Rewrite AndroidSyncSettings to be significantly simpler.
[chromium-blink-merge.git] / net / quic / congestion_control / cubic.cc
blobdc6b89bf9d01fb5e7e0307000a7bb80509a45761
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/quic/congestion_control/cubic.h"
7 #include <algorithm>
8 #include <cmath>
10 #include "base/basictypes.h"
11 #include "base/logging.h"
12 #include "base/time/time.h"
13 #include "net/quic/quic_flags.h"
14 #include "net/quic/quic_protocol.h"
16 using std::max;
18 namespace net {
20 namespace {
22 // Constants based on TCP defaults.
23 // The following constants are in 2^10 fractions of a second instead of ms to
24 // allow a 10 shift right to divide.
25 const int kCubeScale = 40; // 1024*1024^3 (first 1024 is from 0.100^3)
26 // where 0.100 is 100 ms which is the scaling
27 // round trip time.
28 const int kCubeCongestionWindowScale = 410;
29 const uint64 kCubeFactor = (GG_UINT64_C(1) << kCubeScale) /
30 kCubeCongestionWindowScale;
32 const uint32 kDefaultNumConnections = 2;
33 const float kBeta = 0.7f; // Default Cubic backoff factor.
34 // Additional backoff factor when loss occurs in the concave part of the Cubic
35 // curve. This additional backoff factor is expected to give up bandwidth to
36 // new concurrent flows and speed up convergence.
37 const float kBetaLastMax = 0.85f;
39 } // namespace
41 Cubic::Cubic(const QuicClock* clock, QuicConnectionStats* stats)
42 : clock_(clock),
43 num_connections_(kDefaultNumConnections),
44 epoch_(QuicTime::Zero()),
45 last_update_time_(QuicTime::Zero()),
46 stats_(stats) {
47 Reset();
50 void Cubic::SetNumConnections(int num_connections) {
51 num_connections_ = num_connections;
54 float Cubic::Alpha() const {
55 // TCPFriendly alpha is described in Section 3.3 of the CUBIC paper. Note that
56 // beta here is a cwnd multiplier, and is equal to 1-beta from the paper.
57 // We derive the equivalent alpha for an N-connection emulation as:
58 const float beta = Beta();
59 return 3 * num_connections_ * num_connections_ * (1 - beta) / (1 + beta);
62 float Cubic::Beta() const {
63 // kNConnectionBeta is the backoff factor after loss for our N-connection
64 // emulation, which emulates the effective backoff of an ensemble of N
65 // TCP-Reno connections on a single loss event. The effective multiplier is
66 // computed as:
67 return (num_connections_ - 1 + kBeta) / num_connections_;
70 void Cubic::Reset() {
71 epoch_ = QuicTime::Zero(); // Reset time.
72 last_update_time_ = QuicTime::Zero(); // Reset time.
73 last_congestion_window_ = 0;
74 last_max_congestion_window_ = 0;
75 acked_packets_count_ = 0;
76 estimated_tcp_congestion_window_ = 0;
77 origin_point_congestion_window_ = 0;
78 time_to_origin_point_ = 0;
79 last_target_congestion_window_ = 0;
82 void Cubic::UpdateCongestionControlStats(QuicPacketCount new_cubic_mode_cwnd,
83 QuicPacketCount new_reno_mode_cwnd) {
84 QuicPacketCount highest_new_cwnd = max(new_cubic_mode_cwnd,
85 new_reno_mode_cwnd);
86 if (last_congestion_window_ < highest_new_cwnd) {
87 // cwnd will increase to highest_new_cwnd.
88 stats_->cwnd_increase_congestion_avoidance +=
89 highest_new_cwnd - last_congestion_window_;
90 if (new_cubic_mode_cwnd > new_reno_mode_cwnd) {
91 // This cwnd increase is due to cubic mode.
92 stats_->cwnd_increase_cubic_mode +=
93 new_cubic_mode_cwnd - last_congestion_window_;
98 QuicPacketCount Cubic::CongestionWindowAfterPacketLoss(
99 QuicPacketCount current_congestion_window) {
100 if (current_congestion_window < last_max_congestion_window_) {
101 // We never reached the old max, so assume we are competing with another
102 // flow. Use our extra back off factor to allow the other flow to go up.
103 last_max_congestion_window_ =
104 static_cast<int>(kBetaLastMax * current_congestion_window);
105 } else {
106 last_max_congestion_window_ = current_congestion_window;
108 epoch_ = QuicTime::Zero(); // Reset time.
109 return static_cast<int>(current_congestion_window * Beta());
112 QuicPacketCount Cubic::CongestionWindowAfterAck(
113 QuicPacketCount current_congestion_window,
114 QuicTime::Delta delay_min) {
115 acked_packets_count_ += 1; // Packets acked.
116 QuicTime current_time = clock_->ApproximateNow();
118 // Cubic is "independent" of RTT, the update is limited by the time elapsed.
119 if (last_congestion_window_ == current_congestion_window &&
120 (current_time.Subtract(last_update_time_) <= MaxCubicTimeInterval())) {
121 return max(last_target_congestion_window_,
122 estimated_tcp_congestion_window_);
124 last_congestion_window_ = current_congestion_window;
125 last_update_time_ = current_time;
127 if (!epoch_.IsInitialized()) {
128 // First ACK after a loss event.
129 DVLOG(1) << "Start of epoch";
130 epoch_ = current_time; // Start of epoch.
131 acked_packets_count_ = 1; // Reset count.
132 // Reset estimated_tcp_congestion_window_ to be in sync with cubic.
133 estimated_tcp_congestion_window_ = current_congestion_window;
134 if (last_max_congestion_window_ <= current_congestion_window) {
135 time_to_origin_point_ = 0;
136 origin_point_congestion_window_ = current_congestion_window;
137 } else {
138 time_to_origin_point_ =
139 static_cast<uint32>(cbrt(kCubeFactor * (last_max_congestion_window_ -
140 current_congestion_window)));
141 origin_point_congestion_window_ =
142 last_max_congestion_window_;
145 // Change the time unit from microseconds to 2^10 fractions per second. Take
146 // the round trip time in account. This is done to allow us to use shift as a
147 // divide operator.
148 int64 elapsed_time =
149 (current_time.Add(delay_min).Subtract(epoch_).ToMicroseconds() << 10) /
150 base::Time::kMicrosecondsPerSecond;
152 int64 offset = time_to_origin_point_ - elapsed_time;
153 QuicPacketCount delta_congestion_window = (kCubeCongestionWindowScale
154 * offset * offset * offset) >> kCubeScale;
156 QuicPacketCount target_congestion_window =
157 origin_point_congestion_window_ - delta_congestion_window;
159 DCHECK_LT(0u, estimated_tcp_congestion_window_);
160 // With dynamic beta/alpha based on number of active streams, it is possible
161 // for the required_ack_count to become much lower than acked_packets_count_
162 // suddenly, leading to more than one iteration through the following loop.
163 while (true) {
164 // Update estimated TCP congestion_window.
165 QuicPacketCount required_ack_count = static_cast<QuicPacketCount>(
166 estimated_tcp_congestion_window_ / Alpha());
167 if (acked_packets_count_ < required_ack_count) {
168 break;
170 acked_packets_count_ -= required_ack_count;
171 estimated_tcp_congestion_window_++;
174 // Update cubic mode and reno mode stats in QuicConnectionStats.
175 UpdateCongestionControlStats(target_congestion_window,
176 estimated_tcp_congestion_window_);
178 // We have a new cubic congestion window.
179 last_target_congestion_window_ = target_congestion_window;
181 // Compute target congestion_window based on cubic target and estimated TCP
182 // congestion_window, use highest (fastest).
183 if (target_congestion_window < estimated_tcp_congestion_window_) {
184 target_congestion_window = estimated_tcp_congestion_window_;
187 DVLOG(1) << "Target congestion_window: " << target_congestion_window;
188 return target_congestion_window;
191 } // namespace net