Lots of random cleanups, mostly for native_theme_win.cc:
[chromium-blink-merge.git] / net / dns / host_resolver_impl.cc
blobd5602a4c674cad2848bb9d28cc77b0ad85d5333f
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/dns/host_resolver_impl.h"
7 #if defined(OS_WIN)
8 #include <Winsock2.h>
9 #elif defined(OS_POSIX)
10 #include <netdb.h>
11 #endif
13 #include <cmath>
14 #include <utility>
15 #include <vector>
17 #include "base/basictypes.h"
18 #include "base/bind.h"
19 #include "base/bind_helpers.h"
20 #include "base/callback.h"
21 #include "base/compiler_specific.h"
22 #include "base/debug/debugger.h"
23 #include "base/debug/stack_trace.h"
24 #include "base/message_loop/message_loop_proxy.h"
25 #include "base/metrics/field_trial.h"
26 #include "base/metrics/histogram.h"
27 #include "base/stl_util.h"
28 #include "base/strings/string_util.h"
29 #include "base/strings/utf_string_conversions.h"
30 #include "base/threading/worker_pool.h"
31 #include "base/time/time.h"
32 #include "base/values.h"
33 #include "net/base/address_family.h"
34 #include "net/base/address_list.h"
35 #include "net/base/dns_reloader.h"
36 #include "net/base/dns_util.h"
37 #include "net/base/host_port_pair.h"
38 #include "net/base/net_errors.h"
39 #include "net/base/net_log.h"
40 #include "net/base/net_util.h"
41 #include "net/dns/address_sorter.h"
42 #include "net/dns/dns_client.h"
43 #include "net/dns/dns_config_service.h"
44 #include "net/dns/dns_protocol.h"
45 #include "net/dns/dns_response.h"
46 #include "net/dns/dns_transaction.h"
47 #include "net/dns/host_resolver_proc.h"
48 #include "net/socket/client_socket_factory.h"
49 #include "net/udp/datagram_client_socket.h"
51 #if defined(OS_WIN)
52 #include "net/base/winsock_init.h"
53 #endif
55 namespace net {
57 namespace {
59 // Limit the size of hostnames that will be resolved to combat issues in
60 // some platform's resolvers.
61 const size_t kMaxHostLength = 4096;
63 // Default TTL for successful resolutions with ProcTask.
64 const unsigned kCacheEntryTTLSeconds = 60;
66 // Default TTL for unsuccessful resolutions with ProcTask.
67 const unsigned kNegativeCacheEntryTTLSeconds = 0;
69 // Minimum TTL for successful resolutions with DnsTask.
70 const unsigned kMinimumTTLSeconds = kCacheEntryTTLSeconds;
72 // We use a separate histogram name for each platform to facilitate the
73 // display of error codes by their symbolic name (since each platform has
74 // different mappings).
75 const char kOSErrorsForGetAddrinfoHistogramName[] =
76 #if defined(OS_WIN)
77 "Net.OSErrorsForGetAddrinfo_Win";
78 #elif defined(OS_MACOSX)
79 "Net.OSErrorsForGetAddrinfo_Mac";
80 #elif defined(OS_LINUX)
81 "Net.OSErrorsForGetAddrinfo_Linux";
82 #else
83 "Net.OSErrorsForGetAddrinfo";
84 #endif
86 // Gets a list of the likely error codes that getaddrinfo() can return
87 // (non-exhaustive). These are the error codes that we will track via
88 // a histogram.
89 std::vector<int> GetAllGetAddrinfoOSErrors() {
90 int os_errors[] = {
91 #if defined(OS_POSIX)
92 #if !defined(OS_FREEBSD)
93 #if !defined(OS_ANDROID)
94 // EAI_ADDRFAMILY has been declared obsolete in Android's and
95 // FreeBSD's netdb.h.
96 EAI_ADDRFAMILY,
97 #endif
98 // EAI_NODATA has been declared obsolete in FreeBSD's netdb.h.
99 EAI_NODATA,
100 #endif
101 EAI_AGAIN,
102 EAI_BADFLAGS,
103 EAI_FAIL,
104 EAI_FAMILY,
105 EAI_MEMORY,
106 EAI_NONAME,
107 EAI_SERVICE,
108 EAI_SOCKTYPE,
109 EAI_SYSTEM,
110 #elif defined(OS_WIN)
111 // See: http://msdn.microsoft.com/en-us/library/ms738520(VS.85).aspx
112 WSA_NOT_ENOUGH_MEMORY,
113 WSAEAFNOSUPPORT,
114 WSAEINVAL,
115 WSAESOCKTNOSUPPORT,
116 WSAHOST_NOT_FOUND,
117 WSANO_DATA,
118 WSANO_RECOVERY,
119 WSANOTINITIALISED,
120 WSATRY_AGAIN,
121 WSATYPE_NOT_FOUND,
122 // The following are not in doc, but might be to appearing in results :-(.
123 WSA_INVALID_HANDLE,
124 #endif
127 // Ensure all errors are positive, as histogram only tracks positive values.
128 for (size_t i = 0; i < arraysize(os_errors); ++i) {
129 os_errors[i] = std::abs(os_errors[i]);
132 return base::CustomHistogram::ArrayToCustomRanges(os_errors,
133 arraysize(os_errors));
136 enum DnsResolveStatus {
137 RESOLVE_STATUS_DNS_SUCCESS = 0,
138 RESOLVE_STATUS_PROC_SUCCESS,
139 RESOLVE_STATUS_FAIL,
140 RESOLVE_STATUS_SUSPECT_NETBIOS,
141 RESOLVE_STATUS_MAX
144 void UmaAsyncDnsResolveStatus(DnsResolveStatus result) {
145 UMA_HISTOGRAM_ENUMERATION("AsyncDNS.ResolveStatus",
146 result,
147 RESOLVE_STATUS_MAX);
150 bool ResemblesNetBIOSName(const std::string& hostname) {
151 return (hostname.size() < 16) && (hostname.find('.') == std::string::npos);
154 // True if |hostname| ends with either ".local" or ".local.".
155 bool ResemblesMulticastDNSName(const std::string& hostname) {
156 DCHECK(!hostname.empty());
157 const char kSuffix[] = ".local.";
158 const size_t kSuffixLen = sizeof(kSuffix) - 1;
159 const size_t kSuffixLenTrimmed = kSuffixLen - 1;
160 if (hostname[hostname.size() - 1] == '.') {
161 return hostname.size() > kSuffixLen &&
162 !hostname.compare(hostname.size() - kSuffixLen, kSuffixLen, kSuffix);
164 return hostname.size() > kSuffixLenTrimmed &&
165 !hostname.compare(hostname.size() - kSuffixLenTrimmed, kSuffixLenTrimmed,
166 kSuffix, kSuffixLenTrimmed);
169 // Attempts to connect a UDP socket to |dest|:53.
170 bool IsGloballyReachable(const IPAddressNumber& dest,
171 const BoundNetLog& net_log) {
172 scoped_ptr<DatagramClientSocket> socket(
173 ClientSocketFactory::GetDefaultFactory()->CreateDatagramClientSocket(
174 DatagramSocket::DEFAULT_BIND,
175 RandIntCallback(),
176 net_log.net_log(),
177 net_log.source()));
178 int rv = socket->Connect(IPEndPoint(dest, 53));
179 if (rv != OK)
180 return false;
181 IPEndPoint endpoint;
182 rv = socket->GetLocalAddress(&endpoint);
183 if (rv != OK)
184 return false;
185 DCHECK(endpoint.GetFamily() == ADDRESS_FAMILY_IPV6);
186 const IPAddressNumber& address = endpoint.address();
187 bool is_link_local = (address[0] == 0xFE) && ((address[1] & 0xC0) == 0x80);
188 if (is_link_local)
189 return false;
190 const uint8 kTeredoPrefix[] = { 0x20, 0x01, 0, 0 };
191 bool is_teredo = std::equal(kTeredoPrefix,
192 kTeredoPrefix + arraysize(kTeredoPrefix),
193 address.begin());
194 if (is_teredo)
195 return false;
196 return true;
199 // Provide a common macro to simplify code and readability. We must use a
200 // macro as the underlying HISTOGRAM macro creates static variables.
201 #define DNS_HISTOGRAM(name, time) UMA_HISTOGRAM_CUSTOM_TIMES(name, time, \
202 base::TimeDelta::FromMilliseconds(1), base::TimeDelta::FromHours(1), 100)
204 // A macro to simplify code and readability.
205 #define DNS_HISTOGRAM_BY_PRIORITY(basename, priority, time) \
206 do { \
207 switch (priority) { \
208 case HIGHEST: DNS_HISTOGRAM(basename "_HIGHEST", time); break; \
209 case MEDIUM: DNS_HISTOGRAM(basename "_MEDIUM", time); break; \
210 case LOW: DNS_HISTOGRAM(basename "_LOW", time); break; \
211 case LOWEST: DNS_HISTOGRAM(basename "_LOWEST", time); break; \
212 case IDLE: DNS_HISTOGRAM(basename "_IDLE", time); break; \
213 default: NOTREACHED(); break; \
215 DNS_HISTOGRAM(basename, time); \
216 } while (0)
218 // Record time from Request creation until a valid DNS response.
219 void RecordTotalTime(bool had_dns_config,
220 bool speculative,
221 base::TimeDelta duration) {
222 if (had_dns_config) {
223 if (speculative) {
224 DNS_HISTOGRAM("AsyncDNS.TotalTime_speculative", duration);
225 } else {
226 DNS_HISTOGRAM("AsyncDNS.TotalTime", duration);
228 } else {
229 if (speculative) {
230 DNS_HISTOGRAM("DNS.TotalTime_speculative", duration);
231 } else {
232 DNS_HISTOGRAM("DNS.TotalTime", duration);
237 void RecordTTL(base::TimeDelta ttl) {
238 UMA_HISTOGRAM_CUSTOM_TIMES("AsyncDNS.TTL", ttl,
239 base::TimeDelta::FromSeconds(1),
240 base::TimeDelta::FromDays(1), 100);
243 bool ConfigureAsyncDnsNoFallbackFieldTrial() {
244 const bool kDefault = false;
246 // Configure the AsyncDns field trial as follows:
247 // groups AsyncDnsNoFallbackA and AsyncDnsNoFallbackB: return true,
248 // groups AsyncDnsA and AsyncDnsB: return false,
249 // groups SystemDnsA and SystemDnsB: return false,
250 // otherwise (trial absent): return default.
251 std::string group_name = base::FieldTrialList::FindFullName("AsyncDns");
252 if (!group_name.empty())
253 return StartsWithASCII(group_name, "AsyncDnsNoFallback", false);
254 return kDefault;
257 //-----------------------------------------------------------------------------
259 AddressList EnsurePortOnAddressList(const AddressList& list, uint16 port) {
260 if (list.empty() || list.front().port() == port)
261 return list;
262 return AddressList::CopyWithPort(list, port);
265 // Returns true if |addresses| contains only IPv4 loopback addresses.
266 bool IsAllIPv4Loopback(const AddressList& addresses) {
267 for (unsigned i = 0; i < addresses.size(); ++i) {
268 const IPAddressNumber& address = addresses[i].address();
269 switch (addresses[i].GetFamily()) {
270 case ADDRESS_FAMILY_IPV4:
271 if (address[0] != 127)
272 return false;
273 break;
274 case ADDRESS_FAMILY_IPV6:
275 return false;
276 default:
277 NOTREACHED();
278 return false;
281 return true;
284 // Creates NetLog parameters when the resolve failed.
285 base::Value* NetLogProcTaskFailedCallback(uint32 attempt_number,
286 int net_error,
287 int os_error,
288 NetLog::LogLevel /* log_level */) {
289 base::DictionaryValue* dict = new base::DictionaryValue();
290 if (attempt_number)
291 dict->SetInteger("attempt_number", attempt_number);
293 dict->SetInteger("net_error", net_error);
295 if (os_error) {
296 dict->SetInteger("os_error", os_error);
297 #if defined(OS_POSIX)
298 dict->SetString("os_error_string", gai_strerror(os_error));
299 #elif defined(OS_WIN)
300 // Map the error code to a human-readable string.
301 LPWSTR error_string = NULL;
302 int size = FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
303 FORMAT_MESSAGE_FROM_SYSTEM,
304 0, // Use the internal message table.
305 os_error,
306 0, // Use default language.
307 (LPWSTR)&error_string,
308 0, // Buffer size.
309 0); // Arguments (unused).
310 dict->SetString("os_error_string", base::WideToUTF8(error_string));
311 LocalFree(error_string);
312 #endif
315 return dict;
318 // Creates NetLog parameters when the DnsTask failed.
319 base::Value* NetLogDnsTaskFailedCallback(int net_error,
320 int dns_error,
321 NetLog::LogLevel /* log_level */) {
322 base::DictionaryValue* dict = new base::DictionaryValue();
323 dict->SetInteger("net_error", net_error);
324 if (dns_error)
325 dict->SetInteger("dns_error", dns_error);
326 return dict;
329 // Creates NetLog parameters containing the information in a RequestInfo object,
330 // along with the associated NetLog::Source.
331 base::Value* NetLogRequestInfoCallback(const NetLog::Source& source,
332 const HostResolver::RequestInfo* info,
333 NetLog::LogLevel /* log_level */) {
334 base::DictionaryValue* dict = new base::DictionaryValue();
335 source.AddToEventParameters(dict);
337 dict->SetString("host", info->host_port_pair().ToString());
338 dict->SetInteger("address_family",
339 static_cast<int>(info->address_family()));
340 dict->SetBoolean("allow_cached_response", info->allow_cached_response());
341 dict->SetBoolean("is_speculative", info->is_speculative());
342 return dict;
345 // Creates NetLog parameters for the creation of a HostResolverImpl::Job.
346 base::Value* NetLogJobCreationCallback(const NetLog::Source& source,
347 const std::string* host,
348 NetLog::LogLevel /* log_level */) {
349 base::DictionaryValue* dict = new base::DictionaryValue();
350 source.AddToEventParameters(dict);
351 dict->SetString("host", *host);
352 return dict;
355 // Creates NetLog parameters for HOST_RESOLVER_IMPL_JOB_ATTACH/DETACH events.
356 base::Value* NetLogJobAttachCallback(const NetLog::Source& source,
357 RequestPriority priority,
358 NetLog::LogLevel /* log_level */) {
359 base::DictionaryValue* dict = new base::DictionaryValue();
360 source.AddToEventParameters(dict);
361 dict->SetString("priority", RequestPriorityToString(priority));
362 return dict;
365 // Creates NetLog parameters for the DNS_CONFIG_CHANGED event.
366 base::Value* NetLogDnsConfigCallback(const DnsConfig* config,
367 NetLog::LogLevel /* log_level */) {
368 return config->ToValue();
371 // The logging routines are defined here because some requests are resolved
372 // without a Request object.
374 // Logs when a request has just been started.
375 void LogStartRequest(const BoundNetLog& source_net_log,
376 const BoundNetLog& request_net_log,
377 const HostResolver::RequestInfo& info) {
378 source_net_log.BeginEvent(
379 NetLog::TYPE_HOST_RESOLVER_IMPL,
380 request_net_log.source().ToEventParametersCallback());
382 request_net_log.BeginEvent(
383 NetLog::TYPE_HOST_RESOLVER_IMPL_REQUEST,
384 base::Bind(&NetLogRequestInfoCallback, source_net_log.source(), &info));
387 // Logs when a request has just completed (before its callback is run).
388 void LogFinishRequest(const BoundNetLog& source_net_log,
389 const BoundNetLog& request_net_log,
390 const HostResolver::RequestInfo& info,
391 int net_error) {
392 request_net_log.EndEventWithNetErrorCode(
393 NetLog::TYPE_HOST_RESOLVER_IMPL_REQUEST, net_error);
394 source_net_log.EndEvent(NetLog::TYPE_HOST_RESOLVER_IMPL);
397 // Logs when a request has been cancelled.
398 void LogCancelRequest(const BoundNetLog& source_net_log,
399 const BoundNetLog& request_net_log,
400 const HostResolverImpl::RequestInfo& info) {
401 request_net_log.AddEvent(NetLog::TYPE_CANCELLED);
402 request_net_log.EndEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_REQUEST);
403 source_net_log.EndEvent(NetLog::TYPE_HOST_RESOLVER_IMPL);
406 //-----------------------------------------------------------------------------
408 // Keeps track of the highest priority.
409 class PriorityTracker {
410 public:
411 explicit PriorityTracker(RequestPriority initial_priority)
412 : highest_priority_(initial_priority), total_count_(0) {
413 memset(counts_, 0, sizeof(counts_));
416 RequestPriority highest_priority() const {
417 return highest_priority_;
420 size_t total_count() const {
421 return total_count_;
424 void Add(RequestPriority req_priority) {
425 ++total_count_;
426 ++counts_[req_priority];
427 if (highest_priority_ < req_priority)
428 highest_priority_ = req_priority;
431 void Remove(RequestPriority req_priority) {
432 DCHECK_GT(total_count_, 0u);
433 DCHECK_GT(counts_[req_priority], 0u);
434 --total_count_;
435 --counts_[req_priority];
436 size_t i;
437 for (i = highest_priority_; i > MINIMUM_PRIORITY && !counts_[i]; --i);
438 highest_priority_ = static_cast<RequestPriority>(i);
440 // In absence of requests, default to MINIMUM_PRIORITY.
441 if (total_count_ == 0)
442 DCHECK_EQ(MINIMUM_PRIORITY, highest_priority_);
445 private:
446 RequestPriority highest_priority_;
447 size_t total_count_;
448 size_t counts_[NUM_PRIORITIES];
451 } // namespace
453 //-----------------------------------------------------------------------------
455 const unsigned HostResolverImpl::kMaximumDnsFailures = 16;
457 // Holds the data for a request that could not be completed synchronously.
458 // It is owned by a Job. Canceled Requests are only marked as canceled rather
459 // than removed from the Job's |requests_| list.
460 class HostResolverImpl::Request {
461 public:
462 Request(const BoundNetLog& source_net_log,
463 const BoundNetLog& request_net_log,
464 const RequestInfo& info,
465 RequestPriority priority,
466 const CompletionCallback& callback,
467 AddressList* addresses)
468 : source_net_log_(source_net_log),
469 request_net_log_(request_net_log),
470 info_(info),
471 priority_(priority),
472 job_(NULL),
473 callback_(callback),
474 addresses_(addresses),
475 request_time_(base::TimeTicks::Now()) {}
477 // Mark the request as canceled.
478 void MarkAsCanceled() {
479 job_ = NULL;
480 addresses_ = NULL;
481 callback_.Reset();
484 bool was_canceled() const {
485 return callback_.is_null();
488 void set_job(Job* job) {
489 DCHECK(job);
490 // Identify which job the request is waiting on.
491 job_ = job;
494 // Prepare final AddressList and call completion callback.
495 void OnComplete(int error, const AddressList& addr_list) {
496 DCHECK(!was_canceled());
497 if (error == OK)
498 *addresses_ = EnsurePortOnAddressList(addr_list, info_.port());
499 CompletionCallback callback = callback_;
500 MarkAsCanceled();
501 callback.Run(error);
504 Job* job() const {
505 return job_;
508 // NetLog for the source, passed in HostResolver::Resolve.
509 const BoundNetLog& source_net_log() {
510 return source_net_log_;
513 // NetLog for this request.
514 const BoundNetLog& request_net_log() {
515 return request_net_log_;
518 const RequestInfo& info() const {
519 return info_;
522 RequestPriority priority() const { return priority_; }
524 base::TimeTicks request_time() const { return request_time_; }
526 private:
527 BoundNetLog source_net_log_;
528 BoundNetLog request_net_log_;
530 // The request info that started the request.
531 const RequestInfo info_;
533 // TODO(akalin): Support reprioritization.
534 const RequestPriority priority_;
536 // The resolve job that this request is dependent on.
537 Job* job_;
539 // The user's callback to invoke when the request completes.
540 CompletionCallback callback_;
542 // The address list to save result into.
543 AddressList* addresses_;
545 const base::TimeTicks request_time_;
547 DISALLOW_COPY_AND_ASSIGN(Request);
550 //------------------------------------------------------------------------------
552 // Calls HostResolverProc on the WorkerPool. Performs retries if necessary.
554 // Whenever we try to resolve the host, we post a delayed task to check if host
555 // resolution (OnLookupComplete) is completed or not. If the original attempt
556 // hasn't completed, then we start another attempt for host resolution. We take
557 // the results from the first attempt that finishes and ignore the results from
558 // all other attempts.
560 // TODO(szym): Move to separate source file for testing and mocking.
562 class HostResolverImpl::ProcTask
563 : public base::RefCountedThreadSafe<HostResolverImpl::ProcTask> {
564 public:
565 typedef base::Callback<void(int net_error,
566 const AddressList& addr_list)> Callback;
568 ProcTask(const Key& key,
569 const ProcTaskParams& params,
570 const Callback& callback,
571 const BoundNetLog& job_net_log)
572 : key_(key),
573 params_(params),
574 callback_(callback),
575 origin_loop_(base::MessageLoopProxy::current()),
576 attempt_number_(0),
577 completed_attempt_number_(0),
578 completed_attempt_error_(ERR_UNEXPECTED),
579 had_non_speculative_request_(false),
580 net_log_(job_net_log) {
581 if (!params_.resolver_proc.get())
582 params_.resolver_proc = HostResolverProc::GetDefault();
583 // If default is unset, use the system proc.
584 if (!params_.resolver_proc.get())
585 params_.resolver_proc = new SystemHostResolverProc();
588 void Start() {
589 DCHECK(origin_loop_->BelongsToCurrentThread());
590 net_log_.BeginEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_PROC_TASK);
591 StartLookupAttempt();
594 // Cancels this ProcTask. It will be orphaned. Any outstanding resolve
595 // attempts running on worker threads will continue running. Only once all the
596 // attempts complete will the final reference to this ProcTask be released.
597 void Cancel() {
598 DCHECK(origin_loop_->BelongsToCurrentThread());
600 if (was_canceled() || was_completed())
601 return;
603 callback_.Reset();
604 net_log_.EndEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_PROC_TASK);
607 void set_had_non_speculative_request() {
608 DCHECK(origin_loop_->BelongsToCurrentThread());
609 had_non_speculative_request_ = true;
612 bool was_canceled() const {
613 DCHECK(origin_loop_->BelongsToCurrentThread());
614 return callback_.is_null();
617 bool was_completed() const {
618 DCHECK(origin_loop_->BelongsToCurrentThread());
619 return completed_attempt_number_ > 0;
622 private:
623 friend class base::RefCountedThreadSafe<ProcTask>;
624 ~ProcTask() {}
626 void StartLookupAttempt() {
627 DCHECK(origin_loop_->BelongsToCurrentThread());
628 base::TimeTicks start_time = base::TimeTicks::Now();
629 ++attempt_number_;
630 // Dispatch the lookup attempt to a worker thread.
631 if (!base::WorkerPool::PostTask(
632 FROM_HERE,
633 base::Bind(&ProcTask::DoLookup, this, start_time, attempt_number_),
634 true)) {
635 NOTREACHED();
637 // Since we could be running within Resolve() right now, we can't just
638 // call OnLookupComplete(). Instead we must wait until Resolve() has
639 // returned (IO_PENDING).
640 origin_loop_->PostTask(
641 FROM_HERE,
642 base::Bind(&ProcTask::OnLookupComplete, this, AddressList(),
643 start_time, attempt_number_, ERR_UNEXPECTED, 0));
644 return;
647 net_log_.AddEvent(
648 NetLog::TYPE_HOST_RESOLVER_IMPL_ATTEMPT_STARTED,
649 NetLog::IntegerCallback("attempt_number", attempt_number_));
651 // If we don't get the results within a given time, RetryIfNotComplete
652 // will start a new attempt on a different worker thread if none of our
653 // outstanding attempts have completed yet.
654 if (attempt_number_ <= params_.max_retry_attempts) {
655 origin_loop_->PostDelayedTask(
656 FROM_HERE,
657 base::Bind(&ProcTask::RetryIfNotComplete, this),
658 params_.unresponsive_delay);
662 // WARNING: This code runs inside a worker pool. The shutdown code cannot
663 // wait for it to finish, so we must be very careful here about using other
664 // objects (like MessageLoops, Singletons, etc). During shutdown these objects
665 // may no longer exist. Multiple DoLookups() could be running in parallel, so
666 // any state inside of |this| must not mutate .
667 void DoLookup(const base::TimeTicks& start_time,
668 const uint32 attempt_number) {
669 AddressList results;
670 int os_error = 0;
671 // Running on the worker thread
672 int error = params_.resolver_proc->Resolve(key_.hostname,
673 key_.address_family,
674 key_.host_resolver_flags,
675 &results,
676 &os_error);
678 origin_loop_->PostTask(
679 FROM_HERE,
680 base::Bind(&ProcTask::OnLookupComplete, this, results, start_time,
681 attempt_number, error, os_error));
684 // Makes next attempt if DoLookup() has not finished (runs on origin thread).
685 void RetryIfNotComplete() {
686 DCHECK(origin_loop_->BelongsToCurrentThread());
688 if (was_completed() || was_canceled())
689 return;
691 params_.unresponsive_delay *= params_.retry_factor;
692 StartLookupAttempt();
695 // Callback for when DoLookup() completes (runs on origin thread).
696 void OnLookupComplete(const AddressList& results,
697 const base::TimeTicks& start_time,
698 const uint32 attempt_number,
699 int error,
700 const int os_error) {
701 DCHECK(origin_loop_->BelongsToCurrentThread());
702 // If results are empty, we should return an error.
703 bool empty_list_on_ok = (error == OK && results.empty());
704 UMA_HISTOGRAM_BOOLEAN("DNS.EmptyAddressListAndNoError", empty_list_on_ok);
705 if (empty_list_on_ok)
706 error = ERR_NAME_NOT_RESOLVED;
708 bool was_retry_attempt = attempt_number > 1;
710 // Ideally the following code would be part of host_resolver_proc.cc,
711 // however it isn't safe to call NetworkChangeNotifier from worker threads.
712 // So we do it here on the IO thread instead.
713 if (error != OK && NetworkChangeNotifier::IsOffline())
714 error = ERR_INTERNET_DISCONNECTED;
716 // If this is the first attempt that is finishing later, then record data
717 // for the first attempt. Won't contaminate with retry attempt's data.
718 if (!was_retry_attempt)
719 RecordPerformanceHistograms(start_time, error, os_error);
721 RecordAttemptHistograms(start_time, attempt_number, error, os_error);
723 if (was_canceled())
724 return;
726 NetLog::ParametersCallback net_log_callback;
727 if (error != OK) {
728 net_log_callback = base::Bind(&NetLogProcTaskFailedCallback,
729 attempt_number,
730 error,
731 os_error);
732 } else {
733 net_log_callback = NetLog::IntegerCallback("attempt_number",
734 attempt_number);
736 net_log_.AddEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_ATTEMPT_FINISHED,
737 net_log_callback);
739 if (was_completed())
740 return;
742 // Copy the results from the first worker thread that resolves the host.
743 results_ = results;
744 completed_attempt_number_ = attempt_number;
745 completed_attempt_error_ = error;
747 if (was_retry_attempt) {
748 // If retry attempt finishes before 1st attempt, then get stats on how
749 // much time is saved by having spawned an extra attempt.
750 retry_attempt_finished_time_ = base::TimeTicks::Now();
753 if (error != OK) {
754 net_log_callback = base::Bind(&NetLogProcTaskFailedCallback,
755 0, error, os_error);
756 } else {
757 net_log_callback = results_.CreateNetLogCallback();
759 net_log_.EndEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_PROC_TASK,
760 net_log_callback);
762 callback_.Run(error, results_);
765 void RecordPerformanceHistograms(const base::TimeTicks& start_time,
766 const int error,
767 const int os_error) const {
768 DCHECK(origin_loop_->BelongsToCurrentThread());
769 enum Category { // Used in HISTOGRAM_ENUMERATION.
770 RESOLVE_SUCCESS,
771 RESOLVE_FAIL,
772 RESOLVE_SPECULATIVE_SUCCESS,
773 RESOLVE_SPECULATIVE_FAIL,
774 RESOLVE_MAX, // Bounding value.
776 int category = RESOLVE_MAX; // Illegal value for later DCHECK only.
778 base::TimeDelta duration = base::TimeTicks::Now() - start_time;
779 if (error == OK) {
780 if (had_non_speculative_request_) {
781 category = RESOLVE_SUCCESS;
782 DNS_HISTOGRAM("DNS.ResolveSuccess", duration);
783 } else {
784 category = RESOLVE_SPECULATIVE_SUCCESS;
785 DNS_HISTOGRAM("DNS.ResolveSpeculativeSuccess", duration);
788 // Log DNS lookups based on |address_family|. This will help us determine
789 // if IPv4 or IPv4/6 lookups are faster or slower.
790 switch(key_.address_family) {
791 case ADDRESS_FAMILY_IPV4:
792 DNS_HISTOGRAM("DNS.ResolveSuccess_FAMILY_IPV4", duration);
793 break;
794 case ADDRESS_FAMILY_IPV6:
795 DNS_HISTOGRAM("DNS.ResolveSuccess_FAMILY_IPV6", duration);
796 break;
797 case ADDRESS_FAMILY_UNSPECIFIED:
798 DNS_HISTOGRAM("DNS.ResolveSuccess_FAMILY_UNSPEC", duration);
799 break;
801 } else {
802 if (had_non_speculative_request_) {
803 category = RESOLVE_FAIL;
804 DNS_HISTOGRAM("DNS.ResolveFail", duration);
805 } else {
806 category = RESOLVE_SPECULATIVE_FAIL;
807 DNS_HISTOGRAM("DNS.ResolveSpeculativeFail", duration);
809 // Log DNS lookups based on |address_family|. This will help us determine
810 // if IPv4 or IPv4/6 lookups are faster or slower.
811 switch(key_.address_family) {
812 case ADDRESS_FAMILY_IPV4:
813 DNS_HISTOGRAM("DNS.ResolveFail_FAMILY_IPV4", duration);
814 break;
815 case ADDRESS_FAMILY_IPV6:
816 DNS_HISTOGRAM("DNS.ResolveFail_FAMILY_IPV6", duration);
817 break;
818 case ADDRESS_FAMILY_UNSPECIFIED:
819 DNS_HISTOGRAM("DNS.ResolveFail_FAMILY_UNSPEC", duration);
820 break;
822 UMA_HISTOGRAM_CUSTOM_ENUMERATION(kOSErrorsForGetAddrinfoHistogramName,
823 std::abs(os_error),
824 GetAllGetAddrinfoOSErrors());
826 DCHECK_LT(category, static_cast<int>(RESOLVE_MAX)); // Be sure it was set.
828 UMA_HISTOGRAM_ENUMERATION("DNS.ResolveCategory", category, RESOLVE_MAX);
831 void RecordAttemptHistograms(const base::TimeTicks& start_time,
832 const uint32 attempt_number,
833 const int error,
834 const int os_error) const {
835 DCHECK(origin_loop_->BelongsToCurrentThread());
836 bool first_attempt_to_complete =
837 completed_attempt_number_ == attempt_number;
838 bool is_first_attempt = (attempt_number == 1);
840 if (first_attempt_to_complete) {
841 // If this was first attempt to complete, then record the resolution
842 // status of the attempt.
843 if (completed_attempt_error_ == OK) {
844 UMA_HISTOGRAM_ENUMERATION(
845 "DNS.AttemptFirstSuccess", attempt_number, 100);
846 } else {
847 UMA_HISTOGRAM_ENUMERATION(
848 "DNS.AttemptFirstFailure", attempt_number, 100);
852 if (error == OK)
853 UMA_HISTOGRAM_ENUMERATION("DNS.AttemptSuccess", attempt_number, 100);
854 else
855 UMA_HISTOGRAM_ENUMERATION("DNS.AttemptFailure", attempt_number, 100);
857 // If first attempt didn't finish before retry attempt, then calculate stats
858 // on how much time is saved by having spawned an extra attempt.
859 if (!first_attempt_to_complete && is_first_attempt && !was_canceled()) {
860 DNS_HISTOGRAM("DNS.AttemptTimeSavedByRetry",
861 base::TimeTicks::Now() - retry_attempt_finished_time_);
864 if (was_canceled() || !first_attempt_to_complete) {
865 // Count those attempts which completed after the job was already canceled
866 // OR after the job was already completed by an earlier attempt (so in
867 // effect).
868 UMA_HISTOGRAM_ENUMERATION("DNS.AttemptDiscarded", attempt_number, 100);
870 // Record if job is canceled.
871 if (was_canceled())
872 UMA_HISTOGRAM_ENUMERATION("DNS.AttemptCancelled", attempt_number, 100);
875 base::TimeDelta duration = base::TimeTicks::Now() - start_time;
876 if (error == OK)
877 DNS_HISTOGRAM("DNS.AttemptSuccessDuration", duration);
878 else
879 DNS_HISTOGRAM("DNS.AttemptFailDuration", duration);
882 // Set on the origin thread, read on the worker thread.
883 Key key_;
885 // Holds an owning reference to the HostResolverProc that we are going to use.
886 // This may not be the current resolver procedure by the time we call
887 // ResolveAddrInfo, but that's OK... we'll use it anyways, and the owning
888 // reference ensures that it remains valid until we are done.
889 ProcTaskParams params_;
891 // The listener to the results of this ProcTask.
892 Callback callback_;
894 // Used to post ourselves onto the origin thread.
895 scoped_refptr<base::MessageLoopProxy> origin_loop_;
897 // Keeps track of the number of attempts we have made so far to resolve the
898 // host. Whenever we start an attempt to resolve the host, we increase this
899 // number.
900 uint32 attempt_number_;
902 // The index of the attempt which finished first (or 0 if the job is still in
903 // progress).
904 uint32 completed_attempt_number_;
906 // The result (a net error code) from the first attempt to complete.
907 int completed_attempt_error_;
909 // The time when retry attempt was finished.
910 base::TimeTicks retry_attempt_finished_time_;
912 // True if a non-speculative request was ever attached to this job
913 // (regardless of whether or not it was later canceled.
914 // This boolean is used for histogramming the duration of jobs used to
915 // service non-speculative requests.
916 bool had_non_speculative_request_;
918 AddressList results_;
920 BoundNetLog net_log_;
922 DISALLOW_COPY_AND_ASSIGN(ProcTask);
925 //-----------------------------------------------------------------------------
927 // Wraps a call to HaveOnlyLoopbackAddresses to be executed on the WorkerPool as
928 // it takes 40-100ms and should not block initialization.
929 class HostResolverImpl::LoopbackProbeJob {
930 public:
931 explicit LoopbackProbeJob(const base::WeakPtr<HostResolverImpl>& resolver)
932 : resolver_(resolver),
933 result_(false) {
934 DCHECK(resolver.get());
935 const bool kIsSlow = true;
936 base::WorkerPool::PostTaskAndReply(
937 FROM_HERE,
938 base::Bind(&LoopbackProbeJob::DoProbe, base::Unretained(this)),
939 base::Bind(&LoopbackProbeJob::OnProbeComplete, base::Owned(this)),
940 kIsSlow);
943 virtual ~LoopbackProbeJob() {}
945 private:
946 // Runs on worker thread.
947 void DoProbe() {
948 result_ = HaveOnlyLoopbackAddresses();
951 void OnProbeComplete() {
952 if (!resolver_.get())
953 return;
954 resolver_->SetHaveOnlyLoopbackAddresses(result_);
957 // Used/set only on origin thread.
958 base::WeakPtr<HostResolverImpl> resolver_;
960 bool result_;
962 DISALLOW_COPY_AND_ASSIGN(LoopbackProbeJob);
965 //-----------------------------------------------------------------------------
967 // Resolves the hostname using DnsTransaction.
968 // TODO(szym): This could be moved to separate source file as well.
969 class HostResolverImpl::DnsTask : public base::SupportsWeakPtr<DnsTask> {
970 public:
971 class Delegate {
972 public:
973 virtual void OnDnsTaskComplete(base::TimeTicks start_time,
974 int net_error,
975 const AddressList& addr_list,
976 base::TimeDelta ttl) = 0;
978 // Called when the first of two jobs succeeds. If the first completed
979 // transaction fails, this is not called. Also not called when the DnsTask
980 // only needs to run one transaction.
981 virtual void OnFirstDnsTransactionComplete() = 0;
983 protected:
984 Delegate() {}
985 virtual ~Delegate() {}
988 DnsTask(DnsClient* client,
989 const Key& key,
990 Delegate* delegate,
991 const BoundNetLog& job_net_log)
992 : client_(client),
993 key_(key),
994 delegate_(delegate),
995 net_log_(job_net_log),
996 num_completed_transactions_(0),
997 task_start_time_(base::TimeTicks::Now()) {
998 DCHECK(client);
999 DCHECK(delegate_);
1002 bool needs_two_transactions() const {
1003 return key_.address_family == ADDRESS_FAMILY_UNSPECIFIED;
1006 bool needs_another_transaction() const {
1007 return needs_two_transactions() && !transaction_aaaa_;
1010 void StartFirstTransaction() {
1011 DCHECK_EQ(0u, num_completed_transactions_);
1012 net_log_.BeginEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_DNS_TASK);
1013 if (key_.address_family == ADDRESS_FAMILY_IPV6) {
1014 StartAAAA();
1015 } else {
1016 StartA();
1020 void StartSecondTransaction() {
1021 DCHECK(needs_two_transactions());
1022 StartAAAA();
1025 private:
1026 void StartA() {
1027 DCHECK(!transaction_a_);
1028 DCHECK_NE(ADDRESS_FAMILY_IPV6, key_.address_family);
1029 transaction_a_ = CreateTransaction(ADDRESS_FAMILY_IPV4);
1030 transaction_a_->Start();
1033 void StartAAAA() {
1034 DCHECK(!transaction_aaaa_);
1035 DCHECK_NE(ADDRESS_FAMILY_IPV4, key_.address_family);
1036 transaction_aaaa_ = CreateTransaction(ADDRESS_FAMILY_IPV6);
1037 transaction_aaaa_->Start();
1040 scoped_ptr<DnsTransaction> CreateTransaction(AddressFamily family) {
1041 DCHECK_NE(ADDRESS_FAMILY_UNSPECIFIED, family);
1042 return client_->GetTransactionFactory()->CreateTransaction(
1043 key_.hostname,
1044 family == ADDRESS_FAMILY_IPV6 ? dns_protocol::kTypeAAAA :
1045 dns_protocol::kTypeA,
1046 base::Bind(&DnsTask::OnTransactionComplete, base::Unretained(this),
1047 base::TimeTicks::Now()),
1048 net_log_);
1051 void OnTransactionComplete(const base::TimeTicks& start_time,
1052 DnsTransaction* transaction,
1053 int net_error,
1054 const DnsResponse* response) {
1055 DCHECK(transaction);
1056 base::TimeDelta duration = base::TimeTicks::Now() - start_time;
1057 if (net_error != OK) {
1058 DNS_HISTOGRAM("AsyncDNS.TransactionFailure", duration);
1059 OnFailure(net_error, DnsResponse::DNS_PARSE_OK);
1060 return;
1063 DNS_HISTOGRAM("AsyncDNS.TransactionSuccess", duration);
1064 switch (transaction->GetType()) {
1065 case dns_protocol::kTypeA:
1066 DNS_HISTOGRAM("AsyncDNS.TransactionSuccess_A", duration);
1067 break;
1068 case dns_protocol::kTypeAAAA:
1069 DNS_HISTOGRAM("AsyncDNS.TransactionSuccess_AAAA", duration);
1070 break;
1073 AddressList addr_list;
1074 base::TimeDelta ttl;
1075 DnsResponse::Result result = response->ParseToAddressList(&addr_list, &ttl);
1076 UMA_HISTOGRAM_ENUMERATION("AsyncDNS.ParseToAddressList",
1077 result,
1078 DnsResponse::DNS_PARSE_RESULT_MAX);
1079 if (result != DnsResponse::DNS_PARSE_OK) {
1080 // Fail even if the other query succeeds.
1081 OnFailure(ERR_DNS_MALFORMED_RESPONSE, result);
1082 return;
1085 ++num_completed_transactions_;
1086 if (num_completed_transactions_ == 1) {
1087 ttl_ = ttl;
1088 } else {
1089 ttl_ = std::min(ttl_, ttl);
1092 if (transaction->GetType() == dns_protocol::kTypeA) {
1093 DCHECK_EQ(transaction_a_.get(), transaction);
1094 // Place IPv4 addresses after IPv6.
1095 addr_list_.insert(addr_list_.end(), addr_list.begin(), addr_list.end());
1096 } else {
1097 DCHECK_EQ(transaction_aaaa_.get(), transaction);
1098 // Place IPv6 addresses before IPv4.
1099 addr_list_.insert(addr_list_.begin(), addr_list.begin(), addr_list.end());
1102 if (needs_two_transactions() && num_completed_transactions_ == 1) {
1103 // No need to repeat the suffix search.
1104 key_.hostname = transaction->GetHostname();
1105 delegate_->OnFirstDnsTransactionComplete();
1106 return;
1109 if (addr_list_.empty()) {
1110 // TODO(szym): Don't fallback to ProcTask in this case.
1111 OnFailure(ERR_NAME_NOT_RESOLVED, DnsResponse::DNS_PARSE_OK);
1112 return;
1115 // If there are multiple addresses, and at least one is IPv6, need to sort
1116 // them. Note that IPv6 addresses are always put before IPv4 ones, so it's
1117 // sufficient to just check the family of the first address.
1118 if (addr_list_.size() > 1 &&
1119 addr_list_[0].GetFamily() == ADDRESS_FAMILY_IPV6) {
1120 // Sort addresses if needed. Sort could complete synchronously.
1121 client_->GetAddressSorter()->Sort(
1122 addr_list_,
1123 base::Bind(&DnsTask::OnSortComplete,
1124 AsWeakPtr(),
1125 base::TimeTicks::Now()));
1126 } else {
1127 OnSuccess(addr_list_);
1131 void OnSortComplete(base::TimeTicks start_time,
1132 bool success,
1133 const AddressList& addr_list) {
1134 if (!success) {
1135 DNS_HISTOGRAM("AsyncDNS.SortFailure",
1136 base::TimeTicks::Now() - start_time);
1137 OnFailure(ERR_DNS_SORT_ERROR, DnsResponse::DNS_PARSE_OK);
1138 return;
1141 DNS_HISTOGRAM("AsyncDNS.SortSuccess",
1142 base::TimeTicks::Now() - start_time);
1144 // AddressSorter prunes unusable destinations.
1145 if (addr_list.empty()) {
1146 LOG(WARNING) << "Address list empty after RFC3484 sort";
1147 OnFailure(ERR_NAME_NOT_RESOLVED, DnsResponse::DNS_PARSE_OK);
1148 return;
1151 OnSuccess(addr_list);
1154 void OnFailure(int net_error, DnsResponse::Result result) {
1155 DCHECK_NE(OK, net_error);
1156 net_log_.EndEvent(
1157 NetLog::TYPE_HOST_RESOLVER_IMPL_DNS_TASK,
1158 base::Bind(&NetLogDnsTaskFailedCallback, net_error, result));
1159 delegate_->OnDnsTaskComplete(task_start_time_, net_error, AddressList(),
1160 base::TimeDelta());
1163 void OnSuccess(const AddressList& addr_list) {
1164 net_log_.EndEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_DNS_TASK,
1165 addr_list.CreateNetLogCallback());
1166 delegate_->OnDnsTaskComplete(task_start_time_, OK, addr_list, ttl_);
1169 DnsClient* client_;
1170 Key key_;
1172 // The listener to the results of this DnsTask.
1173 Delegate* delegate_;
1174 const BoundNetLog net_log_;
1176 scoped_ptr<DnsTransaction> transaction_a_;
1177 scoped_ptr<DnsTransaction> transaction_aaaa_;
1179 unsigned num_completed_transactions_;
1181 // These are updated as each transaction completes.
1182 base::TimeDelta ttl_;
1183 // IPv6 addresses must appear first in the list.
1184 AddressList addr_list_;
1186 base::TimeTicks task_start_time_;
1188 DISALLOW_COPY_AND_ASSIGN(DnsTask);
1191 //-----------------------------------------------------------------------------
1193 // Aggregates all Requests for the same Key. Dispatched via PriorityDispatch.
1194 class HostResolverImpl::Job : public PrioritizedDispatcher::Job,
1195 public HostResolverImpl::DnsTask::Delegate {
1196 public:
1197 // Creates new job for |key| where |request_net_log| is bound to the
1198 // request that spawned it.
1199 Job(const base::WeakPtr<HostResolverImpl>& resolver,
1200 const Key& key,
1201 RequestPriority priority,
1202 const BoundNetLog& request_net_log)
1203 : resolver_(resolver),
1204 key_(key),
1205 priority_tracker_(priority),
1206 had_non_speculative_request_(false),
1207 had_dns_config_(false),
1208 num_occupied_job_slots_(0),
1209 dns_task_error_(OK),
1210 creation_time_(base::TimeTicks::Now()),
1211 priority_change_time_(creation_time_),
1212 net_log_(BoundNetLog::Make(request_net_log.net_log(),
1213 NetLog::SOURCE_HOST_RESOLVER_IMPL_JOB)) {
1214 request_net_log.AddEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_CREATE_JOB);
1216 net_log_.BeginEvent(
1217 NetLog::TYPE_HOST_RESOLVER_IMPL_JOB,
1218 base::Bind(&NetLogJobCreationCallback,
1219 request_net_log.source(),
1220 &key_.hostname));
1223 virtual ~Job() {
1224 if (is_running()) {
1225 // |resolver_| was destroyed with this Job still in flight.
1226 // Clean-up, record in the log, but don't run any callbacks.
1227 if (is_proc_running()) {
1228 proc_task_->Cancel();
1229 proc_task_ = NULL;
1231 // Clean up now for nice NetLog.
1232 KillDnsTask();
1233 net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HOST_RESOLVER_IMPL_JOB,
1234 ERR_ABORTED);
1235 } else if (is_queued()) {
1236 // |resolver_| was destroyed without running this Job.
1237 // TODO(szym): is there any benefit in having this distinction?
1238 net_log_.AddEvent(NetLog::TYPE_CANCELLED);
1239 net_log_.EndEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_JOB);
1241 // else CompleteRequests logged EndEvent.
1243 // Log any remaining Requests as cancelled.
1244 for (RequestsList::const_iterator it = requests_.begin();
1245 it != requests_.end(); ++it) {
1246 Request* req = *it;
1247 if (req->was_canceled())
1248 continue;
1249 DCHECK_EQ(this, req->job());
1250 LogCancelRequest(req->source_net_log(), req->request_net_log(),
1251 req->info());
1255 // Add this job to the dispatcher. If "at_head" is true, adds at the front
1256 // of the queue.
1257 void Schedule(bool at_head) {
1258 DCHECK(!is_queued());
1259 PrioritizedDispatcher::Handle handle;
1260 if (!at_head) {
1261 handle = resolver_->dispatcher_->Add(this, priority());
1262 } else {
1263 handle = resolver_->dispatcher_->AddAtHead(this, priority());
1265 // The dispatcher could have started |this| in the above call to Add, which
1266 // could have called Schedule again. In that case |handle| will be null,
1267 // but |handle_| may have been set by the other nested call to Schedule.
1268 if (!handle.is_null()) {
1269 DCHECK(handle_.is_null());
1270 handle_ = handle;
1274 void AddRequest(scoped_ptr<Request> req) {
1275 DCHECK_EQ(key_.hostname, req->info().hostname());
1277 req->set_job(this);
1278 priority_tracker_.Add(req->priority());
1280 req->request_net_log().AddEvent(
1281 NetLog::TYPE_HOST_RESOLVER_IMPL_JOB_ATTACH,
1282 net_log_.source().ToEventParametersCallback());
1284 net_log_.AddEvent(
1285 NetLog::TYPE_HOST_RESOLVER_IMPL_JOB_REQUEST_ATTACH,
1286 base::Bind(&NetLogJobAttachCallback,
1287 req->request_net_log().source(),
1288 priority()));
1290 // TODO(szym): Check if this is still needed.
1291 if (!req->info().is_speculative()) {
1292 had_non_speculative_request_ = true;
1293 if (proc_task_.get())
1294 proc_task_->set_had_non_speculative_request();
1297 requests_.push_back(req.release());
1299 UpdatePriority();
1302 // Marks |req| as cancelled. If it was the last active Request, also finishes
1303 // this Job, marking it as cancelled, and deletes it.
1304 void CancelRequest(Request* req) {
1305 DCHECK_EQ(key_.hostname, req->info().hostname());
1306 DCHECK(!req->was_canceled());
1308 // Don't remove it from |requests_| just mark it canceled.
1309 req->MarkAsCanceled();
1310 LogCancelRequest(req->source_net_log(), req->request_net_log(),
1311 req->info());
1313 priority_tracker_.Remove(req->priority());
1314 net_log_.AddEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_JOB_REQUEST_DETACH,
1315 base::Bind(&NetLogJobAttachCallback,
1316 req->request_net_log().source(),
1317 priority()));
1319 if (num_active_requests() > 0) {
1320 UpdatePriority();
1321 } else {
1322 // If we were called from a Request's callback within CompleteRequests,
1323 // that Request could not have been cancelled, so num_active_requests()
1324 // could not be 0. Therefore, we are not in CompleteRequests().
1325 CompleteRequestsWithError(OK /* cancelled */);
1329 // Called from AbortAllInProgressJobs. Completes all requests and destroys
1330 // the job. This currently assumes the abort is due to a network change.
1331 void Abort() {
1332 DCHECK(is_running());
1333 CompleteRequestsWithError(ERR_NETWORK_CHANGED);
1336 // If DnsTask present, abort it and fall back to ProcTask.
1337 void AbortDnsTask() {
1338 if (dns_task_) {
1339 KillDnsTask();
1340 dns_task_error_ = OK;
1341 StartProcTask();
1345 // Called by HostResolverImpl when this job is evicted due to queue overflow.
1346 // Completes all requests and destroys the job.
1347 void OnEvicted() {
1348 DCHECK(!is_running());
1349 DCHECK(is_queued());
1350 handle_.Reset();
1352 net_log_.AddEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_JOB_EVICTED);
1354 // This signals to CompleteRequests that this job never ran.
1355 CompleteRequestsWithError(ERR_HOST_RESOLVER_QUEUE_TOO_LARGE);
1358 // Attempts to serve the job from HOSTS. Returns true if succeeded and
1359 // this Job was destroyed.
1360 bool ServeFromHosts() {
1361 DCHECK_GT(num_active_requests(), 0u);
1362 AddressList addr_list;
1363 if (resolver_->ServeFromHosts(key(),
1364 requests_.front()->info(),
1365 &addr_list)) {
1366 // This will destroy the Job.
1367 CompleteRequests(
1368 HostCache::Entry(OK, MakeAddressListForRequest(addr_list)),
1369 base::TimeDelta());
1370 return true;
1372 return false;
1375 const Key key() const {
1376 return key_;
1379 bool is_queued() const {
1380 return !handle_.is_null();
1383 bool is_running() const {
1384 return is_dns_running() || is_proc_running();
1387 private:
1388 void KillDnsTask() {
1389 if (dns_task_) {
1390 ReduceToOneJobSlot();
1391 dns_task_.reset();
1395 // Reduce the number of job slots occupied and queued in the dispatcher
1396 // to one. If the second Job slot is queued in the dispatcher, cancels the
1397 // queued job. Otherwise, the second Job has been started by the
1398 // PrioritizedDispatcher, so signals it is complete.
1399 void ReduceToOneJobSlot() {
1400 DCHECK_GE(num_occupied_job_slots_, 1u);
1401 if (is_queued()) {
1402 resolver_->dispatcher_->Cancel(handle_);
1403 handle_.Reset();
1404 } else if (num_occupied_job_slots_ > 1) {
1405 resolver_->dispatcher_->OnJobFinished();
1406 --num_occupied_job_slots_;
1408 DCHECK_EQ(1u, num_occupied_job_slots_);
1411 void UpdatePriority() {
1412 if (is_queued()) {
1413 if (priority() != static_cast<RequestPriority>(handle_.priority()))
1414 priority_change_time_ = base::TimeTicks::Now();
1415 handle_ = resolver_->dispatcher_->ChangePriority(handle_, priority());
1419 AddressList MakeAddressListForRequest(const AddressList& list) const {
1420 if (requests_.empty())
1421 return list;
1422 return AddressList::CopyWithPort(list, requests_.front()->info().port());
1425 // PriorityDispatch::Job:
1426 virtual void Start() OVERRIDE {
1427 DCHECK_LE(num_occupied_job_slots_, 1u);
1429 handle_.Reset();
1430 ++num_occupied_job_slots_;
1432 if (num_occupied_job_slots_ == 2) {
1433 StartSecondDnsTransaction();
1434 return;
1437 DCHECK(!is_running());
1439 net_log_.AddEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_JOB_STARTED);
1441 had_dns_config_ = resolver_->HaveDnsConfig();
1443 base::TimeTicks now = base::TimeTicks::Now();
1444 base::TimeDelta queue_time = now - creation_time_;
1445 base::TimeDelta queue_time_after_change = now - priority_change_time_;
1447 if (had_dns_config_) {
1448 DNS_HISTOGRAM_BY_PRIORITY("AsyncDNS.JobQueueTime", priority(),
1449 queue_time);
1450 DNS_HISTOGRAM_BY_PRIORITY("AsyncDNS.JobQueueTimeAfterChange", priority(),
1451 queue_time_after_change);
1452 } else {
1453 DNS_HISTOGRAM_BY_PRIORITY("DNS.JobQueueTime", priority(), queue_time);
1454 DNS_HISTOGRAM_BY_PRIORITY("DNS.JobQueueTimeAfterChange", priority(),
1455 queue_time_after_change);
1458 bool system_only =
1459 (key_.host_resolver_flags & HOST_RESOLVER_SYSTEM_ONLY) != 0;
1461 // Caution: Job::Start must not complete synchronously.
1462 if (!system_only && had_dns_config_ &&
1463 !ResemblesMulticastDNSName(key_.hostname)) {
1464 StartDnsTask();
1465 } else {
1466 StartProcTask();
1470 // TODO(szym): Since DnsTransaction does not consume threads, we can increase
1471 // the limits on |dispatcher_|. But in order to keep the number of WorkerPool
1472 // threads low, we will need to use an "inner" PrioritizedDispatcher with
1473 // tighter limits.
1474 void StartProcTask() {
1475 DCHECK(!is_dns_running());
1476 proc_task_ = new ProcTask(
1477 key_,
1478 resolver_->proc_params_,
1479 base::Bind(&Job::OnProcTaskComplete, base::Unretained(this),
1480 base::TimeTicks::Now()),
1481 net_log_);
1483 if (had_non_speculative_request_)
1484 proc_task_->set_had_non_speculative_request();
1485 // Start() could be called from within Resolve(), hence it must NOT directly
1486 // call OnProcTaskComplete, for example, on synchronous failure.
1487 proc_task_->Start();
1490 // Called by ProcTask when it completes.
1491 void OnProcTaskComplete(base::TimeTicks start_time,
1492 int net_error,
1493 const AddressList& addr_list) {
1494 DCHECK(is_proc_running());
1496 if (!resolver_->resolved_known_ipv6_hostname_ &&
1497 net_error == OK &&
1498 key_.address_family == ADDRESS_FAMILY_UNSPECIFIED) {
1499 if (key_.hostname == "www.google.com") {
1500 resolver_->resolved_known_ipv6_hostname_ = true;
1501 bool got_ipv6_address = false;
1502 for (size_t i = 0; i < addr_list.size(); ++i) {
1503 if (addr_list[i].GetFamily() == ADDRESS_FAMILY_IPV6) {
1504 got_ipv6_address = true;
1505 break;
1508 UMA_HISTOGRAM_BOOLEAN("Net.UnspecResolvedIPv6", got_ipv6_address);
1512 if (dns_task_error_ != OK) {
1513 base::TimeDelta duration = base::TimeTicks::Now() - start_time;
1514 if (net_error == OK) {
1515 DNS_HISTOGRAM("AsyncDNS.FallbackSuccess", duration);
1516 if ((dns_task_error_ == ERR_NAME_NOT_RESOLVED) &&
1517 ResemblesNetBIOSName(key_.hostname)) {
1518 UmaAsyncDnsResolveStatus(RESOLVE_STATUS_SUSPECT_NETBIOS);
1519 } else {
1520 UmaAsyncDnsResolveStatus(RESOLVE_STATUS_PROC_SUCCESS);
1522 UMA_HISTOGRAM_CUSTOM_ENUMERATION("AsyncDNS.ResolveError",
1523 std::abs(dns_task_error_),
1524 GetAllErrorCodesForUma());
1525 resolver_->OnDnsTaskResolve(dns_task_error_);
1526 } else {
1527 DNS_HISTOGRAM("AsyncDNS.FallbackFail", duration);
1528 UmaAsyncDnsResolveStatus(RESOLVE_STATUS_FAIL);
1532 base::TimeDelta ttl =
1533 base::TimeDelta::FromSeconds(kNegativeCacheEntryTTLSeconds);
1534 if (net_error == OK)
1535 ttl = base::TimeDelta::FromSeconds(kCacheEntryTTLSeconds);
1537 // Don't store the |ttl| in cache since it's not obtained from the server.
1538 CompleteRequests(
1539 HostCache::Entry(net_error, MakeAddressListForRequest(addr_list)),
1540 ttl);
1543 void StartDnsTask() {
1544 DCHECK(resolver_->HaveDnsConfig());
1545 dns_task_.reset(new DnsTask(resolver_->dns_client_.get(), key_, this,
1546 net_log_));
1548 dns_task_->StartFirstTransaction();
1549 // Schedule a second transaction, if needed.
1550 if (dns_task_->needs_two_transactions())
1551 Schedule(true);
1554 void StartSecondDnsTransaction() {
1555 DCHECK(dns_task_->needs_two_transactions());
1556 dns_task_->StartSecondTransaction();
1559 // Called if DnsTask fails. It is posted from StartDnsTask, so Job may be
1560 // deleted before this callback. In this case dns_task is deleted as well,
1561 // so we use it as indicator whether Job is still valid.
1562 void OnDnsTaskFailure(const base::WeakPtr<DnsTask>& dns_task,
1563 base::TimeDelta duration,
1564 int net_error) {
1565 DNS_HISTOGRAM("AsyncDNS.ResolveFail", duration);
1567 if (dns_task == NULL)
1568 return;
1570 dns_task_error_ = net_error;
1572 // TODO(szym): Run ServeFromHosts now if nsswitch.conf says so.
1573 // http://crbug.com/117655
1575 // TODO(szym): Some net errors indicate lack of connectivity. Starting
1576 // ProcTask in that case is a waste of time.
1577 if (resolver_->fallback_to_proctask_) {
1578 KillDnsTask();
1579 StartProcTask();
1580 } else {
1581 UmaAsyncDnsResolveStatus(RESOLVE_STATUS_FAIL);
1582 CompleteRequestsWithError(net_error);
1587 // HostResolverImpl::DnsTask::Delegate implementation:
1589 virtual void OnDnsTaskComplete(base::TimeTicks start_time,
1590 int net_error,
1591 const AddressList& addr_list,
1592 base::TimeDelta ttl) OVERRIDE {
1593 DCHECK(is_dns_running());
1595 base::TimeDelta duration = base::TimeTicks::Now() - start_time;
1596 if (net_error != OK) {
1597 OnDnsTaskFailure(dns_task_->AsWeakPtr(), duration, net_error);
1598 return;
1600 DNS_HISTOGRAM("AsyncDNS.ResolveSuccess", duration);
1601 // Log DNS lookups based on |address_family|.
1602 switch(key_.address_family) {
1603 case ADDRESS_FAMILY_IPV4:
1604 DNS_HISTOGRAM("AsyncDNS.ResolveSuccess_FAMILY_IPV4", duration);
1605 break;
1606 case ADDRESS_FAMILY_IPV6:
1607 DNS_HISTOGRAM("AsyncDNS.ResolveSuccess_FAMILY_IPV6", duration);
1608 break;
1609 case ADDRESS_FAMILY_UNSPECIFIED:
1610 DNS_HISTOGRAM("AsyncDNS.ResolveSuccess_FAMILY_UNSPEC", duration);
1611 break;
1614 UmaAsyncDnsResolveStatus(RESOLVE_STATUS_DNS_SUCCESS);
1615 RecordTTL(ttl);
1617 resolver_->OnDnsTaskResolve(OK);
1619 base::TimeDelta bounded_ttl =
1620 std::max(ttl, base::TimeDelta::FromSeconds(kMinimumTTLSeconds));
1622 CompleteRequests(
1623 HostCache::Entry(net_error, MakeAddressListForRequest(addr_list), ttl),
1624 bounded_ttl);
1627 virtual void OnFirstDnsTransactionComplete() OVERRIDE {
1628 DCHECK(dns_task_->needs_two_transactions());
1629 DCHECK_EQ(dns_task_->needs_another_transaction(), is_queued());
1630 // No longer need to occupy two dispatcher slots.
1631 ReduceToOneJobSlot();
1633 // We already have a job slot at the dispatcher, so if the second
1634 // transaction hasn't started, reuse it now instead of waiting in the queue
1635 // for the second slot.
1636 if (dns_task_->needs_another_transaction())
1637 dns_task_->StartSecondTransaction();
1640 // Performs Job's last rites. Completes all Requests. Deletes this.
1641 void CompleteRequests(const HostCache::Entry& entry,
1642 base::TimeDelta ttl) {
1643 CHECK(resolver_.get());
1645 // This job must be removed from resolver's |jobs_| now to make room for a
1646 // new job with the same key in case one of the OnComplete callbacks decides
1647 // to spawn one. Consequently, the job deletes itself when CompleteRequests
1648 // is done.
1649 scoped_ptr<Job> self_deleter(this);
1651 resolver_->RemoveJob(this);
1653 if (is_running()) {
1654 if (is_proc_running()) {
1655 DCHECK(!is_queued());
1656 proc_task_->Cancel();
1657 proc_task_ = NULL;
1659 KillDnsTask();
1661 // Signal dispatcher that a slot has opened.
1662 resolver_->dispatcher_->OnJobFinished();
1663 } else if (is_queued()) {
1664 resolver_->dispatcher_->Cancel(handle_);
1665 handle_.Reset();
1668 if (num_active_requests() == 0) {
1669 net_log_.AddEvent(NetLog::TYPE_CANCELLED);
1670 net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HOST_RESOLVER_IMPL_JOB,
1671 OK);
1672 return;
1675 net_log_.EndEventWithNetErrorCode(NetLog::TYPE_HOST_RESOLVER_IMPL_JOB,
1676 entry.error);
1678 DCHECK(!requests_.empty());
1680 if (entry.error == OK) {
1681 // Record this histogram here, when we know the system has a valid DNS
1682 // configuration.
1683 UMA_HISTOGRAM_BOOLEAN("AsyncDNS.HaveDnsConfig",
1684 resolver_->received_dns_config_);
1687 bool did_complete = (entry.error != ERR_NETWORK_CHANGED) &&
1688 (entry.error != ERR_HOST_RESOLVER_QUEUE_TOO_LARGE);
1689 if (did_complete)
1690 resolver_->CacheResult(key_, entry, ttl);
1692 // Complete all of the requests that were attached to the job.
1693 for (RequestsList::const_iterator it = requests_.begin();
1694 it != requests_.end(); ++it) {
1695 Request* req = *it;
1697 if (req->was_canceled())
1698 continue;
1700 DCHECK_EQ(this, req->job());
1701 // Update the net log and notify registered observers.
1702 LogFinishRequest(req->source_net_log(), req->request_net_log(),
1703 req->info(), entry.error);
1704 if (did_complete) {
1705 // Record effective total time from creation to completion.
1706 RecordTotalTime(had_dns_config_, req->info().is_speculative(),
1707 base::TimeTicks::Now() - req->request_time());
1709 req->OnComplete(entry.error, entry.addrlist);
1711 // Check if the resolver was destroyed as a result of running the
1712 // callback. If it was, we could continue, but we choose to bail.
1713 if (!resolver_.get())
1714 return;
1718 // Convenience wrapper for CompleteRequests in case of failure.
1719 void CompleteRequestsWithError(int net_error) {
1720 CompleteRequests(HostCache::Entry(net_error, AddressList()),
1721 base::TimeDelta());
1724 RequestPriority priority() const {
1725 return priority_tracker_.highest_priority();
1728 // Number of non-canceled requests in |requests_|.
1729 size_t num_active_requests() const {
1730 return priority_tracker_.total_count();
1733 bool is_dns_running() const {
1734 return dns_task_.get() != NULL;
1737 bool is_proc_running() const {
1738 return proc_task_.get() != NULL;
1741 base::WeakPtr<HostResolverImpl> resolver_;
1743 Key key_;
1745 // Tracks the highest priority across |requests_|.
1746 PriorityTracker priority_tracker_;
1748 bool had_non_speculative_request_;
1750 // Distinguishes measurements taken while DnsClient was fully configured.
1751 bool had_dns_config_;
1753 // Number of slots occupied by this Job in resolver's PrioritizedDispatcher.
1754 unsigned num_occupied_job_slots_;
1756 // Result of DnsTask.
1757 int dns_task_error_;
1759 const base::TimeTicks creation_time_;
1760 base::TimeTicks priority_change_time_;
1762 BoundNetLog net_log_;
1764 // Resolves the host using a HostResolverProc.
1765 scoped_refptr<ProcTask> proc_task_;
1767 // Resolves the host using a DnsTransaction.
1768 scoped_ptr<DnsTask> dns_task_;
1770 // All Requests waiting for the result of this Job. Some can be canceled.
1771 RequestsList requests_;
1773 // A handle used in |HostResolverImpl::dispatcher_|.
1774 PrioritizedDispatcher::Handle handle_;
1777 //-----------------------------------------------------------------------------
1779 HostResolverImpl::ProcTaskParams::ProcTaskParams(
1780 HostResolverProc* resolver_proc,
1781 size_t max_retry_attempts)
1782 : resolver_proc(resolver_proc),
1783 max_retry_attempts(max_retry_attempts),
1784 unresponsive_delay(base::TimeDelta::FromMilliseconds(6000)),
1785 retry_factor(2) {
1786 // Maximum of 4 retry attempts for host resolution.
1787 static const size_t kDefaultMaxRetryAttempts = 4u;
1788 if (max_retry_attempts == HostResolver::kDefaultRetryAttempts)
1789 max_retry_attempts = kDefaultMaxRetryAttempts;
1792 HostResolverImpl::ProcTaskParams::~ProcTaskParams() {}
1794 HostResolverImpl::HostResolverImpl(const Options& options, NetLog* net_log)
1795 : max_queued_jobs_(0),
1796 proc_params_(NULL, options.max_retry_attempts),
1797 net_log_(net_log),
1798 default_address_family_(ADDRESS_FAMILY_UNSPECIFIED),
1799 received_dns_config_(false),
1800 num_dns_failures_(0),
1801 probe_ipv6_support_(true),
1802 use_local_ipv6_(false),
1803 resolved_known_ipv6_hostname_(false),
1804 additional_resolver_flags_(0),
1805 fallback_to_proctask_(true),
1806 weak_ptr_factory_(this),
1807 probe_weak_ptr_factory_(this) {
1808 if (options.enable_caching)
1809 cache_ = HostCache::CreateDefaultCache();
1811 PrioritizedDispatcher::Limits job_limits = options.GetDispatcherLimits();
1812 dispatcher_.reset(new PrioritizedDispatcher(job_limits));
1813 max_queued_jobs_ = job_limits.total_jobs * 100u;
1815 DCHECK_GE(dispatcher_->num_priorities(), static_cast<size_t>(NUM_PRIORITIES));
1817 #if defined(OS_WIN)
1818 EnsureWinsockInit();
1819 #endif
1820 #if defined(OS_POSIX) && !defined(OS_MACOSX) && !defined(OS_ANDROID)
1821 new LoopbackProbeJob(weak_ptr_factory_.GetWeakPtr());
1822 #endif
1823 NetworkChangeNotifier::AddIPAddressObserver(this);
1824 NetworkChangeNotifier::AddDNSObserver(this);
1825 #if defined(OS_POSIX) && !defined(OS_MACOSX) && !defined(OS_OPENBSD) && \
1826 !defined(OS_ANDROID)
1827 EnsureDnsReloaderInit();
1828 #endif
1831 DnsConfig dns_config;
1832 NetworkChangeNotifier::GetDnsConfig(&dns_config);
1833 received_dns_config_ = dns_config.IsValid();
1834 // Conservatively assume local IPv6 is needed when DnsConfig is not valid.
1835 use_local_ipv6_ = !dns_config.IsValid() || dns_config.use_local_ipv6;
1838 fallback_to_proctask_ = !ConfigureAsyncDnsNoFallbackFieldTrial();
1841 HostResolverImpl::~HostResolverImpl() {
1842 // Prevent the dispatcher from starting new jobs.
1843 dispatcher_->SetLimitsToZero();
1844 // It's now safe for Jobs to call KillDsnTask on destruction, because
1845 // OnJobComplete will not start any new jobs.
1846 STLDeleteValues(&jobs_);
1848 NetworkChangeNotifier::RemoveIPAddressObserver(this);
1849 NetworkChangeNotifier::RemoveDNSObserver(this);
1852 void HostResolverImpl::SetMaxQueuedJobs(size_t value) {
1853 DCHECK_EQ(0u, dispatcher_->num_queued_jobs());
1854 DCHECK_GT(value, 0u);
1855 max_queued_jobs_ = value;
1858 int HostResolverImpl::Resolve(const RequestInfo& info,
1859 RequestPriority priority,
1860 AddressList* addresses,
1861 const CompletionCallback& callback,
1862 RequestHandle* out_req,
1863 const BoundNetLog& source_net_log) {
1864 DCHECK(addresses);
1865 DCHECK(CalledOnValidThread());
1866 DCHECK_EQ(false, callback.is_null());
1868 // Check that the caller supplied a valid hostname to resolve.
1869 std::string labeled_hostname;
1870 if (!DNSDomainFromDot(info.hostname(), &labeled_hostname))
1871 return ERR_NAME_NOT_RESOLVED;
1873 // Make a log item for the request.
1874 BoundNetLog request_net_log = BoundNetLog::Make(net_log_,
1875 NetLog::SOURCE_HOST_RESOLVER_IMPL_REQUEST);
1877 LogStartRequest(source_net_log, request_net_log, info);
1879 // Build a key that identifies the request in the cache and in the
1880 // outstanding jobs map.
1881 Key key = GetEffectiveKeyForRequest(info, request_net_log);
1883 int rv = ResolveHelper(key, info, addresses, request_net_log);
1884 if (rv != ERR_DNS_CACHE_MISS) {
1885 LogFinishRequest(source_net_log, request_net_log, info, rv);
1886 RecordTotalTime(HaveDnsConfig(), info.is_speculative(), base::TimeDelta());
1887 return rv;
1890 // Next we need to attach our request to a "job". This job is responsible for
1891 // calling "getaddrinfo(hostname)" on a worker thread.
1893 JobMap::iterator jobit = jobs_.find(key);
1894 Job* job;
1895 if (jobit == jobs_.end()) {
1896 job =
1897 new Job(weak_ptr_factory_.GetWeakPtr(), key, priority, request_net_log);
1898 job->Schedule(false);
1900 // Check for queue overflow.
1901 if (dispatcher_->num_queued_jobs() > max_queued_jobs_) {
1902 Job* evicted = static_cast<Job*>(dispatcher_->EvictOldestLowest());
1903 DCHECK(evicted);
1904 evicted->OnEvicted(); // Deletes |evicted|.
1905 if (evicted == job) {
1906 rv = ERR_HOST_RESOLVER_QUEUE_TOO_LARGE;
1907 LogFinishRequest(source_net_log, request_net_log, info, rv);
1908 return rv;
1911 jobs_.insert(jobit, std::make_pair(key, job));
1912 } else {
1913 job = jobit->second;
1916 // Can't complete synchronously. Create and attach request.
1917 scoped_ptr<Request> req(new Request(
1918 source_net_log, request_net_log, info, priority, callback, addresses));
1919 if (out_req)
1920 *out_req = reinterpret_cast<RequestHandle>(req.get());
1922 job->AddRequest(req.Pass());
1923 // Completion happens during Job::CompleteRequests().
1924 return ERR_IO_PENDING;
1927 int HostResolverImpl::ResolveHelper(const Key& key,
1928 const RequestInfo& info,
1929 AddressList* addresses,
1930 const BoundNetLog& request_net_log) {
1931 // The result of |getaddrinfo| for empty hosts is inconsistent across systems.
1932 // On Windows it gives the default interface's address, whereas on Linux it
1933 // gives an error. We will make it fail on all platforms for consistency.
1934 if (info.hostname().empty() || info.hostname().size() > kMaxHostLength)
1935 return ERR_NAME_NOT_RESOLVED;
1937 int net_error = ERR_UNEXPECTED;
1938 if (ResolveAsIP(key, info, &net_error, addresses))
1939 return net_error;
1940 if (ServeFromCache(key, info, &net_error, addresses)) {
1941 request_net_log.AddEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_CACHE_HIT);
1942 return net_error;
1944 // TODO(szym): Do not do this if nsswitch.conf instructs not to.
1945 // http://crbug.com/117655
1946 if (ServeFromHosts(key, info, addresses)) {
1947 request_net_log.AddEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_HOSTS_HIT);
1948 return OK;
1950 return ERR_DNS_CACHE_MISS;
1953 int HostResolverImpl::ResolveFromCache(const RequestInfo& info,
1954 AddressList* addresses,
1955 const BoundNetLog& source_net_log) {
1956 DCHECK(CalledOnValidThread());
1957 DCHECK(addresses);
1959 // Make a log item for the request.
1960 BoundNetLog request_net_log = BoundNetLog::Make(net_log_,
1961 NetLog::SOURCE_HOST_RESOLVER_IMPL_REQUEST);
1963 // Update the net log and notify registered observers.
1964 LogStartRequest(source_net_log, request_net_log, info);
1966 Key key = GetEffectiveKeyForRequest(info, request_net_log);
1968 int rv = ResolveHelper(key, info, addresses, request_net_log);
1969 LogFinishRequest(source_net_log, request_net_log, info, rv);
1970 return rv;
1973 void HostResolverImpl::CancelRequest(RequestHandle req_handle) {
1974 DCHECK(CalledOnValidThread());
1975 Request* req = reinterpret_cast<Request*>(req_handle);
1976 DCHECK(req);
1977 Job* job = req->job();
1978 DCHECK(job);
1979 job->CancelRequest(req);
1982 void HostResolverImpl::SetDefaultAddressFamily(AddressFamily address_family) {
1983 DCHECK(CalledOnValidThread());
1984 default_address_family_ = address_family;
1985 probe_ipv6_support_ = false;
1988 AddressFamily HostResolverImpl::GetDefaultAddressFamily() const {
1989 return default_address_family_;
1992 void HostResolverImpl::SetDnsClientEnabled(bool enabled) {
1993 DCHECK(CalledOnValidThread());
1994 #if defined(ENABLE_BUILT_IN_DNS)
1995 if (enabled && !dns_client_) {
1996 SetDnsClient(DnsClient::CreateClient(net_log_));
1997 } else if (!enabled && dns_client_) {
1998 SetDnsClient(scoped_ptr<DnsClient>());
2000 #endif
2003 HostCache* HostResolverImpl::GetHostCache() {
2004 return cache_.get();
2007 base::Value* HostResolverImpl::GetDnsConfigAsValue() const {
2008 // Check if async DNS is disabled.
2009 if (!dns_client_.get())
2010 return NULL;
2012 // Check if async DNS is enabled, but we currently have no configuration
2013 // for it.
2014 const DnsConfig* dns_config = dns_client_->GetConfig();
2015 if (dns_config == NULL)
2016 return new base::DictionaryValue();
2018 return dns_config->ToValue();
2021 bool HostResolverImpl::ResolveAsIP(const Key& key,
2022 const RequestInfo& info,
2023 int* net_error,
2024 AddressList* addresses) {
2025 DCHECK(addresses);
2026 DCHECK(net_error);
2027 IPAddressNumber ip_number;
2028 if (!ParseIPLiteralToNumber(key.hostname, &ip_number))
2029 return false;
2031 DCHECK_EQ(key.host_resolver_flags &
2032 ~(HOST_RESOLVER_CANONNAME | HOST_RESOLVER_LOOPBACK_ONLY |
2033 HOST_RESOLVER_DEFAULT_FAMILY_SET_DUE_TO_NO_IPV6),
2034 0) << " Unhandled flag";
2035 bool ipv6_disabled = (default_address_family_ == ADDRESS_FAMILY_IPV4) &&
2036 !probe_ipv6_support_;
2037 *net_error = OK;
2038 if ((ip_number.size() == kIPv6AddressSize) && ipv6_disabled) {
2039 *net_error = ERR_NAME_NOT_RESOLVED;
2040 } else {
2041 *addresses = AddressList::CreateFromIPAddress(ip_number, info.port());
2042 if (key.host_resolver_flags & HOST_RESOLVER_CANONNAME)
2043 addresses->SetDefaultCanonicalName();
2045 return true;
2048 bool HostResolverImpl::ServeFromCache(const Key& key,
2049 const RequestInfo& info,
2050 int* net_error,
2051 AddressList* addresses) {
2052 DCHECK(addresses);
2053 DCHECK(net_error);
2054 if (!info.allow_cached_response() || !cache_.get())
2055 return false;
2057 const HostCache::Entry* cache_entry = cache_->Lookup(
2058 key, base::TimeTicks::Now());
2059 if (!cache_entry)
2060 return false;
2062 *net_error = cache_entry->error;
2063 if (*net_error == OK) {
2064 if (cache_entry->has_ttl())
2065 RecordTTL(cache_entry->ttl);
2066 *addresses = EnsurePortOnAddressList(cache_entry->addrlist, info.port());
2068 return true;
2071 bool HostResolverImpl::ServeFromHosts(const Key& key,
2072 const RequestInfo& info,
2073 AddressList* addresses) {
2074 DCHECK(addresses);
2075 if (!HaveDnsConfig())
2076 return false;
2077 addresses->clear();
2079 // HOSTS lookups are case-insensitive.
2080 std::string hostname = StringToLowerASCII(key.hostname);
2082 const DnsHosts& hosts = dns_client_->GetConfig()->hosts;
2084 // If |address_family| is ADDRESS_FAMILY_UNSPECIFIED other implementations
2085 // (glibc and c-ares) return the first matching line. We have more
2086 // flexibility, but lose implicit ordering.
2087 // We prefer IPv6 because "happy eyeballs" will fall back to IPv4 if
2088 // necessary.
2089 if (key.address_family == ADDRESS_FAMILY_IPV6 ||
2090 key.address_family == ADDRESS_FAMILY_UNSPECIFIED) {
2091 DnsHosts::const_iterator it = hosts.find(
2092 DnsHostsKey(hostname, ADDRESS_FAMILY_IPV6));
2093 if (it != hosts.end())
2094 addresses->push_back(IPEndPoint(it->second, info.port()));
2097 if (key.address_family == ADDRESS_FAMILY_IPV4 ||
2098 key.address_family == ADDRESS_FAMILY_UNSPECIFIED) {
2099 DnsHosts::const_iterator it = hosts.find(
2100 DnsHostsKey(hostname, ADDRESS_FAMILY_IPV4));
2101 if (it != hosts.end())
2102 addresses->push_back(IPEndPoint(it->second, info.port()));
2105 // If got only loopback addresses and the family was restricted, resolve
2106 // again, without restrictions. See SystemHostResolverCall for rationale.
2107 if ((key.host_resolver_flags &
2108 HOST_RESOLVER_DEFAULT_FAMILY_SET_DUE_TO_NO_IPV6) &&
2109 IsAllIPv4Loopback(*addresses)) {
2110 Key new_key(key);
2111 new_key.address_family = ADDRESS_FAMILY_UNSPECIFIED;
2112 new_key.host_resolver_flags &=
2113 ~HOST_RESOLVER_DEFAULT_FAMILY_SET_DUE_TO_NO_IPV6;
2114 return ServeFromHosts(new_key, info, addresses);
2116 return !addresses->empty();
2119 void HostResolverImpl::CacheResult(const Key& key,
2120 const HostCache::Entry& entry,
2121 base::TimeDelta ttl) {
2122 if (cache_.get())
2123 cache_->Set(key, entry, base::TimeTicks::Now(), ttl);
2126 void HostResolverImpl::RemoveJob(Job* job) {
2127 DCHECK(job);
2128 JobMap::iterator it = jobs_.find(job->key());
2129 if (it != jobs_.end() && it->second == job)
2130 jobs_.erase(it);
2133 void HostResolverImpl::SetHaveOnlyLoopbackAddresses(bool result) {
2134 if (result) {
2135 additional_resolver_flags_ |= HOST_RESOLVER_LOOPBACK_ONLY;
2136 } else {
2137 additional_resolver_flags_ &= ~HOST_RESOLVER_LOOPBACK_ONLY;
2141 HostResolverImpl::Key HostResolverImpl::GetEffectiveKeyForRequest(
2142 const RequestInfo& info, const BoundNetLog& net_log) const {
2143 HostResolverFlags effective_flags =
2144 info.host_resolver_flags() | additional_resolver_flags_;
2145 AddressFamily effective_address_family = info.address_family();
2147 if (info.address_family() == ADDRESS_FAMILY_UNSPECIFIED) {
2148 if (probe_ipv6_support_ && !use_local_ipv6_) {
2149 base::TimeTicks start_time = base::TimeTicks::Now();
2150 // Google DNS address.
2151 const uint8 kIPv6Address[] =
2152 { 0x20, 0x01, 0x48, 0x60, 0x48, 0x60, 0x00, 0x00,
2153 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x88, 0x88 };
2154 IPAddressNumber address(kIPv6Address,
2155 kIPv6Address + arraysize(kIPv6Address));
2156 BoundNetLog probe_net_log = BoundNetLog::Make(
2157 net_log.net_log(), NetLog::SOURCE_IPV6_REACHABILITY_CHECK);
2158 probe_net_log.BeginEvent(NetLog::TYPE_IPV6_REACHABILITY_CHECK,
2159 net_log.source().ToEventParametersCallback());
2160 bool rv6 = IsGloballyReachable(address, probe_net_log);
2161 probe_net_log.EndEvent(NetLog::TYPE_IPV6_REACHABILITY_CHECK);
2162 if (rv6)
2163 net_log.AddEvent(NetLog::TYPE_HOST_RESOLVER_IMPL_IPV6_SUPPORTED);
2165 UMA_HISTOGRAM_TIMES("Net.IPv6ConnectDuration",
2166 base::TimeTicks::Now() - start_time);
2167 if (rv6) {
2168 UMA_HISTOGRAM_BOOLEAN("Net.IPv6ConnectSuccessMatch",
2169 default_address_family_ == ADDRESS_FAMILY_UNSPECIFIED);
2170 } else {
2171 UMA_HISTOGRAM_BOOLEAN("Net.IPv6ConnectFailureMatch",
2172 default_address_family_ != ADDRESS_FAMILY_UNSPECIFIED);
2174 effective_address_family = ADDRESS_FAMILY_IPV4;
2175 effective_flags |= HOST_RESOLVER_DEFAULT_FAMILY_SET_DUE_TO_NO_IPV6;
2177 } else {
2178 effective_address_family = default_address_family_;
2182 return Key(info.hostname(), effective_address_family, effective_flags);
2185 void HostResolverImpl::AbortAllInProgressJobs() {
2186 // In Abort, a Request callback could spawn new Jobs with matching keys, so
2187 // first collect and remove all running jobs from |jobs_|.
2188 ScopedVector<Job> jobs_to_abort;
2189 for (JobMap::iterator it = jobs_.begin(); it != jobs_.end(); ) {
2190 Job* job = it->second;
2191 if (job->is_running()) {
2192 jobs_to_abort.push_back(job);
2193 jobs_.erase(it++);
2194 } else {
2195 DCHECK(job->is_queued());
2196 ++it;
2200 // Pause the dispatcher so it won't start any new dispatcher jobs while
2201 // aborting the old ones. This is needed so that it won't start the second
2202 // DnsTransaction for a job in |jobs_to_abort| if the DnsConfig just became
2203 // invalid.
2204 PrioritizedDispatcher::Limits limits = dispatcher_->GetLimits();
2205 dispatcher_->SetLimits(
2206 PrioritizedDispatcher::Limits(limits.reserved_slots.size(), 0));
2208 // Life check to bail once |this| is deleted.
2209 base::WeakPtr<HostResolverImpl> self = weak_ptr_factory_.GetWeakPtr();
2211 // Then Abort them.
2212 for (size_t i = 0; self.get() && i < jobs_to_abort.size(); ++i) {
2213 jobs_to_abort[i]->Abort();
2214 jobs_to_abort[i] = NULL;
2217 if (self)
2218 dispatcher_->SetLimits(limits);
2221 void HostResolverImpl::AbortDnsTasks() {
2222 // Pause the dispatcher so it won't start any new dispatcher jobs while
2223 // aborting the old ones. This is needed so that it won't start the second
2224 // DnsTransaction for a job if the DnsConfig just changed.
2225 PrioritizedDispatcher::Limits limits = dispatcher_->GetLimits();
2226 dispatcher_->SetLimits(
2227 PrioritizedDispatcher::Limits(limits.reserved_slots.size(), 0));
2229 for (JobMap::iterator it = jobs_.begin(); it != jobs_.end(); ++it)
2230 it->second->AbortDnsTask();
2231 dispatcher_->SetLimits(limits);
2234 void HostResolverImpl::TryServingAllJobsFromHosts() {
2235 if (!HaveDnsConfig())
2236 return;
2238 // TODO(szym): Do not do this if nsswitch.conf instructs not to.
2239 // http://crbug.com/117655
2241 // Life check to bail once |this| is deleted.
2242 base::WeakPtr<HostResolverImpl> self = weak_ptr_factory_.GetWeakPtr();
2244 for (JobMap::iterator it = jobs_.begin(); self.get() && it != jobs_.end();) {
2245 Job* job = it->second;
2246 ++it;
2247 // This could remove |job| from |jobs_|, but iterator will remain valid.
2248 job->ServeFromHosts();
2252 void HostResolverImpl::OnIPAddressChanged() {
2253 resolved_known_ipv6_hostname_ = false;
2254 // Abandon all ProbeJobs.
2255 probe_weak_ptr_factory_.InvalidateWeakPtrs();
2256 if (cache_.get())
2257 cache_->clear();
2258 #if defined(OS_POSIX) && !defined(OS_MACOSX) && !defined(OS_ANDROID)
2259 new LoopbackProbeJob(probe_weak_ptr_factory_.GetWeakPtr());
2260 #endif
2261 AbortAllInProgressJobs();
2262 // |this| may be deleted inside AbortAllInProgressJobs().
2265 void HostResolverImpl::OnDNSChanged() {
2266 DnsConfig dns_config;
2267 NetworkChangeNotifier::GetDnsConfig(&dns_config);
2269 if (net_log_) {
2270 net_log_->AddGlobalEntry(
2271 NetLog::TYPE_DNS_CONFIG_CHANGED,
2272 base::Bind(&NetLogDnsConfigCallback, &dns_config));
2275 // TODO(szym): Remove once http://crbug.com/137914 is resolved.
2276 received_dns_config_ = dns_config.IsValid();
2277 // Conservatively assume local IPv6 is needed when DnsConfig is not valid.
2278 use_local_ipv6_ = !dns_config.IsValid() || dns_config.use_local_ipv6;
2280 num_dns_failures_ = 0;
2282 // We want a new DnsSession in place, before we Abort running Jobs, so that
2283 // the newly started jobs use the new config.
2284 if (dns_client_.get()) {
2285 dns_client_->SetConfig(dns_config);
2286 if (dns_client_->GetConfig())
2287 UMA_HISTOGRAM_BOOLEAN("AsyncDNS.DnsClientEnabled", true);
2290 // If the DNS server has changed, existing cached info could be wrong so we
2291 // have to drop our internal cache :( Note that OS level DNS caches, such
2292 // as NSCD's cache should be dropped automatically by the OS when
2293 // resolv.conf changes so we don't need to do anything to clear that cache.
2294 if (cache_.get())
2295 cache_->clear();
2297 // Life check to bail once |this| is deleted.
2298 base::WeakPtr<HostResolverImpl> self = weak_ptr_factory_.GetWeakPtr();
2300 // Existing jobs will have been sent to the original server so they need to
2301 // be aborted.
2302 AbortAllInProgressJobs();
2304 // |this| may be deleted inside AbortAllInProgressJobs().
2305 if (self.get())
2306 TryServingAllJobsFromHosts();
2309 bool HostResolverImpl::HaveDnsConfig() const {
2310 // Use DnsClient only if it's fully configured and there is no override by
2311 // ScopedDefaultHostResolverProc.
2312 // The alternative is to use NetworkChangeNotifier to override DnsConfig,
2313 // but that would introduce construction order requirements for NCN and SDHRP.
2314 return (dns_client_.get() != NULL) && (dns_client_->GetConfig() != NULL) &&
2315 !(proc_params_.resolver_proc.get() == NULL &&
2316 HostResolverProc::GetDefault() != NULL);
2319 void HostResolverImpl::OnDnsTaskResolve(int net_error) {
2320 DCHECK(dns_client_);
2321 if (net_error == OK) {
2322 num_dns_failures_ = 0;
2323 return;
2325 ++num_dns_failures_;
2326 if (num_dns_failures_ < kMaximumDnsFailures)
2327 return;
2329 // Disable DnsClient until the next DNS change. Must be done before aborting
2330 // DnsTasks, since doing so may start new jobs.
2331 dns_client_->SetConfig(DnsConfig());
2333 // Switch jobs with active DnsTasks over to using ProcTasks.
2334 AbortDnsTasks();
2336 UMA_HISTOGRAM_BOOLEAN("AsyncDNS.DnsClientEnabled", false);
2337 UMA_HISTOGRAM_CUSTOM_ENUMERATION("AsyncDNS.DnsClientDisabledReason",
2338 std::abs(net_error),
2339 GetAllErrorCodesForUma());
2342 void HostResolverImpl::SetDnsClient(scoped_ptr<DnsClient> dns_client) {
2343 // DnsClient and config must be updated before aborting DnsTasks, since doing
2344 // so may start new jobs.
2345 dns_client_ = dns_client.Pass();
2346 if (dns_client_ && !dns_client_->GetConfig() &&
2347 num_dns_failures_ < kMaximumDnsFailures) {
2348 DnsConfig dns_config;
2349 NetworkChangeNotifier::GetDnsConfig(&dns_config);
2350 dns_client_->SetConfig(dns_config);
2351 num_dns_failures_ = 0;
2352 if (dns_client_->GetConfig())
2353 UMA_HISTOGRAM_BOOLEAN("AsyncDNS.DnsClientEnabled", true);
2356 AbortDnsTasks();
2359 } // namespace net