1 // Copyright 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #ifndef BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_
6 #define BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_
11 #include "base/base_export.h"
12 #include "base/basictypes.h"
13 #include "base/callback_forward.h"
14 #include "base/location.h"
15 #include "base/memory/ref_counted.h"
16 #include "base/memory/scoped_ptr.h"
17 #include "base/message_loop/incoming_task_queue.h"
18 #include "base/message_loop/message_loop_proxy.h"
19 #include "base/message_loop/message_loop_proxy_impl.h"
20 #include "base/message_loop/message_pump.h"
21 #include "base/message_loop/timer_slack.h"
22 #include "base/observer_list.h"
23 #include "base/pending_task.h"
24 #include "base/sequenced_task_runner_helpers.h"
25 #include "base/synchronization/lock.h"
26 #include "base/time/time.h"
27 #include "base/tracking_info.h"
29 // TODO(sky): these includes should not be necessary. Nuke them.
31 #include "base/message_loop/message_pump_win.h"
33 #include "base/message_loop/message_pump_io_ios.h"
34 #elif defined(OS_POSIX)
35 #include "base/message_loop/message_pump_libevent.h"
41 class MessagePumpObserver
;
43 class ThreadTaskRunnerHandle
;
46 // A MessageLoop is used to process events for a particular thread. There is
47 // at most one MessageLoop instance per thread.
49 // Events include at a minimum Task instances submitted to PostTask and its
50 // variants. Depending on the type of message pump used by the MessageLoop
51 // other events such as UI messages may be processed. On Windows APC calls (as
52 // time permits) and signals sent to a registered set of HANDLEs may also be
55 // NOTE: Unless otherwise specified, a MessageLoop's methods may only be called
56 // on the thread where the MessageLoop's Run method executes.
58 // NOTE: MessageLoop has task reentrancy protection. This means that if a
59 // task is being processed, a second task cannot start until the first task is
60 // finished. Reentrancy can happen when processing a task, and an inner
61 // message pump is created. That inner pump then processes native messages
62 // which could implicitly start an inner task. Inner message pumps are created
63 // with dialogs (DialogBox), common dialogs (GetOpenFileName), OLE functions
64 // (DoDragDrop), printer functions (StartDoc) and *many* others.
66 // Sample workaround when inner task processing is needed:
69 // MessageLoop::ScopedNestableTaskAllower allow(MessageLoop::current());
70 // hr = DoDragDrop(...); // Implicitly runs a modal message loop.
72 // // Process |hr| (the result returned by DoDragDrop()).
74 // Please be SURE your task is reentrant (nestable) and all global variables
75 // are stable and accessible before calling SetNestableTasksAllowed(true).
77 class BASE_EXPORT MessageLoop
: public MessagePump::Delegate
{
79 // A MessageLoop has a particular type, which indicates the set of
80 // asynchronous events it may process in addition to tasks and timers.
83 // This type of ML only supports tasks and timers.
86 // This type of ML also supports native UI events (e.g., Windows messages).
87 // See also MessageLoopForUI.
90 // This type of ML also supports asynchronous IO. See also
94 // This type of ML is backed by a Java message handler which is responsible
95 // for running the tasks added to the ML. This is only for use on Android.
96 // TYPE_JAVA behaves in essence like TYPE_UI, except during construction
97 // where it does not use the main thread specific pump factory.
100 // MessagePump was supplied to constructor.
107 #if defined(OS_ANDROID)
109 #endif // defined(OS_ANDROID)
112 // Normally, it is not necessary to instantiate a MessageLoop. Instead, it
113 // is typical to make use of the current thread's MessageLoop instance.
114 explicit MessageLoop(Type type
= TYPE_DEFAULT
);
115 // Creates a TYPE_CUSTOM MessageLoop with the supplied MessagePump, which must
117 explicit MessageLoop(scoped_ptr
<base::MessagePump
> pump
);
118 virtual ~MessageLoop();
120 // Returns the MessageLoop object for the current thread, or null if none.
121 static MessageLoop
* current();
123 static void EnableHistogrammer(bool enable_histogrammer
);
125 typedef scoped_ptr
<MessagePump
> (MessagePumpFactory
)();
126 // Uses the given base::MessagePumpForUIFactory to override the default
127 // MessagePump implementation for 'TYPE_UI'. Returns true if the factory
128 // was successfully registered.
129 static bool InitMessagePumpForUIFactory(MessagePumpFactory
* factory
);
131 // Creates the default MessagePump based on |type|. Caller owns return
133 static scoped_ptr
<MessagePump
> CreateMessagePumpForType(Type type
);
134 // A DestructionObserver is notified when the current MessageLoop is being
135 // destroyed. These observers are notified prior to MessageLoop::current()
136 // being changed to return NULL. This gives interested parties the chance to
137 // do final cleanup that depends on the MessageLoop.
139 // NOTE: Any tasks posted to the MessageLoop during this notification will
140 // not be run. Instead, they will be deleted.
142 class BASE_EXPORT DestructionObserver
{
144 virtual void WillDestroyCurrentMessageLoop() = 0;
147 virtual ~DestructionObserver();
150 // Add a DestructionObserver, which will start receiving notifications
152 void AddDestructionObserver(DestructionObserver
* destruction_observer
);
154 // Remove a DestructionObserver. It is safe to call this method while a
155 // DestructionObserver is receiving a notification callback.
156 void RemoveDestructionObserver(DestructionObserver
* destruction_observer
);
158 // The "PostTask" family of methods call the task's Run method asynchronously
159 // from within a message loop at some point in the future.
161 // With the PostTask variant, tasks are invoked in FIFO order, inter-mixed
162 // with normal UI or IO event processing. With the PostDelayedTask variant,
163 // tasks are called after at least approximately 'delay_ms' have elapsed.
165 // The NonNestable variants work similarly except that they promise never to
166 // dispatch the task from a nested invocation of MessageLoop::Run. Instead,
167 // such tasks get deferred until the top-most MessageLoop::Run is executing.
169 // The MessageLoop takes ownership of the Task, and deletes it after it has
172 // PostTask(from_here, task) is equivalent to
173 // PostDelayedTask(from_here, task, 0).
175 // NOTE: These methods may be called on any thread. The Task will be invoked
176 // on the thread that executes MessageLoop::Run().
177 void PostTask(const tracked_objects::Location
& from_here
,
178 const Closure
& task
);
180 void PostDelayedTask(const tracked_objects::Location
& from_here
,
184 void PostNonNestableTask(const tracked_objects::Location
& from_here
,
185 const Closure
& task
);
187 void PostNonNestableDelayedTask(const tracked_objects::Location
& from_here
,
191 // A variant on PostTask that deletes the given object. This is useful
192 // if the object needs to live until the next run of the MessageLoop (for
193 // example, deleting a RenderProcessHost from within an IPC callback is not
196 // NOTE: This method may be called on any thread. The object will be deleted
197 // on the thread that executes MessageLoop::Run(). If this is not the same
198 // as the thread that calls PostDelayedTask(FROM_HERE, ), then T MUST inherit
199 // from RefCountedThreadSafe<T>!
201 void DeleteSoon(const tracked_objects::Location
& from_here
, const T
* object
) {
202 base::subtle::DeleteHelperInternal
<T
, void>::DeleteViaSequencedTaskRunner(
203 this, from_here
, object
);
206 // A variant on PostTask that releases the given reference counted object
207 // (by calling its Release method). This is useful if the object needs to
208 // live until the next run of the MessageLoop, or if the object needs to be
209 // released on a particular thread.
211 // A common pattern is to manually increment the object's reference count
212 // (AddRef), clear the pointer, then issue a ReleaseSoon. The reference count
213 // is incremented manually to ensure clearing the pointer does not trigger a
214 // delete and to account for the upcoming decrement (ReleaseSoon). For
217 // scoped_refptr<Foo> foo = ...
219 // Foo* raw_foo = foo.get();
221 // message_loop->ReleaseSoon(raw_foo);
223 // NOTE: This method may be called on any thread. The object will be
224 // released (and thus possibly deleted) on the thread that executes
225 // MessageLoop::Run(). If this is not the same as the thread that calls
226 // PostDelayedTask(FROM_HERE, ), then T MUST inherit from
227 // RefCountedThreadSafe<T>!
229 void ReleaseSoon(const tracked_objects::Location
& from_here
,
231 base::subtle::ReleaseHelperInternal
<T
, void>::ReleaseViaSequencedTaskRunner(
232 this, from_here
, object
);
235 // Deprecated: use RunLoop instead.
236 // Run the message loop.
239 // Deprecated: use RunLoop instead.
240 // Process all pending tasks, windows messages, etc., but don't wait/sleep.
241 // Return as soon as all items that can be run are taken care of.
244 // TODO(jbates) remove this. crbug.com/131220. See QuitWhenIdle().
245 void Quit() { QuitWhenIdle(); }
247 // Deprecated: use RunLoop instead.
249 // Signals the Run method to return when it becomes idle. It will continue to
250 // process pending messages and future messages as long as they are enqueued.
251 // Warning: if the MessageLoop remains busy, it may never quit. Only use this
252 // Quit method when looping procedures (such as web pages) have been shut
255 // This method may only be called on the same thread that called Run, and Run
256 // must still be on the call stack.
258 // Use QuitClosure variants if you need to Quit another thread's MessageLoop,
259 // but note that doing so is fairly dangerous if the target thread makes
260 // nested calls to MessageLoop::Run. The problem being that you won't know
261 // which nested run loop you are quitting, so be careful!
264 // Deprecated: use RunLoop instead.
266 // This method is a variant of Quit, that does not wait for pending messages
267 // to be processed before returning from Run.
270 // TODO(jbates) remove this. crbug.com/131220. See QuitWhenIdleClosure().
271 static Closure
QuitClosure() { return QuitWhenIdleClosure(); }
273 // Deprecated: use RunLoop instead.
274 // Construct a Closure that will call QuitWhenIdle(). Useful to schedule an
275 // arbitrary MessageLoop to QuitWhenIdle.
276 static Closure
QuitWhenIdleClosure();
278 // Set the timer slack for this message loop.
279 void SetTimerSlack(TimerSlack timer_slack
) {
280 pump_
->SetTimerSlack(timer_slack
);
283 // Returns true if this loop is |type|. This allows subclasses (especially
284 // those in tests) to specialize how they are identified.
285 virtual bool IsType(Type type
) const;
287 // Returns the type passed to the constructor.
288 Type
type() const { return type_
; }
290 // Optional call to connect the thread name with this loop.
291 void set_thread_name(const std::string
& thread_name
) {
292 DCHECK(thread_name_
.empty()) << "Should not rename this thread!";
293 thread_name_
= thread_name
;
295 const std::string
& thread_name() const { return thread_name_
; }
297 // Gets the message loop proxy associated with this message loop.
298 scoped_refptr
<MessageLoopProxy
> message_loop_proxy() {
299 return message_loop_proxy_
;
302 // Enables or disables the recursive task processing. This happens in the case
303 // of recursive message loops. Some unwanted message loop may occurs when
304 // using common controls or printer functions. By default, recursive task
305 // processing is disabled.
307 // Please utilize |ScopedNestableTaskAllower| instead of calling these methods
308 // directly. In general nestable message loops are to be avoided. They are
309 // dangerous and difficult to get right, so please use with extreme caution.
311 // The specific case where tasks get queued is:
312 // - The thread is running a message loop.
313 // - It receives a task #1 and execute it.
314 // - The task #1 implicitly start a message loop, like a MessageBox in the
315 // unit test. This can also be StartDoc or GetSaveFileName.
316 // - The thread receives a task #2 before or while in this second message
318 // - With NestableTasksAllowed set to true, the task #2 will run right away.
319 // Otherwise, it will get executed right after task #1 completes at "thread
320 // message loop level".
321 void SetNestableTasksAllowed(bool allowed
);
322 bool NestableTasksAllowed() const;
324 // Enables nestable tasks on |loop| while in scope.
325 class ScopedNestableTaskAllower
{
327 explicit ScopedNestableTaskAllower(MessageLoop
* loop
)
329 old_state_(loop_
->NestableTasksAllowed()) {
330 loop_
->SetNestableTasksAllowed(true);
332 ~ScopedNestableTaskAllower() {
333 loop_
->SetNestableTasksAllowed(old_state_
);
341 // Returns true if we are currently running a nested message loop.
344 // A TaskObserver is an object that receives task notifications from the
347 // NOTE: A TaskObserver implementation should be extremely fast!
348 class BASE_EXPORT TaskObserver
{
352 // This method is called before processing a task.
353 virtual void WillProcessTask(const PendingTask
& pending_task
) = 0;
355 // This method is called after processing a task.
356 virtual void DidProcessTask(const PendingTask
& pending_task
) = 0;
359 virtual ~TaskObserver();
362 // These functions can only be called on the same thread that |this| is
364 void AddTaskObserver(TaskObserver
* task_observer
);
365 void RemoveTaskObserver(TaskObserver
* task_observer
);
367 // When we go into high resolution timer mode, we will stay in hi-res mode
369 static const int kHighResolutionTimerModeLeaseTimeMs
= 1000;
372 void set_os_modal_loop(bool os_modal_loop
) {
373 os_modal_loop_
= os_modal_loop
;
376 bool os_modal_loop() const {
377 return os_modal_loop_
;
381 // Can only be called from the thread that owns the MessageLoop.
382 bool is_running() const;
384 // Returns true if the message loop has high resolution timers enabled.
385 // Provided for testing.
386 bool IsHighResolutionTimerEnabledForTesting();
388 // Returns true if the message loop is "idle". Provided for testing.
389 bool IsIdleForTesting();
391 //----------------------------------------------------------------------------
393 scoped_ptr
<MessagePump
> pump_
;
396 friend class internal::IncomingTaskQueue
;
397 friend class RunLoop
;
399 // Configures various members for the two constructors.
402 // Invokes the actual run loop using the message pump.
405 // Called to process any delayed non-nestable tasks.
406 bool ProcessNextDelayedNonNestableTask();
408 // Runs the specified PendingTask.
409 void RunTask(const PendingTask
& pending_task
);
411 // Calls RunTask or queues the pending_task on the deferred task list if it
412 // cannot be run right now. Returns true if the task was run.
413 bool DeferOrRunPendingTask(const PendingTask
& pending_task
);
415 // Adds the pending task to delayed_work_queue_.
416 void AddToDelayedWorkQueue(const PendingTask
& pending_task
);
418 // Delete tasks that haven't run yet without running them. Used in the
419 // destructor to make sure all the task's destructors get called. Returns
420 // true if some work was done.
421 bool DeletePendingTasks();
423 // Creates a process-wide unique ID to represent this task in trace events.
424 // This will be mangled with a Process ID hash to reduce the likelyhood of
425 // colliding with MessageLoop pointers on other processes.
426 uint64
GetTaskTraceID(const PendingTask
& task
);
428 // Loads tasks from the incoming queue to |work_queue_| if the latter is
430 void ReloadWorkQueue();
432 // Wakes up the message pump. Can be called on any thread. The caller is
433 // responsible for synchronizing ScheduleWork() calls.
434 void ScheduleWork(bool was_empty
);
436 // Start recording histogram info about events and action IF it was enabled
437 // and IF the statistics recorder can accept a registration of our histogram.
438 void StartHistogrammer();
440 // Add occurrence of event to our histogram, so that we can see what is being
441 // done in a specific MessageLoop instance (i.e., specific thread).
442 // If message_histogram_ is NULL, this is a no-op.
443 void HistogramEvent(int event
);
445 // MessagePump::Delegate methods:
446 virtual bool DoWork() OVERRIDE
;
447 virtual bool DoDelayedWork(TimeTicks
* next_delayed_work_time
) OVERRIDE
;
448 virtual bool DoIdleWork() OVERRIDE
;
449 virtual void GetQueueingInformation(size_t* queue_size
,
450 TimeDelta
* queueing_delay
) OVERRIDE
;
454 // A list of tasks that need to be processed by this instance. Note that
455 // this queue is only accessed (push/pop) by our current thread.
456 TaskQueue work_queue_
;
458 // Contains delayed tasks, sorted by their 'delayed_run_time' property.
459 DelayedTaskQueue delayed_work_queue_
;
461 // A recent snapshot of Time::Now(), used to check delayed_work_queue_.
462 TimeTicks recent_time_
;
464 // A queue of non-nestable tasks that we had to defer because when it came
465 // time to execute them we were in a nested message loop. They will execute
466 // once we're out of nested message loops.
467 TaskQueue deferred_non_nestable_work_queue_
;
469 ObserverList
<DestructionObserver
> destruction_observers_
;
471 // A recursion block that prevents accidentally running additional tasks when
472 // insider a (accidentally induced?) nested message pump.
473 bool nestable_tasks_allowed_
;
476 // Should be set to true before calling Windows APIs like TrackPopupMenu, etc
477 // which enter a modal message loop.
481 std::string thread_name_
;
482 // A profiling histogram showing the counts of various messages and events.
483 HistogramBase
* message_histogram_
;
487 ObserverList
<TaskObserver
> task_observers_
;
489 scoped_refptr
<internal::IncomingTaskQueue
> incoming_task_queue_
;
491 // The message loop proxy associated with this message loop.
492 scoped_refptr
<internal::MessageLoopProxyImpl
> message_loop_proxy_
;
493 scoped_ptr
<ThreadTaskRunnerHandle
> thread_task_runner_handle_
;
495 template <class T
, class R
> friend class base::subtle::DeleteHelperInternal
;
496 template <class T
, class R
> friend class base::subtle::ReleaseHelperInternal
;
498 void DeleteSoonInternal(const tracked_objects::Location
& from_here
,
499 void(*deleter
)(const void*),
501 void ReleaseSoonInternal(const tracked_objects::Location
& from_here
,
502 void(*releaser
)(const void*),
505 DISALLOW_COPY_AND_ASSIGN(MessageLoop
);
508 #if !defined(OS_NACL)
510 //-----------------------------------------------------------------------------
511 // MessageLoopForUI extends MessageLoop with methods that are particular to a
512 // MessageLoop instantiated with TYPE_UI.
514 // This class is typically used like so:
515 // MessageLoopForUI::current()->...call some method...
517 class BASE_EXPORT MessageLoopForUI
: public MessageLoop
{
519 MessageLoopForUI() : MessageLoop(TYPE_UI
) {
522 // Returns the MessageLoopForUI of the current thread.
523 static MessageLoopForUI
* current() {
524 MessageLoop
* loop
= MessageLoop::current();
526 DCHECK_EQ(MessageLoop::TYPE_UI
, loop
->type());
527 return static_cast<MessageLoopForUI
*>(loop
);
530 static bool IsCurrent() {
531 MessageLoop
* loop
= MessageLoop::current();
532 return loop
&& loop
->type() == MessageLoop::TYPE_UI
;
536 // On iOS, the main message loop cannot be Run(). Instead call Attach(),
537 // which connects this MessageLoop to the UI thread's CFRunLoop and allows
538 // PostTask() to work.
542 #if defined(OS_ANDROID)
543 // On Android, the UI message loop is handled by Java side. So Run() should
544 // never be called. Instead use Start(), which will forward all the native UI
545 // events to the Java message loop.
550 typedef MessagePumpObserver Observer
;
552 // Please see message_pump_win for definitions of these methods.
553 void AddObserver(Observer
* observer
);
554 void RemoveObserver(Observer
* observer
);
557 #if defined(USE_OZONE) || (defined(OS_CHROMEOS) && !defined(USE_GLIB))
558 // Please see MessagePumpLibevent for definition.
559 bool WatchFileDescriptor(
562 MessagePumpLibevent::Mode mode
,
563 MessagePumpLibevent::FileDescriptorWatcher
* controller
,
564 MessagePumpLibevent::Watcher
* delegate
);
568 // Do not add any member variables to MessageLoopForUI! This is important b/c
569 // MessageLoopForUI is often allocated via MessageLoop(TYPE_UI). Any extra
570 // data that you need should be stored on the MessageLoop's pump_ instance.
571 COMPILE_ASSERT(sizeof(MessageLoop
) == sizeof(MessageLoopForUI
),
572 MessageLoopForUI_should_not_have_extra_member_variables
);
574 #endif // !defined(OS_NACL)
576 //-----------------------------------------------------------------------------
577 // MessageLoopForIO extends MessageLoop with methods that are particular to a
578 // MessageLoop instantiated with TYPE_IO.
580 // This class is typically used like so:
581 // MessageLoopForIO::current()->...call some method...
583 class BASE_EXPORT MessageLoopForIO
: public MessageLoop
{
585 MessageLoopForIO() : MessageLoop(TYPE_IO
) {
588 // Returns the MessageLoopForIO of the current thread.
589 static MessageLoopForIO
* current() {
590 MessageLoop
* loop
= MessageLoop::current();
591 DCHECK_EQ(MessageLoop::TYPE_IO
, loop
->type());
592 return static_cast<MessageLoopForIO
*>(loop
);
595 static bool IsCurrent() {
596 MessageLoop
* loop
= MessageLoop::current();
597 return loop
&& loop
->type() == MessageLoop::TYPE_IO
;
600 #if !defined(OS_NACL)
603 typedef MessagePumpForIO::IOHandler IOHandler
;
604 typedef MessagePumpForIO::IOContext IOContext
;
605 typedef MessagePumpForIO::IOObserver IOObserver
;
606 #elif defined(OS_IOS)
607 typedef MessagePumpIOSForIO::Watcher Watcher
;
608 typedef MessagePumpIOSForIO::FileDescriptorWatcher
609 FileDescriptorWatcher
;
610 typedef MessagePumpIOSForIO::IOObserver IOObserver
;
613 WATCH_READ
= MessagePumpIOSForIO::WATCH_READ
,
614 WATCH_WRITE
= MessagePumpIOSForIO::WATCH_WRITE
,
615 WATCH_READ_WRITE
= MessagePumpIOSForIO::WATCH_READ_WRITE
617 #elif defined(OS_POSIX)
618 typedef MessagePumpLibevent::Watcher Watcher
;
619 typedef MessagePumpLibevent::FileDescriptorWatcher
620 FileDescriptorWatcher
;
621 typedef MessagePumpLibevent::IOObserver IOObserver
;
624 WATCH_READ
= MessagePumpLibevent::WATCH_READ
,
625 WATCH_WRITE
= MessagePumpLibevent::WATCH_WRITE
,
626 WATCH_READ_WRITE
= MessagePumpLibevent::WATCH_READ_WRITE
630 void AddIOObserver(IOObserver
* io_observer
);
631 void RemoveIOObserver(IOObserver
* io_observer
);
634 // Please see MessagePumpWin for definitions of these methods.
635 void RegisterIOHandler(HANDLE file
, IOHandler
* handler
);
636 bool RegisterJobObject(HANDLE job
, IOHandler
* handler
);
637 bool WaitForIOCompletion(DWORD timeout
, IOHandler
* filter
);
638 #elif defined(OS_POSIX)
639 // Please see MessagePumpIOSForIO/MessagePumpLibevent for definition.
640 bool WatchFileDescriptor(int fd
,
643 FileDescriptorWatcher
*controller
,
645 #endif // defined(OS_IOS) || defined(OS_POSIX)
646 #endif // !defined(OS_NACL)
649 // Do not add any member variables to MessageLoopForIO! This is important b/c
650 // MessageLoopForIO is often allocated via MessageLoop(TYPE_IO). Any extra
651 // data that you need should be stored on the MessageLoop's pump_ instance.
652 COMPILE_ASSERT(sizeof(MessageLoop
) == sizeof(MessageLoopForIO
),
653 MessageLoopForIO_should_not_have_extra_member_variables
);
657 #endif // BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_