Separate Simple Backend creation from initialization.
[chromium-blink-merge.git] / media / audio / win / audio_low_latency_input_win.cc
blob85162d699f732989f7a5998aabe069ee38e63974
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "media/audio/win/audio_low_latency_input_win.h"
7 #include "base/logging.h"
8 #include "base/memory/scoped_ptr.h"
9 #include "base/utf_string_conversions.h"
10 #include "media/audio/audio_util.h"
11 #include "media/audio/win/audio_manager_win.h"
12 #include "media/audio/win/avrt_wrapper_win.h"
14 using base::win::ScopedComPtr;
15 using base::win::ScopedCOMInitializer;
17 namespace media {
19 WASAPIAudioInputStream::WASAPIAudioInputStream(
20 AudioManagerWin* manager, const AudioParameters& params,
21 const std::string& device_id)
22 : manager_(manager),
23 capture_thread_(NULL),
24 opened_(false),
25 started_(false),
26 endpoint_buffer_size_frames_(0),
27 device_id_(device_id),
28 sink_(NULL) {
29 DCHECK(manager_);
31 // Load the Avrt DLL if not already loaded. Required to support MMCSS.
32 bool avrt_init = avrt::Initialize();
33 DCHECK(avrt_init) << "Failed to load the Avrt.dll";
35 // Set up the desired capture format specified by the client.
36 format_.nSamplesPerSec = params.sample_rate();
37 format_.wFormatTag = WAVE_FORMAT_PCM;
38 format_.wBitsPerSample = params.bits_per_sample();
39 format_.nChannels = params.channels();
40 format_.nBlockAlign = (format_.wBitsPerSample / 8) * format_.nChannels;
41 format_.nAvgBytesPerSec = format_.nSamplesPerSec * format_.nBlockAlign;
42 format_.cbSize = 0;
44 // Size in bytes of each audio frame.
45 frame_size_ = format_.nBlockAlign;
46 // Store size of audio packets which we expect to get from the audio
47 // endpoint device in each capture event.
48 packet_size_frames_ = params.GetBytesPerBuffer() / format_.nBlockAlign;
49 packet_size_bytes_ = params.GetBytesPerBuffer();
50 DVLOG(1) << "Number of bytes per audio frame : " << frame_size_;
51 DVLOG(1) << "Number of audio frames per packet: " << packet_size_frames_;
53 // All events are auto-reset events and non-signaled initially.
55 // Create the event which the audio engine will signal each time
56 // a buffer becomes ready to be processed by the client.
57 audio_samples_ready_event_.Set(CreateEvent(NULL, FALSE, FALSE, NULL));
58 DCHECK(audio_samples_ready_event_.IsValid());
60 // Create the event which will be set in Stop() when capturing shall stop.
61 stop_capture_event_.Set(CreateEvent(NULL, FALSE, FALSE, NULL));
62 DCHECK(stop_capture_event_.IsValid());
64 ms_to_frame_count_ = static_cast<double>(params.sample_rate()) / 1000.0;
66 LARGE_INTEGER performance_frequency;
67 if (QueryPerformanceFrequency(&performance_frequency)) {
68 perf_count_to_100ns_units_ =
69 (10000000.0 / static_cast<double>(performance_frequency.QuadPart));
70 } else {
71 LOG(ERROR) << "High-resolution performance counters are not supported.";
72 perf_count_to_100ns_units_ = 0.0;
76 WASAPIAudioInputStream::~WASAPIAudioInputStream() {}
78 bool WASAPIAudioInputStream::Open() {
79 DCHECK(CalledOnValidThread());
80 // Verify that we are not already opened.
81 if (opened_)
82 return false;
84 // Obtain a reference to the IMMDevice interface of the capturing
85 // device with the specified unique identifier or role which was
86 // set at construction.
87 HRESULT hr = SetCaptureDevice();
88 if (FAILED(hr))
89 return false;
91 // Obtain an IAudioClient interface which enables us to create and initialize
92 // an audio stream between an audio application and the audio engine.
93 hr = ActivateCaptureDevice();
94 if (FAILED(hr))
95 return false;
97 // Retrieve the stream format which the audio engine uses for its internal
98 // processing/mixing of shared-mode streams. This function call is for
99 // diagnostic purposes only and only in debug mode.
100 #ifndef NDEBUG
101 hr = GetAudioEngineStreamFormat();
102 #endif
104 // Verify that the selected audio endpoint supports the specified format
105 // set during construction.
106 if (!DesiredFormatIsSupported()) {
107 return false;
110 // Initialize the audio stream between the client and the device using
111 // shared mode and a lowest possible glitch-free latency.
112 hr = InitializeAudioEngine();
114 opened_ = SUCCEEDED(hr);
115 return opened_;
118 void WASAPIAudioInputStream::Start(AudioInputCallback* callback) {
119 DCHECK(CalledOnValidThread());
120 DCHECK(callback);
121 DLOG_IF(ERROR, !opened_) << "Open() has not been called successfully";
122 if (!opened_)
123 return;
125 if (started_)
126 return;
128 sink_ = callback;
130 // Create and start the thread that will drive the capturing by waiting for
131 // capture events.
132 capture_thread_ =
133 new base::DelegateSimpleThread(this, "wasapi_capture_thread");
134 capture_thread_->Start();
136 // Start streaming data between the endpoint buffer and the audio engine.
137 HRESULT hr = audio_client_->Start();
138 DLOG_IF(ERROR, FAILED(hr)) << "Failed to start input streaming.";
140 started_ = SUCCEEDED(hr);
143 void WASAPIAudioInputStream::Stop() {
144 DCHECK(CalledOnValidThread());
145 DVLOG(1) << "WASAPIAudioInputStream::Stop()";
146 if (!started_)
147 return;
149 // Shut down the capture thread.
150 if (stop_capture_event_.IsValid()) {
151 SetEvent(stop_capture_event_.Get());
154 // Stop the input audio streaming.
155 HRESULT hr = audio_client_->Stop();
156 if (FAILED(hr)) {
157 LOG(ERROR) << "Failed to stop input streaming.";
160 // Wait until the thread completes and perform cleanup.
161 if (capture_thread_) {
162 SetEvent(stop_capture_event_.Get());
163 capture_thread_->Join();
164 capture_thread_ = NULL;
167 started_ = false;
170 void WASAPIAudioInputStream::Close() {
171 DVLOG(1) << "WASAPIAudioInputStream::Close()";
172 // It is valid to call Close() before calling open or Start().
173 // It is also valid to call Close() after Start() has been called.
174 Stop();
175 if (sink_) {
176 sink_->OnClose(this);
177 sink_ = NULL;
180 // Inform the audio manager that we have been closed. This will cause our
181 // destruction.
182 manager_->ReleaseInputStream(this);
185 double WASAPIAudioInputStream::GetMaxVolume() {
186 // Verify that Open() has been called succesfully, to ensure that an audio
187 // session exists and that an ISimpleAudioVolume interface has been created.
188 DLOG_IF(ERROR, !opened_) << "Open() has not been called successfully";
189 if (!opened_)
190 return 0.0;
192 // The effective volume value is always in the range 0.0 to 1.0, hence
193 // we can return a fixed value (=1.0) here.
194 return 1.0;
197 void WASAPIAudioInputStream::SetVolume(double volume) {
198 DVLOG(1) << "SetVolume(volume=" << volume << ")";
199 DCHECK(CalledOnValidThread());
200 DCHECK_GE(volume, 0.0);
201 DCHECK_LE(volume, 1.0);
203 DLOG_IF(ERROR, !opened_) << "Open() has not been called successfully";
204 if (!opened_)
205 return;
207 // Set a new master volume level. Valid volume levels are in the range
208 // 0.0 to 1.0. Ignore volume-change events.
209 HRESULT hr = simple_audio_volume_->SetMasterVolume(static_cast<float>(volume),
210 NULL);
211 DLOG_IF(WARNING, FAILED(hr)) << "Failed to set new input master volume.";
213 // Update the AGC volume level based on the last setting above. Note that,
214 // the volume-level resolution is not infinite and it is therefore not
215 // possible to assume that the volume provided as input parameter can be
216 // used directly. Instead, a new query to the audio hardware is required.
217 // This method does nothing if AGC is disabled.
218 UpdateAgcVolume();
221 double WASAPIAudioInputStream::GetVolume() {
222 DLOG_IF(ERROR, !opened_) << "Open() has not been called successfully";
223 if (!opened_)
224 return 0.0;
226 // Retrieve the current volume level. The value is in the range 0.0 to 1.0.
227 float level = 0.0f;
228 HRESULT hr = simple_audio_volume_->GetMasterVolume(&level);
229 DLOG_IF(WARNING, FAILED(hr)) << "Failed to get input master volume.";
231 return static_cast<double>(level);
234 // static
235 int WASAPIAudioInputStream::HardwareSampleRate(
236 const std::string& device_id) {
237 base::win::ScopedCoMem<WAVEFORMATEX> audio_engine_mix_format;
238 HRESULT hr = GetMixFormat(device_id, &audio_engine_mix_format);
239 if (FAILED(hr))
240 return 0;
242 return static_cast<int>(audio_engine_mix_format->nSamplesPerSec);
245 // static
246 uint32 WASAPIAudioInputStream::HardwareChannelCount(
247 const std::string& device_id) {
248 base::win::ScopedCoMem<WAVEFORMATEX> audio_engine_mix_format;
249 HRESULT hr = GetMixFormat(device_id, &audio_engine_mix_format);
250 if (FAILED(hr))
251 return 0;
253 return static_cast<uint32>(audio_engine_mix_format->nChannels);
256 // static
257 HRESULT WASAPIAudioInputStream::GetMixFormat(const std::string& device_id,
258 WAVEFORMATEX** device_format) {
259 // It is assumed that this static method is called from a COM thread, i.e.,
260 // CoInitializeEx() is not called here to avoid STA/MTA conflicts.
261 ScopedComPtr<IMMDeviceEnumerator> enumerator;
262 HRESULT hr = CoCreateInstance(__uuidof(MMDeviceEnumerator),
263 NULL,
264 CLSCTX_INPROC_SERVER,
265 __uuidof(IMMDeviceEnumerator),
266 enumerator.ReceiveVoid());
267 if (FAILED(hr))
268 return hr;
270 ScopedComPtr<IMMDevice> endpoint_device;
271 if (device_id == AudioManagerBase::kDefaultDeviceId) {
272 // Retrieve the default capture audio endpoint.
273 hr = enumerator->GetDefaultAudioEndpoint(eCapture, eConsole,
274 endpoint_device.Receive());
275 } else {
276 // Retrieve a capture endpoint device that is specified by an endpoint
277 // device-identification string.
278 hr = enumerator->GetDevice(UTF8ToUTF16(device_id).c_str(),
279 endpoint_device.Receive());
281 if (FAILED(hr))
282 return hr;
284 ScopedComPtr<IAudioClient> audio_client;
285 hr = endpoint_device->Activate(__uuidof(IAudioClient),
286 CLSCTX_INPROC_SERVER,
287 NULL,
288 audio_client.ReceiveVoid());
289 return SUCCEEDED(hr) ? audio_client->GetMixFormat(device_format) : hr;
292 void WASAPIAudioInputStream::Run() {
293 ScopedCOMInitializer com_init(ScopedCOMInitializer::kMTA);
295 // Increase the thread priority.
296 capture_thread_->SetThreadPriority(base::kThreadPriority_RealtimeAudio);
298 // Enable MMCSS to ensure that this thread receives prioritized access to
299 // CPU resources.
300 DWORD task_index = 0;
301 HANDLE mm_task = avrt::AvSetMmThreadCharacteristics(L"Pro Audio",
302 &task_index);
303 bool mmcss_is_ok =
304 (mm_task && avrt::AvSetMmThreadPriority(mm_task, AVRT_PRIORITY_CRITICAL));
305 if (!mmcss_is_ok) {
306 // Failed to enable MMCSS on this thread. It is not fatal but can lead
307 // to reduced QoS at high load.
308 DWORD err = GetLastError();
309 LOG(WARNING) << "Failed to enable MMCSS (error code=" << err << ").";
312 // Allocate a buffer with a size that enables us to take care of cases like:
313 // 1) The recorded buffer size is smaller, or does not match exactly with,
314 // the selected packet size used in each callback.
315 // 2) The selected buffer size is larger than the recorded buffer size in
316 // each event.
317 size_t buffer_frame_index = 0;
318 size_t capture_buffer_size = std::max(
319 2 * endpoint_buffer_size_frames_ * frame_size_,
320 2 * packet_size_frames_ * frame_size_);
321 scoped_array<uint8> capture_buffer(new uint8[capture_buffer_size]);
323 LARGE_INTEGER now_count;
324 bool recording = true;
325 bool error = false;
326 double volume = GetVolume();
327 HANDLE wait_array[2] = {stop_capture_event_, audio_samples_ready_event_};
329 while (recording && !error) {
330 HRESULT hr = S_FALSE;
332 // Wait for a close-down event or a new capture event.
333 DWORD wait_result = WaitForMultipleObjects(2, wait_array, FALSE, INFINITE);
334 switch (wait_result) {
335 case WAIT_FAILED:
336 error = true;
337 break;
338 case WAIT_OBJECT_0 + 0:
339 // |stop_capture_event_| has been set.
340 recording = false;
341 break;
342 case WAIT_OBJECT_0 + 1:
344 // |audio_samples_ready_event_| has been set.
345 BYTE* data_ptr = NULL;
346 UINT32 num_frames_to_read = 0;
347 DWORD flags = 0;
348 UINT64 device_position = 0;
349 UINT64 first_audio_frame_timestamp = 0;
351 // Retrieve the amount of data in the capture endpoint buffer,
352 // replace it with silence if required, create callbacks for each
353 // packet and store non-delivered data for the next event.
354 hr = audio_capture_client_->GetBuffer(&data_ptr,
355 &num_frames_to_read,
356 &flags,
357 &device_position,
358 &first_audio_frame_timestamp);
359 if (FAILED(hr)) {
360 DLOG(ERROR) << "Failed to get data from the capture buffer";
361 continue;
364 if (num_frames_to_read != 0) {
365 size_t pos = buffer_frame_index * frame_size_;
366 size_t num_bytes = num_frames_to_read * frame_size_;
367 DCHECK_GE(capture_buffer_size, pos + num_bytes);
369 if (flags & AUDCLNT_BUFFERFLAGS_SILENT) {
370 // Clear out the local buffer since silence is reported.
371 memset(&capture_buffer[pos], 0, num_bytes);
372 } else {
373 // Copy captured data from audio engine buffer to local buffer.
374 memcpy(&capture_buffer[pos], data_ptr, num_bytes);
377 buffer_frame_index += num_frames_to_read;
380 hr = audio_capture_client_->ReleaseBuffer(num_frames_to_read);
381 DLOG_IF(ERROR, FAILED(hr)) << "Failed to release capture buffer";
383 // Derive a delay estimate for the captured audio packet.
384 // The value contains two parts (A+B), where A is the delay of the
385 // first audio frame in the packet and B is the extra delay
386 // contained in any stored data. Unit is in audio frames.
387 QueryPerformanceCounter(&now_count);
388 double audio_delay_frames =
389 ((perf_count_to_100ns_units_ * now_count.QuadPart -
390 first_audio_frame_timestamp) / 10000.0) * ms_to_frame_count_ +
391 buffer_frame_index - num_frames_to_read;
393 // Update the AGC volume level once every second. Note that,
394 // |volume| is also updated each time SetVolume() is called
395 // through IPC by the render-side AGC.
396 QueryAgcVolume(&volume);
398 // Deliver captured data to the registered consumer using a packet
399 // size which was specified at construction.
400 uint32 delay_frames = static_cast<uint32>(audio_delay_frames + 0.5);
401 while (buffer_frame_index >= packet_size_frames_) {
402 uint8* audio_data =
403 reinterpret_cast<uint8*>(capture_buffer.get());
405 // Deliver data packet, delay estimation and volume level to
406 // the user.
407 sink_->OnData(this,
408 audio_data,
409 packet_size_bytes_,
410 delay_frames * frame_size_,
411 volume);
413 // Store parts of the recorded data which can't be delivered
414 // using the current packet size. The stored section will be used
415 // either in the next while-loop iteration or in the next
416 // capture event.
417 memmove(&capture_buffer[0],
418 &capture_buffer[packet_size_bytes_],
419 (buffer_frame_index - packet_size_frames_) * frame_size_);
421 buffer_frame_index -= packet_size_frames_;
422 delay_frames -= packet_size_frames_;
425 break;
426 default:
427 error = true;
428 break;
432 if (recording && error) {
433 // TODO(henrika): perhaps it worth improving the cleanup here by e.g.
434 // stopping the audio client, joining the thread etc.?
435 NOTREACHED() << "WASAPI capturing failed with error code "
436 << GetLastError();
439 // Disable MMCSS.
440 if (mm_task && !avrt::AvRevertMmThreadCharacteristics(mm_task)) {
441 PLOG(WARNING) << "Failed to disable MMCSS";
445 void WASAPIAudioInputStream::HandleError(HRESULT err) {
446 NOTREACHED() << "Error code: " << err;
447 if (sink_)
448 sink_->OnError(this);
451 HRESULT WASAPIAudioInputStream::SetCaptureDevice() {
452 ScopedComPtr<IMMDeviceEnumerator> enumerator;
453 HRESULT hr = CoCreateInstance(__uuidof(MMDeviceEnumerator),
454 NULL,
455 CLSCTX_INPROC_SERVER,
456 __uuidof(IMMDeviceEnumerator),
457 enumerator.ReceiveVoid());
458 if (SUCCEEDED(hr)) {
459 // Retrieve the IMMDevice by using the specified role or the specified
460 // unique endpoint device-identification string.
461 // TODO(henrika): possibly add support for the eCommunications as well.
462 if (device_id_ == AudioManagerBase::kDefaultDeviceId) {
463 // Retrieve the default capture audio endpoint for the specified role.
464 // Note that, in Windows Vista, the MMDevice API supports device roles
465 // but the system-supplied user interface programs do not.
466 hr = enumerator->GetDefaultAudioEndpoint(eCapture,
467 eConsole,
468 endpoint_device_.Receive());
469 } else {
470 // Retrieve a capture endpoint device that is specified by an endpoint
471 // device-identification string.
472 hr = enumerator->GetDevice(UTF8ToUTF16(device_id_).c_str(),
473 endpoint_device_.Receive());
476 if (FAILED(hr))
477 return hr;
479 // Verify that the audio endpoint device is active, i.e., the audio
480 // adapter that connects to the endpoint device is present and enabled.
481 DWORD state = DEVICE_STATE_DISABLED;
482 hr = endpoint_device_->GetState(&state);
483 if (SUCCEEDED(hr)) {
484 if (!(state & DEVICE_STATE_ACTIVE)) {
485 DLOG(ERROR) << "Selected capture device is not active.";
486 hr = E_ACCESSDENIED;
491 return hr;
494 HRESULT WASAPIAudioInputStream::ActivateCaptureDevice() {
495 // Creates and activates an IAudioClient COM object given the selected
496 // capture endpoint device.
497 HRESULT hr = endpoint_device_->Activate(__uuidof(IAudioClient),
498 CLSCTX_INPROC_SERVER,
499 NULL,
500 audio_client_.ReceiveVoid());
501 return hr;
504 HRESULT WASAPIAudioInputStream::GetAudioEngineStreamFormat() {
505 HRESULT hr = S_OK;
506 #ifndef NDEBUG
507 // The GetMixFormat() method retrieves the stream format that the
508 // audio engine uses for its internal processing of shared-mode streams.
509 // The method always uses a WAVEFORMATEXTENSIBLE structure, instead
510 // of a stand-alone WAVEFORMATEX structure, to specify the format.
511 // An WAVEFORMATEXTENSIBLE structure can specify both the mapping of
512 // channels to speakers and the number of bits of precision in each sample.
513 base::win::ScopedCoMem<WAVEFORMATEXTENSIBLE> format_ex;
514 hr = audio_client_->GetMixFormat(
515 reinterpret_cast<WAVEFORMATEX**>(&format_ex));
517 // See http://msdn.microsoft.com/en-us/windows/hardware/gg463006#EFH
518 // for details on the WAVE file format.
519 WAVEFORMATEX format = format_ex->Format;
520 DVLOG(2) << "WAVEFORMATEX:";
521 DVLOG(2) << " wFormatTags : 0x" << std::hex << format.wFormatTag;
522 DVLOG(2) << " nChannels : " << format.nChannels;
523 DVLOG(2) << " nSamplesPerSec : " << format.nSamplesPerSec;
524 DVLOG(2) << " nAvgBytesPerSec: " << format.nAvgBytesPerSec;
525 DVLOG(2) << " nBlockAlign : " << format.nBlockAlign;
526 DVLOG(2) << " wBitsPerSample : " << format.wBitsPerSample;
527 DVLOG(2) << " cbSize : " << format.cbSize;
529 DVLOG(2) << "WAVEFORMATEXTENSIBLE:";
530 DVLOG(2) << " wValidBitsPerSample: " <<
531 format_ex->Samples.wValidBitsPerSample;
532 DVLOG(2) << " dwChannelMask : 0x" << std::hex <<
533 format_ex->dwChannelMask;
534 if (format_ex->SubFormat == KSDATAFORMAT_SUBTYPE_PCM)
535 DVLOG(2) << " SubFormat : KSDATAFORMAT_SUBTYPE_PCM";
536 else if (format_ex->SubFormat == KSDATAFORMAT_SUBTYPE_IEEE_FLOAT)
537 DVLOG(2) << " SubFormat : KSDATAFORMAT_SUBTYPE_IEEE_FLOAT";
538 else if (format_ex->SubFormat == KSDATAFORMAT_SUBTYPE_WAVEFORMATEX)
539 DVLOG(2) << " SubFormat : KSDATAFORMAT_SUBTYPE_WAVEFORMATEX";
540 #endif
541 return hr;
544 bool WASAPIAudioInputStream::DesiredFormatIsSupported() {
545 // An application that uses WASAPI to manage shared-mode streams can rely
546 // on the audio engine to perform only limited format conversions. The audio
547 // engine can convert between a standard PCM sample size used by the
548 // application and the floating-point samples that the engine uses for its
549 // internal processing. However, the format for an application stream
550 // typically must have the same number of channels and the same sample
551 // rate as the stream format used by the device.
552 // Many audio devices support both PCM and non-PCM stream formats. However,
553 // the audio engine can mix only PCM streams.
554 base::win::ScopedCoMem<WAVEFORMATEX> closest_match;
555 HRESULT hr = audio_client_->IsFormatSupported(AUDCLNT_SHAREMODE_SHARED,
556 &format_,
557 &closest_match);
558 DLOG_IF(ERROR, hr == S_FALSE) << "Format is not supported "
559 << "but a closest match exists.";
560 return (hr == S_OK);
563 HRESULT WASAPIAudioInputStream::InitializeAudioEngine() {
564 // Initialize the audio stream between the client and the device.
565 // We connect indirectly through the audio engine by using shared mode
566 // and WASAPI is initialized in an event driven mode.
567 // Note that, |hnsBufferDuration| is set of 0, which ensures that the
568 // buffer is never smaller than the minimum buffer size needed to ensure
569 // that glitches do not occur between the periodic processing passes.
570 // This setting should lead to lowest possible latency.
571 HRESULT hr = audio_client_->Initialize(AUDCLNT_SHAREMODE_SHARED,
572 AUDCLNT_STREAMFLAGS_EVENTCALLBACK |
573 AUDCLNT_STREAMFLAGS_NOPERSIST,
574 0, // hnsBufferDuration
576 &format_,
577 NULL);
578 if (FAILED(hr))
579 return hr;
581 // Retrieve the length of the endpoint buffer shared between the client
582 // and the audio engine. The buffer length determines the maximum amount
583 // of capture data that the audio engine can read from the endpoint buffer
584 // during a single processing pass.
585 // A typical value is 960 audio frames <=> 20ms @ 48kHz sample rate.
586 hr = audio_client_->GetBufferSize(&endpoint_buffer_size_frames_);
587 if (FAILED(hr))
588 return hr;
589 DVLOG(1) << "endpoint buffer size: " << endpoint_buffer_size_frames_
590 << " [frames]";
592 #ifndef NDEBUG
593 // The period between processing passes by the audio engine is fixed for a
594 // particular audio endpoint device and represents the smallest processing
595 // quantum for the audio engine. This period plus the stream latency between
596 // the buffer and endpoint device represents the minimum possible latency
597 // that an audio application can achieve.
598 // TODO(henrika): possibly remove this section when all parts are ready.
599 REFERENCE_TIME device_period_shared_mode = 0;
600 REFERENCE_TIME device_period_exclusive_mode = 0;
601 HRESULT hr_dbg = audio_client_->GetDevicePeriod(
602 &device_period_shared_mode, &device_period_exclusive_mode);
603 if (SUCCEEDED(hr_dbg)) {
604 DVLOG(1) << "device period: "
605 << static_cast<double>(device_period_shared_mode / 10000.0)
606 << " [ms]";
609 REFERENCE_TIME latency = 0;
610 hr_dbg = audio_client_->GetStreamLatency(&latency);
611 if (SUCCEEDED(hr_dbg)) {
612 DVLOG(1) << "stream latency: " << static_cast<double>(latency / 10000.0)
613 << " [ms]";
615 #endif
617 // Set the event handle that the audio engine will signal each time
618 // a buffer becomes ready to be processed by the client.
619 hr = audio_client_->SetEventHandle(audio_samples_ready_event_.Get());
620 if (FAILED(hr))
621 return hr;
623 // Get access to the IAudioCaptureClient interface. This interface
624 // enables us to read input data from the capture endpoint buffer.
625 hr = audio_client_->GetService(__uuidof(IAudioCaptureClient),
626 audio_capture_client_.ReceiveVoid());
627 if (FAILED(hr))
628 return hr;
630 // Obtain a reference to the ISimpleAudioVolume interface which enables
631 // us to control the master volume level of an audio session.
632 hr = audio_client_->GetService(__uuidof(ISimpleAudioVolume),
633 simple_audio_volume_.ReceiveVoid());
634 return hr;
637 } // namespace media