Removed unused VideoCaptureCapability parameters.
[chromium-blink-merge.git] / media / audio / win / audio_low_latency_input_win.cc
blobb16ef130a9fd642f83327b9f0ca27f7b4f43bb96
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "media/audio/win/audio_low_latency_input_win.h"
7 #include "base/logging.h"
8 #include "base/memory/scoped_ptr.h"
9 #include "base/strings/utf_string_conversions.h"
10 #include "media/audio/win/audio_manager_win.h"
11 #include "media/audio/win/avrt_wrapper_win.h"
13 using base::win::ScopedComPtr;
14 using base::win::ScopedCOMInitializer;
16 namespace media {
18 WASAPIAudioInputStream::WASAPIAudioInputStream(
19 AudioManagerWin* manager, const AudioParameters& params,
20 const std::string& device_id)
21 : manager_(manager),
22 capture_thread_(NULL),
23 opened_(false),
24 started_(false),
25 endpoint_buffer_size_frames_(0),
26 device_id_(device_id),
27 sink_(NULL) {
28 DCHECK(manager_);
30 // Load the Avrt DLL if not already loaded. Required to support MMCSS.
31 bool avrt_init = avrt::Initialize();
32 DCHECK(avrt_init) << "Failed to load the Avrt.dll";
34 // Set up the desired capture format specified by the client.
35 format_.nSamplesPerSec = params.sample_rate();
36 format_.wFormatTag = WAVE_FORMAT_PCM;
37 format_.wBitsPerSample = params.bits_per_sample();
38 format_.nChannels = params.channels();
39 format_.nBlockAlign = (format_.wBitsPerSample / 8) * format_.nChannels;
40 format_.nAvgBytesPerSec = format_.nSamplesPerSec * format_.nBlockAlign;
41 format_.cbSize = 0;
43 // Size in bytes of each audio frame.
44 frame_size_ = format_.nBlockAlign;
45 // Store size of audio packets which we expect to get from the audio
46 // endpoint device in each capture event.
47 packet_size_frames_ = params.GetBytesPerBuffer() / format_.nBlockAlign;
48 packet_size_bytes_ = params.GetBytesPerBuffer();
49 DVLOG(1) << "Number of bytes per audio frame : " << frame_size_;
50 DVLOG(1) << "Number of audio frames per packet: " << packet_size_frames_;
52 // All events are auto-reset events and non-signaled initially.
54 // Create the event which the audio engine will signal each time
55 // a buffer becomes ready to be processed by the client.
56 audio_samples_ready_event_.Set(CreateEvent(NULL, FALSE, FALSE, NULL));
57 DCHECK(audio_samples_ready_event_.IsValid());
59 // Create the event which will be set in Stop() when capturing shall stop.
60 stop_capture_event_.Set(CreateEvent(NULL, FALSE, FALSE, NULL));
61 DCHECK(stop_capture_event_.IsValid());
63 ms_to_frame_count_ = static_cast<double>(params.sample_rate()) / 1000.0;
65 LARGE_INTEGER performance_frequency;
66 if (QueryPerformanceFrequency(&performance_frequency)) {
67 perf_count_to_100ns_units_ =
68 (10000000.0 / static_cast<double>(performance_frequency.QuadPart));
69 } else {
70 LOG(ERROR) << "High-resolution performance counters are not supported.";
71 perf_count_to_100ns_units_ = 0.0;
75 WASAPIAudioInputStream::~WASAPIAudioInputStream() {}
77 bool WASAPIAudioInputStream::Open() {
78 DCHECK(CalledOnValidThread());
79 // Verify that we are not already opened.
80 if (opened_)
81 return false;
83 // Obtain a reference to the IMMDevice interface of the capturing
84 // device with the specified unique identifier or role which was
85 // set at construction.
86 HRESULT hr = SetCaptureDevice();
87 if (FAILED(hr))
88 return false;
90 // Obtain an IAudioClient interface which enables us to create and initialize
91 // an audio stream between an audio application and the audio engine.
92 hr = ActivateCaptureDevice();
93 if (FAILED(hr))
94 return false;
96 // Retrieve the stream format which the audio engine uses for its internal
97 // processing/mixing of shared-mode streams. This function call is for
98 // diagnostic purposes only and only in debug mode.
99 #ifndef NDEBUG
100 hr = GetAudioEngineStreamFormat();
101 #endif
103 // Verify that the selected audio endpoint supports the specified format
104 // set during construction.
105 if (!DesiredFormatIsSupported())
106 return false;
108 // Initialize the audio stream between the client and the device using
109 // shared mode and a lowest possible glitch-free latency.
110 hr = InitializeAudioEngine();
112 opened_ = SUCCEEDED(hr);
113 return opened_;
116 void WASAPIAudioInputStream::Start(AudioInputCallback* callback) {
117 DCHECK(CalledOnValidThread());
118 DCHECK(callback);
119 DLOG_IF(ERROR, !opened_) << "Open() has not been called successfully";
120 if (!opened_)
121 return;
123 if (started_)
124 return;
126 sink_ = callback;
128 // Starts periodic AGC microphone measurements if the AGC has been enabled
129 // using SetAutomaticGainControl().
130 StartAgc();
132 // Create and start the thread that will drive the capturing by waiting for
133 // capture events.
134 capture_thread_ =
135 new base::DelegateSimpleThread(this, "wasapi_capture_thread");
136 capture_thread_->Start();
138 // Start streaming data between the endpoint buffer and the audio engine.
139 HRESULT hr = audio_client_->Start();
140 DLOG_IF(ERROR, FAILED(hr)) << "Failed to start input streaming.";
142 if (SUCCEEDED(hr) && audio_render_client_for_loopback_)
143 hr = audio_render_client_for_loopback_->Start();
145 started_ = SUCCEEDED(hr);
148 void WASAPIAudioInputStream::Stop() {
149 DCHECK(CalledOnValidThread());
150 DVLOG(1) << "WASAPIAudioInputStream::Stop()";
151 if (!started_)
152 return;
154 // Stops periodic AGC microphone measurements.
155 StopAgc();
157 // Shut down the capture thread.
158 if (stop_capture_event_.IsValid()) {
159 SetEvent(stop_capture_event_.Get());
162 // Stop the input audio streaming.
163 HRESULT hr = audio_client_->Stop();
164 if (FAILED(hr)) {
165 LOG(ERROR) << "Failed to stop input streaming.";
168 // Wait until the thread completes and perform cleanup.
169 if (capture_thread_) {
170 SetEvent(stop_capture_event_.Get());
171 capture_thread_->Join();
172 capture_thread_ = NULL;
175 started_ = false;
178 void WASAPIAudioInputStream::Close() {
179 DVLOG(1) << "WASAPIAudioInputStream::Close()";
180 // It is valid to call Close() before calling open or Start().
181 // It is also valid to call Close() after Start() has been called.
182 Stop();
183 if (sink_) {
184 sink_->OnClose(this);
185 sink_ = NULL;
188 // Inform the audio manager that we have been closed. This will cause our
189 // destruction.
190 manager_->ReleaseInputStream(this);
193 double WASAPIAudioInputStream::GetMaxVolume() {
194 // Verify that Open() has been called succesfully, to ensure that an audio
195 // session exists and that an ISimpleAudioVolume interface has been created.
196 DLOG_IF(ERROR, !opened_) << "Open() has not been called successfully";
197 if (!opened_)
198 return 0.0;
200 // The effective volume value is always in the range 0.0 to 1.0, hence
201 // we can return a fixed value (=1.0) here.
202 return 1.0;
205 void WASAPIAudioInputStream::SetVolume(double volume) {
206 DVLOG(1) << "SetVolume(volume=" << volume << ")";
207 DCHECK(CalledOnValidThread());
208 DCHECK_GE(volume, 0.0);
209 DCHECK_LE(volume, 1.0);
211 DLOG_IF(ERROR, !opened_) << "Open() has not been called successfully";
212 if (!opened_)
213 return;
215 // Set a new master volume level. Valid volume levels are in the range
216 // 0.0 to 1.0. Ignore volume-change events.
217 HRESULT hr = simple_audio_volume_->SetMasterVolume(static_cast<float>(volume),
218 NULL);
219 DLOG_IF(WARNING, FAILED(hr)) << "Failed to set new input master volume.";
221 // Update the AGC volume level based on the last setting above. Note that,
222 // the volume-level resolution is not infinite and it is therefore not
223 // possible to assume that the volume provided as input parameter can be
224 // used directly. Instead, a new query to the audio hardware is required.
225 // This method does nothing if AGC is disabled.
226 UpdateAgcVolume();
229 double WASAPIAudioInputStream::GetVolume() {
230 DLOG_IF(ERROR, !opened_) << "Open() has not been called successfully";
231 if (!opened_)
232 return 0.0;
234 // Retrieve the current volume level. The value is in the range 0.0 to 1.0.
235 float level = 0.0f;
236 HRESULT hr = simple_audio_volume_->GetMasterVolume(&level);
237 DLOG_IF(WARNING, FAILED(hr)) << "Failed to get input master volume.";
239 return static_cast<double>(level);
242 // static
243 int WASAPIAudioInputStream::HardwareSampleRate(
244 const std::string& device_id) {
245 base::win::ScopedCoMem<WAVEFORMATEX> audio_engine_mix_format;
246 HRESULT hr = GetMixFormat(device_id, &audio_engine_mix_format);
247 if (FAILED(hr))
248 return 0;
250 return static_cast<int>(audio_engine_mix_format->nSamplesPerSec);
253 // static
254 uint32 WASAPIAudioInputStream::HardwareChannelCount(
255 const std::string& device_id) {
256 base::win::ScopedCoMem<WAVEFORMATEX> audio_engine_mix_format;
257 HRESULT hr = GetMixFormat(device_id, &audio_engine_mix_format);
258 if (FAILED(hr))
259 return 0;
261 return static_cast<uint32>(audio_engine_mix_format->nChannels);
264 // static
265 HRESULT WASAPIAudioInputStream::GetMixFormat(const std::string& device_id,
266 WAVEFORMATEX** device_format) {
267 // It is assumed that this static method is called from a COM thread, i.e.,
268 // CoInitializeEx() is not called here to avoid STA/MTA conflicts.
269 ScopedComPtr<IMMDeviceEnumerator> enumerator;
270 HRESULT hr = enumerator.CreateInstance(__uuidof(MMDeviceEnumerator), NULL,
271 CLSCTX_INPROC_SERVER);
272 if (FAILED(hr))
273 return hr;
275 ScopedComPtr<IMMDevice> endpoint_device;
276 if (device_id == AudioManagerBase::kDefaultDeviceId) {
277 // Retrieve the default capture audio endpoint.
278 hr = enumerator->GetDefaultAudioEndpoint(eCapture, eConsole,
279 endpoint_device.Receive());
280 } else if (device_id == AudioManagerBase::kLoopbackInputDeviceId) {
281 // Capture the default playback stream.
282 hr = enumerator->GetDefaultAudioEndpoint(eRender, eConsole,
283 endpoint_device.Receive());
284 } else {
285 // Retrieve a capture endpoint device that is specified by an endpoint
286 // device-identification string.
287 hr = enumerator->GetDevice(UTF8ToUTF16(device_id).c_str(),
288 endpoint_device.Receive());
290 if (FAILED(hr))
291 return hr;
293 ScopedComPtr<IAudioClient> audio_client;
294 hr = endpoint_device->Activate(__uuidof(IAudioClient),
295 CLSCTX_INPROC_SERVER,
296 NULL,
297 audio_client.ReceiveVoid());
298 return SUCCEEDED(hr) ? audio_client->GetMixFormat(device_format) : hr;
301 void WASAPIAudioInputStream::Run() {
302 ScopedCOMInitializer com_init(ScopedCOMInitializer::kMTA);
304 // Increase the thread priority.
305 capture_thread_->SetThreadPriority(base::kThreadPriority_RealtimeAudio);
307 // Enable MMCSS to ensure that this thread receives prioritized access to
308 // CPU resources.
309 DWORD task_index = 0;
310 HANDLE mm_task = avrt::AvSetMmThreadCharacteristics(L"Pro Audio",
311 &task_index);
312 bool mmcss_is_ok =
313 (mm_task && avrt::AvSetMmThreadPriority(mm_task, AVRT_PRIORITY_CRITICAL));
314 if (!mmcss_is_ok) {
315 // Failed to enable MMCSS on this thread. It is not fatal but can lead
316 // to reduced QoS at high load.
317 DWORD err = GetLastError();
318 LOG(WARNING) << "Failed to enable MMCSS (error code=" << err << ").";
321 // Allocate a buffer with a size that enables us to take care of cases like:
322 // 1) The recorded buffer size is smaller, or does not match exactly with,
323 // the selected packet size used in each callback.
324 // 2) The selected buffer size is larger than the recorded buffer size in
325 // each event.
326 size_t buffer_frame_index = 0;
327 size_t capture_buffer_size = std::max(
328 2 * endpoint_buffer_size_frames_ * frame_size_,
329 2 * packet_size_frames_ * frame_size_);
330 scoped_ptr<uint8[]> capture_buffer(new uint8[capture_buffer_size]);
332 LARGE_INTEGER now_count;
333 bool recording = true;
334 bool error = false;
335 double volume = GetVolume();
336 HANDLE wait_array[2] = {stop_capture_event_, audio_samples_ready_event_};
338 while (recording && !error) {
339 HRESULT hr = S_FALSE;
341 // Wait for a close-down event or a new capture event.
342 DWORD wait_result = WaitForMultipleObjects(2, wait_array, FALSE, INFINITE);
343 switch (wait_result) {
344 case WAIT_FAILED:
345 error = true;
346 break;
347 case WAIT_OBJECT_0 + 0:
348 // |stop_capture_event_| has been set.
349 recording = false;
350 break;
351 case WAIT_OBJECT_0 + 1:
353 // |audio_samples_ready_event_| has been set.
354 BYTE* data_ptr = NULL;
355 UINT32 num_frames_to_read = 0;
356 DWORD flags = 0;
357 UINT64 device_position = 0;
358 UINT64 first_audio_frame_timestamp = 0;
360 // Retrieve the amount of data in the capture endpoint buffer,
361 // replace it with silence if required, create callbacks for each
362 // packet and store non-delivered data for the next event.
363 hr = audio_capture_client_->GetBuffer(&data_ptr,
364 &num_frames_to_read,
365 &flags,
366 &device_position,
367 &first_audio_frame_timestamp);
368 if (FAILED(hr)) {
369 DLOG(ERROR) << "Failed to get data from the capture buffer";
370 continue;
373 if (num_frames_to_read != 0) {
374 size_t pos = buffer_frame_index * frame_size_;
375 size_t num_bytes = num_frames_to_read * frame_size_;
376 DCHECK_GE(capture_buffer_size, pos + num_bytes);
378 if (flags & AUDCLNT_BUFFERFLAGS_SILENT) {
379 // Clear out the local buffer since silence is reported.
380 memset(&capture_buffer[pos], 0, num_bytes);
381 } else {
382 // Copy captured data from audio engine buffer to local buffer.
383 memcpy(&capture_buffer[pos], data_ptr, num_bytes);
386 buffer_frame_index += num_frames_to_read;
389 hr = audio_capture_client_->ReleaseBuffer(num_frames_to_read);
390 DLOG_IF(ERROR, FAILED(hr)) << "Failed to release capture buffer";
392 // Derive a delay estimate for the captured audio packet.
393 // The value contains two parts (A+B), where A is the delay of the
394 // first audio frame in the packet and B is the extra delay
395 // contained in any stored data. Unit is in audio frames.
396 QueryPerformanceCounter(&now_count);
397 double audio_delay_frames =
398 ((perf_count_to_100ns_units_ * now_count.QuadPart -
399 first_audio_frame_timestamp) / 10000.0) * ms_to_frame_count_ +
400 buffer_frame_index - num_frames_to_read;
402 // Get a cached AGC volume level which is updated once every second
403 // on the audio manager thread. Note that, |volume| is also updated
404 // each time SetVolume() is called through IPC by the render-side AGC.
405 GetAgcVolume(&volume);
407 // Deliver captured data to the registered consumer using a packet
408 // size which was specified at construction.
409 uint32 delay_frames = static_cast<uint32>(audio_delay_frames + 0.5);
410 while (buffer_frame_index >= packet_size_frames_) {
411 uint8* audio_data =
412 reinterpret_cast<uint8*>(capture_buffer.get());
414 // Deliver data packet, delay estimation and volume level to
415 // the user.
416 sink_->OnData(this,
417 audio_data,
418 packet_size_bytes_,
419 delay_frames * frame_size_,
420 volume);
422 // Store parts of the recorded data which can't be delivered
423 // using the current packet size. The stored section will be used
424 // either in the next while-loop iteration or in the next
425 // capture event.
426 memmove(&capture_buffer[0],
427 &capture_buffer[packet_size_bytes_],
428 (buffer_frame_index - packet_size_frames_) * frame_size_);
430 buffer_frame_index -= packet_size_frames_;
431 delay_frames -= packet_size_frames_;
434 break;
435 default:
436 error = true;
437 break;
441 if (recording && error) {
442 // TODO(henrika): perhaps it worth improving the cleanup here by e.g.
443 // stopping the audio client, joining the thread etc.?
444 NOTREACHED() << "WASAPI capturing failed with error code "
445 << GetLastError();
448 // Disable MMCSS.
449 if (mm_task && !avrt::AvRevertMmThreadCharacteristics(mm_task)) {
450 PLOG(WARNING) << "Failed to disable MMCSS";
454 void WASAPIAudioInputStream::HandleError(HRESULT err) {
455 NOTREACHED() << "Error code: " << err;
456 if (sink_)
457 sink_->OnError(this);
460 HRESULT WASAPIAudioInputStream::SetCaptureDevice() {
461 ScopedComPtr<IMMDeviceEnumerator> enumerator;
462 HRESULT hr = enumerator.CreateInstance(__uuidof(MMDeviceEnumerator),
463 NULL, CLSCTX_INPROC_SERVER);
464 if (FAILED(hr))
465 return hr;
467 // Retrieve the IMMDevice by using the specified role or the specified
468 // unique endpoint device-identification string.
469 // TODO(henrika): possibly add support for the eCommunications as well.
470 if (device_id_ == AudioManagerBase::kDefaultDeviceId) {
471 // Retrieve the default capture audio endpoint for the specified role.
472 // Note that, in Windows Vista, the MMDevice API supports device roles
473 // but the system-supplied user interface programs do not.
474 hr = enumerator->GetDefaultAudioEndpoint(eCapture, eConsole,
475 endpoint_device_.Receive());
476 } else if (device_id_ == AudioManagerBase::kLoopbackInputDeviceId) {
477 // Capture the default playback stream.
478 hr = enumerator->GetDefaultAudioEndpoint(eRender, eConsole,
479 endpoint_device_.Receive());
480 } else {
481 // Retrieve a capture endpoint device that is specified by an endpoint
482 // device-identification string.
483 hr = enumerator->GetDevice(UTF8ToUTF16(device_id_).c_str(),
484 endpoint_device_.Receive());
487 if (FAILED(hr))
488 return hr;
490 // Verify that the audio endpoint device is active, i.e., the audio
491 // adapter that connects to the endpoint device is present and enabled.
492 DWORD state = DEVICE_STATE_DISABLED;
493 hr = endpoint_device_->GetState(&state);
494 if (FAILED(hr))
495 return hr;
497 if (!(state & DEVICE_STATE_ACTIVE)) {
498 DLOG(ERROR) << "Selected capture device is not active.";
499 hr = E_ACCESSDENIED;
502 return hr;
505 HRESULT WASAPIAudioInputStream::ActivateCaptureDevice() {
506 // Creates and activates an IAudioClient COM object given the selected
507 // capture endpoint device.
508 HRESULT hr = endpoint_device_->Activate(__uuidof(IAudioClient),
509 CLSCTX_INPROC_SERVER,
510 NULL,
511 audio_client_.ReceiveVoid());
512 return hr;
515 HRESULT WASAPIAudioInputStream::GetAudioEngineStreamFormat() {
516 HRESULT hr = S_OK;
517 #ifndef NDEBUG
518 // The GetMixFormat() method retrieves the stream format that the
519 // audio engine uses for its internal processing of shared-mode streams.
520 // The method always uses a WAVEFORMATEXTENSIBLE structure, instead
521 // of a stand-alone WAVEFORMATEX structure, to specify the format.
522 // An WAVEFORMATEXTENSIBLE structure can specify both the mapping of
523 // channels to speakers and the number of bits of precision in each sample.
524 base::win::ScopedCoMem<WAVEFORMATEXTENSIBLE> format_ex;
525 hr = audio_client_->GetMixFormat(
526 reinterpret_cast<WAVEFORMATEX**>(&format_ex));
528 // See http://msdn.microsoft.com/en-us/windows/hardware/gg463006#EFH
529 // for details on the WAVE file format.
530 WAVEFORMATEX format = format_ex->Format;
531 DVLOG(2) << "WAVEFORMATEX:";
532 DVLOG(2) << " wFormatTags : 0x" << std::hex << format.wFormatTag;
533 DVLOG(2) << " nChannels : " << format.nChannels;
534 DVLOG(2) << " nSamplesPerSec : " << format.nSamplesPerSec;
535 DVLOG(2) << " nAvgBytesPerSec: " << format.nAvgBytesPerSec;
536 DVLOG(2) << " nBlockAlign : " << format.nBlockAlign;
537 DVLOG(2) << " wBitsPerSample : " << format.wBitsPerSample;
538 DVLOG(2) << " cbSize : " << format.cbSize;
540 DVLOG(2) << "WAVEFORMATEXTENSIBLE:";
541 DVLOG(2) << " wValidBitsPerSample: " <<
542 format_ex->Samples.wValidBitsPerSample;
543 DVLOG(2) << " dwChannelMask : 0x" << std::hex <<
544 format_ex->dwChannelMask;
545 if (format_ex->SubFormat == KSDATAFORMAT_SUBTYPE_PCM)
546 DVLOG(2) << " SubFormat : KSDATAFORMAT_SUBTYPE_PCM";
547 else if (format_ex->SubFormat == KSDATAFORMAT_SUBTYPE_IEEE_FLOAT)
548 DVLOG(2) << " SubFormat : KSDATAFORMAT_SUBTYPE_IEEE_FLOAT";
549 else if (format_ex->SubFormat == KSDATAFORMAT_SUBTYPE_WAVEFORMATEX)
550 DVLOG(2) << " SubFormat : KSDATAFORMAT_SUBTYPE_WAVEFORMATEX";
551 #endif
552 return hr;
555 bool WASAPIAudioInputStream::DesiredFormatIsSupported() {
556 // An application that uses WASAPI to manage shared-mode streams can rely
557 // on the audio engine to perform only limited format conversions. The audio
558 // engine can convert between a standard PCM sample size used by the
559 // application and the floating-point samples that the engine uses for its
560 // internal processing. However, the format for an application stream
561 // typically must have the same number of channels and the same sample
562 // rate as the stream format used by the device.
563 // Many audio devices support both PCM and non-PCM stream formats. However,
564 // the audio engine can mix only PCM streams.
565 base::win::ScopedCoMem<WAVEFORMATEX> closest_match;
566 HRESULT hr = audio_client_->IsFormatSupported(AUDCLNT_SHAREMODE_SHARED,
567 &format_,
568 &closest_match);
569 DLOG_IF(ERROR, hr == S_FALSE) << "Format is not supported "
570 << "but a closest match exists.";
571 return (hr == S_OK);
574 HRESULT WASAPIAudioInputStream::InitializeAudioEngine() {
575 DWORD flags;
576 // Use event-driven mode only fo regular input devices. For loopback the
577 // EVENTCALLBACK flag is specified when intializing
578 // |audio_render_client_for_loopback_|.
579 if (device_id_ == AudioManagerBase::kLoopbackInputDeviceId) {
580 flags = AUDCLNT_STREAMFLAGS_LOOPBACK | AUDCLNT_STREAMFLAGS_NOPERSIST;
581 } else {
582 flags =
583 AUDCLNT_STREAMFLAGS_EVENTCALLBACK | AUDCLNT_STREAMFLAGS_NOPERSIST;
586 // Initialize the audio stream between the client and the device.
587 // We connect indirectly through the audio engine by using shared mode.
588 // Note that, |hnsBufferDuration| is set of 0, which ensures that the
589 // buffer is never smaller than the minimum buffer size needed to ensure
590 // that glitches do not occur between the periodic processing passes.
591 // This setting should lead to lowest possible latency.
592 HRESULT hr = audio_client_->Initialize(AUDCLNT_SHAREMODE_SHARED,
593 flags,
594 0, // hnsBufferDuration
596 &format_,
597 NULL);
598 if (FAILED(hr))
599 return hr;
601 // Retrieve the length of the endpoint buffer shared between the client
602 // and the audio engine. The buffer length determines the maximum amount
603 // of capture data that the audio engine can read from the endpoint buffer
604 // during a single processing pass.
605 // A typical value is 960 audio frames <=> 20ms @ 48kHz sample rate.
606 hr = audio_client_->GetBufferSize(&endpoint_buffer_size_frames_);
607 if (FAILED(hr))
608 return hr;
610 DVLOG(1) << "endpoint buffer size: " << endpoint_buffer_size_frames_
611 << " [frames]";
613 #ifndef NDEBUG
614 // The period between processing passes by the audio engine is fixed for a
615 // particular audio endpoint device and represents the smallest processing
616 // quantum for the audio engine. This period plus the stream latency between
617 // the buffer and endpoint device represents the minimum possible latency
618 // that an audio application can achieve.
619 // TODO(henrika): possibly remove this section when all parts are ready.
620 REFERENCE_TIME device_period_shared_mode = 0;
621 REFERENCE_TIME device_period_exclusive_mode = 0;
622 HRESULT hr_dbg = audio_client_->GetDevicePeriod(
623 &device_period_shared_mode, &device_period_exclusive_mode);
624 if (SUCCEEDED(hr_dbg)) {
625 DVLOG(1) << "device period: "
626 << static_cast<double>(device_period_shared_mode / 10000.0)
627 << " [ms]";
630 REFERENCE_TIME latency = 0;
631 hr_dbg = audio_client_->GetStreamLatency(&latency);
632 if (SUCCEEDED(hr_dbg)) {
633 DVLOG(1) << "stream latency: " << static_cast<double>(latency / 10000.0)
634 << " [ms]";
636 #endif
638 // Set the event handle that the audio engine will signal each time a buffer
639 // becomes ready to be processed by the client.
641 // In loopback case the capture device doesn't receive any events, so we
642 // need to create a separate playback client to get notifications. According
643 // to MSDN:
645 // A pull-mode capture client does not receive any events when a stream is
646 // initialized with event-driven buffering and is loopback-enabled. To
647 // work around this, initialize a render stream in event-driven mode. Each
648 // time the client receives an event for the render stream, it must signal
649 // the capture client to run the capture thread that reads the next set of
650 // samples from the capture endpoint buffer.
652 // http://msdn.microsoft.com/en-us/library/windows/desktop/dd316551(v=vs.85).aspx
653 if (device_id_ == AudioManagerBase::kLoopbackInputDeviceId) {
654 hr = endpoint_device_->Activate(
655 __uuidof(IAudioClient), CLSCTX_INPROC_SERVER, NULL,
656 audio_render_client_for_loopback_.ReceiveVoid());
657 if (FAILED(hr))
658 return hr;
660 hr = audio_render_client_for_loopback_->Initialize(
661 AUDCLNT_SHAREMODE_SHARED,
662 AUDCLNT_STREAMFLAGS_EVENTCALLBACK | AUDCLNT_STREAMFLAGS_NOPERSIST,
663 0, 0, &format_, NULL);
664 if (FAILED(hr))
665 return hr;
667 hr = audio_render_client_for_loopback_->SetEventHandle(
668 audio_samples_ready_event_.Get());
669 } else {
670 hr = audio_client_->SetEventHandle(audio_samples_ready_event_.Get());
673 if (FAILED(hr))
674 return hr;
676 // Get access to the IAudioCaptureClient interface. This interface
677 // enables us to read input data from the capture endpoint buffer.
678 hr = audio_client_->GetService(__uuidof(IAudioCaptureClient),
679 audio_capture_client_.ReceiveVoid());
680 if (FAILED(hr))
681 return hr;
683 // Obtain a reference to the ISimpleAudioVolume interface which enables
684 // us to control the master volume level of an audio session.
685 hr = audio_client_->GetService(__uuidof(ISimpleAudioVolume),
686 simple_audio_volume_.ReceiveVoid());
687 return hr;
690 } // namespace media