Rewrite AndroidSyncSettings to be significantly simpler.
[chromium-blink-merge.git] / net / quic / crypto / strike_register.cc
blobbc2dd69dc0b776c87a3e163495ee88038761f24c
1 // Copyright (c) 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/quic/crypto/strike_register.h"
7 #include <limits>
9 #include "base/logging.h"
11 using std::max;
12 using std::min;
13 using std::pair;
14 using std::set;
15 using std::vector;
17 namespace net {
19 namespace {
21 uint32 GetInitialHorizon(uint32 current_time_internal,
22 uint32 window_secs,
23 StrikeRegister::StartupType startup) {
24 if (startup == StrikeRegister::DENY_REQUESTS_AT_STARTUP) {
25 // The horizon is initially set |window_secs| into the future because, if
26 // we just crashed, then we may have accepted nonces in the span
27 // [current_time...current_time+window_secs] and so we conservatively
28 // reject the whole timespan unless |startup| tells us otherwise.
29 return current_time_internal + window_secs + 1;
30 } else { // startup == StrikeRegister::NO_STARTUP_PERIOD_NEEDED
31 // The orbit can be assumed to be globally unique. Use a horizon
32 // in the past.
33 return 0;
37 } // namespace
39 // static
40 const uint32 StrikeRegister::kExternalNodeSize = 24;
41 // static
42 const uint32 StrikeRegister::kNil = (1u << 31) | 1;
43 // static
44 const uint32 StrikeRegister::kExternalFlag = 1 << 23;
46 // InternalNode represents a non-leaf node in the critbit tree. See the comment
47 // in the .h file for details.
48 class StrikeRegister::InternalNode {
49 public:
50 void SetChild(unsigned direction, uint32 child) {
51 data_[direction] = (data_[direction] & 0xff) | (child << 8);
54 void SetCritByte(uint8 critbyte) {
55 data_[0] = (data_[0] & 0xffffff00) | critbyte;
58 void SetOtherBits(uint8 otherbits) {
59 data_[1] = (data_[1] & 0xffffff00) | otherbits;
62 void SetNextPtr(uint32 next) { data_[0] = next; }
64 uint32 next() const { return data_[0]; }
66 uint32 child(unsigned n) const { return data_[n] >> 8; }
68 uint8 critbyte() const { return static_cast<uint8>(data_[0]); }
70 uint8 otherbits() const { return static_cast<uint8>(data_[1]); }
72 // These bytes are organised thus:
73 // <24 bits> left child
74 // <8 bits> crit-byte
75 // <24 bits> right child
76 // <8 bits> other-bits
77 uint32 data_[2];
80 // kCreationTimeFromInternalEpoch contains the number of seconds between the
81 // start of the internal epoch and the creation time. This allows us
82 // to consider times that are before the creation time.
83 static const uint32 kCreationTimeFromInternalEpoch = 63115200; // 2 years.
85 void StrikeRegister::ValidateStrikeRegisterConfig(unsigned max_entries) {
86 // We only have 23 bits of index available.
87 CHECK_LT(max_entries, 1u << 23);
88 CHECK_GT(max_entries, 1u); // There must be at least two entries.
89 CHECK_EQ(sizeof(InternalNode), 8u); // in case of compiler changes.
92 StrikeRegister::StrikeRegister(unsigned max_entries,
93 uint32 current_time,
94 uint32 window_secs,
95 const uint8 orbit[8],
96 StartupType startup)
97 : max_entries_(max_entries),
98 window_secs_(window_secs),
99 internal_epoch_(current_time > kCreationTimeFromInternalEpoch
100 ? current_time - kCreationTimeFromInternalEpoch
101 : 0),
102 horizon_(GetInitialHorizon(
103 ExternalTimeToInternal(current_time), window_secs, startup)) {
104 memcpy(orbit_, orbit, sizeof(orbit_));
106 ValidateStrikeRegisterConfig(max_entries);
107 internal_nodes_ = new InternalNode[max_entries];
108 external_nodes_.reset(new uint8[kExternalNodeSize * max_entries]);
110 Reset();
113 StrikeRegister::~StrikeRegister() { delete[] internal_nodes_; }
115 void StrikeRegister::Reset() {
116 // Thread a free list through all of the internal nodes.
117 internal_node_free_head_ = 0;
118 for (unsigned i = 0; i < max_entries_ - 1; i++)
119 internal_nodes_[i].SetNextPtr(i + 1);
120 internal_nodes_[max_entries_ - 1].SetNextPtr(kNil);
122 // Also thread a free list through the external nodes.
123 external_node_free_head_ = 0;
124 for (unsigned i = 0; i < max_entries_ - 1; i++)
125 external_node_next_ptr(i) = i + 1;
126 external_node_next_ptr(max_entries_ - 1) = kNil;
128 // This is the root of the tree.
129 internal_node_head_ = kNil;
132 InsertStatus StrikeRegister::Insert(const uint8 nonce[32],
133 uint32 current_time_external) {
134 // Make space for the insertion if the strike register is full.
135 while (external_node_free_head_ == kNil ||
136 internal_node_free_head_ == kNil) {
137 DropOldestNode();
140 const uint32 current_time = ExternalTimeToInternal(current_time_external);
142 // Check to see if the orbit is correct.
143 if (memcmp(nonce + sizeof(current_time), orbit_, sizeof(orbit_))) {
144 return NONCE_INVALID_ORBIT_FAILURE;
147 const uint32 nonce_time = ExternalTimeToInternal(TimeFromBytes(nonce));
149 // Check that the timestamp is in the valid range.
150 pair<uint32, uint32> valid_range =
151 StrikeRegister::GetValidRange(current_time);
152 if (nonce_time < valid_range.first || nonce_time > valid_range.second) {
153 return NONCE_INVALID_TIME_FAILURE;
156 // We strip the orbit out of the nonce.
157 uint8 value[24];
158 memcpy(value, nonce, sizeof(nonce_time));
159 memcpy(value + sizeof(nonce_time),
160 nonce + sizeof(nonce_time) + sizeof(orbit_),
161 sizeof(value) - sizeof(nonce_time));
163 // Find the best match to |value| in the crit-bit tree. The best match is
164 // simply the value which /could/ match |value|, if any does, so we still
165 // need a memcmp to check.
166 uint32 best_match_index = BestMatch(value);
167 if (best_match_index == kNil) {
168 // Empty tree. Just insert the new value at the root.
169 uint32 index = GetFreeExternalNode();
170 memcpy(external_node(index), value, sizeof(value));
171 internal_node_head_ = (index | kExternalFlag) << 8;
172 DCHECK_LE(horizon_, nonce_time);
173 return NONCE_OK;
176 const uint8* best_match = external_node(best_match_index);
177 if (memcmp(best_match, value, sizeof(value)) == 0) {
178 // We found the value in the tree.
179 return NONCE_NOT_UNIQUE_FAILURE;
182 // We are going to insert a new entry into the tree, so get the nodes now.
183 uint32 internal_node_index = GetFreeInternalNode();
184 uint32 external_node_index = GetFreeExternalNode();
186 // If we just evicted the best match, then we have to try and match again.
187 // We know that we didn't just empty the tree because we require that
188 // max_entries_ >= 2. Also, we know that it doesn't match because, if it
189 // did, it would have been returned previously.
190 if (external_node_index == best_match_index) {
191 best_match_index = BestMatch(value);
192 best_match = external_node(best_match_index);
195 // Now we need to find the first bit where we differ from |best_match|.
196 uint8 differing_byte;
197 uint8 new_other_bits;
198 for (differing_byte = 0; differing_byte < arraysize(value);
199 differing_byte++) {
200 new_other_bits = value[differing_byte] ^ best_match[differing_byte];
201 if (new_other_bits) {
202 break;
206 // Once we have the XOR the of first differing byte in new_other_bits we need
207 // to find the most significant differing bit. We could do this with a simple
208 // for loop, testing bits 7..0. Instead we fold the bits so that we end up
209 // with a byte where all the bits below the most significant one, are set.
210 new_other_bits |= new_other_bits >> 1;
211 new_other_bits |= new_other_bits >> 2;
212 new_other_bits |= new_other_bits >> 4;
213 // Now this bit trick results in all the bits set, except the original
214 // most-significant one.
215 new_other_bits = (new_other_bits & ~(new_other_bits >> 1)) ^ 255;
217 // Consider the effect of ORing against |new_other_bits|. If |value| did not
218 // have the critical bit set, the result is the same as |new_other_bits|. If
219 // it did, the result is all ones.
221 unsigned newdirection;
222 if ((new_other_bits | value[differing_byte]) == 0xff) {
223 newdirection = 1;
224 } else {
225 newdirection = 0;
228 memcpy(external_node(external_node_index), value, sizeof(value));
229 InternalNode* inode = &internal_nodes_[internal_node_index];
231 inode->SetChild(newdirection, external_node_index | kExternalFlag);
232 inode->SetCritByte(differing_byte);
233 inode->SetOtherBits(new_other_bits);
235 // |where_index| is a pointer to the uint32 which needs to be updated in
236 // order to insert the new internal node into the tree. The internal nodes
237 // store the child indexes in the top 24-bits of a 32-bit word and, to keep
238 // the code simple, we define that |internal_node_head_| is organised the
239 // same way.
240 DCHECK_EQ(internal_node_head_ & 0xff, 0u);
241 uint32* where_index = &internal_node_head_;
242 while (((*where_index >> 8) & kExternalFlag) == 0) {
243 InternalNode* node = &internal_nodes_[*where_index >> 8];
244 if (node->critbyte() > differing_byte) {
245 break;
247 if (node->critbyte() == differing_byte &&
248 node->otherbits() > new_other_bits) {
249 break;
251 if (node->critbyte() == differing_byte &&
252 node->otherbits() == new_other_bits) {
253 CHECK(false);
256 uint8 c = value[node->critbyte()];
257 const int direction =
258 (1 + static_cast<unsigned>(node->otherbits() | c)) >> 8;
259 where_index = &node->data_[direction];
262 inode->SetChild(newdirection ^ 1, *where_index >> 8);
263 *where_index = (*where_index & 0xff) | (internal_node_index << 8);
265 DCHECK_LE(horizon_, nonce_time);
266 return NONCE_OK;
269 const uint8* StrikeRegister::orbit() const {
270 return orbit_;
273 uint32 StrikeRegister::GetCurrentValidWindowSecs(
274 uint32 current_time_external) const {
275 uint32 current_time = ExternalTimeToInternal(current_time_external);
276 pair<uint32, uint32> valid_range = StrikeRegister::GetValidRange(
277 current_time);
278 if (valid_range.second >= valid_range.first) {
279 return valid_range.second - current_time + 1;
280 } else {
281 return 0;
285 void StrikeRegister::Validate() {
286 set<uint32> free_internal_nodes;
287 for (uint32 i = internal_node_free_head_; i != kNil;
288 i = internal_nodes_[i].next()) {
289 CHECK_LT(i, max_entries_);
290 CHECK_EQ(free_internal_nodes.count(i), 0u);
291 free_internal_nodes.insert(i);
294 set<uint32> free_external_nodes;
295 for (uint32 i = external_node_free_head_; i != kNil;
296 i = external_node_next_ptr(i)) {
297 CHECK_LT(i, max_entries_);
298 CHECK_EQ(free_external_nodes.count(i), 0u);
299 free_external_nodes.insert(i);
302 set<uint32> used_external_nodes;
303 set<uint32> used_internal_nodes;
305 if (internal_node_head_ != kNil &&
306 ((internal_node_head_ >> 8) & kExternalFlag) == 0) {
307 vector<pair<unsigned, bool> > bits;
308 ValidateTree(internal_node_head_ >> 8, -1, bits, free_internal_nodes,
309 free_external_nodes, &used_internal_nodes,
310 &used_external_nodes);
314 // static
315 uint32 StrikeRegister::TimeFromBytes(const uint8 d[4]) {
316 return static_cast<uint32>(d[0]) << 24 |
317 static_cast<uint32>(d[1]) << 16 |
318 static_cast<uint32>(d[2]) << 8 |
319 static_cast<uint32>(d[3]);
322 pair<uint32, uint32> StrikeRegister::GetValidRange(
323 uint32 current_time_internal) const {
324 if (current_time_internal < horizon_) {
325 // Empty valid range.
326 return std::make_pair(std::numeric_limits<uint32>::max(), 0);
329 uint32 lower_bound;
330 if (current_time_internal >= window_secs_) {
331 lower_bound = max(horizon_, current_time_internal - window_secs_);
332 } else {
333 lower_bound = horizon_;
336 // Also limit the upper range based on horizon_. This makes the
337 // strike register reject inserts that are far in the future and
338 // would consume strike register resources for a long time. This
339 // allows the strike server to degrade optimally in cases where the
340 // insert rate exceeds |max_entries_ / (2 * window_secs_)| entries
341 // per second.
342 uint32 upper_bound =
343 current_time_internal + min(current_time_internal - horizon_,
344 window_secs_);
346 return std::make_pair(lower_bound, upper_bound);
349 uint32 StrikeRegister::ExternalTimeToInternal(uint32 external_time) const {
350 return external_time - internal_epoch_;
353 uint32 StrikeRegister::BestMatch(const uint8 v[24]) const {
354 if (internal_node_head_ == kNil) {
355 return kNil;
358 uint32 next = internal_node_head_ >> 8;
359 while ((next & kExternalFlag) == 0) {
360 InternalNode* node = &internal_nodes_[next];
361 uint8 b = v[node->critbyte()];
362 unsigned direction =
363 (1 + static_cast<unsigned>(node->otherbits() | b)) >> 8;
364 next = node->child(direction);
367 return next & ~kExternalFlag;
370 uint32& StrikeRegister::external_node_next_ptr(unsigned i) {
371 return *reinterpret_cast<uint32*>(&external_nodes_[i * kExternalNodeSize]);
374 uint8* StrikeRegister::external_node(unsigned i) {
375 return &external_nodes_[i * kExternalNodeSize];
378 uint32 StrikeRegister::GetFreeExternalNode() {
379 uint32 index = external_node_free_head_;
380 DCHECK(index != kNil);
381 external_node_free_head_ = external_node_next_ptr(index);
382 return index;
385 uint32 StrikeRegister::GetFreeInternalNode() {
386 uint32 index = internal_node_free_head_;
387 DCHECK(index != kNil);
388 internal_node_free_head_ = internal_nodes_[index].next();
389 return index;
392 void StrikeRegister::DropOldestNode() {
393 // DropOldestNode should never be called on an empty tree.
394 DCHECK(internal_node_head_ != kNil);
396 // An internal node in a crit-bit tree always has exactly two children.
397 // This means that, if we are removing an external node (which is one of
398 // those children), then we also need to remove an internal node. In order
399 // to do that we keep pointers to the parent (wherep) and grandparent
400 // (whereq) when walking down the tree.
402 uint32 p = internal_node_head_ >> 8, *wherep = &internal_node_head_,
403 *whereq = nullptr;
404 while ((p & kExternalFlag) == 0) {
405 whereq = wherep;
406 InternalNode* inode = &internal_nodes_[p];
407 // We always go left, towards the smallest element, exploiting the fact
408 // that the timestamp is big-endian and at the start of the value.
409 wherep = &inode->data_[0];
410 p = (*wherep) >> 8;
413 const uint32 ext_index = p & ~kExternalFlag;
414 const uint8* ext_node = external_node(ext_index);
415 uint32 new_horizon = ExternalTimeToInternal(TimeFromBytes(ext_node)) + 1;
416 DCHECK_LE(horizon_, new_horizon);
417 horizon_ = new_horizon;
419 if (!whereq) {
420 // We are removing the last element in a tree.
421 internal_node_head_ = kNil;
422 FreeExternalNode(ext_index);
423 return;
426 // |wherep| points to the left child pointer in the parent so we can add
427 // one and dereference to get the right child.
428 const uint32 other_child = wherep[1];
429 FreeInternalNode((*whereq) >> 8);
430 *whereq = (*whereq & 0xff) | (other_child & 0xffffff00);
431 FreeExternalNode(ext_index);
434 void StrikeRegister::FreeExternalNode(uint32 index) {
435 external_node_next_ptr(index) = external_node_free_head_;
436 external_node_free_head_ = index;
439 void StrikeRegister::FreeInternalNode(uint32 index) {
440 internal_nodes_[index].SetNextPtr(internal_node_free_head_);
441 internal_node_free_head_ = index;
444 void StrikeRegister::ValidateTree(
445 uint32 internal_node,
446 int last_bit,
447 const vector<pair<unsigned, bool> >& bits,
448 const set<uint32>& free_internal_nodes,
449 const set<uint32>& free_external_nodes,
450 set<uint32>* used_internal_nodes,
451 set<uint32>* used_external_nodes) {
452 CHECK_LT(internal_node, max_entries_);
453 const InternalNode* i = &internal_nodes_[internal_node];
454 unsigned bit = 0;
455 switch (i->otherbits()) {
456 case 0xff & ~(1 << 7):
457 bit = 0;
458 break;
459 case 0xff & ~(1 << 6):
460 bit = 1;
461 break;
462 case 0xff & ~(1 << 5):
463 bit = 2;
464 break;
465 case 0xff & ~(1 << 4):
466 bit = 3;
467 break;
468 case 0xff & ~(1 << 3):
469 bit = 4;
470 break;
471 case 0xff & ~(1 << 2):
472 bit = 5;
473 break;
474 case 0xff & ~(1 << 1):
475 bit = 6;
476 break;
477 case 0xff & ~1:
478 bit = 7;
479 break;
480 default:
481 CHECK(false);
484 bit += 8 * i->critbyte();
485 if (last_bit > -1) {
486 CHECK_GT(bit, static_cast<unsigned>(last_bit));
489 CHECK_EQ(free_internal_nodes.count(internal_node), 0u);
491 for (unsigned child = 0; child < 2; child++) {
492 if (i->child(child) & kExternalFlag) {
493 uint32 ext = i->child(child) & ~kExternalFlag;
494 CHECK_EQ(free_external_nodes.count(ext), 0u);
495 CHECK_EQ(used_external_nodes->count(ext), 0u);
496 used_external_nodes->insert(ext);
497 const uint8* bytes = external_node(ext);
498 for (vector<pair<unsigned, bool>>::const_iterator j = bits.begin();
499 j != bits.end(); j++) {
500 unsigned byte = j->first / 8;
501 DCHECK_LE(byte, 0xffu);
502 unsigned new_bit = j->first % 8;
503 static const uint8 kMasks[8] =
504 {0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};
505 CHECK_EQ((bytes[byte] & kMasks[new_bit]) != 0, j->second);
507 } else {
508 uint32 inter = i->child(child);
509 vector<pair<unsigned, bool> > new_bits(bits);
510 new_bits.push_back(pair<unsigned, bool>(bit, child != 0));
511 CHECK_EQ(free_internal_nodes.count(inter), 0u);
512 CHECK_EQ(used_internal_nodes->count(inter), 0u);
513 used_internal_nodes->insert(inter);
514 ValidateTree(inter, bit, bits, free_internal_nodes, free_external_nodes,
515 used_internal_nodes, used_external_nodes);
520 } // namespace net