Lots of random cleanups, mostly for native_theme_win.cc:
[chromium-blink-merge.git] / net / quic / quic_connection_test.cc
blob563fa8d9132c0486bccb20f1b24a1083417ea444
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/quic/quic_connection.h"
7 #include "base/basictypes.h"
8 #include "base/bind.h"
9 #include "base/stl_util.h"
10 #include "net/base/net_errors.h"
11 #include "net/quic/congestion_control/loss_detection_interface.h"
12 #include "net/quic/congestion_control/receive_algorithm_interface.h"
13 #include "net/quic/congestion_control/send_algorithm_interface.h"
14 #include "net/quic/crypto/null_encrypter.h"
15 #include "net/quic/crypto/quic_decrypter.h"
16 #include "net/quic/crypto/quic_encrypter.h"
17 #include "net/quic/quic_flags.h"
18 #include "net/quic/quic_protocol.h"
19 #include "net/quic/quic_utils.h"
20 #include "net/quic/test_tools/mock_clock.h"
21 #include "net/quic/test_tools/mock_random.h"
22 #include "net/quic/test_tools/quic_connection_peer.h"
23 #include "net/quic/test_tools/quic_framer_peer.h"
24 #include "net/quic/test_tools/quic_packet_creator_peer.h"
25 #include "net/quic/test_tools/quic_sent_packet_manager_peer.h"
26 #include "net/quic/test_tools/quic_test_utils.h"
27 #include "net/quic/test_tools/simple_quic_framer.h"
28 #include "testing/gmock/include/gmock/gmock.h"
29 #include "testing/gtest/include/gtest/gtest.h"
31 using base::StringPiece;
32 using std::map;
33 using std::vector;
34 using testing::AnyNumber;
35 using testing::AtLeast;
36 using testing::ContainerEq;
37 using testing::Contains;
38 using testing::DoAll;
39 using testing::InSequence;
40 using testing::InvokeWithoutArgs;
41 using testing::Ref;
42 using testing::Return;
43 using testing::SaveArg;
44 using testing::StrictMock;
45 using testing::_;
47 namespace net {
48 namespace test {
49 namespace {
51 const char data1[] = "foo";
52 const char data2[] = "bar";
54 const bool kFin = true;
55 const bool kEntropyFlag = true;
57 const QuicPacketEntropyHash kTestEntropyHash = 76;
59 const int kDefaultRetransmissionTimeMs = 500;
60 const int kMinRetransmissionTimeMs = 200;
62 class TestReceiveAlgorithm : public ReceiveAlgorithmInterface {
63 public:
64 explicit TestReceiveAlgorithm(QuicCongestionFeedbackFrame* feedback)
65 : feedback_(feedback) {
68 bool GenerateCongestionFeedback(
69 QuicCongestionFeedbackFrame* congestion_feedback) {
70 if (feedback_ == NULL) {
71 return false;
73 *congestion_feedback = *feedback_;
74 return true;
77 MOCK_METHOD3(RecordIncomingPacket,
78 void(QuicByteCount, QuicPacketSequenceNumber, QuicTime));
80 private:
81 QuicCongestionFeedbackFrame* feedback_;
83 DISALLOW_COPY_AND_ASSIGN(TestReceiveAlgorithm);
86 // TaggingEncrypter appends kTagSize bytes of |tag| to the end of each message.
87 class TaggingEncrypter : public QuicEncrypter {
88 public:
89 explicit TaggingEncrypter(uint8 tag)
90 : tag_(tag) {
93 virtual ~TaggingEncrypter() {}
95 // QuicEncrypter interface.
96 virtual bool SetKey(StringPiece key) OVERRIDE { return true; }
97 virtual bool SetNoncePrefix(StringPiece nonce_prefix) OVERRIDE {
98 return true;
101 virtual bool Encrypt(StringPiece nonce,
102 StringPiece associated_data,
103 StringPiece plaintext,
104 unsigned char* output) OVERRIDE {
105 memcpy(output, plaintext.data(), plaintext.size());
106 output += plaintext.size();
107 memset(output, tag_, kTagSize);
108 return true;
111 virtual QuicData* EncryptPacket(QuicPacketSequenceNumber sequence_number,
112 StringPiece associated_data,
113 StringPiece plaintext) OVERRIDE {
114 const size_t len = plaintext.size() + kTagSize;
115 uint8* buffer = new uint8[len];
116 Encrypt(StringPiece(), associated_data, plaintext, buffer);
117 return new QuicData(reinterpret_cast<char*>(buffer), len, true);
120 virtual size_t GetKeySize() const OVERRIDE { return 0; }
121 virtual size_t GetNoncePrefixSize() const OVERRIDE { return 0; }
123 virtual size_t GetMaxPlaintextSize(size_t ciphertext_size) const OVERRIDE {
124 return ciphertext_size - kTagSize;
127 virtual size_t GetCiphertextSize(size_t plaintext_size) const OVERRIDE {
128 return plaintext_size + kTagSize;
131 virtual StringPiece GetKey() const OVERRIDE {
132 return StringPiece();
135 virtual StringPiece GetNoncePrefix() const OVERRIDE {
136 return StringPiece();
139 private:
140 enum {
141 kTagSize = 12,
144 const uint8 tag_;
146 DISALLOW_COPY_AND_ASSIGN(TaggingEncrypter);
149 // TaggingDecrypter ensures that the final kTagSize bytes of the message all
150 // have the same value and then removes them.
151 class TaggingDecrypter : public QuicDecrypter {
152 public:
153 virtual ~TaggingDecrypter() {}
155 // QuicDecrypter interface
156 virtual bool SetKey(StringPiece key) OVERRIDE { return true; }
157 virtual bool SetNoncePrefix(StringPiece nonce_prefix) OVERRIDE {
158 return true;
161 virtual bool Decrypt(StringPiece nonce,
162 StringPiece associated_data,
163 StringPiece ciphertext,
164 unsigned char* output,
165 size_t* output_length) OVERRIDE {
166 if (ciphertext.size() < kTagSize) {
167 return false;
169 if (!CheckTag(ciphertext, GetTag(ciphertext))) {
170 return false;
172 *output_length = ciphertext.size() - kTagSize;
173 memcpy(output, ciphertext.data(), *output_length);
174 return true;
177 virtual QuicData* DecryptPacket(QuicPacketSequenceNumber sequence_number,
178 StringPiece associated_data,
179 StringPiece ciphertext) OVERRIDE {
180 if (ciphertext.size() < kTagSize) {
181 return NULL;
183 if (!CheckTag(ciphertext, GetTag(ciphertext))) {
184 return NULL;
186 const size_t len = ciphertext.size() - kTagSize;
187 uint8* buf = new uint8[len];
188 memcpy(buf, ciphertext.data(), len);
189 return new QuicData(reinterpret_cast<char*>(buf), len,
190 true /* owns buffer */);
193 virtual StringPiece GetKey() const OVERRIDE { return StringPiece(); }
194 virtual StringPiece GetNoncePrefix() const OVERRIDE { return StringPiece(); }
196 protected:
197 virtual uint8 GetTag(StringPiece ciphertext) {
198 return ciphertext.data()[ciphertext.size()-1];
201 private:
202 enum {
203 kTagSize = 12,
206 bool CheckTag(StringPiece ciphertext, uint8 tag) {
207 for (size_t i = ciphertext.size() - kTagSize; i < ciphertext.size(); i++) {
208 if (ciphertext.data()[i] != tag) {
209 return false;
213 return true;
217 // StringTaggingDecrypter ensures that the final kTagSize bytes of the message
218 // match the expected value.
219 class StrictTaggingDecrypter : public TaggingDecrypter {
220 public:
221 explicit StrictTaggingDecrypter(uint8 tag) : tag_(tag) {}
222 virtual ~StrictTaggingDecrypter() {}
224 // TaggingQuicDecrypter
225 virtual uint8 GetTag(StringPiece ciphertext) OVERRIDE {
226 return tag_;
229 private:
230 const uint8 tag_;
233 class TestConnectionHelper : public QuicConnectionHelperInterface {
234 public:
235 class TestAlarm : public QuicAlarm {
236 public:
237 explicit TestAlarm(QuicAlarm::Delegate* delegate)
238 : QuicAlarm(delegate) {
241 virtual void SetImpl() OVERRIDE {}
242 virtual void CancelImpl() OVERRIDE {}
243 using QuicAlarm::Fire;
246 TestConnectionHelper(MockClock* clock, MockRandom* random_generator)
247 : clock_(clock),
248 random_generator_(random_generator) {
249 clock_->AdvanceTime(QuicTime::Delta::FromSeconds(1));
252 // QuicConnectionHelperInterface
253 virtual const QuicClock* GetClock() const OVERRIDE {
254 return clock_;
257 virtual QuicRandom* GetRandomGenerator() OVERRIDE {
258 return random_generator_;
261 virtual QuicAlarm* CreateAlarm(QuicAlarm::Delegate* delegate) OVERRIDE {
262 return new TestAlarm(delegate);
265 private:
266 MockClock* clock_;
267 MockRandom* random_generator_;
269 DISALLOW_COPY_AND_ASSIGN(TestConnectionHelper);
272 class TestPacketWriter : public QuicPacketWriter {
273 public:
274 explicit TestPacketWriter(QuicVersion version)
275 : version_(version),
276 framer_(SupportedVersions(version_)),
277 last_packet_size_(0),
278 write_blocked_(false),
279 block_on_next_write_(false),
280 is_write_blocked_data_buffered_(false),
281 final_bytes_of_last_packet_(0),
282 final_bytes_of_previous_packet_(0),
283 use_tagging_decrypter_(false),
284 packets_write_attempts_(0) {
287 // QuicPacketWriter interface
288 virtual WriteResult WritePacket(
289 const char* buffer, size_t buf_len,
290 const IPAddressNumber& self_address,
291 const IPEndPoint& peer_address) OVERRIDE {
292 QuicEncryptedPacket packet(buffer, buf_len);
293 ++packets_write_attempts_;
295 if (packet.length() >= sizeof(final_bytes_of_last_packet_)) {
296 final_bytes_of_previous_packet_ = final_bytes_of_last_packet_;
297 memcpy(&final_bytes_of_last_packet_, packet.data() + packet.length() - 4,
298 sizeof(final_bytes_of_last_packet_));
301 if (use_tagging_decrypter_) {
302 framer_.framer()->SetDecrypter(new TaggingDecrypter, ENCRYPTION_NONE);
304 EXPECT_TRUE(framer_.ProcessPacket(packet));
305 if (block_on_next_write_) {
306 write_blocked_ = true;
307 block_on_next_write_ = false;
309 if (IsWriteBlocked()) {
310 return WriteResult(WRITE_STATUS_BLOCKED, -1);
312 last_packet_size_ = packet.length();
313 return WriteResult(WRITE_STATUS_OK, last_packet_size_);
316 virtual bool IsWriteBlockedDataBuffered() const OVERRIDE {
317 return is_write_blocked_data_buffered_;
320 virtual bool IsWriteBlocked() const OVERRIDE { return write_blocked_; }
322 virtual void SetWritable() OVERRIDE { write_blocked_ = false; }
324 void BlockOnNextWrite() { block_on_next_write_ = true; }
326 const QuicPacketHeader& header() { return framer_.header(); }
328 size_t frame_count() const { return framer_.num_frames(); }
330 const vector<QuicAckFrame>& ack_frames() const {
331 return framer_.ack_frames();
334 const vector<QuicCongestionFeedbackFrame>& feedback_frames() const {
335 return framer_.feedback_frames();
338 const vector<QuicStopWaitingFrame>& stop_waiting_frames() const {
339 return framer_.stop_waiting_frames();
342 const vector<QuicConnectionCloseFrame>& connection_close_frames() const {
343 return framer_.connection_close_frames();
346 const vector<QuicStreamFrame>& stream_frames() const {
347 return framer_.stream_frames();
350 const vector<QuicPingFrame>& ping_frames() const {
351 return framer_.ping_frames();
354 size_t last_packet_size() {
355 return last_packet_size_;
358 const QuicVersionNegotiationPacket* version_negotiation_packet() {
359 return framer_.version_negotiation_packet();
362 void set_is_write_blocked_data_buffered(bool buffered) {
363 is_write_blocked_data_buffered_ = buffered;
366 void set_is_server(bool is_server) {
367 // We invert is_server here, because the framer needs to parse packets
368 // we send.
369 QuicFramerPeer::SetIsServer(framer_.framer(), !is_server);
372 // final_bytes_of_last_packet_ returns the last four bytes of the previous
373 // packet as a little-endian, uint32. This is intended to be used with a
374 // TaggingEncrypter so that tests can determine which encrypter was used for
375 // a given packet.
376 uint32 final_bytes_of_last_packet() { return final_bytes_of_last_packet_; }
378 // Returns the final bytes of the second to last packet.
379 uint32 final_bytes_of_previous_packet() {
380 return final_bytes_of_previous_packet_;
383 void use_tagging_decrypter() {
384 use_tagging_decrypter_ = true;
387 uint32 packets_write_attempts() { return packets_write_attempts_; }
389 void Reset() { framer_.Reset(); }
391 void SetSupportedVersions(const QuicVersionVector& versions) {
392 framer_.SetSupportedVersions(versions);
395 private:
396 QuicVersion version_;
397 SimpleQuicFramer framer_;
398 size_t last_packet_size_;
399 bool write_blocked_;
400 bool block_on_next_write_;
401 bool is_write_blocked_data_buffered_;
402 uint32 final_bytes_of_last_packet_;
403 uint32 final_bytes_of_previous_packet_;
404 bool use_tagging_decrypter_;
405 uint32 packets_write_attempts_;
407 DISALLOW_COPY_AND_ASSIGN(TestPacketWriter);
410 class TestConnection : public QuicConnection {
411 public:
412 TestConnection(QuicConnectionId connection_id,
413 IPEndPoint address,
414 TestConnectionHelper* helper,
415 TestPacketWriter* writer,
416 bool is_server,
417 QuicVersion version)
418 : QuicConnection(connection_id, address, helper, writer, is_server,
419 SupportedVersions(version)),
420 writer_(writer) {
421 // Disable tail loss probes for most tests.
422 QuicSentPacketManagerPeer::SetMaxTailLossProbes(
423 QuicConnectionPeer::GetSentPacketManager(this), 0);
424 writer_->set_is_server(is_server);
427 void SendAck() {
428 QuicConnectionPeer::SendAck(this);
431 void SetReceiveAlgorithm(TestReceiveAlgorithm* receive_algorithm) {
432 QuicConnectionPeer::SetReceiveAlgorithm(this, receive_algorithm);
435 void SetSendAlgorithm(SendAlgorithmInterface* send_algorithm) {
436 QuicConnectionPeer::SetSendAlgorithm(this, send_algorithm);
439 void SetLossAlgorithm(LossDetectionInterface* loss_algorithm) {
440 QuicSentPacketManagerPeer::SetLossAlgorithm(
441 QuicConnectionPeer::GetSentPacketManager(this), loss_algorithm);
444 void SendPacket(EncryptionLevel level,
445 QuicPacketSequenceNumber sequence_number,
446 QuicPacket* packet,
447 QuicPacketEntropyHash entropy_hash,
448 HasRetransmittableData retransmittable) {
449 RetransmittableFrames* retransmittable_frames =
450 retransmittable == HAS_RETRANSMITTABLE_DATA ?
451 new RetransmittableFrames() : NULL;
452 OnSerializedPacket(
453 SerializedPacket(sequence_number, PACKET_6BYTE_SEQUENCE_NUMBER,
454 packet, entropy_hash, retransmittable_frames));
457 QuicConsumedData SendStreamDataWithString(
458 QuicStreamId id,
459 StringPiece data,
460 QuicStreamOffset offset,
461 bool fin,
462 QuicAckNotifier::DelegateInterface* delegate) {
463 return SendStreamDataWithStringHelper(id, data, offset, fin,
464 MAY_FEC_PROTECT, delegate);
467 QuicConsumedData SendStreamDataWithStringWithFec(
468 QuicStreamId id,
469 StringPiece data,
470 QuicStreamOffset offset,
471 bool fin,
472 QuicAckNotifier::DelegateInterface* delegate) {
473 return SendStreamDataWithStringHelper(id, data, offset, fin,
474 MUST_FEC_PROTECT, delegate);
477 QuicConsumedData SendStreamDataWithStringHelper(
478 QuicStreamId id,
479 StringPiece data,
480 QuicStreamOffset offset,
481 bool fin,
482 FecProtection fec_protection,
483 QuicAckNotifier::DelegateInterface* delegate) {
484 IOVector data_iov;
485 if (!data.empty()) {
486 data_iov.Append(const_cast<char*>(data.data()), data.size());
488 return QuicConnection::SendStreamData(id, data_iov, offset, fin,
489 fec_protection, delegate);
492 QuicConsumedData SendStreamData3() {
493 return SendStreamDataWithString(kClientDataStreamId1, "food", 0, !kFin,
494 NULL);
497 QuicConsumedData SendStreamData3WithFec() {
498 return SendStreamDataWithStringWithFec(kClientDataStreamId1, "food", 0,
499 !kFin, NULL);
502 QuicConsumedData SendStreamData5() {
503 return SendStreamDataWithString(kClientDataStreamId2, "food2", 0,
504 !kFin, NULL);
507 QuicConsumedData SendStreamData5WithFec() {
508 return SendStreamDataWithStringWithFec(kClientDataStreamId2, "food2", 0,
509 !kFin, NULL);
511 // Ensures the connection can write stream data before writing.
512 QuicConsumedData EnsureWritableAndSendStreamData5() {
513 EXPECT_TRUE(CanWriteStreamData());
514 return SendStreamData5();
517 // The crypto stream has special semantics so that it is not blocked by a
518 // congestion window limitation, and also so that it gets put into a separate
519 // packet (so that it is easier to reason about a crypto frame not being
520 // split needlessly across packet boundaries). As a result, we have separate
521 // tests for some cases for this stream.
522 QuicConsumedData SendCryptoStreamData() {
523 return SendStreamDataWithString(kCryptoStreamId, "chlo", 0, !kFin, NULL);
526 bool is_server() {
527 return QuicConnectionPeer::IsServer(this);
530 void set_version(QuicVersion version) {
531 QuicConnectionPeer::GetFramer(this)->set_version(version);
534 void SetSupportedVersions(const QuicVersionVector& versions) {
535 QuicConnectionPeer::GetFramer(this)->SetSupportedVersions(versions);
536 writer_->SetSupportedVersions(versions);
539 void set_is_server(bool is_server) {
540 writer_->set_is_server(is_server);
541 QuicConnectionPeer::SetIsServer(this, is_server);
544 TestConnectionHelper::TestAlarm* GetAckAlarm() {
545 return reinterpret_cast<TestConnectionHelper::TestAlarm*>(
546 QuicConnectionPeer::GetAckAlarm(this));
549 TestConnectionHelper::TestAlarm* GetPingAlarm() {
550 return reinterpret_cast<TestConnectionHelper::TestAlarm*>(
551 QuicConnectionPeer::GetPingAlarm(this));
554 TestConnectionHelper::TestAlarm* GetResumeWritesAlarm() {
555 return reinterpret_cast<TestConnectionHelper::TestAlarm*>(
556 QuicConnectionPeer::GetResumeWritesAlarm(this));
559 TestConnectionHelper::TestAlarm* GetRetransmissionAlarm() {
560 return reinterpret_cast<TestConnectionHelper::TestAlarm*>(
561 QuicConnectionPeer::GetRetransmissionAlarm(this));
564 TestConnectionHelper::TestAlarm* GetSendAlarm() {
565 return reinterpret_cast<TestConnectionHelper::TestAlarm*>(
566 QuicConnectionPeer::GetSendAlarm(this));
569 TestConnectionHelper::TestAlarm* GetTimeoutAlarm() {
570 return reinterpret_cast<TestConnectionHelper::TestAlarm*>(
571 QuicConnectionPeer::GetTimeoutAlarm(this));
574 using QuicConnection::SelectMutualVersion;
576 private:
577 TestPacketWriter* writer_;
579 DISALLOW_COPY_AND_ASSIGN(TestConnection);
582 // Used for testing packets revived from FEC packets.
583 class FecQuicConnectionDebugVisitor
584 : public QuicConnectionDebugVisitor {
585 public:
586 virtual void OnRevivedPacket(const QuicPacketHeader& header,
587 StringPiece data) OVERRIDE {
588 revived_header_ = header;
591 // Public accessor method.
592 QuicPacketHeader revived_header() const {
593 return revived_header_;
596 private:
597 QuicPacketHeader revived_header_;
600 class QuicConnectionTest : public ::testing::TestWithParam<QuicVersion> {
601 protected:
602 QuicConnectionTest()
603 : connection_id_(42),
604 framer_(SupportedVersions(version()), QuicTime::Zero(), false),
605 peer_creator_(connection_id_, &framer_, &random_generator_),
606 send_algorithm_(new StrictMock<MockSendAlgorithm>),
607 loss_algorithm_(new MockLossAlgorithm()),
608 helper_(new TestConnectionHelper(&clock_, &random_generator_)),
609 writer_(new TestPacketWriter(version())),
610 connection_(connection_id_, IPEndPoint(), helper_.get(),
611 writer_.get(), false, version()),
612 frame1_(1, false, 0, MakeIOVector(data1)),
613 frame2_(1, false, 3, MakeIOVector(data2)),
614 sequence_number_length_(PACKET_6BYTE_SEQUENCE_NUMBER),
615 connection_id_length_(PACKET_8BYTE_CONNECTION_ID) {
616 connection_.set_visitor(&visitor_);
617 connection_.SetSendAlgorithm(send_algorithm_);
618 connection_.SetLossAlgorithm(loss_algorithm_);
619 framer_.set_received_entropy_calculator(&entropy_calculator_);
620 // Simplify tests by not sending feedback unless specifically configured.
621 SetFeedback(NULL);
622 EXPECT_CALL(
623 *send_algorithm_, TimeUntilSend(_, _, _)).WillRepeatedly(Return(
624 QuicTime::Delta::Zero()));
625 EXPECT_CALL(*receive_algorithm_,
626 RecordIncomingPacket(_, _, _)).Times(AnyNumber());
627 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
628 .Times(AnyNumber());
629 EXPECT_CALL(*send_algorithm_, RetransmissionDelay()).WillRepeatedly(
630 Return(QuicTime::Delta::Zero()));
631 EXPECT_CALL(*send_algorithm_, GetCongestionWindow()).WillRepeatedly(
632 Return(kMaxPacketSize));
633 ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
634 .WillByDefault(Return(true));
635 EXPECT_CALL(visitor_, WillingAndAbleToWrite()).Times(AnyNumber());
636 EXPECT_CALL(visitor_, HasPendingHandshake()).Times(AnyNumber());
637 EXPECT_CALL(visitor_, OnCanWrite()).Times(AnyNumber());
638 EXPECT_CALL(visitor_, HasOpenDataStreams()).WillRepeatedly(Return(false));
640 EXPECT_CALL(*loss_algorithm_, GetLossTimeout())
641 .WillRepeatedly(Return(QuicTime::Zero()));
642 EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
643 .WillRepeatedly(Return(SequenceNumberSet()));
646 QuicVersion version() {
647 return GetParam();
650 QuicAckFrame* outgoing_ack() {
651 outgoing_ack_.reset(QuicConnectionPeer::CreateAckFrame(&connection_));
652 return outgoing_ack_.get();
655 QuicPacketSequenceNumber least_unacked() {
656 if (version() <= QUIC_VERSION_15) {
657 if (writer_->ack_frames().empty()) {
658 return 0;
660 return writer_->ack_frames()[0].sent_info.least_unacked;
662 if (writer_->stop_waiting_frames().empty()) {
663 return 0;
665 return writer_->stop_waiting_frames()[0].least_unacked;
668 void use_tagging_decrypter() {
669 writer_->use_tagging_decrypter();
672 void ProcessPacket(QuicPacketSequenceNumber number) {
673 EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1);
674 ProcessDataPacket(number, 0, !kEntropyFlag);
677 QuicPacketEntropyHash ProcessFramePacket(QuicFrame frame) {
678 QuicFrames frames;
679 frames.push_back(QuicFrame(frame));
680 QuicPacketCreatorPeer::SetSendVersionInPacket(&peer_creator_,
681 connection_.is_server());
682 SerializedPacket serialized_packet =
683 peer_creator_.SerializeAllFrames(frames);
684 scoped_ptr<QuicPacket> packet(serialized_packet.packet);
685 scoped_ptr<QuicEncryptedPacket> encrypted(
686 framer_.EncryptPacket(ENCRYPTION_NONE,
687 serialized_packet.sequence_number, *packet));
688 connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
689 return serialized_packet.entropy_hash;
692 size_t ProcessDataPacket(QuicPacketSequenceNumber number,
693 QuicFecGroupNumber fec_group,
694 bool entropy_flag) {
695 return ProcessDataPacketAtLevel(number, fec_group, entropy_flag,
696 ENCRYPTION_NONE);
699 size_t ProcessDataPacketAtLevel(QuicPacketSequenceNumber number,
700 QuicFecGroupNumber fec_group,
701 bool entropy_flag,
702 EncryptionLevel level) {
703 scoped_ptr<QuicPacket> packet(ConstructDataPacket(number, fec_group,
704 entropy_flag));
705 scoped_ptr<QuicEncryptedPacket> encrypted(framer_.EncryptPacket(
706 level, number, *packet));
707 connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
708 return encrypted->length();
711 void ProcessClosePacket(QuicPacketSequenceNumber number,
712 QuicFecGroupNumber fec_group) {
713 scoped_ptr<QuicPacket> packet(ConstructClosePacket(number, fec_group));
714 scoped_ptr<QuicEncryptedPacket> encrypted(framer_.EncryptPacket(
715 ENCRYPTION_NONE, number, *packet));
716 connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
719 size_t ProcessFecProtectedPacket(QuicPacketSequenceNumber number,
720 bool expect_revival, bool entropy_flag) {
721 if (expect_revival) {
722 EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1);
724 EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1).
725 RetiresOnSaturation();
726 return ProcessDataPacket(number, 1, entropy_flag);
729 // Processes an FEC packet that covers the packets that would have been
730 // received.
731 size_t ProcessFecPacket(QuicPacketSequenceNumber number,
732 QuicPacketSequenceNumber min_protected_packet,
733 bool expect_revival,
734 bool entropy_flag,
735 QuicPacket* packet) {
736 if (expect_revival) {
737 EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1);
740 // Construct the decrypted data packet so we can compute the correct
741 // redundancy. If |packet| has been provided then use that, otherwise
742 // construct a default data packet.
743 scoped_ptr<QuicPacket> data_packet;
744 if (packet) {
745 data_packet.reset(packet);
746 } else {
747 data_packet.reset(ConstructDataPacket(number, 1, !kEntropyFlag));
750 header_.public_header.connection_id = connection_id_;
751 header_.public_header.reset_flag = false;
752 header_.public_header.version_flag = false;
753 header_.public_header.sequence_number_length = sequence_number_length_;
754 header_.public_header.connection_id_length = connection_id_length_;
755 header_.packet_sequence_number = number;
756 header_.entropy_flag = entropy_flag;
757 header_.fec_flag = true;
758 header_.is_in_fec_group = IN_FEC_GROUP;
759 header_.fec_group = min_protected_packet;
760 QuicFecData fec_data;
761 fec_data.fec_group = header_.fec_group;
763 // Since all data packets in this test have the same payload, the
764 // redundancy is either equal to that payload or the xor of that payload
765 // with itself, depending on the number of packets.
766 if (((number - min_protected_packet) % 2) == 0) {
767 for (size_t i = GetStartOfFecProtectedData(
768 header_.public_header.connection_id_length,
769 header_.public_header.version_flag,
770 header_.public_header.sequence_number_length);
771 i < data_packet->length(); ++i) {
772 data_packet->mutable_data()[i] ^= data_packet->data()[i];
775 fec_data.redundancy = data_packet->FecProtectedData();
777 scoped_ptr<QuicPacket> fec_packet(
778 framer_.BuildFecPacket(header_, fec_data).packet);
779 scoped_ptr<QuicEncryptedPacket> encrypted(
780 framer_.EncryptPacket(ENCRYPTION_NONE, number, *fec_packet));
782 connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
783 return encrypted->length();
786 QuicByteCount SendStreamDataToPeer(QuicStreamId id,
787 StringPiece data,
788 QuicStreamOffset offset,
789 bool fin,
790 QuicPacketSequenceNumber* last_packet) {
791 QuicByteCount packet_size;
792 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
793 .WillOnce(DoAll(SaveArg<3>(&packet_size), Return(true)));
794 connection_.SendStreamDataWithString(id, data, offset, fin, NULL);
795 if (last_packet != NULL) {
796 *last_packet =
797 QuicConnectionPeer::GetPacketCreator(&connection_)->sequence_number();
799 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
800 .Times(AnyNumber());
801 return packet_size;
804 void SendAckPacketToPeer() {
805 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
806 connection_.SendAck();
807 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
808 .Times(AnyNumber());
811 QuicPacketEntropyHash ProcessAckPacket(QuicAckFrame* frame) {
812 return ProcessFramePacket(QuicFrame(frame));
815 QuicPacketEntropyHash ProcessStopWaitingPacket(QuicStopWaitingFrame* frame) {
816 return ProcessFramePacket(QuicFrame(frame));
819 QuicPacketEntropyHash ProcessGoAwayPacket(QuicGoAwayFrame* frame) {
820 return ProcessFramePacket(QuicFrame(frame));
823 bool IsMissing(QuicPacketSequenceNumber number) {
824 return IsAwaitingPacket(outgoing_ack()->received_info, number);
827 QuicPacket* ConstructDataPacket(QuicPacketSequenceNumber number,
828 QuicFecGroupNumber fec_group,
829 bool entropy_flag) {
830 header_.public_header.connection_id = connection_id_;
831 header_.public_header.reset_flag = false;
832 header_.public_header.version_flag = false;
833 header_.public_header.sequence_number_length = sequence_number_length_;
834 header_.public_header.connection_id_length = connection_id_length_;
835 header_.entropy_flag = entropy_flag;
836 header_.fec_flag = false;
837 header_.packet_sequence_number = number;
838 header_.is_in_fec_group = fec_group == 0u ? NOT_IN_FEC_GROUP : IN_FEC_GROUP;
839 header_.fec_group = fec_group;
841 QuicFrames frames;
842 QuicFrame frame(&frame1_);
843 frames.push_back(frame);
844 QuicPacket* packet =
845 BuildUnsizedDataPacket(&framer_, header_, frames).packet;
846 EXPECT_TRUE(packet != NULL);
847 return packet;
850 QuicPacket* ConstructClosePacket(QuicPacketSequenceNumber number,
851 QuicFecGroupNumber fec_group) {
852 header_.public_header.connection_id = connection_id_;
853 header_.packet_sequence_number = number;
854 header_.public_header.reset_flag = false;
855 header_.public_header.version_flag = false;
856 header_.entropy_flag = false;
857 header_.fec_flag = false;
858 header_.is_in_fec_group = fec_group == 0u ? NOT_IN_FEC_GROUP : IN_FEC_GROUP;
859 header_.fec_group = fec_group;
861 QuicConnectionCloseFrame qccf;
862 qccf.error_code = QUIC_PEER_GOING_AWAY;
864 QuicFrames frames;
865 QuicFrame frame(&qccf);
866 frames.push_back(frame);
867 QuicPacket* packet =
868 BuildUnsizedDataPacket(&framer_, header_, frames).packet;
869 EXPECT_TRUE(packet != NULL);
870 return packet;
873 void SetFeedback(QuicCongestionFeedbackFrame* feedback) {
874 receive_algorithm_ = new TestReceiveAlgorithm(feedback);
875 connection_.SetReceiveAlgorithm(receive_algorithm_);
878 QuicTime::Delta DefaultRetransmissionTime() {
879 return QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs);
882 QuicTime::Delta DefaultDelayedAckTime() {
883 return QuicTime::Delta::FromMilliseconds(kMinRetransmissionTimeMs/2);
886 // Initialize a frame acknowledging all packets up to largest_observed.
887 const QuicAckFrame InitAckFrame(QuicPacketSequenceNumber largest_observed,
888 QuicPacketSequenceNumber least_unacked) {
889 QuicAckFrame frame(MakeAckFrame(largest_observed, least_unacked));
890 if (largest_observed > 0) {
891 frame.received_info.entropy_hash =
892 QuicConnectionPeer::GetSentEntropyHash(&connection_, largest_observed);
894 return frame;
897 const QuicStopWaitingFrame InitStopWaitingFrame(
898 QuicPacketSequenceNumber least_unacked) {
899 QuicStopWaitingFrame frame;
900 frame.least_unacked = least_unacked;
901 return frame;
903 // Explicitly nack a packet.
904 void NackPacket(QuicPacketSequenceNumber missing, QuicAckFrame* frame) {
905 frame->received_info.missing_packets.insert(missing);
906 frame->received_info.entropy_hash ^=
907 QuicConnectionPeer::GetSentEntropyHash(&connection_, missing);
908 if (missing > 1) {
909 frame->received_info.entropy_hash ^=
910 QuicConnectionPeer::GetSentEntropyHash(&connection_, missing - 1);
914 // Undo nacking a packet within the frame.
915 void AckPacket(QuicPacketSequenceNumber arrived, QuicAckFrame* frame) {
916 EXPECT_THAT(frame->received_info.missing_packets, Contains(arrived));
917 frame->received_info.missing_packets.erase(arrived);
918 frame->received_info.entropy_hash ^=
919 QuicConnectionPeer::GetSentEntropyHash(&connection_, arrived);
920 if (arrived > 1) {
921 frame->received_info.entropy_hash ^=
922 QuicConnectionPeer::GetSentEntropyHash(&connection_, arrived - 1);
926 void TriggerConnectionClose() {
927 // Send an erroneous packet to close the connection.
928 EXPECT_CALL(visitor_,
929 OnConnectionClosed(QUIC_INVALID_PACKET_HEADER, false));
930 // Call ProcessDataPacket rather than ProcessPacket, as we should not get a
931 // packet call to the visitor.
932 ProcessDataPacket(6000, 0, !kEntropyFlag);
933 EXPECT_FALSE(
934 QuicConnectionPeer::GetConnectionClosePacket(&connection_) == NULL);
937 void BlockOnNextWrite() {
938 writer_->BlockOnNextWrite();
939 EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1));
942 void CongestionBlockWrites() {
943 EXPECT_CALL(*send_algorithm_,
944 TimeUntilSend(_, _, _)).WillRepeatedly(
945 testing::Return(QuicTime::Delta::FromSeconds(1)));
948 void CongestionUnblockWrites() {
949 EXPECT_CALL(*send_algorithm_,
950 TimeUntilSend(_, _, _)).WillRepeatedly(
951 testing::Return(QuicTime::Delta::Zero()));
954 QuicConnectionId connection_id_;
955 QuicFramer framer_;
956 QuicPacketCreator peer_creator_;
957 MockEntropyCalculator entropy_calculator_;
959 MockSendAlgorithm* send_algorithm_;
960 MockLossAlgorithm* loss_algorithm_;
961 TestReceiveAlgorithm* receive_algorithm_;
962 MockClock clock_;
963 MockRandom random_generator_;
964 scoped_ptr<TestConnectionHelper> helper_;
965 scoped_ptr<TestPacketWriter> writer_;
966 TestConnection connection_;
967 StrictMock<MockConnectionVisitor> visitor_;
969 QuicPacketHeader header_;
970 QuicStreamFrame frame1_;
971 QuicStreamFrame frame2_;
972 scoped_ptr<QuicAckFrame> outgoing_ack_;
973 QuicSequenceNumberLength sequence_number_length_;
974 QuicConnectionIdLength connection_id_length_;
976 private:
977 DISALLOW_COPY_AND_ASSIGN(QuicConnectionTest);
980 // Run all end to end tests with all supported versions.
981 INSTANTIATE_TEST_CASE_P(SupportedVersion,
982 QuicConnectionTest,
983 ::testing::ValuesIn(QuicSupportedVersions()));
985 TEST_P(QuicConnectionTest, PacketsInOrder) {
986 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
988 ProcessPacket(1);
989 EXPECT_EQ(1u, outgoing_ack()->received_info.largest_observed);
990 EXPECT_EQ(0u, outgoing_ack()->received_info.missing_packets.size());
992 ProcessPacket(2);
993 EXPECT_EQ(2u, outgoing_ack()->received_info.largest_observed);
994 EXPECT_EQ(0u, outgoing_ack()->received_info.missing_packets.size());
996 ProcessPacket(3);
997 EXPECT_EQ(3u, outgoing_ack()->received_info.largest_observed);
998 EXPECT_EQ(0u, outgoing_ack()->received_info.missing_packets.size());
1001 TEST_P(QuicConnectionTest, PacketsOutOfOrder) {
1002 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
1004 ProcessPacket(3);
1005 EXPECT_EQ(3u, outgoing_ack()->received_info.largest_observed);
1006 EXPECT_TRUE(IsMissing(2));
1007 EXPECT_TRUE(IsMissing(1));
1009 ProcessPacket(2);
1010 EXPECT_EQ(3u, outgoing_ack()->received_info.largest_observed);
1011 EXPECT_FALSE(IsMissing(2));
1012 EXPECT_TRUE(IsMissing(1));
1014 ProcessPacket(1);
1015 EXPECT_EQ(3u, outgoing_ack()->received_info.largest_observed);
1016 EXPECT_FALSE(IsMissing(2));
1017 EXPECT_FALSE(IsMissing(1));
1020 TEST_P(QuicConnectionTest, DuplicatePacket) {
1021 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
1023 ProcessPacket(3);
1024 EXPECT_EQ(3u, outgoing_ack()->received_info.largest_observed);
1025 EXPECT_TRUE(IsMissing(2));
1026 EXPECT_TRUE(IsMissing(1));
1028 // Send packet 3 again, but do not set the expectation that
1029 // the visitor OnStreamFrames() will be called.
1030 ProcessDataPacket(3, 0, !kEntropyFlag);
1031 EXPECT_EQ(3u, outgoing_ack()->received_info.largest_observed);
1032 EXPECT_TRUE(IsMissing(2));
1033 EXPECT_TRUE(IsMissing(1));
1036 TEST_P(QuicConnectionTest, PacketsOutOfOrderWithAdditionsAndLeastAwaiting) {
1037 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
1039 ProcessPacket(3);
1040 EXPECT_EQ(3u, outgoing_ack()->received_info.largest_observed);
1041 EXPECT_TRUE(IsMissing(2));
1042 EXPECT_TRUE(IsMissing(1));
1044 ProcessPacket(2);
1045 EXPECT_EQ(3u, outgoing_ack()->received_info.largest_observed);
1046 EXPECT_TRUE(IsMissing(1));
1048 ProcessPacket(5);
1049 EXPECT_EQ(5u, outgoing_ack()->received_info.largest_observed);
1050 EXPECT_TRUE(IsMissing(1));
1051 EXPECT_TRUE(IsMissing(4));
1053 // Pretend at this point the client has gotten acks for 2 and 3 and 1 is a
1054 // packet the peer will not retransmit. It indicates this by sending 'least
1055 // awaiting' is 4. The connection should then realize 1 will not be
1056 // retransmitted, and will remove it from the missing list.
1057 peer_creator_.set_sequence_number(5);
1058 QuicAckFrame frame = InitAckFrame(1, 4);
1059 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _));
1060 ProcessAckPacket(&frame);
1062 // Force an ack to be sent.
1063 SendAckPacketToPeer();
1064 EXPECT_TRUE(IsMissing(4));
1067 TEST_P(QuicConnectionTest, RejectPacketTooFarOut) {
1068 EXPECT_CALL(visitor_,
1069 OnConnectionClosed(QUIC_INVALID_PACKET_HEADER, false));
1070 // Call ProcessDataPacket rather than ProcessPacket, as we should not get a
1071 // packet call to the visitor.
1072 ProcessDataPacket(6000, 0, !kEntropyFlag);
1073 EXPECT_FALSE(
1074 QuicConnectionPeer::GetConnectionClosePacket(&connection_) == NULL);
1077 TEST_P(QuicConnectionTest, RejectUnencryptedStreamData) {
1078 // Process an unencrypted packet from the non-crypto stream.
1079 frame1_.stream_id = 3;
1080 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
1081 EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_UNENCRYPTED_STREAM_DATA,
1082 false));
1083 ProcessDataPacket(1, 0, !kEntropyFlag);
1084 EXPECT_FALSE(
1085 QuicConnectionPeer::GetConnectionClosePacket(&connection_) == NULL);
1086 const vector<QuicConnectionCloseFrame>& connection_close_frames =
1087 writer_->connection_close_frames();
1088 EXPECT_EQ(1u, connection_close_frames.size());
1089 EXPECT_EQ(QUIC_UNENCRYPTED_STREAM_DATA,
1090 connection_close_frames[0].error_code);
1093 TEST_P(QuicConnectionTest, TruncatedAck) {
1094 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
1095 QuicPacketSequenceNumber num_packets = 256 * 2 + 1;
1096 for (QuicPacketSequenceNumber i = 0; i < num_packets; ++i) {
1097 SendStreamDataToPeer(3, "foo", i * 3, !kFin, NULL);
1100 QuicAckFrame frame = InitAckFrame(num_packets, 1);
1101 SequenceNumberSet lost_packets;
1102 // Create an ack with 256 nacks, none adjacent to one another.
1103 for (QuicPacketSequenceNumber i = 1; i <= 256; ++i) {
1104 NackPacket(i * 2, &frame);
1105 if (i < 256) { // Last packet is nacked, but not lost.
1106 lost_packets.insert(i * 2);
1109 EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
1110 .WillOnce(Return(lost_packets));
1111 EXPECT_CALL(entropy_calculator_,
1112 EntropyHash(511)).WillOnce(testing::Return(0));
1113 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
1114 ProcessAckPacket(&frame);
1116 QuicReceivedPacketManager* received_packet_manager =
1117 QuicConnectionPeer::GetReceivedPacketManager(&connection_);
1118 // A truncated ack will not have the true largest observed.
1119 EXPECT_GT(num_packets,
1120 received_packet_manager->peer_largest_observed_packet());
1122 AckPacket(192, &frame);
1124 // Removing one missing packet allows us to ack 192 and one more range, but
1125 // 192 has already been declared lost, so it doesn't register as an ack.
1126 EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
1127 .WillOnce(Return(SequenceNumberSet()));
1128 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
1129 ProcessAckPacket(&frame);
1130 EXPECT_EQ(num_packets,
1131 received_packet_manager->peer_largest_observed_packet());
1134 TEST_P(QuicConnectionTest, AckReceiptCausesAckSendBadEntropy) {
1135 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
1137 ProcessPacket(1);
1138 // Delay sending, then queue up an ack.
1139 EXPECT_CALL(*send_algorithm_,
1140 TimeUntilSend(_, _, _)).WillOnce(
1141 testing::Return(QuicTime::Delta::FromMicroseconds(1)));
1142 QuicConnectionPeer::SendAck(&connection_);
1144 // Process an ack with a least unacked of the received ack.
1145 // This causes an ack to be sent when TimeUntilSend returns 0.
1146 EXPECT_CALL(*send_algorithm_,
1147 TimeUntilSend(_, _, _)).WillRepeatedly(
1148 testing::Return(QuicTime::Delta::Zero()));
1149 // Skip a packet and then record an ack.
1150 peer_creator_.set_sequence_number(2);
1151 QuicAckFrame frame = InitAckFrame(0, 3);
1152 ProcessAckPacket(&frame);
1155 TEST_P(QuicConnectionTest, OutOfOrderReceiptCausesAckSend) {
1156 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
1158 ProcessPacket(3);
1159 // Should ack immediately since we have missing packets.
1160 EXPECT_EQ(1u, writer_->packets_write_attempts());
1162 ProcessPacket(2);
1163 // Should ack immediately since we have missing packets.
1164 EXPECT_EQ(2u, writer_->packets_write_attempts());
1166 ProcessPacket(1);
1167 // Should ack immediately, since this fills the last hole.
1168 EXPECT_EQ(3u, writer_->packets_write_attempts());
1170 ProcessPacket(4);
1171 // Should not cause an ack.
1172 EXPECT_EQ(3u, writer_->packets_write_attempts());
1175 TEST_P(QuicConnectionTest, AckReceiptCausesAckSend) {
1176 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
1178 QuicPacketSequenceNumber original;
1179 QuicByteCount packet_size;
1180 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
1181 .WillOnce(DoAll(SaveArg<2>(&original), SaveArg<3>(&packet_size),
1182 Return(true)));
1183 connection_.SendStreamDataWithString(3, "foo", 0, !kFin, NULL);
1184 QuicAckFrame frame = InitAckFrame(original, 1);
1185 NackPacket(original, &frame);
1186 // First nack triggers early retransmit.
1187 SequenceNumberSet lost_packets;
1188 lost_packets.insert(1);
1189 EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
1190 .WillOnce(Return(lost_packets));
1191 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
1192 QuicPacketSequenceNumber retransmission;
1193 EXPECT_CALL(*send_algorithm_,
1194 OnPacketSent(_, _, _, packet_size - kQuicVersionSize, _))
1195 .WillOnce(DoAll(SaveArg<2>(&retransmission), Return(true)));
1197 ProcessAckPacket(&frame);
1199 QuicAckFrame frame2 = InitAckFrame(retransmission, 1);
1200 NackPacket(original, &frame2);
1201 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
1202 EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
1203 .WillOnce(Return(SequenceNumberSet()));
1204 ProcessAckPacket(&frame2);
1206 // Now if the peer sends an ack which still reports the retransmitted packet
1207 // as missing, that will bundle an ack with data after two acks in a row
1208 // indicate the high water mark needs to be raised.
1209 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _,
1210 HAS_RETRANSMITTABLE_DATA));
1211 connection_.SendStreamDataWithString(3, "foo", 3, !kFin, NULL);
1212 // No ack sent.
1213 EXPECT_EQ(1u, writer_->frame_count());
1214 EXPECT_EQ(1u, writer_->stream_frames().size());
1216 // No more packet loss for the rest of the test.
1217 EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
1218 .WillRepeatedly(Return(SequenceNumberSet()));
1219 ProcessAckPacket(&frame2);
1220 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _,
1221 HAS_RETRANSMITTABLE_DATA));
1222 connection_.SendStreamDataWithString(3, "foo", 3, !kFin, NULL);
1223 // Ack bundled.
1224 if (version() > QUIC_VERSION_15) {
1225 EXPECT_EQ(3u, writer_->frame_count());
1226 } else {
1227 EXPECT_EQ(2u, writer_->frame_count());
1229 EXPECT_EQ(1u, writer_->stream_frames().size());
1230 EXPECT_FALSE(writer_->ack_frames().empty());
1232 // But an ack with no missing packets will not send an ack.
1233 AckPacket(original, &frame2);
1234 ProcessAckPacket(&frame2);
1235 ProcessAckPacket(&frame2);
1238 TEST_P(QuicConnectionTest, LeastUnackedLower) {
1239 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
1241 SendStreamDataToPeer(1, "foo", 0, !kFin, NULL);
1242 SendStreamDataToPeer(1, "bar", 3, !kFin, NULL);
1243 SendStreamDataToPeer(1, "eep", 6, !kFin, NULL);
1245 // Start out saying the least unacked is 2.
1246 peer_creator_.set_sequence_number(5);
1247 if (version() > QUIC_VERSION_15) {
1248 QuicStopWaitingFrame frame = InitStopWaitingFrame(2);
1249 ProcessStopWaitingPacket(&frame);
1250 } else {
1251 QuicAckFrame frame = InitAckFrame(0, 2);
1252 ProcessAckPacket(&frame);
1255 // Change it to 1, but lower the sequence number to fake out-of-order packets.
1256 // This should be fine.
1257 peer_creator_.set_sequence_number(1);
1258 // The scheduler will not process out of order acks, but all packet processing
1259 // causes the connection to try to write.
1260 EXPECT_CALL(visitor_, OnCanWrite());
1261 if (version() > QUIC_VERSION_15) {
1262 QuicStopWaitingFrame frame2 = InitStopWaitingFrame(1);
1263 ProcessStopWaitingPacket(&frame2);
1264 } else {
1265 QuicAckFrame frame2 = InitAckFrame(0, 1);
1266 ProcessAckPacket(&frame2);
1269 // Now claim it's one, but set the ordering so it was sent "after" the first
1270 // one. This should cause a connection error.
1271 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
1272 peer_creator_.set_sequence_number(7);
1273 if (version() > QUIC_VERSION_15) {
1274 EXPECT_CALL(visitor_,
1275 OnConnectionClosed(QUIC_INVALID_STOP_WAITING_DATA, false));
1276 QuicStopWaitingFrame frame2 = InitStopWaitingFrame(1);
1277 ProcessStopWaitingPacket(&frame2);
1278 } else {
1279 EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_ACK_DATA, false));
1280 QuicAckFrame frame2 = InitAckFrame(0, 1);
1281 ProcessAckPacket(&frame2);
1285 TEST_P(QuicConnectionTest, LargestObservedLower) {
1286 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
1288 SendStreamDataToPeer(1, "foo", 0, !kFin, NULL);
1289 SendStreamDataToPeer(1, "bar", 3, !kFin, NULL);
1290 SendStreamDataToPeer(1, "eep", 6, !kFin, NULL);
1291 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
1293 // Start out saying the largest observed is 2.
1294 QuicAckFrame frame1 = InitAckFrame(1, 0);
1295 QuicAckFrame frame2 = InitAckFrame(2, 0);
1296 ProcessAckPacket(&frame2);
1298 // Now change it to 1, and it should cause a connection error.
1299 EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_ACK_DATA, false));
1300 EXPECT_CALL(visitor_, OnCanWrite()).Times(0);
1301 ProcessAckPacket(&frame1);
1304 TEST_P(QuicConnectionTest, AckUnsentData) {
1305 // Ack a packet which has not been sent.
1306 EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_ACK_DATA, false));
1307 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
1308 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
1309 QuicAckFrame frame(MakeAckFrame(1, 0));
1310 EXPECT_CALL(visitor_, OnCanWrite()).Times(0);
1311 ProcessAckPacket(&frame);
1314 TEST_P(QuicConnectionTest, AckAll) {
1315 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
1316 ProcessPacket(1);
1318 peer_creator_.set_sequence_number(1);
1319 QuicAckFrame frame1 = InitAckFrame(0, 1);
1320 ProcessAckPacket(&frame1);
1323 TEST_P(QuicConnectionTest, SendingDifferentSequenceNumberLengthsBandwidth) {
1324 QuicPacketSequenceNumber last_packet;
1325 QuicPacketCreator* creator =
1326 QuicConnectionPeer::GetPacketCreator(&connection_);
1327 SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet);
1328 EXPECT_EQ(1u, last_packet);
1329 EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER,
1330 creator->next_sequence_number_length());
1331 EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER,
1332 writer_->header().public_header.sequence_number_length);
1334 EXPECT_CALL(*send_algorithm_, GetCongestionWindow()).WillRepeatedly(
1335 Return(kMaxPacketSize * 256));
1337 SendStreamDataToPeer(1, "bar", 3, !kFin, &last_packet);
1338 EXPECT_EQ(2u, last_packet);
1339 EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER,
1340 creator->next_sequence_number_length());
1341 // The 1 packet lag is due to the sequence number length being recalculated in
1342 // QuicConnection after a packet is sent.
1343 EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER,
1344 writer_->header().public_header.sequence_number_length);
1346 EXPECT_CALL(*send_algorithm_, GetCongestionWindow()).WillRepeatedly(
1347 Return(kMaxPacketSize * 256 * 256));
1349 SendStreamDataToPeer(1, "foo", 6, !kFin, &last_packet);
1350 EXPECT_EQ(3u, last_packet);
1351 EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER,
1352 creator->next_sequence_number_length());
1353 EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER,
1354 writer_->header().public_header.sequence_number_length);
1356 EXPECT_CALL(*send_algorithm_, GetCongestionWindow()).WillRepeatedly(
1357 Return(kMaxPacketSize * 256 * 256 * 256));
1359 SendStreamDataToPeer(1, "bar", 9, !kFin, &last_packet);
1360 EXPECT_EQ(4u, last_packet);
1361 EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER,
1362 creator->next_sequence_number_length());
1363 EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER,
1364 writer_->header().public_header.sequence_number_length);
1366 EXPECT_CALL(*send_algorithm_, GetCongestionWindow()).WillRepeatedly(
1367 Return(kMaxPacketSize * 256 * 256 * 256 * 256));
1369 SendStreamDataToPeer(1, "foo", 12, !kFin, &last_packet);
1370 EXPECT_EQ(5u, last_packet);
1371 EXPECT_EQ(PACKET_6BYTE_SEQUENCE_NUMBER,
1372 creator->next_sequence_number_length());
1373 EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER,
1374 writer_->header().public_header.sequence_number_length);
1377 TEST_P(QuicConnectionTest, SendingDifferentSequenceNumberLengthsUnackedDelta) {
1378 QuicPacketSequenceNumber last_packet;
1379 QuicPacketCreator* creator =
1380 QuicConnectionPeer::GetPacketCreator(&connection_);
1381 SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet);
1382 EXPECT_EQ(1u, last_packet);
1383 EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER,
1384 creator->next_sequence_number_length());
1385 EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER,
1386 writer_->header().public_header.sequence_number_length);
1388 creator->set_sequence_number(100);
1390 SendStreamDataToPeer(1, "bar", 3, !kFin, &last_packet);
1391 EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER,
1392 creator->next_sequence_number_length());
1393 EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER,
1394 writer_->header().public_header.sequence_number_length);
1396 creator->set_sequence_number(100 * 256);
1398 SendStreamDataToPeer(1, "foo", 6, !kFin, &last_packet);
1399 EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER,
1400 creator->next_sequence_number_length());
1401 EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER,
1402 writer_->header().public_header.sequence_number_length);
1404 creator->set_sequence_number(100 * 256 * 256);
1406 SendStreamDataToPeer(1, "bar", 9, !kFin, &last_packet);
1407 EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER,
1408 creator->next_sequence_number_length());
1409 EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER,
1410 writer_->header().public_header.sequence_number_length);
1412 creator->set_sequence_number(100 * 256 * 256 * 256);
1414 SendStreamDataToPeer(1, "foo", 12, !kFin, &last_packet);
1415 EXPECT_EQ(PACKET_6BYTE_SEQUENCE_NUMBER,
1416 creator->next_sequence_number_length());
1417 EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER,
1418 writer_->header().public_header.sequence_number_length);
1421 TEST_P(QuicConnectionTest, BasicSending) {
1422 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
1423 QuicPacketSequenceNumber last_packet;
1424 SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); // Packet 1
1425 EXPECT_EQ(1u, last_packet);
1426 SendAckPacketToPeer(); // Packet 2
1428 EXPECT_EQ(1u, least_unacked());
1430 SendAckPacketToPeer(); // Packet 3
1431 EXPECT_EQ(1u, least_unacked());
1433 SendStreamDataToPeer(1, "bar", 3, !kFin, &last_packet); // Packet 4
1434 EXPECT_EQ(4u, last_packet);
1435 SendAckPacketToPeer(); // Packet 5
1436 EXPECT_EQ(1u, least_unacked());
1438 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
1440 // Peer acks up to packet 3.
1441 QuicAckFrame frame = InitAckFrame(3, 0);
1442 ProcessAckPacket(&frame);
1443 SendAckPacketToPeer(); // Packet 6
1445 // As soon as we've acked one, we skip ack packets 2 and 3 and note lack of
1446 // ack for 4.
1447 EXPECT_EQ(4u, least_unacked());
1449 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
1451 // Peer acks up to packet 4, the last packet.
1452 QuicAckFrame frame2 = InitAckFrame(6, 0);
1453 ProcessAckPacket(&frame2); // Acks don't instigate acks.
1455 // Verify that we did not send an ack.
1456 EXPECT_EQ(6u, writer_->header().packet_sequence_number);
1458 // So the last ack has not changed.
1459 EXPECT_EQ(4u, least_unacked());
1461 // If we force an ack, we shouldn't change our retransmit state.
1462 SendAckPacketToPeer(); // Packet 7
1463 EXPECT_EQ(7u, least_unacked());
1465 // But if we send more data it should.
1466 SendStreamDataToPeer(1, "eep", 6, !kFin, &last_packet); // Packet 8
1467 EXPECT_EQ(8u, last_packet);
1468 SendAckPacketToPeer(); // Packet 9
1469 EXPECT_EQ(7u, least_unacked());
1472 TEST_P(QuicConnectionTest, FECSending) {
1473 // All packets carry version info till version is negotiated.
1474 QuicPacketCreator* creator =
1475 QuicConnectionPeer::GetPacketCreator(&connection_);
1476 size_t payload_length;
1477 // GetPacketLengthForOneStream() assumes a stream offset of 0 in determining
1478 // packet length. The size of the offset field in a stream frame is 0 for
1479 // offset 0, and 2 for non-zero offsets up through 64K. Increase
1480 // max_packet_length by 2 so that subsequent packets containing subsequent
1481 // stream frames with non-zero offets will fit within the packet length.
1482 size_t length = 2 + GetPacketLengthForOneStream(
1483 connection_.version(), kIncludeVersion, PACKET_1BYTE_SEQUENCE_NUMBER,
1484 IN_FEC_GROUP, &payload_length);
1485 creator->set_max_packet_length(length);
1487 // Send 4 protected data packets, which should also trigger 1 FEC packet.
1488 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(5);
1489 // The first stream frame will have 2 fewer overhead bytes than the other 3.
1490 const string payload(payload_length * 4 + 2, 'a');
1491 connection_.SendStreamDataWithStringWithFec(1, payload, 0, !kFin, NULL);
1492 // Expect the FEC group to be closed after SendStreamDataWithString.
1493 EXPECT_FALSE(creator->IsFecGroupOpen());
1494 EXPECT_FALSE(creator->IsFecProtected());
1497 TEST_P(QuicConnectionTest, FECQueueing) {
1498 // All packets carry version info till version is negotiated.
1499 size_t payload_length;
1500 QuicPacketCreator* creator =
1501 QuicConnectionPeer::GetPacketCreator(&connection_);
1502 size_t length = GetPacketLengthForOneStream(
1503 connection_.version(), kIncludeVersion, PACKET_1BYTE_SEQUENCE_NUMBER,
1504 IN_FEC_GROUP, &payload_length);
1505 creator->set_max_packet_length(length);
1506 EXPECT_TRUE(creator->IsFecEnabled());
1508 EXPECT_EQ(0u, connection_.NumQueuedPackets());
1509 BlockOnNextWrite();
1510 const string payload(payload_length, 'a');
1511 connection_.SendStreamDataWithStringWithFec(1, payload, 0, !kFin, NULL);
1512 EXPECT_FALSE(creator->IsFecGroupOpen());
1513 EXPECT_FALSE(creator->IsFecProtected());
1514 // Expect the first data packet and the fec packet to be queued.
1515 EXPECT_EQ(2u, connection_.NumQueuedPackets());
1518 TEST_P(QuicConnectionTest, AbandonFECFromCongestionWindow) {
1519 EXPECT_TRUE(QuicConnectionPeer::GetPacketCreator(
1520 &connection_)->IsFecEnabled());
1522 // 1 Data and 1 FEC packet.
1523 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
1524 connection_.SendStreamDataWithStringWithFec(3, "foo", 0, !kFin, NULL);
1526 const QuicTime::Delta retransmission_time =
1527 QuicTime::Delta::FromMilliseconds(5000);
1528 clock_.AdvanceTime(retransmission_time);
1530 // Abandon FEC packet and data packet.
1531 EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true));
1532 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
1533 EXPECT_CALL(visitor_, OnCanWrite());
1534 connection_.OnRetransmissionTimeout();
1537 TEST_P(QuicConnectionTest, DontAbandonAckedFEC) {
1538 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
1539 EXPECT_TRUE(QuicConnectionPeer::GetPacketCreator(
1540 &connection_)->IsFecEnabled());
1542 // 1 Data and 1 FEC packet.
1543 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(6);
1544 connection_.SendStreamDataWithStringWithFec(3, "foo", 0, !kFin, NULL);
1545 // Send some more data afterwards to ensure early retransmit doesn't trigger.
1546 connection_.SendStreamDataWithStringWithFec(3, "foo", 3, !kFin, NULL);
1547 connection_.SendStreamDataWithStringWithFec(3, "foo", 6, !kFin, NULL);
1549 QuicAckFrame ack_fec = InitAckFrame(2, 1);
1550 // Data packet missing.
1551 // TODO(ianswett): Note that this is not a sensible ack, since if the FEC was
1552 // received, it would cause the covered packet to be acked as well.
1553 NackPacket(1, &ack_fec);
1554 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
1555 ProcessAckPacket(&ack_fec);
1556 clock_.AdvanceTime(DefaultRetransmissionTime());
1558 // Don't abandon the acked FEC packet, but it will abandon 2 the subsequent
1559 // FEC packets.
1560 EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true));
1561 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(3);
1562 connection_.GetRetransmissionAlarm()->Fire();
1565 TEST_P(QuicConnectionTest, AbandonAllFEC) {
1566 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
1567 EXPECT_TRUE(QuicConnectionPeer::GetPacketCreator(
1568 &connection_)->IsFecEnabled());
1570 // 1 Data and 1 FEC packet.
1571 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(6);
1572 connection_.SendStreamDataWithStringWithFec(3, "foo", 0, !kFin, NULL);
1573 // Send some more data afterwards to ensure early retransmit doesn't trigger.
1574 connection_.SendStreamDataWithStringWithFec(3, "foo", 3, !kFin, NULL);
1575 // Advance the time so not all the FEC packets are abandoned.
1576 clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(1));
1577 connection_.SendStreamDataWithStringWithFec(3, "foo", 6, !kFin, NULL);
1579 QuicAckFrame ack_fec = InitAckFrame(5, 1);
1580 // Ack all data packets, but no fec packets.
1581 NackPacket(2, &ack_fec);
1582 NackPacket(4, &ack_fec);
1584 // Lose the first FEC packet and ack the three data packets.
1585 SequenceNumberSet lost_packets;
1586 lost_packets.insert(2);
1587 EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
1588 .WillOnce(Return(lost_packets));
1589 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
1590 ProcessAckPacket(&ack_fec);
1592 clock_.AdvanceTime(DefaultRetransmissionTime().Subtract(
1593 QuicTime::Delta::FromMilliseconds(1)));
1595 // Abandon all packets
1596 EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(false));
1597 connection_.GetRetransmissionAlarm()->Fire();
1599 // Ensure the alarm is not set since all packets have been abandoned.
1600 EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
1603 TEST_P(QuicConnectionTest, FramePacking) {
1604 CongestionBlockWrites();
1606 // Send an ack and two stream frames in 1 packet by queueing them.
1607 connection_.SendAck();
1608 EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll(
1609 IgnoreResult(InvokeWithoutArgs(&connection_,
1610 &TestConnection::SendStreamData3)),
1611 IgnoreResult(InvokeWithoutArgs(&connection_,
1612 &TestConnection::SendStreamData5))));
1614 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
1615 CongestionUnblockWrites();
1616 connection_.GetSendAlarm()->Fire();
1617 EXPECT_EQ(0u, connection_.NumQueuedPackets());
1618 EXPECT_FALSE(connection_.HasQueuedData());
1620 // Parse the last packet and ensure it's an ack and two stream frames from
1621 // two different streams.
1622 if (version() > QUIC_VERSION_15) {
1623 EXPECT_EQ(4u, writer_->frame_count());
1624 EXPECT_FALSE(writer_->stop_waiting_frames().empty());
1625 } else {
1626 EXPECT_EQ(3u, writer_->frame_count());
1628 EXPECT_FALSE(writer_->ack_frames().empty());
1629 ASSERT_EQ(2u, writer_->stream_frames().size());
1630 EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0].stream_id);
1631 EXPECT_EQ(kClientDataStreamId2, writer_->stream_frames()[1].stream_id);
1634 TEST_P(QuicConnectionTest, FramePackingNonCryptoThenCrypto) {
1635 CongestionBlockWrites();
1637 // Send an ack and two stream frames (one non-crypto, then one crypto) in 2
1638 // packets by queueing them.
1639 connection_.SendAck();
1640 EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll(
1641 IgnoreResult(InvokeWithoutArgs(&connection_,
1642 &TestConnection::SendStreamData3)),
1643 IgnoreResult(InvokeWithoutArgs(&connection_,
1644 &TestConnection::SendCryptoStreamData))));
1646 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
1647 CongestionUnblockWrites();
1648 connection_.GetSendAlarm()->Fire();
1649 EXPECT_EQ(0u, connection_.NumQueuedPackets());
1650 EXPECT_FALSE(connection_.HasQueuedData());
1652 // Parse the last packet and ensure it's the crypto stream frame.
1653 EXPECT_EQ(1u, writer_->frame_count());
1654 ASSERT_EQ(1u, writer_->stream_frames().size());
1655 EXPECT_EQ(kCryptoStreamId, writer_->stream_frames()[0].stream_id);
1658 TEST_P(QuicConnectionTest, FramePackingCryptoThenNonCrypto) {
1659 CongestionBlockWrites();
1661 // Send an ack and two stream frames (one crypto, then one non-crypto) in 2
1662 // packets by queueing them.
1663 connection_.SendAck();
1664 EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll(
1665 IgnoreResult(InvokeWithoutArgs(&connection_,
1666 &TestConnection::SendCryptoStreamData)),
1667 IgnoreResult(InvokeWithoutArgs(&connection_,
1668 &TestConnection::SendStreamData3))));
1670 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
1671 CongestionUnblockWrites();
1672 connection_.GetSendAlarm()->Fire();
1673 EXPECT_EQ(0u, connection_.NumQueuedPackets());
1674 EXPECT_FALSE(connection_.HasQueuedData());
1676 // Parse the last packet and ensure it's the stream frame from stream 3.
1677 EXPECT_EQ(1u, writer_->frame_count());
1678 ASSERT_EQ(1u, writer_->stream_frames().size());
1679 EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0].stream_id);
1682 TEST_P(QuicConnectionTest, FramePackingFEC) {
1683 EXPECT_TRUE(QuicConnectionPeer::GetPacketCreator(
1684 &connection_)->IsFecEnabled());
1686 CongestionBlockWrites();
1688 // Queue an ack and two stream frames. Ack gets flushed when FEC is turned on
1689 // for sending protected data; two stream frames are packing in 1 packet.
1690 EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll(
1691 IgnoreResult(InvokeWithoutArgs(
1692 &connection_, &TestConnection::SendStreamData3WithFec)),
1693 IgnoreResult(InvokeWithoutArgs(
1694 &connection_, &TestConnection::SendStreamData5WithFec))));
1695 connection_.SendAck();
1697 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(3);
1698 CongestionUnblockWrites();
1699 connection_.GetSendAlarm()->Fire();
1700 EXPECT_EQ(0u, connection_.NumQueuedPackets());
1701 EXPECT_FALSE(connection_.HasQueuedData());
1703 // Parse the last packet and ensure it's in an fec group.
1704 EXPECT_EQ(2u, writer_->header().fec_group);
1705 EXPECT_EQ(0u, writer_->frame_count());
1708 TEST_P(QuicConnectionTest, FramePackingAckResponse) {
1709 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
1710 // Process a data packet to queue up a pending ack.
1711 EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1);
1712 ProcessDataPacket(1, 1, kEntropyFlag);
1714 EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll(
1715 IgnoreResult(InvokeWithoutArgs(&connection_,
1716 &TestConnection::SendStreamData3)),
1717 IgnoreResult(InvokeWithoutArgs(&connection_,
1718 &TestConnection::SendStreamData5))));
1720 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
1722 // Process an ack to cause the visitor's OnCanWrite to be invoked.
1723 peer_creator_.set_sequence_number(2);
1724 QuicAckFrame ack_one = InitAckFrame(0, 0);
1725 ProcessAckPacket(&ack_one);
1727 EXPECT_EQ(0u, connection_.NumQueuedPackets());
1728 EXPECT_FALSE(connection_.HasQueuedData());
1730 // Parse the last packet and ensure it's an ack and two stream frames from
1731 // two different streams.
1732 if (version() > QUIC_VERSION_15) {
1733 EXPECT_EQ(4u, writer_->frame_count());
1734 EXPECT_FALSE(writer_->stop_waiting_frames().empty());
1735 } else {
1736 EXPECT_EQ(3u, writer_->frame_count());
1738 EXPECT_FALSE(writer_->ack_frames().empty());
1739 ASSERT_EQ(2u, writer_->stream_frames().size());
1740 EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0].stream_id);
1741 EXPECT_EQ(kClientDataStreamId2, writer_->stream_frames()[1].stream_id);
1744 TEST_P(QuicConnectionTest, FramePackingSendv) {
1745 // Send data in 1 packet by writing multiple blocks in a single iovector
1746 // using writev.
1747 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
1749 char data[] = "ABCD";
1750 IOVector data_iov;
1751 data_iov.AppendNoCoalesce(data, 2);
1752 data_iov.AppendNoCoalesce(data + 2, 2);
1753 connection_.SendStreamData(1, data_iov, 0, !kFin, MAY_FEC_PROTECT, NULL);
1755 EXPECT_EQ(0u, connection_.NumQueuedPackets());
1756 EXPECT_FALSE(connection_.HasQueuedData());
1758 // Parse the last packet and ensure multiple iovector blocks have
1759 // been packed into a single stream frame from one stream.
1760 EXPECT_EQ(1u, writer_->frame_count());
1761 EXPECT_EQ(1u, writer_->stream_frames().size());
1762 QuicStreamFrame frame = writer_->stream_frames()[0];
1763 EXPECT_EQ(1u, frame.stream_id);
1764 EXPECT_EQ("ABCD", string(static_cast<char*>
1765 (frame.data.iovec()[0].iov_base),
1766 (frame.data.iovec()[0].iov_len)));
1769 TEST_P(QuicConnectionTest, FramePackingSendvQueued) {
1770 // Try to send two stream frames in 1 packet by using writev.
1771 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
1773 BlockOnNextWrite();
1774 char data[] = "ABCD";
1775 IOVector data_iov;
1776 data_iov.AppendNoCoalesce(data, 2);
1777 data_iov.AppendNoCoalesce(data + 2, 2);
1778 connection_.SendStreamData(1, data_iov, 0, !kFin, MAY_FEC_PROTECT, NULL);
1780 EXPECT_EQ(1u, connection_.NumQueuedPackets());
1781 EXPECT_TRUE(connection_.HasQueuedData());
1783 // Unblock the writes and actually send.
1784 writer_->SetWritable();
1785 connection_.OnCanWrite();
1786 EXPECT_EQ(0u, connection_.NumQueuedPackets());
1788 // Parse the last packet and ensure it's one stream frame from one stream.
1789 EXPECT_EQ(1u, writer_->frame_count());
1790 EXPECT_EQ(1u, writer_->stream_frames().size());
1791 EXPECT_EQ(1u, writer_->stream_frames()[0].stream_id);
1794 TEST_P(QuicConnectionTest, SendingZeroBytes) {
1795 // Send a zero byte write with a fin using writev.
1796 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
1797 IOVector empty_iov;
1798 connection_.SendStreamData(1, empty_iov, 0, kFin, MAY_FEC_PROTECT, NULL);
1800 EXPECT_EQ(0u, connection_.NumQueuedPackets());
1801 EXPECT_FALSE(connection_.HasQueuedData());
1803 // Parse the last packet and ensure it's one stream frame from one stream.
1804 EXPECT_EQ(1u, writer_->frame_count());
1805 EXPECT_EQ(1u, writer_->stream_frames().size());
1806 EXPECT_EQ(1u, writer_->stream_frames()[0].stream_id);
1807 EXPECT_TRUE(writer_->stream_frames()[0].fin);
1810 TEST_P(QuicConnectionTest, OnCanWrite) {
1811 // Visitor's OnCanWrite will send data, but will have more pending writes.
1812 EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll(
1813 IgnoreResult(InvokeWithoutArgs(&connection_,
1814 &TestConnection::SendStreamData3)),
1815 IgnoreResult(InvokeWithoutArgs(&connection_,
1816 &TestConnection::SendStreamData5))));
1817 EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillOnce(Return(true));
1818 EXPECT_CALL(*send_algorithm_,
1819 TimeUntilSend(_, _, _)).WillRepeatedly(
1820 testing::Return(QuicTime::Delta::Zero()));
1822 connection_.OnCanWrite();
1824 // Parse the last packet and ensure it's the two stream frames from
1825 // two different streams.
1826 EXPECT_EQ(2u, writer_->frame_count());
1827 EXPECT_EQ(2u, writer_->stream_frames().size());
1828 EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0].stream_id);
1829 EXPECT_EQ(kClientDataStreamId2, writer_->stream_frames()[1].stream_id);
1832 TEST_P(QuicConnectionTest, RetransmitOnNack) {
1833 QuicPacketSequenceNumber last_packet;
1834 QuicByteCount second_packet_size;
1835 SendStreamDataToPeer(3, "foo", 0, !kFin, &last_packet); // Packet 1
1836 second_packet_size =
1837 SendStreamDataToPeer(3, "foos", 3, !kFin, &last_packet); // Packet 2
1838 SendStreamDataToPeer(3, "fooos", 7, !kFin, &last_packet); // Packet 3
1840 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
1842 // Don't lose a packet on an ack, and nothing is retransmitted.
1843 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
1844 QuicAckFrame ack_one = InitAckFrame(1, 0);
1845 ProcessAckPacket(&ack_one);
1847 // Lose a packet and ensure it triggers retransmission.
1848 QuicAckFrame nack_two = InitAckFrame(3, 0);
1849 NackPacket(2, &nack_two);
1850 SequenceNumberSet lost_packets;
1851 lost_packets.insert(2);
1852 EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
1853 .WillOnce(Return(lost_packets));
1854 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
1855 EXPECT_CALL(*send_algorithm_,
1856 OnPacketSent(_, _, _, second_packet_size - kQuicVersionSize, _)).
1857 Times(1);
1858 ProcessAckPacket(&nack_two);
1861 TEST_P(QuicConnectionTest, DiscardRetransmit) {
1862 QuicPacketSequenceNumber last_packet;
1863 SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); // Packet 1
1864 SendStreamDataToPeer(1, "foos", 3, !kFin, &last_packet); // Packet 2
1865 SendStreamDataToPeer(1, "fooos", 7, !kFin, &last_packet); // Packet 3
1867 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
1869 // Instigate a loss with an ack.
1870 QuicAckFrame nack_two = InitAckFrame(3, 0);
1871 NackPacket(2, &nack_two);
1872 // The first nack should trigger a fast retransmission, but we'll be
1873 // write blocked, so the packet will be queued.
1874 BlockOnNextWrite();
1875 SequenceNumberSet lost_packets;
1876 lost_packets.insert(2);
1877 EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
1878 .WillOnce(Return(lost_packets));
1879 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
1880 ProcessAckPacket(&nack_two);
1881 EXPECT_EQ(1u, connection_.NumQueuedPackets());
1883 // Now, ack the previous transmission.
1884 EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
1885 .WillOnce(Return(SequenceNumberSet()));
1886 QuicAckFrame ack_all = InitAckFrame(3, 0);
1887 ProcessAckPacket(&ack_all);
1889 // Unblock the socket and attempt to send the queued packets. However,
1890 // since the previous transmission has been acked, we will not
1891 // send the retransmission.
1892 EXPECT_CALL(*send_algorithm_,
1893 OnPacketSent(_, _, _, _, _)).Times(0);
1895 writer_->SetWritable();
1896 connection_.OnCanWrite();
1898 EXPECT_EQ(0u, connection_.NumQueuedPackets());
1901 TEST_P(QuicConnectionTest, RetransmitNackedLargestObserved) {
1902 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
1903 QuicPacketSequenceNumber largest_observed;
1904 QuicByteCount packet_size;
1905 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
1906 .WillOnce(DoAll(SaveArg<2>(&largest_observed), SaveArg<3>(&packet_size),
1907 Return(true)));
1908 connection_.SendStreamDataWithString(3, "foo", 0, !kFin, NULL);
1910 QuicAckFrame frame = InitAckFrame(1, largest_observed);
1911 NackPacket(largest_observed, &frame);
1912 // The first nack should retransmit the largest observed packet.
1913 SequenceNumberSet lost_packets;
1914 lost_packets.insert(1);
1915 EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
1916 .WillOnce(Return(lost_packets));
1917 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
1918 EXPECT_CALL(*send_algorithm_,
1919 OnPacketSent(_, _, _, packet_size - kQuicVersionSize, _));
1920 ProcessAckPacket(&frame);
1923 TEST_P(QuicConnectionTest, QueueAfterTwoRTOs) {
1924 for (int i = 0; i < 10; ++i) {
1925 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
1926 connection_.SendStreamDataWithString(3, "foo", i * 3, !kFin, NULL);
1929 // Block the congestion window and ensure they're queued.
1930 BlockOnNextWrite();
1931 clock_.AdvanceTime(DefaultRetransmissionTime());
1932 // Only one packet should be retransmitted.
1933 EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true));
1934 connection_.GetRetransmissionAlarm()->Fire();
1935 EXPECT_TRUE(connection_.HasQueuedData());
1937 // Unblock the congestion window.
1938 writer_->SetWritable();
1939 clock_.AdvanceTime(QuicTime::Delta::FromMicroseconds(
1940 2 * DefaultRetransmissionTime().ToMicroseconds()));
1941 // Retransmit already retransmitted packets event though the sequence number
1942 // greater than the largest observed.
1943 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(10);
1944 connection_.GetRetransmissionAlarm()->Fire();
1945 connection_.OnCanWrite();
1948 TEST_P(QuicConnectionTest, WriteBlockedThenSent) {
1949 BlockOnNextWrite();
1950 writer_->set_is_write_blocked_data_buffered(true);
1951 connection_.SendStreamDataWithString(1, "foo", 0, !kFin, NULL);
1952 EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
1954 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
1955 connection_.OnPacketSent(WriteResult(WRITE_STATUS_OK, 0));
1956 EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
1959 TEST_P(QuicConnectionTest, WriteBlockedAckedThenSent) {
1960 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
1961 BlockOnNextWrite();
1962 writer_->set_is_write_blocked_data_buffered(true);
1963 connection_.SendStreamDataWithString(1, "foo", 0, !kFin, NULL);
1964 EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
1966 // Ack the sent packet before the callback returns, which happens in
1967 // rare circumstances with write blocked sockets.
1968 QuicAckFrame ack = InitAckFrame(1, 0);
1969 ProcessAckPacket(&ack);
1971 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
1972 connection_.OnPacketSent(WriteResult(WRITE_STATUS_OK, 0));
1973 EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
1976 TEST_P(QuicConnectionTest, RetransmitWriteBlockedAckedOriginalThenSent) {
1977 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
1978 connection_.SendStreamDataWithString(3, "foo", 0, !kFin, NULL);
1979 EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
1981 BlockOnNextWrite();
1982 writer_->set_is_write_blocked_data_buffered(true);
1983 // Simulate the retransmission alarm firing.
1984 EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(_));
1985 clock_.AdvanceTime(DefaultRetransmissionTime());
1986 connection_.GetRetransmissionAlarm()->Fire();
1988 // Ack the sent packet before the callback returns, which happens in
1989 // rare circumstances with write blocked sockets.
1990 QuicAckFrame ack = InitAckFrame(1, 0);
1991 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
1992 EXPECT_CALL(*send_algorithm_, RevertRetransmissionTimeout());
1993 ProcessAckPacket(&ack);
1995 connection_.OnPacketSent(WriteResult(WRITE_STATUS_OK, 0));
1996 // There is now a pending packet, but with no retransmittable frames.
1997 EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
1998 EXPECT_FALSE(connection_.sent_packet_manager().HasRetransmittableFrames(2));
2001 TEST_P(QuicConnectionTest, AlarmsWhenWriteBlocked) {
2002 // Block the connection.
2003 BlockOnNextWrite();
2004 connection_.SendStreamDataWithString(3, "foo", 0, !kFin, NULL);
2005 EXPECT_EQ(1u, writer_->packets_write_attempts());
2006 EXPECT_TRUE(writer_->IsWriteBlocked());
2008 // Set the send and resumption alarms. Fire the alarms and ensure they don't
2009 // attempt to write.
2010 connection_.GetResumeWritesAlarm()->Set(clock_.ApproximateNow());
2011 connection_.GetSendAlarm()->Set(clock_.ApproximateNow());
2012 connection_.GetResumeWritesAlarm()->Fire();
2013 connection_.GetSendAlarm()->Fire();
2014 EXPECT_TRUE(writer_->IsWriteBlocked());
2015 EXPECT_EQ(1u, writer_->packets_write_attempts());
2018 TEST_P(QuicConnectionTest, NoLimitPacketsPerNack) {
2019 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
2020 int offset = 0;
2021 // Send packets 1 to 15.
2022 for (int i = 0; i < 15; ++i) {
2023 SendStreamDataToPeer(1, "foo", offset, !kFin, NULL);
2024 offset += 3;
2027 // Ack 15, nack 1-14.
2028 SequenceNumberSet lost_packets;
2029 QuicAckFrame nack = InitAckFrame(15, 0);
2030 for (int i = 1; i < 15; ++i) {
2031 NackPacket(i, &nack);
2032 lost_packets.insert(i);
2035 // 14 packets have been NACK'd and lost. In TCP cubic, PRR limits
2036 // the retransmission rate in the case of burst losses.
2037 EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
2038 .WillOnce(Return(lost_packets));
2039 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
2040 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(14);
2041 ProcessAckPacket(&nack);
2044 // Test sending multiple acks from the connection to the session.
2045 TEST_P(QuicConnectionTest, MultipleAcks) {
2046 QuicPacketSequenceNumber last_packet;
2047 SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); // Packet 1
2048 EXPECT_EQ(1u, last_packet);
2049 SendStreamDataToPeer(3, "foo", 0, !kFin, &last_packet); // Packet 2
2050 EXPECT_EQ(2u, last_packet);
2051 SendAckPacketToPeer(); // Packet 3
2052 SendStreamDataToPeer(5, "foo", 0, !kFin, &last_packet); // Packet 4
2053 EXPECT_EQ(4u, last_packet);
2054 SendStreamDataToPeer(1, "foo", 3, !kFin, &last_packet); // Packet 5
2055 EXPECT_EQ(5u, last_packet);
2056 SendStreamDataToPeer(3, "foo", 3, !kFin, &last_packet); // Packet 6
2057 EXPECT_EQ(6u, last_packet);
2059 // Client will ack packets 1, 2, [!3], 4, 5.
2060 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
2061 QuicAckFrame frame1 = InitAckFrame(5, 0);
2062 NackPacket(3, &frame1);
2063 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
2064 ProcessAckPacket(&frame1);
2066 // Now the client implicitly acks 3, and explicitly acks 6.
2067 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
2068 QuicAckFrame frame2 = InitAckFrame(6, 0);
2069 ProcessAckPacket(&frame2);
2072 TEST_P(QuicConnectionTest, DontLatchUnackedPacket) {
2073 SendStreamDataToPeer(1, "foo", 0, !kFin, NULL); // Packet 1;
2074 // From now on, we send acks, so the send algorithm won't mark them pending.
2075 ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
2076 .WillByDefault(Return(false));
2077 SendAckPacketToPeer(); // Packet 2
2079 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
2080 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
2081 QuicAckFrame frame = InitAckFrame(1, 0);
2082 ProcessAckPacket(&frame);
2084 // Verify that our internal state has least-unacked as 2, because we're still
2085 // waiting for a potential ack for 2.
2086 EXPECT_EQ(2u, outgoing_ack()->sent_info.least_unacked);
2088 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
2089 frame = InitAckFrame(2, 0);
2090 ProcessAckPacket(&frame);
2091 EXPECT_EQ(3u, outgoing_ack()->sent_info.least_unacked);
2093 // When we send an ack, we make sure our least-unacked makes sense. In this
2094 // case since we're not waiting on an ack for 2 and all packets are acked, we
2095 // set it to 3.
2096 SendAckPacketToPeer(); // Packet 3
2097 // Least_unacked remains at 3 until another ack is received.
2098 EXPECT_EQ(3u, outgoing_ack()->sent_info.least_unacked);
2099 // Check that the outgoing ack had its sequence number as least_unacked.
2100 EXPECT_EQ(3u, least_unacked());
2102 // Ack the ack, which updates the rtt and raises the least unacked.
2103 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
2104 frame = InitAckFrame(3, 0);
2105 ProcessAckPacket(&frame);
2107 ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
2108 .WillByDefault(Return(true));
2109 SendStreamDataToPeer(1, "bar", 3, false, NULL); // Packet 4
2110 EXPECT_EQ(4u, outgoing_ack()->sent_info.least_unacked);
2111 ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
2112 .WillByDefault(Return(false));
2113 SendAckPacketToPeer(); // Packet 5
2114 EXPECT_EQ(4u, least_unacked());
2116 // Send two data packets at the end, and ensure if the last one is acked,
2117 // the least unacked is raised above the ack packets.
2118 ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
2119 .WillByDefault(Return(true));
2120 SendStreamDataToPeer(1, "bar", 6, false, NULL); // Packet 6
2121 SendStreamDataToPeer(1, "bar", 9, false, NULL); // Packet 7
2123 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
2124 frame = InitAckFrame(7, 0);
2125 NackPacket(5, &frame);
2126 NackPacket(6, &frame);
2127 ProcessAckPacket(&frame);
2129 EXPECT_EQ(6u, outgoing_ack()->sent_info.least_unacked);
2132 TEST_P(QuicConnectionTest, ReviveMissingPacketAfterFecPacket) {
2133 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
2135 // Don't send missing packet 1.
2136 ProcessFecPacket(2, 1, true, !kEntropyFlag, NULL);
2137 // Entropy flag should be false, so entropy should be 0.
2138 EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2));
2141 TEST_P(QuicConnectionTest, ReviveMissingPacketWithVaryingSeqNumLengths) {
2142 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
2144 // Set up a debug visitor to the connection.
2145 scoped_ptr<FecQuicConnectionDebugVisitor>
2146 fec_visitor(new FecQuicConnectionDebugVisitor);
2147 connection_.set_debug_visitor(fec_visitor.get());
2149 QuicPacketSequenceNumber fec_packet = 0;
2150 QuicSequenceNumberLength lengths[] = {PACKET_6BYTE_SEQUENCE_NUMBER,
2151 PACKET_4BYTE_SEQUENCE_NUMBER,
2152 PACKET_2BYTE_SEQUENCE_NUMBER,
2153 PACKET_1BYTE_SEQUENCE_NUMBER};
2154 // For each sequence number length size, revive a packet and check sequence
2155 // number length in the revived packet.
2156 for (size_t i = 0; i < arraysize(lengths); ++i) {
2157 // Set sequence_number_length_ (for data and FEC packets).
2158 sequence_number_length_ = lengths[i];
2159 fec_packet += 2;
2160 // Don't send missing packet, but send fec packet right after it.
2161 ProcessFecPacket(fec_packet, fec_packet - 1, true, !kEntropyFlag, NULL);
2162 // Sequence number length in the revived header should be the same as
2163 // in the original data/fec packet headers.
2164 EXPECT_EQ(sequence_number_length_, fec_visitor->revived_header().
2165 public_header.sequence_number_length);
2169 TEST_P(QuicConnectionTest, ReviveMissingPacketWithVaryingConnectionIdLengths) {
2170 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
2172 // Set up a debug visitor to the connection.
2173 scoped_ptr<FecQuicConnectionDebugVisitor>
2174 fec_visitor(new FecQuicConnectionDebugVisitor);
2175 connection_.set_debug_visitor(fec_visitor.get());
2177 QuicPacketSequenceNumber fec_packet = 0;
2178 QuicConnectionIdLength lengths[] = {PACKET_8BYTE_CONNECTION_ID,
2179 PACKET_4BYTE_CONNECTION_ID,
2180 PACKET_1BYTE_CONNECTION_ID,
2181 PACKET_0BYTE_CONNECTION_ID};
2182 // For each connection id length size, revive a packet and check connection
2183 // id length in the revived packet.
2184 for (size_t i = 0; i < arraysize(lengths); ++i) {
2185 // Set connection id length (for data and FEC packets).
2186 connection_id_length_ = lengths[i];
2187 fec_packet += 2;
2188 // Don't send missing packet, but send fec packet right after it.
2189 ProcessFecPacket(fec_packet, fec_packet - 1, true, !kEntropyFlag, NULL);
2190 // Connection id length in the revived header should be the same as
2191 // in the original data/fec packet headers.
2192 EXPECT_EQ(connection_id_length_,
2193 fec_visitor->revived_header().public_header.connection_id_length);
2197 TEST_P(QuicConnectionTest, ReviveMissingPacketAfterDataPacketThenFecPacket) {
2198 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
2200 ProcessFecProtectedPacket(1, false, kEntropyFlag);
2201 // Don't send missing packet 2.
2202 ProcessFecPacket(3, 1, true, !kEntropyFlag, NULL);
2203 // Entropy flag should be true, so entropy should not be 0.
2204 EXPECT_NE(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2));
2207 TEST_P(QuicConnectionTest, ReviveMissingPacketAfterDataPacketsThenFecPacket) {
2208 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
2210 ProcessFecProtectedPacket(1, false, !kEntropyFlag);
2211 // Don't send missing packet 2.
2212 ProcessFecProtectedPacket(3, false, !kEntropyFlag);
2213 ProcessFecPacket(4, 1, true, kEntropyFlag, NULL);
2214 // Ensure QUIC no longer revives entropy for lost packets.
2215 EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2));
2216 EXPECT_NE(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 4));
2219 TEST_P(QuicConnectionTest, ReviveMissingPacketAfterDataPacket) {
2220 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
2222 // Don't send missing packet 1.
2223 ProcessFecPacket(3, 1, false, !kEntropyFlag, NULL);
2224 // Out of order.
2225 ProcessFecProtectedPacket(2, true, !kEntropyFlag);
2226 // Entropy flag should be false, so entropy should be 0.
2227 EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2));
2230 TEST_P(QuicConnectionTest, ReviveMissingPacketAfterDataPackets) {
2231 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
2233 ProcessFecProtectedPacket(1, false, !kEntropyFlag);
2234 // Don't send missing packet 2.
2235 ProcessFecPacket(6, 1, false, kEntropyFlag, NULL);
2236 ProcessFecProtectedPacket(3, false, kEntropyFlag);
2237 ProcessFecProtectedPacket(4, false, kEntropyFlag);
2238 ProcessFecProtectedPacket(5, true, !kEntropyFlag);
2239 // Ensure entropy is not revived for the missing packet.
2240 EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2));
2241 EXPECT_NE(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 3));
2244 TEST_P(QuicConnectionTest, TLP) {
2245 QuicSentPacketManagerPeer::SetMaxTailLossProbes(
2246 QuicConnectionPeer::GetSentPacketManager(&connection_), 1);
2248 SendStreamDataToPeer(3, "foo", 0, !kFin, NULL);
2249 EXPECT_EQ(1u, outgoing_ack()->sent_info.least_unacked);
2250 QuicTime retransmission_time =
2251 connection_.GetRetransmissionAlarm()->deadline();
2252 EXPECT_NE(QuicTime::Zero(), retransmission_time);
2254 EXPECT_EQ(1u, writer_->header().packet_sequence_number);
2255 // Simulate the retransmission alarm firing and sending a tlp,
2256 // so send algorithm's OnRetransmissionTimeout is not called.
2257 clock_.AdvanceTime(retransmission_time.Subtract(clock_.Now()));
2258 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 2u, _, _));
2259 connection_.GetRetransmissionAlarm()->Fire();
2260 EXPECT_EQ(2u, writer_->header().packet_sequence_number);
2261 // We do not raise the high water mark yet.
2262 EXPECT_EQ(1u, outgoing_ack()->sent_info.least_unacked);
2265 TEST_P(QuicConnectionTest, RTO) {
2266 QuicTime default_retransmission_time = clock_.ApproximateNow().Add(
2267 DefaultRetransmissionTime());
2268 SendStreamDataToPeer(3, "foo", 0, !kFin, NULL);
2269 EXPECT_EQ(1u, outgoing_ack()->sent_info.least_unacked);
2271 EXPECT_EQ(1u, writer_->header().packet_sequence_number);
2272 EXPECT_EQ(default_retransmission_time,
2273 connection_.GetRetransmissionAlarm()->deadline());
2274 // Simulate the retransmission alarm firing.
2275 clock_.AdvanceTime(DefaultRetransmissionTime());
2276 EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true));
2277 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 2u, _, _));
2278 connection_.GetRetransmissionAlarm()->Fire();
2279 EXPECT_EQ(2u, writer_->header().packet_sequence_number);
2280 // We do not raise the high water mark yet.
2281 EXPECT_EQ(1u, outgoing_ack()->sent_info.least_unacked);
2284 TEST_P(QuicConnectionTest, RTOWithSameEncryptionLevel) {
2285 QuicTime default_retransmission_time = clock_.ApproximateNow().Add(
2286 DefaultRetransmissionTime());
2287 use_tagging_decrypter();
2289 // A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at
2290 // the end of the packet. We can test this to check which encrypter was used.
2291 connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01));
2292 SendStreamDataToPeer(3, "foo", 0, !kFin, NULL);
2293 EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet());
2295 connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02));
2296 connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
2297 SendStreamDataToPeer(3, "foo", 0, !kFin, NULL);
2298 EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet());
2300 EXPECT_EQ(default_retransmission_time,
2301 connection_.GetRetransmissionAlarm()->deadline());
2303 InSequence s;
2304 EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true));
2305 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 3, _, _));
2306 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 4, _, _));
2309 // Simulate the retransmission alarm firing.
2310 clock_.AdvanceTime(DefaultRetransmissionTime());
2311 connection_.GetRetransmissionAlarm()->Fire();
2313 // Packet should have been sent with ENCRYPTION_NONE.
2314 EXPECT_EQ(0x01010101u, writer_->final_bytes_of_previous_packet());
2316 // Packet should have been sent with ENCRYPTION_INITIAL.
2317 EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet());
2320 TEST_P(QuicConnectionTest, SendHandshakeMessages) {
2321 use_tagging_decrypter();
2322 // A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at
2323 // the end of the packet. We can test this to check which encrypter was used.
2324 connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01));
2326 // Attempt to send a handshake message and have the socket block.
2327 EXPECT_CALL(*send_algorithm_,
2328 TimeUntilSend(_, _, _)).WillRepeatedly(
2329 testing::Return(QuicTime::Delta::Zero()));
2330 BlockOnNextWrite();
2331 connection_.SendStreamDataWithString(1, "foo", 0, !kFin, NULL);
2332 // The packet should be serialized, but not queued.
2333 EXPECT_EQ(1u, connection_.NumQueuedPackets());
2335 // Switch to the new encrypter.
2336 connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02));
2337 connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
2339 // Now become writeable and flush the packets.
2340 writer_->SetWritable();
2341 EXPECT_CALL(visitor_, OnCanWrite());
2342 connection_.OnCanWrite();
2343 EXPECT_EQ(0u, connection_.NumQueuedPackets());
2345 // Verify that the handshake packet went out at the null encryption.
2346 EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet());
2349 TEST_P(QuicConnectionTest,
2350 DropRetransmitsForNullEncryptedPacketAfterForwardSecure) {
2351 use_tagging_decrypter();
2352 connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01));
2353 QuicPacketSequenceNumber sequence_number;
2354 SendStreamDataToPeer(3, "foo", 0, !kFin, &sequence_number);
2356 // Simulate the retransmission alarm firing and the socket blocking.
2357 BlockOnNextWrite();
2358 EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true));
2359 clock_.AdvanceTime(DefaultRetransmissionTime());
2360 connection_.GetRetransmissionAlarm()->Fire();
2362 // Go forward secure.
2363 connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
2364 new TaggingEncrypter(0x02));
2365 connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
2366 connection_.NeuterUnencryptedPackets();
2368 EXPECT_EQ(QuicTime::Zero(),
2369 connection_.GetRetransmissionAlarm()->deadline());
2370 // Unblock the socket and ensure that no packets are sent.
2371 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
2372 writer_->SetWritable();
2373 connection_.OnCanWrite();
2376 TEST_P(QuicConnectionTest, RetransmitPacketsWithInitialEncryption) {
2377 use_tagging_decrypter();
2378 connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01));
2379 connection_.SetDefaultEncryptionLevel(ENCRYPTION_NONE);
2381 SendStreamDataToPeer(1, "foo", 0, !kFin, NULL);
2383 connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02));
2384 connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
2386 SendStreamDataToPeer(2, "bar", 0, !kFin, NULL);
2387 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
2389 connection_.RetransmitUnackedPackets(INITIAL_ENCRYPTION_ONLY);
2392 TEST_P(QuicConnectionTest, BufferNonDecryptablePackets) {
2393 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
2394 use_tagging_decrypter();
2396 const uint8 tag = 0x07;
2397 framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag));
2399 // Process an encrypted packet which can not yet be decrypted
2400 // which should result in the packet being buffered.
2401 ProcessDataPacketAtLevel(1, 0, kEntropyFlag, ENCRYPTION_INITIAL);
2403 // Transition to the new encryption state and process another
2404 // encrypted packet which should result in the original packet being
2405 // processed.
2406 connection_.SetDecrypter(new StrictTaggingDecrypter(tag),
2407 ENCRYPTION_INITIAL);
2408 connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
2409 connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag));
2410 EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(2);
2411 ProcessDataPacketAtLevel(2, 0, kEntropyFlag, ENCRYPTION_INITIAL);
2413 // Finally, process a third packet and note that we do not
2414 // reprocess the buffered packet.
2415 EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1);
2416 ProcessDataPacketAtLevel(3, 0, kEntropyFlag, ENCRYPTION_INITIAL);
2419 TEST_P(QuicConnectionTest, TestRetransmitOrder) {
2420 QuicByteCount first_packet_size;
2421 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).WillOnce(
2422 DoAll(SaveArg<3>(&first_packet_size), Return(true)));
2424 connection_.SendStreamDataWithString(3, "first_packet", 0, !kFin, NULL);
2425 QuicByteCount second_packet_size;
2426 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).WillOnce(
2427 DoAll(SaveArg<3>(&second_packet_size), Return(true)));
2428 connection_.SendStreamDataWithString(3, "second_packet", 12, !kFin, NULL);
2429 EXPECT_NE(first_packet_size, second_packet_size);
2430 // Advance the clock by huge time to make sure packets will be retransmitted.
2431 clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10));
2432 EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true));
2434 InSequence s;
2435 EXPECT_CALL(*send_algorithm_,
2436 OnPacketSent(_, _, _, first_packet_size, _));
2437 EXPECT_CALL(*send_algorithm_,
2438 OnPacketSent(_, _, _, second_packet_size, _));
2440 connection_.GetRetransmissionAlarm()->Fire();
2442 // Advance again and expect the packets to be sent again in the same order.
2443 clock_.AdvanceTime(QuicTime::Delta::FromSeconds(20));
2444 EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true));
2446 InSequence s;
2447 EXPECT_CALL(*send_algorithm_,
2448 OnPacketSent(_, _, _, first_packet_size, _));
2449 EXPECT_CALL(*send_algorithm_,
2450 OnPacketSent(_, _, _, second_packet_size, _));
2452 connection_.GetRetransmissionAlarm()->Fire();
2455 TEST_P(QuicConnectionTest, RetransmissionCountCalculation) {
2456 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
2457 QuicPacketSequenceNumber original_sequence_number;
2458 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
2459 .WillOnce(DoAll(SaveArg<2>(&original_sequence_number), Return(true)));
2460 connection_.SendStreamDataWithString(3, "foo", 0, !kFin, NULL);
2462 EXPECT_TRUE(QuicConnectionPeer::IsSavedForRetransmission(
2463 &connection_, original_sequence_number));
2464 EXPECT_FALSE(QuicConnectionPeer::IsRetransmission(
2465 &connection_, original_sequence_number));
2466 // Force retransmission due to RTO.
2467 clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10));
2468 EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true));
2469 QuicPacketSequenceNumber rto_sequence_number;
2470 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
2471 .WillOnce(DoAll(SaveArg<2>(&rto_sequence_number), Return(true)));
2472 connection_.GetRetransmissionAlarm()->Fire();
2473 EXPECT_FALSE(QuicConnectionPeer::IsSavedForRetransmission(
2474 &connection_, original_sequence_number));
2475 ASSERT_TRUE(QuicConnectionPeer::IsSavedForRetransmission(
2476 &connection_, rto_sequence_number));
2477 EXPECT_TRUE(QuicConnectionPeer::IsRetransmission(
2478 &connection_, rto_sequence_number));
2479 // Once by explicit nack.
2480 SequenceNumberSet lost_packets;
2481 lost_packets.insert(rto_sequence_number);
2482 EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
2483 .WillOnce(Return(lost_packets));
2484 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
2485 QuicPacketSequenceNumber nack_sequence_number = 0;
2486 // Ack packets might generate some other packets, which are not
2487 // retransmissions. (More ack packets).
2488 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
2489 .Times(AnyNumber());
2490 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
2491 .WillOnce(DoAll(SaveArg<2>(&nack_sequence_number), Return(true)));
2492 QuicAckFrame ack = InitAckFrame(rto_sequence_number, 0);
2493 // Nack the retransmitted packet.
2494 NackPacket(original_sequence_number, &ack);
2495 NackPacket(rto_sequence_number, &ack);
2496 ProcessAckPacket(&ack);
2498 ASSERT_NE(0u, nack_sequence_number);
2499 EXPECT_FALSE(QuicConnectionPeer::IsSavedForRetransmission(
2500 &connection_, rto_sequence_number));
2501 ASSERT_TRUE(QuicConnectionPeer::IsSavedForRetransmission(
2502 &connection_, nack_sequence_number));
2503 EXPECT_TRUE(QuicConnectionPeer::IsRetransmission(
2504 &connection_, nack_sequence_number));
2507 TEST_P(QuicConnectionTest, SetRTOAfterWritingToSocket) {
2508 BlockOnNextWrite();
2509 connection_.SendStreamDataWithString(1, "foo", 0, !kFin, NULL);
2510 // Make sure that RTO is not started when the packet is queued.
2511 EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
2513 // Test that RTO is started once we write to the socket.
2514 writer_->SetWritable();
2515 connection_.OnCanWrite();
2516 EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
2519 TEST_P(QuicConnectionTest, DelayRTOWithAckReceipt) {
2520 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
2521 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
2522 .Times(2);
2523 connection_.SendStreamDataWithString(2, "foo", 0, !kFin, NULL);
2524 connection_.SendStreamDataWithString(3, "bar", 0, !kFin, NULL);
2525 QuicAlarm* retransmission_alarm = connection_.GetRetransmissionAlarm();
2526 EXPECT_TRUE(retransmission_alarm->IsSet());
2527 EXPECT_EQ(clock_.Now().Add(DefaultRetransmissionTime()),
2528 retransmission_alarm->deadline());
2530 // Advance the time right before the RTO, then receive an ack for the first
2531 // packet to delay the RTO.
2532 clock_.AdvanceTime(DefaultRetransmissionTime());
2533 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
2534 QuicAckFrame ack = InitAckFrame(1, 0);
2535 ProcessAckPacket(&ack);
2536 EXPECT_TRUE(retransmission_alarm->IsSet());
2537 EXPECT_GT(retransmission_alarm->deadline(), clock_.Now());
2539 // Move forward past the original RTO and ensure the RTO is still pending.
2540 clock_.AdvanceTime(DefaultRetransmissionTime().Multiply(2));
2542 // Ensure the second packet gets retransmitted when it finally fires.
2543 EXPECT_TRUE(retransmission_alarm->IsSet());
2544 EXPECT_LT(retransmission_alarm->deadline(), clock_.ApproximateNow());
2545 EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true));
2546 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
2547 // Manually cancel the alarm to simulate a real test.
2548 connection_.GetRetransmissionAlarm()->Fire();
2550 // The new retransmitted sequence number should set the RTO to a larger value
2551 // than previously.
2552 EXPECT_TRUE(retransmission_alarm->IsSet());
2553 QuicTime next_rto_time = retransmission_alarm->deadline();
2554 QuicTime expected_rto_time =
2555 connection_.sent_packet_manager().GetRetransmissionTime();
2556 EXPECT_EQ(next_rto_time, expected_rto_time);
2559 TEST_P(QuicConnectionTest, TestQueued) {
2560 EXPECT_EQ(0u, connection_.NumQueuedPackets());
2561 BlockOnNextWrite();
2562 connection_.SendStreamDataWithString(1, "foo", 0, !kFin, NULL);
2563 EXPECT_EQ(1u, connection_.NumQueuedPackets());
2565 // Unblock the writes and actually send.
2566 writer_->SetWritable();
2567 connection_.OnCanWrite();
2568 EXPECT_EQ(0u, connection_.NumQueuedPackets());
2571 TEST_P(QuicConnectionTest, CloseFecGroup) {
2572 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
2573 // Don't send missing packet 1.
2574 // Don't send missing packet 2.
2575 ProcessFecProtectedPacket(3, false, !kEntropyFlag);
2576 // Don't send missing FEC packet 3.
2577 ASSERT_EQ(1u, connection_.NumFecGroups());
2579 // Now send non-fec protected ack packet and close the group.
2580 peer_creator_.set_sequence_number(4);
2581 if (version() > QUIC_VERSION_15) {
2582 QuicStopWaitingFrame frame = InitStopWaitingFrame(5);
2583 ProcessStopWaitingPacket(&frame);
2584 } else {
2585 QuicAckFrame frame = InitAckFrame(0, 5);
2586 ProcessAckPacket(&frame);
2588 ASSERT_EQ(0u, connection_.NumFecGroups());
2591 TEST_P(QuicConnectionTest, NoQuicCongestionFeedbackFrame) {
2592 SendAckPacketToPeer();
2593 EXPECT_TRUE(writer_->feedback_frames().empty());
2596 TEST_P(QuicConnectionTest, WithQuicCongestionFeedbackFrame) {
2597 QuicCongestionFeedbackFrame info;
2598 info.type = kFixRate;
2599 info.fix_rate.bitrate = QuicBandwidth::FromBytesPerSecond(123);
2600 SetFeedback(&info);
2602 SendAckPacketToPeer();
2603 ASSERT_FALSE(writer_->feedback_frames().empty());
2604 ASSERT_EQ(kFixRate, writer_->feedback_frames()[0].type);
2605 ASSERT_EQ(info.fix_rate.bitrate,
2606 writer_->feedback_frames()[0].fix_rate.bitrate);
2609 TEST_P(QuicConnectionTest, UpdateQuicCongestionFeedbackFrame) {
2610 SendAckPacketToPeer();
2611 EXPECT_CALL(*receive_algorithm_, RecordIncomingPacket(_, _, _));
2612 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
2613 ProcessPacket(1);
2616 TEST_P(QuicConnectionTest, DontUpdateQuicCongestionFeedbackFrameForRevived) {
2617 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
2618 SendAckPacketToPeer();
2619 // Process an FEC packet, and revive the missing data packet
2620 // but only contact the receive_algorithm once.
2621 EXPECT_CALL(*receive_algorithm_, RecordIncomingPacket(_, _, _));
2622 ProcessFecPacket(2, 1, true, !kEntropyFlag, NULL);
2625 TEST_P(QuicConnectionTest, InitialTimeout) {
2626 EXPECT_TRUE(connection_.connected());
2627 EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_CONNECTION_TIMED_OUT, false));
2628 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
2630 QuicTime default_timeout = clock_.ApproximateNow().Add(
2631 QuicTime::Delta::FromSeconds(kDefaultInitialTimeoutSecs));
2632 EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline());
2634 // Simulate the timeout alarm firing.
2635 clock_.AdvanceTime(
2636 QuicTime::Delta::FromSeconds(kDefaultInitialTimeoutSecs));
2637 connection_.GetTimeoutAlarm()->Fire();
2638 EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
2639 EXPECT_FALSE(connection_.connected());
2641 EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
2642 EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
2643 EXPECT_FALSE(connection_.GetResumeWritesAlarm()->IsSet());
2644 EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
2645 EXPECT_FALSE(connection_.GetSendAlarm()->IsSet());
2646 EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
2649 TEST_P(QuicConnectionTest, PingAfterSend) {
2650 EXPECT_TRUE(connection_.connected());
2651 EXPECT_CALL(visitor_, HasOpenDataStreams()).WillRepeatedly(Return(true));
2652 EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
2654 // Advance to 5ms, and send a packet to the peer, which will set
2655 // the ping alarm.
2656 clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
2657 EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
2658 SendStreamDataToPeer(1, "GET /", 0, kFin, NULL);
2659 EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
2660 EXPECT_EQ(clock_.ApproximateNow().Add(QuicTime::Delta::FromSeconds(15)),
2661 connection_.GetPingAlarm()->deadline());
2663 // Now recevie and ACK of the previous packet, which will move the
2664 // ping alarm forward.
2665 clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
2666 QuicAckFrame frame = InitAckFrame(1, 0);
2667 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
2668 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
2669 ProcessAckPacket(&frame);
2670 EXPECT_TRUE(connection_.GetPingAlarm()->IsSet());
2671 EXPECT_EQ(clock_.ApproximateNow().Add(QuicTime::Delta::FromSeconds(15)),
2672 connection_.GetPingAlarm()->deadline());
2674 writer_->Reset();
2675 clock_.AdvanceTime(QuicTime::Delta::FromSeconds(15));
2676 connection_.GetPingAlarm()->Fire();
2677 EXPECT_EQ(1u, writer_->frame_count());
2678 if (version() >= QUIC_VERSION_18) {
2679 ASSERT_EQ(1u, writer_->ping_frames().size());
2680 } else {
2681 ASSERT_EQ(1u, writer_->stream_frames().size());
2682 EXPECT_EQ(kCryptoStreamId, writer_->stream_frames()[0].stream_id);
2683 EXPECT_EQ(0u, writer_->stream_frames()[0].offset);
2685 writer_->Reset();
2687 EXPECT_CALL(visitor_, HasOpenDataStreams()).WillRepeatedly(Return(false));
2688 clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
2689 SendAckPacketToPeer();
2691 EXPECT_FALSE(connection_.GetPingAlarm()->IsSet());
2694 TEST_P(QuicConnectionTest, TimeoutAfterSend) {
2695 EXPECT_TRUE(connection_.connected());
2697 QuicTime default_timeout = clock_.ApproximateNow().Add(
2698 QuicTime::Delta::FromSeconds(kDefaultInitialTimeoutSecs));
2700 // When we send a packet, the timeout will change to 5000 +
2701 // kDefaultInitialTimeoutSecs.
2702 clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
2704 // Send an ack so we don't set the retransmission alarm.
2705 SendAckPacketToPeer();
2706 EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline());
2708 // The original alarm will fire. We should not time out because we had a
2709 // network event at t=5000. The alarm will reregister.
2710 clock_.AdvanceTime(QuicTime::Delta::FromMicroseconds(
2711 kDefaultInitialTimeoutSecs * 1000000 - 5000));
2712 EXPECT_EQ(default_timeout, clock_.ApproximateNow());
2713 connection_.GetTimeoutAlarm()->Fire();
2714 EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet());
2715 EXPECT_TRUE(connection_.connected());
2716 EXPECT_EQ(default_timeout.Add(QuicTime::Delta::FromMilliseconds(5)),
2717 connection_.GetTimeoutAlarm()->deadline());
2719 // This time, we should time out.
2720 EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_CONNECTION_TIMED_OUT, false));
2721 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
2722 clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
2723 EXPECT_EQ(default_timeout.Add(QuicTime::Delta::FromMilliseconds(5)),
2724 clock_.ApproximateNow());
2725 connection_.GetTimeoutAlarm()->Fire();
2726 EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet());
2727 EXPECT_FALSE(connection_.connected());
2730 TEST_P(QuicConnectionTest, SendScheduler) {
2731 // Test that if we send a packet without delay, it is not queued.
2732 QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag);
2733 EXPECT_CALL(*send_algorithm_,
2734 TimeUntilSend(_, _, _)).WillOnce(
2735 testing::Return(QuicTime::Delta::Zero()));
2736 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
2737 connection_.SendPacket(
2738 ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA);
2739 EXPECT_EQ(0u, connection_.NumQueuedPackets());
2742 TEST_P(QuicConnectionTest, SendSchedulerDelay) {
2743 // Test that if we send a packet with a delay, it ends up queued.
2744 QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag);
2745 EXPECT_CALL(*send_algorithm_,
2746 TimeUntilSend(_, _, _)).WillOnce(
2747 testing::Return(QuicTime::Delta::FromMicroseconds(1)));
2748 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 1, _, _)).Times(0);
2749 connection_.SendPacket(
2750 ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA);
2751 EXPECT_EQ(1u, connection_.NumQueuedPackets());
2754 TEST_P(QuicConnectionTest, SendSchedulerEAGAIN) {
2755 QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag);
2756 BlockOnNextWrite();
2757 EXPECT_CALL(*send_algorithm_,
2758 TimeUntilSend(_, _, _)).WillOnce(
2759 testing::Return(QuicTime::Delta::Zero()));
2760 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 1, _, _)).Times(0);
2761 connection_.SendPacket(
2762 ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA);
2763 EXPECT_EQ(1u, connection_.NumQueuedPackets());
2766 TEST_P(QuicConnectionTest, SendSchedulerDelayThenSend) {
2767 // Test that if we send a packet with a delay, it ends up queued.
2768 QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag);
2769 EXPECT_CALL(*send_algorithm_,
2770 TimeUntilSend(_, _, _)).WillOnce(
2771 testing::Return(QuicTime::Delta::FromMicroseconds(1)));
2772 connection_.SendPacket(
2773 ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA);
2774 EXPECT_EQ(1u, connection_.NumQueuedPackets());
2776 // Advance the clock to fire the alarm, and configure the scheduler
2777 // to permit the packet to be sent.
2778 EXPECT_CALL(*send_algorithm_,
2779 TimeUntilSend(_, _, _)).WillRepeatedly(
2780 testing::Return(QuicTime::Delta::Zero()));
2781 clock_.AdvanceTime(QuicTime::Delta::FromMicroseconds(1));
2782 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
2783 connection_.GetSendAlarm()->Fire();
2784 EXPECT_EQ(0u, connection_.NumQueuedPackets());
2787 TEST_P(QuicConnectionTest, SendSchedulerDelayThenRetransmit) {
2788 CongestionUnblockWrites();
2789 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 1, _, _));
2790 connection_.SendStreamDataWithString(3, "foo", 0, !kFin, NULL);
2791 EXPECT_EQ(0u, connection_.NumQueuedPackets());
2792 // Advance the time for retransmission of lost packet.
2793 clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(501));
2794 // Test that if we send a retransmit with a delay, it ends up queued in the
2795 // sent packet manager, but not yet serialized.
2796 EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true));
2797 CongestionBlockWrites();
2798 connection_.GetRetransmissionAlarm()->Fire();
2799 EXPECT_EQ(0u, connection_.NumQueuedPackets());
2801 // Advance the clock to fire the alarm, and configure the scheduler
2802 // to permit the packet to be sent.
2803 CongestionUnblockWrites();
2805 // Ensure the scheduler is notified this is a retransmit.
2806 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
2807 clock_.AdvanceTime(QuicTime::Delta::FromMicroseconds(1));
2808 connection_.GetSendAlarm()->Fire();
2809 EXPECT_EQ(0u, connection_.NumQueuedPackets());
2812 TEST_P(QuicConnectionTest, SendSchedulerDelayAndQueue) {
2813 QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag);
2814 EXPECT_CALL(*send_algorithm_,
2815 TimeUntilSend(_, _, _)).WillOnce(
2816 testing::Return(QuicTime::Delta::FromMicroseconds(1)));
2817 connection_.SendPacket(
2818 ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA);
2819 EXPECT_EQ(1u, connection_.NumQueuedPackets());
2821 // Attempt to send another packet and make sure that it gets queued.
2822 packet = ConstructDataPacket(2, 0, !kEntropyFlag);
2823 connection_.SendPacket(
2824 ENCRYPTION_NONE, 2, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA);
2825 EXPECT_EQ(2u, connection_.NumQueuedPackets());
2828 TEST_P(QuicConnectionTest, SendSchedulerDelayThenAckAndSend) {
2829 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
2830 QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag);
2831 EXPECT_CALL(*send_algorithm_,
2832 TimeUntilSend(_, _, _)).WillOnce(
2833 testing::Return(QuicTime::Delta::FromMicroseconds(10)));
2834 connection_.SendPacket(
2835 ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA);
2836 EXPECT_EQ(1u, connection_.NumQueuedPackets());
2838 // Now send non-retransmitting information, that we're not going to
2839 // retransmit 3. The far end should stop waiting for it.
2840 QuicAckFrame frame = InitAckFrame(0, 1);
2841 EXPECT_CALL(*send_algorithm_,
2842 TimeUntilSend(_, _, _)).WillRepeatedly(
2843 testing::Return(QuicTime::Delta::Zero()));
2844 EXPECT_CALL(*send_algorithm_,
2845 OnPacketSent(_, _, _, _, _));
2846 ProcessAckPacket(&frame);
2848 EXPECT_EQ(0u, connection_.NumQueuedPackets());
2849 // Ensure alarm is not set
2850 EXPECT_FALSE(connection_.GetSendAlarm()->IsSet());
2853 TEST_P(QuicConnectionTest, SendSchedulerDelayThenAckAndHold) {
2854 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
2855 QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag);
2856 EXPECT_CALL(*send_algorithm_,
2857 TimeUntilSend(_, _, _)).WillOnce(
2858 testing::Return(QuicTime::Delta::FromMicroseconds(10)));
2859 connection_.SendPacket(
2860 ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA);
2861 EXPECT_EQ(1u, connection_.NumQueuedPackets());
2863 // Now send non-retransmitting information, that we're not going to
2864 // retransmit 3. The far end should stop waiting for it.
2865 QuicAckFrame frame = InitAckFrame(0, 1);
2866 EXPECT_CALL(*send_algorithm_,
2867 TimeUntilSend(_, _, _)).WillOnce(
2868 testing::Return(QuicTime::Delta::FromMicroseconds(1)));
2869 ProcessAckPacket(&frame);
2871 EXPECT_EQ(1u, connection_.NumQueuedPackets());
2874 TEST_P(QuicConnectionTest, SendSchedulerDelayThenOnCanWrite) {
2875 // TODO(ianswett): This test is unrealistic, because we would not serialize
2876 // new data if the send algorithm said not to.
2877 QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag);
2878 CongestionBlockWrites();
2879 connection_.SendPacket(
2880 ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA);
2881 EXPECT_EQ(1u, connection_.NumQueuedPackets());
2883 // OnCanWrite should send the packet, because it won't consult the send
2884 // algorithm for queued packets.
2885 connection_.OnCanWrite();
2886 EXPECT_EQ(0u, connection_.NumQueuedPackets());
2889 TEST_P(QuicConnectionTest, TestQueueLimitsOnSendStreamData) {
2890 // All packets carry version info till version is negotiated.
2891 size_t payload_length;
2892 size_t length = GetPacketLengthForOneStream(
2893 connection_.version(), kIncludeVersion, PACKET_1BYTE_SEQUENCE_NUMBER,
2894 NOT_IN_FEC_GROUP, &payload_length);
2895 QuicConnectionPeer::GetPacketCreator(&connection_)->set_max_packet_length(
2896 length);
2898 // Queue the first packet.
2899 EXPECT_CALL(*send_algorithm_,
2900 TimeUntilSend(_, _, _)).WillOnce(
2901 testing::Return(QuicTime::Delta::FromMicroseconds(10)));
2902 const string payload(payload_length, 'a');
2903 EXPECT_EQ(0u,
2904 connection_.SendStreamDataWithString(3, payload, 0,
2905 !kFin, NULL).bytes_consumed);
2906 EXPECT_EQ(0u, connection_.NumQueuedPackets());
2909 TEST_P(QuicConnectionTest, LoopThroughSendingPackets) {
2910 // All packets carry version info till version is negotiated.
2911 size_t payload_length;
2912 // GetPacketLengthForOneStream() assumes a stream offset of 0 in determining
2913 // packet length. The size of the offset field in a stream frame is 0 for
2914 // offset 0, and 2 for non-zero offsets up through 16K. Increase
2915 // max_packet_length by 2 so that subsequent packets containing subsequent
2916 // stream frames with non-zero offets will fit within the packet length.
2917 size_t length = 2 + GetPacketLengthForOneStream(
2918 connection_.version(), kIncludeVersion, PACKET_1BYTE_SEQUENCE_NUMBER,
2919 NOT_IN_FEC_GROUP, &payload_length);
2920 QuicConnectionPeer::GetPacketCreator(&connection_)->set_max_packet_length(
2921 length);
2923 // Queue the first packet.
2924 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(7);
2925 // The first stream frame will have 2 fewer overhead bytes than the other six.
2926 const string payload(payload_length * 7 + 2, 'a');
2927 EXPECT_EQ(payload.size(),
2928 connection_.SendStreamDataWithString(1, payload, 0,
2929 !kFin, NULL).bytes_consumed);
2932 TEST_P(QuicConnectionTest, SendDelayedAck) {
2933 QuicTime ack_time = clock_.ApproximateNow().Add(DefaultDelayedAckTime());
2934 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
2935 EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
2936 const uint8 tag = 0x07;
2937 connection_.SetDecrypter(new StrictTaggingDecrypter(tag),
2938 ENCRYPTION_INITIAL);
2939 framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag));
2940 // Process a packet from the non-crypto stream.
2941 frame1_.stream_id = 3;
2943 // The same as ProcessPacket(1) except that ENCRYPTION_INITIAL is used
2944 // instead of ENCRYPTION_NONE.
2945 EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1);
2946 ProcessDataPacketAtLevel(1, 0, !kEntropyFlag, ENCRYPTION_INITIAL);
2948 // Check if delayed ack timer is running for the expected interval.
2949 EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
2950 EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
2951 // Simulate delayed ack alarm firing.
2952 connection_.GetAckAlarm()->Fire();
2953 // Check that ack is sent and that delayed ack alarm is reset.
2954 if (version() > QUIC_VERSION_15) {
2955 EXPECT_EQ(2u, writer_->frame_count());
2956 EXPECT_FALSE(writer_->stop_waiting_frames().empty());
2957 } else {
2958 EXPECT_EQ(1u, writer_->frame_count());
2960 EXPECT_FALSE(writer_->ack_frames().empty());
2961 EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
2964 TEST_P(QuicConnectionTest, SendEarlyDelayedAckForCrypto) {
2965 QuicTime ack_time = clock_.ApproximateNow();
2966 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
2967 EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
2968 // Process a packet from the crypto stream, which is frame1_'s default.
2969 ProcessPacket(1);
2970 // Check if delayed ack timer is running for the expected interval.
2971 EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
2972 EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline());
2973 // Simulate delayed ack alarm firing.
2974 connection_.GetAckAlarm()->Fire();
2975 // Check that ack is sent and that delayed ack alarm is reset.
2976 if (version() > QUIC_VERSION_15) {
2977 EXPECT_EQ(2u, writer_->frame_count());
2978 EXPECT_FALSE(writer_->stop_waiting_frames().empty());
2979 } else {
2980 EXPECT_EQ(1u, writer_->frame_count());
2982 EXPECT_FALSE(writer_->ack_frames().empty());
2983 EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
2986 TEST_P(QuicConnectionTest, SendDelayedAckOnSecondPacket) {
2987 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
2988 ProcessPacket(1);
2989 ProcessPacket(2);
2990 // Check that ack is sent and that delayed ack alarm is reset.
2991 if (version() > QUIC_VERSION_15) {
2992 EXPECT_EQ(2u, writer_->frame_count());
2993 EXPECT_FALSE(writer_->stop_waiting_frames().empty());
2994 } else {
2995 EXPECT_EQ(1u, writer_->frame_count());
2997 EXPECT_FALSE(writer_->ack_frames().empty());
2998 EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
3001 TEST_P(QuicConnectionTest, NoAckOnOldNacks) {
3002 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
3003 // Drop one packet, triggering a sequence of acks.
3004 ProcessPacket(2);
3005 size_t frames_per_ack = version() > QUIC_VERSION_15 ? 2 : 1;
3006 EXPECT_EQ(frames_per_ack, writer_->frame_count());
3007 EXPECT_FALSE(writer_->ack_frames().empty());
3008 writer_->Reset();
3009 ProcessPacket(3);
3010 EXPECT_EQ(frames_per_ack, writer_->frame_count());
3011 EXPECT_FALSE(writer_->ack_frames().empty());
3012 writer_->Reset();
3013 ProcessPacket(4);
3014 EXPECT_EQ(frames_per_ack, writer_->frame_count());
3015 EXPECT_FALSE(writer_->ack_frames().empty());
3016 writer_->Reset();
3017 ProcessPacket(5);
3018 EXPECT_EQ(frames_per_ack, writer_->frame_count());
3019 EXPECT_FALSE(writer_->ack_frames().empty());
3020 writer_->Reset();
3021 // Now only set the timer on the 6th packet, instead of sending another ack.
3022 ProcessPacket(6);
3023 EXPECT_EQ(0u, writer_->frame_count());
3024 EXPECT_TRUE(connection_.GetAckAlarm()->IsSet());
3027 TEST_P(QuicConnectionTest, SendDelayedAckOnOutgoingPacket) {
3028 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
3029 ProcessPacket(1);
3030 connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 0,
3031 !kFin, NULL);
3032 // Check that ack is bundled with outgoing data and that delayed ack
3033 // alarm is reset.
3034 if (version() > QUIC_VERSION_15) {
3035 EXPECT_EQ(3u, writer_->frame_count());
3036 EXPECT_FALSE(writer_->stop_waiting_frames().empty());
3037 } else {
3038 EXPECT_EQ(2u, writer_->frame_count());
3040 EXPECT_FALSE(writer_->ack_frames().empty());
3041 EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
3044 TEST_P(QuicConnectionTest, SendDelayedAckOnOutgoingCryptoPacket) {
3045 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
3046 ProcessPacket(1);
3047 connection_.SendStreamDataWithString(kCryptoStreamId, "foo", 0, !kFin, NULL);
3048 // Check that ack is bundled with outgoing crypto data.
3049 EXPECT_EQ(version() <= QUIC_VERSION_15 ? 2u : 3u, writer_->frame_count());
3050 EXPECT_FALSE(writer_->ack_frames().empty());
3051 EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
3054 TEST_P(QuicConnectionTest, BundleAckForSecondCHLO) {
3055 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
3056 EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
3057 EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(
3058 IgnoreResult(InvokeWithoutArgs(&connection_,
3059 &TestConnection::SendCryptoStreamData)));
3060 // Process a packet from the crypto stream, which is frame1_'s default.
3061 // Receiving the CHLO as packet 2 first will cause the connection to
3062 // immediately send an ack, due to the packet gap.
3063 ProcessPacket(2);
3064 // Check that ack is sent and that delayed ack alarm is reset.
3065 if (version() > QUIC_VERSION_15) {
3066 EXPECT_EQ(3u, writer_->frame_count());
3067 EXPECT_FALSE(writer_->stop_waiting_frames().empty());
3068 } else {
3069 EXPECT_EQ(2u, writer_->frame_count());
3071 EXPECT_EQ(1u, writer_->stream_frames().size());
3072 EXPECT_FALSE(writer_->ack_frames().empty());
3073 EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
3076 TEST_P(QuicConnectionTest, BundleAckWithDataOnIncomingAck) {
3077 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
3078 connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 0,
3079 !kFin, NULL);
3080 connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 3,
3081 !kFin, NULL);
3082 // Ack the second packet, which will retransmit the first packet.
3083 QuicAckFrame ack = InitAckFrame(2, 0);
3084 NackPacket(1, &ack);
3085 SequenceNumberSet lost_packets;
3086 lost_packets.insert(1);
3087 EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
3088 .WillOnce(Return(lost_packets));
3089 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
3090 ProcessAckPacket(&ack);
3091 EXPECT_EQ(1u, writer_->frame_count());
3092 EXPECT_EQ(1u, writer_->stream_frames().size());
3093 writer_->Reset();
3095 // Now ack the retransmission, which will both raise the high water mark
3096 // and see if there is more data to send.
3097 ack = InitAckFrame(3, 0);
3098 NackPacket(1, &ack);
3099 EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
3100 .WillOnce(Return(SequenceNumberSet()));
3101 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
3102 ProcessAckPacket(&ack);
3104 // Check that no packet is sent and the ack alarm isn't set.
3105 EXPECT_EQ(0u, writer_->frame_count());
3106 EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
3107 writer_->Reset();
3109 // Send the same ack, but send both data and an ack together.
3110 ack = InitAckFrame(3, 0);
3111 NackPacket(1, &ack);
3112 EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
3113 .WillOnce(Return(SequenceNumberSet()));
3114 EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(
3115 IgnoreResult(InvokeWithoutArgs(
3116 &connection_,
3117 &TestConnection::EnsureWritableAndSendStreamData5)));
3118 ProcessAckPacket(&ack);
3120 // Check that ack is bundled with outgoing data and the delayed ack
3121 // alarm is reset.
3122 if (version() > QUIC_VERSION_15) {
3123 EXPECT_EQ(3u, writer_->frame_count());
3124 EXPECT_FALSE(writer_->stop_waiting_frames().empty());
3125 } else {
3126 EXPECT_EQ(2u, writer_->frame_count());
3128 EXPECT_FALSE(writer_->ack_frames().empty());
3129 EXPECT_EQ(1u, writer_->stream_frames().size());
3130 EXPECT_FALSE(connection_.GetAckAlarm()->IsSet());
3133 TEST_P(QuicConnectionTest, NoAckSentForClose) {
3134 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
3135 ProcessPacket(1);
3136 EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PEER_GOING_AWAY, true));
3137 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
3138 ProcessClosePacket(2, 0);
3141 TEST_P(QuicConnectionTest, SendWhenDisconnected) {
3142 EXPECT_TRUE(connection_.connected());
3143 EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PEER_GOING_AWAY, false));
3144 connection_.CloseConnection(QUIC_PEER_GOING_AWAY, false);
3145 EXPECT_FALSE(connection_.connected());
3146 QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag);
3147 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 1, _, _)).Times(0);
3148 connection_.SendPacket(
3149 ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA);
3152 TEST_P(QuicConnectionTest, PublicReset) {
3153 QuicPublicResetPacket header;
3154 header.public_header.connection_id = connection_id_;
3155 header.public_header.reset_flag = true;
3156 header.public_header.version_flag = false;
3157 header.rejected_sequence_number = 10101;
3158 scoped_ptr<QuicEncryptedPacket> packet(
3159 framer_.BuildPublicResetPacket(header));
3160 EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PUBLIC_RESET, true));
3161 connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *packet);
3164 TEST_P(QuicConnectionTest, GoAway) {
3165 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
3167 QuicGoAwayFrame goaway;
3168 goaway.last_good_stream_id = 1;
3169 goaway.error_code = QUIC_PEER_GOING_AWAY;
3170 goaway.reason_phrase = "Going away.";
3171 EXPECT_CALL(visitor_, OnGoAway(_));
3172 ProcessGoAwayPacket(&goaway);
3175 TEST_P(QuicConnectionTest, WindowUpdate) {
3176 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
3178 QuicWindowUpdateFrame window_update;
3179 window_update.stream_id = 3;
3180 window_update.byte_offset = 1234;
3181 EXPECT_CALL(visitor_, OnWindowUpdateFrames(_));
3182 ProcessFramePacket(QuicFrame(&window_update));
3185 TEST_P(QuicConnectionTest, Blocked) {
3186 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
3188 QuicBlockedFrame blocked;
3189 blocked.stream_id = 3;
3190 EXPECT_CALL(visitor_, OnBlockedFrames(_));
3191 ProcessFramePacket(QuicFrame(&blocked));
3194 TEST_P(QuicConnectionTest, InvalidPacket) {
3195 EXPECT_CALL(visitor_,
3196 OnConnectionClosed(QUIC_INVALID_PACKET_HEADER, false));
3197 QuicEncryptedPacket encrypted(NULL, 0);
3198 connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), encrypted);
3199 // The connection close packet should have error details.
3200 ASSERT_FALSE(writer_->connection_close_frames().empty());
3201 EXPECT_EQ("Unable to read public flags.",
3202 writer_->connection_close_frames()[0].error_details);
3205 TEST_P(QuicConnectionTest, MissingPacketsBeforeLeastUnacked) {
3206 // Set the sequence number of the ack packet to be least unacked (4).
3207 peer_creator_.set_sequence_number(3);
3208 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
3209 if (version() > QUIC_VERSION_15) {
3210 QuicStopWaitingFrame frame = InitStopWaitingFrame(4);
3211 ProcessStopWaitingPacket(&frame);
3212 } else {
3213 QuicAckFrame ack = InitAckFrame(0, 4);
3214 ProcessAckPacket(&ack);
3216 EXPECT_TRUE(outgoing_ack()->received_info.missing_packets.empty());
3219 TEST_P(QuicConnectionTest, ReceivedEntropyHashCalculation) {
3220 EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(AtLeast(1));
3221 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
3222 ProcessDataPacket(1, 1, kEntropyFlag);
3223 ProcessDataPacket(4, 1, kEntropyFlag);
3224 ProcessDataPacket(3, 1, !kEntropyFlag);
3225 ProcessDataPacket(7, 1, kEntropyFlag);
3226 EXPECT_EQ(146u, outgoing_ack()->received_info.entropy_hash);
3229 TEST_P(QuicConnectionTest, ReceivedEntropyHashCalculationHalfFEC) {
3230 // FEC packets should not change the entropy hash calculation.
3231 EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(AtLeast(1));
3232 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
3233 ProcessDataPacket(1, 1, kEntropyFlag);
3234 ProcessFecPacket(4, 1, false, kEntropyFlag, NULL);
3235 ProcessDataPacket(3, 3, !kEntropyFlag);
3236 ProcessFecPacket(7, 3, false, kEntropyFlag, NULL);
3237 EXPECT_EQ(146u, outgoing_ack()->received_info.entropy_hash);
3240 TEST_P(QuicConnectionTest, UpdateEntropyForReceivedPackets) {
3241 EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(AtLeast(1));
3242 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
3243 ProcessDataPacket(1, 1, kEntropyFlag);
3244 ProcessDataPacket(5, 1, kEntropyFlag);
3245 ProcessDataPacket(4, 1, !kEntropyFlag);
3246 EXPECT_EQ(34u, outgoing_ack()->received_info.entropy_hash);
3247 // Make 4th packet my least unacked, and update entropy for 2, 3 packets.
3248 peer_creator_.set_sequence_number(5);
3249 QuicPacketEntropyHash six_packet_entropy_hash = 0;
3250 QuicPacketEntropyHash kRandomEntropyHash = 129u;
3251 if (version() > QUIC_VERSION_15) {
3252 QuicStopWaitingFrame frame = InitStopWaitingFrame(4);
3253 frame.entropy_hash = kRandomEntropyHash;
3254 if (ProcessStopWaitingPacket(&frame)) {
3255 six_packet_entropy_hash = 1 << 6;
3257 } else {
3258 QuicAckFrame ack = InitAckFrame(0, 4);
3259 ack.sent_info.entropy_hash = kRandomEntropyHash;
3260 if (ProcessAckPacket(&ack)) {
3261 six_packet_entropy_hash = 1 << 6;
3265 EXPECT_EQ((kRandomEntropyHash + (1 << 5) + six_packet_entropy_hash),
3266 outgoing_ack()->received_info.entropy_hash);
3269 TEST_P(QuicConnectionTest, UpdateEntropyHashUptoCurrentPacket) {
3270 EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(AtLeast(1));
3271 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
3272 ProcessDataPacket(1, 1, kEntropyFlag);
3273 ProcessDataPacket(5, 1, !kEntropyFlag);
3274 ProcessDataPacket(22, 1, kEntropyFlag);
3275 EXPECT_EQ(66u, outgoing_ack()->received_info.entropy_hash);
3276 peer_creator_.set_sequence_number(22);
3277 QuicPacketEntropyHash kRandomEntropyHash = 85u;
3278 // Current packet is the least unacked packet.
3279 QuicPacketEntropyHash ack_entropy_hash;
3280 if (version() > QUIC_VERSION_15) {
3281 QuicStopWaitingFrame frame = InitStopWaitingFrame(23);
3282 frame.entropy_hash = kRandomEntropyHash;
3283 ack_entropy_hash = ProcessStopWaitingPacket(&frame);
3284 } else {
3285 QuicAckFrame ack = InitAckFrame(0, 23);
3286 ack.sent_info.entropy_hash = kRandomEntropyHash;
3287 ack_entropy_hash = ProcessAckPacket(&ack);
3289 EXPECT_EQ((kRandomEntropyHash + ack_entropy_hash),
3290 outgoing_ack()->received_info.entropy_hash);
3291 ProcessDataPacket(25, 1, kEntropyFlag);
3292 EXPECT_EQ((kRandomEntropyHash + ack_entropy_hash + (1 << (25 % 8))),
3293 outgoing_ack()->received_info.entropy_hash);
3296 TEST_P(QuicConnectionTest, EntropyCalculationForTruncatedAck) {
3297 EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(AtLeast(1));
3298 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
3299 QuicPacketEntropyHash entropy[51];
3300 entropy[0] = 0;
3301 for (int i = 1; i < 51; ++i) {
3302 bool should_send = i % 10 != 1;
3303 bool entropy_flag = (i & (i - 1)) != 0;
3304 if (!should_send) {
3305 entropy[i] = entropy[i - 1];
3306 continue;
3308 if (entropy_flag) {
3309 entropy[i] = entropy[i - 1] ^ (1 << (i % 8));
3310 } else {
3311 entropy[i] = entropy[i - 1];
3313 ProcessDataPacket(i, 1, entropy_flag);
3315 for (int i = 1; i < 50; ++i) {
3316 EXPECT_EQ(entropy[i], QuicConnectionPeer::ReceivedEntropyHash(
3317 &connection_, i));
3321 TEST_P(QuicConnectionTest, CheckSentEntropyHash) {
3322 peer_creator_.set_sequence_number(1);
3323 SequenceNumberSet missing_packets;
3324 QuicPacketEntropyHash entropy_hash = 0;
3325 QuicPacketSequenceNumber max_sequence_number = 51;
3326 for (QuicPacketSequenceNumber i = 1; i <= max_sequence_number; ++i) {
3327 bool is_missing = i % 10 != 0;
3328 bool entropy_flag = (i & (i - 1)) != 0;
3329 QuicPacketEntropyHash packet_entropy_hash = 0;
3330 if (entropy_flag) {
3331 packet_entropy_hash = 1 << (i % 8);
3333 QuicPacket* packet = ConstructDataPacket(i, 0, entropy_flag);
3334 connection_.SendPacket(
3335 ENCRYPTION_NONE, i, packet, packet_entropy_hash,
3336 HAS_RETRANSMITTABLE_DATA);
3338 if (is_missing) {
3339 missing_packets.insert(i);
3340 continue;
3343 entropy_hash ^= packet_entropy_hash;
3345 EXPECT_TRUE(QuicConnectionPeer::IsValidEntropy(
3346 &connection_, max_sequence_number, missing_packets, entropy_hash))
3347 << "";
3350 TEST_P(QuicConnectionTest, ServerSendsVersionNegotiationPacket) {
3351 connection_.SetSupportedVersions(QuicSupportedVersions());
3352 framer_.set_version_for_tests(QUIC_VERSION_UNSUPPORTED);
3354 QuicPacketHeader header;
3355 header.public_header.connection_id = connection_id_;
3356 header.public_header.reset_flag = false;
3357 header.public_header.version_flag = true;
3358 header.entropy_flag = false;
3359 header.fec_flag = false;
3360 header.packet_sequence_number = 12;
3361 header.fec_group = 0;
3363 QuicFrames frames;
3364 QuicFrame frame(&frame1_);
3365 frames.push_back(frame);
3366 scoped_ptr<QuicPacket> packet(
3367 BuildUnsizedDataPacket(&framer_, header, frames).packet);
3368 scoped_ptr<QuicEncryptedPacket> encrypted(
3369 framer_.EncryptPacket(ENCRYPTION_NONE, 12, *packet));
3371 framer_.set_version(version());
3372 connection_.set_is_server(true);
3373 connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
3374 EXPECT_TRUE(writer_->version_negotiation_packet() != NULL);
3376 size_t num_versions = arraysize(kSupportedQuicVersions);
3377 ASSERT_EQ(num_versions,
3378 writer_->version_negotiation_packet()->versions.size());
3380 // We expect all versions in kSupportedQuicVersions to be
3381 // included in the packet.
3382 for (size_t i = 0; i < num_versions; ++i) {
3383 EXPECT_EQ(kSupportedQuicVersions[i],
3384 writer_->version_negotiation_packet()->versions[i]);
3388 TEST_P(QuicConnectionTest, ServerSendsVersionNegotiationPacketSocketBlocked) {
3389 connection_.SetSupportedVersions(QuicSupportedVersions());
3390 framer_.set_version_for_tests(QUIC_VERSION_UNSUPPORTED);
3392 QuicPacketHeader header;
3393 header.public_header.connection_id = connection_id_;
3394 header.public_header.reset_flag = false;
3395 header.public_header.version_flag = true;
3396 header.entropy_flag = false;
3397 header.fec_flag = false;
3398 header.packet_sequence_number = 12;
3399 header.fec_group = 0;
3401 QuicFrames frames;
3402 QuicFrame frame(&frame1_);
3403 frames.push_back(frame);
3404 scoped_ptr<QuicPacket> packet(
3405 BuildUnsizedDataPacket(&framer_, header, frames).packet);
3406 scoped_ptr<QuicEncryptedPacket> encrypted(
3407 framer_.EncryptPacket(ENCRYPTION_NONE, 12, *packet));
3409 framer_.set_version(version());
3410 connection_.set_is_server(true);
3411 BlockOnNextWrite();
3412 connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
3413 EXPECT_EQ(0u, writer_->last_packet_size());
3414 EXPECT_TRUE(connection_.HasQueuedData());
3416 writer_->SetWritable();
3417 connection_.OnCanWrite();
3418 EXPECT_TRUE(writer_->version_negotiation_packet() != NULL);
3420 size_t num_versions = arraysize(kSupportedQuicVersions);
3421 ASSERT_EQ(num_versions,
3422 writer_->version_negotiation_packet()->versions.size());
3424 // We expect all versions in kSupportedQuicVersions to be
3425 // included in the packet.
3426 for (size_t i = 0; i < num_versions; ++i) {
3427 EXPECT_EQ(kSupportedQuicVersions[i],
3428 writer_->version_negotiation_packet()->versions[i]);
3432 TEST_P(QuicConnectionTest,
3433 ServerSendsVersionNegotiationPacketSocketBlockedDataBuffered) {
3434 connection_.SetSupportedVersions(QuicSupportedVersions());
3435 framer_.set_version_for_tests(QUIC_VERSION_UNSUPPORTED);
3437 QuicPacketHeader header;
3438 header.public_header.connection_id = connection_id_;
3439 header.public_header.reset_flag = false;
3440 header.public_header.version_flag = true;
3441 header.entropy_flag = false;
3442 header.fec_flag = false;
3443 header.packet_sequence_number = 12;
3444 header.fec_group = 0;
3446 QuicFrames frames;
3447 QuicFrame frame(&frame1_);
3448 frames.push_back(frame);
3449 scoped_ptr<QuicPacket> packet(
3450 BuildUnsizedDataPacket(&framer_, header, frames).packet);
3451 scoped_ptr<QuicEncryptedPacket> encrypted(
3452 framer_.EncryptPacket(ENCRYPTION_NONE, 12, *packet));
3454 framer_.set_version(version());
3455 connection_.set_is_server(true);
3456 BlockOnNextWrite();
3457 writer_->set_is_write_blocked_data_buffered(true);
3458 connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
3459 EXPECT_EQ(0u, writer_->last_packet_size());
3460 EXPECT_FALSE(connection_.HasQueuedData());
3463 TEST_P(QuicConnectionTest, ClientHandlesVersionNegotiation) {
3464 // Start out with some unsupported version.
3465 QuicConnectionPeer::GetFramer(&connection_)->set_version_for_tests(
3466 QUIC_VERSION_UNSUPPORTED);
3468 QuicPacketHeader header;
3469 header.public_header.connection_id = connection_id_;
3470 header.public_header.reset_flag = false;
3471 header.public_header.version_flag = true;
3472 header.entropy_flag = false;
3473 header.fec_flag = false;
3474 header.packet_sequence_number = 12;
3475 header.fec_group = 0;
3477 QuicVersionVector supported_versions;
3478 for (size_t i = 0; i < arraysize(kSupportedQuicVersions); ++i) {
3479 supported_versions.push_back(kSupportedQuicVersions[i]);
3482 // Send a version negotiation packet.
3483 scoped_ptr<QuicEncryptedPacket> encrypted(
3484 framer_.BuildVersionNegotiationPacket(
3485 header.public_header, supported_versions));
3486 connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
3488 // Now force another packet. The connection should transition into
3489 // NEGOTIATED_VERSION state and tell the packet creator to StopSendingVersion.
3490 header.public_header.version_flag = false;
3491 QuicFrames frames;
3492 QuicFrame frame(&frame1_);
3493 frames.push_back(frame);
3494 scoped_ptr<QuicPacket> packet(
3495 BuildUnsizedDataPacket(&framer_, header, frames).packet);
3496 encrypted.reset(framer_.EncryptPacket(ENCRYPTION_NONE, 12, *packet));
3497 EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1);
3498 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
3499 connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
3501 ASSERT_FALSE(QuicPacketCreatorPeer::SendVersionInPacket(
3502 QuicConnectionPeer::GetPacketCreator(&connection_)));
3505 TEST_P(QuicConnectionTest, BadVersionNegotiation) {
3506 QuicPacketHeader header;
3507 header.public_header.connection_id = connection_id_;
3508 header.public_header.reset_flag = false;
3509 header.public_header.version_flag = true;
3510 header.entropy_flag = false;
3511 header.fec_flag = false;
3512 header.packet_sequence_number = 12;
3513 header.fec_group = 0;
3515 QuicVersionVector supported_versions;
3516 for (size_t i = 0; i < arraysize(kSupportedQuicVersions); ++i) {
3517 supported_versions.push_back(kSupportedQuicVersions[i]);
3520 // Send a version negotiation packet with the version the client started with.
3521 // It should be rejected.
3522 EXPECT_CALL(visitor_,
3523 OnConnectionClosed(QUIC_INVALID_VERSION_NEGOTIATION_PACKET,
3524 false));
3525 scoped_ptr<QuicEncryptedPacket> encrypted(
3526 framer_.BuildVersionNegotiationPacket(
3527 header.public_header, supported_versions));
3528 connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
3531 TEST_P(QuicConnectionTest, CheckSendStats) {
3532 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
3533 connection_.SendStreamDataWithString(3, "first", 0, !kFin, NULL);
3534 size_t first_packet_size = writer_->last_packet_size();
3536 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
3537 connection_.SendStreamDataWithString(5, "second", 0, !kFin, NULL);
3538 size_t second_packet_size = writer_->last_packet_size();
3540 // 2 retransmissions due to rto, 1 due to explicit nack.
3541 EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true));
3542 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(3);
3544 // Retransmit due to RTO.
3545 clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10));
3546 connection_.GetRetransmissionAlarm()->Fire();
3548 // Retransmit due to explicit nacks.
3549 QuicAckFrame nack_three = InitAckFrame(4, 0);
3550 NackPacket(3, &nack_three);
3551 NackPacket(1, &nack_three);
3552 SequenceNumberSet lost_packets;
3553 lost_packets.insert(1);
3554 lost_packets.insert(3);
3555 EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
3556 .WillOnce(Return(lost_packets));
3557 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
3558 EXPECT_CALL(visitor_, OnCanWrite()).Times(2);
3559 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
3560 EXPECT_CALL(*send_algorithm_, RevertRetransmissionTimeout());
3561 ProcessAckPacket(&nack_three);
3563 EXPECT_CALL(*send_algorithm_, BandwidthEstimate()).WillOnce(
3564 Return(QuicBandwidth::Zero()));
3566 const QuicConnectionStats& stats = connection_.GetStats();
3567 EXPECT_EQ(3 * first_packet_size + 2 * second_packet_size - kQuicVersionSize,
3568 stats.bytes_sent);
3569 EXPECT_EQ(5u, stats.packets_sent);
3570 EXPECT_EQ(2 * first_packet_size + second_packet_size - kQuicVersionSize,
3571 stats.bytes_retransmitted);
3572 EXPECT_EQ(3u, stats.packets_retransmitted);
3573 EXPECT_EQ(1u, stats.rto_count);
3576 TEST_P(QuicConnectionTest, CheckReceiveStats) {
3577 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
3579 size_t received_bytes = 0;
3580 received_bytes += ProcessFecProtectedPacket(1, false, !kEntropyFlag);
3581 received_bytes += ProcessFecProtectedPacket(3, false, !kEntropyFlag);
3582 // Should be counted against dropped packets.
3583 received_bytes += ProcessDataPacket(3, 1, !kEntropyFlag);
3584 received_bytes += ProcessFecPacket(4, 1, true, !kEntropyFlag, NULL);
3586 EXPECT_CALL(*send_algorithm_, BandwidthEstimate()).WillOnce(
3587 Return(QuicBandwidth::Zero()));
3589 const QuicConnectionStats& stats = connection_.GetStats();
3590 EXPECT_EQ(received_bytes, stats.bytes_received);
3591 EXPECT_EQ(4u, stats.packets_received);
3593 EXPECT_EQ(1u, stats.packets_revived);
3594 EXPECT_EQ(1u, stats.packets_dropped);
3597 TEST_P(QuicConnectionTest, TestFecGroupLimits) {
3598 // Create and return a group for 1.
3599 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 1) != NULL);
3601 // Create and return a group for 2.
3602 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 2) != NULL);
3604 // Create and return a group for 4. This should remove 1 but not 2.
3605 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 4) != NULL);
3606 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 1) == NULL);
3607 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 2) != NULL);
3609 // Create and return a group for 3. This will kill off 2.
3610 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 3) != NULL);
3611 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 2) == NULL);
3613 // Verify that adding 5 kills off 3, despite 4 being created before 3.
3614 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 5) != NULL);
3615 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 4) != NULL);
3616 ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 3) == NULL);
3619 TEST_P(QuicConnectionTest, ProcessFramesIfPacketClosedConnection) {
3620 // Construct a packet with stream frame and connection close frame.
3621 header_.public_header.connection_id = connection_id_;
3622 header_.packet_sequence_number = 1;
3623 header_.public_header.reset_flag = false;
3624 header_.public_header.version_flag = false;
3625 header_.entropy_flag = false;
3626 header_.fec_flag = false;
3627 header_.fec_group = 0;
3629 QuicConnectionCloseFrame qccf;
3630 qccf.error_code = QUIC_PEER_GOING_AWAY;
3631 QuicFrame close_frame(&qccf);
3632 QuicFrame stream_frame(&frame1_);
3634 QuicFrames frames;
3635 frames.push_back(stream_frame);
3636 frames.push_back(close_frame);
3637 scoped_ptr<QuicPacket> packet(
3638 BuildUnsizedDataPacket(&framer_, header_, frames).packet);
3639 EXPECT_TRUE(NULL != packet.get());
3640 scoped_ptr<QuicEncryptedPacket> encrypted(framer_.EncryptPacket(
3641 ENCRYPTION_NONE, 1, *packet));
3643 EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PEER_GOING_AWAY, true));
3644 EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1);
3645 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
3647 connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
3650 TEST_P(QuicConnectionTest, SelectMutualVersion) {
3651 connection_.SetSupportedVersions(QuicSupportedVersions());
3652 // Set the connection to speak the lowest quic version.
3653 connection_.set_version(QuicVersionMin());
3654 EXPECT_EQ(QuicVersionMin(), connection_.version());
3656 // Pass in available versions which includes a higher mutually supported
3657 // version. The higher mutually supported version should be selected.
3658 QuicVersionVector supported_versions;
3659 for (size_t i = 0; i < arraysize(kSupportedQuicVersions); ++i) {
3660 supported_versions.push_back(kSupportedQuicVersions[i]);
3662 EXPECT_TRUE(connection_.SelectMutualVersion(supported_versions));
3663 EXPECT_EQ(QuicVersionMax(), connection_.version());
3665 // Expect that the lowest version is selected.
3666 // Ensure the lowest supported version is less than the max, unless they're
3667 // the same.
3668 EXPECT_LE(QuicVersionMin(), QuicVersionMax());
3669 QuicVersionVector lowest_version_vector;
3670 lowest_version_vector.push_back(QuicVersionMin());
3671 EXPECT_TRUE(connection_.SelectMutualVersion(lowest_version_vector));
3672 EXPECT_EQ(QuicVersionMin(), connection_.version());
3674 // Shouldn't be able to find a mutually supported version.
3675 QuicVersionVector unsupported_version;
3676 unsupported_version.push_back(QUIC_VERSION_UNSUPPORTED);
3677 EXPECT_FALSE(connection_.SelectMutualVersion(unsupported_version));
3680 TEST_P(QuicConnectionTest, ConnectionCloseWhenWritable) {
3681 EXPECT_FALSE(writer_->IsWriteBlocked());
3683 // Send a packet.
3684 connection_.SendStreamDataWithString(1, "foo", 0, !kFin, NULL);
3685 EXPECT_EQ(0u, connection_.NumQueuedPackets());
3686 EXPECT_EQ(1u, writer_->packets_write_attempts());
3688 TriggerConnectionClose();
3689 EXPECT_EQ(2u, writer_->packets_write_attempts());
3692 TEST_P(QuicConnectionTest, ConnectionCloseGettingWriteBlocked) {
3693 BlockOnNextWrite();
3694 TriggerConnectionClose();
3695 EXPECT_EQ(1u, writer_->packets_write_attempts());
3696 EXPECT_TRUE(writer_->IsWriteBlocked());
3699 TEST_P(QuicConnectionTest, ConnectionCloseWhenWriteBlocked) {
3700 BlockOnNextWrite();
3701 connection_.SendStreamDataWithString(1, "foo", 0, !kFin, NULL);
3702 EXPECT_EQ(1u, connection_.NumQueuedPackets());
3703 EXPECT_EQ(1u, writer_->packets_write_attempts());
3704 EXPECT_TRUE(writer_->IsWriteBlocked());
3705 TriggerConnectionClose();
3706 EXPECT_EQ(1u, writer_->packets_write_attempts());
3709 TEST_P(QuicConnectionTest, AckNotifierTriggerCallback) {
3710 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
3712 // Create a delegate which we expect to be called.
3713 scoped_refptr<MockAckNotifierDelegate> delegate(new MockAckNotifierDelegate);
3714 EXPECT_CALL(*delegate, OnAckNotification(_, _, _, _, _)).Times(1);
3716 // Send some data, which will register the delegate to be notified.
3717 connection_.SendStreamDataWithString(1, "foo", 0, !kFin, delegate.get());
3719 // Process an ACK from the server which should trigger the callback.
3720 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
3721 QuicAckFrame frame = InitAckFrame(1, 0);
3722 ProcessAckPacket(&frame);
3725 TEST_P(QuicConnectionTest, AckNotifierFailToTriggerCallback) {
3726 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
3728 // Create a delegate which we don't expect to be called.
3729 scoped_refptr<MockAckNotifierDelegate> delegate(new MockAckNotifierDelegate);
3730 EXPECT_CALL(*delegate, OnAckNotification(_, _, _, _, _)).Times(0);
3732 // Send some data, which will register the delegate to be notified. This will
3733 // not be ACKed and so the delegate should never be called.
3734 connection_.SendStreamDataWithString(1, "foo", 0, !kFin, delegate.get());
3736 // Send some other data which we will ACK.
3737 connection_.SendStreamDataWithString(1, "foo", 0, !kFin, NULL);
3738 connection_.SendStreamDataWithString(1, "bar", 0, !kFin, NULL);
3740 // Now we receive ACK for packets 2 and 3, but importantly missing packet 1
3741 // which we registered to be notified about.
3742 QuicAckFrame frame = InitAckFrame(3, 0);
3743 NackPacket(1, &frame);
3744 SequenceNumberSet lost_packets;
3745 lost_packets.insert(1);
3746 EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
3747 .WillOnce(Return(lost_packets));
3748 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
3749 ProcessAckPacket(&frame);
3752 TEST_P(QuicConnectionTest, AckNotifierCallbackAfterRetransmission) {
3753 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
3755 // Create a delegate which we expect to be called.
3756 scoped_refptr<MockAckNotifierDelegate> delegate(new MockAckNotifierDelegate);
3757 EXPECT_CALL(*delegate, OnAckNotification(_, _, _, _, _)).Times(1);
3759 // Send four packets, and register to be notified on ACK of packet 2.
3760 connection_.SendStreamDataWithString(3, "foo", 0, !kFin, NULL);
3761 connection_.SendStreamDataWithString(3, "bar", 0, !kFin, delegate.get());
3762 connection_.SendStreamDataWithString(3, "baz", 0, !kFin, NULL);
3763 connection_.SendStreamDataWithString(3, "qux", 0, !kFin, NULL);
3765 // Now we receive ACK for packets 1, 3, and 4 and lose 2.
3766 QuicAckFrame frame = InitAckFrame(4, 0);
3767 NackPacket(2, &frame);
3768 SequenceNumberSet lost_packets;
3769 lost_packets.insert(2);
3770 EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
3771 .WillOnce(Return(lost_packets));
3772 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
3773 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
3774 ProcessAckPacket(&frame);
3776 // Now we get an ACK for packet 5 (retransmitted packet 2), which should
3777 // trigger the callback.
3778 EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
3779 .WillRepeatedly(Return(SequenceNumberSet()));
3780 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
3781 QuicAckFrame second_ack_frame = InitAckFrame(5, 0);
3782 ProcessAckPacket(&second_ack_frame);
3785 // AckNotifierCallback is triggered by the ack of a packet that timed
3786 // out and was retransmitted, even though the retransmission has a
3787 // different sequence number.
3788 TEST_P(QuicConnectionTest, AckNotifierCallbackForAckAfterRTO) {
3789 InSequence s;
3791 // Create a delegate which we expect to be called.
3792 scoped_refptr<MockAckNotifierDelegate> delegate(
3793 new StrictMock<MockAckNotifierDelegate>);
3795 QuicTime default_retransmission_time = clock_.ApproximateNow().Add(
3796 DefaultRetransmissionTime());
3797 connection_.SendStreamDataWithString(3, "foo", 0, !kFin, delegate.get());
3798 EXPECT_EQ(1u, outgoing_ack()->sent_info.least_unacked);
3800 EXPECT_EQ(1u, writer_->header().packet_sequence_number);
3801 EXPECT_EQ(default_retransmission_time,
3802 connection_.GetRetransmissionAlarm()->deadline());
3803 // Simulate the retransmission alarm firing.
3804 clock_.AdvanceTime(DefaultRetransmissionTime());
3805 EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true));
3806 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 2u, _, _));
3807 connection_.GetRetransmissionAlarm()->Fire();
3808 EXPECT_EQ(2u, writer_->header().packet_sequence_number);
3809 // We do not raise the high water mark yet.
3810 EXPECT_EQ(1u, outgoing_ack()->sent_info.least_unacked);
3812 // Ack the original packet, which will revert the RTO.
3813 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
3814 EXPECT_CALL(*delegate, OnAckNotification(1, _, 1, _, _));
3815 EXPECT_CALL(*send_algorithm_, RevertRetransmissionTimeout());
3816 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
3817 QuicAckFrame ack_frame = InitAckFrame(1, 0);
3818 ProcessAckPacket(&ack_frame);
3820 // Delegate is not notified again when the retransmit is acked.
3821 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
3822 QuicAckFrame second_ack_frame = InitAckFrame(2, 0);
3823 ProcessAckPacket(&second_ack_frame);
3826 // AckNotifierCallback is triggered by the ack of a packet that was
3827 // previously nacked, even though the retransmission has a different
3828 // sequence number.
3829 TEST_P(QuicConnectionTest, AckNotifierCallbackForAckOfNackedPacket) {
3830 InSequence s;
3832 // Create a delegate which we expect to be called.
3833 scoped_refptr<MockAckNotifierDelegate> delegate(
3834 new StrictMock<MockAckNotifierDelegate>);
3836 // Send four packets, and register to be notified on ACK of packet 2.
3837 connection_.SendStreamDataWithString(3, "foo", 0, !kFin, NULL);
3838 connection_.SendStreamDataWithString(3, "bar", 0, !kFin, delegate.get());
3839 connection_.SendStreamDataWithString(3, "baz", 0, !kFin, NULL);
3840 connection_.SendStreamDataWithString(3, "qux", 0, !kFin, NULL);
3842 // Now we receive ACK for packets 1, 3, and 4 and lose 2.
3843 QuicAckFrame frame = InitAckFrame(4, 0);
3844 NackPacket(2, &frame);
3845 SequenceNumberSet lost_packets;
3846 lost_packets.insert(2);
3847 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
3848 EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
3849 .WillOnce(Return(lost_packets));
3850 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
3851 EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
3852 ProcessAckPacket(&frame);
3854 // Now we get an ACK for packet 2, which was previously nacked.
3855 SequenceNumberSet no_lost_packets;
3856 EXPECT_CALL(*delegate, OnAckNotification(1, _, 1, _, _));
3857 EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
3858 .WillOnce(Return(no_lost_packets));
3859 QuicAckFrame second_ack_frame = InitAckFrame(4, 0);
3860 ProcessAckPacket(&second_ack_frame);
3862 // Verify that the delegate is not notified again when the
3863 // retransmit is acked.
3864 EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
3865 .WillOnce(Return(no_lost_packets));
3866 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
3867 QuicAckFrame third_ack_frame = InitAckFrame(5, 0);
3868 ProcessAckPacket(&third_ack_frame);
3871 TEST_P(QuicConnectionTest, AckNotifierFECTriggerCallback) {
3872 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
3874 // Create a delegate which we expect to be called.
3875 scoped_refptr<MockAckNotifierDelegate> delegate(
3876 new MockAckNotifierDelegate);
3877 EXPECT_CALL(*delegate, OnAckNotification(_, _, _, _, _)).Times(1);
3879 // Send some data, which will register the delegate to be notified.
3880 connection_.SendStreamDataWithString(1, "foo", 0, !kFin, delegate.get());
3881 connection_.SendStreamDataWithString(2, "bar", 0, !kFin, NULL);
3883 // Process an ACK from the server with a revived packet, which should trigger
3884 // the callback.
3885 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
3886 QuicAckFrame frame = InitAckFrame(2, 0);
3887 NackPacket(1, &frame);
3888 frame.received_info.revived_packets.insert(1);
3889 ProcessAckPacket(&frame);
3890 // If the ack is processed again, the notifier should not be called again.
3891 ProcessAckPacket(&frame);
3894 TEST_P(QuicConnectionTest, AckNotifierCallbackAfterFECRecovery) {
3895 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
3896 EXPECT_CALL(visitor_, OnCanWrite());
3898 // Create a delegate which we expect to be called.
3899 scoped_refptr<MockAckNotifierDelegate> delegate(new MockAckNotifierDelegate);
3900 EXPECT_CALL(*delegate, OnAckNotification(_, _, _, _, _)).Times(1);
3902 // Expect ACKs for 1 packet.
3903 EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
3905 // Send one packet, and register to be notified on ACK.
3906 connection_.SendStreamDataWithString(1, "foo", 0, !kFin, delegate.get());
3908 // Ack packet gets dropped, but we receive an FEC packet that covers it.
3909 // Should recover the Ack packet and trigger the notification callback.
3910 QuicFrames frames;
3912 QuicAckFrame ack_frame = InitAckFrame(1, 0);
3913 frames.push_back(QuicFrame(&ack_frame));
3915 // Dummy stream frame to satisfy expectations set elsewhere.
3916 frames.push_back(QuicFrame(&frame1_));
3918 QuicPacketHeader ack_header;
3919 ack_header.public_header.connection_id = connection_id_;
3920 ack_header.public_header.reset_flag = false;
3921 ack_header.public_header.version_flag = false;
3922 ack_header.entropy_flag = !kEntropyFlag;
3923 ack_header.fec_flag = true;
3924 ack_header.packet_sequence_number = 1;
3925 ack_header.is_in_fec_group = IN_FEC_GROUP;
3926 ack_header.fec_group = 1;
3928 QuicPacket* packet =
3929 BuildUnsizedDataPacket(&framer_, ack_header, frames).packet;
3931 // Take the packet which contains the ACK frame, and construct and deliver an
3932 // FEC packet which allows the ACK packet to be recovered.
3933 ProcessFecPacket(2, 1, true, !kEntropyFlag, packet);
3936 class MockQuicConnectionDebugVisitor
3937 : public QuicConnectionDebugVisitor {
3938 public:
3939 MOCK_METHOD1(OnFrameAddedToPacket,
3940 void(const QuicFrame&));
3942 MOCK_METHOD5(OnPacketSent,
3943 void(QuicPacketSequenceNumber,
3944 EncryptionLevel,
3945 TransmissionType,
3946 const QuicEncryptedPacket&,
3947 WriteResult));
3949 MOCK_METHOD2(OnPacketRetransmitted,
3950 void(QuicPacketSequenceNumber,
3951 QuicPacketSequenceNumber));
3953 MOCK_METHOD3(OnPacketReceived,
3954 void(const IPEndPoint&,
3955 const IPEndPoint&,
3956 const QuicEncryptedPacket&));
3958 MOCK_METHOD1(OnProtocolVersionMismatch,
3959 void(QuicVersion));
3961 MOCK_METHOD1(OnPacketHeader,
3962 void(const QuicPacketHeader& header));
3964 MOCK_METHOD1(OnStreamFrame,
3965 void(const QuicStreamFrame&));
3967 MOCK_METHOD1(OnAckFrame,
3968 void(const QuicAckFrame& frame));
3970 MOCK_METHOD1(OnCongestionFeedbackFrame,
3971 void(const QuicCongestionFeedbackFrame&));
3973 MOCK_METHOD1(OnStopWaitingFrame,
3974 void(const QuicStopWaitingFrame&));
3976 MOCK_METHOD1(OnRstStreamFrame,
3977 void(const QuicRstStreamFrame&));
3979 MOCK_METHOD1(OnConnectionCloseFrame,
3980 void(const QuicConnectionCloseFrame&));
3982 MOCK_METHOD1(OnPublicResetPacket,
3983 void(const QuicPublicResetPacket&));
3985 MOCK_METHOD1(OnVersionNegotiationPacket,
3986 void(const QuicVersionNegotiationPacket&));
3988 MOCK_METHOD2(OnRevivedPacket,
3989 void(const QuicPacketHeader&, StringPiece payload));
3992 TEST_P(QuicConnectionTest, OnPacketHeaderDebugVisitor) {
3993 QuicPacketHeader header;
3995 scoped_ptr<MockQuicConnectionDebugVisitor>
3996 debug_visitor(new StrictMock<MockQuicConnectionDebugVisitor>);
3997 connection_.set_debug_visitor(debug_visitor.get());
3998 EXPECT_CALL(*debug_visitor, OnPacketHeader(Ref(header))).Times(1);
3999 connection_.OnPacketHeader(header);
4002 TEST_P(QuicConnectionTest, Pacing) {
4003 ValueRestore<bool> old_flag(&FLAGS_enable_quic_pacing, true);
4005 TestConnection server(connection_id_, IPEndPoint(), helper_.get(),
4006 writer_.get(), true, version());
4007 TestConnection client(connection_id_, IPEndPoint(), helper_.get(),
4008 writer_.get(), false, version());
4009 EXPECT_TRUE(client.sent_packet_manager().using_pacing());
4010 EXPECT_FALSE(server.sent_packet_manager().using_pacing());
4013 TEST_P(QuicConnectionTest, ControlFramesInstigateAcks) {
4014 EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
4016 // Send a WINDOW_UPDATE frame.
4017 QuicWindowUpdateFrame window_update;
4018 window_update.stream_id = 3;
4019 window_update.byte_offset = 1234;
4020 EXPECT_CALL(visitor_, OnWindowUpdateFrames(_));
4021 ProcessFramePacket(QuicFrame(&window_update));
4023 // Ensure that this has caused the ACK alarm to be set.
4024 QuicAlarm* ack_alarm = QuicConnectionPeer::GetAckAlarm(&connection_);
4025 EXPECT_TRUE(ack_alarm->IsSet());
4027 // Cancel alarm, and try again with BLOCKED frame.
4028 ack_alarm->Cancel();
4029 QuicBlockedFrame blocked;
4030 blocked.stream_id = 3;
4031 EXPECT_CALL(visitor_, OnBlockedFrames(_));
4032 ProcessFramePacket(QuicFrame(&blocked));
4033 EXPECT_TRUE(ack_alarm->IsSet());
4036 } // namespace
4037 } // namespace test
4038 } // namespace net