Rewrite AndroidSyncSettings to be significantly simpler.
[chromium-blink-merge.git] / net / quic / quic_framer_test.cc
blob69373e0590d98bc4c3d6e5c4fa103384372cd342
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/quic/quic_framer.h"
7 #include <algorithm>
8 #include <map>
9 #include <string>
10 #include <vector>
12 #include "base/containers/hash_tables.h"
13 #include "base/logging.h"
14 #include "base/memory/scoped_ptr.h"
15 #include "base/port.h"
16 #include "base/stl_util.h"
17 #include "net/quic/crypto/quic_decrypter.h"
18 #include "net/quic/crypto/quic_encrypter.h"
19 #include "net/quic/quic_protocol.h"
20 #include "net/quic/quic_utils.h"
21 #include "net/quic/test_tools/quic_framer_peer.h"
22 #include "net/quic/test_tools/quic_test_utils.h"
23 #include "net/test/gtest_util.h"
25 using base::hash_set;
26 using base::StringPiece;
27 using std::make_pair;
28 using std::map;
29 using std::numeric_limits;
30 using std::pair;
31 using std::string;
32 using std::vector;
33 using testing::Return;
34 using testing::_;
36 namespace net {
37 namespace test {
39 const QuicPacketSequenceNumber kEpoch = GG_UINT64_C(1) << 48;
40 const QuicPacketSequenceNumber kMask = kEpoch - 1;
42 // Index into the connection_id offset in the header.
43 const size_t kConnectionIdOffset = kPublicFlagsSize;
44 // Index into the version string in the header. (if present).
45 const size_t kVersionOffset = kConnectionIdOffset + PACKET_8BYTE_CONNECTION_ID;
47 // Size in bytes of the stream frame fields for an arbitrary StreamID and
48 // offset and the last frame in a packet.
49 size_t GetMinStreamFrameSize() {
50 return kQuicFrameTypeSize + kQuicMaxStreamIdSize + kQuicMaxStreamOffsetSize;
53 // Index into the sequence number offset in the header.
54 size_t GetSequenceNumberOffset(QuicConnectionIdLength connection_id_length,
55 bool include_version) {
56 return kConnectionIdOffset + connection_id_length +
57 (include_version ? kQuicVersionSize : 0);
60 size_t GetSequenceNumberOffset(bool include_version) {
61 return GetSequenceNumberOffset(PACKET_8BYTE_CONNECTION_ID, include_version);
64 // Index into the private flags offset in the data packet header.
65 size_t GetPrivateFlagsOffset(QuicConnectionIdLength connection_id_length,
66 bool include_version) {
67 return GetSequenceNumberOffset(connection_id_length, include_version) +
68 PACKET_6BYTE_SEQUENCE_NUMBER;
71 size_t GetPrivateFlagsOffset(bool include_version) {
72 return GetPrivateFlagsOffset(PACKET_8BYTE_CONNECTION_ID, include_version);
75 size_t GetPrivateFlagsOffset(bool include_version,
76 QuicSequenceNumberLength sequence_number_length) {
77 return GetSequenceNumberOffset(PACKET_8BYTE_CONNECTION_ID, include_version) +
78 sequence_number_length;
81 // Index into the fec group offset in the header.
82 size_t GetFecGroupOffset(QuicConnectionIdLength connection_id_length,
83 bool include_version) {
84 return GetPrivateFlagsOffset(connection_id_length, include_version) +
85 kPrivateFlagsSize;
88 size_t GetFecGroupOffset(bool include_version) {
89 return GetPrivateFlagsOffset(PACKET_8BYTE_CONNECTION_ID, include_version) +
90 kPrivateFlagsSize;
93 size_t GetFecGroupOffset(bool include_version,
94 QuicSequenceNumberLength sequence_number_length) {
95 return GetPrivateFlagsOffset(include_version, sequence_number_length) +
96 kPrivateFlagsSize;
99 // Index into the message tag of the public reset packet.
100 // Public resets always have full connection_ids.
101 const size_t kPublicResetPacketMessageTagOffset =
102 kConnectionIdOffset + PACKET_8BYTE_CONNECTION_ID;
104 class TestEncrypter : public QuicEncrypter {
105 public:
106 ~TestEncrypter() override {}
107 bool SetKey(StringPiece key) override { return true; }
108 bool SetNoncePrefix(StringPiece nonce_prefix) override { return true; }
109 bool Encrypt(StringPiece nonce,
110 StringPiece associated_data,
111 StringPiece plaintext,
112 unsigned char* output) override {
113 CHECK(false) << "Not implemented";
114 return false;
116 bool EncryptPacket(QuicPacketSequenceNumber sequence_number,
117 StringPiece associated_data,
118 StringPiece plaintext,
119 char* output,
120 size_t* output_length,
121 size_t max_output_length) override {
122 sequence_number_ = sequence_number;
123 associated_data_ = associated_data.as_string();
124 plaintext_ = plaintext.as_string();
125 memcpy(output, plaintext.data(), plaintext.length());
126 *output_length = plaintext.length();
127 return true;
129 size_t GetKeySize() const override { return 0; }
130 size_t GetNoncePrefixSize() const override { return 0; }
131 size_t GetMaxPlaintextSize(size_t ciphertext_size) const override {
132 return ciphertext_size;
134 size_t GetCiphertextSize(size_t plaintext_size) const override {
135 return plaintext_size;
137 StringPiece GetKey() const override { return StringPiece(); }
138 StringPiece GetNoncePrefix() const override { return StringPiece(); }
139 QuicPacketSequenceNumber sequence_number_;
140 string associated_data_;
141 string plaintext_;
144 class TestDecrypter : public QuicDecrypter {
145 public:
146 ~TestDecrypter() override {}
147 bool SetKey(StringPiece key) override { return true; }
148 bool SetNoncePrefix(StringPiece nonce_prefix) override { return true; }
149 bool DecryptPacket(QuicPacketSequenceNumber sequence_number,
150 const StringPiece& associated_data,
151 const StringPiece& ciphertext,
152 char* output,
153 size_t* output_length,
154 size_t max_output_length) override {
155 sequence_number_ = sequence_number;
156 associated_data_ = associated_data.as_string();
157 ciphertext_ = ciphertext.as_string();
158 memcpy(output, ciphertext.data(), ciphertext.length());
159 *output_length = ciphertext.length();
160 return true;
162 StringPiece GetKey() const override { return StringPiece(); }
163 StringPiece GetNoncePrefix() const override { return StringPiece(); }
164 QuicPacketSequenceNumber sequence_number_;
165 string associated_data_;
166 string ciphertext_;
169 class TestQuicVisitor : public ::net::QuicFramerVisitorInterface {
170 public:
171 TestQuicVisitor()
172 : error_count_(0),
173 version_mismatch_(0),
174 packet_count_(0),
175 frame_count_(0),
176 fec_count_(0),
177 complete_packets_(0),
178 revived_packets_(0),
179 accept_packet_(true),
180 accept_public_header_(true) {
183 ~TestQuicVisitor() override {
184 STLDeleteElements(&stream_frames_);
185 STLDeleteElements(&ack_frames_);
186 STLDeleteElements(&stop_waiting_frames_);
187 STLDeleteElements(&ping_frames_);
188 STLDeleteElements(&fec_data_);
189 STLDeleteElements(&stream_data_);
190 STLDeleteElements(&fec_data_redundancy_);
193 void OnError(QuicFramer* f) override {
194 DVLOG(1) << "QuicFramer Error: " << QuicUtils::ErrorToString(f->error())
195 << " (" << f->error() << ")";
196 ++error_count_;
199 void OnPacket() override {}
201 void OnPublicResetPacket(const QuicPublicResetPacket& packet) override {
202 public_reset_packet_.reset(new QuicPublicResetPacket(packet));
205 void OnVersionNegotiationPacket(
206 const QuicVersionNegotiationPacket& packet) override {
207 version_negotiation_packet_.reset(new QuicVersionNegotiationPacket(packet));
210 void OnRevivedPacket() override { ++revived_packets_; }
212 bool OnProtocolVersionMismatch(QuicVersion version) override {
213 DVLOG(1) << "QuicFramer Version Mismatch, version: " << version;
214 ++version_mismatch_;
215 return true;
218 bool OnUnauthenticatedPublicHeader(
219 const QuicPacketPublicHeader& header) override {
220 public_header_.reset(new QuicPacketPublicHeader(header));
221 return accept_public_header_;
224 bool OnUnauthenticatedHeader(const QuicPacketHeader& header) override {
225 return true;
228 void OnDecryptedPacket(EncryptionLevel level) override {}
230 bool OnPacketHeader(const QuicPacketHeader& header) override {
231 ++packet_count_;
232 header_.reset(new QuicPacketHeader(header));
233 return accept_packet_;
236 bool OnStreamFrame(const QuicStreamFrame& frame) override {
237 ++frame_count_;
238 // Save a copy of the data so it is valid after the packet is processed.
239 stream_data_.push_back(frame.GetDataAsString());
240 QuicStreamFrame* stream_frame = new QuicStreamFrame(frame);
241 // Make sure that the stream frame points to this data.
242 stream_frame->data.Clear();
243 stream_frame->data.Append(const_cast<char*>(stream_data_.back()->data()),
244 stream_data_.back()->size());
245 stream_frames_.push_back(stream_frame);
246 return true;
249 void OnFecProtectedPayload(StringPiece payload) override {
250 fec_protected_payload_ = payload.as_string();
253 bool OnAckFrame(const QuicAckFrame& frame) override {
254 ++frame_count_;
255 ack_frames_.push_back(new QuicAckFrame(frame));
256 return true;
259 bool OnStopWaitingFrame(const QuicStopWaitingFrame& frame) override {
260 ++frame_count_;
261 stop_waiting_frames_.push_back(new QuicStopWaitingFrame(frame));
262 return true;
265 bool OnPingFrame(const QuicPingFrame& frame) override {
266 ++frame_count_;
267 ping_frames_.push_back(new QuicPingFrame(frame));
268 return true;
271 void OnFecData(const QuicFecData& fec) override {
272 ++fec_count_;
273 QuicFecData* fec_data = new QuicFecData();
274 fec_data->fec_group = fec.fec_group;
275 // Save a copy of the data so it is valid after the packet is processed.
276 string* redundancy = new string(fec.redundancy.as_string());
277 fec_data_redundancy_.push_back(redundancy);
278 fec_data->redundancy = StringPiece(*redundancy);
279 fec_data_.push_back(fec_data);
282 void OnPacketComplete() override { ++complete_packets_; }
284 bool OnRstStreamFrame(const QuicRstStreamFrame& frame) override {
285 rst_stream_frame_ = frame;
286 return true;
289 bool OnConnectionCloseFrame(const QuicConnectionCloseFrame& frame) override {
290 connection_close_frame_ = frame;
291 return true;
294 bool OnGoAwayFrame(const QuicGoAwayFrame& frame) override {
295 goaway_frame_ = frame;
296 return true;
299 bool OnWindowUpdateFrame(const QuicWindowUpdateFrame& frame) override {
300 window_update_frame_ = frame;
301 return true;
304 bool OnBlockedFrame(const QuicBlockedFrame& frame) override {
305 blocked_frame_ = frame;
306 return true;
309 // Counters from the visitor_ callbacks.
310 int error_count_;
311 int version_mismatch_;
312 int packet_count_;
313 int frame_count_;
314 int fec_count_;
315 int complete_packets_;
316 int revived_packets_;
317 bool accept_packet_;
318 bool accept_public_header_;
320 scoped_ptr<QuicPacketHeader> header_;
321 scoped_ptr<QuicPacketPublicHeader> public_header_;
322 scoped_ptr<QuicPublicResetPacket> public_reset_packet_;
323 scoped_ptr<QuicVersionNegotiationPacket> version_negotiation_packet_;
324 vector<QuicStreamFrame*> stream_frames_;
325 vector<QuicAckFrame*> ack_frames_;
326 vector<QuicStopWaitingFrame*> stop_waiting_frames_;
327 vector<QuicPingFrame*> ping_frames_;
328 vector<QuicFecData*> fec_data_;
329 string fec_protected_payload_;
330 QuicRstStreamFrame rst_stream_frame_;
331 QuicConnectionCloseFrame connection_close_frame_;
332 QuicGoAwayFrame goaway_frame_;
333 QuicWindowUpdateFrame window_update_frame_;
334 QuicBlockedFrame blocked_frame_;
335 vector<string*> stream_data_;
336 vector<string*> fec_data_redundancy_;
339 class QuicFramerTest : public ::testing::TestWithParam<QuicVersion> {
340 public:
341 QuicFramerTest()
342 : encrypter_(new test::TestEncrypter()),
343 decrypter_(new test::TestDecrypter()),
344 start_(QuicTime::Zero().Add(QuicTime::Delta::FromMicroseconds(0x10))),
345 framer_(QuicSupportedVersions(), start_, true) {
346 version_ = GetParam();
347 framer_.set_version(version_);
348 framer_.SetDecrypter(decrypter_, ENCRYPTION_NONE);
349 framer_.SetEncrypter(ENCRYPTION_NONE, encrypter_);
350 framer_.set_visitor(&visitor_);
351 framer_.set_received_entropy_calculator(&entropy_calculator_);
354 // Helper function to get unsigned char representation of digit in the
355 // units place of the current QUIC version number.
356 unsigned char GetQuicVersionDigitOnes() {
357 return static_cast<unsigned char> ('0' + version_%10);
360 // Helper function to get unsigned char representation of digit in the
361 // tens place of the current QUIC version number.
362 unsigned char GetQuicVersionDigitTens() {
363 return static_cast<unsigned char> ('0' + (version_/10)%10);
366 bool CheckEncryption(QuicPacketSequenceNumber sequence_number,
367 QuicPacket* packet) {
368 if (sequence_number != encrypter_->sequence_number_) {
369 LOG(ERROR) << "Encrypted incorrect packet sequence number. expected "
370 << sequence_number << " actual: "
371 << encrypter_->sequence_number_;
372 return false;
374 if (packet->AssociatedData() != encrypter_->associated_data_) {
375 LOG(ERROR) << "Encrypted incorrect associated data. expected "
376 << packet->AssociatedData() << " actual: "
377 << encrypter_->associated_data_;
378 return false;
380 if (packet->Plaintext() != encrypter_->plaintext_) {
381 LOG(ERROR) << "Encrypted incorrect plaintext data. expected "
382 << packet->Plaintext() << " actual: "
383 << encrypter_->plaintext_;
384 return false;
386 return true;
389 bool CheckDecryption(const QuicEncryptedPacket& encrypted,
390 bool includes_version) {
391 if (visitor_.header_->packet_sequence_number !=
392 decrypter_->sequence_number_) {
393 LOG(ERROR) << "Decrypted incorrect packet sequence number. expected "
394 << visitor_.header_->packet_sequence_number << " actual: "
395 << decrypter_->sequence_number_;
396 return false;
398 if (QuicFramer::GetAssociatedDataFromEncryptedPacket(
399 encrypted, PACKET_8BYTE_CONNECTION_ID,
400 includes_version, PACKET_6BYTE_SEQUENCE_NUMBER) !=
401 decrypter_->associated_data_) {
402 LOG(ERROR) << "Decrypted incorrect associated data. expected "
403 << QuicFramer::GetAssociatedDataFromEncryptedPacket(
404 encrypted, PACKET_8BYTE_CONNECTION_ID,
405 includes_version, PACKET_6BYTE_SEQUENCE_NUMBER)
406 << " actual: " << decrypter_->associated_data_;
407 return false;
409 StringPiece ciphertext(encrypted.AsStringPiece().substr(
410 GetStartOfEncryptedData(PACKET_8BYTE_CONNECTION_ID, includes_version,
411 PACKET_6BYTE_SEQUENCE_NUMBER)));
412 if (ciphertext != decrypter_->ciphertext_) {
413 LOG(ERROR) << "Decrypted incorrect ciphertext data. expected "
414 << ciphertext << " actual: "
415 << decrypter_->ciphertext_;
416 return false;
418 return true;
421 char* AsChars(unsigned char* data) {
422 return reinterpret_cast<char*>(data);
425 void CheckProcessingFails(unsigned char* packet,
426 size_t len,
427 string expected_error,
428 QuicErrorCode error_code) {
429 QuicEncryptedPacket encrypted(AsChars(packet), len, false);
430 EXPECT_FALSE(framer_.ProcessPacket(encrypted)) << "len: " << len;
431 EXPECT_EQ(expected_error, framer_.detailed_error()) << "len: " << len;
432 EXPECT_EQ(error_code, framer_.error()) << "len: " << len;
435 // Checks if the supplied string matches data in the supplied StreamFrame.
436 void CheckStreamFrameData(string str, QuicStreamFrame* frame) {
437 scoped_ptr<string> frame_data(frame->GetDataAsString());
438 EXPECT_EQ(str, *frame_data);
441 void CheckStreamFrameBoundaries(unsigned char* packet,
442 size_t stream_id_size,
443 bool include_version) {
444 // Now test framing boundaries.
445 for (size_t i = kQuicFrameTypeSize; i < GetMinStreamFrameSize(); ++i) {
446 string expected_error;
447 if (i < kQuicFrameTypeSize + stream_id_size) {
448 expected_error = "Unable to read stream_id.";
449 } else if (i < kQuicFrameTypeSize + stream_id_size +
450 kQuicMaxStreamOffsetSize) {
451 expected_error = "Unable to read offset.";
452 } else {
453 expected_error = "Unable to read frame data.";
455 CheckProcessingFails(
456 packet,
457 i + GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, include_version,
458 PACKET_6BYTE_SEQUENCE_NUMBER,
459 NOT_IN_FEC_GROUP),
460 expected_error, QUIC_INVALID_STREAM_DATA);
464 void CheckCalculatePacketSequenceNumber(
465 QuicPacketSequenceNumber expected_sequence_number,
466 QuicPacketSequenceNumber last_sequence_number) {
467 QuicPacketSequenceNumber wire_sequence_number =
468 expected_sequence_number & kMask;
469 QuicFramerPeer::SetLastSequenceNumber(&framer_, last_sequence_number);
470 EXPECT_EQ(expected_sequence_number,
471 QuicFramerPeer::CalculatePacketSequenceNumberFromWire(
472 &framer_, PACKET_6BYTE_SEQUENCE_NUMBER, wire_sequence_number))
473 << "last_sequence_number: " << last_sequence_number
474 << " wire_sequence_number: " << wire_sequence_number;
477 QuicPacket* BuildDataPacket(const QuicPacketHeader& header,
478 const QuicFrames& frames) {
479 return BuildUnsizedDataPacket(&framer_, header, frames);
482 QuicPacket* BuildDataPacket(const QuicPacketHeader& header,
483 const QuicFrames& frames,
484 size_t packet_size) {
485 return BuildUnsizedDataPacket(&framer_, header, frames, packet_size);
488 test::TestEncrypter* encrypter_;
489 test::TestDecrypter* decrypter_;
490 QuicVersion version_;
491 QuicTime start_;
492 QuicFramer framer_;
493 test::TestQuicVisitor visitor_;
494 test::TestEntropyCalculator entropy_calculator_;
497 // Run all framer tests with all supported versions of QUIC.
498 INSTANTIATE_TEST_CASE_P(QuicFramerTests,
499 QuicFramerTest,
500 ::testing::ValuesIn(kSupportedQuicVersions));
502 TEST_P(QuicFramerTest, CalculatePacketSequenceNumberFromWireNearEpochStart) {
503 // A few quick manual sanity checks
504 CheckCalculatePacketSequenceNumber(GG_UINT64_C(1), GG_UINT64_C(0));
505 CheckCalculatePacketSequenceNumber(kEpoch + 1, kMask);
506 CheckCalculatePacketSequenceNumber(kEpoch, kMask);
508 // Cases where the last number was close to the start of the range
509 for (uint64 last = 0; last < 10; last++) {
510 // Small numbers should not wrap (even if they're out of order).
511 for (uint64 j = 0; j < 10; j++) {
512 CheckCalculatePacketSequenceNumber(j, last);
515 // Large numbers should not wrap either (because we're near 0 already).
516 for (uint64 j = 0; j < 10; j++) {
517 CheckCalculatePacketSequenceNumber(kEpoch - 1 - j, last);
522 TEST_P(QuicFramerTest, CalculatePacketSequenceNumberFromWireNearEpochEnd) {
523 // Cases where the last number was close to the end of the range
524 for (uint64 i = 0; i < 10; i++) {
525 QuicPacketSequenceNumber last = kEpoch - i;
527 // Small numbers should wrap.
528 for (uint64 j = 0; j < 10; j++) {
529 CheckCalculatePacketSequenceNumber(kEpoch + j, last);
532 // Large numbers should not (even if they're out of order).
533 for (uint64 j = 0; j < 10; j++) {
534 CheckCalculatePacketSequenceNumber(kEpoch - 1 - j, last);
539 // Next check where we're in a non-zero epoch to verify we handle
540 // reverse wrapping, too.
541 TEST_P(QuicFramerTest, CalculatePacketSequenceNumberFromWireNearPrevEpoch) {
542 const uint64 prev_epoch = 1 * kEpoch;
543 const uint64 cur_epoch = 2 * kEpoch;
544 // Cases where the last number was close to the start of the range
545 for (uint64 i = 0; i < 10; i++) {
546 uint64 last = cur_epoch + i;
547 // Small number should not wrap (even if they're out of order).
548 for (uint64 j = 0; j < 10; j++) {
549 CheckCalculatePacketSequenceNumber(cur_epoch + j, last);
552 // But large numbers should reverse wrap.
553 for (uint64 j = 0; j < 10; j++) {
554 uint64 num = kEpoch - 1 - j;
555 CheckCalculatePacketSequenceNumber(prev_epoch + num, last);
560 TEST_P(QuicFramerTest, CalculatePacketSequenceNumberFromWireNearNextEpoch) {
561 const uint64 cur_epoch = 2 * kEpoch;
562 const uint64 next_epoch = 3 * kEpoch;
563 // Cases where the last number was close to the end of the range
564 for (uint64 i = 0; i < 10; i++) {
565 QuicPacketSequenceNumber last = next_epoch - 1 - i;
567 // Small numbers should wrap.
568 for (uint64 j = 0; j < 10; j++) {
569 CheckCalculatePacketSequenceNumber(next_epoch + j, last);
572 // but large numbers should not (even if they're out of order).
573 for (uint64 j = 0; j < 10; j++) {
574 uint64 num = kEpoch - 1 - j;
575 CheckCalculatePacketSequenceNumber(cur_epoch + num, last);
580 TEST_P(QuicFramerTest, CalculatePacketSequenceNumberFromWireNearNextMax) {
581 const uint64 max_number = numeric_limits<uint64>::max();
582 const uint64 max_epoch = max_number & ~kMask;
584 // Cases where the last number was close to the end of the range
585 for (uint64 i = 0; i < 10; i++) {
586 // Subtract 1, because the expected next sequence number is 1 more than the
587 // last sequence number.
588 QuicPacketSequenceNumber last = max_number - i - 1;
590 // Small numbers should not wrap, because they have nowhere to go.
591 for (uint64 j = 0; j < 10; j++) {
592 CheckCalculatePacketSequenceNumber(max_epoch + j, last);
595 // Large numbers should not wrap either.
596 for (uint64 j = 0; j < 10; j++) {
597 uint64 num = kEpoch - 1 - j;
598 CheckCalculatePacketSequenceNumber(max_epoch + num, last);
603 TEST_P(QuicFramerTest, EmptyPacket) {
604 char packet[] = { 0x00 };
605 QuicEncryptedPacket encrypted(packet, 0, false);
606 EXPECT_FALSE(framer_.ProcessPacket(encrypted));
607 EXPECT_EQ(QUIC_INVALID_PACKET_HEADER, framer_.error());
610 TEST_P(QuicFramerTest, LargePacket) {
611 unsigned char packet[kMaxPacketSize + 1] = {
612 // public flags (8 byte connection_id)
613 0x3C,
614 // connection_id
615 0x10,
616 0x32,
617 0x54,
618 0x76,
619 0x98,
620 0xBA,
621 0xDC,
622 0xFE,
623 // packet sequence number
624 0xBC,
625 0x9A,
626 0x78,
627 0x56,
628 0x34,
629 0x12,
630 // private flags
631 0x00,
634 memset(packet + GetPacketHeaderSize(
635 PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion,
636 PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP), 0,
637 kMaxPacketSize - GetPacketHeaderSize(
638 PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion,
639 PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP) + 1);
641 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
642 EXPECT_FALSE(framer_.ProcessPacket(encrypted));
644 ASSERT_TRUE(visitor_.header_.get());
645 // Make sure we've parsed the packet header, so we can send an error.
646 EXPECT_EQ(GG_UINT64_C(0xFEDCBA9876543210),
647 visitor_.header_->public_header.connection_id);
648 // Make sure the correct error is propagated.
649 EXPECT_EQ(QUIC_PACKET_TOO_LARGE, framer_.error());
652 TEST_P(QuicFramerTest, PacketHeader) {
653 unsigned char packet[] = {
654 // public flags (8 byte connection_id)
655 0x3C,
656 // connection_id
657 0x10, 0x32, 0x54, 0x76,
658 0x98, 0xBA, 0xDC, 0xFE,
659 // packet sequence number
660 0xBC, 0x9A, 0x78, 0x56,
661 0x34, 0x12,
662 // private flags
663 0x00,
666 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
667 EXPECT_FALSE(framer_.ProcessPacket(encrypted));
668 EXPECT_EQ(QUIC_MISSING_PAYLOAD, framer_.error());
669 ASSERT_TRUE(visitor_.header_.get());
670 EXPECT_EQ(GG_UINT64_C(0xFEDCBA9876543210),
671 visitor_.header_->public_header.connection_id);
672 EXPECT_FALSE(visitor_.header_->public_header.reset_flag);
673 EXPECT_FALSE(visitor_.header_->public_header.version_flag);
674 EXPECT_FALSE(visitor_.header_->fec_flag);
675 EXPECT_FALSE(visitor_.header_->entropy_flag);
676 EXPECT_EQ(0, visitor_.header_->entropy_hash);
677 EXPECT_EQ(GG_UINT64_C(0x123456789ABC),
678 visitor_.header_->packet_sequence_number);
679 EXPECT_EQ(NOT_IN_FEC_GROUP, visitor_.header_->is_in_fec_group);
680 EXPECT_EQ(0x00u, visitor_.header_->fec_group);
682 // Now test framing boundaries.
683 for (size_t i = 0;
684 i < GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion,
685 PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP);
686 ++i) {
687 string expected_error;
688 if (i < kConnectionIdOffset) {
689 expected_error = "Unable to read public flags.";
690 } else if (i < GetSequenceNumberOffset(!kIncludeVersion)) {
691 expected_error = "Unable to read ConnectionId.";
692 } else if (i < GetPrivateFlagsOffset(!kIncludeVersion)) {
693 expected_error = "Unable to read sequence number.";
694 } else if (i < GetFecGroupOffset(!kIncludeVersion)) {
695 expected_error = "Unable to read private flags.";
696 } else {
697 expected_error = "Unable to read first fec protected packet offset.";
699 CheckProcessingFails(packet, i, expected_error, QUIC_INVALID_PACKET_HEADER);
703 TEST_P(QuicFramerTest, PacketHeaderWith4ByteConnectionId) {
704 QuicFramerPeer::SetLastSerializedConnectionId(
705 &framer_, GG_UINT64_C(0xFEDCBA9876543210));
707 unsigned char packet[] = {
708 // public flags (4 byte connection_id)
709 0x38,
710 // connection_id
711 0x10, 0x32, 0x54, 0x76,
712 // packet sequence number
713 0xBC, 0x9A, 0x78, 0x56,
714 0x34, 0x12,
715 // private flags
716 0x00,
719 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
720 EXPECT_FALSE(framer_.ProcessPacket(encrypted));
721 EXPECT_EQ(QUIC_MISSING_PAYLOAD, framer_.error());
722 ASSERT_TRUE(visitor_.header_.get());
723 EXPECT_EQ(GG_UINT64_C(0xFEDCBA9876543210),
724 visitor_.header_->public_header.connection_id);
725 EXPECT_FALSE(visitor_.header_->public_header.reset_flag);
726 EXPECT_FALSE(visitor_.header_->public_header.version_flag);
727 EXPECT_FALSE(visitor_.header_->fec_flag);
728 EXPECT_FALSE(visitor_.header_->entropy_flag);
729 EXPECT_EQ(0, visitor_.header_->entropy_hash);
730 EXPECT_EQ(GG_UINT64_C(0x123456789ABC),
731 visitor_.header_->packet_sequence_number);
732 EXPECT_EQ(NOT_IN_FEC_GROUP, visitor_.header_->is_in_fec_group);
733 EXPECT_EQ(0x00u, visitor_.header_->fec_group);
735 // Now test framing boundaries.
736 for (size_t i = 0;
737 i < GetPacketHeaderSize(PACKET_4BYTE_CONNECTION_ID, !kIncludeVersion,
738 PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP);
739 ++i) {
740 string expected_error;
741 if (i < kConnectionIdOffset) {
742 expected_error = "Unable to read public flags.";
743 } else if (i < GetSequenceNumberOffset(PACKET_4BYTE_CONNECTION_ID,
744 !kIncludeVersion)) {
745 expected_error = "Unable to read ConnectionId.";
746 } else if (i < GetPrivateFlagsOffset(PACKET_4BYTE_CONNECTION_ID,
747 !kIncludeVersion)) {
748 expected_error = "Unable to read sequence number.";
749 } else if (i < GetFecGroupOffset(PACKET_4BYTE_CONNECTION_ID,
750 !kIncludeVersion)) {
751 expected_error = "Unable to read private flags.";
752 } else {
753 expected_error = "Unable to read first fec protected packet offset.";
755 CheckProcessingFails(packet, i, expected_error, QUIC_INVALID_PACKET_HEADER);
759 TEST_P(QuicFramerTest, PacketHeader1ByteConnectionId) {
760 QuicFramerPeer::SetLastSerializedConnectionId(
761 &framer_, GG_UINT64_C(0xFEDCBA9876543210));
763 unsigned char packet[] = {
764 // public flags (1 byte connection_id)
765 0x34,
766 // connection_id
767 0x10,
768 // packet sequence number
769 0xBC, 0x9A, 0x78, 0x56,
770 0x34, 0x12,
771 // private flags
772 0x00,
775 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
776 EXPECT_FALSE(framer_.ProcessPacket(encrypted));
777 EXPECT_EQ(QUIC_MISSING_PAYLOAD, framer_.error());
778 ASSERT_TRUE(visitor_.header_.get());
779 EXPECT_EQ(GG_UINT64_C(0xFEDCBA9876543210),
780 visitor_.header_->public_header.connection_id);
781 EXPECT_FALSE(visitor_.header_->public_header.reset_flag);
782 EXPECT_FALSE(visitor_.header_->public_header.version_flag);
783 EXPECT_FALSE(visitor_.header_->fec_flag);
784 EXPECT_FALSE(visitor_.header_->entropy_flag);
785 EXPECT_EQ(0, visitor_.header_->entropy_hash);
786 EXPECT_EQ(GG_UINT64_C(0x123456789ABC),
787 visitor_.header_->packet_sequence_number);
788 EXPECT_EQ(NOT_IN_FEC_GROUP, visitor_.header_->is_in_fec_group);
789 EXPECT_EQ(0x00u, visitor_.header_->fec_group);
791 // Now test framing boundaries.
792 for (size_t i = 0;
793 i < GetPacketHeaderSize(PACKET_1BYTE_CONNECTION_ID, !kIncludeVersion,
794 PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP);
795 ++i) {
796 string expected_error;
797 if (i < kConnectionIdOffset) {
798 expected_error = "Unable to read public flags.";
799 } else if (i < GetSequenceNumberOffset(PACKET_1BYTE_CONNECTION_ID,
800 !kIncludeVersion)) {
801 expected_error = "Unable to read ConnectionId.";
802 } else if (i < GetPrivateFlagsOffset(PACKET_1BYTE_CONNECTION_ID,
803 !kIncludeVersion)) {
804 expected_error = "Unable to read sequence number.";
805 } else if (i < GetFecGroupOffset(PACKET_1BYTE_CONNECTION_ID,
806 !kIncludeVersion)) {
807 expected_error = "Unable to read private flags.";
808 } else {
809 expected_error = "Unable to read first fec protected packet offset.";
811 CheckProcessingFails(packet, i, expected_error, QUIC_INVALID_PACKET_HEADER);
815 TEST_P(QuicFramerTest, PacketHeaderWith0ByteConnectionId) {
816 QuicFramerPeer::SetLastSerializedConnectionId(
817 &framer_, GG_UINT64_C(0xFEDCBA9876543210));
819 unsigned char packet[] = {
820 // public flags (0 byte connection_id)
821 0x30,
822 // connection_id
823 // packet sequence number
824 0xBC, 0x9A, 0x78, 0x56,
825 0x34, 0x12,
826 // private flags
827 0x00,
830 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
831 EXPECT_FALSE(framer_.ProcessPacket(encrypted));
832 EXPECT_EQ(QUIC_MISSING_PAYLOAD, framer_.error());
833 ASSERT_TRUE(visitor_.header_.get());
834 EXPECT_EQ(GG_UINT64_C(0xFEDCBA9876543210),
835 visitor_.header_->public_header.connection_id);
836 EXPECT_FALSE(visitor_.header_->public_header.reset_flag);
837 EXPECT_FALSE(visitor_.header_->public_header.version_flag);
838 EXPECT_FALSE(visitor_.header_->fec_flag);
839 EXPECT_FALSE(visitor_.header_->entropy_flag);
840 EXPECT_EQ(0, visitor_.header_->entropy_hash);
841 EXPECT_EQ(GG_UINT64_C(0x123456789ABC),
842 visitor_.header_->packet_sequence_number);
843 EXPECT_EQ(NOT_IN_FEC_GROUP, visitor_.header_->is_in_fec_group);
844 EXPECT_EQ(0x00u, visitor_.header_->fec_group);
846 // Now test framing boundaries.
847 for (size_t i = 0;
848 i < GetPacketHeaderSize(PACKET_0BYTE_CONNECTION_ID, !kIncludeVersion,
849 PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP);
850 ++i) {
851 string expected_error;
852 if (i < kConnectionIdOffset) {
853 expected_error = "Unable to read public flags.";
854 } else if (i < GetSequenceNumberOffset(PACKET_0BYTE_CONNECTION_ID,
855 !kIncludeVersion)) {
856 expected_error = "Unable to read ConnectionId.";
857 } else if (i < GetPrivateFlagsOffset(PACKET_0BYTE_CONNECTION_ID,
858 !kIncludeVersion)) {
859 expected_error = "Unable to read sequence number.";
860 } else if (i < GetFecGroupOffset(PACKET_0BYTE_CONNECTION_ID,
861 !kIncludeVersion)) {
862 expected_error = "Unable to read private flags.";
863 } else {
864 expected_error = "Unable to read first fec protected packet offset.";
866 CheckProcessingFails(packet, i, expected_error, QUIC_INVALID_PACKET_HEADER);
870 TEST_P(QuicFramerTest, PacketHeaderWithVersionFlag) {
871 unsigned char packet[] = {
872 // public flags (version)
873 0x3D,
874 // connection_id
875 0x10, 0x32, 0x54, 0x76,
876 0x98, 0xBA, 0xDC, 0xFE,
877 // version tag
878 'Q', '0', GetQuicVersionDigitTens(), GetQuicVersionDigitOnes(),
879 // packet sequence number
880 0xBC, 0x9A, 0x78, 0x56,
881 0x34, 0x12,
882 // private flags
883 0x00,
886 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
887 EXPECT_FALSE(framer_.ProcessPacket(encrypted));
888 EXPECT_EQ(QUIC_MISSING_PAYLOAD, framer_.error());
889 ASSERT_TRUE(visitor_.header_.get());
890 EXPECT_EQ(GG_UINT64_C(0xFEDCBA9876543210),
891 visitor_.header_->public_header.connection_id);
892 EXPECT_FALSE(visitor_.header_->public_header.reset_flag);
893 EXPECT_TRUE(visitor_.header_->public_header.version_flag);
894 EXPECT_EQ(GetParam(), visitor_.header_->public_header.versions[0]);
895 EXPECT_FALSE(visitor_.header_->fec_flag);
896 EXPECT_FALSE(visitor_.header_->entropy_flag);
897 EXPECT_EQ(0, visitor_.header_->entropy_hash);
898 EXPECT_EQ(GG_UINT64_C(0x123456789ABC),
899 visitor_.header_->packet_sequence_number);
900 EXPECT_EQ(NOT_IN_FEC_GROUP, visitor_.header_->is_in_fec_group);
901 EXPECT_EQ(0x00u, visitor_.header_->fec_group);
903 // Now test framing boundaries.
904 for (size_t i = 0;
905 i < GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, kIncludeVersion,
906 PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP);
907 ++i) {
908 string expected_error;
909 if (i < kConnectionIdOffset) {
910 expected_error = "Unable to read public flags.";
911 } else if (i < kVersionOffset) {
912 expected_error = "Unable to read ConnectionId.";
913 } else if (i < GetSequenceNumberOffset(kIncludeVersion)) {
914 expected_error = "Unable to read protocol version.";
915 } else if (i < GetPrivateFlagsOffset(kIncludeVersion)) {
916 expected_error = "Unable to read sequence number.";
917 } else if (i < GetFecGroupOffset(kIncludeVersion)) {
918 expected_error = "Unable to read private flags.";
919 } else {
920 expected_error = "Unable to read first fec protected packet offset.";
922 CheckProcessingFails(packet, i, expected_error, QUIC_INVALID_PACKET_HEADER);
926 TEST_P(QuicFramerTest, PacketHeaderWith4ByteSequenceNumber) {
927 QuicFramerPeer::SetLastSequenceNumber(&framer_,
928 GG_UINT64_C(0x123456789ABA));
930 unsigned char packet[] = {
931 // public flags (8 byte connection_id and 4 byte sequence number)
932 0x2C,
933 // connection_id
934 0x10, 0x32, 0x54, 0x76,
935 0x98, 0xBA, 0xDC, 0xFE,
936 // packet sequence number
937 0xBC, 0x9A, 0x78, 0x56,
938 // private flags
939 0x00,
942 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
943 EXPECT_FALSE(framer_.ProcessPacket(encrypted));
944 EXPECT_EQ(QUIC_MISSING_PAYLOAD, framer_.error());
945 ASSERT_TRUE(visitor_.header_.get());
946 EXPECT_EQ(GG_UINT64_C(0xFEDCBA9876543210),
947 visitor_.header_->public_header.connection_id);
948 EXPECT_FALSE(visitor_.header_->public_header.reset_flag);
949 EXPECT_FALSE(visitor_.header_->public_header.version_flag);
950 EXPECT_FALSE(visitor_.header_->fec_flag);
951 EXPECT_FALSE(visitor_.header_->entropy_flag);
952 EXPECT_EQ(0, visitor_.header_->entropy_hash);
953 EXPECT_EQ(GG_UINT64_C(0x123456789ABC),
954 visitor_.header_->packet_sequence_number);
955 EXPECT_EQ(NOT_IN_FEC_GROUP, visitor_.header_->is_in_fec_group);
956 EXPECT_EQ(0x00u, visitor_.header_->fec_group);
958 // Now test framing boundaries.
959 for (size_t i = 0;
960 i < GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion,
961 PACKET_4BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP);
962 ++i) {
963 string expected_error;
964 if (i < kConnectionIdOffset) {
965 expected_error = "Unable to read public flags.";
966 } else if (i < GetSequenceNumberOffset(!kIncludeVersion)) {
967 expected_error = "Unable to read ConnectionId.";
968 } else if (i < GetPrivateFlagsOffset(!kIncludeVersion,
969 PACKET_4BYTE_SEQUENCE_NUMBER)) {
970 expected_error = "Unable to read sequence number.";
971 } else if (i < GetFecGroupOffset(!kIncludeVersion,
972 PACKET_4BYTE_SEQUENCE_NUMBER)) {
973 expected_error = "Unable to read private flags.";
974 } else {
975 expected_error = "Unable to read first fec protected packet offset.";
977 CheckProcessingFails(packet, i, expected_error, QUIC_INVALID_PACKET_HEADER);
981 TEST_P(QuicFramerTest, PacketHeaderWith2ByteSequenceNumber) {
982 QuicFramerPeer::SetLastSequenceNumber(&framer_,
983 GG_UINT64_C(0x123456789ABA));
985 unsigned char packet[] = {
986 // public flags (8 byte connection_id and 2 byte sequence number)
987 0x1C,
988 // connection_id
989 0x10, 0x32, 0x54, 0x76,
990 0x98, 0xBA, 0xDC, 0xFE,
991 // packet sequence number
992 0xBC, 0x9A,
993 // private flags
994 0x00,
997 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
998 EXPECT_FALSE(framer_.ProcessPacket(encrypted));
999 EXPECT_EQ(QUIC_MISSING_PAYLOAD, framer_.error());
1000 ASSERT_TRUE(visitor_.header_.get());
1001 EXPECT_EQ(GG_UINT64_C(0xFEDCBA9876543210),
1002 visitor_.header_->public_header.connection_id);
1003 EXPECT_FALSE(visitor_.header_->public_header.reset_flag);
1004 EXPECT_FALSE(visitor_.header_->public_header.version_flag);
1005 EXPECT_FALSE(visitor_.header_->fec_flag);
1006 EXPECT_FALSE(visitor_.header_->entropy_flag);
1007 EXPECT_EQ(0, visitor_.header_->entropy_hash);
1008 EXPECT_EQ(GG_UINT64_C(0x123456789ABC),
1009 visitor_.header_->packet_sequence_number);
1010 EXPECT_EQ(NOT_IN_FEC_GROUP, visitor_.header_->is_in_fec_group);
1011 EXPECT_EQ(0x00u, visitor_.header_->fec_group);
1013 // Now test framing boundaries.
1014 for (size_t i = 0;
1015 i < GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion,
1016 PACKET_2BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP);
1017 ++i) {
1018 string expected_error;
1019 if (i < kConnectionIdOffset) {
1020 expected_error = "Unable to read public flags.";
1021 } else if (i < GetSequenceNumberOffset(!kIncludeVersion)) {
1022 expected_error = "Unable to read ConnectionId.";
1023 } else if (i < GetPrivateFlagsOffset(!kIncludeVersion,
1024 PACKET_2BYTE_SEQUENCE_NUMBER)) {
1025 expected_error = "Unable to read sequence number.";
1026 } else if (i < GetFecGroupOffset(!kIncludeVersion,
1027 PACKET_2BYTE_SEQUENCE_NUMBER)) {
1028 expected_error = "Unable to read private flags.";
1029 } else {
1030 expected_error = "Unable to read first fec protected packet offset.";
1032 CheckProcessingFails(packet, i, expected_error, QUIC_INVALID_PACKET_HEADER);
1036 TEST_P(QuicFramerTest, PacketHeaderWith1ByteSequenceNumber) {
1037 QuicFramerPeer::SetLastSequenceNumber(&framer_,
1038 GG_UINT64_C(0x123456789ABA));
1040 unsigned char packet[] = {
1041 // public flags (8 byte connection_id and 1 byte sequence number)
1042 0x0C,
1043 // connection_id
1044 0x10, 0x32, 0x54, 0x76,
1045 0x98, 0xBA, 0xDC, 0xFE,
1046 // packet sequence number
1047 0xBC,
1048 // private flags
1049 0x00,
1052 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
1053 EXPECT_FALSE(framer_.ProcessPacket(encrypted));
1054 EXPECT_EQ(QUIC_MISSING_PAYLOAD, framer_.error());
1055 ASSERT_TRUE(visitor_.header_.get());
1056 EXPECT_EQ(GG_UINT64_C(0xFEDCBA9876543210),
1057 visitor_.header_->public_header.connection_id);
1058 EXPECT_FALSE(visitor_.header_->public_header.reset_flag);
1059 EXPECT_FALSE(visitor_.header_->public_header.version_flag);
1060 EXPECT_FALSE(visitor_.header_->fec_flag);
1061 EXPECT_FALSE(visitor_.header_->entropy_flag);
1062 EXPECT_EQ(0, visitor_.header_->entropy_hash);
1063 EXPECT_EQ(GG_UINT64_C(0x123456789ABC),
1064 visitor_.header_->packet_sequence_number);
1065 EXPECT_EQ(NOT_IN_FEC_GROUP, visitor_.header_->is_in_fec_group);
1066 EXPECT_EQ(0x00u, visitor_.header_->fec_group);
1068 // Now test framing boundaries.
1069 for (size_t i = 0;
1070 i < GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion,
1071 PACKET_1BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP);
1072 ++i) {
1073 string expected_error;
1074 if (i < kConnectionIdOffset) {
1075 expected_error = "Unable to read public flags.";
1076 } else if (i < GetSequenceNumberOffset(!kIncludeVersion)) {
1077 expected_error = "Unable to read ConnectionId.";
1078 } else if (i < GetPrivateFlagsOffset(!kIncludeVersion,
1079 PACKET_1BYTE_SEQUENCE_NUMBER)) {
1080 expected_error = "Unable to read sequence number.";
1081 } else if (i < GetFecGroupOffset(!kIncludeVersion,
1082 PACKET_1BYTE_SEQUENCE_NUMBER)) {
1083 expected_error = "Unable to read private flags.";
1084 } else {
1085 expected_error = "Unable to read first fec protected packet offset.";
1087 CheckProcessingFails(packet, i, expected_error, QUIC_INVALID_PACKET_HEADER);
1091 TEST_P(QuicFramerTest, InvalidPublicFlag) {
1092 unsigned char packet[] = {
1093 // public flags: all flags set but the public reset flag and version flag.
1094 0xFC,
1095 // connection_id
1096 0x10, 0x32, 0x54, 0x76,
1097 0x98, 0xBA, 0xDC, 0xFE,
1098 // packet sequence number
1099 0xBC, 0x9A, 0x78, 0x56,
1100 0x34, 0x12,
1101 // private flags
1102 0x00,
1104 // frame type (padding)
1105 0x00,
1106 0x00, 0x00, 0x00, 0x00
1108 CheckProcessingFails(packet,
1109 arraysize(packet),
1110 "Illegal public flags value.",
1111 QUIC_INVALID_PACKET_HEADER);
1113 // Now turn off validation.
1114 framer_.set_validate_flags(false);
1115 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
1116 EXPECT_TRUE(framer_.ProcessPacket(encrypted));
1119 TEST_P(QuicFramerTest, InvalidPublicFlagWithMatchingVersions) {
1120 unsigned char packet[] = {
1121 // public flags (8 byte connection_id and version flag and an unknown flag)
1122 0x4D,
1123 // connection_id
1124 0x10, 0x32, 0x54, 0x76,
1125 0x98, 0xBA, 0xDC, 0xFE,
1126 // version tag
1127 'Q', '0', GetQuicVersionDigitTens(), GetQuicVersionDigitOnes(),
1128 // packet sequence number
1129 0xBC, 0x9A, 0x78, 0x56,
1130 0x34, 0x12,
1131 // private flags
1132 0x00,
1134 // frame type (padding)
1135 0x00,
1136 0x00, 0x00, 0x00, 0x00
1138 CheckProcessingFails(packet,
1139 arraysize(packet),
1140 "Illegal public flags value.",
1141 QUIC_INVALID_PACKET_HEADER);
1144 TEST_P(QuicFramerTest, LargePublicFlagWithMismatchedVersions) {
1145 unsigned char packet[] = {
1146 // public flags (8 byte connection_id, version flag and an unknown flag)
1147 0x7D,
1148 // connection_id
1149 0x10, 0x32, 0x54, 0x76,
1150 0x98, 0xBA, 0xDC, 0xFE,
1151 // version tag
1152 'Q', '0', '0', '0',
1153 // packet sequence number
1154 0xBC, 0x9A, 0x78, 0x56,
1155 0x34, 0x12,
1156 // private flags
1157 0x00,
1159 // frame type (padding frame)
1160 0x00,
1161 0x00, 0x00, 0x00, 0x00
1163 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
1164 EXPECT_TRUE(framer_.ProcessPacket(encrypted));
1165 EXPECT_EQ(QUIC_NO_ERROR, framer_.error());
1166 ASSERT_TRUE(visitor_.header_.get());
1167 EXPECT_EQ(0, visitor_.frame_count_);
1168 EXPECT_EQ(1, visitor_.version_mismatch_);
1171 TEST_P(QuicFramerTest, InvalidPrivateFlag) {
1172 unsigned char packet[] = {
1173 // public flags (8 byte connection_id)
1174 0x3C,
1175 // connection_id
1176 0x10, 0x32, 0x54, 0x76,
1177 0x98, 0xBA, 0xDC, 0xFE,
1178 // packet sequence number
1179 0xBC, 0x9A, 0x78, 0x56,
1180 0x34, 0x12,
1181 // private flags
1182 0x10,
1184 // frame type (padding)
1185 0x00,
1186 0x00, 0x00, 0x00, 0x00
1188 CheckProcessingFails(packet,
1189 arraysize(packet),
1190 "Illegal private flags value.",
1191 QUIC_INVALID_PACKET_HEADER);
1194 TEST_P(QuicFramerTest, InvalidFECGroupOffset) {
1195 unsigned char packet[] = {
1196 // public flags (8 byte connection_id)
1197 0x3C,
1198 // connection_id
1199 0x10, 0x32, 0x54, 0x76,
1200 0x98, 0xBA, 0xDC, 0xFE,
1201 // packet sequence number
1202 0x01, 0x00, 0x00, 0x00,
1203 0x00, 0x00,
1204 // private flags (fec group)
1205 0x02,
1206 // first fec protected packet offset
1207 0x10
1209 CheckProcessingFails(packet,
1210 arraysize(packet),
1211 "First fec protected packet offset must be less "
1212 "than the sequence number.",
1213 QUIC_INVALID_PACKET_HEADER);
1216 TEST_P(QuicFramerTest, PaddingFrame) {
1217 unsigned char packet[] = {
1218 // public flags (8 byte connection_id)
1219 0x3C,
1220 // connection_id
1221 0x10, 0x32, 0x54, 0x76,
1222 0x98, 0xBA, 0xDC, 0xFE,
1223 // packet sequence number
1224 0xBC, 0x9A, 0x78, 0x56,
1225 0x34, 0x12,
1226 // private flags
1227 0x00,
1229 // frame type (padding frame)
1230 0x00,
1231 // Ignored data (which in this case is a stream frame)
1232 // frame type (stream frame with fin)
1233 0xFF,
1234 // stream id
1235 0x04, 0x03, 0x02, 0x01,
1236 // offset
1237 0x54, 0x76, 0x10, 0x32,
1238 0xDC, 0xFE, 0x98, 0xBA,
1239 // data length
1240 0x0c, 0x00,
1241 // data
1242 'h', 'e', 'l', 'l',
1243 'o', ' ', 'w', 'o',
1244 'r', 'l', 'd', '!',
1247 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
1248 EXPECT_TRUE(framer_.ProcessPacket(encrypted));
1249 EXPECT_EQ(QUIC_NO_ERROR, framer_.error());
1250 ASSERT_TRUE(visitor_.header_.get());
1251 EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion));
1253 ASSERT_EQ(0u, visitor_.stream_frames_.size());
1254 EXPECT_EQ(0u, visitor_.ack_frames_.size());
1255 // A packet with no frames is not acceptable.
1256 CheckProcessingFails(
1257 packet,
1258 GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion,
1259 PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP),
1260 "Packet has no frames.", QUIC_MISSING_PAYLOAD);
1263 TEST_P(QuicFramerTest, StreamFrame) {
1264 unsigned char packet[] = {
1265 // public flags (8 byte connection_id)
1266 0x3C,
1267 // connection_id
1268 0x10, 0x32, 0x54, 0x76,
1269 0x98, 0xBA, 0xDC, 0xFE,
1270 // packet sequence number
1271 0xBC, 0x9A, 0x78, 0x56,
1272 0x34, 0x12,
1273 // private flags
1274 0x00,
1276 // frame type (stream frame with fin)
1277 0xFF,
1278 // stream id
1279 0x04, 0x03, 0x02, 0x01,
1280 // offset
1281 0x54, 0x76, 0x10, 0x32,
1282 0xDC, 0xFE, 0x98, 0xBA,
1283 // data length
1284 0x0c, 0x00,
1285 // data
1286 'h', 'e', 'l', 'l',
1287 'o', ' ', 'w', 'o',
1288 'r', 'l', 'd', '!',
1291 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
1292 EXPECT_TRUE(framer_.ProcessPacket(encrypted));
1294 EXPECT_EQ(QUIC_NO_ERROR, framer_.error());
1295 ASSERT_TRUE(visitor_.header_.get());
1296 EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion));
1298 ASSERT_EQ(1u, visitor_.stream_frames_.size());
1299 EXPECT_EQ(0u, visitor_.ack_frames_.size());
1300 EXPECT_EQ(static_cast<uint64>(0x01020304),
1301 visitor_.stream_frames_[0]->stream_id);
1302 EXPECT_TRUE(visitor_.stream_frames_[0]->fin);
1303 EXPECT_EQ(GG_UINT64_C(0xBA98FEDC32107654),
1304 visitor_.stream_frames_[0]->offset);
1305 CheckStreamFrameData("hello world!", visitor_.stream_frames_[0]);
1307 // Now test framing boundaries.
1308 CheckStreamFrameBoundaries(packet, kQuicMaxStreamIdSize, !kIncludeVersion);
1311 TEST_P(QuicFramerTest, StreamFrame3ByteStreamId) {
1312 unsigned char packet[] = {
1313 // public flags (8 byte connection_id)
1314 0x3C,
1315 // connection_id
1316 0x10, 0x32, 0x54, 0x76,
1317 0x98, 0xBA, 0xDC, 0xFE,
1318 // packet sequence number
1319 0xBC, 0x9A, 0x78, 0x56,
1320 0x34, 0x12,
1321 // private flags
1322 0x00,
1324 // frame type (stream frame with fin)
1325 0xFE,
1326 // stream id
1327 0x04, 0x03, 0x02,
1328 // offset
1329 0x54, 0x76, 0x10, 0x32,
1330 0xDC, 0xFE, 0x98, 0xBA,
1331 // data length
1332 0x0c, 0x00,
1333 // data
1334 'h', 'e', 'l', 'l',
1335 'o', ' ', 'w', 'o',
1336 'r', 'l', 'd', '!',
1339 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
1340 EXPECT_TRUE(framer_.ProcessPacket(encrypted));
1342 EXPECT_EQ(QUIC_NO_ERROR, framer_.error());
1343 ASSERT_TRUE(visitor_.header_.get());
1344 EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion));
1346 ASSERT_EQ(1u, visitor_.stream_frames_.size());
1347 EXPECT_EQ(0u, visitor_.ack_frames_.size());
1348 EXPECT_EQ(GG_UINT64_C(0x00020304), visitor_.stream_frames_[0]->stream_id);
1349 EXPECT_TRUE(visitor_.stream_frames_[0]->fin);
1350 EXPECT_EQ(GG_UINT64_C(0xBA98FEDC32107654),
1351 visitor_.stream_frames_[0]->offset);
1352 CheckStreamFrameData("hello world!", visitor_.stream_frames_[0]);
1354 // Now test framing boundaries.
1355 const size_t stream_id_size = 3;
1356 CheckStreamFrameBoundaries(packet, stream_id_size, !kIncludeVersion);
1359 TEST_P(QuicFramerTest, StreamFrame2ByteStreamId) {
1360 unsigned char packet[] = {
1361 // public flags (8 byte connection_id)
1362 0x3C,
1363 // connection_id
1364 0x10, 0x32, 0x54, 0x76,
1365 0x98, 0xBA, 0xDC, 0xFE,
1366 // packet sequence number
1367 0xBC, 0x9A, 0x78, 0x56,
1368 0x34, 0x12,
1369 // private flags
1370 0x00,
1372 // frame type (stream frame with fin)
1373 0xFD,
1374 // stream id
1375 0x04, 0x03,
1376 // offset
1377 0x54, 0x76, 0x10, 0x32,
1378 0xDC, 0xFE, 0x98, 0xBA,
1379 // data length
1380 0x0c, 0x00,
1381 // data
1382 'h', 'e', 'l', 'l',
1383 'o', ' ', 'w', 'o',
1384 'r', 'l', 'd', '!',
1387 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
1388 EXPECT_TRUE(framer_.ProcessPacket(encrypted));
1390 EXPECT_EQ(QUIC_NO_ERROR, framer_.error());
1391 ASSERT_TRUE(visitor_.header_.get());
1392 EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion));
1394 ASSERT_EQ(1u, visitor_.stream_frames_.size());
1395 EXPECT_EQ(0u, visitor_.ack_frames_.size());
1396 EXPECT_EQ(static_cast<uint64>(0x00000304),
1397 visitor_.stream_frames_[0]->stream_id);
1398 EXPECT_TRUE(visitor_.stream_frames_[0]->fin);
1399 EXPECT_EQ(GG_UINT64_C(0xBA98FEDC32107654),
1400 visitor_.stream_frames_[0]->offset);
1401 CheckStreamFrameData("hello world!", visitor_.stream_frames_[0]);
1403 // Now test framing boundaries.
1404 const size_t stream_id_size = 2;
1405 CheckStreamFrameBoundaries(packet, stream_id_size, !kIncludeVersion);
1408 TEST_P(QuicFramerTest, StreamFrame1ByteStreamId) {
1409 unsigned char packet[] = {
1410 // public flags (8 byte connection_id)
1411 0x3C,
1412 // connection_id
1413 0x10, 0x32, 0x54, 0x76,
1414 0x98, 0xBA, 0xDC, 0xFE,
1415 // packet sequence number
1416 0xBC, 0x9A, 0x78, 0x56,
1417 0x34, 0x12,
1418 // private flags
1419 0x00,
1421 // frame type (stream frame with fin)
1422 0xFC,
1423 // stream id
1424 0x04,
1425 // offset
1426 0x54, 0x76, 0x10, 0x32,
1427 0xDC, 0xFE, 0x98, 0xBA,
1428 // data length
1429 0x0c, 0x00,
1430 // data
1431 'h', 'e', 'l', 'l',
1432 'o', ' ', 'w', 'o',
1433 'r', 'l', 'd', '!',
1436 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
1437 EXPECT_TRUE(framer_.ProcessPacket(encrypted));
1439 EXPECT_EQ(QUIC_NO_ERROR, framer_.error());
1440 ASSERT_TRUE(visitor_.header_.get());
1441 EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion));
1443 ASSERT_EQ(1u, visitor_.stream_frames_.size());
1444 EXPECT_EQ(0u, visitor_.ack_frames_.size());
1445 EXPECT_EQ(static_cast<uint64>(0x00000004),
1446 visitor_.stream_frames_[0]->stream_id);
1447 EXPECT_TRUE(visitor_.stream_frames_[0]->fin);
1448 EXPECT_EQ(GG_UINT64_C(0xBA98FEDC32107654),
1449 visitor_.stream_frames_[0]->offset);
1450 CheckStreamFrameData("hello world!", visitor_.stream_frames_[0]);
1452 // Now test framing boundaries.
1453 const size_t stream_id_size = 1;
1454 CheckStreamFrameBoundaries(packet, stream_id_size, !kIncludeVersion);
1457 TEST_P(QuicFramerTest, StreamFrameWithVersion) {
1458 unsigned char packet[] = {
1459 // public flags (version, 8 byte connection_id)
1460 0x3D,
1461 // connection_id
1462 0x10, 0x32, 0x54, 0x76,
1463 0x98, 0xBA, 0xDC, 0xFE,
1464 // version tag
1465 'Q', '0', GetQuicVersionDigitTens(), GetQuicVersionDigitOnes(),
1466 // packet sequence number
1467 0xBC, 0x9A, 0x78, 0x56,
1468 0x34, 0x12,
1469 // private flags
1470 0x00,
1472 // frame type (stream frame with fin)
1473 0xFF,
1474 // stream id
1475 0x04, 0x03, 0x02, 0x01,
1476 // offset
1477 0x54, 0x76, 0x10, 0x32,
1478 0xDC, 0xFE, 0x98, 0xBA,
1479 // data length
1480 0x0c, 0x00,
1481 // data
1482 'h', 'e', 'l', 'l',
1483 'o', ' ', 'w', 'o',
1484 'r', 'l', 'd', '!',
1487 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
1488 EXPECT_TRUE(framer_.ProcessPacket(encrypted));
1490 EXPECT_EQ(QUIC_NO_ERROR, framer_.error());
1491 ASSERT_TRUE(visitor_.header_.get());
1492 EXPECT_TRUE(visitor_.header_->public_header.version_flag);
1493 EXPECT_EQ(GetParam(), visitor_.header_->public_header.versions[0]);
1494 EXPECT_TRUE(CheckDecryption(encrypted, kIncludeVersion));
1496 ASSERT_EQ(1u, visitor_.stream_frames_.size());
1497 EXPECT_EQ(0u, visitor_.ack_frames_.size());
1498 EXPECT_EQ(static_cast<uint64>(0x01020304),
1499 visitor_.stream_frames_[0]->stream_id);
1500 EXPECT_TRUE(visitor_.stream_frames_[0]->fin);
1501 EXPECT_EQ(GG_UINT64_C(0xBA98FEDC32107654),
1502 visitor_.stream_frames_[0]->offset);
1503 CheckStreamFrameData("hello world!", visitor_.stream_frames_[0]);
1505 // Now test framing boundaries.
1506 CheckStreamFrameBoundaries(packet, kQuicMaxStreamIdSize, kIncludeVersion);
1509 TEST_P(QuicFramerTest, RejectPacket) {
1510 visitor_.accept_packet_ = false;
1512 unsigned char packet[] = {
1513 // public flags (8 byte connection_id)
1514 0x3C,
1515 // connection_id
1516 0x10, 0x32, 0x54, 0x76,
1517 0x98, 0xBA, 0xDC, 0xFE,
1518 // packet sequence number
1519 0xBC, 0x9A, 0x78, 0x56,
1520 0x34, 0x12,
1521 // private flags
1522 0x00,
1524 // frame type (stream frame with fin)
1525 0xFF,
1526 // stream id
1527 0x04, 0x03, 0x02, 0x01,
1528 // offset
1529 0x54, 0x76, 0x10, 0x32,
1530 0xDC, 0xFE, 0x98, 0xBA,
1531 // data length
1532 0x0c, 0x00,
1533 // data
1534 'h', 'e', 'l', 'l',
1535 'o', ' ', 'w', 'o',
1536 'r', 'l', 'd', '!',
1539 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
1540 EXPECT_TRUE(framer_.ProcessPacket(encrypted));
1542 EXPECT_EQ(QUIC_NO_ERROR, framer_.error());
1543 ASSERT_TRUE(visitor_.header_.get());
1544 EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion));
1546 ASSERT_EQ(0u, visitor_.stream_frames_.size());
1547 EXPECT_EQ(0u, visitor_.ack_frames_.size());
1550 TEST_P(QuicFramerTest, RejectPublicHeader) {
1551 visitor_.accept_public_header_ = false;
1553 unsigned char packet[] = {
1554 // public flags (8 byte connection_id)
1555 0x3C,
1556 // connection_id
1557 0x10, 0x32, 0x54, 0x76,
1558 0x98, 0xBA, 0xDC, 0xFE,
1561 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
1562 EXPECT_TRUE(framer_.ProcessPacket(encrypted));
1564 EXPECT_EQ(QUIC_NO_ERROR, framer_.error());
1565 ASSERT_TRUE(visitor_.public_header_.get());
1566 ASSERT_FALSE(visitor_.header_.get());
1569 TEST_P(QuicFramerTest, RevivedStreamFrame) {
1570 unsigned char payload[] = {
1571 // frame type (stream frame with fin)
1572 0xFF,
1573 // stream id
1574 0x04, 0x03, 0x02, 0x01,
1575 // offset
1576 0x54, 0x76, 0x10, 0x32,
1577 0xDC, 0xFE, 0x98, 0xBA,
1578 // data length
1579 0x0c, 0x00,
1580 // data
1581 'h', 'e', 'l', 'l',
1582 'o', ' ', 'w', 'o',
1583 'r', 'l', 'd', '!',
1586 QuicPacketHeader header;
1587 header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210);
1588 header.public_header.reset_flag = false;
1589 header.public_header.version_flag = false;
1590 header.fec_flag = true;
1591 header.entropy_flag = true;
1592 header.packet_sequence_number = GG_UINT64_C(0x123456789ABC);
1593 header.fec_group = 0;
1595 // Do not encrypt the payload because the revived payload is post-encryption.
1596 EXPECT_TRUE(framer_.ProcessRevivedPacket(&header,
1597 StringPiece(AsChars(payload),
1598 arraysize(payload))));
1600 EXPECT_EQ(QUIC_NO_ERROR, framer_.error());
1601 ASSERT_EQ(1, visitor_.revived_packets_);
1602 ASSERT_TRUE(visitor_.header_.get());
1603 EXPECT_EQ(GG_UINT64_C(0xFEDCBA9876543210),
1604 visitor_.header_->public_header.connection_id);
1605 EXPECT_FALSE(visitor_.header_->public_header.reset_flag);
1606 EXPECT_FALSE(visitor_.header_->public_header.version_flag);
1607 EXPECT_TRUE(visitor_.header_->fec_flag);
1608 EXPECT_TRUE(visitor_.header_->entropy_flag);
1609 EXPECT_EQ(1 << (header.packet_sequence_number % 8),
1610 visitor_.header_->entropy_hash);
1611 EXPECT_EQ(GG_UINT64_C(0x123456789ABC),
1612 visitor_.header_->packet_sequence_number);
1613 EXPECT_EQ(NOT_IN_FEC_GROUP, visitor_.header_->is_in_fec_group);
1614 EXPECT_EQ(0x00u, visitor_.header_->fec_group);
1616 ASSERT_EQ(1u, visitor_.stream_frames_.size());
1617 EXPECT_EQ(0u, visitor_.ack_frames_.size());
1618 EXPECT_EQ(GG_UINT64_C(0x01020304), visitor_.stream_frames_[0]->stream_id);
1619 EXPECT_TRUE(visitor_.stream_frames_[0]->fin);
1620 EXPECT_EQ(GG_UINT64_C(0xBA98FEDC32107654),
1621 visitor_.stream_frames_[0]->offset);
1622 CheckStreamFrameData("hello world!", visitor_.stream_frames_[0]);
1625 TEST_P(QuicFramerTest, StreamFrameInFecGroup) {
1626 unsigned char packet[] = {
1627 // public flags (8 byte connection_id)
1628 0x3C,
1629 // connection_id
1630 0x10, 0x32, 0x54, 0x76,
1631 0x98, 0xBA, 0xDC, 0xFE,
1632 // packet sequence number
1633 0xBC, 0x9A, 0x78, 0x56,
1634 0x12, 0x34,
1635 // private flags (fec group)
1636 0x02,
1637 // first fec protected packet offset
1638 0x02,
1640 // frame type (stream frame with fin)
1641 0xFF,
1642 // stream id
1643 0x04, 0x03, 0x02, 0x01,
1644 // offset
1645 0x54, 0x76, 0x10, 0x32,
1646 0xDC, 0xFE, 0x98, 0xBA,
1647 // data length
1648 0x0c, 0x00,
1649 // data
1650 'h', 'e', 'l', 'l',
1651 'o', ' ', 'w', 'o',
1652 'r', 'l', 'd', '!',
1655 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
1656 EXPECT_TRUE(framer_.ProcessPacket(encrypted));
1658 EXPECT_EQ(QUIC_NO_ERROR, framer_.error());
1659 ASSERT_TRUE(visitor_.header_.get());
1660 EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion));
1661 EXPECT_EQ(IN_FEC_GROUP, visitor_.header_->is_in_fec_group);
1662 EXPECT_EQ(GG_UINT64_C(0x341256789ABA),
1663 visitor_.header_->fec_group);
1664 const size_t fec_offset =
1665 GetStartOfFecProtectedData(PACKET_8BYTE_CONNECTION_ID,
1666 !kIncludeVersion,
1667 PACKET_6BYTE_SEQUENCE_NUMBER);
1668 EXPECT_EQ(
1669 string(AsChars(packet) + fec_offset, arraysize(packet) - fec_offset),
1670 visitor_.fec_protected_payload_);
1672 ASSERT_EQ(1u, visitor_.stream_frames_.size());
1673 EXPECT_EQ(0u, visitor_.ack_frames_.size());
1674 EXPECT_EQ(GG_UINT64_C(0x01020304), visitor_.stream_frames_[0]->stream_id);
1675 EXPECT_TRUE(visitor_.stream_frames_[0]->fin);
1676 EXPECT_EQ(GG_UINT64_C(0xBA98FEDC32107654),
1677 visitor_.stream_frames_[0]->offset);
1678 CheckStreamFrameData("hello world!", visitor_.stream_frames_[0]);
1681 TEST_P(QuicFramerTest, AckFrameTwoTimestamp) {
1682 unsigned char packet[] = {
1683 // public flags (8 byte connection_id)
1684 0x3C,
1685 // connection_id
1686 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE,
1687 // packet sequence number
1688 0xA8, 0x9A, 0x78, 0x56, 0x34, 0x12,
1689 // private flags (entropy)
1690 0x01,
1692 // frame type (ack frame)
1693 // (has nacks, not truncated, 6 byte largest observed, 1 byte delta)
1694 0x6C,
1695 // entropy hash of all received packets.
1696 0xBA,
1697 // largest observed packet sequence number
1698 0xBF, 0x9A, 0x78, 0x56, 0x34, 0x12,
1699 // Zero delta time.
1700 0x00, 0x00,
1701 // Number of timestamps.
1702 0x02,
1703 // Delta from largest observed.
1704 0x01,
1705 // Delta time.
1706 0x10, 0x32, 0x54, 0x76,
1707 // Delta from largest observed.
1708 0x02,
1709 // Delta time.
1710 0x10, 0x32,
1711 // num missing packets
1712 0x01,
1713 // missing packet delta
1714 0x01,
1715 // 0 more missing packets in range.
1716 0x00,
1717 // Number of revived packets.
1718 0x00,
1721 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
1722 EXPECT_TRUE(framer_.ProcessPacket(encrypted));
1724 EXPECT_EQ(QUIC_NO_ERROR, framer_.error());
1725 ASSERT_TRUE(visitor_.header_.get());
1726 EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion));
1728 EXPECT_EQ(0u, visitor_.stream_frames_.size());
1729 ASSERT_EQ(1u, visitor_.ack_frames_.size());
1730 const QuicAckFrame& frame = *visitor_.ack_frames_[0];
1731 EXPECT_EQ(0xBA, frame.entropy_hash);
1732 EXPECT_EQ(GG_UINT64_C(0x0123456789ABF), frame.largest_observed);
1733 ASSERT_EQ(1u, frame.missing_packets.size());
1734 ASSERT_EQ(2u, frame.received_packet_times.size());
1735 SequenceNumberSet::const_iterator missing_iter =
1736 frame.missing_packets.begin();
1737 EXPECT_EQ(GG_UINT64_C(0x0123456789ABE), *missing_iter);
1739 const size_t kReceivedEntropyOffset = kQuicFrameTypeSize;
1740 const size_t kLargestObservedOffset = kReceivedEntropyOffset +
1741 kQuicEntropyHashSize;
1742 const size_t kMissingDeltaTimeOffset = kLargestObservedOffset +
1743 PACKET_6BYTE_SEQUENCE_NUMBER;
1744 const size_t kNumTimestampsOffset = kMissingDeltaTimeOffset +
1745 kQuicDeltaTimeLargestObservedSize;
1746 const size_t kTimestampDeltaLargestObserved1 = kNumTimestampsOffset +
1747 kQuicNumTimestampsSize;
1748 const size_t kTimestampTimeDeltaLargestObserved1 =
1749 kTimestampDeltaLargestObserved1 + 1;
1750 const size_t kTimestampDeltaLargestObserved2 =
1751 kTimestampTimeDeltaLargestObserved1 + 4;
1752 const size_t kTimestampTimeDeltaLargestObserved2 =
1753 kTimestampDeltaLargestObserved2 + 1;
1754 const size_t kNumMissingPacketOffset =
1755 kTimestampTimeDeltaLargestObserved2 + 2;
1756 const size_t kMissingPacketsOffset = kNumMissingPacketOffset +
1757 kNumberOfNackRangesSize;
1758 const size_t kMissingPacketsRange = kMissingPacketsOffset +
1759 PACKET_1BYTE_SEQUENCE_NUMBER;
1760 const size_t kRevivedPacketsLength = kMissingPacketsRange +
1761 PACKET_1BYTE_SEQUENCE_NUMBER;
1762 // Now test framing boundaries.
1763 const size_t ack_frame_size = kRevivedPacketsLength +
1764 PACKET_1BYTE_SEQUENCE_NUMBER;
1765 for (size_t i = kQuicFrameTypeSize; i < ack_frame_size; ++i) {
1766 string expected_error;
1767 if (i < kLargestObservedOffset) {
1768 expected_error = "Unable to read entropy hash for received packets.";
1769 } else if (i < kMissingDeltaTimeOffset) {
1770 expected_error = "Unable to read largest observed.";
1771 } else if (i < kNumTimestampsOffset) {
1772 expected_error = "Unable to read delta time largest observed.";
1773 } else if (i < kTimestampDeltaLargestObserved1) {
1774 expected_error = "Unable to read num received packets.";
1775 } else if (i < kTimestampTimeDeltaLargestObserved1) {
1776 expected_error = "Unable to read sequence delta in received packets.";
1777 } else if (i < kTimestampDeltaLargestObserved2) {
1778 expected_error = "Unable to read time delta in received packets.";
1779 } else if (i < kTimestampTimeDeltaLargestObserved2) {
1780 expected_error = "Unable to read sequence delta in received packets.";
1781 } else if (i < kNumMissingPacketOffset) {
1782 expected_error =
1783 "Unable to read incremental time delta in received packets.";
1784 } else if (i < kMissingPacketsOffset) {
1785 expected_error = "Unable to read num missing packet ranges.";
1786 } else if (i < kMissingPacketsRange) {
1787 expected_error = "Unable to read missing sequence number delta.";
1788 } else if (i < kRevivedPacketsLength) {
1789 expected_error = "Unable to read missing sequence number range.";
1790 } else {
1791 expected_error = "Unable to read num revived packets.";
1793 CheckProcessingFails(
1794 packet,
1795 i + GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion,
1796 PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP),
1797 expected_error, QUIC_INVALID_ACK_DATA);
1802 TEST_P(QuicFramerTest, AckFrameOneTimestamp) {
1803 unsigned char packet[] = {
1804 // public flags (8 byte connection_id)
1805 0x3C,
1806 // connection_id
1807 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE,
1808 // packet sequence number
1809 0xA8, 0x9A, 0x78, 0x56, 0x34, 0x12,
1810 // private flags (entropy)
1811 0x01,
1813 // frame type (ack frame)
1814 // (has nacks, not truncated, 6 byte largest observed, 1 byte delta)
1815 0x6C,
1816 // entropy hash of all received packets.
1817 0xBA,
1818 // largest observed packet sequence number
1819 0xBF, 0x9A, 0x78, 0x56, 0x34, 0x12,
1820 // Zero delta time.
1821 0x00, 0x00,
1822 // Number of timestamps.
1823 0x01,
1824 // Delta from largest observed.
1825 0x01,
1826 // Delta time.
1827 0x10, 0x32, 0x54, 0x76,
1828 // num missing packets
1829 0x01,
1830 // missing packet delta
1831 0x01,
1832 // 0 more missing packets in range.
1833 0x00,
1834 // Number of revived packets.
1835 0x00,
1838 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
1839 EXPECT_TRUE(framer_.ProcessPacket(encrypted));
1841 EXPECT_EQ(QUIC_NO_ERROR, framer_.error());
1842 ASSERT_TRUE(visitor_.header_.get());
1843 EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion));
1845 EXPECT_EQ(0u, visitor_.stream_frames_.size());
1846 ASSERT_EQ(1u, visitor_.ack_frames_.size());
1847 const QuicAckFrame& frame = *visitor_.ack_frames_[0];
1848 EXPECT_EQ(0xBA, frame.entropy_hash);
1849 EXPECT_EQ(GG_UINT64_C(0x0123456789ABF), frame.largest_observed);
1850 ASSERT_EQ(1u, frame.missing_packets.size());
1851 ASSERT_EQ(1u, frame.received_packet_times.size());
1852 SequenceNumberSet::const_iterator missing_iter =
1853 frame.missing_packets.begin();
1854 EXPECT_EQ(GG_UINT64_C(0x0123456789ABE), *missing_iter);
1856 const size_t kReceivedEntropyOffset = kQuicFrameTypeSize;
1857 const size_t kLargestObservedOffset = kReceivedEntropyOffset +
1858 kQuicEntropyHashSize;
1859 const size_t kMissingDeltaTimeOffset = kLargestObservedOffset +
1860 PACKET_6BYTE_SEQUENCE_NUMBER;
1861 const size_t kNumTimestampsOffset = kMissingDeltaTimeOffset +
1862 kQuicDeltaTimeLargestObservedSize;
1863 const size_t kTimestampDeltaLargestObserved = kNumTimestampsOffset +
1864 kQuicNumTimestampsSize;
1865 const size_t kTimestampTimeDeltaLargestObserved =
1866 kTimestampDeltaLargestObserved + 1;
1867 const size_t kNumMissingPacketOffset = kTimestampTimeDeltaLargestObserved + 4;
1868 const size_t kMissingPacketsOffset = kNumMissingPacketOffset +
1869 kNumberOfNackRangesSize;
1870 const size_t kMissingPacketsRange = kMissingPacketsOffset +
1871 PACKET_1BYTE_SEQUENCE_NUMBER;
1872 const size_t kRevivedPacketsLength = kMissingPacketsRange +
1873 PACKET_1BYTE_SEQUENCE_NUMBER;
1874 // Now test framing boundaries.
1875 const size_t ack_frame_size = kRevivedPacketsLength +
1876 PACKET_1BYTE_SEQUENCE_NUMBER;
1877 for (size_t i = kQuicFrameTypeSize; i < ack_frame_size; ++i) {
1878 string expected_error;
1879 if (i < kLargestObservedOffset) {
1880 expected_error = "Unable to read entropy hash for received packets.";
1881 } else if (i < kMissingDeltaTimeOffset) {
1882 expected_error = "Unable to read largest observed.";
1883 } else if (i < kNumTimestampsOffset) {
1884 expected_error = "Unable to read delta time largest observed.";
1885 } else if (i < kTimestampDeltaLargestObserved) {
1886 expected_error = "Unable to read num received packets.";
1887 } else if (i < kTimestampTimeDeltaLargestObserved) {
1888 expected_error = "Unable to read sequence delta in received packets.";
1889 } else if (i < kNumMissingPacketOffset) {
1890 expected_error = "Unable to read time delta in received packets.";
1891 } else if (i < kMissingPacketsOffset) {
1892 expected_error = "Unable to read num missing packet ranges.";
1893 } else if (i < kMissingPacketsRange) {
1894 expected_error = "Unable to read missing sequence number delta.";
1895 } else if (i < kRevivedPacketsLength) {
1896 expected_error = "Unable to read missing sequence number range.";
1897 } else {
1898 expected_error = "Unable to read num revived packets.";
1900 CheckProcessingFails(
1901 packet,
1902 i + GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion,
1903 PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP),
1904 expected_error, QUIC_INVALID_ACK_DATA);
1909 TEST_P(QuicFramerTest, AckFrame) {
1910 unsigned char packet[] = {
1911 // public flags (8 byte connection_id)
1912 0x3C,
1913 // connection_id
1914 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE,
1915 // packet sequence number
1916 0xA8, 0x9A, 0x78, 0x56, 0x34, 0x12,
1917 // private flags (entropy)
1918 0x01,
1920 // frame type (ack frame)
1921 // (has nacks, not truncated, 6 byte largest observed, 1 byte delta)
1922 0x6C,
1923 // entropy hash of all received packets.
1924 0xBA,
1925 // largest observed packet sequence number
1926 0xBF, 0x9A, 0x78, 0x56, 0x34, 0x12,
1927 // Zero delta time.
1928 0x00, 0x00,
1929 // Number of timestamps.
1930 0x00,
1931 // num missing packets
1932 0x01,
1933 // missing packet delta
1934 0x01,
1935 // 0 more missing packets in range.
1936 0x00,
1937 // Number of revived packets.
1938 0x00,
1941 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
1942 EXPECT_TRUE(framer_.ProcessPacket(encrypted));
1944 EXPECT_EQ(QUIC_NO_ERROR, framer_.error());
1945 ASSERT_TRUE(visitor_.header_.get());
1946 EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion));
1948 EXPECT_EQ(0u, visitor_.stream_frames_.size());
1949 ASSERT_EQ(1u, visitor_.ack_frames_.size());
1950 const QuicAckFrame& frame = *visitor_.ack_frames_[0];
1951 EXPECT_EQ(0xBA, frame.entropy_hash);
1952 EXPECT_EQ(GG_UINT64_C(0x0123456789ABF), frame.largest_observed);
1953 ASSERT_EQ(1u, frame.missing_packets.size());
1954 SequenceNumberSet::const_iterator missing_iter =
1955 frame.missing_packets.begin();
1956 EXPECT_EQ(GG_UINT64_C(0x0123456789ABE), *missing_iter);
1958 const size_t kReceivedEntropyOffset = kQuicFrameTypeSize;
1959 const size_t kLargestObservedOffset = kReceivedEntropyOffset +
1960 kQuicEntropyHashSize;
1961 const size_t kMissingDeltaTimeOffset = kLargestObservedOffset +
1962 PACKET_6BYTE_SEQUENCE_NUMBER;
1963 const size_t kNumTimestampsOffset = kMissingDeltaTimeOffset +
1964 kQuicDeltaTimeLargestObservedSize;
1965 const size_t kNumMissingPacketOffset = kNumTimestampsOffset +
1966 kQuicNumTimestampsSize;
1967 const size_t kMissingPacketsOffset = kNumMissingPacketOffset +
1968 kNumberOfNackRangesSize;
1969 const size_t kMissingPacketsRange = kMissingPacketsOffset +
1970 PACKET_1BYTE_SEQUENCE_NUMBER;
1971 const size_t kRevivedPacketsLength = kMissingPacketsRange +
1972 PACKET_1BYTE_SEQUENCE_NUMBER;
1973 // Now test framing boundaries.
1974 const size_t ack_frame_size = kRevivedPacketsLength +
1975 PACKET_1BYTE_SEQUENCE_NUMBER;
1976 for (size_t i = kQuicFrameTypeSize; i < ack_frame_size; ++i) {
1977 string expected_error;
1978 if (i < kLargestObservedOffset) {
1979 expected_error = "Unable to read entropy hash for received packets.";
1980 } else if (i < kMissingDeltaTimeOffset) {
1981 expected_error = "Unable to read largest observed.";
1982 } else if (i < kNumTimestampsOffset) {
1983 expected_error = "Unable to read delta time largest observed.";
1984 } else if (i < kNumMissingPacketOffset) {
1985 expected_error = "Unable to read num received packets.";
1986 } else if (i < kMissingPacketsOffset) {
1987 expected_error = "Unable to read num missing packet ranges.";
1988 } else if (i < kMissingPacketsRange) {
1989 expected_error = "Unable to read missing sequence number delta.";
1990 } else if (i < kRevivedPacketsLength) {
1991 expected_error = "Unable to read missing sequence number range.";
1992 } else {
1993 expected_error = "Unable to read num revived packets.";
1995 CheckProcessingFails(
1996 packet,
1997 i + GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion,
1998 PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP),
1999 expected_error, QUIC_INVALID_ACK_DATA);
2003 TEST_P(QuicFramerTest, AckFrameRevivedPackets) {
2004 unsigned char packet[] = {
2005 // public flags (8 byte connection_id)
2006 0x3C,
2007 // connection_id
2008 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE,
2009 // packet sequence number
2010 0xA8, 0x9A, 0x78, 0x56, 0x34, 0x12,
2011 // private flags (entropy)
2012 0x01,
2014 // frame type (ack frame)
2015 // (has nacks, not truncated, 6 byte largest observed, 1 byte delta)
2016 0x6C,
2017 // entropy hash of all received packets.
2018 0xBA,
2019 // largest observed packet sequence number
2020 0xBF, 0x9A, 0x78, 0x56, 0x34, 0x12,
2021 // Zero delta time.
2022 0x00, 0x00,
2023 // num received packets.
2024 0x00,
2025 // num missing packets
2026 0x01,
2027 // missing packet delta
2028 0x01,
2029 // 0 more missing packets in range.
2030 0x00,
2031 // Number of revived packets.
2032 0x01,
2033 // Revived packet sequence number.
2034 0xBE, 0x9A, 0x78, 0x56, 0x34, 0x12,
2035 // Number of revived packets.
2036 0x00,
2039 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
2040 EXPECT_TRUE(framer_.ProcessPacket(encrypted));
2042 EXPECT_EQ(QUIC_NO_ERROR, framer_.error());
2043 ASSERT_TRUE(visitor_.header_.get());
2044 EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion));
2046 EXPECT_EQ(0u, visitor_.stream_frames_.size());
2047 ASSERT_EQ(1u, visitor_.ack_frames_.size());
2048 const QuicAckFrame& frame = *visitor_.ack_frames_[0];
2049 EXPECT_EQ(0xBA, frame.entropy_hash);
2050 EXPECT_EQ(GG_UINT64_C(0x0123456789ABF), frame.largest_observed);
2051 ASSERT_EQ(1u, frame.missing_packets.size());
2052 SequenceNumberSet::const_iterator missing_iter =
2053 frame.missing_packets.begin();
2054 EXPECT_EQ(GG_UINT64_C(0x0123456789ABE), *missing_iter);
2056 const size_t kReceivedEntropyOffset = kQuicFrameTypeSize;
2057 const size_t kLargestObservedOffset = kReceivedEntropyOffset +
2058 kQuicEntropyHashSize;
2059 const size_t kMissingDeltaTimeOffset = kLargestObservedOffset +
2060 PACKET_6BYTE_SEQUENCE_NUMBER;
2061 const size_t kNumTimestampsOffset = kMissingDeltaTimeOffset +
2062 kQuicDeltaTimeLargestObservedSize;
2063 const size_t kNumMissingPacketOffset = kNumTimestampsOffset +
2064 kQuicNumTimestampsSize;
2065 const size_t kMissingPacketsOffset = kNumMissingPacketOffset +
2066 kNumberOfNackRangesSize;
2067 const size_t kMissingPacketsRange = kMissingPacketsOffset +
2068 PACKET_1BYTE_SEQUENCE_NUMBER;
2069 const size_t kRevivedPacketsLength = kMissingPacketsRange +
2070 PACKET_1BYTE_SEQUENCE_NUMBER;
2071 const size_t kRevivedPacketSequenceNumberLength = kRevivedPacketsLength +
2072 PACKET_1BYTE_SEQUENCE_NUMBER;
2073 // Now test framing boundaries.
2074 const size_t ack_frame_size = kRevivedPacketSequenceNumberLength +
2075 PACKET_6BYTE_SEQUENCE_NUMBER;
2076 for (size_t i = kQuicFrameTypeSize; i < ack_frame_size; ++i) {
2077 string expected_error;
2078 if (i < kReceivedEntropyOffset) {
2079 expected_error = "Unable to read least unacked delta.";
2080 } else if (i < kLargestObservedOffset) {
2081 expected_error = "Unable to read entropy hash for received packets.";
2082 } else if (i < kMissingDeltaTimeOffset) {
2083 expected_error = "Unable to read largest observed.";
2084 } else if (i < kNumTimestampsOffset) {
2085 expected_error = "Unable to read delta time largest observed.";
2086 } else if (i < kNumMissingPacketOffset) {
2087 expected_error = "Unable to read num received packets.";
2088 } else if (i < kMissingPacketsOffset) {
2089 expected_error = "Unable to read num missing packet ranges.";
2090 } else if (i < kMissingPacketsRange) {
2091 expected_error = "Unable to read missing sequence number delta.";
2092 } else if (i < kRevivedPacketsLength) {
2093 expected_error = "Unable to read missing sequence number range.";
2094 } else if (i < kRevivedPacketSequenceNumberLength) {
2095 expected_error = "Unable to read num revived packets.";
2096 } else {
2097 expected_error = "Unable to read revived packet.";
2099 CheckProcessingFails(
2100 packet,
2101 i + GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion,
2102 PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP),
2103 expected_error, QUIC_INVALID_ACK_DATA);
2107 TEST_P(QuicFramerTest, AckFrameNoNacks) {
2108 unsigned char packet[] = {
2109 // public flags (8 byte connection_id)
2110 0x3C,
2111 // connection_id
2112 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE,
2113 // packet sequence number
2114 0xA8, 0x9A, 0x78, 0x56, 0x34, 0x12,
2115 // private flags (entropy)
2116 0x01,
2118 // frame type (ack frame)
2119 // (no nacks, not truncated, 6 byte largest observed, 1 byte delta)
2120 0x4C,
2121 // entropy hash of all received packets.
2122 0xBA,
2123 // largest observed packet sequence number
2124 0xBF, 0x9A, 0x78, 0x56, 0x34, 0x12,
2125 // Zero delta time.
2126 0x00, 0x00,
2127 // Number of received packets.
2128 0x00,
2131 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
2132 EXPECT_TRUE(framer_.ProcessPacket(encrypted));
2134 EXPECT_EQ(QUIC_NO_ERROR, framer_.error());
2135 ASSERT_TRUE(visitor_.header_.get());
2136 EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion));
2138 EXPECT_EQ(0u, visitor_.stream_frames_.size());
2139 ASSERT_EQ(1u, visitor_.ack_frames_.size());
2140 QuicAckFrame* frame = visitor_.ack_frames_[0];
2141 EXPECT_EQ(0xBA, frame->entropy_hash);
2142 EXPECT_EQ(GG_UINT64_C(0x0123456789ABF), frame->largest_observed);
2143 ASSERT_EQ(0u, frame->missing_packets.size());
2145 // Verify that the packet re-serializes identically.
2146 QuicFrames frames;
2147 frames.push_back(QuicFrame(frame));
2148 scoped_ptr<QuicPacket> data(BuildDataPacket(*visitor_.header_, frames));
2149 ASSERT_TRUE(data != nullptr);
2151 test::CompareCharArraysWithHexError("constructed packet", data->data(),
2152 data->length(), AsChars(packet),
2153 arraysize(packet));
2156 TEST_P(QuicFramerTest, AckFrame500Nacks) {
2157 unsigned char packet[] = {
2158 // public flags (8 byte connection_id)
2159 0x3C,
2160 // connection_id
2161 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE,
2162 // packet sequence number
2163 0xA8, 0x9A, 0x78, 0x56, 0x34, 0x12,
2164 // private flags (entropy)
2165 0x01,
2167 // frame type (ack frame)
2168 // (has nacks, not truncated, 6 byte largest observed, 1 byte delta)
2169 0x6C,
2170 // entropy hash of all received packets.
2171 0xBA,
2172 // largest observed packet sequence number
2173 0xBF, 0x9A, 0x78, 0x56, 0x34, 0x12,
2174 // Zero delta time.
2175 0x00, 0x00,
2176 // No received packets.
2177 0x00,
2178 // num missing packet ranges
2179 0x02,
2180 // missing packet delta
2181 0x01,
2182 // 243 more missing packets in range.
2183 // The ranges are listed in this order so the re-constructed packet
2184 // matches.
2185 0xF3,
2186 // No gap between ranges
2187 0x00,
2188 // 255 more missing packets in range.
2189 0xFF,
2190 // No revived packets.
2191 0x00,
2194 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
2195 EXPECT_TRUE(framer_.ProcessPacket(encrypted));
2197 EXPECT_EQ(QUIC_NO_ERROR, framer_.error());
2198 ASSERT_TRUE(visitor_.header_.get());
2199 EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion));
2201 EXPECT_EQ(0u, visitor_.stream_frames_.size());
2202 ASSERT_EQ(1u, visitor_.ack_frames_.size());
2203 QuicAckFrame* frame = visitor_.ack_frames_[0];
2204 EXPECT_EQ(0xBA, frame->entropy_hash);
2205 EXPECT_EQ(GG_UINT64_C(0x0123456789ABF), frame->largest_observed);
2206 EXPECT_EQ(0u, frame->revived_packets.size());
2207 ASSERT_EQ(500u, frame->missing_packets.size());
2208 SequenceNumberSet::const_iterator first_missing_iter =
2209 frame->missing_packets.begin();
2210 EXPECT_EQ(GG_UINT64_C(0x0123456789ABE) - 499, *first_missing_iter);
2211 SequenceNumberSet::const_reverse_iterator last_missing_iter =
2212 frame->missing_packets.rbegin();
2213 EXPECT_EQ(GG_UINT64_C(0x0123456789ABE), *last_missing_iter);
2215 // Verify that the packet re-serializes identically.
2216 QuicFrames frames;
2217 frames.push_back(QuicFrame(frame));
2218 scoped_ptr<QuicPacket> data(BuildDataPacket(*visitor_.header_, frames));
2219 ASSERT_TRUE(data != nullptr);
2221 test::CompareCharArraysWithHexError("constructed packet",
2222 data->data(), data->length(),
2223 AsChars(packet), arraysize(packet));
2226 TEST_P(QuicFramerTest, StopWaitingFrame) {
2227 unsigned char packet[] = {
2228 // public flags (8 byte connection_id)
2229 0x3C,
2230 // connection_id
2231 0x10, 0x32, 0x54, 0x76,
2232 0x98, 0xBA, 0xDC, 0xFE,
2233 // packet sequence number
2234 0xA8, 0x9A, 0x78, 0x56,
2235 0x34, 0x12,
2236 // private flags (entropy)
2237 0x01,
2239 // frame type (ack frame)
2240 // (has nacks, not truncated, 6 byte largest observed, 1 byte delta)
2241 0x06,
2242 // entropy hash of sent packets till least awaiting - 1.
2243 0xAB,
2244 // least packet sequence number awaiting an ack, delta from sequence number.
2245 0x08, 0x00, 0x00, 0x00,
2246 0x00, 0x00,
2249 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
2250 EXPECT_TRUE(framer_.ProcessPacket(encrypted));
2252 EXPECT_EQ(QUIC_NO_ERROR, framer_.error());
2253 ASSERT_TRUE(visitor_.header_.get());
2254 EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion));
2256 EXPECT_EQ(0u, visitor_.stream_frames_.size());
2257 ASSERT_EQ(1u, visitor_.stop_waiting_frames_.size());
2258 const QuicStopWaitingFrame& frame = *visitor_.stop_waiting_frames_[0];
2259 EXPECT_EQ(0xAB, frame.entropy_hash);
2260 EXPECT_EQ(GG_UINT64_C(0x0123456789AA0), frame.least_unacked);
2262 const size_t kSentEntropyOffset = kQuicFrameTypeSize;
2263 const size_t kLeastUnackedOffset = kSentEntropyOffset + kQuicEntropyHashSize;
2264 const size_t frame_size = 7;
2265 for (size_t i = kQuicFrameTypeSize; i < frame_size; ++i) {
2266 string expected_error;
2267 if (i < kLeastUnackedOffset) {
2268 expected_error = "Unable to read entropy hash for sent packets.";
2269 } else {
2270 expected_error = "Unable to read least unacked delta.";
2272 CheckProcessingFails(
2273 packet,
2274 i + GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion,
2275 PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP),
2276 expected_error, QUIC_INVALID_STOP_WAITING_DATA);
2280 TEST_P(QuicFramerTest, RstStreamFrameQuic) {
2281 unsigned char packet[] = {
2282 // public flags (8 byte connection_id)
2283 0x3C,
2284 // connection_id
2285 0x10, 0x32, 0x54, 0x76,
2286 0x98, 0xBA, 0xDC, 0xFE,
2287 // packet sequence number
2288 0xBC, 0x9A, 0x78, 0x56,
2289 0x34, 0x12,
2290 // private flags
2291 0x00,
2293 // frame type (rst stream frame)
2294 0x01,
2295 // stream id
2296 0x04, 0x03, 0x02, 0x01,
2298 // sent byte offset
2299 0x01, 0x02, 0x03, 0x04,
2300 0x05, 0x06, 0x07, 0x08,
2302 // error code
2303 0x01, 0x00, 0x00, 0x00,
2305 // error details length
2306 0x0d, 0x00,
2307 // error details
2308 'b', 'e', 'c', 'a',
2309 'u', 's', 'e', ' ',
2310 'I', ' ', 'c', 'a',
2311 'n',
2314 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
2315 EXPECT_TRUE(framer_.ProcessPacket(encrypted));
2317 EXPECT_EQ(QUIC_NO_ERROR, framer_.error());
2318 ASSERT_TRUE(visitor_.header_.get());
2319 EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion));
2321 EXPECT_EQ(GG_UINT64_C(0x01020304), visitor_.rst_stream_frame_.stream_id);
2322 EXPECT_EQ(0x01, visitor_.rst_stream_frame_.error_code);
2323 EXPECT_EQ("because I can", visitor_.rst_stream_frame_.error_details);
2324 EXPECT_EQ(GG_UINT64_C(0x0807060504030201),
2325 visitor_.rst_stream_frame_.byte_offset);
2327 // Now test framing boundaries.
2328 for (size_t i = kQuicFrameTypeSize;
2329 i < QuicFramer::GetMinRstStreamFrameSize(); ++i) {
2330 string expected_error;
2331 if (i < kQuicFrameTypeSize + kQuicMaxStreamIdSize) {
2332 expected_error = "Unable to read stream_id.";
2333 } else if (i < kQuicFrameTypeSize + kQuicMaxStreamIdSize +
2334 + kQuicMaxStreamOffsetSize) {
2335 expected_error = "Unable to read rst stream sent byte offset.";
2336 } else if (i < kQuicFrameTypeSize + kQuicMaxStreamIdSize +
2337 + kQuicMaxStreamOffsetSize + kQuicErrorCodeSize) {
2338 expected_error = "Unable to read rst stream error code.";
2339 } else {
2340 expected_error = "Unable to read rst stream error details.";
2342 CheckProcessingFails(
2343 packet,
2344 i + GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion,
2345 PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP),
2346 expected_error, QUIC_INVALID_RST_STREAM_DATA);
2350 TEST_P(QuicFramerTest, ConnectionCloseFrame) {
2351 unsigned char packet[] = {
2352 // public flags (8 byte connection_id)
2353 0x3C,
2354 // connection_id
2355 0x10, 0x32, 0x54, 0x76,
2356 0x98, 0xBA, 0xDC, 0xFE,
2357 // packet sequence number
2358 0xBC, 0x9A, 0x78, 0x56,
2359 0x34, 0x12,
2360 // private flags
2361 0x00,
2363 // frame type (connection close frame)
2364 0x02,
2365 // error code
2366 0x11, 0x00, 0x00, 0x00,
2368 // error details length
2369 0x0d, 0x00,
2370 // error details
2371 'b', 'e', 'c', 'a',
2372 'u', 's', 'e', ' ',
2373 'I', ' ', 'c', 'a',
2374 'n',
2377 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
2378 EXPECT_TRUE(framer_.ProcessPacket(encrypted));
2380 EXPECT_EQ(QUIC_NO_ERROR, framer_.error());
2381 ASSERT_TRUE(visitor_.header_.get());
2382 EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion));
2384 EXPECT_EQ(0u, visitor_.stream_frames_.size());
2386 EXPECT_EQ(0x11, visitor_.connection_close_frame_.error_code);
2387 EXPECT_EQ("because I can", visitor_.connection_close_frame_.error_details);
2389 ASSERT_EQ(0u, visitor_.ack_frames_.size());
2391 // Now test framing boundaries.
2392 for (size_t i = kQuicFrameTypeSize;
2393 i < QuicFramer::GetMinConnectionCloseFrameSize(); ++i) {
2394 string expected_error;
2395 if (i < kQuicFrameTypeSize + kQuicErrorCodeSize) {
2396 expected_error = "Unable to read connection close error code.";
2397 } else {
2398 expected_error = "Unable to read connection close error details.";
2400 CheckProcessingFails(
2401 packet,
2402 i + GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion,
2403 PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP),
2404 expected_error, QUIC_INVALID_CONNECTION_CLOSE_DATA);
2408 TEST_P(QuicFramerTest, GoAwayFrame) {
2409 unsigned char packet[] = {
2410 // public flags (8 byte connection_id)
2411 0x3C,
2412 // connection_id
2413 0x10, 0x32, 0x54, 0x76,
2414 0x98, 0xBA, 0xDC, 0xFE,
2415 // packet sequence number
2416 0xBC, 0x9A, 0x78, 0x56,
2417 0x34, 0x12,
2418 // private flags
2419 0x00,
2421 // frame type (go away frame)
2422 0x03,
2423 // error code
2424 0x09, 0x00, 0x00, 0x00,
2425 // stream id
2426 0x04, 0x03, 0x02, 0x01,
2427 // error details length
2428 0x0d, 0x00,
2429 // error details
2430 'b', 'e', 'c', 'a',
2431 'u', 's', 'e', ' ',
2432 'I', ' ', 'c', 'a',
2433 'n',
2436 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
2437 EXPECT_TRUE(framer_.ProcessPacket(encrypted));
2439 EXPECT_EQ(QUIC_NO_ERROR, framer_.error());
2440 ASSERT_TRUE(visitor_.header_.get());
2441 EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion));
2443 EXPECT_EQ(GG_UINT64_C(0x01020304),
2444 visitor_.goaway_frame_.last_good_stream_id);
2445 EXPECT_EQ(0x9, visitor_.goaway_frame_.error_code);
2446 EXPECT_EQ("because I can", visitor_.goaway_frame_.reason_phrase);
2448 const size_t reason_size = arraysize("because I can") - 1;
2449 // Now test framing boundaries.
2450 for (size_t i = kQuicFrameTypeSize;
2451 i < QuicFramer::GetMinGoAwayFrameSize() + reason_size; ++i) {
2452 string expected_error;
2453 if (i < kQuicFrameTypeSize + kQuicErrorCodeSize) {
2454 expected_error = "Unable to read go away error code.";
2455 } else if (i < kQuicFrameTypeSize + kQuicErrorCodeSize +
2456 kQuicMaxStreamIdSize) {
2457 expected_error = "Unable to read last good stream id.";
2458 } else {
2459 expected_error = "Unable to read goaway reason.";
2461 CheckProcessingFails(
2462 packet,
2463 i + GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion,
2464 PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP),
2465 expected_error, QUIC_INVALID_GOAWAY_DATA);
2469 TEST_P(QuicFramerTest, WindowUpdateFrame) {
2470 unsigned char packet[] = {
2471 // public flags (8 byte connection_id)
2472 0x3C,
2473 // connection_id
2474 0x10, 0x32, 0x54, 0x76,
2475 0x98, 0xBA, 0xDC, 0xFE,
2476 // packet sequence number
2477 0xBC, 0x9A, 0x78, 0x56,
2478 0x34, 0x12,
2479 // private flags
2480 0x00,
2482 // frame type (window update frame)
2483 0x04,
2484 // stream id
2485 0x04, 0x03, 0x02, 0x01,
2486 // byte offset
2487 0x05, 0x06, 0x07, 0x08,
2488 0x09, 0x0a, 0x0b, 0x0c,
2491 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
2493 EXPECT_TRUE(framer_.ProcessPacket(encrypted));
2495 EXPECT_EQ(QUIC_NO_ERROR, framer_.error());
2496 ASSERT_TRUE(visitor_.header_.get());
2497 EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion));
2499 EXPECT_EQ(GG_UINT64_C(0x01020304),
2500 visitor_.window_update_frame_.stream_id);
2501 EXPECT_EQ(GG_UINT64_C(0x0c0b0a0908070605),
2502 visitor_.window_update_frame_.byte_offset);
2504 // Now test framing boundaries.
2505 for (size_t i = kQuicFrameTypeSize;
2506 i < QuicFramer::GetWindowUpdateFrameSize(); ++i) {
2507 string expected_error;
2508 if (i < kQuicFrameTypeSize + kQuicMaxStreamIdSize) {
2509 expected_error = "Unable to read stream_id.";
2510 } else {
2511 expected_error = "Unable to read window byte_offset.";
2513 CheckProcessingFails(
2514 packet,
2515 i + GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion,
2516 PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP),
2517 expected_error, QUIC_INVALID_WINDOW_UPDATE_DATA);
2521 TEST_P(QuicFramerTest, BlockedFrame) {
2522 unsigned char packet[] = {
2523 // public flags (8 byte connection_id)
2524 0x3C,
2525 // connection_id
2526 0x10, 0x32, 0x54, 0x76,
2527 0x98, 0xBA, 0xDC, 0xFE,
2528 // packet sequence number
2529 0xBC, 0x9A, 0x78, 0x56,
2530 0x34, 0x12,
2531 // private flags
2532 0x00,
2534 // frame type (blocked frame)
2535 0x05,
2536 // stream id
2537 0x04, 0x03, 0x02, 0x01,
2540 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
2542 EXPECT_TRUE(framer_.ProcessPacket(encrypted));
2544 EXPECT_EQ(QUIC_NO_ERROR, framer_.error());
2545 ASSERT_TRUE(visitor_.header_.get());
2546 EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion));
2548 EXPECT_EQ(GG_UINT64_C(0x01020304),
2549 visitor_.blocked_frame_.stream_id);
2551 // Now test framing boundaries.
2552 for (size_t i = kQuicFrameTypeSize; i < QuicFramer::GetBlockedFrameSize();
2553 ++i) {
2554 string expected_error = "Unable to read stream_id.";
2555 CheckProcessingFails(
2556 packet,
2557 i + GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion,
2558 PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP),
2559 expected_error, QUIC_INVALID_BLOCKED_DATA);
2563 TEST_P(QuicFramerTest, PingFrame) {
2564 unsigned char packet[] = {
2565 // public flags (8 byte connection_id)
2566 0x3C,
2567 // connection_id
2568 0x10, 0x32, 0x54, 0x76,
2569 0x98, 0xBA, 0xDC, 0xFE,
2570 // packet sequence number
2571 0xBC, 0x9A, 0x78, 0x56,
2572 0x34, 0x12,
2573 // private flags
2574 0x00,
2576 // frame type (ping frame)
2577 0x07,
2580 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
2581 EXPECT_TRUE(framer_.ProcessPacket(encrypted));
2583 EXPECT_EQ(QUIC_NO_ERROR, framer_.error());
2584 ASSERT_TRUE(visitor_.header_.get());
2585 EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion));
2587 EXPECT_EQ(1u, visitor_.ping_frames_.size());
2589 // No need to check the PING frame boundaries because it has no payload.
2592 TEST_P(QuicFramerTest, PublicResetPacket) {
2593 unsigned char packet[] = {
2594 // public flags (public reset, 8 byte connection_id)
2595 0x0E,
2596 // connection_id
2597 0x10, 0x32, 0x54, 0x76,
2598 0x98, 0xBA, 0xDC, 0xFE,
2599 // message tag (kPRST)
2600 'P', 'R', 'S', 'T',
2601 // num_entries (2) + padding
2602 0x02, 0x00, 0x00, 0x00,
2603 // tag kRNON
2604 'R', 'N', 'O', 'N',
2605 // end offset 8
2606 0x08, 0x00, 0x00, 0x00,
2607 // tag kRSEQ
2608 'R', 'S', 'E', 'Q',
2609 // end offset 16
2610 0x10, 0x00, 0x00, 0x00,
2611 // nonce proof
2612 0x89, 0x67, 0x45, 0x23,
2613 0x01, 0xEF, 0xCD, 0xAB,
2614 // rejected sequence number
2615 0xBC, 0x9A, 0x78, 0x56,
2616 0x34, 0x12, 0x00, 0x00,
2619 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
2620 EXPECT_TRUE(framer_.ProcessPacket(encrypted));
2621 ASSERT_EQ(QUIC_NO_ERROR, framer_.error());
2622 ASSERT_TRUE(visitor_.public_reset_packet_.get());
2623 EXPECT_EQ(GG_UINT64_C(0xFEDCBA9876543210),
2624 visitor_.public_reset_packet_->public_header.connection_id);
2625 EXPECT_TRUE(visitor_.public_reset_packet_->public_header.reset_flag);
2626 EXPECT_FALSE(visitor_.public_reset_packet_->public_header.version_flag);
2627 EXPECT_EQ(GG_UINT64_C(0xABCDEF0123456789),
2628 visitor_.public_reset_packet_->nonce_proof);
2629 EXPECT_EQ(GG_UINT64_C(0x123456789ABC),
2630 visitor_.public_reset_packet_->rejected_sequence_number);
2631 EXPECT_TRUE(
2632 visitor_.public_reset_packet_->client_address.address().empty());
2634 // Now test framing boundaries.
2635 for (size_t i = 0; i < arraysize(packet); ++i) {
2636 string expected_error;
2637 DVLOG(1) << "iteration: " << i;
2638 if (i < kConnectionIdOffset) {
2639 expected_error = "Unable to read public flags.";
2640 CheckProcessingFails(packet, i, expected_error,
2641 QUIC_INVALID_PACKET_HEADER);
2642 } else if (i < kPublicResetPacketMessageTagOffset) {
2643 expected_error = "Unable to read ConnectionId.";
2644 CheckProcessingFails(packet, i, expected_error,
2645 QUIC_INVALID_PACKET_HEADER);
2646 } else {
2647 expected_error = "Unable to read reset message.";
2648 CheckProcessingFails(packet, i, expected_error,
2649 QUIC_INVALID_PUBLIC_RST_PACKET);
2654 TEST_P(QuicFramerTest, PublicResetPacketWithTrailingJunk) {
2655 unsigned char packet[] = {
2656 // public flags (public reset, 8 byte connection_id)
2657 0x0E,
2658 // connection_id
2659 0x10, 0x32, 0x54, 0x76,
2660 0x98, 0xBA, 0xDC, 0xFE,
2661 // message tag (kPRST)
2662 'P', 'R', 'S', 'T',
2663 // num_entries (2) + padding
2664 0x02, 0x00, 0x00, 0x00,
2665 // tag kRNON
2666 'R', 'N', 'O', 'N',
2667 // end offset 8
2668 0x08, 0x00, 0x00, 0x00,
2669 // tag kRSEQ
2670 'R', 'S', 'E', 'Q',
2671 // end offset 16
2672 0x10, 0x00, 0x00, 0x00,
2673 // nonce proof
2674 0x89, 0x67, 0x45, 0x23,
2675 0x01, 0xEF, 0xCD, 0xAB,
2676 // rejected sequence number
2677 0xBC, 0x9A, 0x78, 0x56,
2678 0x34, 0x12, 0x00, 0x00,
2679 // trailing junk
2680 'j', 'u', 'n', 'k',
2683 string expected_error = "Unable to read reset message.";
2684 CheckProcessingFails(packet, arraysize(packet), expected_error,
2685 QUIC_INVALID_PUBLIC_RST_PACKET);
2688 TEST_P(QuicFramerTest, PublicResetPacketWithClientAddress) {
2689 unsigned char packet[] = {
2690 // public flags (public reset, 8 byte connection_id)
2691 0x0E,
2692 // connection_id
2693 0x10, 0x32, 0x54, 0x76,
2694 0x98, 0xBA, 0xDC, 0xFE,
2695 // message tag (kPRST)
2696 'P', 'R', 'S', 'T',
2697 // num_entries (3) + padding
2698 0x03, 0x00, 0x00, 0x00,
2699 // tag kRNON
2700 'R', 'N', 'O', 'N',
2701 // end offset 8
2702 0x08, 0x00, 0x00, 0x00,
2703 // tag kRSEQ
2704 'R', 'S', 'E', 'Q',
2705 // end offset 16
2706 0x10, 0x00, 0x00, 0x00,
2707 // tag kCADR
2708 'C', 'A', 'D', 'R',
2709 // end offset 24
2710 0x18, 0x00, 0x00, 0x00,
2711 // nonce proof
2712 0x89, 0x67, 0x45, 0x23,
2713 0x01, 0xEF, 0xCD, 0xAB,
2714 // rejected sequence number
2715 0xBC, 0x9A, 0x78, 0x56,
2716 0x34, 0x12, 0x00, 0x00,
2717 // client address: 4.31.198.44:443
2718 0x02, 0x00,
2719 0x04, 0x1F, 0xC6, 0x2C,
2720 0xBB, 0x01,
2723 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
2724 EXPECT_TRUE(framer_.ProcessPacket(encrypted));
2725 ASSERT_EQ(QUIC_NO_ERROR, framer_.error());
2726 ASSERT_TRUE(visitor_.public_reset_packet_.get());
2727 EXPECT_EQ(GG_UINT64_C(0xFEDCBA9876543210),
2728 visitor_.public_reset_packet_->public_header.connection_id);
2729 EXPECT_TRUE(visitor_.public_reset_packet_->public_header.reset_flag);
2730 EXPECT_FALSE(visitor_.public_reset_packet_->public_header.version_flag);
2731 EXPECT_EQ(GG_UINT64_C(0xABCDEF0123456789),
2732 visitor_.public_reset_packet_->nonce_proof);
2733 EXPECT_EQ(GG_UINT64_C(0x123456789ABC),
2734 visitor_.public_reset_packet_->rejected_sequence_number);
2735 EXPECT_EQ("4.31.198.44",
2736 IPAddressToString(visitor_.public_reset_packet_->
2737 client_address.address()));
2738 EXPECT_EQ(443, visitor_.public_reset_packet_->client_address.port());
2740 // Now test framing boundaries.
2741 for (size_t i = 0; i < arraysize(packet); ++i) {
2742 string expected_error;
2743 DVLOG(1) << "iteration: " << i;
2744 if (i < kConnectionIdOffset) {
2745 expected_error = "Unable to read public flags.";
2746 CheckProcessingFails(packet, i, expected_error,
2747 QUIC_INVALID_PACKET_HEADER);
2748 } else if (i < kPublicResetPacketMessageTagOffset) {
2749 expected_error = "Unable to read ConnectionId.";
2750 CheckProcessingFails(packet, i, expected_error,
2751 QUIC_INVALID_PACKET_HEADER);
2752 } else {
2753 expected_error = "Unable to read reset message.";
2754 CheckProcessingFails(packet, i, expected_error,
2755 QUIC_INVALID_PUBLIC_RST_PACKET);
2760 TEST_P(QuicFramerTest, VersionNegotiationPacket) {
2761 unsigned char packet[] = {
2762 // public flags (version, 8 byte connection_id)
2763 0x3D,
2764 // connection_id
2765 0x10, 0x32, 0x54, 0x76,
2766 0x98, 0xBA, 0xDC, 0xFE,
2767 // version tag
2768 'Q', '0', GetQuicVersionDigitTens(), GetQuicVersionDigitOnes(),
2769 'Q', '2', '.', '0',
2772 QuicFramerPeer::SetIsServer(&framer_, false);
2774 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
2775 EXPECT_TRUE(framer_.ProcessPacket(encrypted));
2776 ASSERT_EQ(QUIC_NO_ERROR, framer_.error());
2777 ASSERT_TRUE(visitor_.version_negotiation_packet_.get());
2778 EXPECT_EQ(2u, visitor_.version_negotiation_packet_->versions.size());
2779 EXPECT_EQ(GetParam(), visitor_.version_negotiation_packet_->versions[0]);
2781 for (size_t i = 0; i <= kPublicFlagsSize + PACKET_8BYTE_CONNECTION_ID; ++i) {
2782 string expected_error;
2783 QuicErrorCode error_code = QUIC_INVALID_PACKET_HEADER;
2784 if (i < kConnectionIdOffset) {
2785 expected_error = "Unable to read public flags.";
2786 } else if (i < kVersionOffset) {
2787 expected_error = "Unable to read ConnectionId.";
2788 } else {
2789 expected_error = "Unable to read supported version in negotiation.";
2790 error_code = QUIC_INVALID_VERSION_NEGOTIATION_PACKET;
2792 CheckProcessingFails(packet, i, expected_error, error_code);
2796 TEST_P(QuicFramerTest, FecPacket) {
2797 unsigned char packet[] = {
2798 // public flags (8 byte connection_id)
2799 0x3C,
2800 // connection_id
2801 0x10, 0x32, 0x54, 0x76,
2802 0x98, 0xBA, 0xDC, 0xFE,
2803 // packet sequence number
2804 0xBC, 0x9A, 0x78, 0x56,
2805 0x34, 0x12,
2806 // private flags (fec group & FEC)
2807 0x06,
2808 // first fec protected packet offset
2809 0x01,
2811 // redundancy
2812 'a', 'b', 'c', 'd',
2813 'e', 'f', 'g', 'h',
2814 'i', 'j', 'k', 'l',
2815 'm', 'n', 'o', 'p',
2818 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
2819 EXPECT_TRUE(framer_.ProcessPacket(encrypted));
2821 EXPECT_EQ(QUIC_NO_ERROR, framer_.error());
2822 ASSERT_TRUE(visitor_.header_.get());
2823 EXPECT_TRUE(CheckDecryption(encrypted, !kIncludeVersion));
2825 EXPECT_EQ(0u, visitor_.stream_frames_.size());
2826 EXPECT_EQ(0u, visitor_.ack_frames_.size());
2827 ASSERT_EQ(1, visitor_.fec_count_);
2828 const QuicFecData& fec_data = *visitor_.fec_data_[0];
2829 EXPECT_EQ(GG_UINT64_C(0x0123456789ABB), fec_data.fec_group);
2830 EXPECT_EQ("abcdefghijklmnop", fec_data.redundancy);
2833 TEST_P(QuicFramerTest, BuildPaddingFramePacket) {
2834 QuicPacketHeader header;
2835 header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210);
2836 header.public_header.reset_flag = false;
2837 header.public_header.version_flag = false;
2838 header.fec_flag = false;
2839 header.entropy_flag = false;
2840 header.packet_sequence_number = GG_UINT64_C(0x123456789ABC);
2841 header.fec_group = 0;
2843 QuicPaddingFrame padding_frame;
2845 QuicFrames frames;
2846 frames.push_back(QuicFrame(&padding_frame));
2848 unsigned char packet[kMaxPacketSize] = {
2849 // public flags (8 byte connection_id)
2850 0x3C,
2851 // connection_id
2852 0x10, 0x32, 0x54, 0x76,
2853 0x98, 0xBA, 0xDC, 0xFE,
2854 // packet sequence number
2855 0xBC, 0x9A, 0x78, 0x56,
2856 0x34, 0x12,
2857 // private flags
2858 0x00,
2860 // frame type (padding frame)
2861 0x00,
2862 0x00, 0x00, 0x00, 0x00
2865 uint64 header_size =
2866 GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion,
2867 PACKET_6BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP);
2868 memset(packet + header_size + 1, 0x00, kMaxPacketSize - header_size - 1);
2870 scoped_ptr<QuicPacket> data(BuildDataPacket(header, frames));
2871 ASSERT_TRUE(data != nullptr);
2873 test::CompareCharArraysWithHexError("constructed packet",
2874 data->data(), data->length(),
2875 AsChars(packet),
2876 arraysize(packet));
2879 TEST_P(QuicFramerTest, Build4ByteSequenceNumberPaddingFramePacket) {
2880 QuicPacketHeader header;
2881 header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210);
2882 header.public_header.reset_flag = false;
2883 header.public_header.version_flag = false;
2884 header.fec_flag = false;
2885 header.entropy_flag = false;
2886 header.public_header.sequence_number_length = PACKET_4BYTE_SEQUENCE_NUMBER;
2887 header.packet_sequence_number = GG_UINT64_C(0x123456789ABC);
2888 header.fec_group = 0;
2890 QuicPaddingFrame padding_frame;
2892 QuicFrames frames;
2893 frames.push_back(QuicFrame(&padding_frame));
2895 unsigned char packet[kMaxPacketSize] = {
2896 // public flags (8 byte connection_id and 4 byte sequence number)
2897 0x2C,
2898 // connection_id
2899 0x10, 0x32, 0x54, 0x76,
2900 0x98, 0xBA, 0xDC, 0xFE,
2901 // packet sequence number
2902 0xBC, 0x9A, 0x78, 0x56,
2903 // private flags
2904 0x00,
2906 // frame type (padding frame)
2907 0x00,
2908 0x00, 0x00, 0x00, 0x00
2911 uint64 header_size =
2912 GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion,
2913 PACKET_4BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP);
2914 memset(packet + header_size + 1, 0x00, kMaxPacketSize - header_size - 1);
2916 scoped_ptr<QuicPacket> data(BuildDataPacket(header, frames));
2917 ASSERT_TRUE(data != nullptr);
2919 test::CompareCharArraysWithHexError("constructed packet",
2920 data->data(), data->length(),
2921 AsChars(packet),
2922 arraysize(packet));
2925 TEST_P(QuicFramerTest, Build2ByteSequenceNumberPaddingFramePacket) {
2926 QuicPacketHeader header;
2927 header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210);
2928 header.public_header.reset_flag = false;
2929 header.public_header.version_flag = false;
2930 header.fec_flag = false;
2931 header.entropy_flag = false;
2932 header.public_header.sequence_number_length = PACKET_2BYTE_SEQUENCE_NUMBER;
2933 header.packet_sequence_number = GG_UINT64_C(0x123456789ABC);
2934 header.fec_group = 0;
2936 QuicPaddingFrame padding_frame;
2938 QuicFrames frames;
2939 frames.push_back(QuicFrame(&padding_frame));
2941 unsigned char packet[kMaxPacketSize] = {
2942 // public flags (8 byte connection_id and 2 byte sequence number)
2943 0x1C,
2944 // connection_id
2945 0x10, 0x32, 0x54, 0x76,
2946 0x98, 0xBA, 0xDC, 0xFE,
2947 // packet sequence number
2948 0xBC, 0x9A,
2949 // private flags
2950 0x00,
2952 // frame type (padding frame)
2953 0x00,
2954 0x00, 0x00, 0x00, 0x00
2957 uint64 header_size =
2958 GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion,
2959 PACKET_2BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP);
2960 memset(packet + header_size + 1, 0x00, kMaxPacketSize - header_size - 1);
2962 scoped_ptr<QuicPacket> data(BuildDataPacket(header, frames));
2963 ASSERT_TRUE(data != nullptr);
2965 test::CompareCharArraysWithHexError("constructed packet",
2966 data->data(), data->length(),
2967 AsChars(packet),
2968 arraysize(packet));
2971 TEST_P(QuicFramerTest, Build1ByteSequenceNumberPaddingFramePacket) {
2972 QuicPacketHeader header;
2973 header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210);
2974 header.public_header.reset_flag = false;
2975 header.public_header.version_flag = false;
2976 header.fec_flag = false;
2977 header.entropy_flag = false;
2978 header.public_header.sequence_number_length = PACKET_1BYTE_SEQUENCE_NUMBER;
2979 header.packet_sequence_number = GG_UINT64_C(0x123456789ABC);
2980 header.fec_group = 0;
2982 QuicPaddingFrame padding_frame;
2984 QuicFrames frames;
2985 frames.push_back(QuicFrame(&padding_frame));
2987 unsigned char packet[kMaxPacketSize] = {
2988 // public flags (8 byte connection_id and 1 byte sequence number)
2989 0x0C,
2990 // connection_id
2991 0x10, 0x32, 0x54, 0x76,
2992 0x98, 0xBA, 0xDC, 0xFE,
2993 // packet sequence number
2994 0xBC,
2995 // private flags
2996 0x00,
2998 // frame type (padding frame)
2999 0x00,
3000 0x00, 0x00, 0x00, 0x00
3003 uint64 header_size =
3004 GetPacketHeaderSize(PACKET_8BYTE_CONNECTION_ID, !kIncludeVersion,
3005 PACKET_1BYTE_SEQUENCE_NUMBER, NOT_IN_FEC_GROUP);
3006 memset(packet + header_size + 1, 0x00, kMaxPacketSize - header_size - 1);
3008 scoped_ptr<QuicPacket> data(BuildDataPacket(header, frames));
3009 ASSERT_TRUE(data != nullptr);
3011 test::CompareCharArraysWithHexError("constructed packet",
3012 data->data(), data->length(),
3013 AsChars(packet),
3014 arraysize(packet));
3017 TEST_P(QuicFramerTest, BuildStreamFramePacket) {
3018 QuicPacketHeader header;
3019 header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210);
3020 header.public_header.reset_flag = false;
3021 header.public_header.version_flag = false;
3022 header.fec_flag = false;
3023 header.entropy_flag = true;
3024 header.packet_sequence_number = GG_UINT64_C(0x77123456789ABC);
3025 header.fec_group = 0;
3027 QuicStreamFrame stream_frame;
3028 stream_frame.stream_id = 0x01020304;
3029 stream_frame.fin = true;
3030 stream_frame.offset = GG_UINT64_C(0xBA98FEDC32107654);
3031 stream_frame.data = MakeIOVector("hello world!");
3033 QuicFrames frames;
3034 frames.push_back(QuicFrame(&stream_frame));
3036 unsigned char packet[] = {
3037 // public flags (8 byte connection_id)
3038 0x3C,
3039 // connection_id
3040 0x10, 0x32, 0x54, 0x76,
3041 0x98, 0xBA, 0xDC, 0xFE,
3042 // packet sequence number
3043 0xBC, 0x9A, 0x78, 0x56,
3044 0x34, 0x12,
3045 // private flags (entropy)
3046 0x01,
3048 // frame type (stream frame with fin and no length)
3049 0xDF,
3050 // stream id
3051 0x04, 0x03, 0x02, 0x01,
3052 // offset
3053 0x54, 0x76, 0x10, 0x32,
3054 0xDC, 0xFE, 0x98, 0xBA,
3055 // data
3056 'h', 'e', 'l', 'l',
3057 'o', ' ', 'w', 'o',
3058 'r', 'l', 'd', '!',
3061 scoped_ptr<QuicPacket> data(BuildDataPacket(header, frames));
3062 ASSERT_TRUE(data != nullptr);
3064 test::CompareCharArraysWithHexError("constructed packet",
3065 data->data(), data->length(),
3066 AsChars(packet), arraysize(packet));
3069 TEST_P(QuicFramerTest, BuildStreamFramePacketInFecGroup) {
3070 QuicPacketHeader header;
3071 header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210);
3072 header.public_header.reset_flag = false;
3073 header.public_header.version_flag = false;
3074 header.fec_flag = false;
3075 header.entropy_flag = true;
3076 header.packet_sequence_number = GG_UINT64_C(0x77123456789ABC);
3077 header.is_in_fec_group = IN_FEC_GROUP;
3078 header.fec_group = GG_UINT64_C(0x77123456789ABC);
3080 QuicStreamFrame stream_frame;
3081 stream_frame.stream_id = 0x01020304;
3082 stream_frame.fin = true;
3083 stream_frame.offset = GG_UINT64_C(0xBA98FEDC32107654);
3084 stream_frame.data = MakeIOVector("hello world!");
3086 QuicFrames frames;
3087 frames.push_back(QuicFrame(&stream_frame));
3088 unsigned char packet[] = {
3089 // public flags (8 byte connection_id)
3090 0x3C,
3091 // connection_id
3092 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE,
3093 // packet sequence number
3094 0xBC, 0x9A, 0x78, 0x56, 0x34, 0x12,
3095 // private flags (entropy, is_in_fec_group)
3096 0x03,
3097 // FEC group
3098 0x00,
3099 // frame type (stream frame with fin and data length field)
3100 0xFF,
3101 // stream id
3102 0x04, 0x03, 0x02, 0x01,
3103 // offset
3104 0x54, 0x76, 0x10, 0x32, 0xDC, 0xFE, 0x98, 0xBA,
3105 // data length (since packet is in an FEC group)
3106 0x0C, 0x00,
3107 // data
3108 'h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', '!',
3111 scoped_ptr<QuicPacket> data(BuildDataPacket(header, frames));
3112 ASSERT_TRUE(data != nullptr);
3114 test::CompareCharArraysWithHexError("constructed packet",
3115 data->data(), data->length(),
3116 AsChars(packet), arraysize(packet));
3119 TEST_P(QuicFramerTest, BuildStreamFramePacketWithVersionFlag) {
3120 QuicPacketHeader header;
3121 header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210);
3122 header.public_header.reset_flag = false;
3123 header.public_header.version_flag = true;
3124 header.fec_flag = false;
3125 header.entropy_flag = true;
3126 header.packet_sequence_number = GG_UINT64_C(0x77123456789ABC);
3127 header.fec_group = 0;
3129 QuicStreamFrame stream_frame;
3130 stream_frame.stream_id = 0x01020304;
3131 stream_frame.fin = true;
3132 stream_frame.offset = GG_UINT64_C(0xBA98FEDC32107654);
3133 stream_frame.data = MakeIOVector("hello world!");
3135 QuicFrames frames;
3136 frames.push_back(QuicFrame(&stream_frame));
3138 unsigned char packet[] = {
3139 // public flags (version, 8 byte connection_id)
3140 0x3D,
3141 // connection_id
3142 0x10,
3143 0x32,
3144 0x54,
3145 0x76,
3146 0x98,
3147 0xBA,
3148 0xDC,
3149 0xFE,
3150 // version tag
3151 'Q',
3152 '0',
3153 GetQuicVersionDigitTens(),
3154 GetQuicVersionDigitOnes(),
3155 // packet sequence number
3156 0xBC,
3157 0x9A,
3158 0x78,
3159 0x56,
3160 0x34,
3161 0x12,
3162 // private flags (entropy)
3163 0x01,
3165 // frame type (stream frame with fin and no length)
3166 0xDF,
3167 // stream id
3168 0x04,
3169 0x03,
3170 0x02,
3171 0x01,
3172 // offset
3173 0x54,
3174 0x76,
3175 0x10,
3176 0x32,
3177 0xDC,
3178 0xFE,
3179 0x98,
3180 0xBA,
3181 // data
3182 'h',
3183 'e',
3184 'l',
3185 'l',
3186 'o',
3187 ' ',
3188 'w',
3189 'o',
3190 'r',
3191 'l',
3192 'd',
3193 '!',
3196 QuicFramerPeer::SetIsServer(&framer_, false);
3197 scoped_ptr<QuicPacket> data(BuildDataPacket(header, frames));
3198 ASSERT_TRUE(data != nullptr);
3200 test::CompareCharArraysWithHexError("constructed packet",
3201 data->data(), data->length(),
3202 AsChars(packet), arraysize(packet));
3205 TEST_P(QuicFramerTest, BuildVersionNegotiationPacket) {
3206 QuicPacketPublicHeader header;
3207 header.connection_id = GG_UINT64_C(0xFEDCBA9876543210);
3208 header.reset_flag = false;
3209 header.version_flag = true;
3211 unsigned char packet[] = {
3212 // public flags (version, 8 byte connection_id)
3213 0x0D,
3214 // connection_id
3215 0x10,
3216 0x32,
3217 0x54,
3218 0x76,
3219 0x98,
3220 0xBA,
3221 0xDC,
3222 0xFE,
3223 // version tag
3224 'Q',
3225 '0',
3226 GetQuicVersionDigitTens(),
3227 GetQuicVersionDigitOnes(),
3230 QuicVersionVector versions;
3231 versions.push_back(GetParam());
3232 scoped_ptr<QuicEncryptedPacket> data(
3233 framer_.BuildVersionNegotiationPacket(header, versions));
3235 test::CompareCharArraysWithHexError("constructed packet", data->data(),
3236 data->length(), AsChars(packet),
3237 arraysize(packet));
3240 TEST_P(QuicFramerTest, BuildAckFramePacket) {
3241 QuicPacketHeader header;
3242 header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210);
3243 header.public_header.reset_flag = false;
3244 header.public_header.version_flag = false;
3245 header.fec_flag = false;
3246 header.entropy_flag = true;
3247 header.packet_sequence_number = GG_UINT64_C(0x770123456789AA8);
3248 header.fec_group = 0;
3250 QuicAckFrame ack_frame;
3251 ack_frame.entropy_hash = 0x43;
3252 ack_frame.largest_observed = GG_UINT64_C(0x770123456789ABF);
3253 ack_frame.delta_time_largest_observed = QuicTime::Delta::Zero();
3254 ack_frame.missing_packets.insert(GG_UINT64_C(0x770123456789ABE));
3256 QuicFrames frames;
3257 frames.push_back(QuicFrame(&ack_frame));
3259 unsigned char packet[] = {
3260 // public flags (8 byte connection_id)
3261 0x3C,
3262 // connection_id
3263 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE,
3264 // packet sequence number
3265 0xA8, 0x9A, 0x78, 0x56, 0x34, 0x12,
3266 // private flags (entropy)
3267 0x01,
3269 // frame type (ack frame)
3270 // (has nacks, not truncated, 6 byte largest observed, 1 byte delta)
3271 0x6C,
3272 // entropy hash of all received packets.
3273 0x43,
3274 // largest observed packet sequence number
3275 0xBF, 0x9A, 0x78, 0x56, 0x34, 0x12,
3276 // Zero delta time.
3277 0x00, 0x00,
3278 // num received packets.
3279 0x00,
3280 // num missing packet ranges
3281 0x01,
3282 // missing packet delta
3283 0x01,
3284 // 0 more missing packets in range.
3285 0x00,
3286 // 0 revived packets.
3287 0x00,
3290 scoped_ptr<QuicPacket> data(BuildDataPacket(header, frames));
3291 ASSERT_TRUE(data != nullptr);
3293 test::CompareCharArraysWithHexError("constructed packet",
3294 data->data(), data->length(),
3295 AsChars(packet), arraysize(packet));
3298 // TODO(jri): Add test for tuncated packets in which the original ack frame had
3299 // revived packets. (In both the large and small packet cases below).
3301 TEST_P(QuicFramerTest, BuildTruncatedAckFrameLargePacket) {
3302 QuicPacketHeader header;
3303 header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210);
3304 header.public_header.reset_flag = false;
3305 header.public_header.version_flag = false;
3306 header.fec_flag = false;
3307 header.entropy_flag = true;
3308 header.packet_sequence_number = GG_UINT64_C(0x770123456789AA8);
3309 header.fec_group = 0;
3311 QuicAckFrame ack_frame;
3312 // This entropy hash is different from what shows up in the packet below,
3313 // since entropy is recomputed by the framer on ack truncation (by
3314 // TestEntropyCalculator for this test.)
3315 ack_frame.entropy_hash = 0x43;
3316 ack_frame.largest_observed = 2 * 300;
3317 ack_frame.delta_time_largest_observed = QuicTime::Delta::Zero();
3318 for (size_t i = 1; i < 2 * 300; i += 2) {
3319 ack_frame.missing_packets.insert(i);
3322 QuicFrames frames;
3323 frames.push_back(QuicFrame(&ack_frame));
3325 unsigned char packet[] = {
3326 // public flags (8 byte connection_id)
3327 0x3C,
3328 // connection_id
3329 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE,
3330 // packet sequence number
3331 0xA8, 0x9A, 0x78, 0x56, 0x34, 0x12,
3332 // private flags (entropy)
3333 0x01,
3335 // frame type (ack frame)
3336 // (has nacks, is truncated, 2 byte largest observed, 1 byte delta)
3337 0x74,
3338 // entropy hash of all received packets, set to 1 by TestEntropyCalculator
3339 // since ack is truncated.
3340 0x01,
3341 // 2-byte largest observed packet sequence number.
3342 // Expected to be 510 (0x1FE), since only 255 nack ranges can fit.
3343 0xFE, 0x01,
3344 // Zero delta time.
3345 0x00, 0x00,
3346 // num missing packet ranges (limited to 255 by size of this field).
3347 0xFF,
3348 // {missing packet delta, further missing packets in range}
3349 // 6 nack ranges x 42 + 3 nack ranges
3350 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3351 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3352 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3353 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3354 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3355 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3356 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3357 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3358 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3359 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3361 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3362 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3363 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3364 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3365 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3366 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3367 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3368 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3369 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3370 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3372 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3373 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3374 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3375 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3376 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3377 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3378 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3379 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3380 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3381 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3383 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3384 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3385 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3386 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3387 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3388 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3389 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3390 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3391 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3392 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3394 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3395 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3396 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3398 // 0 revived packets.
3399 0x00,
3402 scoped_ptr<QuicPacket> data(BuildDataPacket(header, frames));
3403 ASSERT_TRUE(data != nullptr);
3405 test::CompareCharArraysWithHexError("constructed packet",
3406 data->data(), data->length(),
3407 AsChars(packet), arraysize(packet));
3410 TEST_P(QuicFramerTest, BuildTruncatedAckFrameSmallPacket) {
3411 QuicPacketHeader header;
3412 header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210);
3413 header.public_header.reset_flag = false;
3414 header.public_header.version_flag = false;
3415 header.fec_flag = false;
3416 header.entropy_flag = true;
3417 header.packet_sequence_number = GG_UINT64_C(0x770123456789AA8);
3418 header.fec_group = 0;
3420 QuicAckFrame ack_frame;
3421 // This entropy hash is different from what shows up in the packet below,
3422 // since entropy is recomputed by the framer on ack truncation (by
3423 // TestEntropyCalculator for this test.)
3424 ack_frame.entropy_hash = 0x43;
3425 ack_frame.largest_observed = 2 * 300;
3426 ack_frame.delta_time_largest_observed = QuicTime::Delta::Zero();
3427 for (size_t i = 1; i < 2 * 300; i += 2) {
3428 ack_frame.missing_packets.insert(i);
3431 QuicFrames frames;
3432 frames.push_back(QuicFrame(&ack_frame));
3434 unsigned char packet[] = {
3435 // public flags (8 byte connection_id)
3436 0x3C,
3437 // connection_id
3438 0x10, 0x32, 0x54, 0x76, 0x98, 0xBA, 0xDC, 0xFE,
3439 // packet sequence number
3440 0xA8, 0x9A, 0x78, 0x56, 0x34, 0x12,
3441 // private flags (entropy)
3442 0x01,
3444 // frame type (ack frame)
3445 // (has nacks, is truncated, 2 byte largest observed, 1 byte delta)
3446 0x74,
3447 // entropy hash of all received packets, set to 1 by TestEntropyCalculator
3448 // since ack is truncated.
3449 0x01,
3450 // 2-byte largest observed packet sequence number.
3451 // Expected to be 12 (0x0C), since only 6 nack ranges can fit.
3452 0x0C, 0x00,
3453 // Zero delta time.
3454 0x00, 0x00,
3455 // num missing packet ranges (limited to 6 by packet size of 37).
3456 0x06,
3457 // {missing packet delta, further missing packets in range}
3458 // 6 nack ranges
3459 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00, 0x01, 0x00,
3460 // 0 revived packets.
3461 0x00,
3464 scoped_ptr<QuicPacket> data(BuildDataPacket(header, frames, 37u));
3465 ASSERT_TRUE(data != nullptr);
3466 // Expect 1 byte unused since at least 2 bytes are needed to fit more nacks.
3467 EXPECT_EQ(36u, data->length());
3468 test::CompareCharArraysWithHexError("constructed packet",
3469 data->data(), data->length(),
3470 AsChars(packet), arraysize(packet));
3473 TEST_P(QuicFramerTest, BuildStopWaitingPacket) {
3474 QuicPacketHeader header;
3475 header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210);
3476 header.public_header.reset_flag = false;
3477 header.public_header.version_flag = false;
3478 header.fec_flag = false;
3479 header.entropy_flag = true;
3480 header.packet_sequence_number = GG_UINT64_C(0x770123456789AA8);
3481 header.fec_group = 0;
3483 QuicStopWaitingFrame stop_waiting_frame;
3484 stop_waiting_frame.entropy_hash = 0x14;
3485 stop_waiting_frame.least_unacked = GG_UINT64_C(0x770123456789AA0);
3487 QuicFrames frames;
3488 frames.push_back(QuicFrame(&stop_waiting_frame));
3490 unsigned char packet[] = {
3491 // public flags (8 byte connection_id)
3492 0x3C,
3493 // connection_id
3494 0x10, 0x32, 0x54, 0x76,
3495 0x98, 0xBA, 0xDC, 0xFE,
3496 // packet sequence number
3497 0xA8, 0x9A, 0x78, 0x56,
3498 0x34, 0x12,
3499 // private flags (entropy)
3500 0x01,
3502 // frame type (stop waiting frame)
3503 0x06,
3504 // entropy hash of sent packets till least awaiting - 1.
3505 0x14,
3506 // least packet sequence number awaiting an ack, delta from sequence number.
3507 0x08, 0x00, 0x00, 0x00,
3508 0x00, 0x00,
3511 scoped_ptr<QuicPacket> data(BuildDataPacket(header, frames));
3512 ASSERT_TRUE(data != nullptr);
3514 test::CompareCharArraysWithHexError("constructed packet",
3515 data->data(), data->length(),
3516 AsChars(packet), arraysize(packet));
3519 TEST_P(QuicFramerTest, BuildRstFramePacketQuic) {
3520 QuicPacketHeader header;
3521 header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210);
3522 header.public_header.reset_flag = false;
3523 header.public_header.version_flag = false;
3524 header.fec_flag = false;
3525 header.entropy_flag = false;
3526 header.packet_sequence_number = GG_UINT64_C(0x123456789ABC);
3527 header.fec_group = 0;
3529 QuicRstStreamFrame rst_frame;
3530 rst_frame.stream_id = 0x01020304;
3531 rst_frame.error_code = static_cast<QuicRstStreamErrorCode>(0x05060708);
3532 rst_frame.error_details = "because I can";
3533 rst_frame.byte_offset = 0x0807060504030201;
3535 unsigned char packet[] = {
3536 // public flags (8 byte connection_id)
3537 0x3C,
3538 // connection_id
3539 0x10, 0x32, 0x54, 0x76,
3540 0x98, 0xBA, 0xDC, 0xFE,
3541 // packet sequence number
3542 0xBC, 0x9A, 0x78, 0x56,
3543 0x34, 0x12,
3544 // private flags
3545 0x00,
3547 // frame type (rst stream frame)
3548 0x01,
3549 // stream id
3550 0x04, 0x03, 0x02, 0x01,
3551 // sent byte offset
3552 0x01, 0x02, 0x03, 0x04,
3553 0x05, 0x06, 0x07, 0x08,
3554 // error code
3555 0x08, 0x07, 0x06, 0x05,
3556 // error details length
3557 0x0d, 0x00,
3558 // error details
3559 'b', 'e', 'c', 'a',
3560 'u', 's', 'e', ' ',
3561 'I', ' ', 'c', 'a',
3562 'n',
3565 QuicFrames frames;
3566 frames.push_back(QuicFrame(&rst_frame));
3568 scoped_ptr<QuicPacket> data(BuildDataPacket(header, frames));
3569 ASSERT_TRUE(data != nullptr);
3571 test::CompareCharArraysWithHexError("constructed packet",
3572 data->data(), data->length(),
3573 AsChars(packet), arraysize(packet));
3576 TEST_P(QuicFramerTest, BuildCloseFramePacket) {
3577 QuicPacketHeader header;
3578 header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210);
3579 header.public_header.reset_flag = false;
3580 header.public_header.version_flag = false;
3581 header.fec_flag = false;
3582 header.entropy_flag = true;
3583 header.packet_sequence_number = GG_UINT64_C(0x123456789ABC);
3584 header.fec_group = 0;
3586 QuicConnectionCloseFrame close_frame;
3587 close_frame.error_code = static_cast<QuicErrorCode>(0x05060708);
3588 close_frame.error_details = "because I can";
3590 QuicFrames frames;
3591 frames.push_back(QuicFrame(&close_frame));
3593 unsigned char packet[] = {
3594 // public flags (8 byte connection_id)
3595 0x3C,
3596 // connection_id
3597 0x10, 0x32, 0x54, 0x76,
3598 0x98, 0xBA, 0xDC, 0xFE,
3599 // packet sequence number
3600 0xBC, 0x9A, 0x78, 0x56,
3601 0x34, 0x12,
3602 // private flags (entropy)
3603 0x01,
3605 // frame type (connection close frame)
3606 0x02,
3607 // error code
3608 0x08, 0x07, 0x06, 0x05,
3609 // error details length
3610 0x0d, 0x00,
3611 // error details
3612 'b', 'e', 'c', 'a',
3613 'u', 's', 'e', ' ',
3614 'I', ' ', 'c', 'a',
3615 'n',
3618 scoped_ptr<QuicPacket> data(BuildDataPacket(header, frames));
3619 ASSERT_TRUE(data != nullptr);
3621 test::CompareCharArraysWithHexError("constructed packet",
3622 data->data(), data->length(),
3623 AsChars(packet), arraysize(packet));
3626 TEST_P(QuicFramerTest, BuildGoAwayPacket) {
3627 QuicPacketHeader header;
3628 header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210);
3629 header.public_header.reset_flag = false;
3630 header.public_header.version_flag = false;
3631 header.fec_flag = false;
3632 header.entropy_flag = true;
3633 header.packet_sequence_number = GG_UINT64_C(0x123456789ABC);
3634 header.fec_group = 0;
3636 QuicGoAwayFrame goaway_frame;
3637 goaway_frame.error_code = static_cast<QuicErrorCode>(0x05060708);
3638 goaway_frame.last_good_stream_id = 0x01020304;
3639 goaway_frame.reason_phrase = "because I can";
3641 QuicFrames frames;
3642 frames.push_back(QuicFrame(&goaway_frame));
3644 unsigned char packet[] = {
3645 // public flags (8 byte connection_id)
3646 0x3C,
3647 // connection_id
3648 0x10, 0x32, 0x54, 0x76,
3649 0x98, 0xBA, 0xDC, 0xFE,
3650 // packet sequence number
3651 0xBC, 0x9A, 0x78, 0x56,
3652 0x34, 0x12,
3653 // private flags(entropy)
3654 0x01,
3656 // frame type (go away frame)
3657 0x03,
3658 // error code
3659 0x08, 0x07, 0x06, 0x05,
3660 // stream id
3661 0x04, 0x03, 0x02, 0x01,
3662 // error details length
3663 0x0d, 0x00,
3664 // error details
3665 'b', 'e', 'c', 'a',
3666 'u', 's', 'e', ' ',
3667 'I', ' ', 'c', 'a',
3668 'n',
3671 scoped_ptr<QuicPacket> data(BuildDataPacket(header, frames));
3672 ASSERT_TRUE(data != nullptr);
3674 test::CompareCharArraysWithHexError("constructed packet",
3675 data->data(), data->length(),
3676 AsChars(packet), arraysize(packet));
3679 TEST_P(QuicFramerTest, BuildWindowUpdatePacket) {
3680 QuicPacketHeader header;
3681 header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210);
3682 header.public_header.reset_flag = false;
3683 header.public_header.version_flag = false;
3684 header.fec_flag = false;
3685 header.entropy_flag = true;
3686 header.packet_sequence_number = GG_UINT64_C(0x123456789ABC);
3687 header.fec_group = 0;
3689 QuicWindowUpdateFrame window_update_frame;
3690 window_update_frame.stream_id = 0x01020304;
3691 window_update_frame.byte_offset = 0x1122334455667788;
3693 QuicFrames frames;
3694 frames.push_back(QuicFrame(&window_update_frame));
3696 unsigned char packet[] = {
3697 // public flags (8 byte connection_id)
3698 0x3C,
3699 // connection_id
3700 0x10, 0x32, 0x54, 0x76,
3701 0x98, 0xBA, 0xDC, 0xFE,
3702 // packet sequence number
3703 0xBC, 0x9A, 0x78, 0x56,
3704 0x34, 0x12,
3705 // private flags(entropy)
3706 0x01,
3708 // frame type (window update frame)
3709 0x04,
3710 // stream id
3711 0x04, 0x03, 0x02, 0x01,
3712 // byte offset
3713 0x88, 0x77, 0x66, 0x55,
3714 0x44, 0x33, 0x22, 0x11,
3717 scoped_ptr<QuicPacket> data(BuildDataPacket(header, frames));
3718 ASSERT_TRUE(data != nullptr);
3720 test::CompareCharArraysWithHexError("constructed packet", data->data(),
3721 data->length(), AsChars(packet),
3722 arraysize(packet));
3725 TEST_P(QuicFramerTest, BuildBlockedPacket) {
3726 QuicPacketHeader header;
3727 header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210);
3728 header.public_header.reset_flag = false;
3729 header.public_header.version_flag = false;
3730 header.fec_flag = false;
3731 header.entropy_flag = true;
3732 header.packet_sequence_number = GG_UINT64_C(0x123456789ABC);
3733 header.fec_group = 0;
3735 QuicBlockedFrame blocked_frame;
3736 blocked_frame.stream_id = 0x01020304;
3738 QuicFrames frames;
3739 frames.push_back(QuicFrame(&blocked_frame));
3741 unsigned char packet[] = {
3742 // public flags (8 byte connection_id)
3743 0x3C,
3744 // connection_id
3745 0x10, 0x32, 0x54, 0x76,
3746 0x98, 0xBA, 0xDC, 0xFE,
3747 // packet sequence number
3748 0xBC, 0x9A, 0x78, 0x56,
3749 0x34, 0x12,
3750 // private flags(entropy)
3751 0x01,
3753 // frame type (blocked frame)
3754 0x05,
3755 // stream id
3756 0x04, 0x03, 0x02, 0x01,
3759 scoped_ptr<QuicPacket> data(BuildDataPacket(header, frames));
3760 ASSERT_TRUE(data != nullptr);
3762 test::CompareCharArraysWithHexError("constructed packet", data->data(),
3763 data->length(), AsChars(packet),
3764 arraysize(packet));
3767 TEST_P(QuicFramerTest, BuildPingPacket) {
3768 QuicPacketHeader header;
3769 header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210);
3770 header.public_header.reset_flag = false;
3771 header.public_header.version_flag = false;
3772 header.fec_flag = false;
3773 header.entropy_flag = true;
3774 header.packet_sequence_number = GG_UINT64_C(0x123456789ABC);
3775 header.fec_group = 0;
3777 QuicPingFrame ping_frame;
3779 QuicFrames frames;
3780 frames.push_back(QuicFrame(&ping_frame));
3782 unsigned char packet[] = {
3783 // public flags (8 byte connection_id)
3784 0x3C,
3785 // connection_id
3786 0x10, 0x32, 0x54, 0x76,
3787 0x98, 0xBA, 0xDC, 0xFE,
3788 // packet sequence number
3789 0xBC, 0x9A, 0x78, 0x56,
3790 0x34, 0x12,
3791 // private flags(entropy)
3792 0x01,
3794 // frame type (ping frame)
3795 0x07,
3798 scoped_ptr<QuicPacket> data(BuildDataPacket(header, frames));
3799 ASSERT_TRUE(data != nullptr);
3801 test::CompareCharArraysWithHexError("constructed packet", data->data(),
3802 data->length(), AsChars(packet),
3803 arraysize(packet));
3806 TEST_P(QuicFramerTest, BuildPublicResetPacket) {
3807 QuicPublicResetPacket reset_packet;
3808 reset_packet.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210);
3809 reset_packet.public_header.reset_flag = true;
3810 reset_packet.public_header.version_flag = false;
3811 reset_packet.rejected_sequence_number = GG_UINT64_C(0x123456789ABC);
3812 reset_packet.nonce_proof = GG_UINT64_C(0xABCDEF0123456789);
3814 unsigned char packet[] = {
3815 // public flags (public reset, 8 byte ConnectionId)
3816 0x0E,
3817 // connection_id
3818 0x10, 0x32, 0x54, 0x76,
3819 0x98, 0xBA, 0xDC, 0xFE,
3820 // message tag (kPRST)
3821 'P', 'R', 'S', 'T',
3822 // num_entries (2) + padding
3823 0x02, 0x00, 0x00, 0x00,
3824 // tag kRNON
3825 'R', 'N', 'O', 'N',
3826 // end offset 8
3827 0x08, 0x00, 0x00, 0x00,
3828 // tag kRSEQ
3829 'R', 'S', 'E', 'Q',
3830 // end offset 16
3831 0x10, 0x00, 0x00, 0x00,
3832 // nonce proof
3833 0x89, 0x67, 0x45, 0x23,
3834 0x01, 0xEF, 0xCD, 0xAB,
3835 // rejected sequence number
3836 0xBC, 0x9A, 0x78, 0x56,
3837 0x34, 0x12, 0x00, 0x00,
3840 scoped_ptr<QuicEncryptedPacket> data(
3841 framer_.BuildPublicResetPacket(reset_packet));
3842 ASSERT_TRUE(data != nullptr);
3844 test::CompareCharArraysWithHexError("constructed packet",
3845 data->data(), data->length(),
3846 AsChars(packet), arraysize(packet));
3849 TEST_P(QuicFramerTest, BuildPublicResetPacketWithClientAddress) {
3850 QuicPublicResetPacket reset_packet;
3851 reset_packet.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210);
3852 reset_packet.public_header.reset_flag = true;
3853 reset_packet.public_header.version_flag = false;
3854 reset_packet.rejected_sequence_number = GG_UINT64_C(0x123456789ABC);
3855 reset_packet.nonce_proof = GG_UINT64_C(0xABCDEF0123456789);
3856 reset_packet.client_address = IPEndPoint(Loopback4(), 0x1234);
3858 unsigned char packet[] = {
3859 // public flags (public reset, 8 byte ConnectionId)
3860 0x0E,
3861 // connection_id
3862 0x10, 0x32, 0x54, 0x76,
3863 0x98, 0xBA, 0xDC, 0xFE,
3864 // message tag (kPRST)
3865 'P', 'R', 'S', 'T',
3866 // num_entries (3) + padding
3867 0x03, 0x00, 0x00, 0x00,
3868 // tag kRNON
3869 'R', 'N', 'O', 'N',
3870 // end offset 8
3871 0x08, 0x00, 0x00, 0x00,
3872 // tag kRSEQ
3873 'R', 'S', 'E', 'Q',
3874 // end offset 16
3875 0x10, 0x00, 0x00, 0x00,
3876 // tag kCADR
3877 'C', 'A', 'D', 'R',
3878 // end offset 24
3879 0x18, 0x00, 0x00, 0x00,
3880 // nonce proof
3881 0x89, 0x67, 0x45, 0x23,
3882 0x01, 0xEF, 0xCD, 0xAB,
3883 // rejected sequence number
3884 0xBC, 0x9A, 0x78, 0x56,
3885 0x34, 0x12, 0x00, 0x00,
3886 // client address
3887 0x02, 0x00,
3888 0x7F, 0x00, 0x00, 0x01,
3889 0x34, 0x12,
3892 scoped_ptr<QuicEncryptedPacket> data(
3893 framer_.BuildPublicResetPacket(reset_packet));
3894 ASSERT_TRUE(data != nullptr);
3896 test::CompareCharArraysWithHexError("constructed packet",
3897 data->data(), data->length(),
3898 AsChars(packet), arraysize(packet));
3901 TEST_P(QuicFramerTest, BuildFecPacket) {
3902 QuicPacketHeader header;
3903 header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210);
3904 header.public_header.reset_flag = false;
3905 header.public_header.version_flag = false;
3906 header.fec_flag = true;
3907 header.entropy_flag = true;
3908 header.packet_sequence_number = (GG_UINT64_C(0x123456789ABC));
3909 header.is_in_fec_group = IN_FEC_GROUP;
3910 header.fec_group = GG_UINT64_C(0x123456789ABB);;
3912 QuicFecData fec_data;
3913 fec_data.fec_group = 1;
3914 fec_data.redundancy = "abcdefghijklmnop";
3916 unsigned char packet[] = {
3917 // public flags (8 byte connection_id)
3918 0x3C,
3919 // connection_id
3920 0x10, 0x32, 0x54, 0x76,
3921 0x98, 0xBA, 0xDC, 0xFE,
3922 // packet sequence number
3923 0xBC, 0x9A, 0x78, 0x56,
3924 0x34, 0x12,
3925 // private flags (entropy & fec group & fec packet)
3926 0x07,
3927 // first fec protected packet offset
3928 0x01,
3930 // redundancy
3931 'a', 'b', 'c', 'd',
3932 'e', 'f', 'g', 'h',
3933 'i', 'j', 'k', 'l',
3934 'm', 'n', 'o', 'p',
3937 scoped_ptr<QuicPacket> data(framer_.BuildFecPacket(header, fec_data));
3938 ASSERT_TRUE(data != nullptr);
3940 test::CompareCharArraysWithHexError("constructed packet",
3941 data->data(), data->length(),
3942 AsChars(packet), arraysize(packet));
3945 TEST_P(QuicFramerTest, EncryptPacket) {
3946 QuicPacketSequenceNumber sequence_number = GG_UINT64_C(0x123456789ABC);
3947 unsigned char packet[] = {
3948 // public flags (8 byte connection_id)
3949 0x3C,
3950 // connection_id
3951 0x10, 0x32, 0x54, 0x76,
3952 0x98, 0xBA, 0xDC, 0xFE,
3953 // packet sequence number
3954 0xBC, 0x9A, 0x78, 0x56,
3955 0x34, 0x12,
3956 // private flags (fec group & fec packet)
3957 0x06,
3958 // first fec protected packet offset
3959 0x01,
3961 // redundancy
3962 'a', 'b', 'c', 'd',
3963 'e', 'f', 'g', 'h',
3964 'i', 'j', 'k', 'l',
3965 'm', 'n', 'o', 'p',
3968 scoped_ptr<QuicPacket> raw(new QuicPacket(
3969 AsChars(packet), arraysize(packet), false, PACKET_8BYTE_CONNECTION_ID,
3970 !kIncludeVersion, PACKET_6BYTE_SEQUENCE_NUMBER));
3971 scoped_ptr<QuicEncryptedPacket> encrypted(
3972 framer_.EncryptPacket(ENCRYPTION_NONE, sequence_number, *raw));
3974 ASSERT_TRUE(encrypted.get() != nullptr);
3975 EXPECT_TRUE(CheckEncryption(sequence_number, raw.get()));
3978 TEST_P(QuicFramerTest, EncryptPacketWithVersionFlag) {
3979 QuicPacketSequenceNumber sequence_number = GG_UINT64_C(0x123456789ABC);
3980 unsigned char packet[] = {
3981 // public flags (version, 8 byte connection_id)
3982 0x3D,
3983 // connection_id
3984 0x10, 0x32, 0x54, 0x76,
3985 0x98, 0xBA, 0xDC, 0xFE,
3986 // version tag
3987 'Q', '.', '1', '0',
3988 // packet sequence number
3989 0xBC, 0x9A, 0x78, 0x56,
3990 0x34, 0x12,
3991 // private flags (fec group & fec flags)
3992 0x06,
3993 // first fec protected packet offset
3994 0x01,
3996 // redundancy
3997 'a', 'b', 'c', 'd',
3998 'e', 'f', 'g', 'h',
3999 'i', 'j', 'k', 'l',
4000 'm', 'n', 'o', 'p',
4003 scoped_ptr<QuicPacket> raw(new QuicPacket(
4004 AsChars(packet), arraysize(packet), false, PACKET_8BYTE_CONNECTION_ID,
4005 kIncludeVersion, PACKET_6BYTE_SEQUENCE_NUMBER));
4006 scoped_ptr<QuicEncryptedPacket> encrypted(
4007 framer_.EncryptPacket(ENCRYPTION_NONE, sequence_number, *raw));
4009 ASSERT_TRUE(encrypted.get() != nullptr);
4010 EXPECT_TRUE(CheckEncryption(sequence_number, raw.get()));
4013 TEST_P(QuicFramerTest, AckTruncationLargePacket) {
4014 QuicPacketHeader header;
4015 header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210);
4016 header.public_header.reset_flag = false;
4017 header.public_header.version_flag = false;
4018 header.fec_flag = false;
4019 header.entropy_flag = false;
4020 header.packet_sequence_number = GG_UINT64_C(0x123456789ABC);
4021 header.fec_group = 0;
4023 // Create a packet with just the ack.
4024 QuicAckFrame ack_frame = MakeAckFrameWithNackRanges(300, 0u);
4025 QuicFrame frame;
4026 frame.type = ACK_FRAME;
4027 frame.ack_frame = &ack_frame;
4028 QuicFrames frames;
4029 frames.push_back(frame);
4031 // Build an ack packet with truncation due to limit in number of nack ranges.
4032 scoped_ptr<QuicPacket> raw_ack_packet(BuildDataPacket(header, frames));
4033 ASSERT_TRUE(raw_ack_packet != nullptr);
4034 scoped_ptr<QuicEncryptedPacket> ack_packet(
4035 framer_.EncryptPacket(ENCRYPTION_NONE, header.packet_sequence_number,
4036 *raw_ack_packet));
4037 // Now make sure we can turn our ack packet back into an ack frame.
4038 ASSERT_TRUE(framer_.ProcessPacket(*ack_packet));
4039 ASSERT_EQ(1u, visitor_.ack_frames_.size());
4040 QuicAckFrame& processed_ack_frame = *visitor_.ack_frames_[0];
4041 EXPECT_TRUE(processed_ack_frame.is_truncated);
4042 EXPECT_EQ(510u, processed_ack_frame.largest_observed);
4043 ASSERT_EQ(255u, processed_ack_frame.missing_packets.size());
4044 SequenceNumberSet::const_iterator missing_iter =
4045 processed_ack_frame.missing_packets.begin();
4046 EXPECT_EQ(1u, *missing_iter);
4047 SequenceNumberSet::const_reverse_iterator last_missing_iter =
4048 processed_ack_frame.missing_packets.rbegin();
4049 EXPECT_EQ(509u, *last_missing_iter);
4052 TEST_P(QuicFramerTest, AckTruncationSmallPacket) {
4053 QuicPacketHeader header;
4054 header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210);
4055 header.public_header.reset_flag = false;
4056 header.public_header.version_flag = false;
4057 header.fec_flag = false;
4058 header.entropy_flag = false;
4059 header.packet_sequence_number = GG_UINT64_C(0x123456789ABC);
4060 header.fec_group = 0;
4062 // Create a packet with just the ack.
4063 QuicAckFrame ack_frame = MakeAckFrameWithNackRanges(300, 0u);
4064 QuicFrame frame;
4065 frame.type = ACK_FRAME;
4066 frame.ack_frame = &ack_frame;
4067 QuicFrames frames;
4068 frames.push_back(frame);
4070 // Build an ack packet with truncation due to limit in number of nack ranges.
4071 scoped_ptr<QuicPacket> raw_ack_packet(BuildDataPacket(header, frames, 500));
4072 ASSERT_TRUE(raw_ack_packet != nullptr);
4073 scoped_ptr<QuicEncryptedPacket> ack_packet(
4074 framer_.EncryptPacket(ENCRYPTION_NONE, header.packet_sequence_number,
4075 *raw_ack_packet));
4076 // Now make sure we can turn our ack packet back into an ack frame.
4077 ASSERT_TRUE(framer_.ProcessPacket(*ack_packet));
4078 ASSERT_EQ(1u, visitor_.ack_frames_.size());
4079 QuicAckFrame& processed_ack_frame = *visitor_.ack_frames_[0];
4080 EXPECT_TRUE(processed_ack_frame.is_truncated);
4081 EXPECT_EQ(476u, processed_ack_frame.largest_observed);
4082 ASSERT_EQ(238u, processed_ack_frame.missing_packets.size());
4083 SequenceNumberSet::const_iterator missing_iter =
4084 processed_ack_frame.missing_packets.begin();
4085 EXPECT_EQ(1u, *missing_iter);
4086 SequenceNumberSet::const_reverse_iterator last_missing_iter =
4087 processed_ack_frame.missing_packets.rbegin();
4088 EXPECT_EQ(475u, *last_missing_iter);
4091 TEST_P(QuicFramerTest, CleanTruncation) {
4092 QuicPacketHeader header;
4093 header.public_header.connection_id = GG_UINT64_C(0xFEDCBA9876543210);
4094 header.public_header.reset_flag = false;
4095 header.public_header.version_flag = false;
4096 header.fec_flag = false;
4097 header.entropy_flag = true;
4098 header.packet_sequence_number = GG_UINT64_C(0x123456789ABC);
4099 header.fec_group = 0;
4101 QuicAckFrame ack_frame;
4102 ack_frame.largest_observed = 201;
4103 for (uint64 i = 1; i < ack_frame.largest_observed; ++i) {
4104 ack_frame.missing_packets.insert(i);
4107 // Create a packet with just the ack.
4108 QuicFrame frame;
4109 frame.type = ACK_FRAME;
4110 frame.ack_frame = &ack_frame;
4111 QuicFrames frames;
4112 frames.push_back(frame);
4114 scoped_ptr<QuicPacket> raw_ack_packet(BuildDataPacket(header, frames));
4115 ASSERT_TRUE(raw_ack_packet != nullptr);
4117 scoped_ptr<QuicEncryptedPacket> ack_packet(
4118 framer_.EncryptPacket(ENCRYPTION_NONE, header.packet_sequence_number,
4119 *raw_ack_packet));
4121 // Now make sure we can turn our ack packet back into an ack frame.
4122 ASSERT_TRUE(framer_.ProcessPacket(*ack_packet));
4124 // Test for clean truncation of the ack by comparing the length of the
4125 // original packets to the re-serialized packets.
4126 frames.clear();
4127 frame.type = ACK_FRAME;
4128 frame.ack_frame = visitor_.ack_frames_[0];
4129 frames.push_back(frame);
4131 size_t original_raw_length = raw_ack_packet->length();
4132 raw_ack_packet.reset(BuildDataPacket(header, frames));
4133 ASSERT_TRUE(raw_ack_packet != nullptr);
4134 EXPECT_EQ(original_raw_length, raw_ack_packet->length());
4135 ASSERT_TRUE(raw_ack_packet != nullptr);
4138 TEST_P(QuicFramerTest, EntropyFlagTest) {
4139 unsigned char packet[] = {
4140 // public flags (8 byte connection_id)
4141 0x3C,
4142 // connection_id
4143 0x10, 0x32, 0x54, 0x76,
4144 0x98, 0xBA, 0xDC, 0xFE,
4145 // packet sequence number
4146 0xBC, 0x9A, 0x78, 0x56,
4147 0x34, 0x12,
4148 // private flags (Entropy)
4149 0x01,
4151 // frame type (stream frame with fin and no length)
4152 0xDF,
4153 // stream id
4154 0x04, 0x03, 0x02, 0x01,
4155 // offset
4156 0x54, 0x76, 0x10, 0x32,
4157 0xDC, 0xFE, 0x98, 0xBA,
4158 // data
4159 'h', 'e', 'l', 'l',
4160 'o', ' ', 'w', 'o',
4161 'r', 'l', 'd', '!',
4164 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
4165 EXPECT_TRUE(framer_.ProcessPacket(encrypted));
4166 EXPECT_EQ(QUIC_NO_ERROR, framer_.error());
4167 ASSERT_TRUE(visitor_.header_.get());
4168 EXPECT_TRUE(visitor_.header_->entropy_flag);
4169 EXPECT_EQ(1 << 4, visitor_.header_->entropy_hash);
4170 EXPECT_FALSE(visitor_.header_->fec_flag);
4173 TEST_P(QuicFramerTest, FecEntropyTest) {
4174 unsigned char packet[] = {
4175 // public flags (8 byte connection_id)
4176 0x3C,
4177 // connection_id
4178 0x10, 0x32, 0x54, 0x76,
4179 0x98, 0xBA, 0xDC, 0xFE,
4180 // packet sequence number
4181 0xBC, 0x9A, 0x78, 0x56,
4182 0x34, 0x12,
4183 // private flags (Entropy & fec group & FEC)
4184 0x07,
4185 // first fec protected packet offset
4186 0xFF,
4188 // frame type (stream frame with fin and no length)
4189 0xDF,
4190 // stream id
4191 0x04, 0x03, 0x02, 0x01,
4192 // offset
4193 0x54, 0x76, 0x10, 0x32,
4194 0xDC, 0xFE, 0x98, 0xBA,
4195 // data
4196 'h', 'e', 'l', 'l',
4197 'o', ' ', 'w', 'o',
4198 'r', 'l', 'd', '!',
4201 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
4202 EXPECT_TRUE(framer_.ProcessPacket(encrypted));
4203 EXPECT_EQ(QUIC_NO_ERROR, framer_.error());
4204 ASSERT_TRUE(visitor_.header_.get());
4205 EXPECT_TRUE(visitor_.header_->fec_flag);
4206 EXPECT_TRUE(visitor_.header_->entropy_flag);
4207 EXPECT_EQ(1 << 4, visitor_.header_->entropy_hash);
4210 TEST_P(QuicFramerTest, StopPacketProcessing) {
4211 unsigned char packet[] = {
4212 // public flags (8 byte connection_id)
4213 0x3C,
4214 // connection_id
4215 0x10, 0x32, 0x54, 0x76,
4216 0x98, 0xBA, 0xDC, 0xFE,
4217 // packet sequence number
4218 0xBC, 0x9A, 0x78, 0x56,
4219 0x34, 0x12,
4220 // Entropy
4221 0x01,
4223 // frame type (stream frame with fin)
4224 0xFF,
4225 // stream id
4226 0x04, 0x03, 0x02, 0x01,
4227 // offset
4228 0x54, 0x76, 0x10, 0x32,
4229 0xDC, 0xFE, 0x98, 0xBA,
4230 // data length
4231 0x0c, 0x00,
4232 // data
4233 'h', 'e', 'l', 'l',
4234 'o', ' ', 'w', 'o',
4235 'r', 'l', 'd', '!',
4237 // frame type (ack frame)
4238 0x40,
4239 // entropy hash of sent packets till least awaiting - 1.
4240 0x14,
4241 // least packet sequence number awaiting an ack
4242 0xA0, 0x9A, 0x78, 0x56,
4243 0x34, 0x12,
4244 // entropy hash of all received packets.
4245 0x43,
4246 // largest observed packet sequence number
4247 0xBF, 0x9A, 0x78, 0x56,
4248 0x34, 0x12,
4249 // num missing packets
4250 0x01,
4251 // missing packet
4252 0xBE, 0x9A, 0x78, 0x56,
4253 0x34, 0x12,
4256 MockFramerVisitor visitor;
4257 framer_.set_visitor(&visitor);
4258 EXPECT_CALL(visitor, OnPacket());
4259 EXPECT_CALL(visitor, OnPacketHeader(_));
4260 EXPECT_CALL(visitor, OnStreamFrame(_)).WillOnce(Return(false));
4261 EXPECT_CALL(visitor, OnAckFrame(_)).Times(0);
4262 EXPECT_CALL(visitor, OnPacketComplete());
4263 EXPECT_CALL(visitor, OnUnauthenticatedPublicHeader(_)).WillOnce(Return(true));
4265 QuicEncryptedPacket encrypted(AsChars(packet), arraysize(packet), false);
4266 EXPECT_TRUE(framer_.ProcessPacket(encrypted));
4267 EXPECT_EQ(QUIC_NO_ERROR, framer_.error());
4270 } // namespace test
4271 } // namespace net