNOWN
:
15070 /* The following flag bits are GNU extensions and not part of the
15071 official ARM ELF extended ABI. Hence they are only decoded if
15072 the EABI version is not set. */
15073 if (flags
& EF_ARM_INTERWORK
)
15074 fprintf (file
, _(" [interworking enabled]"));
15076 if (flags
& EF_ARM_APCS_26
)
15077 fprintf (file
, " [APCS-26]");
15079 fprintf (file
, " [APCS-32]");
15081 if (flags
& EF_ARM_VFP_FLOAT
)
15082 fprintf (file
, _(" [VFP float format]"));
15083 else if (flags
& EF_ARM_MAVERICK_FLOAT
)
15084 fprintf (file
, _(" [Maverick float format]"));
15086 fprintf (file
, _(" [FPA float format]"));
15088 if (flags
& EF_ARM_APCS_FLOAT
)
15089 fprintf (file
, _(" [floats passed in float registers]"));
15091 if (flags
& EF_ARM_PIC
)
15092 fprintf (file
, _(" [position independent]"));
15094 if (flags
& EF_ARM_NEW_ABI
)
15095 fprintf (file
, _(" [new ABI]"));
15097 if (flags
& EF_ARM_OLD_ABI
)
15098 fprintf (file
, _(" [old ABI]"));
15100 if (flags
& EF_ARM_SOFT_FLOAT
)
15101 fprintf (file
, _(" [software FP]"));
15103 flags
&= ~(EF_ARM_INTERWORK
| EF_ARM_APCS_26
| EF_ARM_APCS_FLOAT
15104 | EF_ARM_PIC
| EF_ARM_NEW_ABI
| EF_ARM_OLD_ABI
15105 | EF_ARM_SOFT_FLOAT
| EF_ARM_VFP_FLOAT
15106 | EF_ARM_MAVERICK_FLOAT
);
15109 case EF_ARM_EABI_VER1
:
15110 fprintf (file
, _(" [Version1 EABI]"));
15112 if (flags
& EF_ARM_SYMSARESORTED
)
15113 fprintf (file
, _(" [sorted symbol table]"));
15115 fprintf (file
, _(" [unsorted symbol table]"));
15117 flags
&= ~ EF_ARM_SYMSARESORTED
;
15120 case EF_ARM_EABI_VER2
:
15121 fprintf (file
, _(" [Version2 EABI]"));
15123 if (flags
& EF_ARM_SYMSARESORTED
)
15124 fprintf (file
, _(" [sorted symbol table]"));
15126 fprintf (file
, _(" [unsorted symbol table]"));
15128 if (flags
& EF_ARM_DYNSYMSUSESEGIDX
)
15129 fprintf (file
, _(" [dynamic symbols use segment index]"));
15131 if (flags
& EF_ARM_MAPSYMSFIRST
)
15132 fprintf (file
, _(" [mapping symbols precede others]"));
15134 flags
&= ~(EF_ARM_SYMSARESORTED
| EF_ARM_DYNSYMSUSESEGIDX
15135 | EF_ARM_MAPSYMSFIRST
);
15138 case EF_ARM_EABI_VER3
:
15139 fprintf (file
, _(" [Version3 EABI]"));
15142 case EF_ARM_EABI_VER4
:
15143 fprintf (file
, _(" [Version4 EABI]"));
15146 case EF_ARM_EABI_VER5
:
15147 fprintf (file
, _(" [Version5 EABI]"));
15149 if (flags
& EF_ARM_ABI_FLOAT_SOFT
)
15150 fprintf (file
, _(" [soft-float ABI]"));
15152 if (flags
& EF_ARM_ABI_FLOAT_HARD
)
15153 fprintf (file
, _(" [hard-float ABI]"));
15155 flags
&= ~(EF_ARM_ABI_FLOAT_SOFT
| EF_ARM_ABI_FLOAT_HARD
);
15158 if (flags
& EF_ARM_BE8
)
15159 fprintf (file
, _(" [BE8]"));
15161 if (flags
& EF_ARM_LE8
)
15162 fprintf (file
, _(" [LE8]"));
15164 flags
&= ~(EF_ARM_LE8
| EF_ARM_BE8
);
15168 fprintf (file
, _(" <EABI version unrecognised>"));
15172 flags
&= ~ EF_ARM_EABIMASK
;
15174 if (flags
& EF_ARM_RELEXEC
)
15175 fprintf (file
, _(" [relocatable executable]"));
15177 if (flags
& EF_ARM_PIC
)
15178 fprintf (file
, _(" [position independent]"));
15180 if (elf_elfheader (abfd
)->e_ident
[EI_OSABI
] == ELFOSABI_ARM_FDPIC
)
15181 fprintf (file
, _(" [FDPIC ABI supplement]"));
15183 flags
&= ~ (EF_ARM_RELEXEC
| EF_ARM_PIC
);
15186 fprintf (file
, _("<Unrecognised flag bits set>"));
15188 fputc ('\n', file
);
15194 elf32_arm_get_symbol_type (Elf_Internal_Sym
* elf_sym
, int type
)
15196 switch (ELF_ST_TYPE (elf_sym
->st_info
))
15198 case STT_ARM_TFUNC
:
15199 return ELF_ST_TYPE (elf_sym
->st_info
);
15201 case STT_ARM_16BIT
:
15202 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
15203 This allows us to distinguish between data used by Thumb instructions
15204 and non-data (which is probably code) inside Thumb regions of an
15206 if (type
!= STT_OBJECT
&& type
!= STT_TLS
)
15207 return ELF_ST_TYPE (elf_sym
->st_info
);
15218 elf32_arm_gc_mark_hook (asection
*sec
,
15219 struct bfd_link_info
*info
,
15220 Elf_Internal_Rela
*rel
,
15221 struct elf_link_hash_entry
*h
,
15222 Elf_Internal_Sym
*sym
)
15225 switch (ELF32_R_TYPE (rel
->r_info
))
15227 case R_ARM_GNU_VTINHERIT
:
15228 case R_ARM_GNU_VTENTRY
:
15232 return _bfd_elf_gc_mark_hook (sec
, info
, rel
, h
, sym
);
15235 /* Look through the relocs for a section during the first phase. */
15238 elf32_arm_check_relocs (bfd
*abfd
, struct bfd_link_info
*info
,
15239 asection
*sec
, const Elf_Internal_Rela
*relocs
)
15241 Elf_Internal_Shdr
*symtab_hdr
;
15242 struct elf_link_hash_entry
**sym_hashes
;
15243 const Elf_Internal_Rela
*rel
;
15244 const Elf_Internal_Rela
*rel_end
;
15247 struct elf32_arm_link_hash_table
*htab
;
15248 bfd_boolean call_reloc_p
;
15249 bfd_boolean may_become_dynamic_p
;
15250 bfd_boolean may_need_local_target_p
;
15251 unsigned long nsyms
;
15253 if (bfd_link_relocatable (info
))
15256 BFD_ASSERT (is_arm_elf (abfd
));
15258 htab
= elf32_arm_hash_table (info
);
15264 /* Create dynamic sections for relocatable executables so that we can
15265 copy relocations. */
15266 if (htab
->root
.is_relocatable_executable
15267 && ! htab
->root
.dynamic_sections_created
)
15269 if (! _bfd_elf_link_create_dynamic_sections (abfd
, info
))
15273 if (htab
->root
.dynobj
== NULL
)
15274 htab
->root
.dynobj
= abfd
;
15275 if (!create_ifunc_sections (info
))
15278 dynobj
= htab
->root
.dynobj
;
15280 symtab_hdr
= & elf_symtab_hdr (abfd
);
15281 sym_hashes
= elf_sym_hashes (abfd
);
15282 nsyms
= NUM_SHDR_ENTRIES (symtab_hdr
);
15284 rel_end
= relocs
+ sec
->reloc_count
;
15285 for (rel
= relocs
; rel
< rel_end
; rel
++)
15287 Elf_Internal_Sym
*isym
;
15288 struct elf_link_hash_entry
*h
;
15289 struct elf32_arm_link_hash_entry
*eh
;
15290 unsigned int r_symndx
;
15293 r_symndx
= ELF32_R_SYM (rel
->r_info
);
15294 r_type
= ELF32_R_TYPE (rel
->r_info
);
15295 r_type
= arm_real_reloc_type (htab
, r_type
);
15297 if (r_symndx
>= nsyms
15298 /* PR 9934: It is possible to have relocations that do not
15299 refer to symbols, thus it is also possible to have an
15300 object file containing relocations but no symbol table. */
15301 && (r_symndx
> STN_UNDEF
|| nsyms
> 0))
15303 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd
,
15312 if (r_symndx
< symtab_hdr
->sh_info
)
15314 /* A local symbol. */
15315 isym
= bfd_sym_from_r_symndx (&htab
->root
.sym_cache
,
15322 h
= sym_hashes
[r_symndx
- symtab_hdr
->sh_info
];
15323 while (h
->root
.type
== bfd_link_hash_indirect
15324 || h
->root
.type
== bfd_link_hash_warning
)
15325 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
15329 eh
= (struct elf32_arm_link_hash_entry
*) h
;
15331 call_reloc_p
= FALSE
;
15332 may_become_dynamic_p
= FALSE
;
15333 may_need_local_target_p
= FALSE
;
15335 /* Could be done earlier, if h were already available. */
15336 r_type
= elf32_arm_tls_transition (info
, r_type
, h
);
15339 case R_ARM_GOTOFFFUNCDESC
:
15343 if (!elf32_arm_allocate_local_sym_info (abfd
))
15345 elf32_arm_local_fdpic_cnts(abfd
)[r_symndx
].gotofffuncdesc_cnt
+= 1;
15346 elf32_arm_local_fdpic_cnts(abfd
)[r_symndx
].funcdesc_offset
= -1;
15350 eh
->fdpic_cnts
.gotofffuncdesc_cnt
++;
15355 case R_ARM_GOTFUNCDESC
:
15359 /* Such a relocation is not supposed to be generated
15360 by gcc on a static function. */
15361 /* Anyway if needed it could be handled. */
15366 eh
->fdpic_cnts
.gotfuncdesc_cnt
++;
15371 case R_ARM_FUNCDESC
:
15375 if (!elf32_arm_allocate_local_sym_info (abfd
))
15377 elf32_arm_local_fdpic_cnts(abfd
)[r_symndx
].funcdesc_cnt
+= 1;
15378 elf32_arm_local_fdpic_cnts(abfd
)[r_symndx
].funcdesc_offset
= -1;
15382 eh
->fdpic_cnts
.funcdesc_cnt
++;
15388 case R_ARM_GOT_PREL
:
15389 case R_ARM_TLS_GD32
:
15390 case R_ARM_TLS_GD32_FDPIC
:
15391 case R_ARM_TLS_IE32
:
15392 case R_ARM_TLS_IE32_FDPIC
:
15393 case R_ARM_TLS_GOTDESC
:
15394 case R_ARM_TLS_DESCSEQ
:
15395 case R_ARM_THM_TLS_DESCSEQ
:
15396 case R_ARM_TLS_CALL
:
15397 case R_ARM_THM_TLS_CALL
:
15398 /* This symbol requires a global offset table entry. */
15400 int tls_type
, old_tls_type
;
15404 case R_ARM_TLS_GD32
: tls_type
= GOT_TLS_GD
; break;
15405 case R_ARM_TLS_GD32_FDPIC
: tls_type
= GOT_TLS_GD
; break;
15407 case R_ARM_TLS_IE32
: tls_type
= GOT_TLS_IE
; break;
15408 case R_ARM_TLS_IE32_FDPIC
: tls_type
= GOT_TLS_IE
; break;
15410 case R_ARM_TLS_GOTDESC
:
15411 case R_ARM_TLS_CALL
: case R_ARM_THM_TLS_CALL
:
15412 case R_ARM_TLS_DESCSEQ
: case R_ARM_THM_TLS_DESCSEQ
:
15413 tls_type
= GOT_TLS_GDESC
; break;
15415 default: tls_type
= GOT_NORMAL
; break;
15418 if (!bfd_link_executable (info
) && (tls_type
& GOT_TLS_IE
))
15419 info
->flags
|= DF_STATIC_TLS
;
15424 old_tls_type
= elf32_arm_hash_entry (h
)->tls_type
;
15428 /* This is a global offset table entry for a local symbol. */
15429 if (!elf32_arm_allocate_local_sym_info (abfd
))
15431 elf_local_got_refcounts (abfd
)[r_symndx
] += 1;
15432 old_tls_type
= elf32_arm_local_got_tls_type (abfd
) [r_symndx
];
15435 /* If a variable is accessed with both tls methods, two
15436 slots may be created. */
15437 if (GOT_TLS_GD_ANY_P (old_tls_type
)
15438 && GOT_TLS_GD_ANY_P (tls_type
))
15439 tls_type
|= old_tls_type
;
15441 /* We will already have issued an error message if there
15442 is a TLS/non-TLS mismatch, based on the symbol
15443 type. So just combine any TLS types needed. */
15444 if (old_tls_type
!= GOT_UNKNOWN
&& old_tls_type
!= GOT_NORMAL
15445 && tls_type
!= GOT_NORMAL
)
15446 tls_type
|= old_tls_type
;
15448 /* If the symbol is accessed in both IE and GDESC
15449 method, we're able to relax. Turn off the GDESC flag,
15450 without messing up with any other kind of tls types
15451 that may be involved. */
15452 if ((tls_type
& GOT_TLS_IE
) && (tls_type
& GOT_TLS_GDESC
))
15453 tls_type
&= ~GOT_TLS_GDESC
;
15455 if (old_tls_type
!= tls_type
)
15458 elf32_arm_hash_entry (h
)->tls_type
= tls_type
;
15460 elf32_arm_local_got_tls_type (abfd
) [r_symndx
] = tls_type
;
15463 /* Fall through. */
15465 case R_ARM_TLS_LDM32
:
15466 case R_ARM_TLS_LDM32_FDPIC
:
15467 if (r_type
== R_ARM_TLS_LDM32
|| r_type
== R_ARM_TLS_LDM32_FDPIC
)
15468 htab
->tls_ldm_got
.refcount
++;
15469 /* Fall through. */
15471 case R_ARM_GOTOFF32
:
15473 if (htab
->root
.sgot
== NULL
15474 && !create_got_section (htab
->root
.dynobj
, info
))
15483 case R_ARM_THM_CALL
:
15484 case R_ARM_THM_JUMP24
:
15485 case R_ARM_THM_JUMP19
:
15486 call_reloc_p
= TRUE
;
15487 may_need_local_target_p
= TRUE
;
15491 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
15492 ldr __GOTT_INDEX__ offsets. */
15493 if (htab
->root
.target_os
!= is_vxworks
)
15495 may_need_local_target_p
= TRUE
;
15498 else goto jump_over
;
15500 /* Fall through. */
15502 case R_ARM_MOVW_ABS_NC
:
15503 case R_ARM_MOVT_ABS
:
15504 case R_ARM_THM_MOVW_ABS_NC
:
15505 case R_ARM_THM_MOVT_ABS
:
15506 if (bfd_link_pic (info
))
15509 (_("%pB: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
15510 abfd
, elf32_arm_howto_table_1
[r_type
].name
,
15511 (h
) ? h
->root
.root
.string
: "a local symbol");
15512 bfd_set_error (bfd_error_bad_value
);
15516 /* Fall through. */
15518 case R_ARM_ABS32_NOI
:
15520 if (h
!= NULL
&& bfd_link_executable (info
))
15522 h
->pointer_equality_needed
= 1;
15524 /* Fall through. */
15526 case R_ARM_REL32_NOI
:
15527 case R_ARM_MOVW_PREL_NC
:
15528 case R_ARM_MOVT_PREL
:
15529 case R_ARM_THM_MOVW_PREL_NC
:
15530 case R_ARM_THM_MOVT_PREL
:
15532 /* Should the interworking branches be listed here? */
15533 if ((bfd_link_pic (info
) || htab
->root
.is_relocatable_executable
15535 && (sec
->flags
& SEC_ALLOC
) != 0)
15538 && elf32_arm_howto_from_type (r_type
)->pc_relative
)
15540 /* In shared libraries and relocatable executables,
15541 we treat local relative references as calls;
15542 see the related SYMBOL_CALLS_LOCAL code in
15543 allocate_dynrelocs. */
15544 call_reloc_p
= TRUE
;
15545 may_need_local_target_p
= TRUE
;
15548 /* We are creating a shared library or relocatable
15549 executable, and this is a reloc against a global symbol,
15550 or a non-PC-relative reloc against a local symbol.
15551 We may need to copy the reloc into the output. */
15552 may_become_dynamic_p
= TRUE
;
15555 may_need_local_target_p
= TRUE
;
15558 /* This relocation describes the C++ object vtable hierarchy.
15559 Reconstruct it for later use during GC. */
15560 case R_ARM_GNU_VTINHERIT
:
15561 if (!bfd_elf_gc_record_vtinherit (abfd
, sec
, h
, rel
->r_offset
))
15565 /* This relocation describes which C++ vtable entries are actually
15566 used. Record for later use during GC. */
15567 case R_ARM_GNU_VTENTRY
:
15568 if (!bfd_elf_gc_record_vtentry (abfd
, sec
, h
, rel
->r_offset
))
15576 /* We may need a .plt entry if the function this reloc
15577 refers to is in a different object, regardless of the
15578 symbol's type. We can't tell for sure yet, because
15579 something later might force the symbol local. */
15581 else if (may_need_local_target_p
)
15582 /* If this reloc is in a read-only section, we might
15583 need a copy reloc. We can't check reliably at this
15584 stage whether the section is read-only, as input
15585 sections have not yet been mapped to output sections.
15586 Tentatively set the flag for now, and correct in
15587 adjust_dynamic_symbol. */
15588 h
->non_got_ref
= 1;
15591 if (may_need_local_target_p
15592 && (h
!= NULL
|| ELF32_ST_TYPE (isym
->st_info
) == STT_GNU_IFUNC
))
15594 union gotplt_union
*root_plt
;
15595 struct arm_plt_info
*arm_plt
;
15596 struct arm_local_iplt_info
*local_iplt
;
15600 root_plt
= &h
->plt
;
15601 arm_plt
= &eh
->plt
;
15605 local_iplt
= elf32_arm_create_local_iplt (abfd
, r_symndx
);
15606 if (local_iplt
== NULL
)
15608 root_plt
= &local_iplt
->root
;
15609 arm_plt
= &local_iplt
->arm
;
15612 /* If the symbol is a function that doesn't bind locally,
15613 this relocation will need a PLT entry. */
15614 if (root_plt
->refcount
!= -1)
15615 root_plt
->refcount
+= 1;
15618 arm_plt
->noncall_refcount
++;
15620 /* It's too early to use htab->use_blx here, so we have to
15621 record possible blx references separately from
15622 relocs that definitely need a thumb stub. */
15624 if (r_type
== R_ARM_THM_CALL
)
15625 arm_plt
->maybe_thumb_refcount
+= 1;
15627 if (r_type
== R_ARM_THM_JUMP24
15628 || r_type
== R_ARM_THM_JUMP19
)
15629 arm_plt
->thumb_refcount
+= 1;
15632 if (may_become_dynamic_p
)
15634 struct elf_dyn_relocs
*p
, **head
;
15636 /* Create a reloc section in dynobj. */
15637 if (sreloc
== NULL
)
15639 sreloc
= _bfd_elf_make_dynamic_reloc_section
15640 (sec
, dynobj
, 2, abfd
, ! htab
->use_rel
);
15642 if (sreloc
== NULL
)
15645 /* BPABI objects never have dynamic relocations mapped. */
15646 if (htab
->root
.target_os
== is_symbian
)
15650 flags
= bfd_section_flags (sreloc
);
15651 flags
&= ~(SEC_LOAD
| SEC_ALLOC
);
15652 bfd_set_section_flags (sreloc
, flags
);
15656 /* If this is a global symbol, count the number of
15657 relocations we need for this symbol. */
15659 head
= &h
->dyn_relocs
;
15662 head
= elf32_arm_get_local_dynreloc_list (abfd
, r_symndx
, isym
);
15668 if (p
== NULL
|| p
->sec
!= sec
)
15670 size_t amt
= sizeof *p
;
15672 p
= (struct elf_dyn_relocs
*) bfd_alloc (htab
->root
.dynobj
, amt
);
15682 if (elf32_arm_howto_from_type (r_type
)->pc_relative
)
15685 if (h
== NULL
&& htab
->fdpic_p
&& !bfd_link_pic(info
)
15686 && r_type
!= R_ARM_ABS32
&& r_type
!= R_ARM_ABS32_NOI
) {
15687 /* Here we only support R_ARM_ABS32 and R_ARM_ABS32_NOI
15688 that will become rofixup. */
15689 /* This is due to the fact that we suppose all will become rofixup. */
15690 fprintf(stderr
, "FDPIC does not yet support %d relocation to become dynamic for executable\n", r_type
);
15692 (_("FDPIC does not yet support %s relocation"
15693 " to become dynamic for executable"),
15694 elf32_arm_howto_table_1
[r_type
].name
);
15704 elf32_arm_update_relocs (asection
*o
,
15705 struct bfd_elf_section_reloc_data
*reldata
)
15707 void (*swap_in
) (bfd
*, const bfd_byte
*, Elf_Internal_Rela
*);
15708 void (*swap_out
) (bfd
*, const Elf_Internal_Rela
*, bfd_byte
*);
15709 const struct elf_backend_data
*bed
;
15710 _arm_elf_section_data
*eado
;
15711 struct bfd_link_order
*p
;
15712 bfd_byte
*erela_head
, *erela
;
15713 Elf_Internal_Rela
*irela_head
, *irela
;
15714 Elf_Internal_Shdr
*rel_hdr
;
15716 unsigned int count
;
15718 eado
= get_arm_elf_section_data (o
);
15720 if (!eado
|| eado
->elf
.this_hdr
.sh_type
!= SHT_ARM_EXIDX
)
15724 bed
= get_elf_backend_data (abfd
);
15725 rel_hdr
= reldata
->hdr
;
15727 if (rel_hdr
->sh_entsize
== bed
->s
->sizeof_rel
)
15729 swap_in
= bed
->s
->swap_reloc_in
;
15730 swap_out
= bed
->s
->swap_reloc_out
;
15732 else if (rel_hdr
->sh_entsize
== bed
->s
->sizeof_rela
)
15734 swap_in
= bed
->s
->swap_reloca_in
;
15735 swap_out
= bed
->s
->swap_reloca_out
;
15740 erela_head
= rel_hdr
->contents
;
15741 irela_head
= (Elf_Internal_Rela
*) bfd_zmalloc
15742 ((NUM_SHDR_ENTRIES (rel_hdr
) + 1) * sizeof (*irela_head
));
15744 erela
= erela_head
;
15745 irela
= irela_head
;
15748 for (p
= o
->map_head
.link_order
; p
; p
= p
->next
)
15750 if (p
->type
== bfd_section_reloc_link_order
15751 || p
->type
== bfd_symbol_reloc_link_order
)
15753 (*swap_in
) (abfd
, erela
, irela
);
15754 erela
+= rel_hdr
->sh_entsize
;
15758 else if (p
->type
== bfd_indirect_link_order
)
15760 struct bfd_elf_section_reloc_data
*input_reldata
;
15761 arm_unwind_table_edit
*edit_list
, *edit_tail
;
15762 _arm_elf_section_data
*eadi
;
15767 i
= p
->u
.indirect
.section
;
15769 eadi
= get_arm_elf_section_data (i
);
15770 edit_list
= eadi
->u
.exidx
.unwind_edit_list
;
15771 edit_tail
= eadi
->u
.exidx
.unwind_edit_tail
;
15772 offset
= i
->output_offset
;
15774 if (eadi
->elf
.rel
.hdr
&&
15775 eadi
->elf
.rel
.hdr
->sh_entsize
== rel_hdr
->sh_entsize
)
15776 input_reldata
= &eadi
->elf
.rel
;
15777 else if (eadi
->elf
.rela
.hdr
&&
15778 eadi
->elf
.rela
.hdr
->sh_entsize
== rel_hdr
->sh_entsize
)
15779 input_reldata
= &eadi
->elf
.rela
;
15785 for (j
= 0; j
< NUM_SHDR_ENTRIES (input_reldata
->hdr
); j
++)
15787 arm_unwind_table_edit
*edit_node
, *edit_next
;
15789 bfd_vma reloc_index
;
15791 (*swap_in
) (abfd
, erela
, irela
);
15792 reloc_index
= (irela
->r_offset
- offset
) / 8;
15795 edit_node
= edit_list
;
15796 for (edit_next
= edit_list
;
15797 edit_next
&& edit_next
->index
<= reloc_index
;
15798 edit_next
= edit_node
->next
)
15801 edit_node
= edit_next
;
15804 if (edit_node
->type
!= DELETE_EXIDX_ENTRY
15805 || edit_node
->index
!= reloc_index
)
15807 irela
->r_offset
-= bias
* 8;
15812 erela
+= rel_hdr
->sh_entsize
;
15815 if (edit_tail
->type
== INSERT_EXIDX_CANTUNWIND_AT_END
)
15817 /* New relocation entity. */
15818 asection
*text_sec
= edit_tail
->linked_section
;
15819 asection
*text_out
= text_sec
->output_section
;
15820 bfd_vma exidx_offset
= offset
+ i
->size
- 8;
15822 irela
->r_addend
= 0;
15823 irela
->r_offset
= exidx_offset
;
15824 irela
->r_info
= ELF32_R_INFO
15825 (text_out
->target_index
, R_ARM_PREL31
);
15832 for (j
= 0; j
< NUM_SHDR_ENTRIES (input_reldata
->hdr
); j
++)
15834 (*swap_in
) (abfd
, erela
, irela
);
15835 erela
+= rel_hdr
->sh_entsize
;
15839 count
+= NUM_SHDR_ENTRIES (input_reldata
->hdr
);
15844 reldata
->count
= count
;
15845 rel_hdr
->sh_size
= count
* rel_hdr
->sh_entsize
;
15847 erela
= erela_head
;
15848 irela
= irela_head
;
15851 (*swap_out
) (abfd
, irela
, erela
);
15852 erela
+= rel_hdr
->sh_entsize
;
15859 /* Hashes are no longer valid. */
15860 free (reldata
->hashes
);
15861 reldata
->hashes
= NULL
;
15864 /* Unwinding tables are not referenced directly. This pass marks them as
15865 required if the corresponding code section is marked. Similarly, ARMv8-M
15866 secure entry functions can only be referenced by SG veneers which are
15867 created after the GC process. They need to be marked in case they reside in
15868 their own section (as would be the case if code was compiled with
15869 -ffunction-sections). */
15872 elf32_arm_gc_mark_extra_sections (struct bfd_link_info
*info
,
15873 elf_gc_mark_hook_fn gc_mark_hook
)
15876 Elf_Internal_Shdr
**elf_shdrp
;
15877 asection
*cmse_sec
;
15878 obj_attribute
*out_attr
;
15879 Elf_Internal_Shdr
*symtab_hdr
;
15880 unsigned i
, sym_count
, ext_start
;
15881 const struct elf_backend_data
*bed
;
15882 struct elf_link_hash_entry
**sym_hashes
;
15883 struct elf32_arm_link_hash_entry
*cmse_hash
;
15884 bfd_boolean again
, is_v8m
, first_bfd_browse
= TRUE
;
15885 bfd_boolean debug_sec_need_to_be_marked
= FALSE
;
15888 _bfd_elf_gc_mark_extra_sections (info
, gc_mark_hook
);
15890 out_attr
= elf_known_obj_attributes_proc (info
->output_bfd
);
15891 is_v8m
= out_attr
[Tag_CPU_arch
].i
>= TAG_CPU_ARCH_V8M_BASE
15892 && out_attr
[Tag_CPU_arch_profile
].i
== 'M';
15894 /* Marking EH data may cause additional code sections to be marked,
15895 requiring multiple passes. */
15900 for (sub
= info
->input_bfds
; sub
!= NULL
; sub
= sub
->link
.next
)
15904 if (! is_arm_elf (sub
))
15907 elf_shdrp
= elf_elfsections (sub
);
15908 for (o
= sub
->sections
; o
!= NULL
; o
= o
->next
)
15910 Elf_Internal_Shdr
*hdr
;
15912 hdr
= &elf_section_data (o
)->this_hdr
;
15913 if (hdr
->sh_type
== SHT_ARM_EXIDX
15915 && hdr
->sh_link
< elf_numsections (sub
)
15917 && elf_shdrp
[hdr
->sh_link
]->bfd_section
->gc_mark
)
15920 if (!_bfd_elf_gc_mark (info
, o
, gc_mark_hook
))
15925 /* Mark section holding ARMv8-M secure entry functions. We mark all
15926 of them so no need for a second browsing. */
15927 if (is_v8m
&& first_bfd_browse
)
15929 sym_hashes
= elf_sym_hashes (sub
);
15930 bed
= get_elf_backend_data (sub
);
15931 symtab_hdr
= &elf_tdata (sub
)->symtab_hdr
;
15932 sym_count
= symtab_hdr
->sh_size
/ bed
->s
->sizeof_sym
;
15933 ext_start
= symtab_hdr
->sh_info
;
15935 /* Scan symbols. */
15936 for (i
= ext_start
; i
< sym_count
; i
++)
15938 cmse_hash
= elf32_arm_hash_entry (sym_hashes
[i
- ext_start
]);
15940 /* Assume it is a special symbol. If not, cmse_scan will
15941 warn about it and user can do something about it. */
15942 if (CONST_STRNEQ (cmse_hash
->root
.root
.root
.string
,
15945 cmse_sec
= cmse_hash
->root
.root
.u
.def
.section
;
15946 if (!cmse_sec
->gc_mark
15947 && !_bfd_elf_gc_mark (info
, cmse_sec
, gc_mark_hook
))
15949 /* The debug sections related to these secure entry
15950 functions are marked on enabling below flag. */
15951 debug_sec_need_to_be_marked
= TRUE
;
15955 if (debug_sec_need_to_be_marked
)
15957 /* Looping over all the sections of the object file containing
15958 Armv8-M secure entry functions and marking all the debug
15960 for (isec
= sub
->sections
; isec
!= NULL
; isec
= isec
->next
)
15962 /* If not a debug sections, skip it. */
15963 if (!isec
->gc_mark
&& (isec
->flags
& SEC_DEBUGGING
))
15964 isec
->gc_mark
= 1 ;
15966 debug_sec_need_to_be_marked
= FALSE
;
15970 first_bfd_browse
= FALSE
;
15976 /* Treat mapping symbols as special target symbols. */
15979 elf32_arm_is_target_special_symbol (bfd
* abfd ATTRIBUTE_UNUSED
, asymbol
* sym
)
15981 return bfd_is_arm_special_symbol_name (sym
->name
,
15982 BFD_ARM_SPECIAL_SYM_TYPE_ANY
);
15985 /* If the ELF symbol SYM might be a function in SEC, return the
15986 function size and set *CODE_OFF to the function's entry point,
15987 otherwise return zero. */
15989 static bfd_size_type
15990 elf32_arm_maybe_function_sym (const asymbol
*sym
, asection
*sec
,
15993 bfd_size_type size
;
15995 if ((sym
->flags
& (BSF_SECTION_SYM
| BSF_FILE
| BSF_OBJECT
15996 | BSF_THREAD_LOCAL
| BSF_RELC
| BSF_SRELC
)) != 0
15997 || sym
->section
!= sec
)
16000 if (!(sym
->flags
& BSF_SYNTHETIC
))
16001 switch (ELF_ST_TYPE (((elf_symbol_type
*) sym
)->internal_elf_sym
.st_info
))
16004 case STT_ARM_TFUNC
:
16011 if ((sym
->flags
& BSF_LOCAL
)
16012 && bfd_is_arm_special_symbol_name (sym
->name
,
16013 BFD_ARM_SPECIAL_SYM_TYPE_ANY
))
16016 *code_off
= sym
->value
;
16018 if (!(sym
->flags
& BSF_SYNTHETIC
))
16019 size
= ((elf_symbol_type
*) sym
)->internal_elf_sym
.st_size
;
16026 elf32_arm_find_inliner_info (bfd
* abfd
,
16027 const char ** filename_ptr
,
16028 const char ** functionname_ptr
,
16029 unsigned int * line_ptr
)
16032 found
= _bfd_dwarf2_find_inliner_info (abfd
, filename_ptr
,
16033 functionname_ptr
, line_ptr
,
16034 & elf_tdata (abfd
)->dwarf2_find_line_info
);
16038 /* Adjust a symbol defined by a dynamic object and referenced by a
16039 regular object. The current definition is in some section of the
16040 dynamic object, but we're not including those sections. We have to
16041 change the definition to something the rest of the link can
16045 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info
* info
,
16046 struct elf_link_hash_entry
* h
)
16049 asection
*s
, *srel
;
16050 struct elf32_arm_link_hash_entry
* eh
;
16051 struct elf32_arm_link_hash_table
*globals
;
16053 globals
= elf32_arm_hash_table (info
);
16054 if (globals
== NULL
)
16057 dynobj
= elf_hash_table (info
)->dynobj
;
16059 /* Make sure we know what is going on here. */
16060 BFD_ASSERT (dynobj
!= NULL
16062 || h
->type
== STT_GNU_IFUNC
16066 && !h
->def_regular
)));
16068 eh
= (struct elf32_arm_link_hash_entry
*) h
;
16070 /* If this is a function, put it in the procedure linkage table. We
16071 will fill in the contents of the procedure linkage table later,
16072 when we know the address of the .got section. */
16073 if (h
->type
== STT_FUNC
|| h
->type
== STT_GNU_IFUNC
|| h
->needs_plt
)
16075 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
16076 symbol binds locally. */
16077 if (h
->plt
.refcount
<= 0
16078 || (h
->type
!= STT_GNU_IFUNC
16079 && (SYMBOL_CALLS_LOCAL (info
, h
)
16080 || (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
16081 && h
->root
.type
== bfd_link_hash_undefweak
))))
16083 /* This case can occur if we saw a PLT32 reloc in an input
16084 file, but the symbol was never referred to by a dynamic
16085 object, or if all references were garbage collected. In
16086 such a case, we don't actually need to build a procedure
16087 linkage table, and we can just do a PC24 reloc instead. */
16088 h
->plt
.offset
= (bfd_vma
) -1;
16089 eh
->plt
.thumb_refcount
= 0;
16090 eh
->plt
.maybe_thumb_refcount
= 0;
16091 eh
->plt
.noncall_refcount
= 0;
16099 /* It's possible that we incorrectly decided a .plt reloc was
16100 needed for an R_ARM_PC24 or similar reloc to a non-function sym
16101 in check_relocs. We can't decide accurately between function
16102 and non-function syms in check-relocs; Objects loaded later in
16103 the link may change h->type. So fix it now. */
16104 h
->plt
.offset
= (bfd_vma
) -1;
16105 eh
->plt
.thumb_refcount
= 0;
16106 eh
->plt
.maybe_thumb_refcount
= 0;
16107 eh
->plt
.noncall_refcount
= 0;
16110 /* If this is a weak symbol, and there is a real definition, the
16111 processor independent code will have arranged for us to see the
16112 real definition first, and we can just use the same value. */
16113 if (h
->is_weakalias
)
16115 struct elf_link_hash_entry
*def
= weakdef (h
);
16116 BFD_ASSERT (def
->root
.type
== bfd_link_hash_defined
);
16117 h
->root
.u
.def
.section
= def
->root
.u
.def
.section
;
16118 h
->root
.u
.def
.value
= def
->root
.u
.def
.value
;
16122 /* If there are no non-GOT references, we do not need a copy
16124 if (!h
->non_got_ref
)
16127 /* This is a reference to a symbol defined by a dynamic object which
16128 is not a function. */
16130 /* If we are creating a shared library, we must presume that the
16131 only references to the symbol are via the global offset table.
16132 For such cases we need not do anything here; the relocations will
16133 be handled correctly by relocate_section. Relocatable executables
16134 can reference data in shared objects directly, so we don't need to
16135 do anything here. */
16136 if (bfd_link_pic (info
) || globals
->root
.is_relocatable_executable
)
16139 /* We must allocate the symbol in our .dynbss section, which will
16140 become part of the .bss section of the executable. There will be
16141 an entry for this symbol in the .dynsym section. The dynamic
16142 object will contain position independent code, so all references
16143 from the dynamic object to this symbol will go through the global
16144 offset table. The dynamic linker will use the .dynsym entry to
16145 determine the address it must put in the global offset table, so
16146 both the dynamic object and the regular object will refer to the
16147 same memory location for the variable. */
16148 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic
16149 linker to copy the initial value out of the dynamic object and into
16150 the runtime process image. We need to remember the offset into the
16151 .rel(a).bss section we are going to use. */
16152 if ((h
->root
.u
.def
.section
->flags
& SEC_READONLY
) != 0)
16154 s
= globals
->root
.sdynrelro
;
16155 srel
= globals
->root
.sreldynrelro
;
16159 s
= globals
->root
.sdynbss
;
16160 srel
= globals
->root
.srelbss
;
16162 if (info
->nocopyreloc
== 0
16163 && (h
->root
.u
.def
.section
->flags
& SEC_ALLOC
) != 0
16166 elf32_arm_allocate_dynrelocs (info
, srel
, 1);
16170 return _bfd_elf_adjust_dynamic_copy (info
, h
, s
);
16173 /* Allocate space in .plt, .got and associated reloc sections for
16177 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry
*h
, void * inf
)
16179 struct bfd_link_info
*info
;
16180 struct elf32_arm_link_hash_table
*htab
;
16181 struct elf32_arm_link_hash_entry
*eh
;
16182 struct elf_dyn_relocs
*p
;
16184 if (h
->root
.type
== bfd_link_hash_indirect
)
16187 eh
= (struct elf32_arm_link_hash_entry
*) h
;
16189 info
= (struct bfd_link_info
*) inf
;
16190 htab
= elf32_arm_hash_table (info
);
16194 if ((htab
->root
.dynamic_sections_created
|| h
->type
== STT_GNU_IFUNC
)
16195 && h
->plt
.refcount
> 0)
16197 /* Make sure this symbol is output as a dynamic symbol.
16198 Undefined weak syms won't yet be marked as dynamic. */
16199 if (h
->dynindx
== -1 && !h
->forced_local
16200 && h
->root
.type
== bfd_link_hash_undefweak
)
16202 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
16206 /* If the call in the PLT entry binds locally, the associated
16207 GOT entry should use an R_ARM_IRELATIVE relocation instead of
16208 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
16209 than the .plt section. */
16210 if (h
->type
== STT_GNU_IFUNC
&& SYMBOL_CALLS_LOCAL (info
, h
))
16213 if (eh
->plt
.noncall_refcount
== 0
16214 && SYMBOL_REFERENCES_LOCAL (info
, h
))
16215 /* All non-call references can be resolved directly.
16216 This means that they can (and in some cases, must)
16217 resolve directly to the run-time target, rather than
16218 to the PLT. That in turns means that any .got entry
16219 would be equal to the .igot.plt entry, so there's
16220 no point having both. */
16221 h
->got
.refcount
= 0;
16224 if (bfd_link_pic (info
)
16226 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h
))
16228 elf32_arm_allocate_plt_entry (info
, eh
->is_iplt
, &h
->plt
, &eh
->plt
);
16230 /* If this symbol is not defined in a regular file, and we are
16231 not generating a shared library, then set the symbol to this
16232 location in the .plt. This is required to make function
16233 pointers compare as equal between the normal executable and
16234 the shared library. */
16235 if (! bfd_link_pic (info
)
16236 && !h
->def_regular
)
16238 h
->root
.u
.def
.section
= htab
->root
.splt
;
16239 h
->root
.u
.def
.value
= h
->plt
.offset
;
16241 /* Make sure the function is not marked as Thumb, in case
16242 it is the target of an ABS32 relocation, which will
16243 point to the PLT entry. */
16244 ARM_SET_SYM_BRANCH_TYPE (h
->target_internal
, ST_BRANCH_TO_ARM
);
16247 /* VxWorks executables have a second set of relocations for
16248 each PLT entry. They go in a separate relocation section,
16249 which is processed by the kernel loader. */
16250 if (htab
->root
.target_os
== is_vxworks
&& !bfd_link_pic (info
))
16252 /* There is a relocation for the initial PLT entry:
16253 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
16254 if (h
->plt
.offset
== htab
->plt_header_size
)
16255 elf32_arm_allocate_dynrelocs (info
, htab
->srelplt2
, 1);
16257 /* There are two extra relocations for each subsequent
16258 PLT entry: an R_ARM_32 relocation for the GOT entry,
16259 and an R_ARM_32 relocation for the PLT entry. */
16260 elf32_arm_allocate_dynrelocs (info
, htab
->srelplt2
, 2);
16265 h
->plt
.offset
= (bfd_vma
) -1;
16271 h
->plt
.offset
= (bfd_vma
) -1;
16275 eh
= (struct elf32_arm_link_hash_entry
*) h
;
16276 eh
->tlsdesc_got
= (bfd_vma
) -1;
16278 if (h
->got
.refcount
> 0)
16282 int tls_type
= elf32_arm_hash_entry (h
)->tls_type
;
16285 /* Make sure this symbol is output as a dynamic symbol.
16286 Undefined weak syms won't yet be marked as dynamic. */
16287 if (htab
->root
.dynamic_sections_created
&& h
->dynindx
== -1 && !h
->forced_local
16288 && h
->root
.type
== bfd_link_hash_undefweak
)
16290 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
16294 if (htab
->root
.target_os
!= is_symbian
)
16296 s
= htab
->root
.sgot
;
16297 h
->got
.offset
= s
->size
;
16299 if (tls_type
== GOT_UNKNOWN
)
16302 if (tls_type
== GOT_NORMAL
)
16303 /* Non-TLS symbols need one GOT slot. */
16307 if (tls_type
& GOT_TLS_GDESC
)
16309 /* R_ARM_TLS_DESC needs 2 GOT slots. */
16311 = (htab
->root
.sgotplt
->size
16312 - elf32_arm_compute_jump_table_size (htab
));
16313 htab
->root
.sgotplt
->size
+= 8;
16314 h
->got
.offset
= (bfd_vma
) -2;
16315 /* plt.got_offset needs to know there's a TLS_DESC
16316 reloc in the middle of .got.plt. */
16317 htab
->num_tls_desc
++;
16320 if (tls_type
& GOT_TLS_GD
)
16322 /* R_ARM_TLS_GD32 and R_ARM_TLS_GD32_FDPIC need two
16323 consecutive GOT slots. If the symbol is both GD
16324 and GDESC, got.offset may have been
16326 h
->got
.offset
= s
->size
;
16330 if (tls_type
& GOT_TLS_IE
)
16331 /* R_ARM_TLS_IE32/R_ARM_TLS_IE32_FDPIC need one GOT
16336 dyn
= htab
->root
.dynamic_sections_created
;
16339 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn
,
16340 bfd_link_pic (info
),
16342 && (!bfd_link_pic (info
)
16343 || !SYMBOL_REFERENCES_LOCAL (info
, h
)))
16346 if (tls_type
!= GOT_NORMAL
16347 && (bfd_link_dll (info
) || indx
!= 0)
16348 && (ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
16349 || h
->root
.type
!= bfd_link_hash_undefweak
))
16351 if (tls_type
& GOT_TLS_IE
)
16352 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
16354 if (tls_type
& GOT_TLS_GD
)
16355 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
16357 if (tls_type
& GOT_TLS_GDESC
)
16359 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelplt
, 1);
16360 /* GDESC needs a trampoline to jump to. */
16361 htab
->tls_trampoline
= -1;
16364 /* Only GD needs it. GDESC just emits one relocation per
16366 if ((tls_type
& GOT_TLS_GD
) && indx
!= 0)
16367 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
16369 else if (((indx
!= -1) || htab
->fdpic_p
)
16370 && !SYMBOL_REFERENCES_LOCAL (info
, h
))
16372 if (htab
->root
.dynamic_sections_created
)
16373 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
16374 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
16376 else if (h
->type
== STT_GNU_IFUNC
16377 && eh
->plt
.noncall_refcount
== 0)
16378 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
16379 they all resolve dynamically instead. Reserve room for the
16380 GOT entry's R_ARM_IRELATIVE relocation. */
16381 elf32_arm_allocate_irelocs (info
, htab
->root
.srelgot
, 1);
16382 else if (bfd_link_pic (info
)
16383 && !UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
))
16384 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
16385 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
16386 else if (htab
->fdpic_p
&& tls_type
== GOT_NORMAL
)
16387 /* Reserve room for rofixup for FDPIC executable. */
16388 /* TLS relocs do not need space since they are completely
16390 htab
->srofixup
->size
+= 4;
16394 h
->got
.offset
= (bfd_vma
) -1;
16396 /* FDPIC support. */
16397 if (eh
->fdpic_cnts
.gotofffuncdesc_cnt
> 0)
16399 /* Symbol musn't be exported. */
16400 if (h
->dynindx
!= -1)
16403 /* We only allocate one function descriptor with its associated relocation. */
16404 if (eh
->fdpic_cnts
.funcdesc_offset
== -1)
16406 asection
*s
= htab
->root
.sgot
;
16408 eh
->fdpic_cnts
.funcdesc_offset
= s
->size
;
16410 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16411 if (bfd_link_pic(info
))
16412 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
16414 htab
->srofixup
->size
+= 8;
16418 if (eh
->fdpic_cnts
.gotfuncdesc_cnt
> 0)
16420 asection
*s
= htab
->root
.sgot
;
16422 if (htab
->root
.dynamic_sections_created
&& h
->dynindx
== -1
16423 && !h
->forced_local
)
16424 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
16427 if (h
->dynindx
== -1)
16429 /* We only allocate one function descriptor with its associated relocation. q */
16430 if (eh
->fdpic_cnts
.funcdesc_offset
== -1)
16433 eh
->fdpic_cnts
.funcdesc_offset
= s
->size
;
16435 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16436 if (bfd_link_pic(info
))
16437 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
16439 htab
->srofixup
->size
+= 8;
16443 /* Add one entry into the GOT and a R_ARM_FUNCDESC or
16444 R_ARM_RELATIVE/rofixup relocation on it. */
16445 eh
->fdpic_cnts
.gotfuncdesc_offset
= s
->size
;
16447 if (h
->dynindx
== -1 && !bfd_link_pic(info
))
16448 htab
->srofixup
->size
+= 4;
16450 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
16453 if (eh
->fdpic_cnts
.funcdesc_cnt
> 0)
16455 if (htab
->root
.dynamic_sections_created
&& h
->dynindx
== -1
16456 && !h
->forced_local
)
16457 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
16460 if (h
->dynindx
== -1)
16462 /* We only allocate one function descriptor with its associated relocation. */
16463 if (eh
->fdpic_cnts
.funcdesc_offset
== -1)
16465 asection
*s
= htab
->root
.sgot
;
16467 eh
->fdpic_cnts
.funcdesc_offset
= s
->size
;
16469 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16470 if (bfd_link_pic(info
))
16471 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
16473 htab
->srofixup
->size
+= 8;
16476 if (h
->dynindx
== -1 && !bfd_link_pic(info
))
16478 /* For FDPIC executable we replace R_ARM_RELATIVE with a rofixup. */
16479 htab
->srofixup
->size
+= 4 * eh
->fdpic_cnts
.funcdesc_cnt
;
16483 /* Will need one dynamic reloc per reference. will be either
16484 R_ARM_FUNCDESC or R_ARM_RELATIVE for hidden symbols. */
16485 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
,
16486 eh
->fdpic_cnts
.funcdesc_cnt
);
16490 /* Allocate stubs for exported Thumb functions on v4t. */
16491 if (!htab
->use_blx
&& h
->dynindx
!= -1
16493 && ARM_GET_SYM_BRANCH_TYPE (h
->target_internal
) == ST_BRANCH_TO_THUMB
16494 && ELF_ST_VISIBILITY (h
->other
) == STV_DEFAULT
)
16496 struct elf_link_hash_entry
* th
;
16497 struct bfd_link_hash_entry
* bh
;
16498 struct elf_link_hash_entry
* myh
;
16502 /* Create a new symbol to regist the real location of the function. */
16503 s
= h
->root
.u
.def
.section
;
16504 sprintf (name
, "__real_%s", h
->root
.root
.string
);
16505 _bfd_generic_link_add_one_symbol (info
, s
->owner
,
16506 name
, BSF_GLOBAL
, s
,
16507 h
->root
.u
.def
.value
,
16508 NULL
, TRUE
, FALSE
, &bh
);
16510 myh
= (struct elf_link_hash_entry
*) bh
;
16511 myh
->type
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
16512 myh
->forced_local
= 1;
16513 ARM_SET_SYM_BRANCH_TYPE (myh
->target_internal
, ST_BRANCH_TO_THUMB
);
16514 eh
->export_glue
= myh
;
16515 th
= record_arm_to_thumb_glue (info
, h
);
16516 /* Point the symbol at the stub. */
16517 h
->type
= ELF_ST_INFO (ELF_ST_BIND (h
->type
), STT_FUNC
);
16518 ARM_SET_SYM_BRANCH_TYPE (h
->target_internal
, ST_BRANCH_TO_ARM
);
16519 h
->root
.u
.def
.section
= th
->root
.u
.def
.section
;
16520 h
->root
.u
.def
.value
= th
->root
.u
.def
.value
& ~1;
16523 if (h
->dyn_relocs
== NULL
)
16526 /* In the shared -Bsymbolic case, discard space allocated for
16527 dynamic pc-relative relocs against symbols which turn out to be
16528 defined in regular objects. For the normal shared case, discard
16529 space for pc-relative relocs that have become local due to symbol
16530 visibility changes. */
16532 if (bfd_link_pic (info
) || htab
->root
.is_relocatable_executable
|| htab
->fdpic_p
)
16534 /* Relocs that use pc_count are PC-relative forms, which will appear
16535 on something like ".long foo - ." or "movw REG, foo - .". We want
16536 calls to protected symbols to resolve directly to the function
16537 rather than going via the plt. If people want function pointer
16538 comparisons to work as expected then they should avoid writing
16539 assembly like ".long foo - .". */
16540 if (SYMBOL_CALLS_LOCAL (info
, h
))
16542 struct elf_dyn_relocs
**pp
;
16544 for (pp
= &h
->dyn_relocs
; (p
= *pp
) != NULL
; )
16546 p
->count
-= p
->pc_count
;
16555 if (htab
->root
.target_os
== is_vxworks
)
16557 struct elf_dyn_relocs
**pp
;
16559 for (pp
= &h
->dyn_relocs
; (p
= *pp
) != NULL
; )
16561 if (strcmp (p
->sec
->output_section
->name
, ".tls_vars") == 0)
16568 /* Also discard relocs on undefined weak syms with non-default
16570 if (h
->dyn_relocs
!= NULL
16571 && h
->root
.type
== bfd_link_hash_undefweak
)
16573 if (ELF_ST_VISIBILITY (h
->other
) != STV_DEFAULT
16574 || UNDEFWEAK_NO_DYNAMIC_RELOC (info
, h
))
16575 h
->dyn_relocs
= NULL
;
16577 /* Make sure undefined weak symbols are output as a dynamic
16579 else if (htab
->root
.dynamic_sections_created
&& h
->dynindx
== -1
16580 && !h
->forced_local
)
16582 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
16587 else if (htab
->root
.is_relocatable_executable
&& h
->dynindx
== -1
16588 && h
->root
.type
== bfd_link_hash_new
)
16590 /* Output absolute symbols so that we can create relocations
16591 against them. For normal symbols we output a relocation
16592 against the section that contains them. */
16593 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
16600 /* For the non-shared case, discard space for relocs against
16601 symbols which turn out to need copy relocs or are not
16604 if (!h
->non_got_ref
16605 && ((h
->def_dynamic
16606 && !h
->def_regular
)
16607 || (htab
->root
.dynamic_sections_created
16608 && (h
->root
.type
== bfd_link_hash_undefweak
16609 || h
->root
.type
== bfd_link_hash_undefined
))))
16611 /* Make sure this symbol is output as a dynamic symbol.
16612 Undefined weak syms won't yet be marked as dynamic. */
16613 if (h
->dynindx
== -1 && !h
->forced_local
16614 && h
->root
.type
== bfd_link_hash_undefweak
)
16616 if (! bfd_elf_link_record_dynamic_symbol (info
, h
))
16620 /* If that succeeded, we know we'll be keeping all the
16622 if (h
->dynindx
!= -1)
16626 h
->dyn_relocs
= NULL
;
16631 /* Finally, allocate space. */
16632 for (p
= h
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
16634 asection
*sreloc
= elf_section_data (p
->sec
)->sreloc
;
16636 if (h
->type
== STT_GNU_IFUNC
16637 && eh
->plt
.noncall_refcount
== 0
16638 && SYMBOL_REFERENCES_LOCAL (info
, h
))
16639 elf32_arm_allocate_irelocs (info
, sreloc
, p
->count
);
16640 else if (h
->dynindx
!= -1 && (!bfd_link_pic(info
) || !info
->symbolic
|| !h
->def_regular
))
16641 elf32_arm_allocate_dynrelocs (info
, sreloc
, p
->count
);
16642 else if (htab
->fdpic_p
&& !bfd_link_pic(info
))
16643 htab
->srofixup
->size
+= 4 * p
->count
;
16645 elf32_arm_allocate_dynrelocs (info
, sreloc
, p
->count
);
16652 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info
*info
,
16655 struct elf32_arm_link_hash_table
*globals
;
16657 globals
= elf32_arm_hash_table (info
);
16658 if (globals
== NULL
)
16661 globals
->byteswap_code
= byteswap_code
;
16664 /* Set the sizes of the dynamic sections. */
16667 elf32_arm_size_dynamic_sections (bfd
* output_bfd ATTRIBUTE_UNUSED
,
16668 struct bfd_link_info
* info
)
16672 bfd_boolean relocs
;
16674 struct elf32_arm_link_hash_table
*htab
;
16676 htab
= elf32_arm_hash_table (info
);
16680 dynobj
= elf_hash_table (info
)->dynobj
;
16681 BFD_ASSERT (dynobj
!= NULL
);
16682 check_use_blx (htab
);
16684 if (elf_hash_table (info
)->dynamic_sections_created
)
16686 /* Set the contents of the .interp section to the interpreter. */
16687 if (bfd_link_executable (info
) && !info
->nointerp
)
16689 s
= bfd_get_linker_section (dynobj
, ".interp");
16690 BFD_ASSERT (s
!= NULL
);
16691 s
->size
= sizeof ELF_DYNAMIC_INTERPRETER
;
16692 s
->contents
= (unsigned char *) ELF_DYNAMIC_INTERPRETER
;
16696 /* Set up .got offsets for local syms, and space for local dynamic
16698 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
16700 bfd_signed_vma
*local_got
;
16701 bfd_signed_vma
*end_local_got
;
16702 struct arm_local_iplt_info
**local_iplt_ptr
, *local_iplt
;
16703 char *local_tls_type
;
16704 bfd_vma
*local_tlsdesc_gotent
;
16705 bfd_size_type locsymcount
;
16706 Elf_Internal_Shdr
*symtab_hdr
;
16708 unsigned int symndx
;
16709 struct fdpic_local
*local_fdpic_cnts
;
16711 if (! is_arm_elf (ibfd
))
16714 for (s
= ibfd
->sections
; s
!= NULL
; s
= s
->next
)
16716 struct elf_dyn_relocs
*p
;
16718 for (p
= (struct elf_dyn_relocs
*)
16719 elf_section_data (s
)->local_dynrel
; p
!= NULL
; p
= p
->next
)
16721 if (!bfd_is_abs_section (p
->sec
)
16722 && bfd_is_abs_section (p
->sec
->output_section
))
16724 /* Input section has been discarded, either because
16725 it is a copy of a linkonce section or due to
16726 linker script /DISCARD/, so we'll be discarding
16729 else if (htab
->root
.target_os
== is_vxworks
16730 && strcmp (p
->sec
->output_section
->name
,
16733 /* Relocations in vxworks .tls_vars sections are
16734 handled specially by the loader. */
16736 else if (p
->count
!= 0)
16738 srel
= elf_section_data (p
->sec
)->sreloc
;
16739 if (htab
->fdpic_p
&& !bfd_link_pic(info
))
16740 htab
->srofixup
->size
+= 4 * p
->count
;
16742 elf32_arm_allocate_dynrelocs (info
, srel
, p
->count
);
16743 if ((p
->sec
->output_section
->flags
& SEC_READONLY
) != 0)
16744 info
->flags
|= DF_TEXTREL
;
16749 local_got
= elf_local_got_refcounts (ibfd
);
16753 symtab_hdr
= & elf_symtab_hdr (ibfd
);
16754 locsymcount
= symtab_hdr
->sh_info
;
16755 end_local_got
= local_got
+ locsymcount
;
16756 local_iplt_ptr
= elf32_arm_local_iplt (ibfd
);
16757 local_tls_type
= elf32_arm_local_got_tls_type (ibfd
);
16758 local_tlsdesc_gotent
= elf32_arm_local_tlsdesc_gotent (ibfd
);
16759 local_fdpic_cnts
= elf32_arm_local_fdpic_cnts (ibfd
);
16761 s
= htab
->root
.sgot
;
16762 srel
= htab
->root
.srelgot
;
16763 for (; local_got
< end_local_got
;
16764 ++local_got
, ++local_iplt_ptr
, ++local_tls_type
,
16765 ++local_tlsdesc_gotent
, ++symndx
, ++local_fdpic_cnts
)
16767 *local_tlsdesc_gotent
= (bfd_vma
) -1;
16768 local_iplt
= *local_iplt_ptr
;
16770 /* FDPIC support. */
16771 if (local_fdpic_cnts
->gotofffuncdesc_cnt
> 0)
16773 if (local_fdpic_cnts
->funcdesc_offset
== -1)
16775 local_fdpic_cnts
->funcdesc_offset
= s
->size
;
16778 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16779 if (bfd_link_pic(info
))
16780 elf32_arm_allocate_dynrelocs (info
, srel
, 1);
16782 htab
->srofixup
->size
+= 8;
16786 if (local_fdpic_cnts
->funcdesc_cnt
> 0)
16788 if (local_fdpic_cnts
->funcdesc_offset
== -1)
16790 local_fdpic_cnts
->funcdesc_offset
= s
->size
;
16793 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16794 if (bfd_link_pic(info
))
16795 elf32_arm_allocate_dynrelocs (info
, srel
, 1);
16797 htab
->srofixup
->size
+= 8;
16800 /* We will add n R_ARM_RELATIVE relocations or n rofixups. */
16801 if (bfd_link_pic(info
))
16802 elf32_arm_allocate_dynrelocs (info
, srel
, local_fdpic_cnts
->funcdesc_cnt
);
16804 htab
->srofixup
->size
+= 4 * local_fdpic_cnts
->funcdesc_cnt
;
16807 if (local_iplt
!= NULL
)
16809 struct elf_dyn_relocs
*p
;
16811 if (local_iplt
->root
.refcount
> 0)
16813 elf32_arm_allocate_plt_entry (info
, TRUE
,
16816 if (local_iplt
->arm
.noncall_refcount
== 0)
16817 /* All references to the PLT are calls, so all
16818 non-call references can resolve directly to the
16819 run-time target. This means that the .got entry
16820 would be the same as the .igot.plt entry, so there's
16821 no point creating both. */
16826 BFD_ASSERT (local_iplt
->arm
.noncall_refcount
== 0);
16827 local_iplt
->root
.offset
= (bfd_vma
) -1;
16830 for (p
= local_iplt
->dyn_relocs
; p
!= NULL
; p
= p
->next
)
16834 psrel
= elf_section_data (p
->sec
)->sreloc
;
16835 if (local_iplt
->arm
.noncall_refcount
== 0)
16836 elf32_arm_allocate_irelocs (info
, psrel
, p
->count
);
16838 elf32_arm_allocate_dynrelocs (info
, psrel
, p
->count
);
16841 if (*local_got
> 0)
16843 Elf_Internal_Sym
*isym
;
16845 *local_got
= s
->size
;
16846 if (*local_tls_type
& GOT_TLS_GD
)
16847 /* TLS_GD relocs need an 8-byte structure in the GOT. */
16849 if (*local_tls_type
& GOT_TLS_GDESC
)
16851 *local_tlsdesc_gotent
= htab
->root
.sgotplt
->size
16852 - elf32_arm_compute_jump_table_size (htab
);
16853 htab
->root
.sgotplt
->size
+= 8;
16854 *local_got
= (bfd_vma
) -2;
16855 /* plt.got_offset needs to know there's a TLS_DESC
16856 reloc in the middle of .got.plt. */
16857 htab
->num_tls_desc
++;
16859 if (*local_tls_type
& GOT_TLS_IE
)
16862 if (*local_tls_type
& GOT_NORMAL
)
16864 /* If the symbol is both GD and GDESC, *local_got
16865 may have been overwritten. */
16866 *local_got
= s
->size
;
16870 isym
= bfd_sym_from_r_symndx (&htab
->root
.sym_cache
, ibfd
,
16875 /* If all references to an STT_GNU_IFUNC PLT are calls,
16876 then all non-call references, including this GOT entry,
16877 resolve directly to the run-time target. */
16878 if (ELF32_ST_TYPE (isym
->st_info
) == STT_GNU_IFUNC
16879 && (local_iplt
== NULL
16880 || local_iplt
->arm
.noncall_refcount
== 0))
16881 elf32_arm_allocate_irelocs (info
, srel
, 1);
16882 else if (bfd_link_pic (info
) || output_bfd
->flags
& DYNAMIC
|| htab
->fdpic_p
)
16884 if ((bfd_link_pic (info
) && !(*local_tls_type
& GOT_TLS_GDESC
)))
16885 elf32_arm_allocate_dynrelocs (info
, srel
, 1);
16886 else if (htab
->fdpic_p
&& *local_tls_type
& GOT_NORMAL
)
16887 htab
->srofixup
->size
+= 4;
16889 if ((bfd_link_pic (info
) || htab
->fdpic_p
)
16890 && *local_tls_type
& GOT_TLS_GDESC
)
16892 elf32_arm_allocate_dynrelocs (info
,
16893 htab
->root
.srelplt
, 1);
16894 htab
->tls_trampoline
= -1;
16899 *local_got
= (bfd_vma
) -1;
16903 if (htab
->tls_ldm_got
.refcount
> 0)
16905 /* Allocate two GOT entries and one dynamic relocation (if necessary)
16906 for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
16907 htab
->tls_ldm_got
.offset
= htab
->root
.sgot
->size
;
16908 htab
->root
.sgot
->size
+= 8;
16909 if (bfd_link_pic (info
))
16910 elf32_arm_allocate_dynrelocs (info
, htab
->root
.srelgot
, 1);
16913 htab
->tls_ldm_got
.offset
= -1;
16915 /* At the very end of the .rofixup section is a pointer to the GOT,
16916 reserve space for it. */
16917 if (htab
->fdpic_p
&& htab
->srofixup
!= NULL
)
16918 htab
->srofixup
->size
+= 4;
16920 /* Allocate global sym .plt and .got entries, and space for global
16921 sym dynamic relocs. */
16922 elf_link_hash_traverse (& htab
->root
, allocate_dynrelocs_for_symbol
, info
);
16924 /* Here we rummage through the found bfds to collect glue information. */
16925 for (ibfd
= info
->input_bfds
; ibfd
!= NULL
; ibfd
= ibfd
->link
.next
)
16927 if (! is_arm_elf (ibfd
))
16930 /* Initialise mapping tables for code/data. */
16931 bfd_elf32_arm_init_maps (ibfd
);
16933 if (!bfd_elf32_arm_process_before_allocation (ibfd
, info
)
16934 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd
, info
)
16935 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd
, info
))
16936 _bfd_error_handler (_("errors encountered processing file %pB"), ibfd
);
16939 /* Allocate space for the glue sections now that we've sized them. */
16940 bfd_elf32_arm_allocate_interworking_sections (info
);
16942 /* For every jump slot reserved in the sgotplt, reloc_count is
16943 incremented. However, when we reserve space for TLS descriptors,
16944 it's not incremented, so in order to compute the space reserved
16945 for them, it suffices to multiply the reloc count by the jump
16947 if (htab
->root
.srelplt
)
16948 htab
->sgotplt_jump_table_size
= elf32_arm_compute_jump_table_size(htab
);
16950 if (htab
->tls_trampoline
)
16952 if (htab
->root
.splt
->size
== 0)
16953 htab
->root
.splt
->size
+= htab
->plt_header_size
;
16955 htab
->tls_trampoline
= htab
->root
.splt
->size
;
16956 htab
->root
.splt
->size
+= htab
->plt_entry_size
;
16958 /* If we're not using lazy TLS relocations, don't generate the
16959 PLT and GOT entries they require. */
16960 if ((info
->flags
& DF_BIND_NOW
))
16961 htab
->root
.tlsdesc_plt
= 0;
16964 htab
->root
.tlsdesc_got
= htab
->root
.sgot
->size
;
16965 htab
->root
.sgot
->size
+= 4;
16967 htab
->root
.tlsdesc_plt
= htab
->root
.splt
->size
;
16968 htab
->root
.splt
->size
+= 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline
);
16972 /* The check_relocs and adjust_dynamic_symbol entry points have
16973 determined the sizes of the various dynamic sections. Allocate
16974 memory for them. */
16976 for (s
= dynobj
->sections
; s
!= NULL
; s
= s
->next
)
16980 if ((s
->flags
& SEC_LINKER_CREATED
) == 0)
16983 /* It's OK to base decisions on the section name, because none
16984 of the dynobj section names depend upon the input files. */
16985 name
= bfd_section_name (s
);
16987 if (s
== htab
->root
.splt
)
16989 /* Remember whether there is a PLT. */
16992 else if (CONST_STRNEQ (name
, ".rel"))
16996 /* Remember whether there are any reloc sections other
16997 than .rel(a).plt and .rela.plt.unloaded. */
16998 if (s
!= htab
->root
.srelplt
&& s
!= htab
->srelplt2
)
17001 /* We use the reloc_count field as a counter if we need
17002 to copy relocs into the output file. */
17003 s
->reloc_count
= 0;
17006 else if (s
!= htab
->root
.sgot
17007 && s
!= htab
->root
.sgotplt
17008 && s
!= htab
->root
.iplt
17009 && s
!= htab
->root
.igotplt
17010 && s
!= htab
->root
.sdynbss
17011 && s
!= htab
->root
.sdynrelro
17012 && s
!= htab
->srofixup
)
17014 /* It's not one of our sections, so don't allocate space. */
17020 /* If we don't need this section, strip it from the
17021 output file. This is mostly to handle .rel(a).bss and
17022 .rel(a).plt. We must create both sections in
17023 create_dynamic_sections, because they must be created
17024 before the linker maps input sections to output
17025 sections. The linker does that before
17026 adjust_dynamic_symbol is called, and it is that
17027 function which decides whether anything needs to go
17028 into these sections. */
17029 s
->flags
|= SEC_EXCLUDE
;
17033 if ((s
->flags
& SEC_HAS_CONTENTS
) == 0)
17036 /* Allocate memory for the section contents. */
17037 s
->contents
= (unsigned char *) bfd_zalloc (dynobj
, s
->size
);
17038 if (s
->contents
== NULL
)
17042 return _bfd_elf_maybe_vxworks_add_dynamic_tags (output_bfd
, info
,
17046 /* Size sections even though they're not dynamic. We use it to setup
17047 _TLS_MODULE_BASE_, if needed. */
17050 elf32_arm_always_size_sections (bfd
*output_bfd
,
17051 struct bfd_link_info
*info
)
17054 struct elf32_arm_link_hash_table
*htab
;
17056 htab
= elf32_arm_hash_table (info
);
17058 if (bfd_link_relocatable (info
))
17061 tls_sec
= elf_hash_table (info
)->tls_sec
;
17065 struct elf_link_hash_entry
*tlsbase
;
17067 tlsbase
= elf_link_hash_lookup
17068 (elf_hash_table (info
), "_TLS_MODULE_BASE_", TRUE
, TRUE
, FALSE
);
17072 struct bfd_link_hash_entry
*bh
= NULL
;
17073 const struct elf_backend_data
*bed
17074 = get_elf_backend_data (output_bfd
);
17076 if (!(_bfd_generic_link_add_one_symbol
17077 (info
, output_bfd
, "_TLS_MODULE_BASE_", BSF_LOCAL
,
17078 tls_sec
, 0, NULL
, FALSE
,
17079 bed
->collect
, &bh
)))
17082 tlsbase
->type
= STT_TLS
;
17083 tlsbase
= (struct elf_link_hash_entry
*)bh
;
17084 tlsbase
->def_regular
= 1;
17085 tlsbase
->other
= STV_HIDDEN
;
17086 (*bed
->elf_backend_hide_symbol
) (info
, tlsbase
, TRUE
);
17090 if (htab
->fdpic_p
&& !bfd_link_relocatable (info
)
17091 && !bfd_elf_stack_segment_size (output_bfd
, info
,
17092 "__stacksize", DEFAULT_STACK_SIZE
))
17098 /* Finish up dynamic symbol handling. We set the contents of various
17099 dynamic sections here. */
17102 elf32_arm_finish_dynamic_symbol (bfd
* output_bfd
,
17103 struct bfd_link_info
* info
,
17104 struct elf_link_hash_entry
* h
,
17105 Elf_Internal_Sym
* sym
)
17107 struct elf32_arm_link_hash_table
*htab
;
17108 struct elf32_arm_link_hash_entry
*eh
;
17110 htab
= elf32_arm_hash_table (info
);
17114 eh
= (struct elf32_arm_link_hash_entry
*) h
;
17116 if (h
->plt
.offset
!= (bfd_vma
) -1)
17120 BFD_ASSERT (h
->dynindx
!= -1);
17121 if (! elf32_arm_populate_plt_entry (output_bfd
, info
, &h
->plt
, &eh
->plt
,
17126 if (!h
->def_regular
)
17128 /* Mark the symbol as undefined, rather than as defined in
17129 the .plt section. */
17130 sym
->st_shndx
= SHN_UNDEF
;
17131 /* If the symbol is weak we need to clear the value.
17132 Otherwise, the PLT entry would provide a definition for
17133 the symbol even if the symbol wasn't defined anywhere,
17134 and so the symbol would never be NULL. Leave the value if
17135 there were any relocations where pointer equality matters
17136 (this is a clue for the dynamic linker, to make function
17137 pointer comparisons work between an application and shared
17139 if (!h
->ref_regular_nonweak
|| !h
->pointer_equality_needed
)
17142 else if (eh
->is_iplt
&& eh
->plt
.noncall_refcount
!= 0)
17144 /* At least one non-call relocation references this .iplt entry,
17145 so the .iplt entry is the function's canonical address. */
17146 sym
->st_info
= ELF_ST_INFO (ELF_ST_BIND (sym
->st_info
), STT_FUNC
);
17147 ARM_SET_SYM_BRANCH_TYPE (sym
->st_target_internal
, ST_BRANCH_TO_ARM
);
17148 sym
->st_shndx
= (_bfd_elf_section_from_bfd_section
17149 (output_bfd
, htab
->root
.iplt
->output_section
));
17150 sym
->st_value
= (h
->plt
.offset
17151 + htab
->root
.iplt
->output_section
->vma
17152 + htab
->root
.iplt
->output_offset
);
17159 Elf_Internal_Rela rel
;
17161 /* This symbol needs a copy reloc. Set it up. */
17162 BFD_ASSERT (h
->dynindx
!= -1
17163 && (h
->root
.type
== bfd_link_hash_defined
17164 || h
->root
.type
== bfd_link_hash_defweak
));
17167 rel
.r_offset
= (h
->root
.u
.def
.value
17168 + h
->root
.u
.def
.section
->output_section
->vma
17169 + h
->root
.u
.def
.section
->output_offset
);
17170 rel
.r_info
= ELF32_R_INFO (h
->dynindx
, R_ARM_COPY
);
17171 if (h
->root
.u
.def
.section
== htab
->root
.sdynrelro
)
17172 s
= htab
->root
.sreldynrelro
;
17174 s
= htab
->root
.srelbss
;
17175 elf32_arm_add_dynreloc (output_bfd
, info
, s
, &rel
);
17178 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
17179 and for FDPIC, the _GLOBAL_OFFSET_TABLE_ symbol is not absolute:
17180 it is relative to the ".got" section. */
17181 if (h
== htab
->root
.hdynamic
17183 && htab
->root
.target_os
!= is_vxworks
17184 && h
== htab
->root
.hgot
))
17185 sym
->st_shndx
= SHN_ABS
;
17191 arm_put_trampoline (struct elf32_arm_link_hash_table
*htab
, bfd
*output_bfd
,
17193 const unsigned long *template, unsigned count
)
17197 for (ix
= 0; ix
!= count
; ix
++)
17199 unsigned long insn
= template[ix
];
17201 /* Emit mov pc,rx if bx is not permitted. */
17202 if (htab
->fix_v4bx
== 1 && (insn
& 0x0ffffff0) == 0x012fff10)
17203 insn
= (insn
& 0xf000000f) | 0x01a0f000;
17204 put_arm_insn (htab
, output_bfd
, insn
, (char *)contents
+ ix
*4);
17208 /* Install the special first PLT entry for elf32-arm-nacl. Unlike
17209 other variants, NaCl needs this entry in a static executable's
17210 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
17211 zero. For .iplt really only the last bundle is useful, and .iplt
17212 could have a shorter first entry, with each individual PLT entry's
17213 relative branch calculated differently so it targets the last
17214 bundle instead of the instruction before it (labelled .Lplt_tail
17215 above). But it's simpler to keep the size and layout of PLT0
17216 consistent with the dynamic case, at the cost of some dead code at
17217 the start of .iplt and the one dead store to the stack at the start
17220 arm_nacl_put_plt0 (struct elf32_arm_link_hash_table
*htab
, bfd
*output_bfd
,
17221 asection
*plt
, bfd_vma got_displacement
)
17225 put_arm_insn (htab
, output_bfd
,
17226 elf32_arm_nacl_plt0_entry
[0]
17227 | arm_movw_immediate (got_displacement
),
17228 plt
->contents
+ 0);
17229 put_arm_insn (htab
, output_bfd
,
17230 elf32_arm_nacl_plt0_entry
[1]
17231 | arm_movt_immediate (got_displacement
),
17232 plt
->contents
+ 4);
17234 for (i
= 2; i
< ARRAY_SIZE (elf32_arm_nacl_plt0_entry
); ++i
)
17235 put_arm_insn (htab
, output_bfd
,
17236 elf32_arm_nacl_plt0_entry
[i
],
17237 plt
->contents
+ (i
* 4));
17240 /* Finish up the dynamic sections. */
17243 elf32_arm_finish_dynamic_sections (bfd
* output_bfd
, struct bfd_link_info
* info
)
17248 struct elf32_arm_link_hash_table
*htab
;
17250 htab
= elf32_arm_hash_table (info
);
17254 dynobj
= elf_hash_table (info
)->dynobj
;
17256 sgot
= htab
->root
.sgotplt
;
17257 /* A broken linker script might have discarded the dynamic sections.
17258 Catch this here so that we do not seg-fault later on. */
17259 if (sgot
!= NULL
&& bfd_is_abs_section (sgot
->output_section
))
17261 sdyn
= bfd_get_linker_section (dynobj
, ".dynamic");
17263 if (elf_hash_table (info
)->dynamic_sections_created
)
17266 Elf32_External_Dyn
*dyncon
, *dynconend
;
17268 splt
= htab
->root
.splt
;
17269 BFD_ASSERT (splt
!= NULL
&& sdyn
!= NULL
);
17270 BFD_ASSERT (htab
->root
.target_os
== is_symbian
|| sgot
!= NULL
);
17272 dyncon
= (Elf32_External_Dyn
*) sdyn
->contents
;
17273 dynconend
= (Elf32_External_Dyn
*) (sdyn
->contents
+ sdyn
->size
);
17275 for (; dyncon
< dynconend
; dyncon
++)
17277 Elf_Internal_Dyn dyn
;
17281 bfd_elf32_swap_dyn_in (dynobj
, dyncon
, &dyn
);
17288 if (htab
->root
.target_os
== is_vxworks
17289 && elf_vxworks_finish_dynamic_entry (output_bfd
, &dyn
))
17290 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
17295 goto get_vma_if_bpabi
;
17298 goto get_vma_if_bpabi
;
17301 goto get_vma_if_bpabi
;
17303 name
= ".gnu.version";
17304 goto get_vma_if_bpabi
;
17306 name
= ".gnu.version_d";
17307 goto get_vma_if_bpabi
;
17309 name
= ".gnu.version_r";
17310 goto get_vma_if_bpabi
;
17313 name
= (htab
->root
.target_os
== is_symbian
17314 ? ".got" : ".got.plt");
17317 name
= RELOC_SECTION (htab
, ".plt");
17319 s
= bfd_get_linker_section (dynobj
, name
);
17323 (_("could not find section %s"), name
);
17324 bfd_set_error (bfd_error_invalid_operation
);
17327 if (htab
->root
.target_os
!= is_symbian
)
17328 dyn
.d_un
.d_ptr
= s
->output_section
->vma
+ s
->output_offset
;
17330 /* In the BPABI, tags in the PT_DYNAMIC section point
17331 at the file offset, not the memory address, for the
17332 convenience of the post linker. */
17333 dyn
.d_un
.d_ptr
= s
->output_section
->filepos
+ s
->output_offset
;
17334 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
17338 if (htab
->root
.target_os
== is_symbian
)
17343 s
= htab
->root
.srelplt
;
17344 BFD_ASSERT (s
!= NULL
);
17345 dyn
.d_un
.d_val
= s
->size
;
17346 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
17353 /* In the BPABI, the DT_REL tag must point at the file
17354 offset, not the VMA, of the first relocation
17355 section. So, we use code similar to that in
17356 elflink.c, but do not check for SHF_ALLOC on the
17357 relocation section, since relocation sections are
17358 never allocated under the BPABI. PLT relocs are also
17360 if (htab
->root
.target_os
== is_symbian
)
17363 type
= ((dyn
.d_tag
== DT_REL
|| dyn
.d_tag
== DT_RELSZ
)
17364 ? SHT_REL
: SHT_RELA
);
17365 dyn
.d_un
.d_val
= 0;
17366 for (i
= 1; i
< elf_numsections (output_bfd
); i
++)
17368 Elf_Internal_Shdr
*hdr
17369 = elf_elfsections (output_bfd
)[i
];
17370 if (hdr
->sh_type
== type
)
17372 if (dyn
.d_tag
== DT_RELSZ
17373 || dyn
.d_tag
== DT_RELASZ
)
17374 dyn
.d_un
.d_val
+= hdr
->sh_size
;
17375 else if ((ufile_ptr
) hdr
->sh_offset
17376 <= dyn
.d_un
.d_val
- 1)
17377 dyn
.d_un
.d_val
= hdr
->sh_offset
;
17380 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
17384 case DT_TLSDESC_PLT
:
17385 s
= htab
->root
.splt
;
17386 dyn
.d_un
.d_ptr
= (s
->output_section
->vma
+ s
->output_offset
17387 + htab
->root
.tlsdesc_plt
);
17388 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
17391 case DT_TLSDESC_GOT
:
17392 s
= htab
->root
.sgot
;
17393 dyn
.d_un
.d_ptr
= (s
->output_section
->vma
+ s
->output_offset
17394 + htab
->root
.tlsdesc_got
);
17395 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
17398 /* Set the bottom bit of DT_INIT/FINI if the
17399 corresponding function is Thumb. */
17401 name
= info
->init_function
;
17404 name
= info
->fini_function
;
17406 /* If it wasn't set by elf_bfd_final_link
17407 then there is nothing to adjust. */
17408 if (dyn
.d_un
.d_val
!= 0)
17410 struct elf_link_hash_entry
* eh
;
17412 eh
= elf_link_hash_lookup (elf_hash_table (info
), name
,
17413 FALSE
, FALSE
, TRUE
);
17415 && ARM_GET_SYM_BRANCH_TYPE (eh
->target_internal
)
17416 == ST_BRANCH_TO_THUMB
)
17418 dyn
.d_un
.d_val
|= 1;
17419 bfd_elf32_swap_dyn_out (output_bfd
, &dyn
, dyncon
);
17426 /* Fill in the first entry in the procedure linkage table. */
17427 if (splt
->size
> 0 && htab
->plt_header_size
)
17429 const bfd_vma
*plt0_entry
;
17430 bfd_vma got_address
, plt_address
, got_displacement
;
17432 /* Calculate the addresses of the GOT and PLT. */
17433 got_address
= sgot
->output_section
->vma
+ sgot
->output_offset
;
17434 plt_address
= splt
->output_section
->vma
+ splt
->output_offset
;
17436 if (htab
->root
.target_os
== is_vxworks
)
17438 /* The VxWorks GOT is relocated by the dynamic linker.
17439 Therefore, we must emit relocations rather than simply
17440 computing the values now. */
17441 Elf_Internal_Rela rel
;
17443 plt0_entry
= elf32_arm_vxworks_exec_plt0_entry
;
17444 put_arm_insn (htab
, output_bfd
, plt0_entry
[0],
17445 splt
->contents
+ 0);
17446 put_arm_insn (htab
, output_bfd
, plt0_entry
[1],
17447 splt
->contents
+ 4);
17448 put_arm_insn (htab
, output_bfd
, plt0_entry
[2],
17449 splt
->contents
+ 8);
17450 bfd_put_32 (output_bfd
, got_address
, splt
->contents
+ 12);
17452 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
17453 rel
.r_offset
= plt_address
+ 12;
17454 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
17456 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
,
17457 htab
->srelplt2
->contents
);
17459 else if (htab
->root
.target_os
== is_nacl
)
17460 arm_nacl_put_plt0 (htab
, output_bfd
, splt
,
17461 got_address
+ 8 - (plt_address
+ 16));
17462 else if (using_thumb_only (htab
))
17464 got_displacement
= got_address
- (plt_address
+ 12);
17466 plt0_entry
= elf32_thumb2_plt0_entry
;
17467 put_arm_insn (htab
, output_bfd
, plt0_entry
[0],
17468 splt
->contents
+ 0);
17469 put_arm_insn (htab
, output_bfd
, plt0_entry
[1],
17470 splt
->contents
+ 4);
17471 put_arm_insn (htab
, output_bfd
, plt0_entry
[2],
17472 splt
->contents
+ 8);
17474 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 12);
17478 got_displacement
= got_address
- (plt_address
+ 16);
17480 plt0_entry
= elf32_arm_plt0_entry
;
17481 put_arm_insn (htab
, output_bfd
, plt0_entry
[0],
17482 splt
->contents
+ 0);
17483 put_arm_insn (htab
, output_bfd
, plt0_entry
[1],
17484 splt
->contents
+ 4);
17485 put_arm_insn (htab
, output_bfd
, plt0_entry
[2],
17486 splt
->contents
+ 8);
17487 put_arm_insn (htab
, output_bfd
, plt0_entry
[3],
17488 splt
->contents
+ 12);
17490 #ifdef FOUR_WORD_PLT
17491 /* The displacement value goes in the otherwise-unused
17492 last word of the second entry. */
17493 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 28);
17495 bfd_put_32 (output_bfd
, got_displacement
, splt
->contents
+ 16);
17500 /* UnixWare sets the entsize of .plt to 4, although that doesn't
17501 really seem like the right value. */
17502 if (splt
->output_section
->owner
== output_bfd
)
17503 elf_section_data (splt
->output_section
)->this_hdr
.sh_entsize
= 4;
17505 if (htab
->root
.tlsdesc_plt
)
17507 bfd_vma got_address
17508 = sgot
->output_section
->vma
+ sgot
->output_offset
;
17509 bfd_vma gotplt_address
= (htab
->root
.sgot
->output_section
->vma
17510 + htab
->root
.sgot
->output_offset
);
17511 bfd_vma plt_address
17512 = splt
->output_section
->vma
+ splt
->output_offset
;
17514 arm_put_trampoline (htab
, output_bfd
,
17515 splt
->contents
+ htab
->root
.tlsdesc_plt
,
17516 dl_tlsdesc_lazy_trampoline
, 6);
17518 bfd_put_32 (output_bfd
,
17519 gotplt_address
+ htab
->root
.tlsdesc_got
17520 - (plt_address
+ htab
->root
.tlsdesc_plt
)
17521 - dl_tlsdesc_lazy_trampoline
[6],
17522 splt
->contents
+ htab
->root
.tlsdesc_plt
+ 24);
17523 bfd_put_32 (output_bfd
,
17524 got_address
- (plt_address
+ htab
->root
.tlsdesc_plt
)
17525 - dl_tlsdesc_lazy_trampoline
[7],
17526 splt
->contents
+ htab
->root
.tlsdesc_plt
+ 24 + 4);
17529 if (htab
->tls_trampoline
)
17531 arm_put_trampoline (htab
, output_bfd
,
17532 splt
->contents
+ htab
->tls_trampoline
,
17533 tls_trampoline
, 3);
17534 #ifdef FOUR_WORD_PLT
17535 bfd_put_32 (output_bfd
, 0x00000000,
17536 splt
->contents
+ htab
->tls_trampoline
+ 12);
17540 if (htab
->root
.target_os
== is_vxworks
17541 && !bfd_link_pic (info
)
17542 && htab
->root
.splt
->size
> 0)
17544 /* Correct the .rel(a).plt.unloaded relocations. They will have
17545 incorrect symbol indexes. */
17549 num_plts
= ((htab
->root
.splt
->size
- htab
->plt_header_size
)
17550 / htab
->plt_entry_size
);
17551 p
= htab
->srelplt2
->contents
+ RELOC_SIZE (htab
);
17553 for (; num_plts
; num_plts
--)
17555 Elf_Internal_Rela rel
;
17557 SWAP_RELOC_IN (htab
) (output_bfd
, p
, &rel
);
17558 rel
.r_info
= ELF32_R_INFO (htab
->root
.hgot
->indx
, R_ARM_ABS32
);
17559 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, p
);
17560 p
+= RELOC_SIZE (htab
);
17562 SWAP_RELOC_IN (htab
) (output_bfd
, p
, &rel
);
17563 rel
.r_info
= ELF32_R_INFO (htab
->root
.hplt
->indx
, R_ARM_ABS32
);
17564 SWAP_RELOC_OUT (htab
) (output_bfd
, &rel
, p
);
17565 p
+= RELOC_SIZE (htab
);
17570 if (htab
->root
.target_os
== is_nacl
17571 && htab
->root
.iplt
!= NULL
17572 && htab
->root
.iplt
->size
> 0)
17573 /* NaCl uses a special first entry in .iplt too. */
17574 arm_nacl_put_plt0 (htab
, output_bfd
, htab
->root
.iplt
, 0);
17576 /* Fill in the first three entries in the global offset table. */
17579 if (sgot
->size
> 0)
17582 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
);
17584 bfd_put_32 (output_bfd
,
17585 sdyn
->output_section
->vma
+ sdyn
->output_offset
,
17587 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 4);
17588 bfd_put_32 (output_bfd
, (bfd_vma
) 0, sgot
->contents
+ 8);
17591 elf_section_data (sgot
->output_section
)->this_hdr
.sh_entsize
= 4;
17594 /* At the very end of the .rofixup section is a pointer to the GOT. */
17595 if (htab
->fdpic_p
&& htab
->srofixup
!= NULL
)
17597 struct elf_link_hash_entry
*hgot
= htab
->root
.hgot
;
17599 bfd_vma got_value
= hgot
->root
.u
.def
.value
17600 + hgot
->root
.u
.def
.section
->output_section
->vma
17601 + hgot
->root
.u
.def
.section
->output_offset
;
17603 arm_elf_add_rofixup(output_bfd
, htab
->srofixup
, got_value
);
17605 /* Make sure we allocated and generated the same number of fixups. */
17606 BFD_ASSERT (htab
->srofixup
->reloc_count
* 4 == htab
->srofixup
->size
);
17613 elf32_arm_init_file_header (bfd
*abfd
, struct bfd_link_info
*link_info
)
17615 Elf_Internal_Ehdr
* i_ehdrp
; /* ELF file header, internal form. */
17616 struct elf32_arm_link_hash_table
*globals
;
17617 struct elf_segment_map
*m
;
17619 if (!_bfd_elf_init_file_header (abfd
, link_info
))
17622 i_ehdrp
= elf_elfheader (abfd
);
17624 if (EF_ARM_EABI_VERSION (i_ehdrp
->e_flags
) == EF_ARM_EABI_UNKNOWN
)
17625 i_ehdrp
->e_ident
[EI_OSABI
] = ELFOSABI_ARM
;
17626 i_ehdrp
->e_ident
[EI_ABIVERSION
] = ARM_ELF_ABI_VERSION
;
17630 globals
= elf32_arm_hash_table (link_info
);
17631 if (globals
!= NULL
&& globals
->byteswap_code
)
17632 i_ehdrp
->e_flags
|= EF_ARM_BE8
;
17634 if (globals
->fdpic_p
)
17635 i_ehdrp
->e_ident
[EI_OSABI
] |= ELFOSABI_ARM_FDPIC
;
17638 if (EF_ARM_EABI_VERSION (i_ehdrp
->e_flags
) == EF_ARM_EABI_VER5
17639 && ((i_ehdrp
->e_type
== ET_DYN
) || (i_ehdrp
->e_type
== ET_EXEC
)))
17641 int abi
= bfd_elf_get_obj_attr_int (abfd
, OBJ_ATTR_PROC
, Tag_ABI_VFP_args
);
17642 if (abi
== AEABI_VFP_args_vfp
)
17643 i_ehdrp
->e_flags
|= EF_ARM_ABI_FLOAT_HARD
;
17645 i_ehdrp
->e_flags
|= EF_ARM_ABI_FLOAT_SOFT
;
17648 /* Scan segment to set p_flags attribute if it contains only sections with
17649 SHF_ARM_PURECODE flag. */
17650 for (m
= elf_seg_map (abfd
); m
!= NULL
; m
= m
->next
)
17656 for (j
= 0; j
< m
->count
; j
++)
17658 if (!(elf_section_flags (m
->sections
[j
]) & SHF_ARM_PURECODE
))
17664 m
->p_flags_valid
= 1;
17670 static enum elf_reloc_type_class
17671 elf32_arm_reloc_type_class (const struct bfd_link_info
*info ATTRIBUTE_UNUSED
,
17672 const asection
*rel_sec ATTRIBUTE_UNUSED
,
17673 const Elf_Internal_Rela
*rela
)
17675 switch ((int) ELF32_R_TYPE (rela
->r_info
))
17677 case R_ARM_RELATIVE
:
17678 return reloc_class_relative
;
17679 case R_ARM_JUMP_SLOT
:
17680 return reloc_class_plt
;
17682 return reloc_class_copy
;
17683 case R_ARM_IRELATIVE
:
17684 return reloc_class_ifunc
;
17686 return reloc_class_normal
;
17691 arm_final_write_processing (bfd
*abfd
)
17693 bfd_arm_update_notes (abfd
, ARM_NOTE_SECTION
);
17697 elf32_arm_final_write_processing (bfd
*abfd
)
17699 arm_final_write_processing (abfd
);
17700 return _bfd_elf_final_write_processing (abfd
);
17703 /* Return TRUE if this is an unwinding table entry. */
17706 is_arm_elf_unwind_section_name (bfd
* abfd ATTRIBUTE_UNUSED
, const char * name
)
17708 return (CONST_STRNEQ (name
, ELF_STRING_ARM_unwind
)
17709 || CONST_STRNEQ (name
, ELF_STRING_ARM_unwind_once
));
17713 /* Set the type and flags for an ARM section. We do this by
17714 the section name, which is a hack, but ought to work. */
17717 elf32_arm_fake_sections (bfd
* abfd
, Elf_Internal_Shdr
* hdr
, asection
* sec
)
17721 name
= bfd_section_name (sec
);
17723 if (is_arm_elf_unwind_section_name (abfd
, name
))
17725 hdr
->sh_type
= SHT_ARM_EXIDX
;
17726 hdr
->sh_flags
|= SHF_LINK_ORDER
;
17729 if (sec
->flags
& SEC_ELF_PURECODE
)
17730 hdr
->sh_flags
|= SHF_ARM_PURECODE
;
17735 /* Handle an ARM specific section when reading an object file. This is
17736 called when bfd_section_from_shdr finds a section with an unknown
17740 elf32_arm_section_from_shdr (bfd
*abfd
,
17741 Elf_Internal_Shdr
* hdr
,
17745 /* There ought to be a place to keep ELF backend specific flags, but
17746 at the moment there isn't one. We just keep track of the
17747 sections by their name, instead. Fortunately, the ABI gives
17748 names for all the ARM specific sections, so we will probably get
17750 switch (hdr
->sh_type
)
17752 case SHT_ARM_EXIDX
:
17753 case SHT_ARM_PREEMPTMAP
:
17754 case SHT_ARM_ATTRIBUTES
:
17761 if (! _bfd_elf_make_section_from_shdr (abfd
, hdr
, name
, shindex
))
17767 static _arm_elf_section_data
*
17768 get_arm_elf_section_data (asection
* sec
)
17770 if (sec
&& sec
->owner
&& is_arm_elf (sec
->owner
))
17771 return elf32_arm_section_data (sec
);
17779 struct bfd_link_info
*info
;
17782 int (*func
) (void *, const char *, Elf_Internal_Sym
*,
17783 asection
*, struct elf_link_hash_entry
*);
17784 } output_arch_syminfo
;
17786 enum map_symbol_type
17794 /* Output a single mapping symbol. */
17797 elf32_arm_output_map_sym (output_arch_syminfo
*osi
,
17798 enum map_symbol_type type
,
17801 static const char *names
[3] = {"$a", "$t", "$d"};
17802 Elf_Internal_Sym sym
;
17804 sym
.st_value
= osi
->sec
->output_section
->vma
17805 + osi
->sec
->output_offset
17809 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_NOTYPE
);
17810 sym
.st_shndx
= osi
->sec_shndx
;
17811 sym
.st_target_internal
= 0;
17812 elf32_arm_section_map_add (osi
->sec
, names
[type
][1], offset
);
17813 return osi
->func (osi
->flaginfo
, names
[type
], &sym
, osi
->sec
, NULL
) == 1;
17816 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
17817 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
17820 elf32_arm_output_plt_map_1 (output_arch_syminfo
*osi
,
17821 bfd_boolean is_iplt_entry_p
,
17822 union gotplt_union
*root_plt
,
17823 struct arm_plt_info
*arm_plt
)
17825 struct elf32_arm_link_hash_table
*htab
;
17826 bfd_vma addr
, plt_header_size
;
17828 if (root_plt
->offset
== (bfd_vma
) -1)
17831 htab
= elf32_arm_hash_table (osi
->info
);
17835 if (is_iplt_entry_p
)
17837 osi
->sec
= htab
->root
.iplt
;
17838 plt_header_size
= 0;
17842 osi
->sec
= htab
->root
.splt
;
17843 plt_header_size
= htab
->plt_header_size
;
17845 osi
->sec_shndx
= (_bfd_elf_section_from_bfd_section
17846 (osi
->info
->output_bfd
, osi
->sec
->output_section
));
17848 addr
= root_plt
->offset
& -2;
17849 if (htab
->root
.target_os
== is_symbian
)
17851 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
17853 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 4))
17856 else if (htab
->root
.target_os
== is_vxworks
)
17858 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
17860 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 8))
17862 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
+ 12))
17864 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 20))
17867 else if (htab
->root
.target_os
== is_nacl
)
17869 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
17872 else if (htab
->fdpic_p
)
17874 enum map_symbol_type type
= using_thumb_only(htab
)
17878 if (elf32_arm_plt_needs_thumb_stub_p (osi
->info
, arm_plt
))
17879 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_THUMB
, addr
- 4))
17881 if (!elf32_arm_output_map_sym (osi
, type
, addr
))
17883 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 16))
17885 if (htab
->plt_entry_size
== 4 * ARRAY_SIZE(elf32_arm_fdpic_plt_entry
))
17886 if (!elf32_arm_output_map_sym (osi
, type
, addr
+ 24))
17889 else if (using_thumb_only (htab
))
17891 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_THUMB
, addr
))
17896 bfd_boolean thumb_stub_p
;
17898 thumb_stub_p
= elf32_arm_plt_needs_thumb_stub_p (osi
->info
, arm_plt
);
17901 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_THUMB
, addr
- 4))
17904 #ifdef FOUR_WORD_PLT
17905 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
17907 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_DATA
, addr
+ 12))
17910 /* A three-word PLT with no Thumb thunk contains only Arm code,
17911 so only need to output a mapping symbol for the first PLT entry and
17912 entries with thumb thunks. */
17913 if (thumb_stub_p
|| addr
== plt_header_size
)
17915 if (!elf32_arm_output_map_sym (osi
, ARM_MAP_ARM
, addr
))
17924 /* Output mapping symbols for PLT entries associated with H. */
17927 elf32_arm_output_plt_map (struct elf_link_hash_entry
*h
, void *inf
)
17929 output_arch_syminfo
*osi
= (output_arch_syminfo
*) inf
;
17930 struct elf32_arm_link_hash_entry
*eh
;
17932 if (h
->root
.type
== bfd_link_hash_indirect
)
17935 if (h
->root
.type
== bfd_link_hash_warning
)
17936 /* When warning symbols are created, they **replace** the "real"
17937 entry in the hash table, thus we never get to see the real
17938 symbol in a hash traversal. So look at it now. */
17939 h
= (struct elf_link_hash_entry
*) h
->root
.u
.i
.link
;
17941 eh
= (struct elf32_arm_link_hash_entry
*) h
;
17942 return elf32_arm_output_plt_map_1 (osi
, SYMBOL_CALLS_LOCAL (osi
->info
, h
),
17943 &h
->plt
, &eh
->plt
);
17946 /* Bind a veneered symbol to its veneer identified by its hash entry
17947 STUB_ENTRY. The veneered location thus loose its symbol. */
17950 arm_stub_claim_sym (struct elf32_arm_stub_hash_entry
*stub_entry
)
17952 struct elf32_arm_link_hash_entry
*hash
= stub_entry
->h
;
17955 hash
->root
.root
.u
.def
.section
= stub_entry
->stub_sec
;
17956 hash
->root
.root
.u
.def
.value
= stub_entry
->stub_offset
;
17957 hash
->root
.size
= stub_entry
->stub_size
;
17960 /* Output a single local symbol for a generated stub. */
17963 elf32_arm_output_stub_sym (output_arch_syminfo
*osi
, const char *name
,
17964 bfd_vma offset
, bfd_vma size
)
17966 Elf_Internal_Sym sym
;
17968 sym
.st_value
= osi
->sec
->output_section
->vma
17969 + osi
->sec
->output_offset
17971 sym
.st_size
= size
;
17973 sym
.st_info
= ELF_ST_INFO (STB_LOCAL
, STT_FUNC
);
17974 sym
.st_shndx
= osi
->sec_shndx
;
17975 sym
.st_target_internal
= 0;
17976 return osi
->func (osi
->flaginfo
, name
, &sym
, osi
->sec
, NULL
) == 1;
17980 arm_map_one_stub (struct bfd_hash_entry
* gen_entry
,
17983 struct elf32_arm_stub_hash_entry
*stub_entry
;
17984 asection
*stub_sec
;
17987 output_arch_syminfo
*osi
;
17988 const insn_sequence
*template_sequence
;
17989 enum stub_insn_type prev_type
;
17992 enum map_symbol_type sym_type
;
17994 /* Massage our args to the form they really have. */
17995 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
17996 osi
= (output_arch_syminfo
*) in_arg
;
17998 stub_sec
= stub_entry
->stub_sec
;
18000 /* Ensure this stub is attached to the current section being
18002 if (stub_sec
!= osi
->sec
)
18005 addr
= (bfd_vma
) stub_entry
->stub_offset
;
18006 template_sequence
= stub_entry
->stub_template
;
18008 if (arm_stub_sym_claimed (stub_entry
->stub_type
))
18009 arm_stub_claim_sym (stub_entry
);
18012 stub_name
= stub_entry
->output_name
;
18013 switch (template_sequence
[0].type
)
18016 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
,
18017 stub_entry
->stub_size
))
18022 if (!elf32_arm_output_stub_sym (osi
, stub_name
, addr
| 1,
18023 stub_entry
->stub_size
))
18032 prev_type
= DATA_TYPE
;
18034 for (i
= 0; i
< stub_entry
->stub_template_size
; i
++)
18036 switch (template_sequence
[i
].type
)
18039 sym_type
= ARM_MAP_ARM
;
18044 sym_type
= ARM_MAP_THUMB
;
18048 sym_type
= ARM_MAP_DATA
;
18056 if (template_sequence
[i
].type
!= prev_type
)
18058 prev_type
= template_sequence
[i
].type
;
18059 if (!elf32_arm_output_map_sym (osi
, sym_type
, addr
+ size
))
18063 switch (template_sequence
[i
].type
)
18087 /* Output mapping symbols for linker generated sections,
18088 and for those data-only sections that do not have a
18092 elf32_arm_output_arch_local_syms (bfd
*output_bfd
,
18093 struct bfd_link_info
*info
,
18095 int (*func
) (void *, const char *,
18096 Elf_Internal_Sym
*,
18098 struct elf_link_hash_entry
*))
18100 output_arch_syminfo osi
;
18101 struct elf32_arm_link_hash_table
*htab
;
18103 bfd_size_type size
;
18106 htab
= elf32_arm_hash_table (info
);
18110 check_use_blx (htab
);
18112 osi
.flaginfo
= flaginfo
;
18116 /* Add a $d mapping symbol to data-only sections that
18117 don't have any mapping symbol. This may result in (harmless) redundant
18118 mapping symbols. */
18119 for (input_bfd
= info
->input_bfds
;
18121 input_bfd
= input_bfd
->link
.next
)
18123 if ((input_bfd
->flags
& (BFD_LINKER_CREATED
| HAS_SYMS
)) == HAS_SYMS
)
18124 for (osi
.sec
= input_bfd
->sections
;
18126 osi
.sec
= osi
.sec
->next
)
18128 if (osi
.sec
->output_section
!= NULL
18129 && ((osi
.sec
->output_section
->flags
& (SEC_ALLOC
| SEC_CODE
))
18131 && (osi
.sec
->flags
& (SEC_HAS_CONTENTS
| SEC_LINKER_CREATED
))
18132 == SEC_HAS_CONTENTS
18133 && get_arm_elf_section_data (osi
.sec
) != NULL
18134 && get_arm_elf_section_data (osi
.sec
)->mapcount
== 0
18135 && osi
.sec
->size
> 0
18136 && (osi
.sec
->flags
& SEC_EXCLUDE
) == 0)
18138 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
18139 (output_bfd
, osi
.sec
->output_section
);
18140 if (osi
.sec_shndx
!= (int)SHN_BAD
)
18141 elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 0);
18146 /* ARM->Thumb glue. */
18147 if (htab
->arm_glue_size
> 0)
18149 osi
.sec
= bfd_get_linker_section (htab
->bfd_of_glue_owner
,
18150 ARM2THUMB_GLUE_SECTION_NAME
);
18152 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
18153 (output_bfd
, osi
.sec
->output_section
);
18154 if (bfd_link_pic (info
) || htab
->root
.is_relocatable_executable
18155 || htab
->pic_veneer
)
18156 size
= ARM2THUMB_PIC_GLUE_SIZE
;
18157 else if (htab
->use_blx
)
18158 size
= ARM2THUMB_V5_STATIC_GLUE_SIZE
;
18160 size
= ARM2THUMB_STATIC_GLUE_SIZE
;
18162 for (offset
= 0; offset
< htab
->arm_glue_size
; offset
+= size
)
18164 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, offset
);
18165 elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, offset
+ size
- 4);
18169 /* Thumb->ARM glue. */
18170 if (htab
->thumb_glue_size
> 0)
18172 osi
.sec
= bfd_get_linker_section (htab
->bfd_of_glue_owner
,
18173 THUMB2ARM_GLUE_SECTION_NAME
);
18175 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
18176 (output_bfd
, osi
.sec
->output_section
);
18177 size
= THUMB2ARM_GLUE_SIZE
;
18179 for (offset
= 0; offset
< htab
->thumb_glue_size
; offset
+= size
)
18181 elf32_arm_output_map_sym (&osi
, ARM_MAP_THUMB
, offset
);
18182 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, offset
+ 4);
18186 /* ARMv4 BX veneers. */
18187 if (htab
->bx_glue_size
> 0)
18189 osi
.sec
= bfd_get_linker_section (htab
->bfd_of_glue_owner
,
18190 ARM_BX_GLUE_SECTION_NAME
);
18192 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
18193 (output_bfd
, osi
.sec
->output_section
);
18195 elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0);
18198 /* Long calls stubs. */
18199 if (htab
->stub_bfd
&& htab
->stub_bfd
->sections
)
18201 asection
* stub_sec
;
18203 for (stub_sec
= htab
->stub_bfd
->sections
;
18205 stub_sec
= stub_sec
->next
)
18207 /* Ignore non-stub sections. */
18208 if (!strstr (stub_sec
->name
, STUB_SUFFIX
))
18211 osi
.sec
= stub_sec
;
18213 osi
.sec_shndx
= _bfd_elf_section_from_bfd_section
18214 (output_bfd
, osi
.sec
->output_section
);
18216 bfd_hash_traverse (&htab
->stub_hash_table
, arm_map_one_stub
, &osi
);
18220 /* Finally, output mapping symbols for the PLT. */
18221 if (htab
->root
.splt
&& htab
->root
.splt
->size
> 0)
18223 osi
.sec
= htab
->root
.splt
;
18224 osi
.sec_shndx
= (_bfd_elf_section_from_bfd_section
18225 (output_bfd
, osi
.sec
->output_section
));
18227 /* Output mapping symbols for the plt header. SymbianOS does not have a
18229 if (htab
->root
.target_os
== is_vxworks
)
18231 /* VxWorks shared libraries have no PLT header. */
18232 if (!bfd_link_pic (info
))
18234 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
18236 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 12))
18240 else if (htab
->root
.target_os
== is_nacl
)
18242 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
18245 else if (using_thumb_only (htab
) && !htab
->fdpic_p
)
18247 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_THUMB
, 0))
18249 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 12))
18251 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_THUMB
, 16))
18254 else if (htab
->root
.target_os
!= is_symbian
&& !htab
->fdpic_p
)
18256 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
18258 #ifndef FOUR_WORD_PLT
18259 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
, 16))
18264 if (htab
->root
.target_os
== is_nacl
18266 && htab
->root
.iplt
->size
> 0)
18268 /* NaCl uses a special first entry in .iplt too. */
18269 osi
.sec
= htab
->root
.iplt
;
18270 osi
.sec_shndx
= (_bfd_elf_section_from_bfd_section
18271 (output_bfd
, osi
.sec
->output_section
));
18272 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, 0))
18275 if ((htab
->root
.splt
&& htab
->root
.splt
->size
> 0)
18276 || (htab
->root
.iplt
&& htab
->root
.iplt
->size
> 0))
18278 elf_link_hash_traverse (&htab
->root
, elf32_arm_output_plt_map
, &osi
);
18279 for (input_bfd
= info
->input_bfds
;
18281 input_bfd
= input_bfd
->link
.next
)
18283 struct arm_local_iplt_info
**local_iplt
;
18284 unsigned int i
, num_syms
;
18286 local_iplt
= elf32_arm_local_iplt (input_bfd
);
18287 if (local_iplt
!= NULL
)
18289 num_syms
= elf_symtab_hdr (input_bfd
).sh_info
;
18290 for (i
= 0; i
< num_syms
; i
++)
18291 if (local_iplt
[i
] != NULL
18292 && !elf32_arm_output_plt_map_1 (&osi
, TRUE
,
18293 &local_iplt
[i
]->root
,
18294 &local_iplt
[i
]->arm
))
18299 if (htab
->root
.tlsdesc_plt
!= 0)
18301 /* Mapping symbols for the lazy tls trampoline. */
18302 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
,
18303 htab
->root
.tlsdesc_plt
))
18306 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
,
18307 htab
->root
.tlsdesc_plt
+ 24))
18310 if (htab
->tls_trampoline
!= 0)
18312 /* Mapping symbols for the tls trampoline. */
18313 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_ARM
, htab
->tls_trampoline
))
18315 #ifdef FOUR_WORD_PLT
18316 if (!elf32_arm_output_map_sym (&osi
, ARM_MAP_DATA
,
18317 htab
->tls_trampoline
+ 12))
18325 /* Filter normal symbols of CMSE entry functions of ABFD to include in
18326 the import library. All SYMCOUNT symbols of ABFD can be examined
18327 from their pointers in SYMS. Pointers of symbols to keep should be
18328 stored continuously at the beginning of that array.
18330 Returns the number of symbols to keep. */
18332 static unsigned int
18333 elf32_arm_filter_cmse_symbols (bfd
*abfd ATTRIBUTE_UNUSED
,
18334 struct bfd_link_info
*info
,
18335 asymbol
**syms
, long symcount
)
18339 long src_count
, dst_count
= 0;
18340 struct elf32_arm_link_hash_table
*htab
;
18342 htab
= elf32_arm_hash_table (info
);
18343 if (!htab
->stub_bfd
|| !htab
->stub_bfd
->sections
)
18347 cmse_name
= (char *) bfd_malloc (maxnamelen
);
18348 BFD_ASSERT (cmse_name
);
18350 for (src_count
= 0; src_count
< symcount
; src_count
++)
18352 struct elf32_arm_link_hash_entry
*cmse_hash
;
18358 sym
= syms
[src_count
];
18359 flags
= sym
->flags
;
18360 name
= (char *) bfd_asymbol_name (sym
);
18362 if ((flags
& BSF_FUNCTION
) != BSF_FUNCTION
)
18364 if (!(flags
& (BSF_GLOBAL
| BSF_WEAK
)))
18367 namelen
= strlen (name
) + sizeof (CMSE_PREFIX
) + 1;
18368 if (namelen
> maxnamelen
)
18370 cmse_name
= (char *)
18371 bfd_realloc (cmse_name
, namelen
);
18372 maxnamelen
= namelen
;
18374 snprintf (cmse_name
, maxnamelen
, "%s%s", CMSE_PREFIX
, name
);
18375 cmse_hash
= (struct elf32_arm_link_hash_entry
*)
18376 elf_link_hash_lookup (&(htab
)->root
, cmse_name
, FALSE
, FALSE
, TRUE
);
18379 || (cmse_hash
->root
.root
.type
!= bfd_link_hash_defined
18380 && cmse_hash
->root
.root
.type
!= bfd_link_hash_defweak
)
18381 || cmse_hash
->root
.type
!= STT_FUNC
)
18384 syms
[dst_count
++] = sym
;
18388 syms
[dst_count
] = NULL
;
18393 /* Filter symbols of ABFD to include in the import library. All
18394 SYMCOUNT symbols of ABFD can be examined from their pointers in
18395 SYMS. Pointers of symbols to keep should be stored continuously at
18396 the beginning of that array.
18398 Returns the number of symbols to keep. */
18400 static unsigned int
18401 elf32_arm_filter_implib_symbols (bfd
*abfd ATTRIBUTE_UNUSED
,
18402 struct bfd_link_info
*info
,
18403 asymbol
**syms
, long symcount
)
18405 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (info
);
18407 /* Requirement 8 of "ARM v8-M Security Extensions: Requirements on
18408 Development Tools" (ARM-ECM-0359818) mandates Secure Gateway import
18409 library to be a relocatable object file. */
18410 BFD_ASSERT (!(bfd_get_file_flags (info
->out_implib_bfd
) & EXEC_P
));
18411 if (globals
->cmse_implib
)
18412 return elf32_arm_filter_cmse_symbols (abfd
, info
, syms
, symcount
);
18414 return _bfd_elf_filter_global_symbols (abfd
, info
, syms
, symcount
);
18417 /* Allocate target specific section data. */
18420 elf32_arm_new_section_hook (bfd
*abfd
, asection
*sec
)
18422 if (!sec
->used_by_bfd
)
18424 _arm_elf_section_data
*sdata
;
18425 size_t amt
= sizeof (*sdata
);
18427 sdata
= (_arm_elf_section_data
*) bfd_zalloc (abfd
, amt
);
18430 sec
->used_by_bfd
= sdata
;
18433 return _bfd_elf_new_section_hook (abfd
, sec
);
18437 /* Used to order a list of mapping symbols by address. */
18440 elf32_arm_compare_mapping (const void * a
, const void * b
)
18442 const elf32_arm_section_map
*amap
= (const elf32_arm_section_map
*) a
;
18443 const elf32_arm_section_map
*bmap
= (const elf32_arm_section_map
*) b
;
18445 if (amap
->vma
> bmap
->vma
)
18447 else if (amap
->vma
< bmap
->vma
)
18449 else if (amap
->type
> bmap
->type
)
18450 /* Ensure results do not depend on the host qsort for objects with
18451 multiple mapping symbols at the same address by sorting on type
18454 else if (amap
->type
< bmap
->type
)
18460 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
18462 static unsigned long
18463 offset_prel31 (unsigned long addr
, bfd_vma offset
)
18465 return (addr
& ~0x7ffffffful
) | ((addr
+ offset
) & 0x7ffffffful
);
18468 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
18472 copy_exidx_entry (bfd
*output_bfd
, bfd_byte
*to
, bfd_byte
*from
, bfd_vma offset
)
18474 unsigned long first_word
= bfd_get_32 (output_bfd
, from
);
18475 unsigned long second_word
= bfd_get_32 (output_bfd
, from
+ 4);
18477 /* High bit of first word is supposed to be zero. */
18478 if ((first_word
& 0x80000000ul
) == 0)
18479 first_word
= offset_prel31 (first_word
, offset
);
18481 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
18482 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
18483 if ((second_word
!= 0x1) && ((second_word
& 0x80000000ul
) == 0))
18484 second_word
= offset_prel31 (second_word
, offset
);
18486 bfd_put_32 (output_bfd
, first_word
, to
);
18487 bfd_put_32 (output_bfd
, second_word
, to
+ 4);
18490 /* Data for make_branch_to_a8_stub(). */
18492 struct a8_branch_to_stub_data
18494 asection
*writing_section
;
18495 bfd_byte
*contents
;
18499 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
18500 places for a particular section. */
18503 make_branch_to_a8_stub (struct bfd_hash_entry
*gen_entry
,
18506 struct elf32_arm_stub_hash_entry
*stub_entry
;
18507 struct a8_branch_to_stub_data
*data
;
18508 bfd_byte
*contents
;
18509 unsigned long branch_insn
;
18510 bfd_vma veneered_insn_loc
, veneer_entry_loc
;
18511 bfd_signed_vma branch_offset
;
18515 stub_entry
= (struct elf32_arm_stub_hash_entry
*) gen_entry
;
18516 data
= (struct a8_branch_to_stub_data
*) in_arg
;
18518 if (stub_entry
->target_section
!= data
->writing_section
18519 || stub_entry
->stub_type
< arm_stub_a8_veneer_lwm
)
18522 contents
= data
->contents
;
18524 /* We use target_section as Cortex-A8 erratum workaround stubs are only
18525 generated when both source and target are in the same section. */
18526 veneered_insn_loc
= stub_entry
->target_section
->output_section
->vma
18527 + stub_entry
->target_section
->output_offset
18528 + stub_entry
->source_value
;
18530 veneer_entry_loc
= stub_entry
->stub_sec
->output_section
->vma
18531 + stub_entry
->stub_sec
->output_offset
18532 + stub_entry
->stub_offset
;
18534 if (stub_entry
->stub_type
== arm_stub_a8_veneer_blx
)
18535 veneered_insn_loc
&= ~3u;
18537 branch_offset
= veneer_entry_loc
- veneered_insn_loc
- 4;
18539 abfd
= stub_entry
->target_section
->owner
;
18540 loc
= stub_entry
->source_value
;
18542 /* We attempt to avoid this condition by setting stubs_always_after_branch
18543 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
18544 This check is just to be on the safe side... */
18545 if ((veneered_insn_loc
& ~0xfff) == (veneer_entry_loc
& ~0xfff))
18547 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub is "
18548 "allocated in unsafe location"), abfd
);
18552 switch (stub_entry
->stub_type
)
18554 case arm_stub_a8_veneer_b
:
18555 case arm_stub_a8_veneer_b_cond
:
18556 branch_insn
= 0xf0009000;
18559 case arm_stub_a8_veneer_blx
:
18560 branch_insn
= 0xf000e800;
18563 case arm_stub_a8_veneer_bl
:
18565 unsigned int i1
, j1
, i2
, j2
, s
;
18567 branch_insn
= 0xf000d000;
18570 if (branch_offset
< -16777216 || branch_offset
> 16777214)
18572 /* There's not much we can do apart from complain if this
18574 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub out "
18575 "of range (input file too large)"), abfd
);
18579 /* i1 = not(j1 eor s), so:
18581 j1 = (not i1) eor s. */
18583 branch_insn
|= (branch_offset
>> 1) & 0x7ff;
18584 branch_insn
|= ((branch_offset
>> 12) & 0x3ff) << 16;
18585 i2
= (branch_offset
>> 22) & 1;
18586 i1
= (branch_offset
>> 23) & 1;
18587 s
= (branch_offset
>> 24) & 1;
18590 branch_insn
|= j2
<< 11;
18591 branch_insn
|= j1
<< 13;
18592 branch_insn
|= s
<< 26;
18601 bfd_put_16 (abfd
, (branch_insn
>> 16) & 0xffff, &contents
[loc
]);
18602 bfd_put_16 (abfd
, branch_insn
& 0xffff, &contents
[loc
+ 2]);
18607 /* Beginning of stm32l4xx work-around. */
18609 /* Functions encoding instructions necessary for the emission of the
18610 fix-stm32l4xx-629360.
18611 Encoding is extracted from the
18612 ARM (C) Architecture Reference Manual
18613 ARMv7-A and ARMv7-R edition
18614 ARM DDI 0406C.b (ID072512). */
18616 static inline bfd_vma
18617 create_instruction_branch_absolute (int branch_offset
)
18619 /* A8.8.18 B (A8-334)
18620 B target_address (Encoding T4). */
18621 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */
18622 /* jump offset is: S:I1:I2:imm10:imm11:0. */
18623 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */
18625 int s
= ((branch_offset
& 0x1000000) >> 24);
18626 int j1
= s
^ !((branch_offset
& 0x800000) >> 23);
18627 int j2
= s
^ !((branch_offset
& 0x400000) >> 22);
18629 if (branch_offset
< -(1 << 24) || branch_offset
>= (1 << 24))
18630 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch.");
18632 bfd_vma patched_inst
= 0xf0009000
18634 | (((unsigned long) (branch_offset
) >> 12) & 0x3ff) << 16 /* imm10. */
18635 | j1
<< 13 /* J1. */
18636 | j2
<< 11 /* J2. */
18637 | (((unsigned long) (branch_offset
) >> 1) & 0x7ff); /* imm11. */
18639 return patched_inst
;
18642 static inline bfd_vma
18643 create_instruction_ldmia (int base_reg
, int wback
, int reg_mask
)
18645 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396)
18646 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */
18647 bfd_vma patched_inst
= 0xe8900000
18648 | (/*W=*/wback
<< 21)
18650 | (reg_mask
& 0x0000ffff);
18652 return patched_inst
;
18655 static inline bfd_vma
18656 create_instruction_ldmdb (int base_reg
, int wback
, int reg_mask
)
18658 /* A8.8.60 LDMDB/LDMEA (A8-402)
18659 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */
18660 bfd_vma patched_inst
= 0xe9100000
18661 | (/*W=*/wback
<< 21)
18663 | (reg_mask
& 0x0000ffff);
18665 return patched_inst
;
18668 static inline bfd_vma
18669 create_instruction_mov (int target_reg
, int source_reg
)
18671 /* A8.8.103 MOV (register) (A8-486)
18672 MOV Rd, Rm (Encoding T1). */
18673 bfd_vma patched_inst
= 0x4600
18674 | (target_reg
& 0x7)
18675 | ((target_reg
& 0x8) >> 3) << 7
18676 | (source_reg
<< 3);
18678 return patched_inst
;
18681 static inline bfd_vma
18682 create_instruction_sub (int target_reg
, int source_reg
, int value
)
18684 /* A8.8.221 SUB (immediate) (A8-708)
18685 SUB Rd, Rn, #value (Encoding T3). */
18686 bfd_vma patched_inst
= 0xf1a00000
18687 | (target_reg
<< 8)
18688 | (source_reg
<< 16)
18690 | ((value
& 0x800) >> 11) << 26
18691 | ((value
& 0x700) >> 8) << 12
18694 return patched_inst
;
18697 static inline bfd_vma
18698 create_instruction_vldmia (int base_reg
, int is_dp
, int wback
, int num_words
,
18701 /* A8.8.332 VLDM (A8-922)
18702 VLMD{MODE} Rn{!}, {list} (Encoding T1 or T2). */
18703 bfd_vma patched_inst
= (is_dp
? 0xec900b00 : 0xec900a00)
18704 | (/*W=*/wback
<< 21)
18706 | (num_words
& 0x000000ff)
18707 | (((unsigned)first_reg
>> 1) & 0x0000000f) << 12
18708 | (first_reg
& 0x00000001) << 22;
18710 return patched_inst
;
18713 static inline bfd_vma
18714 create_instruction_vldmdb (int base_reg
, int is_dp
, int num_words
,
18717 /* A8.8.332 VLDM (A8-922)
18718 VLMD{MODE} Rn!, {} (Encoding T1 or T2). */
18719 bfd_vma patched_inst
= (is_dp
? 0xed300b00 : 0xed300a00)
18721 | (num_words
& 0x000000ff)
18722 | (((unsigned)first_reg
>>1 ) & 0x0000000f) << 12
18723 | (first_reg
& 0x00000001) << 22;
18725 return patched_inst
;
18728 static inline bfd_vma
18729 create_instruction_udf_w (int value
)
18731 /* A8.8.247 UDF (A8-758)
18732 Undefined (Encoding T2). */
18733 bfd_vma patched_inst
= 0xf7f0a000
18734 | (value
& 0x00000fff)
18735 | (value
& 0x000f0000) << 16;
18737 return patched_inst
;
18740 static inline bfd_vma
18741 create_instruction_udf (int value
)
18743 /* A8.8.247 UDF (A8-758)
18744 Undefined (Encoding T1). */
18745 bfd_vma patched_inst
= 0xde00
18748 return patched_inst
;
18751 /* Functions writing an instruction in memory, returning the next
18752 memory position to write to. */
18754 static inline bfd_byte
*
18755 push_thumb2_insn32 (struct elf32_arm_link_hash_table
* htab
,
18756 bfd
* output_bfd
, bfd_byte
*pt
, insn32 insn
)
18758 put_thumb2_insn (htab
, output_bfd
, insn
, pt
);
18762 static inline bfd_byte
*
18763 push_thumb2_insn16 (struct elf32_arm_link_hash_table
* htab
,
18764 bfd
* output_bfd
, bfd_byte
*pt
, insn32 insn
)
18766 put_thumb_insn (htab
, output_bfd
, insn
, pt
);
18770 /* Function filling up a region in memory with T1 and T2 UDFs taking
18771 care of alignment. */
18774 stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table
* htab
,
18776 const bfd_byte
* const base_stub_contents
,
18777 bfd_byte
* const from_stub_contents
,
18778 const bfd_byte
* const end_stub_contents
)
18780 bfd_byte
*current_stub_contents
= from_stub_contents
;
18782 /* Fill the remaining of the stub with deterministic contents : UDF
18784 Check if realignment is needed on modulo 4 frontier using T1, to
18786 if ((current_stub_contents
< end_stub_contents
)
18787 && !((current_stub_contents
- base_stub_contents
) % 2)
18788 && ((current_stub_contents
- base_stub_contents
) % 4))
18789 current_stub_contents
=
18790 push_thumb2_insn16 (htab
, output_bfd
, current_stub_contents
,
18791 create_instruction_udf (0));
18793 for (; current_stub_contents
< end_stub_contents
;)
18794 current_stub_contents
=
18795 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
18796 create_instruction_udf_w (0));
18798 return current_stub_contents
;
18801 /* Functions writing the stream of instructions equivalent to the
18802 derived sequence for ldmia, ldmdb, vldm respectively. */
18805 stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table
* htab
,
18807 const insn32 initial_insn
,
18808 const bfd_byte
*const initial_insn_addr
,
18809 bfd_byte
*const base_stub_contents
)
18811 int wback
= (initial_insn
& 0x00200000) >> 21;
18812 int ri
, rn
= (initial_insn
& 0x000F0000) >> 16;
18813 int insn_all_registers
= initial_insn
& 0x0000ffff;
18814 int insn_low_registers
, insn_high_registers
;
18815 int usable_register_mask
;
18816 int nb_registers
= elf32_arm_popcount (insn_all_registers
);
18817 int restore_pc
= (insn_all_registers
& (1 << 15)) ? 1 : 0;
18818 int restore_rn
= (insn_all_registers
& (1 << rn
)) ? 1 : 0;
18819 bfd_byte
*current_stub_contents
= base_stub_contents
;
18821 BFD_ASSERT (is_thumb2_ldmia (initial_insn
));
18823 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18824 smaller than 8 registers load sequences that do not cause the
18826 if (nb_registers
<= 8)
18828 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
18829 current_stub_contents
=
18830 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
18833 /* B initial_insn_addr+4. */
18835 current_stub_contents
=
18836 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
18837 create_instruction_branch_absolute
18838 (initial_insn_addr
- current_stub_contents
));
18840 /* Fill the remaining of the stub with deterministic contents. */
18841 current_stub_contents
=
18842 stm32l4xx_fill_stub_udf (htab
, output_bfd
,
18843 base_stub_contents
, current_stub_contents
,
18844 base_stub_contents
+
18845 STM32L4XX_ERRATUM_LDM_VENEER_SIZE
);
18850 /* - reg_list[13] == 0. */
18851 BFD_ASSERT ((insn_all_registers
& (1 << 13))==0);
18853 /* - reg_list[14] & reg_list[15] != 1. */
18854 BFD_ASSERT ((insn_all_registers
& 0xC000) != 0xC000);
18856 /* - if (wback==1) reg_list[rn] == 0. */
18857 BFD_ASSERT (!wback
|| !restore_rn
);
18859 /* - nb_registers > 8. */
18860 BFD_ASSERT (elf32_arm_popcount (insn_all_registers
) > 8);
18862 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
18864 /* In the following algorithm, we split this wide LDM using 2 LDM insns:
18865 - One with the 7 lowest registers (register mask 0x007F)
18866 This LDM will finally contain between 2 and 7 registers
18867 - One with the 7 highest registers (register mask 0xDF80)
18868 This ldm will finally contain between 2 and 7 registers. */
18869 insn_low_registers
= insn_all_registers
& 0x007F;
18870 insn_high_registers
= insn_all_registers
& 0xDF80;
18872 /* A spare register may be needed during this veneer to temporarily
18873 handle the base register. This register will be restored with the
18874 last LDM operation.
18875 The usable register may be any general purpose register (that
18876 excludes PC, SP, LR : register mask is 0x1FFF). */
18877 usable_register_mask
= 0x1FFF;
18879 /* Generate the stub function. */
18882 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */
18883 current_stub_contents
=
18884 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
18885 create_instruction_ldmia
18886 (rn
, /*wback=*/1, insn_low_registers
));
18888 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */
18889 current_stub_contents
=
18890 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
18891 create_instruction_ldmia
18892 (rn
, /*wback=*/1, insn_high_registers
));
18895 /* B initial_insn_addr+4. */
18896 current_stub_contents
=
18897 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
18898 create_instruction_branch_absolute
18899 (initial_insn_addr
- current_stub_contents
));
18902 else /* if (!wback). */
18906 /* If Rn is not part of the high-register-list, move it there. */
18907 if (!(insn_high_registers
& (1 << rn
)))
18909 /* Choose a Ri in the high-register-list that will be restored. */
18910 ri
= ctz (insn_high_registers
& usable_register_mask
& ~(1 << rn
));
18913 current_stub_contents
=
18914 push_thumb2_insn16 (htab
, output_bfd
, current_stub_contents
,
18915 create_instruction_mov (ri
, rn
));
18918 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */
18919 current_stub_contents
=
18920 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
18921 create_instruction_ldmia
18922 (ri
, /*wback=*/1, insn_low_registers
));
18924 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */
18925 current_stub_contents
=
18926 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
18927 create_instruction_ldmia
18928 (ri
, /*wback=*/0, insn_high_registers
));
18932 /* B initial_insn_addr+4. */
18933 current_stub_contents
=
18934 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
18935 create_instruction_branch_absolute
18936 (initial_insn_addr
- current_stub_contents
));
18940 /* Fill the remaining of the stub with deterministic contents. */
18941 current_stub_contents
=
18942 stm32l4xx_fill_stub_udf (htab
, output_bfd
,
18943 base_stub_contents
, current_stub_contents
,
18944 base_stub_contents
+
18945 STM32L4XX_ERRATUM_LDM_VENEER_SIZE
);
18949 stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table
* htab
,
18951 const insn32 initial_insn
,
18952 const bfd_byte
*const initial_insn_addr
,
18953 bfd_byte
*const base_stub_contents
)
18955 int wback
= (initial_insn
& 0x00200000) >> 21;
18956 int ri
, rn
= (initial_insn
& 0x000f0000) >> 16;
18957 int insn_all_registers
= initial_insn
& 0x0000ffff;
18958 int insn_low_registers
, insn_high_registers
;
18959 int usable_register_mask
;
18960 int restore_pc
= (insn_all_registers
& (1 << 15)) ? 1 : 0;
18961 int restore_rn
= (insn_all_registers
& (1 << rn
)) ? 1 : 0;
18962 int nb_registers
= elf32_arm_popcount (insn_all_registers
);
18963 bfd_byte
*current_stub_contents
= base_stub_contents
;
18965 BFD_ASSERT (is_thumb2_ldmdb (initial_insn
));
18967 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18968 smaller than 8 registers load sequences that do not cause the
18970 if (nb_registers
<= 8)
18972 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
18973 current_stub_contents
=
18974 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
18977 /* B initial_insn_addr+4. */
18978 current_stub_contents
=
18979 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
18980 create_instruction_branch_absolute
18981 (initial_insn_addr
- current_stub_contents
));
18983 /* Fill the remaining of the stub with deterministic contents. */
18984 current_stub_contents
=
18985 stm32l4xx_fill_stub_udf (htab
, output_bfd
,
18986 base_stub_contents
, current_stub_contents
,
18987 base_stub_contents
+
18988 STM32L4XX_ERRATUM_LDM_VENEER_SIZE
);
18993 /* - reg_list[13] == 0. */
18994 BFD_ASSERT ((insn_all_registers
& (1 << 13)) == 0);
18996 /* - reg_list[14] & reg_list[15] != 1. */
18997 BFD_ASSERT ((insn_all_registers
& 0xC000) != 0xC000);
18999 /* - if (wback==1) reg_list[rn] == 0. */
19000 BFD_ASSERT (!wback
|| !restore_rn
);
19002 /* - nb_registers > 8. */
19003 BFD_ASSERT (elf32_arm_popcount (insn_all_registers
) > 8);
19005 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
19007 /* In the following algorithm, we split this wide LDM using 2 LDM insn:
19008 - One with the 7 lowest registers (register mask 0x007F)
19009 This LDM will finally contain between 2 and 7 registers
19010 - One with the 7 highest registers (register mask 0xDF80)
19011 This ldm will finally contain between 2 and 7 registers. */
19012 insn_low_registers
= insn_all_registers
& 0x007F;
19013 insn_high_registers
= insn_all_registers
& 0xDF80;
19015 /* A spare register may be needed during this veneer to temporarily
19016 handle the base register. This register will be restored with
19017 the last LDM operation.
19018 The usable register may be any general purpose register (that excludes
19019 PC, SP, LR : register mask is 0x1FFF). */
19020 usable_register_mask
= 0x1FFF;
19022 /* Generate the stub function. */
19023 if (!wback
&& !restore_pc
&& !restore_rn
)
19025 /* Choose a Ri in the low-register-list that will be restored. */
19026 ri
= ctz (insn_low_registers
& usable_register_mask
& ~(1 << rn
));
19029 current_stub_contents
=
19030 push_thumb2_insn16 (htab
, output_bfd
, current_stub_contents
,
19031 create_instruction_mov (ri
, rn
));
19033 /* LDMDB Ri!, {R-high-register-list}. */
19034 current_stub_contents
=
19035 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19036 create_instruction_ldmdb
19037 (ri
, /*wback=*/1, insn_high_registers
));
19039 /* LDMDB Ri, {R-low-register-list}. */
19040 current_stub_contents
=
19041 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19042 create_instruction_ldmdb
19043 (ri
, /*wback=*/0, insn_low_registers
));
19045 /* B initial_insn_addr+4. */
19046 current_stub_contents
=
19047 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19048 create_instruction_branch_absolute
19049 (initial_insn_addr
- current_stub_contents
));
19051 else if (wback
&& !restore_pc
&& !restore_rn
)
19053 /* LDMDB Rn!, {R-high-register-list}. */
19054 current_stub_contents
=
19055 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19056 create_instruction_ldmdb
19057 (rn
, /*wback=*/1, insn_high_registers
));
19059 /* LDMDB Rn!, {R-low-register-list}. */
19060 current_stub_contents
=
19061 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19062 create_instruction_ldmdb
19063 (rn
, /*wback=*/1, insn_low_registers
));
19065 /* B initial_insn_addr+4. */
19066 current_stub_contents
=
19067 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19068 create_instruction_branch_absolute
19069 (initial_insn_addr
- current_stub_contents
));
19071 else if (!wback
&& restore_pc
&& !restore_rn
)
19073 /* Choose a Ri in the high-register-list that will be restored. */
19074 ri
= ctz (insn_high_registers
& usable_register_mask
& ~(1 << rn
));
19076 /* SUB Ri, Rn, #(4*nb_registers). */
19077 current_stub_contents
=
19078 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19079 create_instruction_sub (ri
, rn
, (4 * nb_registers
)));
19081 /* LDMIA Ri!, {R-low-register-list}. */
19082 current_stub_contents
=
19083 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19084 create_instruction_ldmia
19085 (ri
, /*wback=*/1, insn_low_registers
));
19087 /* LDMIA Ri, {R-high-register-list}. */
19088 current_stub_contents
=
19089 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19090 create_instruction_ldmia
19091 (ri
, /*wback=*/0, insn_high_registers
));
19093 else if (wback
&& restore_pc
&& !restore_rn
)
19095 /* Choose a Ri in the high-register-list that will be restored. */
19096 ri
= ctz (insn_high_registers
& usable_register_mask
& ~(1 << rn
));
19098 /* SUB Rn, Rn, #(4*nb_registers) */
19099 current_stub_contents
=
19100 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19101 create_instruction_sub (rn
, rn
, (4 * nb_registers
)));
19104 current_stub_contents
=
19105 push_thumb2_insn16 (htab
, output_bfd
, current_stub_contents
,
19106 create_instruction_mov (ri
, rn
));
19108 /* LDMIA Ri!, {R-low-register-list}. */
19109 current_stub_contents
=
19110 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19111 create_instruction_ldmia
19112 (ri
, /*wback=*/1, insn_low_registers
));
19114 /* LDMIA Ri, {R-high-register-list}. */
19115 current_stub_contents
=
19116 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19117 create_instruction_ldmia
19118 (ri
, /*wback=*/0, insn_high_registers
));
19120 else if (!wback
&& !restore_pc
&& restore_rn
)
19123 if (!(insn_low_registers
& (1 << rn
)))
19125 /* Choose a Ri in the low-register-list that will be restored. */
19126 ri
= ctz (insn_low_registers
& usable_register_mask
& ~(1 << rn
));
19129 current_stub_contents
=
19130 push_thumb2_insn16 (htab
, output_bfd
, current_stub_contents
,
19131 create_instruction_mov (ri
, rn
));
19134 /* LDMDB Ri!, {R-high-register-list}. */
19135 current_stub_contents
=
19136 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19137 create_instruction_ldmdb
19138 (ri
, /*wback=*/1, insn_high_registers
));
19140 /* LDMDB Ri, {R-low-register-list}. */
19141 current_stub_contents
=
19142 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19143 create_instruction_ldmdb
19144 (ri
, /*wback=*/0, insn_low_registers
));
19146 /* B initial_insn_addr+4. */
19147 current_stub_contents
=
19148 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19149 create_instruction_branch_absolute
19150 (initial_insn_addr
- current_stub_contents
));
19152 else if (!wback
&& restore_pc
&& restore_rn
)
19155 if (!(insn_high_registers
& (1 << rn
)))
19157 /* Choose a Ri in the high-register-list that will be restored. */
19158 ri
= ctz (insn_high_registers
& usable_register_mask
& ~(1 << rn
));
19161 /* SUB Ri, Rn, #(4*nb_registers). */
19162 current_stub_contents
=
19163 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19164 create_instruction_sub (ri
, rn
, (4 * nb_registers
)));
19166 /* LDMIA Ri!, {R-low-register-list}. */
19167 current_stub_contents
=
19168 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19169 create_instruction_ldmia
19170 (ri
, /*wback=*/1, insn_low_registers
));
19172 /* LDMIA Ri, {R-high-register-list}. */
19173 current_stub_contents
=
19174 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19175 create_instruction_ldmia
19176 (ri
, /*wback=*/0, insn_high_registers
));
19178 else if (wback
&& restore_rn
)
19180 /* The assembler should not have accepted to encode this. */
19181 BFD_ASSERT (0 && "Cannot patch an instruction that has an "
19182 "undefined behavior.\n");
19185 /* Fill the remaining of the stub with deterministic contents. */
19186 current_stub_contents
=
19187 stm32l4xx_fill_stub_udf (htab
, output_bfd
,
19188 base_stub_contents
, current_stub_contents
,
19189 base_stub_contents
+
19190 STM32L4XX_ERRATUM_LDM_VENEER_SIZE
);
19195 stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table
* htab
,
19197 const insn32 initial_insn
,
19198 const bfd_byte
*const initial_insn_addr
,
19199 bfd_byte
*const base_stub_contents
)
19201 int num_words
= initial_insn
& 0xff;
19202 bfd_byte
*current_stub_contents
= base_stub_contents
;
19204 BFD_ASSERT (is_thumb2_vldm (initial_insn
));
19206 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
19207 smaller than 8 words load sequences that do not cause the
19209 if (num_words
<= 8)
19211 /* Untouched instruction. */
19212 current_stub_contents
=
19213 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19216 /* B initial_insn_addr+4. */
19217 current_stub_contents
=
19218 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19219 create_instruction_branch_absolute
19220 (initial_insn_addr
- current_stub_contents
));
19224 bfd_boolean is_dp
= /* DP encoding. */
19225 (initial_insn
& 0xfe100f00) == 0xec100b00;
19226 bfd_boolean is_ia_nobang
= /* (IA without !). */
19227 (((initial_insn
<< 7) >> 28) & 0xd) == 0x4;
19228 bfd_boolean is_ia_bang
= /* (IA with !) - includes VPOP. */
19229 (((initial_insn
<< 7) >> 28) & 0xd) == 0x5;
19230 bfd_boolean is_db_bang
= /* (DB with !). */
19231 (((initial_insn
<< 7) >> 28) & 0xd) == 0x9;
19232 int base_reg
= ((unsigned int) initial_insn
<< 12) >> 28;
19233 /* d = UInt (Vd:D);. */
19234 int first_reg
= ((((unsigned int) initial_insn
<< 16) >> 28) << 1)
19235 | (((unsigned int)initial_insn
<< 9) >> 31);
19237 /* Compute the number of 8-words chunks needed to split. */
19238 int chunks
= (num_words
% 8) ? (num_words
/ 8 + 1) : (num_words
/ 8);
19241 /* The test coverage has been done assuming the following
19242 hypothesis that exactly one of the previous is_ predicates is
19244 BFD_ASSERT ( (is_ia_nobang
^ is_ia_bang
^ is_db_bang
)
19245 && !(is_ia_nobang
& is_ia_bang
& is_db_bang
));
19247 /* We treat the cutting of the words in one pass for all
19248 cases, then we emit the adjustments:
19251 -> vldm rx!, {8_words_or_less} for each needed 8_word
19252 -> sub rx, rx, #size (list)
19255 -> vldm rx!, {8_words_or_less} for each needed 8_word
19256 This also handles vpop instruction (when rx is sp)
19259 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */
19260 for (chunk
= 0; chunk
< chunks
; ++chunk
)
19262 bfd_vma new_insn
= 0;
19264 if (is_ia_nobang
|| is_ia_bang
)
19266 new_insn
= create_instruction_vldmia
19270 chunks
- (chunk
+ 1) ?
19271 8 : num_words
- chunk
* 8,
19272 first_reg
+ chunk
* 8);
19274 else if (is_db_bang
)
19276 new_insn
= create_instruction_vldmdb
19279 chunks
- (chunk
+ 1) ?
19280 8 : num_words
- chunk
* 8,
19281 first_reg
+ chunk
* 8);
19285 current_stub_contents
=
19286 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19290 /* Only this case requires the base register compensation
19294 current_stub_contents
=
19295 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19296 create_instruction_sub
19297 (base_reg
, base_reg
, 4*num_words
));
19300 /* B initial_insn_addr+4. */
19301 current_stub_contents
=
19302 push_thumb2_insn32 (htab
, output_bfd
, current_stub_contents
,
19303 create_instruction_branch_absolute
19304 (initial_insn_addr
- current_stub_contents
));
19307 /* Fill the remaining of the stub with deterministic contents. */
19308 current_stub_contents
=
19309 stm32l4xx_fill_stub_udf (htab
, output_bfd
,
19310 base_stub_contents
, current_stub_contents
,
19311 base_stub_contents
+
19312 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE
);
19316 stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table
* htab
,
19318 const insn32 wrong_insn
,
19319 const bfd_byte
*const wrong_insn_addr
,
19320 bfd_byte
*const stub_contents
)
19322 if (is_thumb2_ldmia (wrong_insn
))
19323 stm32l4xx_create_replacing_stub_ldmia (htab
, output_bfd
,
19324 wrong_insn
, wrong_insn_addr
,
19326 else if (is_thumb2_ldmdb (wrong_insn
))
19327 stm32l4xx_create_replacing_stub_ldmdb (htab
, output_bfd
,
19328 wrong_insn
, wrong_insn_addr
,
19330 else if (is_thumb2_vldm (wrong_insn
))
19331 stm32l4xx_create_replacing_stub_vldm (htab
, output_bfd
,
19332 wrong_insn
, wrong_insn_addr
,
19336 /* End of stm32l4xx work-around. */
19339 /* Do code byteswapping. Return FALSE afterwards so that the section is
19340 written out as normal. */
19343 elf32_arm_write_section (bfd
*output_bfd
,
19344 struct bfd_link_info
*link_info
,
19346 bfd_byte
*contents
)
19348 unsigned int mapcount
, errcount
;
19349 _arm_elf_section_data
*arm_data
;
19350 struct elf32_arm_link_hash_table
*globals
= elf32_arm_hash_table (link_info
);
19351 elf32_arm_section_map
*map
;
19352 elf32_vfp11_erratum_list
*errnode
;
19353 elf32_stm32l4xx_erratum_list
*stm32l4xx_errnode
;
19356 bfd_vma offset
= sec
->output_section
->vma
+ sec
->output_offset
;
19360 if (globals
== NULL
)
19363 /* If this section has not been allocated an _arm_elf_section_data
19364 structure then we cannot record anything. */
19365 arm_data
= get_arm_elf_section_data (sec
);
19366 if (arm_data
== NULL
)
19369 mapcount
= arm_data
->mapcount
;
19370 map
= arm_data
->map
;
19371 errcount
= arm_data
->erratumcount
;
19375 unsigned int endianflip
= bfd_big_endian (output_bfd
) ? 3 : 0;
19377 for (errnode
= arm_data
->erratumlist
; errnode
!= 0;
19378 errnode
= errnode
->next
)
19380 bfd_vma target
= errnode
->vma
- offset
;
19382 switch (errnode
->type
)
19384 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER
:
19386 bfd_vma branch_to_veneer
;
19387 /* Original condition code of instruction, plus bit mask for
19388 ARM B instruction. */
19389 unsigned int insn
= (errnode
->u
.b
.vfp_insn
& 0xf0000000)
19392 /* The instruction is before the label. */
19395 /* Above offset included in -4 below. */
19396 branch_to_veneer
= errnode
->u
.b
.veneer
->vma
19397 - errnode
->vma
- 4;
19399 if ((signed) branch_to_veneer
< -(1 << 25)
19400 || (signed) branch_to_veneer
>= (1 << 25))
19401 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
19402 "range"), output_bfd
);
19404 insn
|= (branch_to_veneer
>> 2) & 0xffffff;
19405 contents
[endianflip
^ target
] = insn
& 0xff;
19406 contents
[endianflip
^ (target
+ 1)] = (insn
>> 8) & 0xff;
19407 contents
[endianflip
^ (target
+ 2)] = (insn
>> 16) & 0xff;
19408 contents
[endianflip
^ (target
+ 3)] = (insn
>> 24) & 0xff;
19412 case VFP11_ERRATUM_ARM_VENEER
:
19414 bfd_vma branch_from_veneer
;
19417 /* Take size of veneer into account. */
19418 branch_from_veneer
= errnode
->u
.v
.branch
->vma
19419 - errnode
->vma
- 12;
19421 if ((signed) branch_from_veneer
< -(1 << 25)
19422 || (signed) branch_from_veneer
>= (1 << 25))
19423 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
19424 "range"), output_bfd
);
19426 /* Original instruction. */
19427 insn
= errnode
->u
.v
.branch
->u
.b
.vfp_insn
;
19428 contents
[endianflip
^ target
] = insn
& 0xff;
19429 contents
[endianflip
^ (target
+ 1)] = (insn
>> 8) & 0xff;
19430 contents
[endianflip
^ (target
+ 2)] = (insn
>> 16) & 0xff;
19431 contents
[endianflip
^ (target
+ 3)] = (insn
>> 24) & 0xff;
19433 /* Branch back to insn after original insn. */
19434 insn
= 0xea000000 | ((branch_from_veneer
>> 2) & 0xffffff);
19435 contents
[endianflip
^ (target
+ 4)] = insn
& 0xff;
19436 contents
[endianflip
^ (target
+ 5)] = (insn
>> 8) & 0xff;
19437 contents
[endianflip
^ (target
+ 6)] = (insn
>> 16) & 0xff;
19438 contents
[endianflip
^ (target
+ 7)] = (insn
>> 24) & 0xff;
19448 if (arm_data
->stm32l4xx_erratumcount
!= 0)
19450 for (stm32l4xx_errnode
= arm_data
->stm32l4xx_erratumlist
;
19451 stm32l4xx_errnode
!= 0;
19452 stm32l4xx_errnode
= stm32l4xx_errnode
->next
)
19454 bfd_vma target
= stm32l4xx_errnode
->vma
- offset
;
19456 switch (stm32l4xx_errnode
->type
)
19458 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER
:
19461 bfd_vma branch_to_veneer
=
19462 stm32l4xx_errnode
->u
.b
.veneer
->vma
- stm32l4xx_errnode
->vma
;
19464 if ((signed) branch_to_veneer
< -(1 << 24)
19465 || (signed) branch_to_veneer
>= (1 << 24))
19467 bfd_vma out_of_range
=
19468 ((signed) branch_to_veneer
< -(1 << 24)) ?
19469 - branch_to_veneer
- (1 << 24) :
19470 ((signed) branch_to_veneer
>= (1 << 24)) ?
19471 branch_to_veneer
- (1 << 24) : 0;
19474 (_("%pB(%#" PRIx64
"): error: "
19475 "cannot create STM32L4XX veneer; "
19476 "jump out of range by %" PRId64
" bytes; "
19477 "cannot encode branch instruction"),
19479 (uint64_t) (stm32l4xx_errnode
->vma
- 4),
19480 (int64_t) out_of_range
);
19484 insn
= create_instruction_branch_absolute
19485 (stm32l4xx_errnode
->u
.b
.veneer
->vma
- stm32l4xx_errnode
->vma
);
19487 /* The instruction is before the label. */
19490 put_thumb2_insn (globals
, output_bfd
,
19491 (bfd_vma
) insn
, contents
+ target
);
19495 case STM32L4XX_ERRATUM_VENEER
:
19498 bfd_byte
* veneer_r
;
19501 veneer
= contents
+ target
;
19503 + stm32l4xx_errnode
->u
.b
.veneer
->vma
19504 - stm32l4xx_errnode
->vma
- 4;
19506 if ((signed) (veneer_r
- veneer
-
19507 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE
>
19508 STM32L4XX_ERRATUM_LDM_VENEER_SIZE
?
19509 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE
:
19510 STM32L4XX_ERRATUM_LDM_VENEER_SIZE
) < -(1 << 24)
19511 || (signed) (veneer_r
- veneer
) >= (1 << 24))
19513 _bfd_error_handler (_("%pB: error: cannot create STM32L4XX "
19514 "veneer"), output_bfd
);
19518 /* Original instruction. */
19519 insn
= stm32l4xx_errnode
->u
.v
.branch
->u
.b
.insn
;
19521 stm32l4xx_create_replacing_stub
19522 (globals
, output_bfd
, insn
, (void*)veneer_r
, (void*)veneer
);
19532 if (arm_data
->elf
.this_hdr
.sh_type
== SHT_ARM_EXIDX
)
19534 arm_unwind_table_edit
*edit_node
19535 = arm_data
->u
.exidx
.unwind_edit_list
;
19536 /* Now, sec->size is the size of the section we will write. The original
19537 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
19538 markers) was sec->rawsize. (This isn't the case if we perform no
19539 edits, then rawsize will be zero and we should use size). */
19540 bfd_byte
*edited_contents
= (bfd_byte
*) bfd_malloc (sec
->size
);
19541 unsigned int input_size
= sec
->rawsize
? sec
->rawsize
: sec
->size
;
19542 unsigned int in_index
, out_index
;
19543 bfd_vma add_to_offsets
= 0;
19545 if (edited_contents
== NULL
)
19547 for (in_index
= 0, out_index
= 0; in_index
* 8 < input_size
|| edit_node
;)
19551 unsigned int edit_index
= edit_node
->index
;
19553 if (in_index
< edit_index
&& in_index
* 8 < input_size
)
19555 copy_exidx_entry (output_bfd
, edited_contents
+ out_index
* 8,
19556 contents
+ in_index
* 8, add_to_offsets
);
19560 else if (in_index
== edit_index
19561 || (in_index
* 8 >= input_size
19562 && edit_index
== UINT_MAX
))
19564 switch (edit_node
->type
)
19566 case DELETE_EXIDX_ENTRY
:
19568 add_to_offsets
+= 8;
19571 case INSERT_EXIDX_CANTUNWIND_AT_END
:
19573 asection
*text_sec
= edit_node
->linked_section
;
19574 bfd_vma text_offset
= text_sec
->output_section
->vma
19575 + text_sec
->output_offset
19577 bfd_vma exidx_offset
= offset
+ out_index
* 8;
19578 unsigned long prel31_offset
;
19580 /* Note: this is meant to be equivalent to an
19581 R_ARM_PREL31 relocation. These synthetic
19582 EXIDX_CANTUNWIND markers are not relocated by the
19583 usual BFD method. */
19584 prel31_offset
= (text_offset
- exidx_offset
)
19586 if (bfd_link_relocatable (link_info
))
19588 /* Here relocation for new EXIDX_CANTUNWIND is
19589 created, so there is no need to
19590 adjust offset by hand. */
19591 prel31_offset
= text_sec
->output_offset
19595 /* First address we can't unwind. */
19596 bfd_put_32 (output_bfd
, prel31_offset
,
19597 &edited_contents
[out_index
* 8]);
19599 /* Code for EXIDX_CANTUNWIND. */
19600 bfd_put_32 (output_bfd
, 0x1,
19601 &edited_contents
[out_index
* 8 + 4]);
19604 add_to_offsets
-= 8;
19609 edit_node
= edit_node
->next
;
19614 /* No more edits, copy remaining entries verbatim. */
19615 copy_exidx_entry (output_bfd
, edited_contents
+ out_index
* 8,
19616 contents
+ in_index
* 8, add_to_offsets
);
19622 if (!(sec
->flags
& SEC_EXCLUDE
) && !(sec
->flags
& SEC_NEVER_LOAD
))
19623 bfd_set_section_contents (output_bfd
, sec
->output_section
,
19625 (file_ptr
) sec
->output_offset
, sec
->size
);
19630 /* Fix code to point to Cortex-A8 erratum stubs. */
19631 if (globals
->fix_cortex_a8
)
19633 struct a8_branch_to_stub_data data
;
19635 data
.writing_section
= sec
;
19636 data
.contents
= contents
;
19638 bfd_hash_traverse (& globals
->stub_hash_table
, make_branch_to_a8_stub
,
19645 if (globals
->byteswap_code
)
19647 qsort (map
, mapcount
, sizeof (* map
), elf32_arm_compare_mapping
);
19650 for (i
= 0; i
< mapcount
; i
++)
19652 if (i
== mapcount
- 1)
19655 end
= map
[i
+ 1].vma
;
19657 switch (map
[i
].type
)
19660 /* Byte swap code words. */
19661 while (ptr
+ 3 < end
)
19663 tmp
= contents
[ptr
];
19664 contents
[ptr
] = contents
[ptr
+ 3];
19665 contents
[ptr
+ 3] = tmp
;
19666 tmp
= contents
[ptr
+ 1];
19667 contents
[ptr
+ 1] = contents
[ptr
+ 2];
19668 contents
[ptr
+ 2] = tmp
;
19674 /* Byte swap code halfwords. */
19675 while (ptr
+ 1 < end
)
19677 tmp
= contents
[ptr
];
19678 contents
[ptr
] = contents
[ptr
+ 1];
19679 contents
[ptr
+ 1] = tmp
;
19685 /* Leave data alone. */
19693 arm_data
->mapcount
= -1;
19694 arm_data
->mapsize
= 0;
19695 arm_data
->map
= NULL
;
19700 /* Mangle thumb function symbols as we read them in. */
19703 elf32_arm_swap_symbol_in (bfd
* abfd
,
19706 Elf_Internal_Sym
*dst
)
19708 if (!bfd_elf32_swap_symbol_in (abfd
, psrc
, pshn
, dst
))
19710 dst
->st_target_internal
= 0;
19712 /* New EABI objects mark thumb function symbols by setting the low bit of
19714 if (ELF_ST_TYPE (dst
->st_info
) == STT_FUNC
19715 || ELF_ST_TYPE (dst
->st_info
) == STT_GNU_IFUNC
)
19717 if (dst
->st_value
& 1)
19719 dst
->st_value
&= ~(bfd_vma
) 1;
19720 ARM_SET_SYM_BRANCH_TYPE (dst
->st_target_internal
,
19721 ST_BRANCH_TO_THUMB
);
19724 ARM_SET_SYM_BRANCH_TYPE (dst
->st_target_internal
, ST_BRANCH_TO_ARM
);
19726 else if (ELF_ST_TYPE (dst
->st_info
) == STT_ARM_TFUNC
)
19728 dst
->st_info
= ELF_ST_INFO (ELF_ST_BIND (dst
->st_info
), STT_FUNC
);
19729 ARM_SET_SYM_BRANCH_TYPE (dst
->st_target_internal
, ST_BRANCH_TO_THUMB
);
19731 else if (ELF_ST_TYPE (dst
->st_info
) == STT_SECTION
)
19732 ARM_SET_SYM_BRANCH_TYPE (dst
->st_target_internal
, ST_BRANCH_LONG
);
19734 ARM_SET_SYM_BRANCH_TYPE (dst
->st_target_internal
, ST_BRANCH_UNKNOWN
);
19740 /* Mangle thumb function symbols as we write them out. */
19743 elf32_arm_swap_symbol_out (bfd
*abfd
,
19744 const Elf_Internal_Sym
*src
,
19748 Elf_Internal_Sym newsym
;
19750 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
19751 of the address set, as per the new EABI. We do this unconditionally
19752 because objcopy does not set the elf header flags until after
19753 it writes out the symbol table. */
19754 if (ARM_GET_SYM_BRANCH_TYPE (src
->st_target_internal
) == ST_BRANCH_TO_THUMB
)
19757 if (ELF_ST_TYPE (src
->st_info
) != STT_GNU_IFUNC
)
19758 newsym
.st_info
= ELF_ST_INFO (ELF_ST_BIND (src
->st_info
), STT_FUNC
);
19759 if (newsym
.st_shndx
!= SHN_UNDEF
)
19761 /* Do this only for defined symbols. At link type, the static
19762 linker will simulate the work of dynamic linker of resolving
19763 symbols and will carry over the thumbness of found symbols to
19764 the output symbol table. It's not clear how it happens, but
19765 the thumbness of undefined symbols can well be different at
19766 runtime, and writing '1' for them will be confusing for users
19767 and possibly for dynamic linker itself.
19769 newsym
.st_value
|= 1;
19774 bfd_elf32_swap_symbol_out (abfd
, src
, cdst
, shndx
);
19777 /* Add the PT_ARM_EXIDX program header. */
19780 elf32_arm_modify_segment_map (bfd
*abfd
,
19781 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
19783 struct elf_segment_map
*m
;
19786 sec
= bfd_get_section_by_name (abfd
, ".ARM.exidx");
19787 if (sec
!= NULL
&& (sec
->flags
& SEC_LOAD
) != 0)
19789 /* If there is already a PT_ARM_EXIDX header, then we do not
19790 want to add another one. This situation arises when running
19791 "strip"; the input binary already has the header. */
19792 m
= elf_seg_map (abfd
);
19793 while (m
&& m
->p_type
!= PT_ARM_EXIDX
)
19797 m
= (struct elf_segment_map
*)
19798 bfd_zalloc (abfd
, sizeof (struct elf_segment_map
));
19801 m
->p_type
= PT_ARM_EXIDX
;
19803 m
->sections
[0] = sec
;
19805 m
->next
= elf_seg_map (abfd
);
19806 elf_seg_map (abfd
) = m
;
19813 /* We may add a PT_ARM_EXIDX program header. */
19816 elf32_arm_additional_program_headers (bfd
*abfd
,
19817 struct bfd_link_info
*info ATTRIBUTE_UNUSED
)
19821 sec
= bfd_get_section_by_name (abfd
, ".ARM.exidx");
19822 if (sec
!= NULL
&& (sec
->flags
& SEC_LOAD
) != 0)
19828 /* Hook called by the linker routine which adds symbols from an object
19832 elf32_arm_add_symbol_hook (bfd
*abfd
, struct bfd_link_info
*info
,
19833 Elf_Internal_Sym
*sym
, const char **namep
,
19834 flagword
*flagsp
, asection
**secp
, bfd_vma
*valp
)
19836 if (elf32_arm_hash_table (info
) == NULL
)
19839 if (elf32_arm_hash_table (info
)->root
.target_os
== is_vxworks
19840 && !elf_vxworks_add_symbol_hook (abfd
, info
, sym
, namep
,
19841 flagsp
, secp
, valp
))
19847 /* We use this to override swap_symbol_in and swap_symbol_out. */
19848 const struct elf_size_info elf32_arm_size_info
=
19850 sizeof (Elf32_External_Ehdr
),
19851 sizeof (Elf32_External_Phdr
),
19852 sizeof (Elf32_External_Shdr
),
19853 sizeof (Elf32_External_Rel
),
19854 sizeof (Elf32_External_Rela
),
19855 sizeof (Elf32_External_Sym
),
19856 sizeof (Elf32_External_Dyn
),
19857 sizeof (Elf_External_Note
),
19861 ELFCLASS32
, EV_CURRENT
,
19862 bfd_elf32_write_out_phdrs
,
19863 bfd_elf32_write_shdrs_and_ehdr
,
19864 bfd_elf32_checksum_contents
,
19865 bfd_elf32_write_relocs
,
19866 elf32_arm_swap_symbol_in
,
19867 elf32_arm_swap_symbol_out
,
19868 bfd_elf32_slurp_reloc_table
,
19869 bfd_elf32_slurp_symbol_table
,
19870 bfd_elf32_swap_dyn_in
,
19871 bfd_elf32_swap_dyn_out
,
19872 bfd_elf32_swap_reloc_in
,
19873 bfd_elf32_swap_reloc_out
,
19874 bfd_elf32_swap_reloca_in
,
19875 bfd_elf32_swap_reloca_out
19879 read_code32 (const bfd
*abfd
, const bfd_byte
*addr
)
19881 /* V7 BE8 code is always little endian. */
19882 if ((elf_elfheader (abfd
)->e_flags
& EF_ARM_BE8
) != 0)
19883 return bfd_getl32 (addr
);
19885 return bfd_get_32 (abfd
, addr
);
19889 read_code16 (const bfd
*abfd
, const bfd_byte
*addr
)
19891 /* V7 BE8 code is always little endian. */
19892 if ((elf_elfheader (abfd
)->e_flags
& EF_ARM_BE8
) != 0)
19893 return bfd_getl16 (addr
);
19895 return bfd_get_16 (abfd
, addr
);
19898 /* Return size of plt0 entry starting at ADDR
19899 or (bfd_vma) -1 if size can not be determined. */
19902 elf32_arm_plt0_size (const bfd
*abfd
, const bfd_byte
*addr
)
19904 bfd_vma first_word
;
19907 first_word
= read_code32 (abfd
, addr
);
19909 if (first_word
== elf32_arm_plt0_entry
[0])
19910 plt0_size
= 4 * ARRAY_SIZE (elf32_arm_plt0_entry
);
19911 else if (first_word
== elf32_thumb2_plt0_entry
[0])
19912 plt0_size
= 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry
);
19914 /* We don't yet handle this PLT format. */
19915 return (bfd_vma
) -1;
19920 /* Return size of plt entry starting at offset OFFSET
19921 of plt section located at address START
19922 or (bfd_vma) -1 if size can not be determined. */
19925 elf32_arm_plt_size (const bfd
*abfd
, const bfd_byte
*start
, bfd_vma offset
)
19927 bfd_vma first_insn
;
19928 bfd_vma plt_size
= 0;
19929 const bfd_byte
*addr
= start
+ offset
;
19931 /* PLT entry size if fixed on Thumb-only platforms. */
19932 if (read_code32 (abfd
, start
) == elf32_thumb2_plt0_entry
[0])
19933 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry
);
19935 /* Respect Thumb stub if necessary. */
19936 if (read_code16 (abfd
, addr
) == elf32_arm_plt_thumb_stub
[0])
19938 plt_size
+= 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub
);
19941 /* Strip immediate from first add. */
19942 first_insn
= read_code32 (abfd
, addr
+ plt_size
) & 0xffffff00;
19944 #ifdef FOUR_WORD_PLT
19945 if (first_insn
== elf32_arm_plt_entry
[0])
19946 plt_size
+= 4 * ARRAY_SIZE (elf32_arm_plt_entry
);
19948 if (first_insn
== elf32_arm_plt_entry_long
[0])
19949 plt_size
+= 4 * ARRAY_SIZE (elf32_arm_plt_entry_long
);
19950 else if (first_insn
== elf32_arm_plt_entry_short
[0])
19951 plt_size
+= 4 * ARRAY_SIZE (elf32_arm_plt_entry_short
);
19954 /* We don't yet handle this PLT format. */
19955 return (bfd_vma
) -1;
19960 /* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
19963 elf32_arm_get_synthetic_symtab (bfd
*abfd
,
19964 long symcount ATTRIBUTE_UNUSED
,
19965 asymbol
**syms ATTRIBUTE_UNUSED
,
19975 Elf_Internal_Shdr
*hdr
;
19983 if ((abfd
->flags
& (DYNAMIC
| EXEC_P
)) == 0)
19986 if (dynsymcount
<= 0)
19989 relplt
= bfd_get_section_by_name (abfd
, ".rel.plt");
19990 if (relplt
== NULL
)
19993 hdr
= &elf_section_data (relplt
)->this_hdr
;
19994 if (hdr
->sh_link
!= elf_dynsymtab (abfd
)
19995 || (hdr
->sh_type
!= SHT_REL
&& hdr
->sh_type
!= SHT_RELA
))
19998 plt
= bfd_get_section_by_name (abfd
, ".plt");
20002 if (!elf32_arm_size_info
.slurp_reloc_table (abfd
, relplt
, dynsyms
, TRUE
))
20005 data
= plt
->contents
;
20008 if (!bfd_get_full_section_contents(abfd
, (asection
*) plt
, &data
) || data
== NULL
)
20010 bfd_cache_section_contents((asection
*) plt
, data
);
20013 count
= relplt
->size
/ hdr
->sh_entsize
;
20014 size
= count
* sizeof (asymbol
);
20015 p
= relplt
->relocation
;
20016 for (i
= 0; i
< count
; i
++, p
+= elf32_arm_size_info
.int_rels_per_ext_rel
)
20018 size
+= strlen ((*p
->sym_ptr_ptr
)->name
) + sizeof ("@plt");
20019 if (p
->addend
!= 0)
20020 size
+= sizeof ("+0x") - 1 + 8;
20023 s
= *ret
= (asymbol
*) bfd_malloc (size
);
20027 offset
= elf32_arm_plt0_size (abfd
, data
);
20028 if (offset
== (bfd_vma
) -1)
20031 names
= (char *) (s
+ count
);
20032 p
= relplt
->relocation
;
20034 for (i
= 0; i
< count
; i
++, p
+= elf32_arm_size_info
.int_rels_per_ext_rel
)
20038 bfd_vma plt_size
= elf32_arm_plt_size (abfd
, data
, offset
);
20039 if (plt_size
== (bfd_vma
) -1)
20042 *s
= **p
->sym_ptr_ptr
;
20043 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
20044 we are defining a symbol, ensure one of them is set. */
20045 if ((s
->flags
& BSF_LOCAL
) == 0)
20046 s
->flags
|= BSF_GLOBAL
;
20047 s
->flags
|= BSF_SYNTHETIC
;
20052 len
= strlen ((*p
->sym_ptr_ptr
)->name
);
20053 memcpy (names
, (*p
->sym_ptr_ptr
)->name
, len
);
20055 if (p
->addend
!= 0)
20059 memcpy (names
, "+0x", sizeof ("+0x") - 1);
20060 names
+= sizeof ("+0x") - 1;
20061 bfd_sprintf_vma (abfd
, buf
, p
->addend
);
20062 for (a
= buf
; *a
== '0'; ++a
)
20065 memcpy (names
, a
, len
);
20068 memcpy (names
, "@plt", sizeof ("@plt"));
20069 names
+= sizeof ("@plt");
20071 offset
+= plt_size
;
20078 elf32_arm_section_flags (const Elf_Internal_Shdr
*hdr
)
20080 if (hdr
->sh_flags
& SHF_ARM_PURECODE
)
20081 hdr
->bfd_section
->flags
|= SEC_ELF_PURECODE
;
20086 elf32_arm_lookup_section_flags (char *flag_name
)
20088 if (!strcmp (flag_name
, "SHF_ARM_PURECODE"))
20089 return SHF_ARM_PURECODE
;
20091 return SEC_NO_FLAGS
;
20094 static unsigned int
20095 elf32_arm_count_additional_relocs (asection
*sec
)
20097 struct _arm_elf_section_data
*arm_data
;
20098 arm_data
= get_arm_elf_section_data (sec
);
20100 return arm_data
== NULL
? 0 : arm_data
->additional_reloc_count
;
20103 /* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which
20104 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised
20105 FALSE otherwise. ISECTION is the best guess matching section from the
20106 input bfd IBFD, but it might be NULL. */
20109 elf32_arm_copy_special_section_fields (const bfd
*ibfd ATTRIBUTE_UNUSED
,
20110 bfd
*obfd ATTRIBUTE_UNUSED
,
20111 const Elf_Internal_Shdr
*isection ATTRIBUTE_UNUSED
,
20112 Elf_Internal_Shdr
*osection
)
20114 switch (osection
->sh_type
)
20116 case SHT_ARM_EXIDX
:
20118 Elf_Internal_Shdr
**oheaders
= elf_elfsections (obfd
);
20119 Elf_Internal_Shdr
**iheaders
= elf_elfsections (ibfd
);
20122 osection
->sh_flags
= SHF_ALLOC
| SHF_LINK_ORDER
;
20123 osection
->sh_info
= 0;
20125 /* The sh_link field must be set to the text section associated with
20126 this index section. Unfortunately the ARM EHABI does not specify
20127 exactly how to determine this association. Our caller does try
20128 to match up OSECTION with its corresponding input section however
20129 so that is a good first guess. */
20130 if (isection
!= NULL
20131 && osection
->bfd_section
!= NULL
20132 && isection
->bfd_section
!= NULL
20133 && isection
->bfd_section
->output_section
!= NULL
20134 && isection
->bfd_section
->output_section
== osection
->bfd_section
20135 && iheaders
!= NULL
20136 && isection
->sh_link
> 0
20137 && isection
->sh_link
< elf_numsections (ibfd
)
20138 && iheaders
[isection
->sh_link
]->bfd_section
!= NULL
20139 && iheaders
[isection
->sh_link
]->bfd_section
->output_section
!= NULL
20142 for (i
= elf_numsections (obfd
); i
-- > 0;)
20143 if (oheaders
[i
]->bfd_section
20144 == iheaders
[isection
->sh_link
]->bfd_section
->output_section
)
20150 /* Failing that we have to find a matching section ourselves. If
20151 we had the output section name available we could compare that
20152 with input section names. Unfortunately we don't. So instead
20153 we use a simple heuristic and look for the nearest executable
20154 section before this one. */
20155 for (i
= elf_numsections (obfd
); i
-- > 0;)
20156 if (oheaders
[i
] == osection
)
20162 if (oheaders
[i
]->sh_type
== SHT_PROGBITS
20163 && (oheaders
[i
]->sh_flags
& (SHF_ALLOC
| SHF_EXECINSTR
))
20164 == (SHF_ALLOC
| SHF_EXECINSTR
))
20170 osection
->sh_link
= i
;
20171 /* If the text section was part of a group
20172 then the index section should be too. */
20173 if (oheaders
[i
]->sh_flags
& SHF_GROUP
)
20174 osection
->sh_flags
|= SHF_GROUP
;
20180 case SHT_ARM_PREEMPTMAP
:
20181 osection
->sh_flags
= SHF_ALLOC
;
20184 case SHT_ARM_ATTRIBUTES
:
20185 case SHT_ARM_DEBUGOVERLAY
:
20186 case SHT_ARM_OVERLAYSECTION
:
20194 /* Returns TRUE if NAME is an ARM mapping symbol.
20195 Traditionally the symbols $a, $d and $t have been used.
20196 The ARM ELF standard also defines $x (for A64 code). It also allows a
20197 period initiated suffix to be added to the symbol: "$[adtx]\.[:sym_char]+".
20198 Other tools might also produce $b (Thumb BL), $f, $p, $m and $v, but we do
20199 not support them here. $t.x indicates the start of ThumbEE instructions. */
20202 is_arm_mapping_symbol (const char * name
)
20204 return name
!= NULL
/* Paranoia. */
20205 && name
[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
20206 the mapping symbols could have acquired a prefix.
20207 We do not support this here, since such symbols no
20208 longer conform to the ARM ELF ABI. */
20209 && (name
[1] == 'a' || name
[1] == 'd' || name
[1] == 't' || name
[1] == 'x')
20210 && (name
[2] == 0 || name
[2] == '.');
20211 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
20212 any characters that follow the period are legal characters for the body
20213 of a symbol's name. For now we just assume that this is the case. */
20216 /* Make sure that mapping symbols in object files are not removed via the
20217 "strip --strip-unneeded" tool. These symbols are needed in order to
20218 correctly generate interworking veneers, and for byte swapping code
20219 regions. Once an object file has been linked, it is safe to remove the
20220 symbols as they will no longer be needed. */
20223 elf32_arm_backend_symbol_processing (bfd
*abfd
, asymbol
*sym
)
20225 if (((abfd
->flags
& (EXEC_P
| DYNAMIC
)) == 0)
20226 && sym
->section
!= bfd_abs_section_ptr
20227 && is_arm_mapping_symbol (sym
->name
))
20228 sym
->flags
|= BSF_KEEP
;
20231 #undef elf_backend_copy_special_section_fields
20232 #define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields
20234 #define ELF_ARCH bfd_arch_arm
20235 #define ELF_TARGET_ID ARM_ELF_DATA
20236 #define ELF_MACHINE_CODE EM_ARM
20237 #ifdef __QNXTARGET__
20238 #define ELF_MAXPAGESIZE 0x1000
20240 #define ELF_MAXPAGESIZE 0x10000
20242 #define ELF_MINPAGESIZE 0x1000
20243 #define ELF_COMMONPAGESIZE 0x1000
20245 #define bfd_elf32_mkobject elf32_arm_mkobject
20247 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
20248 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
20249 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
20250 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
20251 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
20252 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
20253 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
20254 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
20255 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
20256 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
20257 #define bfd_elf32_bfd_final_link elf32_arm_final_link
20258 #define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
20260 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
20261 #define elf_backend_maybe_function_sym elf32_arm_maybe_function_sym
20262 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
20263 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
20264 #define elf_backend_check_relocs elf32_arm_check_relocs
20265 #define elf_backend_update_relocs elf32_arm_update_relocs
20266 #define elf_backend_relocate_section elf32_arm_relocate_section
20267 #define elf_backend_write_section elf32_arm_write_section
20268 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
20269 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
20270 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
20271 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
20272 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
20273 #define elf_backend_always_size_sections elf32_arm_always_size_sections
20274 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
20275 #define elf_backend_init_file_header elf32_arm_init_file_header
20276 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
20277 #define elf_backend_object_p elf32_arm_object_p
20278 #define elf_backend_fake_sections elf32_arm_fake_sections
20279 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
20280 #define elf_backend_final_write_processing elf32_arm_final_write_processing
20281 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
20282 #define elf_backend_size_info elf32_arm_size_info
20283 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
20284 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
20285 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
20286 #define elf_backend_filter_implib_symbols elf32_arm_filter_implib_symbols
20287 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
20288 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
20289 #define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs
20290 #define elf_backend_symbol_processing elf32_arm_backend_symbol_processing
20292 #define elf_backend_can_refcount 1
20293 #define elf_backend_can_gc_sections 1
20294 #define elf_backend_plt_readonly 1
20295 #define elf_backend_want_got_plt 1
20296 #define elf_backend_want_plt_sym 0
20297 #define elf_backend_want_dynrelro 1
20298 #define elf_backend_may_use_rel_p 1
20299 #define elf_backend_may_use_rela_p 0
20300 #define elf_backend_default_use_rela_p 0
20301 #define elf_backend_dtrel_excludes_plt 1
20303 #define elf_backend_got_header_size 12
20304 #define elf_backend_extern_protected_data 1
20306 #undef elf_backend_obj_attrs_vendor
20307 #define elf_backend_obj_attrs_vendor "aeabi"
20308 #undef elf_backend_obj_attrs_section
20309 #define elf_backend_obj_attrs_section ".ARM.attributes"
20310 #undef elf_backend_obj_attrs_arg_type
20311 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
20312 #undef elf_backend_obj_attrs_section_type
20313 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
20314 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
20315 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
20317 #undef elf_backend_section_flags
20318 #define elf_backend_section_flags elf32_arm_section_flags
20319 #undef elf_backend_lookup_section_flags_hook
20320 #define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags
20322 #define elf_backend_linux_prpsinfo32_ugid16 TRUE
20324 #include "elf32-target.h"
20326 /* Native Client targets. */
20328 #undef TARGET_LITTLE_SYM
20329 #define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
20330 #undef TARGET_LITTLE_NAME
20331 #define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
20332 #undef TARGET_BIG_SYM
20333 #define TARGET_BIG_SYM arm_elf32_nacl_be_vec
20334 #undef TARGET_BIG_NAME
20335 #define TARGET_BIG_NAME "elf32-bigarm-nacl"
20337 /* Like elf32_arm_link_hash_table_create -- but overrides
20338 appropriately for NaCl. */
20340 static struct bfd_link_hash_table
*
20341 elf32_arm_nacl_link_hash_table_create (bfd
*abfd
)
20343 struct bfd_link_hash_table
*ret
;
20345 ret
= elf32_arm_link_hash_table_create (abfd
);
20348 struct elf32_arm_link_hash_table
*htab
20349 = (struct elf32_arm_link_hash_table
*) ret
;
20351 htab
->plt_header_size
= 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry
);
20352 htab
->plt_entry_size
= 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry
);
20357 /* Since NaCl doesn't use the ARM-specific unwind format, we don't
20358 really need to use elf32_arm_modify_segment_map. But we do it
20359 anyway just to reduce gratuitous differences with the stock ARM backend. */
20362 elf32_arm_nacl_modify_segment_map (bfd
*abfd
, struct bfd_link_info
*info
)
20364 return (elf32_arm_modify_segment_map (abfd
, info
)
20365 && nacl_modify_segment_map (abfd
, info
));
20369 elf32_arm_nacl_final_write_processing (bfd
*abfd
)
20371 arm_final_write_processing (abfd
);
20372 return nacl_final_write_processing (abfd
);
20376 elf32_arm_nacl_plt_sym_val (bfd_vma i
, const asection
*plt
,
20377 const arelent
*rel ATTRIBUTE_UNUSED
)
20380 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry
) +
20381 i
* ARRAY_SIZE (elf32_arm_nacl_plt_entry
));
20385 #define elf32_bed elf32_arm_nacl_bed
20386 #undef bfd_elf32_bfd_link_hash_table_create
20387 #define bfd_elf32_bfd_link_hash_table_create \
20388 elf32_arm_nacl_link_hash_table_create
20389 #undef elf_backend_plt_alignment
20390 #define elf_backend_plt_alignment 4
20391 #undef elf_backend_modify_segment_map
20392 #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
20393 #undef elf_backend_modify_headers
20394 #define elf_backend_modify_headers nacl_modify_headers
20395 #undef elf_backend_final_write_processing
20396 #define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
20397 #undef bfd_elf32_get_synthetic_symtab
20398 #undef elf_backend_plt_sym_val
20399 #define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
20400 #undef elf_backend_copy_special_section_fields
20402 #undef ELF_MINPAGESIZE
20403 #undef ELF_COMMONPAGESIZE
20405 #undef ELF_TARGET_OS
20406 #define ELF_TARGET_OS is_nacl
20408 #include "elf32-target.h"
20410 /* Reset to defaults. */
20411 #undef elf_backend_plt_alignment
20412 #undef elf_backend_modify_segment_map
20413 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
20414 #undef elf_backend_modify_headers
20415 #undef elf_backend_final_write_processing
20416 #define elf_backend_final_write_processing elf32_arm_final_write_processing
20417 #undef ELF_MINPAGESIZE
20418 #define ELF_MINPAGESIZE 0x1000
20419 #undef ELF_COMMONPAGESIZE
20420 #define ELF_COMMONPAGESIZE 0x1000
20423 /* FDPIC Targets. */
20425 #undef TARGET_LITTLE_SYM
20426 #define TARGET_LITTLE_SYM arm_elf32_fdpic_le_vec
20427 #undef TARGET_LITTLE_NAME
20428 #define TARGET_LITTLE_NAME "elf32-littlearm-fdpic"
20429 #undef TARGET_BIG_SYM
20430 #define TARGET_BIG_SYM arm_elf32_fdpic_be_vec
20431 #undef TARGET_BIG_NAME
20432 #define TARGET_BIG_NAME "elf32-bigarm-fdpic"
20433 #undef elf_match_priority
20434 #define elf_match_priority 128
20436 #define ELF_OSABI ELFOSABI_ARM_FDPIC
20438 /* Like elf32_arm_link_hash_table_create -- but overrides
20439 appropriately for FDPIC. */
20441 static struct bfd_link_hash_table
*
20442 elf32_arm_fdpic_link_hash_table_create (bfd
*abfd
)
20444 struct bfd_link_hash_table
*ret
;
20446 ret
= elf32_arm_link_hash_table_create (abfd
);
20449 struct elf32_arm_link_hash_table
*htab
= (struct elf32_arm_link_hash_table
*) ret
;
20456 /* We need dynamic symbols for every section, since segments can
20457 relocate independently. */
20459 elf32_arm_fdpic_omit_section_dynsym (bfd
*output_bfd ATTRIBUTE_UNUSED
,
20460 struct bfd_link_info
*info
20462 asection
*p ATTRIBUTE_UNUSED
)
20464 switch (elf_section_data (p
)->this_hdr
.sh_type
)
20468 /* If sh_type is yet undecided, assume it could be
20469 SHT_PROGBITS/SHT_NOBITS. */
20473 /* There shouldn't be section relative relocations
20474 against any other section. */
20481 #define elf32_bed elf32_arm_fdpic_bed
20483 #undef bfd_elf32_bfd_link_hash_table_create
20484 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_fdpic_link_hash_table_create
20486 #undef elf_backend_omit_section_dynsym
20487 #define elf_backend_omit_section_dynsym elf32_arm_fdpic_omit_section_dynsym
20489 #undef ELF_TARGET_OS
20491 #include "elf32-target.h"
20493 #undef elf_match_priority
20495 #undef elf_backend_omit_section_dynsym
20497 /* VxWorks Targets. */
20499 #undef TARGET_LITTLE_SYM
20500 #define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
20501 #undef TARGET_LITTLE_NAME
20502 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
20503 #undef TARGET_BIG_SYM
20504 #define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
20505 #undef TARGET_BIG_NAME
20506 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
20508 /* Like elf32_arm_link_hash_table_create -- but overrides
20509 appropriately for VxWorks. */
20511 static struct bfd_link_hash_table
*
20512 elf32_arm_vxworks_link_hash_table_create (bfd
*abfd
)
20514 struct bfd_link_hash_table
*ret
;
20516 ret
= elf32_arm_link_hash_table_create (abfd
);
20519 struct elf32_arm_link_hash_table
*htab
20520 = (struct elf32_arm_link_hash_table
*) ret
;
20527 elf32_arm_vxworks_final_write_processing (bfd
*abfd
)
20529 arm_final_write_processing (abfd
);
20530 return elf_vxworks_final_write_processing (abfd
);
20534 #define elf32_bed elf32_arm_vxworks_bed
20536 #undef bfd_elf32_bfd_link_hash_table_create
20537 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
20538 #undef elf_backend_final_write_processing
20539 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
20540 #undef elf_backend_emit_relocs
20541 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
20543 #undef elf_backend_may_use_rel_p
20544 #define elf_backend_may_use_rel_p 0
20545 #undef elf_backend_may_use_rela_p
20546 #define elf_backend_may_use_rela_p 1
20547 #undef elf_backend_default_use_rela_p
20548 #define elf_backend_default_use_rela_p 1
20549 #undef elf_backend_want_plt_sym
20550 #define elf_backend_want_plt_sym 1
20551 #undef ELF_MAXPAGESIZE
20552 #define ELF_MAXPAGESIZE 0x1000
20553 #undef ELF_TARGET_OS
20554 #define ELF_TARGET_OS is_vxworks
20556 #include "elf32-target.h"
20559 /* Merge backend specific data from an object file to the output
20560 object file when linking. */
20563 elf32_arm_merge_private_bfd_data (bfd
*ibfd
, struct bfd_link_info
*info
)
20565 bfd
*obfd
= info
->output_bfd
;
20566 flagword out_flags
;
20568 bfd_boolean flags_compatible
= TRUE
;
20571 /* Check if we have the same endianness. */
20572 if (! _bfd_generic_verify_endian_match (ibfd
, info
))
20575 if (! is_arm_elf (ibfd
) || ! is_arm_elf (obfd
))
20578 if (!elf32_arm_merge_eabi_attributes (ibfd
, info
))
20581 /* The input BFD must have had its flags initialised. */
20582 /* The following seems bogus to me -- The flags are initialized in
20583 the assembler but I don't think an elf_flags_init field is
20584 written into the object. */
20585 /* BFD_ASSERT (elf_flags_init (ibfd)); */
20587 in_flags
= elf_elfheader (ibfd
)->e_flags
;
20588 out_flags
= elf_elfheader (obfd
)->e_flags
;
20590 /* In theory there is no reason why we couldn't handle this. However
20591 in practice it isn't even close to working and there is no real
20592 reason to want it. */
20593 if (EF_ARM_EABI_VERSION (in_flags
) >= EF_ARM_EABI_VER4
20594 && !(ibfd
->flags
& DYNAMIC
)
20595 && (in_flags
& EF_ARM_BE8
))
20597 _bfd_error_handler (_("error: %pB is already in final BE8 format"),
20602 if (!elf_flags_init (obfd
))
20604 /* If the input is the default architecture and had the default
20605 flags then do not bother setting the flags for the output
20606 architecture, instead allow future merges to do this. If no
20607 future merges ever set these flags then they will retain their
20608 uninitialised values, which surprise surprise, correspond
20609 to the default values. */
20610 if (bfd_get_arch_info (ibfd
)->the_default
20611 && elf_elfheader (ibfd
)->e_flags
== 0)
20614 elf_flags_init (obfd
) = TRUE
;
20615 elf_elfheader (obfd
)->e_flags
= in_flags
;
20617 if (bfd_get_arch (obfd
) == bfd_get_arch (ibfd
)
20618 && bfd_get_arch_info (obfd
)->the_default
)
20619 return bfd_set_arch_mach (obfd
, bfd_get_arch (ibfd
), bfd_get_mach (ibfd
));
20624 /* Determine what should happen if the input ARM architecture
20625 does not match the output ARM architecture. */
20626 if (! bfd_arm_merge_machines (ibfd
, obfd
))
20629 /* Identical flags must be compatible. */
20630 if (in_flags
== out_flags
)
20633 /* Check to see if the input BFD actually contains any sections. If
20634 not, its flags may not have been initialised either, but it
20635 cannot actually cause any incompatiblity. Do not short-circuit
20636 dynamic objects; their section list may be emptied by
20637 elf_link_add_object_symbols.
20639 Also check to see if there are no code sections in the input.
20640 In this case there is no need to check for code specific flags.
20641 XXX - do we need to worry about floating-point format compatability
20642 in data sections ? */
20643 if (!(ibfd
->flags
& DYNAMIC
))
20645 bfd_boolean null_input_bfd
= TRUE
;
20646 bfd_boolean only_data_sections
= TRUE
;
20648 for (sec
= ibfd
->sections
; sec
!= NULL
; sec
= sec
->next
)
20650 /* Ignore synthetic glue sections. */
20651 if (strcmp (sec
->name
, ".glue_7")
20652 && strcmp (sec
->name
, ".glue_7t"))
20654 if ((bfd_section_flags (sec
)
20655 & (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
20656 == (SEC_LOAD
| SEC_CODE
| SEC_HAS_CONTENTS
))
20657 only_data_sections
= FALSE
;
20659 null_input_bfd
= FALSE
;
20664 if (null_input_bfd
|| only_data_sections
)
20668 /* Complain about various flag mismatches. */
20669 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags
),
20670 EF_ARM_EABI_VERSION (out_flags
)))
20673 (_("error: source object %pB has EABI version %d, but target %pB has EABI version %d"),
20674 ibfd
, (in_flags
& EF_ARM_EABIMASK
) >> 24,
20675 obfd
, (out_flags
& EF_ARM_EABIMASK
) >> 24);
20679 /* Not sure what needs to be checked for EABI versions >= 1. */
20680 /* VxWorks libraries do not use these flags. */
20681 if (get_elf_backend_data (obfd
) != &elf32_arm_vxworks_bed
20682 && get_elf_backend_data (ibfd
) != &elf32_arm_vxworks_bed
20683 && EF_ARM_EABI_VERSION (in_flags
) == EF_ARM_EABI_UNKNOWN
)
20685 if ((in_flags
& EF_ARM_APCS_26
) != (out_flags
& EF_ARM_APCS_26
))
20688 (_("error: %pB is compiled for APCS-%d, whereas target %pB uses APCS-%d"),
20689 ibfd
, in_flags
& EF_ARM_APCS_26
? 26 : 32,
20690 obfd
, out_flags
& EF_ARM_APCS_26
? 26 : 32);
20691 flags_compatible
= FALSE
;
20694 if ((in_flags
& EF_ARM_APCS_FLOAT
) != (out_flags
& EF_ARM_APCS_FLOAT
))
20696 if (in_flags
& EF_ARM_APCS_FLOAT
)
20698 (_("error: %pB passes floats in float registers, whereas %pB passes them in integer registers"),
20702 (_("error: %pB passes floats in integer registers, whereas %pB passes them in float registers"),
20705 flags_compatible
= FALSE
;
20708 if ((in_flags
& EF_ARM_VFP_FLOAT
) != (out_flags
& EF_ARM_VFP_FLOAT
))
20710 if (in_flags
& EF_ARM_VFP_FLOAT
)
20712 (_("error: %pB uses %s instructions, whereas %pB does not"),
20713 ibfd
, "VFP", obfd
);
20716 (_("error: %pB uses %s instructions, whereas %pB does not"),
20717 ibfd
, "FPA", obfd
);
20719 flags_compatible
= FALSE
;
20722 if ((in_flags
& EF_ARM_MAVERICK_FLOAT
) != (out_flags
& EF_ARM_MAVERICK_FLOAT
))
20724 if (in_flags
& EF_ARM_MAVERICK_FLOAT
)
20726 (_("error: %pB uses %s instructions, whereas %pB does not"),
20727 ibfd
, "Maverick", obfd
);
20730 (_("error: %pB does not use %s instructions, whereas %pB does"),
20731 ibfd
, "Maverick", obfd
);
20733 flags_compatible
= FALSE
;
20736 #ifdef EF_ARM_SOFT_FLOAT
20737 if ((in_flags
& EF_ARM_SOFT_FLOAT
) != (out_flags
& EF_ARM_SOFT_FLOAT
))
20739 /* We can allow interworking between code that is VFP format
20740 layout, and uses either soft float or integer regs for
20741 passing floating point arguments and results. We already
20742 know that the APCS_FLOAT flags match; similarly for VFP
20744 if ((in_flags
& EF_ARM_APCS_FLOAT
) != 0
20745 || (in_flags
& EF_ARM_VFP_FLOAT
) == 0)
20747 if (in_flags
& EF_ARM_SOFT_FLOAT
)
20749 (_("error: %pB uses software FP, whereas %pB uses hardware FP"),
20753 (_("error: %pB uses hardware FP, whereas %pB uses software FP"),
20756 flags_compatible
= FALSE
;
20761 /* Interworking mismatch is only a warning. */
20762 if ((in_flags
& EF_ARM_INTERWORK
) != (out_flags
& EF_ARM_INTERWORK
))
20764 if (in_flags
& EF_ARM_INTERWORK
)
20767 (_("warning: %pB supports interworking, whereas %pB does not"),
20773 (_("warning: %pB does not support interworking, whereas %pB does"),
20779 return flags_compatible
;
20783 /* Symbian OS Targets. */
20785 #undef TARGET_LITTLE_SYM
20786 #define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec
20787 #undef TARGET_LITTLE_NAME
20788 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
20789 #undef TARGET_BIG_SYM
20790 #define TARGET_BIG_SYM arm_elf32_symbian_be_vec
20791 #undef TARGET_BIG_NAME
20792 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
20794 /* Like elf32_arm_link_hash_table_create -- but overrides
20795 appropriately for Symbian OS. */
20797 static struct bfd_link_hash_table
*
20798 elf32_arm_symbian_link_hash_table_create (bfd
*abfd
)
20800 struct bfd_link_hash_table
*ret
;
20802 ret
= elf32_arm_link_hash_table_create (abfd
);
20805 struct elf32_arm_link_hash_table
*htab
20806 = (struct elf32_arm_link_hash_table
*)ret
;
20807 /* There is no PLT header for Symbian OS. */
20808 htab
->plt_header_size
= 0;
20809 /* The PLT entries are each one instruction and one word. */
20810 htab
->plt_entry_size
= 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry
);
20811 /* Symbian uses armv5t or above, so use_blx is always true. */
20813 htab
->root
.is_relocatable_executable
= 1;
20818 static const struct bfd_elf_special_section
20819 elf32_arm_symbian_special_sections
[] =
20821 /* In a BPABI executable, the dynamic linking sections do not go in
20822 the loadable read-only segment. The post-linker may wish to
20823 refer to these sections, but they are not part of the final
20825 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC
, 0 },
20826 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB
, 0 },
20827 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM
, 0 },
20828 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS
, 0 },
20829 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH
, 0 },
20830 /* These sections do not need to be writable as the SymbianOS
20831 postlinker will arrange things so that no dynamic relocation is
20833 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY
, SHF_ALLOC
},
20834 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY
, SHF_ALLOC
},
20835 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY
, SHF_ALLOC
},
20836 { NULL
, 0, 0, 0, 0 }
20840 elf32_arm_symbian_begin_write_processing (bfd
*abfd
,
20841 struct bfd_link_info
*link_info
)
20843 /* BPABI objects are never loaded directly by an OS kernel; they are
20844 processed by a postlinker first, into an OS-specific format. If
20845 the D_PAGED bit is set on the file, BFD will align segments on
20846 page boundaries, so that an OS can directly map the file. With
20847 BPABI objects, that just results in wasted space. In addition,
20848 because we clear the D_PAGED bit, map_sections_to_segments will
20849 recognize that the program headers should not be mapped into any
20850 loadable segment. */
20851 abfd
->flags
&= ~D_PAGED
;
20852 elf32_arm_begin_write_processing (abfd
, link_info
);
20856 elf32_arm_symbian_modify_segment_map (bfd
*abfd
,
20857 struct bfd_link_info
*info
)
20859 struct elf_segment_map
*m
;
20862 /* BPABI shared libraries and executables should have a PT_DYNAMIC
20863 segment. However, because the .dynamic section is not marked
20864 with SEC_LOAD, the generic ELF code will not create such a
20866 dynsec
= bfd_get_section_by_name (abfd
, ".dynamic");
20869 for (m
= elf_seg_map (abfd
); m
!= NULL
; m
= m
->next
)
20870 if (m
->p_type
== PT_DYNAMIC
)
20875 m
= _bfd_elf_make_dynamic_segment (abfd
, dynsec
);
20876 m
->next
= elf_seg_map (abfd
);
20877 elf_seg_map (abfd
) = m
;
20881 /* Also call the generic arm routine. */
20882 return elf32_arm_modify_segment_map (abfd
, info
);
20885 /* Return address for Ith PLT stub in section PLT, for relocation REL
20886 or (bfd_vma) -1 if it should not be included. */
20889 elf32_arm_symbian_plt_sym_val (bfd_vma i
, const asection
*plt
,
20890 const arelent
*rel ATTRIBUTE_UNUSED
)
20892 return plt
->vma
+ 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry
) * i
;
20896 #define elf32_bed elf32_arm_symbian_bed
20898 /* The dynamic sections are not allocated on SymbianOS; the postlinker
20899 will process them and then discard them. */
20900 #undef ELF_DYNAMIC_SEC_FLAGS
20901 #define ELF_DYNAMIC_SEC_FLAGS \
20902 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
20904 #undef elf_backend_emit_relocs
20906 #undef bfd_elf32_bfd_link_hash_table_create
20907 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
20908 #undef elf_backend_special_sections
20909 #define elf_backend_special_sections elf32_arm_symbian_special_sections
20910 #undef elf_backend_begin_write_processing
20911 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
20912 #undef elf_backend_final_write_processing
20913 #define elf_backend_final_write_processing elf32_arm_final_write_processing
20915 #undef elf_backend_modify_segment_map
20916 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
20918 /* There is no .got section for BPABI objects, and hence no header. */
20919 #undef elf_backend_got_header_size
20920 #define elf_backend_got_header_size 0
20922 /* Similarly, there is no .got.plt section. */
20923 #undef elf_backend_want_got_plt
20924 #define elf_backend_want_got_plt 0
20926 #undef elf_backend_plt_sym_val
20927 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
20929 #undef elf_backend_may_use_rel_p
20930 #define elf_backend_may_use_rel_p 1
20931 #undef elf_backend_may_use_rela_p
20932 #define elf_backend_may_use_rela_p 0
20933 #undef elf_backend_default_use_rela_p
20934 #define elf_backend_default_use_rela_p 0
20935 #undef elf_backend_want_plt_sym
20936 #define elf_backend_want_plt_sym 0
20937 #undef elf_backend_dtrel_excludes_plt
20938 #define elf_backend_dtrel_excludes_plt 0
20939 #undef ELF_MAXPAGESIZE
20940 #define ELF_MAXPAGESIZE 0x8000
20941 #undef ELF_TARGET_OS
20942 #define ELF_TARGET_OS is_symbian
20944 #include "elf32-target.h"