1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/quic/reliable_quic_stream.h"
7 #include "base/logging.h"
8 #include "net/quic/iovector.h"
9 #include "net/quic/quic_flow_controller.h"
10 #include "net/quic/quic_session.h"
11 #include "net/quic/quic_write_blocked_list.h"
13 using base::StringPiece
;
18 #define ENDPOINT (is_server_ ? "Server: " : " Client: ")
22 struct iovec
MakeIovec(StringPiece data
) {
23 struct iovec iov
= {const_cast<char*>(data
.data()),
24 static_cast<size_t>(data
.size())};
28 size_t GetInitialStreamFlowControlWindowToSend(QuicSession
* session
) {
29 QuicVersion version
= session
->connection()->version();
30 if (version
<= QUIC_VERSION_19
) {
31 return session
->config()->GetInitialFlowControlWindowToSend();
34 return session
->config()->GetInitialStreamFlowControlWindowToSend();
37 size_t GetReceivedFlowControlWindow(QuicSession
* session
) {
38 QuicVersion version
= session
->connection()->version();
39 if (version
<= QUIC_VERSION_19
) {
40 if (session
->config()->HasReceivedInitialFlowControlWindowBytes()) {
41 return session
->config()->ReceivedInitialFlowControlWindowBytes();
44 return kDefaultFlowControlSendWindow
;
47 // Version must be >= QUIC_VERSION_20, so we check for stream specific flow
49 if (session
->config()->HasReceivedInitialStreamFlowControlWindowBytes()) {
50 return session
->config()->ReceivedInitialStreamFlowControlWindowBytes();
53 return kDefaultFlowControlSendWindow
;
58 // Wrapper that aggregates OnAckNotifications for packets sent using
59 // WriteOrBufferData and delivers them to the original
60 // QuicAckNotifier::DelegateInterface after all bytes written using
61 // WriteOrBufferData are acked. This level of indirection is
62 // necessary because the delegate interface provides no mechanism that
63 // WriteOrBufferData can use to inform it that the write required
64 // multiple WritevData calls or that only part of the data has been
65 // sent out by the time ACKs start arriving.
66 class ReliableQuicStream::ProxyAckNotifierDelegate
67 : public QuicAckNotifier::DelegateInterface
{
69 explicit ProxyAckNotifierDelegate(DelegateInterface
* delegate
)
70 : delegate_(delegate
),
72 wrote_last_data_(false),
73 num_original_packets_(0),
74 num_original_bytes_(0),
75 num_retransmitted_packets_(0),
76 num_retransmitted_bytes_(0) {
79 virtual void OnAckNotification(int num_original_packets
,
80 int num_original_bytes
,
81 int num_retransmitted_packets
,
82 int num_retransmitted_bytes
,
83 QuicTime::Delta delta_largest_observed
)
85 DCHECK_LT(0, pending_acks_
);
87 num_original_packets_
+= num_original_packets
;
88 num_original_bytes_
+= num_original_bytes
;
89 num_retransmitted_packets_
+= num_retransmitted_packets
;
90 num_retransmitted_bytes_
+= num_retransmitted_bytes
;
92 if (wrote_last_data_
&& pending_acks_
== 0) {
93 delegate_
->OnAckNotification(num_original_packets_
,
95 num_retransmitted_packets_
,
96 num_retransmitted_bytes_
,
97 delta_largest_observed
);
101 void WroteData(bool last_data
) {
102 DCHECK(!wrote_last_data_
);
104 wrote_last_data_
= last_data
;
108 // Delegates are ref counted.
109 virtual ~ProxyAckNotifierDelegate() OVERRIDE
{
113 // Original delegate. delegate_->OnAckNotification will be called when:
114 // wrote_last_data_ == true and pending_acks_ == 0
115 scoped_refptr
<DelegateInterface
> delegate_
;
117 // Number of outstanding acks.
120 // True if no pending writes remain.
121 bool wrote_last_data_
;
124 int num_original_packets_
;
125 int num_original_bytes_
;
126 int num_retransmitted_packets_
;
127 int num_retransmitted_bytes_
;
129 DISALLOW_COPY_AND_ASSIGN(ProxyAckNotifierDelegate
);
132 ReliableQuicStream::PendingData::PendingData(
133 string data_in
, scoped_refptr
<ProxyAckNotifierDelegate
> delegate_in
)
134 : data(data_in
), delegate(delegate_in
) {
137 ReliableQuicStream::PendingData::~PendingData() {
140 ReliableQuicStream::ReliableQuicStream(QuicStreamId id
, QuicSession
* session
)
144 stream_bytes_read_(0),
145 stream_bytes_written_(0),
146 stream_error_(QUIC_STREAM_NO_ERROR
),
147 connection_error_(QUIC_NO_ERROR
),
148 read_side_closed_(false),
149 write_side_closed_(false),
150 fin_buffered_(false),
152 fin_received_(false),
154 rst_received_(false),
155 fec_policy_(FEC_PROTECT_OPTIONAL
),
156 is_server_(session_
->is_server()),
158 session_
->connection(), id_
, is_server_
,
159 GetReceivedFlowControlWindow(session
),
160 GetInitialStreamFlowControlWindowToSend(session
),
161 GetInitialStreamFlowControlWindowToSend(session
)),
162 connection_flow_controller_(session_
->flow_controller()),
163 stream_contributes_to_connection_flow_control_(true) {
166 ReliableQuicStream::~ReliableQuicStream() {
169 bool ReliableQuicStream::OnStreamFrame(const QuicStreamFrame
& frame
) {
170 if (read_side_closed_
) {
171 DVLOG(1) << ENDPOINT
<< "Ignoring frame " << frame
.stream_id
;
172 // We don't want to be reading: blackhole the data.
176 if (frame
.stream_id
!= id_
) {
177 LOG(ERROR
) << "Error!";
182 fin_received_
= true;
185 // This count include duplicate data received.
186 size_t frame_payload_size
= frame
.data
.TotalBufferSize();
187 stream_bytes_read_
+= frame_payload_size
;
189 // Flow control is interested in tracking highest received offset.
190 if (MaybeIncreaseHighestReceivedOffset(frame
.offset
+ frame_payload_size
)) {
191 // As the highest received offset has changed, we should check to see if
192 // this is a violation of flow control.
193 if (flow_controller_
.FlowControlViolation() ||
194 connection_flow_controller_
->FlowControlViolation()) {
195 session_
->connection()->SendConnectionClose(
196 QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA
);
201 return sequencer_
.OnStreamFrame(frame
);
204 int ReliableQuicStream::num_frames_received() const {
205 return sequencer_
.num_frames_received();
208 int ReliableQuicStream::num_duplicate_frames_received() const {
209 return sequencer_
.num_duplicate_frames_received();
212 void ReliableQuicStream::OnStreamReset(const QuicRstStreamFrame
& frame
) {
213 rst_received_
= true;
214 MaybeIncreaseHighestReceivedOffset(frame
.byte_offset
);
216 stream_error_
= frame
.error_code
;
221 void ReliableQuicStream::OnConnectionClosed(QuicErrorCode error
,
223 if (read_side_closed_
&& write_side_closed_
) {
226 if (error
!= QUIC_NO_ERROR
) {
227 stream_error_
= QUIC_STREAM_CONNECTION_ERROR
;
228 connection_error_
= error
;
235 void ReliableQuicStream::OnFinRead() {
236 DCHECK(sequencer_
.IsClosed());
240 void ReliableQuicStream::Reset(QuicRstStreamErrorCode error
) {
241 DCHECK_NE(QUIC_STREAM_NO_ERROR
, error
);
242 stream_error_
= error
;
243 // Sending a RstStream results in calling CloseStream.
244 session()->SendRstStream(id(), error
, stream_bytes_written_
);
248 void ReliableQuicStream::CloseConnection(QuicErrorCode error
) {
249 session()->connection()->SendConnectionClose(error
);
252 void ReliableQuicStream::CloseConnectionWithDetails(QuicErrorCode error
,
253 const string
& details
) {
254 session()->connection()->SendConnectionCloseWithDetails(error
, details
);
257 QuicVersion
ReliableQuicStream::version() const {
258 return session()->connection()->version();
261 void ReliableQuicStream::WriteOrBufferData(
264 QuicAckNotifier::DelegateInterface
* ack_notifier_delegate
) {
265 if (data
.empty() && !fin
) {
266 LOG(DFATAL
) << "data.empty() && !fin";
271 LOG(DFATAL
) << "Fin already buffered";
275 scoped_refptr
<ProxyAckNotifierDelegate
> proxy_delegate
;
276 if (ack_notifier_delegate
!= NULL
) {
277 proxy_delegate
= new ProxyAckNotifierDelegate(ack_notifier_delegate
);
280 QuicConsumedData
consumed_data(0, false);
283 if (queued_data_
.empty()) {
284 struct iovec
iov(MakeIovec(data
));
285 consumed_data
= WritevData(&iov
, 1, fin
, proxy_delegate
.get());
286 DCHECK_LE(consumed_data
.bytes_consumed
, data
.length());
289 bool write_completed
;
290 // If there's unconsumed data or an unconsumed fin, queue it.
291 if (consumed_data
.bytes_consumed
< data
.length() ||
292 (fin
&& !consumed_data
.fin_consumed
)) {
293 StringPiece
remainder(data
.substr(consumed_data
.bytes_consumed
));
294 queued_data_
.push_back(PendingData(remainder
.as_string(), proxy_delegate
));
295 write_completed
= false;
297 write_completed
= true;
300 if ((proxy_delegate
.get() != NULL
) &&
301 (consumed_data
.bytes_consumed
> 0 || consumed_data
.fin_consumed
)) {
302 proxy_delegate
->WroteData(write_completed
);
306 void ReliableQuicStream::OnCanWrite() {
308 while (!queued_data_
.empty()) {
309 PendingData
* pending_data
= &queued_data_
.front();
310 ProxyAckNotifierDelegate
* delegate
= pending_data
->delegate
.get();
311 if (queued_data_
.size() == 1 && fin_buffered_
) {
314 struct iovec
iov(MakeIovec(pending_data
->data
));
315 QuicConsumedData consumed_data
= WritevData(&iov
, 1, fin
, delegate
);
316 if (consumed_data
.bytes_consumed
== pending_data
->data
.size() &&
317 fin
== consumed_data
.fin_consumed
) {
318 queued_data_
.pop_front();
319 if (delegate
!= NULL
) {
320 delegate
->WroteData(true);
323 if (consumed_data
.bytes_consumed
> 0) {
324 pending_data
->data
.erase(0, consumed_data
.bytes_consumed
);
325 if (delegate
!= NULL
) {
326 delegate
->WroteData(false);
334 void ReliableQuicStream::MaybeSendBlocked() {
335 flow_controller_
.MaybeSendBlocked();
336 if (stream_contributes_to_connection_flow_control_
) {
337 connection_flow_controller_
->MaybeSendBlocked();
339 // If we are connection level flow control blocked, then add the stream
340 // to the write blocked list. It will be given a chance to write when a
341 // connection level WINDOW_UPDATE arrives.
342 if (stream_contributes_to_connection_flow_control_
&&
343 connection_flow_controller_
->IsBlocked() &&
344 !flow_controller_
.IsBlocked()) {
345 session_
->MarkWriteBlocked(id(), EffectivePriority());
349 QuicConsumedData
ReliableQuicStream::WritevData(
350 const struct iovec
* iov
,
353 QuicAckNotifier::DelegateInterface
* ack_notifier_delegate
) {
354 if (write_side_closed_
) {
355 DLOG(ERROR
) << ENDPOINT
<< "Attempt to write when the write side is closed";
356 return QuicConsumedData(0, false);
359 // How much data we want to write.
360 size_t write_length
= TotalIovecLength(iov
, iov_count
);
362 // A FIN with zero data payload should not be flow control blocked.
363 bool fin_with_zero_data
= (fin
&& write_length
== 0);
365 if (flow_controller_
.IsEnabled()) {
366 // How much data we are allowed to write from flow control.
367 uint64 send_window
= flow_controller_
.SendWindowSize();
368 // TODO(rjshade): Remove connection_flow_controller_->IsEnabled() check when
369 // removing QUIC_VERSION_19.
370 if (stream_contributes_to_connection_flow_control_
&&
371 connection_flow_controller_
->IsEnabled()) {
373 min(send_window
, connection_flow_controller_
->SendWindowSize());
376 if (send_window
== 0 && !fin_with_zero_data
) {
377 // Quick return if we can't send anything.
379 return QuicConsumedData(0, false);
382 if (write_length
> send_window
) {
383 // Don't send the FIN if we aren't going to send all the data.
386 // Writing more data would be a violation of flow control.
387 write_length
= send_window
;
391 // Fill an IOVector with bytes from the iovec.
393 data
.AppendIovecAtMostBytes(iov
, iov_count
, write_length
);
395 QuicConsumedData consumed_data
= session()->WritevData(
396 id(), data
, stream_bytes_written_
, fin
, GetFecProtection(),
397 ack_notifier_delegate
);
398 stream_bytes_written_
+= consumed_data
.bytes_consumed
;
400 AddBytesSent(consumed_data
.bytes_consumed
);
402 if (consumed_data
.bytes_consumed
== write_length
) {
403 if (!fin_with_zero_data
) {
406 if (fin
&& consumed_data
.fin_consumed
) {
409 } else if (fin
&& !consumed_data
.fin_consumed
) {
410 session_
->MarkWriteBlocked(id(), EffectivePriority());
413 session_
->MarkWriteBlocked(id(), EffectivePriority());
415 return consumed_data
;
418 FecProtection
ReliableQuicStream::GetFecProtection() {
419 return fec_policy_
== FEC_PROTECT_ALWAYS
? MUST_FEC_PROTECT
: MAY_FEC_PROTECT
;
422 void ReliableQuicStream::CloseReadSide() {
423 if (read_side_closed_
) {
426 DVLOG(1) << ENDPOINT
<< "Done reading from stream " << id();
428 read_side_closed_
= true;
429 if (write_side_closed_
) {
430 DVLOG(1) << ENDPOINT
<< "Closing stream: " << id();
431 session_
->CloseStream(id());
435 void ReliableQuicStream::CloseWriteSide() {
436 if (write_side_closed_
) {
439 DVLOG(1) << ENDPOINT
<< "Done writing to stream " << id();
441 write_side_closed_
= true;
442 if (read_side_closed_
) {
443 DVLOG(1) << ENDPOINT
<< "Closing stream: " << id();
444 session_
->CloseStream(id());
448 bool ReliableQuicStream::HasBufferedData() const {
449 return !queued_data_
.empty();
452 void ReliableQuicStream::OnClose() {
456 if (!fin_sent_
&& !rst_sent_
) {
457 // For flow control accounting, we must tell the peer how many bytes we have
458 // written on this stream before termination. Done here if needed, using a
460 DVLOG(1) << ENDPOINT
<< "Sending RST in OnClose: " << id();
461 session_
->SendRstStream(id(), QUIC_RST_FLOW_CONTROL_ACCOUNTING
,
462 stream_bytes_written_
);
466 // We are closing the stream and will not process any further incoming bytes.
467 // As there may be more bytes in flight and we need to ensure that both
468 // endpoints have the same connection level flow control state, mark all
469 // unreceived or buffered bytes as consumed.
470 uint64 bytes_to_consume
= flow_controller_
.highest_received_byte_offset() -
471 flow_controller_
.bytes_consumed();
472 AddBytesConsumed(bytes_to_consume
);
475 void ReliableQuicStream::OnWindowUpdateFrame(
476 const QuicWindowUpdateFrame
& frame
) {
477 if (!flow_controller_
.IsEnabled()) {
478 DLOG(DFATAL
) << "Flow control not enabled! " << version();
482 if (flow_controller_
.UpdateSendWindowOffset(frame
.byte_offset
)) {
483 // We can write again!
484 // TODO(rjshade): This does not respect priorities (e.g. multiple
485 // outstanding POSTs are unblocked on arrival of
486 // SHLO with initial window).
487 // As long as the connection is not flow control blocked, we can write!
492 bool ReliableQuicStream::MaybeIncreaseHighestReceivedOffset(uint64 new_offset
) {
493 if (flow_controller_
.IsEnabled()) {
495 new_offset
- flow_controller_
.highest_received_byte_offset();
496 if (flow_controller_
.UpdateHighestReceivedOffset(new_offset
)) {
497 // If |new_offset| increased the stream flow controller's highest received
498 // offset, then we need to increase the connection flow controller's value
499 // by the incremental difference.
500 if (stream_contributes_to_connection_flow_control_
) {
501 connection_flow_controller_
->UpdateHighestReceivedOffset(
502 connection_flow_controller_
->highest_received_byte_offset() +
511 void ReliableQuicStream::AddBytesSent(uint64 bytes
) {
512 if (flow_controller_
.IsEnabled()) {
513 flow_controller_
.AddBytesSent(bytes
);
514 if (stream_contributes_to_connection_flow_control_
) {
515 connection_flow_controller_
->AddBytesSent(bytes
);
520 void ReliableQuicStream::AddBytesConsumed(uint64 bytes
) {
521 if (flow_controller_
.IsEnabled()) {
522 // Only adjust stream level flow controller if we are still reading.
523 if (!read_side_closed_
) {
524 flow_controller_
.AddBytesConsumed(bytes
);
527 if (stream_contributes_to_connection_flow_control_
) {
528 connection_flow_controller_
->AddBytesConsumed(bytes
);
533 bool ReliableQuicStream::IsFlowControlBlocked() {
534 bool stream_flow_control_blocked
= flow_controller_
.IsBlocked();
535 bool connecton_flow_control_blocked
=
536 stream_contributes_to_connection_flow_control_
&&
537 connection_flow_controller_
->IsBlocked();
538 return stream_flow_control_blocked
|| connecton_flow_control_blocked
;