[sql] Remove _HAS_EXCEPTIONS=0 from build info.
[chromium-blink-merge.git] / net / disk_cache / blockfile / sparse_control.cc
blob08d79a836bf8ff0f2f85b8330fd69bd6a8a22710
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/disk_cache/blockfile/sparse_control.h"
7 #include <stdint.h>
9 #include "base/bind.h"
10 #include "base/format_macros.h"
11 #include "base/location.h"
12 #include "base/logging.h"
13 #include "base/single_thread_task_runner.h"
14 #include "base/strings/string_util.h"
15 #include "base/strings/stringprintf.h"
16 #include "base/thread_task_runner_handle.h"
17 #include "base/time/time.h"
18 #include "net/base/io_buffer.h"
19 #include "net/base/net_errors.h"
20 #include "net/disk_cache/blockfile/backend_impl.h"
21 #include "net/disk_cache/blockfile/entry_impl.h"
22 #include "net/disk_cache/blockfile/file.h"
23 #include "net/disk_cache/net_log_parameters.h"
25 using base::Time;
27 namespace {
29 // Stream of the sparse data index.
30 const int kSparseIndex = 2;
32 // Stream of the sparse data.
33 const int kSparseData = 1;
35 // We can have up to 64k children.
36 const int kMaxMapSize = 8 * 1024;
38 // The maximum number of bytes that a child can store.
39 const int kMaxEntrySize = 0x100000;
41 // The size of each data block (tracked by the child allocation bitmap).
42 const int kBlockSize = 1024;
44 // Returns the name of a child entry given the base_name and signature of the
45 // parent and the child_id.
46 // If the entry is called entry_name, child entries will be named something
47 // like Range_entry_name:XXX:YYY where XXX is the entry signature and YYY is the
48 // number of the particular child.
49 std::string GenerateChildName(const std::string& base_name, int64 signature,
50 int64 child_id) {
51 return base::StringPrintf("Range_%s:%" PRIx64 ":%" PRIx64, base_name.c_str(),
52 signature, child_id);
55 // This class deletes the children of a sparse entry.
56 class ChildrenDeleter
57 : public base::RefCounted<ChildrenDeleter>,
58 public disk_cache::FileIOCallback {
59 public:
60 ChildrenDeleter(disk_cache::BackendImpl* backend, const std::string& name)
61 : backend_(backend->GetWeakPtr()), name_(name), signature_(0) {}
63 void OnFileIOComplete(int bytes_copied) override;
65 // Two ways of deleting the children: if we have the children map, use Start()
66 // directly, otherwise pass the data address to ReadData().
67 void Start(char* buffer, int len);
68 void ReadData(disk_cache::Addr address, int len);
70 private:
71 friend class base::RefCounted<ChildrenDeleter>;
72 ~ChildrenDeleter() override {}
74 void DeleteChildren();
76 base::WeakPtr<disk_cache::BackendImpl> backend_;
77 std::string name_;
78 disk_cache::Bitmap children_map_;
79 int64 signature_;
80 scoped_ptr<char[]> buffer_;
81 DISALLOW_COPY_AND_ASSIGN(ChildrenDeleter);
84 // This is the callback of the file operation.
85 void ChildrenDeleter::OnFileIOComplete(int bytes_copied) {
86 char* buffer = buffer_.release();
87 Start(buffer, bytes_copied);
90 void ChildrenDeleter::Start(char* buffer, int len) {
91 buffer_.reset(buffer);
92 if (len < static_cast<int>(sizeof(disk_cache::SparseData)))
93 return Release();
95 // Just copy the information from |buffer|, delete |buffer| and start deleting
96 // the child entries.
97 disk_cache::SparseData* data =
98 reinterpret_cast<disk_cache::SparseData*>(buffer);
99 signature_ = data->header.signature;
101 int num_bits = (len - sizeof(disk_cache::SparseHeader)) * 8;
102 children_map_.Resize(num_bits, false);
103 children_map_.SetMap(data->bitmap, num_bits / 32);
104 buffer_.reset();
106 DeleteChildren();
109 void ChildrenDeleter::ReadData(disk_cache::Addr address, int len) {
110 DCHECK(address.is_block_file());
111 if (!backend_.get())
112 return Release();
114 disk_cache::File* file(backend_->File(address));
115 if (!file)
116 return Release();
118 size_t file_offset = address.start_block() * address.BlockSize() +
119 disk_cache::kBlockHeaderSize;
121 buffer_.reset(new char[len]);
122 bool completed;
123 if (!file->Read(buffer_.get(), len, file_offset, this, &completed))
124 return Release();
126 if (completed)
127 OnFileIOComplete(len);
129 // And wait until OnFileIOComplete gets called.
132 void ChildrenDeleter::DeleteChildren() {
133 int child_id = 0;
134 if (!children_map_.FindNextSetBit(&child_id) || !backend_.get()) {
135 // We are done. Just delete this object.
136 return Release();
138 std::string child_name = GenerateChildName(name_, signature_, child_id);
139 backend_->SyncDoomEntry(child_name);
140 children_map_.Set(child_id, false);
142 // Post a task to delete the next child.
143 base::ThreadTaskRunnerHandle::Get()->PostTask(
144 FROM_HERE, base::Bind(&ChildrenDeleter::DeleteChildren, this));
147 // Returns the NetLog event type corresponding to a SparseOperation.
148 net::NetLog::EventType GetSparseEventType(
149 disk_cache::SparseControl::SparseOperation operation) {
150 switch (operation) {
151 case disk_cache::SparseControl::kReadOperation:
152 return net::NetLog::TYPE_SPARSE_READ;
153 case disk_cache::SparseControl::kWriteOperation:
154 return net::NetLog::TYPE_SPARSE_WRITE;
155 case disk_cache::SparseControl::kGetRangeOperation:
156 return net::NetLog::TYPE_SPARSE_GET_RANGE;
157 default:
158 NOTREACHED();
159 return net::NetLog::TYPE_CANCELLED;
163 // Logs the end event for |operation| on a child entry. Range operations log
164 // no events for each child they search through.
165 void LogChildOperationEnd(const net::BoundNetLog& net_log,
166 disk_cache::SparseControl::SparseOperation operation,
167 int result) {
168 if (net_log.IsCapturing()) {
169 net::NetLog::EventType event_type;
170 switch (operation) {
171 case disk_cache::SparseControl::kReadOperation:
172 event_type = net::NetLog::TYPE_SPARSE_READ_CHILD_DATA;
173 break;
174 case disk_cache::SparseControl::kWriteOperation:
175 event_type = net::NetLog::TYPE_SPARSE_WRITE_CHILD_DATA;
176 break;
177 case disk_cache::SparseControl::kGetRangeOperation:
178 return;
179 default:
180 NOTREACHED();
181 return;
183 net_log.EndEventWithNetErrorCode(event_type, result);
187 } // namespace.
189 namespace disk_cache {
191 SparseControl::SparseControl(EntryImpl* entry)
192 : entry_(entry),
193 child_(NULL),
194 operation_(kNoOperation),
195 pending_(false),
196 finished_(false),
197 init_(false),
198 range_found_(false),
199 abort_(false),
200 child_map_(child_data_.bitmap, kNumSparseBits, kNumSparseBits / 32),
201 offset_(0),
202 buf_len_(0),
203 child_offset_(0),
204 child_len_(0),
205 result_(0) {
206 memset(&sparse_header_, 0, sizeof(sparse_header_));
207 memset(&child_data_, 0, sizeof(child_data_));
210 SparseControl::~SparseControl() {
211 if (child_)
212 CloseChild();
213 if (init_)
214 WriteSparseData();
217 int SparseControl::Init() {
218 DCHECK(!init_);
220 // We should not have sparse data for the exposed entry.
221 if (entry_->GetDataSize(kSparseData))
222 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
224 // Now see if there is something where we store our data.
225 int rv = net::OK;
226 int data_len = entry_->GetDataSize(kSparseIndex);
227 if (!data_len) {
228 rv = CreateSparseEntry();
229 } else {
230 rv = OpenSparseEntry(data_len);
233 if (rv == net::OK)
234 init_ = true;
235 return rv;
238 bool SparseControl::CouldBeSparse() const {
239 DCHECK(!init_);
241 if (entry_->GetDataSize(kSparseData))
242 return false;
244 // We don't verify the data, just see if it could be there.
245 return (entry_->GetDataSize(kSparseIndex) != 0);
248 int SparseControl::StartIO(SparseOperation op, int64 offset, net::IOBuffer* buf,
249 int buf_len, const CompletionCallback& callback) {
250 DCHECK(init_);
251 // We don't support simultaneous IO for sparse data.
252 if (operation_ != kNoOperation)
253 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
255 if (offset < 0 || buf_len < 0)
256 return net::ERR_INVALID_ARGUMENT;
258 // We only support up to 64 GB.
259 if (static_cast<uint64>(offset) + static_cast<unsigned int>(buf_len) >=
260 UINT64_C(0x1000000000)) {
261 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
264 DCHECK(!user_buf_.get());
265 DCHECK(user_callback_.is_null());
267 if (!buf && (op == kReadOperation || op == kWriteOperation))
268 return 0;
270 // Copy the operation parameters.
271 operation_ = op;
272 offset_ = offset;
273 user_buf_ = buf ? new net::DrainableIOBuffer(buf, buf_len) : NULL;
274 buf_len_ = buf_len;
275 user_callback_ = callback;
277 result_ = 0;
278 pending_ = false;
279 finished_ = false;
280 abort_ = false;
282 if (entry_->net_log().IsCapturing()) {
283 entry_->net_log().BeginEvent(
284 GetSparseEventType(operation_),
285 CreateNetLogSparseOperationCallback(offset_, buf_len_));
287 DoChildrenIO();
289 if (!pending_) {
290 // Everything was done synchronously.
291 operation_ = kNoOperation;
292 user_buf_ = NULL;
293 user_callback_.Reset();
294 return result_;
297 return net::ERR_IO_PENDING;
300 int SparseControl::GetAvailableRange(int64 offset, int len, int64* start) {
301 DCHECK(init_);
302 // We don't support simultaneous IO for sparse data.
303 if (operation_ != kNoOperation)
304 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
306 DCHECK(start);
308 range_found_ = false;
309 int result = StartIO(
310 kGetRangeOperation, offset, NULL, len, CompletionCallback());
311 if (range_found_) {
312 *start = offset_;
313 return result;
316 // This is a failure. We want to return a valid start value in any case.
317 *start = offset;
318 return result < 0 ? result : 0; // Don't mask error codes to the caller.
321 void SparseControl::CancelIO() {
322 if (operation_ == kNoOperation)
323 return;
324 abort_ = true;
327 int SparseControl::ReadyToUse(const CompletionCallback& callback) {
328 if (!abort_)
329 return net::OK;
331 // We'll grab another reference to keep this object alive because we just have
332 // one extra reference due to the pending IO operation itself, but we'll
333 // release that one before invoking user_callback_.
334 entry_->AddRef(); // Balanced in DoAbortCallbacks.
335 abort_callbacks_.push_back(callback);
336 return net::ERR_IO_PENDING;
339 // Static
340 void SparseControl::DeleteChildren(EntryImpl* entry) {
341 DCHECK(entry->GetEntryFlags() & PARENT_ENTRY);
342 int data_len = entry->GetDataSize(kSparseIndex);
343 if (data_len < static_cast<int>(sizeof(SparseData)) ||
344 entry->GetDataSize(kSparseData))
345 return;
347 int map_len = data_len - sizeof(SparseHeader);
348 if (map_len > kMaxMapSize || map_len % 4)
349 return;
351 char* buffer;
352 Addr address;
353 entry->GetData(kSparseIndex, &buffer, &address);
354 if (!buffer && !address.is_initialized())
355 return;
357 entry->net_log().AddEvent(net::NetLog::TYPE_SPARSE_DELETE_CHILDREN);
359 DCHECK(entry->backend_.get());
360 ChildrenDeleter* deleter = new ChildrenDeleter(entry->backend_.get(),
361 entry->GetKey());
362 // The object will self destruct when finished.
363 deleter->AddRef();
365 if (buffer) {
366 base::ThreadTaskRunnerHandle::Get()->PostTask(
367 FROM_HERE,
368 base::Bind(&ChildrenDeleter::Start, deleter, buffer, data_len));
369 } else {
370 base::ThreadTaskRunnerHandle::Get()->PostTask(
371 FROM_HERE,
372 base::Bind(&ChildrenDeleter::ReadData, deleter, address, data_len));
376 // We are going to start using this entry to store sparse data, so we have to
377 // initialize our control info.
378 int SparseControl::CreateSparseEntry() {
379 if (CHILD_ENTRY & entry_->GetEntryFlags())
380 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
382 memset(&sparse_header_, 0, sizeof(sparse_header_));
383 sparse_header_.signature = Time::Now().ToInternalValue();
384 sparse_header_.magic = kIndexMagic;
385 sparse_header_.parent_key_len = entry_->GetKey().size();
386 children_map_.Resize(kNumSparseBits, true);
388 // Save the header. The bitmap is saved in the destructor.
389 scoped_refptr<net::IOBuffer> buf(
390 new net::WrappedIOBuffer(reinterpret_cast<char*>(&sparse_header_)));
392 int rv = entry_->WriteData(kSparseIndex, 0, buf.get(), sizeof(sparse_header_),
393 CompletionCallback(), false);
394 if (rv != sizeof(sparse_header_)) {
395 DLOG(ERROR) << "Unable to save sparse_header_";
396 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
399 entry_->SetEntryFlags(PARENT_ENTRY);
400 return net::OK;
403 // We are opening an entry from disk. Make sure that our control data is there.
404 int SparseControl::OpenSparseEntry(int data_len) {
405 if (data_len < static_cast<int>(sizeof(SparseData)))
406 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
408 if (entry_->GetDataSize(kSparseData))
409 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
411 if (!(PARENT_ENTRY & entry_->GetEntryFlags()))
412 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
414 // Dont't go over board with the bitmap. 8 KB gives us offsets up to 64 GB.
415 int map_len = data_len - sizeof(sparse_header_);
416 if (map_len > kMaxMapSize || map_len % 4)
417 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
419 scoped_refptr<net::IOBuffer> buf(
420 new net::WrappedIOBuffer(reinterpret_cast<char*>(&sparse_header_)));
422 // Read header.
423 int rv = entry_->ReadData(kSparseIndex, 0, buf.get(), sizeof(sparse_header_),
424 CompletionCallback());
425 if (rv != static_cast<int>(sizeof(sparse_header_)))
426 return net::ERR_CACHE_READ_FAILURE;
428 // The real validation should be performed by the caller. This is just to
429 // double check.
430 if (sparse_header_.magic != kIndexMagic ||
431 sparse_header_.parent_key_len !=
432 static_cast<int>(entry_->GetKey().size()))
433 return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
435 // Read the actual bitmap.
436 buf = new net::IOBuffer(map_len);
437 rv = entry_->ReadData(kSparseIndex, sizeof(sparse_header_), buf.get(),
438 map_len, CompletionCallback());
439 if (rv != map_len)
440 return net::ERR_CACHE_READ_FAILURE;
442 // Grow the bitmap to the current size and copy the bits.
443 children_map_.Resize(map_len * 8, false);
444 children_map_.SetMap(reinterpret_cast<uint32*>(buf->data()), map_len);
445 return net::OK;
448 bool SparseControl::OpenChild() {
449 DCHECK_GE(result_, 0);
451 std::string key = GenerateChildKey();
452 if (child_) {
453 // Keep using the same child or open another one?.
454 if (key == child_->GetKey())
455 return true;
456 CloseChild();
459 // See if we are tracking this child.
460 if (!ChildPresent())
461 return ContinueWithoutChild(key);
463 if (!entry_->backend_.get())
464 return false;
466 child_ = entry_->backend_->OpenEntryImpl(key);
467 if (!child_)
468 return ContinueWithoutChild(key);
470 EntryImpl* child = static_cast<EntryImpl*>(child_);
471 if (!(CHILD_ENTRY & child->GetEntryFlags()) ||
472 child->GetDataSize(kSparseIndex) <
473 static_cast<int>(sizeof(child_data_)))
474 return KillChildAndContinue(key, false);
476 scoped_refptr<net::WrappedIOBuffer> buf(
477 new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_)));
479 // Read signature.
480 int rv = child_->ReadData(kSparseIndex, 0, buf.get(), sizeof(child_data_),
481 CompletionCallback());
482 if (rv != sizeof(child_data_))
483 return KillChildAndContinue(key, true); // This is a fatal failure.
485 if (child_data_.header.signature != sparse_header_.signature ||
486 child_data_.header.magic != kIndexMagic)
487 return KillChildAndContinue(key, false);
489 if (child_data_.header.last_block_len < 0 ||
490 child_data_.header.last_block_len >= kBlockSize) {
491 // Make sure these values are always within range.
492 child_data_.header.last_block_len = 0;
493 child_data_.header.last_block = -1;
496 return true;
499 void SparseControl::CloseChild() {
500 scoped_refptr<net::WrappedIOBuffer> buf(
501 new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_)));
503 // Save the allocation bitmap before closing the child entry.
504 int rv = child_->WriteData(kSparseIndex, 0, buf.get(), sizeof(child_data_),
505 CompletionCallback(), false);
506 if (rv != sizeof(child_data_))
507 DLOG(ERROR) << "Failed to save child data";
508 child_->Release();
509 child_ = NULL;
512 std::string SparseControl::GenerateChildKey() {
513 return GenerateChildName(entry_->GetKey(), sparse_header_.signature,
514 offset_ >> 20);
517 // We are deleting the child because something went wrong.
518 bool SparseControl::KillChildAndContinue(const std::string& key, bool fatal) {
519 SetChildBit(false);
520 child_->DoomImpl();
521 child_->Release();
522 child_ = NULL;
523 if (fatal) {
524 result_ = net::ERR_CACHE_READ_FAILURE;
525 return false;
527 return ContinueWithoutChild(key);
530 // We were not able to open this child; see what we can do.
531 bool SparseControl::ContinueWithoutChild(const std::string& key) {
532 if (kReadOperation == operation_)
533 return false;
534 if (kGetRangeOperation == operation_)
535 return true;
537 if (!entry_->backend_.get())
538 return false;
540 child_ = entry_->backend_->CreateEntryImpl(key);
541 if (!child_) {
542 child_ = NULL;
543 result_ = net::ERR_CACHE_READ_FAILURE;
544 return false;
546 // Write signature.
547 InitChildData();
548 return true;
551 bool SparseControl::ChildPresent() {
552 int child_bit = static_cast<int>(offset_ >> 20);
553 if (children_map_.Size() <= child_bit)
554 return false;
556 return children_map_.Get(child_bit);
559 void SparseControl::SetChildBit(bool value) {
560 int child_bit = static_cast<int>(offset_ >> 20);
562 // We may have to increase the bitmap of child entries.
563 if (children_map_.Size() <= child_bit)
564 children_map_.Resize(Bitmap::RequiredArraySize(child_bit + 1) * 32, true);
566 children_map_.Set(child_bit, value);
569 void SparseControl::WriteSparseData() {
570 scoped_refptr<net::IOBuffer> buf(new net::WrappedIOBuffer(
571 reinterpret_cast<const char*>(children_map_.GetMap())));
573 int len = children_map_.ArraySize() * 4;
574 int rv = entry_->WriteData(kSparseIndex, sizeof(sparse_header_), buf.get(),
575 len, CompletionCallback(), false);
576 if (rv != len) {
577 DLOG(ERROR) << "Unable to save sparse map";
581 bool SparseControl::VerifyRange() {
582 DCHECK_GE(result_, 0);
584 child_offset_ = static_cast<int>(offset_) & (kMaxEntrySize - 1);
585 child_len_ = std::min(buf_len_, kMaxEntrySize - child_offset_);
587 // We can write to (or get info from) anywhere in this child.
588 if (operation_ != kReadOperation)
589 return true;
591 // Check that there are no holes in this range.
592 int last_bit = (child_offset_ + child_len_ + 1023) >> 10;
593 int start = child_offset_ >> 10;
594 if (child_map_.FindNextBit(&start, last_bit, false)) {
595 // Something is not here.
596 DCHECK_GE(child_data_.header.last_block_len, 0);
597 DCHECK_LT(child_data_.header.last_block_len, kBlockSize);
598 int partial_block_len = PartialBlockLength(start);
599 if (start == child_offset_ >> 10) {
600 // It looks like we don't have anything.
601 if (partial_block_len <= (child_offset_ & (kBlockSize - 1)))
602 return false;
605 // We have the first part.
606 child_len_ = (start << 10) - child_offset_;
607 if (partial_block_len) {
608 // We may have a few extra bytes.
609 child_len_ = std::min(child_len_ + partial_block_len, buf_len_);
611 // There is no need to read more after this one.
612 buf_len_ = child_len_;
614 return true;
617 void SparseControl::UpdateRange(int result) {
618 if (result <= 0 || operation_ != kWriteOperation)
619 return;
621 DCHECK_GE(child_data_.header.last_block_len, 0);
622 DCHECK_LT(child_data_.header.last_block_len, kBlockSize);
624 // Write the bitmap.
625 int first_bit = child_offset_ >> 10;
626 int block_offset = child_offset_ & (kBlockSize - 1);
627 if (block_offset && (child_data_.header.last_block != first_bit ||
628 child_data_.header.last_block_len < block_offset)) {
629 // The first block is not completely filled; ignore it.
630 first_bit++;
633 int last_bit = (child_offset_ + result) >> 10;
634 block_offset = (child_offset_ + result) & (kBlockSize - 1);
636 // This condition will hit with the following criteria:
637 // 1. The first byte doesn't follow the last write.
638 // 2. The first byte is in the middle of a block.
639 // 3. The first byte and the last byte are in the same block.
640 if (first_bit > last_bit)
641 return;
643 if (block_offset && !child_map_.Get(last_bit)) {
644 // The last block is not completely filled; save it for later.
645 child_data_.header.last_block = last_bit;
646 child_data_.header.last_block_len = block_offset;
647 } else {
648 child_data_.header.last_block = -1;
651 child_map_.SetRange(first_bit, last_bit, true);
654 int SparseControl::PartialBlockLength(int block_index) const {
655 if (block_index == child_data_.header.last_block)
656 return child_data_.header.last_block_len;
658 // This is really empty.
659 return 0;
662 void SparseControl::InitChildData() {
663 // We know the real type of child_.
664 EntryImpl* child = static_cast<EntryImpl*>(child_);
665 child->SetEntryFlags(CHILD_ENTRY);
667 memset(&child_data_, 0, sizeof(child_data_));
668 child_data_.header = sparse_header_;
670 scoped_refptr<net::WrappedIOBuffer> buf(
671 new net::WrappedIOBuffer(reinterpret_cast<char*>(&child_data_)));
673 int rv = child_->WriteData(kSparseIndex, 0, buf.get(), sizeof(child_data_),
674 CompletionCallback(), false);
675 if (rv != sizeof(child_data_))
676 DLOG(ERROR) << "Failed to save child data";
677 SetChildBit(true);
680 void SparseControl::DoChildrenIO() {
681 while (DoChildIO()) continue;
683 // Range operations are finished synchronously, often without setting
684 // |finished_| to true.
685 if (kGetRangeOperation == operation_ && entry_->net_log().IsCapturing()) {
686 entry_->net_log().EndEvent(
687 net::NetLog::TYPE_SPARSE_GET_RANGE,
688 CreateNetLogGetAvailableRangeResultCallback(offset_, result_));
690 if (finished_) {
691 if (kGetRangeOperation != operation_ && entry_->net_log().IsCapturing()) {
692 entry_->net_log().EndEvent(GetSparseEventType(operation_));
694 if (pending_)
695 DoUserCallback(); // Don't touch this object after this point.
699 bool SparseControl::DoChildIO() {
700 finished_ = true;
701 if (!buf_len_ || result_ < 0)
702 return false;
704 if (!OpenChild())
705 return false;
707 if (!VerifyRange())
708 return false;
710 // We have more work to do. Let's not trigger a callback to the caller.
711 finished_ = false;
712 CompletionCallback callback;
713 if (!user_callback_.is_null()) {
714 callback =
715 base::Bind(&SparseControl::OnChildIOCompleted, base::Unretained(this));
718 int rv = 0;
719 switch (operation_) {
720 case kReadOperation:
721 if (entry_->net_log().IsCapturing()) {
722 entry_->net_log().BeginEvent(
723 net::NetLog::TYPE_SPARSE_READ_CHILD_DATA,
724 CreateNetLogSparseReadWriteCallback(child_->net_log().source(),
725 child_len_));
727 rv = child_->ReadDataImpl(kSparseData, child_offset_, user_buf_.get(),
728 child_len_, callback);
729 break;
730 case kWriteOperation:
731 if (entry_->net_log().IsCapturing()) {
732 entry_->net_log().BeginEvent(
733 net::NetLog::TYPE_SPARSE_WRITE_CHILD_DATA,
734 CreateNetLogSparseReadWriteCallback(child_->net_log().source(),
735 child_len_));
737 rv = child_->WriteDataImpl(kSparseData, child_offset_, user_buf_.get(),
738 child_len_, callback, false);
739 break;
740 case kGetRangeOperation:
741 rv = DoGetAvailableRange();
742 break;
743 default:
744 NOTREACHED();
747 if (rv == net::ERR_IO_PENDING) {
748 if (!pending_) {
749 pending_ = true;
750 // The child will protect himself against closing the entry while IO is in
751 // progress. However, this entry can still be closed, and that would not
752 // be a good thing for us, so we increase the refcount until we're
753 // finished doing sparse stuff.
754 entry_->AddRef(); // Balanced in DoUserCallback.
756 return false;
758 if (!rv)
759 return false;
761 DoChildIOCompleted(rv);
762 return true;
765 int SparseControl::DoGetAvailableRange() {
766 if (!child_)
767 return child_len_; // Move on to the next child.
769 // Bits on the bitmap should only be set when the corresponding block was
770 // fully written (it's really being used). If a block is partially used, it
771 // has to start with valid data, the length of the valid data is saved in
772 // |header.last_block_len| and the block itself should match
773 // |header.last_block|.
775 // In other words, (|header.last_block| + |header.last_block_len|) is the
776 // offset where the last write ended, and data in that block (which is not
777 // marked as used because it is not full) will only be reused if the next
778 // write continues at that point.
780 // This code has to find if there is any data between child_offset_ and
781 // child_offset_ + child_len_.
782 int last_bit = (child_offset_ + child_len_ + kBlockSize - 1) >> 10;
783 int start = child_offset_ >> 10;
784 int partial_start_bytes = PartialBlockLength(start);
785 int found = start;
786 int bits_found = child_map_.FindBits(&found, last_bit, true);
787 bool is_last_block_in_range = start < child_data_.header.last_block &&
788 child_data_.header.last_block < last_bit;
790 int block_offset = child_offset_ & (kBlockSize - 1);
791 if (!bits_found && partial_start_bytes <= block_offset) {
792 if (!is_last_block_in_range)
793 return child_len_;
794 found = last_bit - 1; // There are some bytes here.
797 // We are done. Just break the loop and reset result_ to our real result.
798 range_found_ = true;
800 int bytes_found = bits_found << 10;
801 bytes_found += PartialBlockLength(found + bits_found);
803 // found now points to the first bytes. Lets see if we have data before it.
804 int empty_start = std::max((found << 10) - child_offset_, 0);
805 if (empty_start >= child_len_)
806 return child_len_;
808 // At this point we have bytes_found stored after (found << 10), and we want
809 // child_len_ bytes after child_offset_. The first empty_start bytes after
810 // child_offset_ are invalid.
812 if (start == found)
813 bytes_found -= block_offset;
815 // If the user is searching past the end of this child, bits_found is the
816 // right result; otherwise, we have some empty space at the start of this
817 // query that we have to subtract from the range that we searched.
818 result_ = std::min(bytes_found, child_len_ - empty_start);
820 if (partial_start_bytes) {
821 result_ = std::min(partial_start_bytes - block_offset, child_len_);
822 empty_start = 0;
825 // Only update offset_ when this query found zeros at the start.
826 if (empty_start)
827 offset_ += empty_start;
829 // This will actually break the loop.
830 buf_len_ = 0;
831 return 0;
834 void SparseControl::DoChildIOCompleted(int result) {
835 LogChildOperationEnd(entry_->net_log(), operation_, result);
836 if (result < 0) {
837 // We fail the whole operation if we encounter an error.
838 result_ = result;
839 return;
842 UpdateRange(result);
844 result_ += result;
845 offset_ += result;
846 buf_len_ -= result;
848 // We'll be reusing the user provided buffer for the next chunk.
849 if (buf_len_ && user_buf_.get())
850 user_buf_->DidConsume(result);
853 void SparseControl::OnChildIOCompleted(int result) {
854 DCHECK_NE(net::ERR_IO_PENDING, result);
855 DoChildIOCompleted(result);
857 if (abort_) {
858 // We'll return the current result of the operation, which may be less than
859 // the bytes to read or write, but the user cancelled the operation.
860 abort_ = false;
861 if (entry_->net_log().IsCapturing()) {
862 entry_->net_log().AddEvent(net::NetLog::TYPE_CANCELLED);
863 entry_->net_log().EndEvent(GetSparseEventType(operation_));
865 // We have an indirect reference to this object for every callback so if
866 // there is only one callback, we may delete this object before reaching
867 // DoAbortCallbacks.
868 bool has_abort_callbacks = !abort_callbacks_.empty();
869 DoUserCallback();
870 if (has_abort_callbacks)
871 DoAbortCallbacks();
872 return;
875 // We are running a callback from the message loop. It's time to restart what
876 // we were doing before.
877 DoChildrenIO();
880 void SparseControl::DoUserCallback() {
881 DCHECK(!user_callback_.is_null());
882 CompletionCallback cb = user_callback_;
883 user_callback_.Reset();
884 user_buf_ = NULL;
885 pending_ = false;
886 operation_ = kNoOperation;
887 int rv = result_;
888 entry_->Release(); // Don't touch object after this line.
889 cb.Run(rv);
892 void SparseControl::DoAbortCallbacks() {
893 for (size_t i = 0; i < abort_callbacks_.size(); i++) {
894 // Releasing all references to entry_ may result in the destruction of this
895 // object so we should not be touching it after the last Release().
896 CompletionCallback cb = abort_callbacks_[i];
897 if (i == abort_callbacks_.size() - 1)
898 abort_callbacks_.clear();
900 entry_->Release(); // Don't touch object after this line.
901 cb.Run(net::OK);
905 } // namespace disk_cache