1 /* Target-dependent code for the NEC V850 for GDB, the GNU debugger.
3 Copyright (C) 1996-2020 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22 #include "frame-base.h"
23 #include "trad-frame.h"
24 #include "frame-unwind.h"
25 #include "dwarf2-frame.h"
29 #include "arch-utils.h"
38 /* General purpose registers. */
42 E_R3_REGNUM
, E_SP_REGNUM
= E_R3_REGNUM
,
45 E_R6_REGNUM
, E_ARG0_REGNUM
= E_R6_REGNUM
,
48 E_R9_REGNUM
, E_ARGLAST_REGNUM
= E_R9_REGNUM
,
49 E_R10_REGNUM
, E_V0_REGNUM
= E_R10_REGNUM
,
50 E_R11_REGNUM
, E_V1_REGNUM
= E_R11_REGNUM
,
68 E_R29_REGNUM
, E_FP_REGNUM
= E_R29_REGNUM
,
69 E_R30_REGNUM
, E_EP_REGNUM
= E_R30_REGNUM
,
70 E_R31_REGNUM
, E_LP_REGNUM
= E_R31_REGNUM
,
72 /* System registers - main banks. */
73 E_R32_REGNUM
, E_SR0_REGNUM
= E_R32_REGNUM
,
78 E_R37_REGNUM
, E_PS_REGNUM
= E_R37_REGNUM
,
93 E_R52_REGNUM
, E_CTBP_REGNUM
= E_R52_REGNUM
,
107 E_R64_REGNUM
, E_PC_REGNUM
= E_R64_REGNUM
,
110 E_NUM_OF_V850E_REGS
= E_NUM_OF_V850_REGS
,
112 /* System registers - MPV (PROT00) bank. */
113 E_R66_REGNUM
= E_NUM_OF_V850_REGS
,
142 /* System registers - MPU (PROT01) bank. */
172 /* FPU system registers. */
179 E_R128_REGNUM
, E_FPSR_REGNUM
= E_R128_REGNUM
,
180 E_R129_REGNUM
, E_FPEPC_REGNUM
= E_R129_REGNUM
,
181 E_R130_REGNUM
, E_FPST_REGNUM
= E_R130_REGNUM
,
182 E_R131_REGNUM
, E_FPCC_REGNUM
= E_R131_REGNUM
,
183 E_R132_REGNUM
, E_FPCFG_REGNUM
= E_R132_REGNUM
,
201 E_NUM_OF_V850E2_REGS
,
203 /* v850e3v5 system registers, selID 1 thru 7. */
204 E_SELID_1_R0_REGNUM
= E_NUM_OF_V850E2_REGS
,
205 E_SELID_1_R31_REGNUM
= E_SELID_1_R0_REGNUM
+ 31,
208 E_SELID_2_R31_REGNUM
= E_SELID_2_R0_REGNUM
+ 31,
211 E_SELID_3_R31_REGNUM
= E_SELID_3_R0_REGNUM
+ 31,
214 E_SELID_4_R31_REGNUM
= E_SELID_4_R0_REGNUM
+ 31,
217 E_SELID_5_R31_REGNUM
= E_SELID_5_R0_REGNUM
+ 31,
220 E_SELID_6_R31_REGNUM
= E_SELID_6_R0_REGNUM
+ 31,
223 E_SELID_7_R31_REGNUM
= E_SELID_7_R0_REGNUM
+ 31,
225 /* v850e3v5 vector registers. */
227 E_VR31_REGNUM
= E_VR0_REGNUM
+ 31,
229 E_NUM_OF_V850E3V5_REGS
,
231 /* Total number of possible registers. */
232 E_NUM_REGS
= E_NUM_OF_V850E3V5_REGS
240 /* Size of return datatype which fits into all return registers. */
243 E_MAX_RETTYPE_SIZE_IN_REGS
= 2 * v850_reg_size
246 /* When v850 support was added to GCC in the late nineties, the intention
247 was to follow the Green Hills ABI for v850. In fact, the authors of
248 that support at the time thought that they were doing so. As far as
249 I can tell, the calling conventions are correct, but the return value
250 conventions were not quite right. Over time, the return value code
251 in this file was modified to mostly reflect what GCC was actually
252 doing instead of to actually follow the Green Hills ABI as it did
253 when the code was first written.
255 Renesas defined the RH850 ABI which they use in their compiler. It
256 is similar to the original Green Hills ABI with some minor
265 /* Architecture specific data. */
269 /* Fields from the ELF header. */
273 /* Which ABI are we using? */
275 int eight_byte_align
;
278 struct v850_frame_cache
285 /* Flag showing that a frame has been created in the prologue code. */
288 /* Saved registers. */
289 struct trad_frame_saved_reg
*saved_regs
;
292 /* Info gleaned from scanning a function's prologue. */
293 struct pifsr
/* Info about one saved register. */
295 int offset
; /* Offset from sp or fp. */
296 int cur_frameoffset
; /* Current frameoffset. */
297 int reg
; /* Saved register number. */
301 v850_register_name (struct gdbarch
*gdbarch
, int regnum
)
303 static const char *v850_reg_names
[] =
304 { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
305 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
306 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
307 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
308 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
309 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
310 "sr16", "sr17", "sr18", "sr19", "sr20", "sr21", "sr22", "sr23",
311 "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
314 if (regnum
< 0 || regnum
> E_NUM_OF_V850_REGS
)
316 return v850_reg_names
[regnum
];
320 v850e_register_name (struct gdbarch
*gdbarch
, int regnum
)
322 static const char *v850e_reg_names
[] =
324 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
325 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
326 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
327 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
328 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "sr6", "sr7",
329 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15",
330 "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "sr21", "sr22", "sr23",
331 "sr24", "sr25", "sr26", "sr27", "sr28", "sr29", "sr30", "sr31",
334 if (regnum
< 0 || regnum
> E_NUM_OF_V850E_REGS
)
336 return v850e_reg_names
[regnum
];
340 v850e2_register_name (struct gdbarch
*gdbarch
, int regnum
)
342 static const char *v850e2_reg_names
[] =
344 /* General purpose registers. */
345 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
346 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
347 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
348 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
350 /* System registers - main banks. */
351 "eipc", "eipsw", "fepc", "fepsw", "ecr", "psw", "pid", "cfg",
352 "", "", "", "sccfg", "scbp", "eiic", "feic", "dbic",
353 "ctpc", "ctpsw", "dbpc", "dbpsw", "ctbp", "dir", "", "",
354 "", "", "", "", "eiwr", "fewr", "dbwr", "bsel",
360 /* System registers - MPV (PROT00) bank. */
361 "vsecr", "vstid", "vsadr", "", "vmecr", "vmtid", "vmadr", "",
362 "vpecr", "vptid", "vpadr", "", "", "", "", "",
363 "", "", "", "", "", "", "", "",
364 "mca", "mcs", "mcc", "mcr",
366 /* System registers - MPU (PROT01) bank. */
367 "mpm", "mpc", "tid", "", "", "", "ipa0l", "ipa0u",
368 "ipa1l", "ipa1u", "ipa2l", "ipa2u", "ipa3l", "ipa3u", "ipa4l", "ipa4u",
369 "dpa0l", "dpa0u", "dpa1l", "dpa1u", "dpa2l", "dpa2u", "dpa3l", "dpa3u",
370 "dpa4l", "dpa4u", "dpa5l", "dpa5u",
372 /* FPU system registers. */
373 "", "", "", "", "", "", "fpsr", "fpepc",
374 "fpst", "fpcc", "fpcfg", "fpec", "", "", "", "",
375 "", "", "", "", "", "", "", "",
378 if (regnum
< 0 || regnum
>= E_NUM_OF_V850E2_REGS
)
380 return v850e2_reg_names
[regnum
];
383 /* Implement the "register_name" gdbarch method for v850e3v5. */
386 v850e3v5_register_name (struct gdbarch
*gdbarch
, int regnum
)
388 static const char *v850e3v5_reg_names
[] =
390 /* General purpose registers. */
391 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
392 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
393 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
394 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
396 /* selID 0, not including FPU registers. The FPU registers are
398 "eipc", "eipsw", "fepc", "fepsw",
399 "", "psw", "" /* fpsr */, "" /* fpepc */,
400 "" /* fpst */, "" /* fpcc */, "" /* fpcfg */, "" /* fpec */,
401 "sesr", "eiic", "feic", "",
402 "ctpc", "ctpsw", "", "", "ctbp", "", "", "",
403 "", "", "", "", "eiwr", "fewr", "", "bsel",
409 /* v850e2 MPV bank. */
410 "", "", "", "", "", "", "", "",
411 "", "", "", "", "", "", "", "",
412 "", "", "", "", "", "", "", "",
415 /* Skip v850e2 MPU bank. It's tempting to reuse these, but we need
416 32 entries for this bank. */
417 "", "", "", "", "", "", "", "",
418 "", "", "", "", "", "", "", "",
419 "", "", "", "", "", "", "", "",
422 /* FPU system registers. These are actually in selID 0, but
423 are placed here to preserve register numbering compatibility
424 with previous architectures. */
425 "", "", "", "", "", "", "fpsr", "fpepc",
426 "fpst", "fpcc", "fpcfg", "fpec", "", "", "", "",
427 "", "", "", "", "", "", "", "",
431 "mcfg0", "mcfg1", "rbase", "ebase", "intbp", "mctl", "pid", "fpipr",
432 "", "", "tcsel", "sccfg", "scbp", "hvccfg", "hvcbp", "vsel",
433 "vmprt0", "vmprt1", "vmprt2", "", "", "", "", "vmscctl",
434 "vmsctbl0", "vmsctbl1", "vmsctbl2", "vmsctbl3", "", "", "", "",
437 "htcfg0", "", "", "", "", "htctl", "mea", "asid",
438 "mei", "ispr", "pmr", "icsr", "intcfg", "", "", "",
439 "tlbsch", "", "", "", "", "", "", "htscctl",
440 "htsctbl0", "htsctbl1", "htsctbl2", "htsctbl3",
441 "htsctbl4", "htsctbl5", "htsctbl6", "htsctbl7",
444 "", "", "", "", "", "", "", "",
445 "", "", "", "", "", "", "", "",
446 "", "", "", "", "", "", "", "",
447 "", "", "", "", "", "", "", "",
450 "tlbidx", "", "", "", "telo0", "telo1", "tehi0", "tehi1",
451 "", "", "tlbcfg", "", "bwerrl", "bwerrh", "brerrl", "brerrh",
452 "ictagl", "ictagh", "icdatl", "icdath",
453 "dctagl", "dctagh", "dcdatl", "dcdath",
454 "icctrl", "dcctrl", "iccfg", "dccfg", "icerr", "dcerr", "", "",
457 "mpm", "mprc", "", "", "mpbrgn", "mptrgn", "", "",
458 "mca", "mcs", "mcc", "mcr", "", "", "", "",
459 "", "", "", "", "mpprt0", "mpprt1", "mpprt2", "",
460 "", "", "", "", "", "", "", "",
463 "mpla0", "mpua0", "mpat0", "", "mpla1", "mpua1", "mpat1", "",
464 "mpla2", "mpua2", "mpat2", "", "mpla3", "mpua3", "mpat3", "",
465 "mpla4", "mpua4", "mpat4", "", "mpla5", "mpua5", "mpat5", "",
466 "mpla6", "mpua6", "mpat6", "", "mpla7", "mpua7", "mpat7", "",
469 "mpla8", "mpua8", "mpat8", "", "mpla9", "mpua9", "mpat9", "",
470 "mpla10", "mpua10", "mpat10", "", "mpla11", "mpua11", "mpat11", "",
471 "mpla12", "mpua12", "mpat12", "", "mpla13", "mpua13", "mpat13", "",
472 "mpla14", "mpua14", "mpat14", "", "mpla15", "mpua15", "mpat15", "",
474 /* Vector Registers */
475 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
476 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
477 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
478 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31",
481 if (regnum
< 0 || regnum
>= E_NUM_OF_V850E3V5_REGS
)
483 return v850e3v5_reg_names
[regnum
];
486 /* Returns the default type for register N. */
489 v850_register_type (struct gdbarch
*gdbarch
, int regnum
)
491 if (regnum
== E_PC_REGNUM
)
492 return builtin_type (gdbarch
)->builtin_func_ptr
;
493 else if (E_VR0_REGNUM
<= regnum
&& regnum
<= E_VR31_REGNUM
)
494 return builtin_type (gdbarch
)->builtin_uint64
;
495 return builtin_type (gdbarch
)->builtin_int32
;
499 v850_type_is_scalar (struct type
*t
)
501 return (TYPE_CODE (t
) != TYPE_CODE_STRUCT
502 && TYPE_CODE (t
) != TYPE_CODE_UNION
503 && TYPE_CODE (t
) != TYPE_CODE_ARRAY
);
506 /* Should call_function allocate stack space for a struct return? */
509 v850_use_struct_convention (struct gdbarch
*gdbarch
, struct type
*type
)
512 struct type
*fld_type
, *tgt_type
;
514 if (gdbarch_tdep (gdbarch
)->abi
== V850_ABI_RH850
)
516 if (v850_type_is_scalar (type
) && TYPE_LENGTH(type
) <= 8)
519 /* Structs are never returned in registers for this ABI. */
522 /* 1. The value is greater than 8 bytes -> returned by copying. */
523 if (TYPE_LENGTH (type
) > 8)
526 /* 2. The value is a single basic type -> returned in register. */
527 if (v850_type_is_scalar (type
))
530 /* The value is a structure or union with a single element and that
531 element is either a single basic type or an array of a single basic
532 type whose size is greater than or equal to 4 -> returned in register. */
533 if ((TYPE_CODE (type
) == TYPE_CODE_STRUCT
534 || TYPE_CODE (type
) == TYPE_CODE_UNION
)
535 && TYPE_NFIELDS (type
) == 1)
537 fld_type
= TYPE_FIELD_TYPE (type
, 0);
538 if (v850_type_is_scalar (fld_type
) && TYPE_LENGTH (fld_type
) >= 4)
541 if (TYPE_CODE (fld_type
) == TYPE_CODE_ARRAY
)
543 tgt_type
= TYPE_TARGET_TYPE (fld_type
);
544 if (v850_type_is_scalar (tgt_type
) && TYPE_LENGTH (tgt_type
) >= 4)
549 /* The value is a structure whose first element is an integer or a float,
550 and which contains no arrays of more than two elements -> returned in
552 if (TYPE_CODE (type
) == TYPE_CODE_STRUCT
553 && v850_type_is_scalar (TYPE_FIELD_TYPE (type
, 0))
554 && TYPE_LENGTH (TYPE_FIELD_TYPE (type
, 0)) == 4)
556 for (i
= 1; i
< TYPE_NFIELDS (type
); ++i
)
558 fld_type
= TYPE_FIELD_TYPE (type
, 0);
559 if (TYPE_CODE (fld_type
) == TYPE_CODE_ARRAY
)
561 tgt_type
= TYPE_TARGET_TYPE (fld_type
);
562 if (TYPE_LENGTH (tgt_type
) > 0
563 && TYPE_LENGTH (fld_type
) / TYPE_LENGTH (tgt_type
) > 2)
570 /* The value is a union which contains at least one field which
571 would be returned in registers according to these rules ->
572 returned in register. */
573 if (TYPE_CODE (type
) == TYPE_CODE_UNION
)
575 for (i
= 0; i
< TYPE_NFIELDS (type
); ++i
)
577 fld_type
= TYPE_FIELD_TYPE (type
, 0);
578 if (!v850_use_struct_convention (gdbarch
, fld_type
))
586 /* Structure for mapping bits in register lists to register numbers. */
594 /* Helper function for v850_scan_prologue to handle prepare instruction. */
597 v850_handle_prepare (int insn
, int insn2
, CORE_ADDR
* current_pc_ptr
,
598 struct v850_frame_cache
*pi
, struct pifsr
**pifsr_ptr
)
600 CORE_ADDR current_pc
= *current_pc_ptr
;
601 struct pifsr
*pifsr
= *pifsr_ptr
;
602 long next
= insn2
& 0xffff;
603 long list12
= ((insn
& 1) << 16) + (next
& 0xffe0);
604 long offset
= (insn
& 0x3e) << 1;
605 static struct reg_list reg_table
[] =
607 {0x00800, 20}, /* r20 */
608 {0x00400, 21}, /* r21 */
609 {0x00200, 22}, /* r22 */
610 {0x00100, 23}, /* r23 */
611 {0x08000, 24}, /* r24 */
612 {0x04000, 25}, /* r25 */
613 {0x02000, 26}, /* r26 */
614 {0x01000, 27}, /* r27 */
615 {0x00080, 28}, /* r28 */
616 {0x00040, 29}, /* r29 */
617 {0x10000, 30}, /* ep */
618 {0x00020, 31}, /* lp */
619 {0, 0} /* end of table */
623 if ((next
& 0x1f) == 0x0b) /* skip imm16 argument */
625 else if ((next
& 0x1f) == 0x13) /* skip imm16 argument */
627 else if ((next
& 0x1f) == 0x1b) /* skip imm32 argument */
630 /* Calculate the total size of the saved registers, and add it to the
631 immediate value used to adjust SP. */
632 for (i
= 0; reg_table
[i
].mask
!= 0; i
++)
633 if (list12
& reg_table
[i
].mask
)
634 offset
+= v850_reg_size
;
635 pi
->sp_offset
-= offset
;
637 /* Calculate the offsets of the registers relative to the value the SP
638 will have after the registers have been pushed and the imm5 value has
639 been subtracted from it. */
642 for (i
= 0; reg_table
[i
].mask
!= 0; i
++)
644 if (list12
& reg_table
[i
].mask
)
646 int reg
= reg_table
[i
].regno
;
647 offset
-= v850_reg_size
;
649 pifsr
->offset
= offset
;
650 pifsr
->cur_frameoffset
= pi
->sp_offset
;
656 /* Set result parameters. */
657 *current_pc_ptr
= current_pc
;
662 /* Helper function for v850_scan_prologue to handle pushm/pushl instructions.
663 The SR bit of the register list is not supported. gcc does not generate
667 v850_handle_pushm (int insn
, int insn2
, struct v850_frame_cache
*pi
,
668 struct pifsr
**pifsr_ptr
)
670 struct pifsr
*pifsr
= *pifsr_ptr
;
671 long list12
= ((insn
& 0x0f) << 16) + (insn2
& 0xfff0);
673 static struct reg_list pushml_reg_table
[] =
675 {0x80000, E_PS_REGNUM
}, /* PSW */
676 {0x40000, 1}, /* r1 */
677 {0x20000, 2}, /* r2 */
678 {0x10000, 3}, /* r3 */
679 {0x00800, 4}, /* r4 */
680 {0x00400, 5}, /* r5 */
681 {0x00200, 6}, /* r6 */
682 {0x00100, 7}, /* r7 */
683 {0x08000, 8}, /* r8 */
684 {0x04000, 9}, /* r9 */
685 {0x02000, 10}, /* r10 */
686 {0x01000, 11}, /* r11 */
687 {0x00080, 12}, /* r12 */
688 {0x00040, 13}, /* r13 */
689 {0x00020, 14}, /* r14 */
690 {0x00010, 15}, /* r15 */
691 {0, 0} /* end of table */
693 static struct reg_list pushmh_reg_table
[] =
695 {0x80000, 16}, /* r16 */
696 {0x40000, 17}, /* r17 */
697 {0x20000, 18}, /* r18 */
698 {0x10000, 19}, /* r19 */
699 {0x00800, 20}, /* r20 */
700 {0x00400, 21}, /* r21 */
701 {0x00200, 22}, /* r22 */
702 {0x00100, 23}, /* r23 */
703 {0x08000, 24}, /* r24 */
704 {0x04000, 25}, /* r25 */
705 {0x02000, 26}, /* r26 */
706 {0x01000, 27}, /* r27 */
707 {0x00080, 28}, /* r28 */
708 {0x00040, 29}, /* r29 */
709 {0x00010, 30}, /* r30 */
710 {0x00020, 31}, /* r31 */
711 {0, 0} /* end of table */
713 struct reg_list
*reg_table
;
716 /* Is this a pushml or a pushmh? */
717 if ((insn2
& 7) == 1)
718 reg_table
= pushml_reg_table
;
720 reg_table
= pushmh_reg_table
;
722 /* Calculate the total size of the saved registers, and add it to the
723 immediate value used to adjust SP. */
724 for (i
= 0; reg_table
[i
].mask
!= 0; i
++)
725 if (list12
& reg_table
[i
].mask
)
726 offset
+= v850_reg_size
;
727 pi
->sp_offset
-= offset
;
729 /* Calculate the offsets of the registers relative to the value the SP
730 will have after the registers have been pushed and the imm5 value is
731 subtracted from it. */
734 for (i
= 0; reg_table
[i
].mask
!= 0; i
++)
736 if (list12
& reg_table
[i
].mask
)
738 int reg
= reg_table
[i
].regno
;
739 offset
-= v850_reg_size
;
741 pifsr
->offset
= offset
;
742 pifsr
->cur_frameoffset
= pi
->sp_offset
;
748 /* Set result parameters. */
752 /* Helper function to evaluate if register is one of the "save" registers.
753 This allows to simplify conditionals in v850_analyze_prologue a lot. */
756 v850_is_save_register (int reg
)
758 /* The caller-save registers are R2, R20 - R29 and R31. All other
759 registers are either special purpose (PC, SP), argument registers,
760 or just considered free for use in the caller. */
761 return reg
== E_R2_REGNUM
762 || (reg
>= E_R20_REGNUM
&& reg
<= E_R29_REGNUM
)
763 || reg
== E_R31_REGNUM
;
766 /* Scan the prologue of the function that contains PC, and record what
767 we find in PI. Returns the pc after the prologue. Note that the
768 addresses saved in frame->saved_regs are just frame relative (negative
769 offsets from the frame pointer). This is because we don't know the
770 actual value of the frame pointer yet. In some circumstances, the
771 frame pointer can't be determined till after we have scanned the
775 v850_analyze_prologue (struct gdbarch
*gdbarch
,
776 CORE_ADDR func_addr
, CORE_ADDR pc
,
777 struct v850_frame_cache
*pi
, ULONGEST ctbp
)
779 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
780 CORE_ADDR prologue_end
, current_pc
;
781 struct pifsr pifsrs
[E_NUM_REGS
+ 1];
782 struct pifsr
*pifsr
, *pifsr_tmp
;
785 CORE_ADDR save_pc
, save_end
;
789 memset (&pifsrs
, 0, sizeof pifsrs
);
794 /* Now, search the prologue looking for instructions that setup fp, save
795 rp, adjust sp and such. We also record the frame offset of any saved
806 for (current_pc
= func_addr
; current_pc
< prologue_end
;)
809 int insn2
= -1; /* dummy value */
811 insn
= read_memory_integer (current_pc
, 2, byte_order
);
813 if ((insn
& 0x0780) >= 0x0600) /* Four byte instruction? */
815 insn2
= read_memory_integer (current_pc
, 2, byte_order
);
819 if ((insn
& 0xffc0) == ((10 << 11) | 0x0780) && !regsave_func_p
)
820 { /* jarl <func>,10 */
821 long low_disp
= insn2
& ~(long) 1;
822 long disp
= (((((insn
& 0x3f) << 16) + low_disp
)
823 & ~(long) 1) ^ 0x00200000) - 0x00200000;
825 save_pc
= current_pc
;
826 save_end
= prologue_end
;
828 current_pc
+= disp
- 4;
829 prologue_end
= (current_pc
830 + (2 * 3) /* moves to/from ep */
831 + 4 /* addi <const>,sp,sp */
833 + (2 * 12) /* sst.w to save r2, r20-r29, r31 */
834 + 20); /* slop area */
836 else if ((insn
& 0xffc0) == 0x0200 && !regsave_func_p
)
838 long adr
= ctbp
+ ((insn
& 0x3f) << 1);
840 save_pc
= current_pc
;
841 save_end
= prologue_end
;
843 current_pc
= ctbp
+ (read_memory_unsigned_integer (adr
, 2, byte_order
)
845 prologue_end
= (current_pc
846 + (2 * 3) /* prepare list2,imm5,sp/imm */
848 + 20); /* slop area */
851 else if ((insn
& 0xffc0) == 0x0780) /* prepare list2,imm5 */
853 v850_handle_prepare (insn
, insn2
, ¤t_pc
, pi
, &pifsr
);
856 else if (insn
== 0x07e0 && regsave_func_p
&& insn2
== 0x0144)
857 { /* ctret after processing register save. */
858 current_pc
= save_pc
;
859 prologue_end
= save_end
;
863 else if ((insn
& 0xfff0) == 0x07e0 && (insn2
& 5) == 1)
864 { /* pushml, pushmh */
865 v850_handle_pushm (insn
, insn2
, pi
, &pifsr
);
868 else if ((insn
& 0xffe0) == 0x0060 && regsave_func_p
)
869 { /* jmp after processing register save. */
870 current_pc
= save_pc
;
871 prologue_end
= save_end
;
875 else if ((insn
& 0x07c0) == 0x0780 /* jarl or jr */
876 || (insn
& 0xffe0) == 0x0060 /* jmp */
877 || (insn
& 0x0780) == 0x0580) /* branch */
879 break; /* Ran into end of prologue. */
882 else if ((insn
& 0xffe0) == ((E_SP_REGNUM
<< 11) | 0x0240))
884 pi
->sp_offset
+= ((insn
& 0x1f) ^ 0x10) - 0x10;
885 else if (insn
== ((E_SP_REGNUM
<< 11) | 0x0600 | E_SP_REGNUM
))
886 /* addi <imm>,sp,sp */
887 pi
->sp_offset
+= insn2
;
888 else if (insn
== ((E_FP_REGNUM
<< 11) | 0x0000 | E_SP_REGNUM
))
891 else if (insn
== ((E_R12_REGNUM
<< 11) | 0x0640 | E_R0_REGNUM
))
892 /* movhi hi(const),r0,r12 */
893 r12_tmp
= insn2
<< 16;
894 else if (insn
== ((E_R12_REGNUM
<< 11) | 0x0620 | E_R12_REGNUM
))
895 /* movea lo(const),r12,r12 */
897 else if (insn
== ((E_SP_REGNUM
<< 11) | 0x01c0 | E_R12_REGNUM
) && r12_tmp
)
899 pi
->sp_offset
+= r12_tmp
;
900 else if (insn
== ((E_EP_REGNUM
<< 11) | 0x0000 | E_SP_REGNUM
))
903 else if (insn
== ((E_EP_REGNUM
<< 11) | 0x0000 | E_R1_REGNUM
))
906 else if (((insn
& 0x07ff) == (0x0760 | E_SP_REGNUM
)
908 && (insn
& 0x07ff) == (0x0760 | E_FP_REGNUM
)))
910 && v850_is_save_register (reg
= (insn
>> 11) & 0x1f))
912 /* st.w <reg>,<offset>[sp] or st.w <reg>,<offset>[fp] */
914 pifsr
->offset
= insn2
& ~1;
915 pifsr
->cur_frameoffset
= pi
->sp_offset
;
919 && ((insn
& 0x0781) == 0x0501)
921 && v850_is_save_register (reg
= (insn
>> 11) & 0x1f))
923 /* sst.w <reg>,<offset>[ep] */
925 pifsr
->offset
= (insn
& 0x007e) << 1;
926 pifsr
->cur_frameoffset
= pi
->sp_offset
;
931 /* Fix up any offsets to the final offset. If a frame pointer was created,
932 use it instead of the stack pointer. */
933 for (pifsr_tmp
= pifsrs
; pifsr_tmp
!= pifsr
; pifsr_tmp
++)
935 pifsr_tmp
->offset
-= pi
->sp_offset
- pifsr_tmp
->cur_frameoffset
;
936 pi
->saved_regs
[pifsr_tmp
->reg
].addr
= pifsr_tmp
->offset
;
942 /* Return the address of the first code past the prologue of the function. */
945 v850_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
947 CORE_ADDR func_addr
, func_end
;
949 /* See what the symbol table says. */
951 if (find_pc_partial_function (pc
, NULL
, &func_addr
, &func_end
))
953 struct symtab_and_line sal
;
955 sal
= find_pc_line (func_addr
, 0);
956 if (sal
.line
!= 0 && sal
.end
< func_end
)
959 /* Either there's no line info, or the line after the prologue is after
960 the end of the function. In this case, there probably isn't a
965 /* We can't find the start of this function, so there's nothing we
970 /* Return 1 if the data structure has any 8-byte fields that'll require
971 the entire data structure to be aligned. Otherwise, return 0. */
974 v850_eight_byte_align_p (struct type
*type
)
976 type
= check_typedef (type
);
978 if (v850_type_is_scalar (type
))
979 return (TYPE_LENGTH (type
) == 8);
984 for (i
= 0; i
< TYPE_NFIELDS (type
); i
++)
986 if (v850_eight_byte_align_p (TYPE_FIELD_TYPE (type
, i
)))
994 v850_frame_align (struct gdbarch
*ignore
, CORE_ADDR sp
)
999 /* Setup arguments and LP for a call to the target. First four args
1000 go in R6->R9, subsequent args go into sp + 16 -> sp + ... Structs
1001 are passed by reference. 64 bit quantities (doubles and long longs)
1002 may be split between the regs and the stack. When calling a function
1003 that returns a struct, a pointer to the struct is passed in as a secret
1004 first argument (always in R6).
1006 Stack space for the args has NOT been allocated: that job is up to us. */
1009 v850_push_dummy_call (struct gdbarch
*gdbarch
,
1010 struct value
*function
,
1011 struct regcache
*regcache
,
1014 struct value
**args
,
1016 function_call_return_method return_method
,
1017 CORE_ADDR struct_addr
)
1019 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1025 if (gdbarch_tdep (gdbarch
)->abi
== V850_ABI_RH850
)
1028 /* The offset onto the stack at which we will start copying parameters
1029 (after the registers are used up) begins at 16 rather than at zero.
1030 That's how the ABI is defined, though there's no indication that these
1031 16 bytes are used for anything, not even for saving incoming
1032 argument registers. */
1035 /* Now make space on the stack for the args. */
1036 for (argnum
= 0; argnum
< nargs
; argnum
++)
1037 arg_space
+= ((TYPE_LENGTH (value_type (args
[argnum
])) + 3) & ~3);
1038 sp
-= arg_space
+ stack_offset
;
1040 argreg
= E_ARG0_REGNUM
;
1041 /* The struct_return pointer occupies the first parameter register. */
1042 if (return_method
== return_method_struct
)
1043 regcache_cooked_write_unsigned (regcache
, argreg
++, struct_addr
);
1045 /* Now load as many as possible of the first arguments into
1046 registers, and push the rest onto the stack. There are 16 bytes
1047 in four registers available. Loop thru args from first to last. */
1048 for (argnum
= 0; argnum
< nargs
; argnum
++)
1052 gdb_byte valbuf
[v850_reg_size
];
1054 if (!v850_type_is_scalar (value_type (*args
))
1055 && gdbarch_tdep (gdbarch
)->abi
== V850_ABI_GCC
1056 && TYPE_LENGTH (value_type (*args
)) > E_MAX_RETTYPE_SIZE_IN_REGS
)
1058 store_unsigned_integer (valbuf
, 4, byte_order
,
1059 value_address (*args
));
1065 len
= TYPE_LENGTH (value_type (*args
));
1066 val
= (gdb_byte
*) value_contents (*args
);
1069 if (gdbarch_tdep (gdbarch
)->eight_byte_align
1070 && v850_eight_byte_align_p (value_type (*args
)))
1072 if (argreg
<= E_ARGLAST_REGNUM
&& (argreg
& 1))
1074 else if (stack_offset
& 0x4)
1079 if (argreg
<= E_ARGLAST_REGNUM
)
1083 regval
= extract_unsigned_integer (val
, v850_reg_size
, byte_order
);
1084 regcache_cooked_write_unsigned (regcache
, argreg
, regval
);
1086 len
-= v850_reg_size
;
1087 val
+= v850_reg_size
;
1092 write_memory (sp
+ stack_offset
, val
, 4);
1101 /* Store return address. */
1102 regcache_cooked_write_unsigned (regcache
, E_LP_REGNUM
, bp_addr
);
1104 /* Update stack pointer. */
1105 regcache_cooked_write_unsigned (regcache
, E_SP_REGNUM
, sp
);
1111 v850_extract_return_value (struct type
*type
, struct regcache
*regcache
,
1114 struct gdbarch
*gdbarch
= regcache
->arch ();
1115 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1116 int len
= TYPE_LENGTH (type
);
1118 if (len
<= v850_reg_size
)
1122 regcache_cooked_read_unsigned (regcache
, E_V0_REGNUM
, &val
);
1123 store_unsigned_integer (valbuf
, len
, byte_order
, val
);
1125 else if (len
<= 2 * v850_reg_size
)
1127 int i
, regnum
= E_V0_REGNUM
;
1128 gdb_byte buf
[v850_reg_size
];
1129 for (i
= 0; len
> 0; i
+= 4, len
-= 4)
1131 regcache
->raw_read (regnum
++, buf
);
1132 memcpy (valbuf
+ i
, buf
, len
> 4 ? 4 : len
);
1138 v850_store_return_value (struct type
*type
, struct regcache
*regcache
,
1139 const gdb_byte
*valbuf
)
1141 struct gdbarch
*gdbarch
= regcache
->arch ();
1142 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1143 int len
= TYPE_LENGTH (type
);
1145 if (len
<= v850_reg_size
)
1146 regcache_cooked_write_unsigned
1147 (regcache
, E_V0_REGNUM
,
1148 extract_unsigned_integer (valbuf
, len
, byte_order
));
1149 else if (len
<= 2 * v850_reg_size
)
1151 int i
, regnum
= E_V0_REGNUM
;
1152 for (i
= 0; i
< len
; i
+= 4)
1153 regcache
->raw_write (regnum
++, valbuf
+ i
);
1157 static enum return_value_convention
1158 v850_return_value (struct gdbarch
*gdbarch
, struct value
*function
,
1159 struct type
*type
, struct regcache
*regcache
,
1160 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
1162 if (v850_use_struct_convention (gdbarch
, type
))
1163 return RETURN_VALUE_STRUCT_CONVENTION
;
1165 v850_store_return_value (type
, regcache
, writebuf
);
1167 v850_extract_return_value (type
, regcache
, readbuf
);
1168 return RETURN_VALUE_REGISTER_CONVENTION
;
1171 /* Implement the breakpoint_kind_from_pc gdbarch method. */
1174 v850_breakpoint_kind_from_pc (struct gdbarch
*gdbarch
, CORE_ADDR
*pcptr
)
1179 /* Implement the sw_breakpoint_from_kind gdbarch method. */
1181 static const gdb_byte
*
1182 v850_sw_breakpoint_from_kind (struct gdbarch
*gdbarch
, int kind
, int *size
)
1186 switch (gdbarch_bfd_arch_info (gdbarch
)->mach
)
1188 case bfd_mach_v850e2
:
1189 case bfd_mach_v850e2v3
:
1190 case bfd_mach_v850e3v5
:
1192 /* Implement software breakpoints by using the dbtrap instruction.
1193 Older architectures had no such instruction. For those, an
1194 unconditional branch to self instruction is used. */
1196 static unsigned char dbtrap_breakpoint
[] = { 0x40, 0xf8 };
1198 return dbtrap_breakpoint
;
1203 static unsigned char breakpoint
[] = { 0x85, 0x05 };
1211 static struct v850_frame_cache
*
1212 v850_alloc_frame_cache (struct frame_info
*this_frame
)
1214 struct v850_frame_cache
*cache
;
1216 cache
= FRAME_OBSTACK_ZALLOC (struct v850_frame_cache
);
1217 cache
->saved_regs
= trad_frame_alloc_saved_regs (this_frame
);
1221 cache
->sp_offset
= 0;
1224 /* Frameless until proven otherwise. */
1230 static struct v850_frame_cache
*
1231 v850_frame_cache (struct frame_info
*this_frame
, void **this_cache
)
1233 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
1234 struct v850_frame_cache
*cache
;
1235 CORE_ADDR current_pc
;
1239 return (struct v850_frame_cache
*) *this_cache
;
1241 cache
= v850_alloc_frame_cache (this_frame
);
1242 *this_cache
= cache
;
1244 /* In principle, for normal frames, fp holds the frame pointer,
1245 which holds the base address for the current stack frame.
1246 However, for functions that don't need it, the frame pointer is
1247 optional. For these "frameless" functions the frame pointer is
1248 actually the frame pointer of the calling frame. */
1249 cache
->base
= get_frame_register_unsigned (this_frame
, E_FP_REGNUM
);
1250 if (cache
->base
== 0)
1253 cache
->pc
= get_frame_func (this_frame
);
1254 current_pc
= get_frame_pc (this_frame
);
1258 ctbp
= get_frame_register_unsigned (this_frame
, E_CTBP_REGNUM
);
1259 v850_analyze_prologue (gdbarch
, cache
->pc
, current_pc
, cache
, ctbp
);
1262 if (!cache
->uses_fp
)
1264 /* We didn't find a valid frame, which means that CACHE->base
1265 currently holds the frame pointer for our calling frame. If
1266 we're at the start of a function, or somewhere half-way its
1267 prologue, the function's frame probably hasn't been fully
1268 setup yet. Try to reconstruct the base address for the stack
1269 frame by looking at the stack pointer. For truly "frameless"
1270 functions this might work too. */
1271 cache
->base
= get_frame_register_unsigned (this_frame
, E_SP_REGNUM
);
1274 /* Now that we have the base address for the stack frame we can
1275 calculate the value of sp in the calling frame. */
1276 trad_frame_set_value (cache
->saved_regs
, E_SP_REGNUM
,
1277 cache
->base
- cache
->sp_offset
);
1279 /* Adjust all the saved registers such that they contain addresses
1280 instead of offsets. */
1281 for (i
= 0; i
< gdbarch_num_regs (gdbarch
); i
++)
1282 if (trad_frame_addr_p (cache
->saved_regs
, i
))
1283 cache
->saved_regs
[i
].addr
+= cache
->base
;
1285 /* The call instruction moves the caller's PC in the callee's LP.
1286 Since this is an unwind, do the reverse. Copy the location of LP
1287 into PC (the address / regnum) so that a request for PC will be
1288 converted into a request for the LP. */
1290 cache
->saved_regs
[E_PC_REGNUM
] = cache
->saved_regs
[E_LP_REGNUM
];
1296 static struct value
*
1297 v850_frame_prev_register (struct frame_info
*this_frame
,
1298 void **this_cache
, int regnum
)
1300 struct v850_frame_cache
*cache
= v850_frame_cache (this_frame
, this_cache
);
1302 gdb_assert (regnum
>= 0);
1304 return trad_frame_get_prev_register (this_frame
, cache
->saved_regs
, regnum
);
1308 v850_frame_this_id (struct frame_info
*this_frame
, void **this_cache
,
1309 struct frame_id
*this_id
)
1311 struct v850_frame_cache
*cache
= v850_frame_cache (this_frame
, this_cache
);
1313 /* This marks the outermost frame. */
1314 if (cache
->base
== 0)
1317 *this_id
= frame_id_build (cache
->saved_regs
[E_SP_REGNUM
].addr
, cache
->pc
);
1320 static const struct frame_unwind v850_frame_unwind
= {
1322 default_frame_unwind_stop_reason
,
1324 v850_frame_prev_register
,
1326 default_frame_sniffer
1330 v850_frame_base_address (struct frame_info
*this_frame
, void **this_cache
)
1332 struct v850_frame_cache
*cache
= v850_frame_cache (this_frame
, this_cache
);
1337 static const struct frame_base v850_frame_base
= {
1339 v850_frame_base_address
,
1340 v850_frame_base_address
,
1341 v850_frame_base_address
1344 static struct gdbarch
*
1345 v850_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
1347 struct gdbarch
*gdbarch
;
1348 struct gdbarch_tdep
*tdep
;
1349 int e_flags
, e_machine
;
1351 /* Extract the elf_flags if available. */
1352 if (info
.abfd
!= NULL
1353 && bfd_get_flavour (info
.abfd
) == bfd_target_elf_flavour
)
1355 e_flags
= elf_elfheader (info
.abfd
)->e_flags
;
1356 e_machine
= elf_elfheader (info
.abfd
)->e_machine
;
1365 /* Try to find the architecture in the list of already defined
1367 for (arches
= gdbarch_list_lookup_by_info (arches
, &info
);
1369 arches
= gdbarch_list_lookup_by_info (arches
->next
, &info
))
1371 if (gdbarch_tdep (arches
->gdbarch
)->e_flags
!= e_flags
1372 || gdbarch_tdep (arches
->gdbarch
)->e_machine
!= e_machine
)
1375 return arches
->gdbarch
;
1377 tdep
= XCNEW (struct gdbarch_tdep
);
1378 tdep
->e_flags
= e_flags
;
1379 tdep
->e_machine
= e_machine
;
1381 switch (tdep
->e_machine
)
1384 tdep
->abi
= V850_ABI_RH850
;
1387 tdep
->abi
= V850_ABI_GCC
;
1391 tdep
->eight_byte_align
= (tdep
->e_flags
& EF_RH850_DATA_ALIGN8
) ? 1 : 0;
1392 gdbarch
= gdbarch_alloc (&info
, tdep
);
1394 switch (info
.bfd_arch_info
->mach
)
1397 set_gdbarch_register_name (gdbarch
, v850_register_name
);
1398 set_gdbarch_num_regs (gdbarch
, E_NUM_OF_V850_REGS
);
1400 case bfd_mach_v850e
:
1401 case bfd_mach_v850e1
:
1402 set_gdbarch_register_name (gdbarch
, v850e_register_name
);
1403 set_gdbarch_num_regs (gdbarch
, E_NUM_OF_V850E_REGS
);
1405 case bfd_mach_v850e2
:
1406 case bfd_mach_v850e2v3
:
1407 set_gdbarch_register_name (gdbarch
, v850e2_register_name
);
1408 set_gdbarch_num_regs (gdbarch
, E_NUM_REGS
);
1410 case bfd_mach_v850e3v5
:
1411 set_gdbarch_register_name (gdbarch
, v850e3v5_register_name
);
1412 set_gdbarch_num_regs (gdbarch
, E_NUM_OF_V850E3V5_REGS
);
1416 set_gdbarch_num_pseudo_regs (gdbarch
, 0);
1417 set_gdbarch_sp_regnum (gdbarch
, E_SP_REGNUM
);
1418 set_gdbarch_pc_regnum (gdbarch
, E_PC_REGNUM
);
1419 set_gdbarch_fp0_regnum (gdbarch
, -1);
1421 set_gdbarch_register_type (gdbarch
, v850_register_type
);
1423 set_gdbarch_char_signed (gdbarch
, 1);
1424 set_gdbarch_short_bit (gdbarch
, 2 * TARGET_CHAR_BIT
);
1425 set_gdbarch_int_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
1426 set_gdbarch_long_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
1427 set_gdbarch_long_long_bit (gdbarch
, 8 * TARGET_CHAR_BIT
);
1429 set_gdbarch_float_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
1430 set_gdbarch_double_bit (gdbarch
, 8 * TARGET_CHAR_BIT
);
1431 set_gdbarch_long_double_bit (gdbarch
, 8 * TARGET_CHAR_BIT
);
1433 set_gdbarch_ptr_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
1434 set_gdbarch_addr_bit (gdbarch
, 4 * TARGET_CHAR_BIT
);
1436 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
1438 set_gdbarch_breakpoint_kind_from_pc (gdbarch
, v850_breakpoint_kind_from_pc
);
1439 set_gdbarch_sw_breakpoint_from_kind (gdbarch
, v850_sw_breakpoint_from_kind
);
1440 set_gdbarch_return_value (gdbarch
, v850_return_value
);
1441 set_gdbarch_push_dummy_call (gdbarch
, v850_push_dummy_call
);
1442 set_gdbarch_skip_prologue (gdbarch
, v850_skip_prologue
);
1444 set_gdbarch_frame_align (gdbarch
, v850_frame_align
);
1445 frame_base_set_default (gdbarch
, &v850_frame_base
);
1447 /* Hook in ABI-specific overrides, if they have been registered. */
1448 gdbarch_init_osabi (info
, gdbarch
);
1450 dwarf2_append_unwinders (gdbarch
);
1451 frame_unwind_append_unwinder (gdbarch
, &v850_frame_unwind
);
1457 _initialize_v850_tdep (void)
1459 register_gdbarch_init (bfd_arch_v850
, v850_gdbarch_init
);
1460 register_gdbarch_init (bfd_arch_v850_rh850
, v850_gdbarch_init
);