Implement MoveFileLocal (with creating a snapshot).
[chromium-blink-merge.git] / net / disk_cache / blockfile / sparse_control.cc
blobe5096dc991d88d18da546b76cc41d2b4020c7dfc
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/disk_cache/blockfile/sparse_control.h"
7 #include "base/bind.h"
8 #include "base/format_macros.h"
9 #include "base/logging.h"
10 #include "base/message_loop/message_loop.h"
11 #include "base/strings/string_util.h"
12 #include "base/strings/stringprintf.h"
13 #include "base/time/time.h"
14 #include "net/base/io_buffer.h"
15 #include "net/base/net_errors.h"
16 #include "net/disk_cache/blockfile/backend_impl.h"
17 #include "net/disk_cache/blockfile/entry_impl.h"
18 #include "net/disk_cache/blockfile/file.h"
19 #include "net/disk_cache/net_log_parameters.h"
21 using base::Time;
23 namespace {
25 // Stream of the sparse data index.
26 const int kSparseIndex = 2;
28 // Stream of the sparse data.
29 const int kSparseData = 1;
31 // We can have up to 64k children.
32 const int kMaxMapSize = 8 * 1024;
34 // The maximum number of bytes that a child can store.
35 const int kMaxEntrySize = 0x100000;
37 // The size of each data block (tracked by the child allocation bitmap).
38 const int kBlockSize = 1024;
40 // Returns the name of a child entry given the base_name and signature of the
41 // parent and the child_id.
42 // If the entry is called entry_name, child entries will be named something
43 // like Range_entry_name:XXX:YYY where XXX is the entry signature and YYY is the
44 // number of the particular child.
45 std::string GenerateChildName(const std::string& base_name, int64 signature,
46 int64 child_id) {
47 return base::StringPrintf("Range_%s:%" PRIx64 ":%" PRIx64, base_name.c_str(),
48 signature, child_id);
51 // This class deletes the children of a sparse entry.
52 class ChildrenDeleter
53 : public base::RefCounted<ChildrenDeleter>,
54 public disk_cache::FileIOCallback {
55 public:
56 ChildrenDeleter(disk_cache::BackendImpl* backend, const std::string& name)
57 : backend_(backend->GetWeakPtr()), name_(name), signature_(0) {}
59 void OnFileIOComplete(int bytes_copied) override;
61 // Two ways of deleting the children: if we have the children map, use Start()
62 // directly, otherwise pass the data address to ReadData().
63 void Start(char* buffer, int len);
64 void ReadData(disk_cache::Addr address, int len);
66 private:
67 friend class base::RefCounted<ChildrenDeleter>;
68 ~ChildrenDeleter() override {}
70 void DeleteChildren();
72 base::WeakPtr<disk_cache::BackendImpl> backend_;
73 std::string name_;
74 disk_cache::Bitmap children_map_;
75 int64 signature_;
76 scoped_ptr<char[]> buffer_;
77 DISALLOW_COPY_AND_ASSIGN(ChildrenDeleter);
80 // This is the callback of the file operation.
81 void ChildrenDeleter::OnFileIOComplete(int bytes_copied) {
82 char* buffer = buffer_.release();
83 Start(buffer, bytes_copied);
86 void ChildrenDeleter::Start(char* buffer, int len) {
87 buffer_.reset(buffer);
88 if (len < static_cast<int>(sizeof(disk_cache::SparseData)))
89 return Release();
91 // Just copy the information from |buffer|, delete |buffer| and start deleting
92 // the child entries.
93 disk_cache::SparseData* data =
94 reinterpret_cast<disk_cache::SparseData*>(buffer);
95 signature_ = data->header.signature;
97 int num_bits = (len - sizeof(disk_cache::SparseHeader)) * 8;
98 children_map_.Resize(num_bits, false);
99 children_map_.SetMap(data->bitmap, num_bits / 32);
100 buffer_.reset();
102 DeleteChildren();
105 void ChildrenDeleter::ReadData(disk_cache::Addr address, int len) {
106 DCHECK(address.is_block_file());
107 if (!backend_.get())
108 return Release();
110 disk_cache::File* file(backend_->File(address));
111 if (!file)
112 return Release();
114 size_t file_offset = address.start_block() * address.BlockSize() +
115 disk_cache::kBlockHeaderSize;
117 buffer_.reset(new char[len]);
118 bool completed;
119 if (!file->Read(buffer_.get(), len, file_offset, this, &completed))
120 return Release();
122 if (completed)
123 OnFileIOComplete(len);
125 // And wait until OnFileIOComplete gets called.
128 void ChildrenDeleter::DeleteChildren() {
129 int child_id = 0;
130 if (!children_map_.FindNextSetBit(&child_id) || !backend_.get()) {
131 // We are done. Just delete this object.
132 return Release();
134 std::string child_name = GenerateChildName(name_, signature_, child_id);
135 backend_->SyncDoomEntry(child_name);
136 children_map_.Set(child_id, false);
138 // Post a task to delete the next child.
139 base::MessageLoop::current()->PostTask(
140 FROM_HERE, base::Bind(&ChildrenDeleter::DeleteChildren, this));
143 // Returns the NetLog event type corresponding to a SparseOperation.
144 net::NetLog::EventType GetSparseEventType(
145 disk_cache::SparseControl::SparseOperation operation) {
146 switch (operation) {
147 case disk_cache::SparseControl::kReadOperation:
148 return net::NetLog::TYPE_SPARSE_READ;
149 case disk_cache::SparseControl::kWriteOperation:
150 return net::NetLog::TYPE_SPARSE_WRITE;
151 case disk_cache::SparseControl::kGetRangeOperation:
152 return net::NetLog::TYPE_SPARSE_GET_RANGE;
153 default:
154 NOTREACHED();
155 return net::NetLog::TYPE_CANCELLED;
159 // Logs the end event for |operation| on a child entry. Range operations log
160 // no events for each child they search through.
161 void LogChildOperationEnd(const net::BoundNetLog& net_log,
162 disk_cache::SparseControl::SparseOperation operation,
163 int result) {
164 if (net_log.IsLogging()) {
165 net::NetLog::EventType event_type;
166 switch (operation) {
167 case disk_cache::SparseControl::kReadOperation:
168 event_type = net::NetLog::TYPE_SPARSE_READ_CHILD_DATA;
169 break;
170 case disk_cache::SparseControl::kWriteOperation:
171 event_type = net::NetLog::TYPE_SPARSE_WRITE_CHILD_DATA;
172 break;
173 case disk_cache::SparseControl::kGetRangeOperation:
174 return;
175 default:
176 NOTREACHED();
177 return;
179 net_log.EndEventWithNetErrorCode(event_type, result);
183 } // namespace.
185 namespace disk_cache {
187 SparseControl::SparseControl(EntryImpl* entry)
188 : entry_(entry),
189 child_(NULL),
190 operation_(kNoOperation),
191 pending_(false),
192 finished_(false),
193 init_(false),
194 range_found_(false),
195 abort_(false),
196 child_map_(child_data_.bitmap, kNumSparseBits, kNumSparseBits / 32),
197 offset_(0),
198 buf_len_(0),
199 child_offset_(0),
200 child_len_(0),
201 result_(0) {
202 memset(&sparse_header_, 0, sizeof(sparse_header_));
203 memset(&child_data_, 0, sizeof(child_data_));
206 SparseControl::~SparseControl() {
207 if (child_)
208 CloseChild();
209 if (init_)
210 WriteSparseData();
213 int SparseControl::Init() {
214 DCHECK(!init_);
216 // We should not have sparse data for the exposed entry.
217 if (entry_->GetDataSize(kSparseData))
218 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
220 // Now see if there is something where we store our data.
221 int rv = net::OK;
222 int data_len = entry_->GetDataSize(kSparseIndex);
223 if (!data_len) {
224 rv = CreateSparseEntry();
225 } else {
226 rv = OpenSparseEntry(data_len);
229 if (rv == net::OK)
230 init_ = true;
231 return rv;
234 bool SparseControl::CouldBeSparse() const {
235 DCHECK(!init_);
237 if (entry_->GetDataSize(kSparseData))
238 return false;
240 // We don't verify the data, just see if it could be there.
241 return (entry_->GetDataSize(kSparseIndex) != 0);
244 int SparseControl::StartIO(SparseOperation op, int64 offset, net::IOBuffer* buf,
245 int buf_len, const CompletionCallback& callback) {
246 DCHECK(init_);
247 // We don't support simultaneous IO for sparse data.
248 if (operation_ != kNoOperation)
249 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
251 if (offset < 0 || buf_len < 0)
252 return net::ERR_INVALID_ARGUMENT;
254 // We only support up to 64 GB.
255 if (static_cast<uint64>(offset) + static_cast<unsigned int>(buf_len) >=
256 GG_UINT64_C(0x1000000000)) {
257 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
260 DCHECK(!user_buf_.get());
261 DCHECK(user_callback_.is_null());
263 if (!buf && (op == kReadOperation || op == kWriteOperation))
264 return 0;
266 // Copy the operation parameters.
267 operation_ = op;
268 offset_ = offset;
269 user_buf_ = buf ? new net::DrainableIOBuffer(buf, buf_len) : NULL;
270 buf_len_ = buf_len;
271 user_callback_ = callback;
273 result_ = 0;
274 pending_ = false;
275 finished_ = false;
276 abort_ = false;
278 if (entry_->net_log().IsLogging()) {
279 entry_->net_log().BeginEvent(
280 GetSparseEventType(operation_),
281 CreateNetLogSparseOperationCallback(offset_, buf_len_));
283 DoChildrenIO();
285 if (!pending_) {
286 // Everything was done synchronously.
287 operation_ = kNoOperation;
288 user_buf_ = NULL;
289 user_callback_.Reset();
290 return result_;
293 return net::ERR_IO_PENDING;
296 int SparseControl::GetAvailableRange(int64 offset, int len, int64* start) {
297 DCHECK(init_);
298 // We don't support simultaneous IO for sparse data.
299 if (operation_ != kNoOperation)
300 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
302 DCHECK(start);
304 range_found_ = false;
305 int result = StartIO(
306 kGetRangeOperation, offset, NULL, len, CompletionCallback());
307 if (range_found_) {
308 *start = offset_;
309 return result;
312 // This is a failure. We want to return a valid start value in any case.
313 *start = offset;
314 return result < 0 ? result : 0; // Don't mask error codes to the caller.
317 void SparseControl::CancelIO() {
318 if (operation_ == kNoOperation)
319 return;
320 abort_ = true;
323 int SparseControl::ReadyToUse(const CompletionCallback& callback) {
324 if (!abort_)
325 return net::OK;
327 // We'll grab another reference to keep this object alive because we just have
328 // one extra reference due to the pending IO operation itself, but we'll
329 // release that one before invoking user_callback_.
330 entry_->AddRef(); // Balanced in DoAbortCallbacks.
331 abort_callbacks_.push_back(callback);
332 return net::ERR_IO_PENDING;
335 // Static
336 void SparseControl::DeleteChildren(EntryImpl* entry) {
337 DCHECK(entry->GetEntryFlags() & PARENT_ENTRY);
338 int data_len = entry->GetDataSize(kSparseIndex);
339 if (data_len < static_cast<int>(sizeof(SparseData)) ||
340 entry->GetDataSize(kSparseData))
341 return;
343 int map_len = data_len - sizeof(SparseHeader);
344 if (map_len > kMaxMapSize || map_len % 4)
345 return;
347 char* buffer;
348 Addr address;
349 entry->GetData(kSparseIndex, &buffer, &address);
350 if (!buffer && !address.is_initialized())
351 return;
353 entry->net_log().AddEvent(net::NetLog::TYPE_SPARSE_DELETE_CHILDREN);
355 DCHECK(entry->backend_.get());
356 ChildrenDeleter* deleter = new ChildrenDeleter(entry->backend_.get(),
357 entry->GetKey());
358 // The object will self destruct when finished.
359 deleter->AddRef();
361 if (buffer) {
362 base::MessageLoop::current()->PostTask(
363 FROM_HERE,
364 base::Bind(&ChildrenDeleter::Start, deleter, buffer, data_len));
365 } else {
366 base::MessageLoop::current()->PostTask(
367 FROM_HERE,
368 base::Bind(&ChildrenDeleter::ReadData, deleter, address, data_len));
372 // We are going to start using this entry to store sparse data, so we have to
373 // initialize our control info.
374 int SparseControl::CreateSparseEntry() {
375 if (CHILD_ENTRY & entry_->GetEntryFlags())
376 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
378 memset(&sparse_header_, 0, sizeof(sparse_header_));
379 sparse_header_.signature = Time::Now().ToInternalValue();
380 sparse_header_.magic = kIndexMagic;
381 sparse_header_.parent_key_len = entry_->GetKey().size();
382 children_map_.Resize(kNumSparseBits, true);
384 // Save the header. The bitmap is saved in the destructor.
385 scoped_refptr<net::IOBuffer> buf(
386 new net::WrappedIOBuffer(reinterpret_cast<char*>(&sparse_header_)));
388 int rv = entry_->WriteData(kSparseIndex, 0, buf.get(), sizeof(sparse_header_),
389 CompletionCallback(), false);
390 if (rv != sizeof(sparse_header_)) {
391 DLOG(ERROR) << "Unable to save sparse_header_";
392 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
395 entry_->SetEntryFlags(PARENT_ENTRY);
396 return net::OK;
399 // We are opening an entry from disk. Make sure that our control data is there.
400 int SparseControl::OpenSparseEntry(int data_len) {
401 if (data_len < static_cast<int>(sizeof(SparseData)))
402 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
404 if (entry_->GetDataSize(kSparseData))
405 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
407 if (!(PARENT_ENTRY & entry_->GetEntryFlags()))
408 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
410 // Dont't go over board with the bitmap. 8 KB gives us offsets up to 64 GB.
411 int map_len = data_len - sizeof(sparse_header_);
412 if (map_len > kMaxMapSize || map_len % 4)
413 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
415 scoped_refptr<net::IOBuffer> buf(
416 new net::WrappedIOBuffer(reinterpret_cast<char*>(&sparse_header_)));
418 // Read header.
419 int rv = entry_->ReadData(kSparseIndex, 0, buf.get(), sizeof(sparse_header_),
420 CompletionCallback());
421 if (rv != static_cast<int>(sizeof(sparse_header_)))
422 return net::ERR_CACHE_READ_FAILURE;
424 // The real validation should be performed by the caller. This is just to
425 // double check.
426 if (sparse_header_.magic != kIndexMagic ||
427 sparse_header_.parent_key_len !=
428 static_cast<int>(entry_->GetKey().size()))
429 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
431 // Read the actual bitmap.
432 buf = new net::IOBuffer(map_len);
433 rv = entry_->ReadData(kSparseIndex, sizeof(sparse_header_), buf.get(),
434 map_len, CompletionCallback());
435 if (rv != map_len)
436 return net::ERR_CACHE_READ_FAILURE;
438 // Grow the bitmap to the current size and copy the bits.
439 children_map_.Resize(map_len * 8, false);
440 children_map_.SetMap(reinterpret_cast<uint32*>(buf->data()), map_len);
441 return net::OK;
444 bool SparseControl::OpenChild() {
445 DCHECK_GE(result_, 0);
447 std::string key = GenerateChildKey();
448 if (child_) {
449 // Keep using the same child or open another one?.
450 if (key == child_->GetKey())
451 return true;
452 CloseChild();
455 // See if we are tracking this child.
456 if (!ChildPresent())
457 return ContinueWithoutChild(key);
459 if (!entry_->backend_.get())
460 return false;
462 child_ = entry_->backend_->OpenEntryImpl(key);
463 if (!child_)
464 return ContinueWithoutChild(key);
466 EntryImpl* child = static_cast<EntryImpl*>(child_);
467 if (!(CHILD_ENTRY & child->GetEntryFlags()) ||
468 child->GetDataSize(kSparseIndex) <
469 static_cast<int>(sizeof(child_data_)))
470 return KillChildAndContinue(key, false);
472 scoped_refptr<net::WrappedIOBuffer> buf(
473 new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_)));
475 // Read signature.
476 int rv = child_->ReadData(kSparseIndex, 0, buf.get(), sizeof(child_data_),
477 CompletionCallback());
478 if (rv != sizeof(child_data_))
479 return KillChildAndContinue(key, true); // This is a fatal failure.
481 if (child_data_.header.signature != sparse_header_.signature ||
482 child_data_.header.magic != kIndexMagic)
483 return KillChildAndContinue(key, false);
485 if (child_data_.header.last_block_len < 0 ||
486 child_data_.header.last_block_len >= kBlockSize) {
487 // Make sure these values are always within range.
488 child_data_.header.last_block_len = 0;
489 child_data_.header.last_block = -1;
492 return true;
495 void SparseControl::CloseChild() {
496 scoped_refptr<net::WrappedIOBuffer> buf(
497 new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_)));
499 // Save the allocation bitmap before closing the child entry.
500 int rv = child_->WriteData(kSparseIndex, 0, buf.get(), sizeof(child_data_),
501 CompletionCallback(), false);
502 if (rv != sizeof(child_data_))
503 DLOG(ERROR) << "Failed to save child data";
504 child_->Release();
505 child_ = NULL;
508 std::string SparseControl::GenerateChildKey() {
509 return GenerateChildName(entry_->GetKey(), sparse_header_.signature,
510 offset_ >> 20);
513 // We are deleting the child because something went wrong.
514 bool SparseControl::KillChildAndContinue(const std::string& key, bool fatal) {
515 SetChildBit(false);
516 child_->DoomImpl();
517 child_->Release();
518 child_ = NULL;
519 if (fatal) {
520 result_ = net::ERR_CACHE_READ_FAILURE;
521 return false;
523 return ContinueWithoutChild(key);
526 // We were not able to open this child; see what we can do.
527 bool SparseControl::ContinueWithoutChild(const std::string& key) {
528 if (kReadOperation == operation_)
529 return false;
530 if (kGetRangeOperation == operation_)
531 return true;
533 if (!entry_->backend_.get())
534 return false;
536 child_ = entry_->backend_->CreateEntryImpl(key);
537 if (!child_) {
538 child_ = NULL;
539 result_ = net::ERR_CACHE_READ_FAILURE;
540 return false;
542 // Write signature.
543 InitChildData();
544 return true;
547 bool SparseControl::ChildPresent() {
548 int child_bit = static_cast<int>(offset_ >> 20);
549 if (children_map_.Size() <= child_bit)
550 return false;
552 return children_map_.Get(child_bit);
555 void SparseControl::SetChildBit(bool value) {
556 int child_bit = static_cast<int>(offset_ >> 20);
558 // We may have to increase the bitmap of child entries.
559 if (children_map_.Size() <= child_bit)
560 children_map_.Resize(Bitmap::RequiredArraySize(child_bit + 1) * 32, true);
562 children_map_.Set(child_bit, value);
565 void SparseControl::WriteSparseData() {
566 scoped_refptr<net::IOBuffer> buf(new net::WrappedIOBuffer(
567 reinterpret_cast<const char*>(children_map_.GetMap())));
569 int len = children_map_.ArraySize() * 4;
570 int rv = entry_->WriteData(kSparseIndex, sizeof(sparse_header_), buf.get(),
571 len, CompletionCallback(), false);
572 if (rv != len) {
573 DLOG(ERROR) << "Unable to save sparse map";
577 bool SparseControl::VerifyRange() {
578 DCHECK_GE(result_, 0);
580 child_offset_ = static_cast<int>(offset_) & (kMaxEntrySize - 1);
581 child_len_ = std::min(buf_len_, kMaxEntrySize - child_offset_);
583 // We can write to (or get info from) anywhere in this child.
584 if (operation_ != kReadOperation)
585 return true;
587 // Check that there are no holes in this range.
588 int last_bit = (child_offset_ + child_len_ + 1023) >> 10;
589 int start = child_offset_ >> 10;
590 if (child_map_.FindNextBit(&start, last_bit, false)) {
591 // Something is not here.
592 DCHECK_GE(child_data_.header.last_block_len, 0);
593 DCHECK_LT(child_data_.header.last_block_len, kBlockSize);
594 int partial_block_len = PartialBlockLength(start);
595 if (start == child_offset_ >> 10) {
596 // It looks like we don't have anything.
597 if (partial_block_len <= (child_offset_ & (kBlockSize - 1)))
598 return false;
601 // We have the first part.
602 child_len_ = (start << 10) - child_offset_;
603 if (partial_block_len) {
604 // We may have a few extra bytes.
605 child_len_ = std::min(child_len_ + partial_block_len, buf_len_);
607 // There is no need to read more after this one.
608 buf_len_ = child_len_;
610 return true;
613 void SparseControl::UpdateRange(int result) {
614 if (result <= 0 || operation_ != kWriteOperation)
615 return;
617 DCHECK_GE(child_data_.header.last_block_len, 0);
618 DCHECK_LT(child_data_.header.last_block_len, kBlockSize);
620 // Write the bitmap.
621 int first_bit = child_offset_ >> 10;
622 int block_offset = child_offset_ & (kBlockSize - 1);
623 if (block_offset && (child_data_.header.last_block != first_bit ||
624 child_data_.header.last_block_len < block_offset)) {
625 // The first block is not completely filled; ignore it.
626 first_bit++;
629 int last_bit = (child_offset_ + result) >> 10;
630 block_offset = (child_offset_ + result) & (kBlockSize - 1);
632 // This condition will hit with the following criteria:
633 // 1. The first byte doesn't follow the last write.
634 // 2. The first byte is in the middle of a block.
635 // 3. The first byte and the last byte are in the same block.
636 if (first_bit > last_bit)
637 return;
639 if (block_offset && !child_map_.Get(last_bit)) {
640 // The last block is not completely filled; save it for later.
641 child_data_.header.last_block = last_bit;
642 child_data_.header.last_block_len = block_offset;
643 } else {
644 child_data_.header.last_block = -1;
647 child_map_.SetRange(first_bit, last_bit, true);
650 int SparseControl::PartialBlockLength(int block_index) const {
651 if (block_index == child_data_.header.last_block)
652 return child_data_.header.last_block_len;
654 // This is really empty.
655 return 0;
658 void SparseControl::InitChildData() {
659 // We know the real type of child_.
660 EntryImpl* child = static_cast<EntryImpl*>(child_);
661 child->SetEntryFlags(CHILD_ENTRY);
663 memset(&child_data_, 0, sizeof(child_data_));
664 child_data_.header = sparse_header_;
666 scoped_refptr<net::WrappedIOBuffer> buf(
667 new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_)));
669 int rv = child_->WriteData(kSparseIndex, 0, buf.get(), sizeof(child_data_),
670 CompletionCallback(), false);
671 if (rv != sizeof(child_data_))
672 DLOG(ERROR) << "Failed to save child data";
673 SetChildBit(true);
676 void SparseControl::DoChildrenIO() {
677 while (DoChildIO()) continue;
679 // Range operations are finished synchronously, often without setting
680 // |finished_| to true.
681 if (kGetRangeOperation == operation_ &&
682 entry_->net_log().IsLogging()) {
683 entry_->net_log().EndEvent(
684 net::NetLog::TYPE_SPARSE_GET_RANGE,
685 CreateNetLogGetAvailableRangeResultCallback(offset_, result_));
687 if (finished_) {
688 if (kGetRangeOperation != operation_ &&
689 entry_->net_log().IsLogging()) {
690 entry_->net_log().EndEvent(GetSparseEventType(operation_));
692 if (pending_)
693 DoUserCallback(); // Don't touch this object after this point.
697 bool SparseControl::DoChildIO() {
698 finished_ = true;
699 if (!buf_len_ || result_ < 0)
700 return false;
702 if (!OpenChild())
703 return false;
705 if (!VerifyRange())
706 return false;
708 // We have more work to do. Let's not trigger a callback to the caller.
709 finished_ = false;
710 CompletionCallback callback;
711 if (!user_callback_.is_null()) {
712 callback =
713 base::Bind(&SparseControl::OnChildIOCompleted, base::Unretained(this));
716 int rv = 0;
717 switch (operation_) {
718 case kReadOperation:
719 if (entry_->net_log().IsLogging()) {
720 entry_->net_log().BeginEvent(
721 net::NetLog::TYPE_SPARSE_READ_CHILD_DATA,
722 CreateNetLogSparseReadWriteCallback(child_->net_log().source(),
723 child_len_));
725 rv = child_->ReadDataImpl(kSparseData, child_offset_, user_buf_.get(),
726 child_len_, callback);
727 break;
728 case kWriteOperation:
729 if (entry_->net_log().IsLogging()) {
730 entry_->net_log().BeginEvent(
731 net::NetLog::TYPE_SPARSE_WRITE_CHILD_DATA,
732 CreateNetLogSparseReadWriteCallback(child_->net_log().source(),
733 child_len_));
735 rv = child_->WriteDataImpl(kSparseData, child_offset_, user_buf_.get(),
736 child_len_, callback, false);
737 break;
738 case kGetRangeOperation:
739 rv = DoGetAvailableRange();
740 break;
741 default:
742 NOTREACHED();
745 if (rv == net::ERR_IO_PENDING) {
746 if (!pending_) {
747 pending_ = true;
748 // The child will protect himself against closing the entry while IO is in
749 // progress. However, this entry can still be closed, and that would not
750 // be a good thing for us, so we increase the refcount until we're
751 // finished doing sparse stuff.
752 entry_->AddRef(); // Balanced in DoUserCallback.
754 return false;
756 if (!rv)
757 return false;
759 DoChildIOCompleted(rv);
760 return true;
763 int SparseControl::DoGetAvailableRange() {
764 if (!child_)
765 return child_len_; // Move on to the next child.
767 // Bits on the bitmap should only be set when the corresponding block was
768 // fully written (it's really being used). If a block is partially used, it
769 // has to start with valid data, the length of the valid data is saved in
770 // |header.last_block_len| and the block itself should match
771 // |header.last_block|.
773 // In other words, (|header.last_block| + |header.last_block_len|) is the
774 // offset where the last write ended, and data in that block (which is not
775 // marked as used because it is not full) will only be reused if the next
776 // write continues at that point.
778 // This code has to find if there is any data between child_offset_ and
779 // child_offset_ + child_len_.
780 int last_bit = (child_offset_ + child_len_ + kBlockSize - 1) >> 10;
781 int start = child_offset_ >> 10;
782 int partial_start_bytes = PartialBlockLength(start);
783 int found = start;
784 int bits_found = child_map_.FindBits(&found, last_bit, true);
785 bool is_last_block_in_range = start < child_data_.header.last_block &&
786 child_data_.header.last_block < last_bit;
788 int block_offset = child_offset_ & (kBlockSize - 1);
789 if (!bits_found && partial_start_bytes <= block_offset) {
790 if (!is_last_block_in_range)
791 return child_len_;
792 found = last_bit - 1; // There are some bytes here.
795 // We are done. Just break the loop and reset result_ to our real result.
796 range_found_ = true;
798 int bytes_found = bits_found << 10;
799 bytes_found += PartialBlockLength(found + bits_found);
801 // found now points to the first bytes. Lets see if we have data before it.
802 int empty_start = std::max((found << 10) - child_offset_, 0);
803 if (empty_start >= child_len_)
804 return child_len_;
806 // At this point we have bytes_found stored after (found << 10), and we want
807 // child_len_ bytes after child_offset_. The first empty_start bytes after
808 // child_offset_ are invalid.
810 if (start == found)
811 bytes_found -= block_offset;
813 // If the user is searching past the end of this child, bits_found is the
814 // right result; otherwise, we have some empty space at the start of this
815 // query that we have to subtract from the range that we searched.
816 result_ = std::min(bytes_found, child_len_ - empty_start);
818 if (partial_start_bytes) {
819 result_ = std::min(partial_start_bytes - block_offset, child_len_);
820 empty_start = 0;
823 // Only update offset_ when this query found zeros at the start.
824 if (empty_start)
825 offset_ += empty_start;
827 // This will actually break the loop.
828 buf_len_ = 0;
829 return 0;
832 void SparseControl::DoChildIOCompleted(int result) {
833 LogChildOperationEnd(entry_->net_log(), operation_, result);
834 if (result < 0) {
835 // We fail the whole operation if we encounter an error.
836 result_ = result;
837 return;
840 UpdateRange(result);
842 result_ += result;
843 offset_ += result;
844 buf_len_ -= result;
846 // We'll be reusing the user provided buffer for the next chunk.
847 if (buf_len_ && user_buf_.get())
848 user_buf_->DidConsume(result);
851 void SparseControl::OnChildIOCompleted(int result) {
852 DCHECK_NE(net::ERR_IO_PENDING, result);
853 DoChildIOCompleted(result);
855 if (abort_) {
856 // We'll return the current result of the operation, which may be less than
857 // the bytes to read or write, but the user cancelled the operation.
858 abort_ = false;
859 if (entry_->net_log().IsLogging()) {
860 entry_->net_log().AddEvent(net::NetLog::TYPE_CANCELLED);
861 entry_->net_log().EndEvent(GetSparseEventType(operation_));
863 // We have an indirect reference to this object for every callback so if
864 // there is only one callback, we may delete this object before reaching
865 // DoAbortCallbacks.
866 bool has_abort_callbacks = !abort_callbacks_.empty();
867 DoUserCallback();
868 if (has_abort_callbacks)
869 DoAbortCallbacks();
870 return;
873 // We are running a callback from the message loop. It's time to restart what
874 // we were doing before.
875 DoChildrenIO();
878 void SparseControl::DoUserCallback() {
879 DCHECK(!user_callback_.is_null());
880 CompletionCallback cb = user_callback_;
881 user_callback_.Reset();
882 user_buf_ = NULL;
883 pending_ = false;
884 operation_ = kNoOperation;
885 int rv = result_;
886 entry_->Release(); // Don't touch object after this line.
887 cb.Run(rv);
890 void SparseControl::DoAbortCallbacks() {
891 for (size_t i = 0; i < abort_callbacks_.size(); i++) {
892 // Releasing all references to entry_ may result in the destruction of this
893 // object so we should not be touching it after the last Release().
894 CompletionCallback cb = abort_callbacks_[i];
895 if (i == abort_callbacks_.size() - 1)
896 abort_callbacks_.clear();
898 entry_->Release(); // Don't touch object after this line.
899 cb.Run(net::OK);
903 } // namespace disk_cache