1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "media/audio/win/audio_low_latency_input_win.h"
7 #include "base/logging.h"
8 #include "base/memory/scoped_ptr.h"
9 #include "base/strings/utf_string_conversions.h"
10 #include "media/audio/win/audio_manager_win.h"
11 #include "media/audio/win/avrt_wrapper_win.h"
13 using base::win::ScopedComPtr
;
14 using base::win::ScopedCOMInitializer
;
18 WASAPIAudioInputStream::WASAPIAudioInputStream(
19 AudioManagerWin
* manager
, const AudioParameters
& params
,
20 const std::string
& device_id
)
22 capture_thread_(NULL
),
25 endpoint_buffer_size_frames_(0),
26 device_id_(device_id
),
30 // Load the Avrt DLL if not already loaded. Required to support MMCSS.
31 bool avrt_init
= avrt::Initialize();
32 DCHECK(avrt_init
) << "Failed to load the Avrt.dll";
34 // Set up the desired capture format specified by the client.
35 format_
.nSamplesPerSec
= params
.sample_rate();
36 format_
.wFormatTag
= WAVE_FORMAT_PCM
;
37 format_
.wBitsPerSample
= params
.bits_per_sample();
38 format_
.nChannels
= params
.channels();
39 format_
.nBlockAlign
= (format_
.wBitsPerSample
/ 8) * format_
.nChannels
;
40 format_
.nAvgBytesPerSec
= format_
.nSamplesPerSec
* format_
.nBlockAlign
;
43 // Size in bytes of each audio frame.
44 frame_size_
= format_
.nBlockAlign
;
45 // Store size of audio packets which we expect to get from the audio
46 // endpoint device in each capture event.
47 packet_size_frames_
= params
.GetBytesPerBuffer() / format_
.nBlockAlign
;
48 packet_size_bytes_
= params
.GetBytesPerBuffer();
49 DVLOG(1) << "Number of bytes per audio frame : " << frame_size_
;
50 DVLOG(1) << "Number of audio frames per packet: " << packet_size_frames_
;
52 // All events are auto-reset events and non-signaled initially.
54 // Create the event which the audio engine will signal each time
55 // a buffer becomes ready to be processed by the client.
56 audio_samples_ready_event_
.Set(CreateEvent(NULL
, FALSE
, FALSE
, NULL
));
57 DCHECK(audio_samples_ready_event_
.IsValid());
59 // Create the event which will be set in Stop() when capturing shall stop.
60 stop_capture_event_
.Set(CreateEvent(NULL
, FALSE
, FALSE
, NULL
));
61 DCHECK(stop_capture_event_
.IsValid());
63 ms_to_frame_count_
= static_cast<double>(params
.sample_rate()) / 1000.0;
65 LARGE_INTEGER performance_frequency
;
66 if (QueryPerformanceFrequency(&performance_frequency
)) {
67 perf_count_to_100ns_units_
=
68 (10000000.0 / static_cast<double>(performance_frequency
.QuadPart
));
70 LOG(ERROR
) << "High-resolution performance counters are not supported.";
71 perf_count_to_100ns_units_
= 0.0;
75 WASAPIAudioInputStream::~WASAPIAudioInputStream() {}
77 bool WASAPIAudioInputStream::Open() {
78 DCHECK(CalledOnValidThread());
79 // Verify that we are not already opened.
83 // Obtain a reference to the IMMDevice interface of the capturing
84 // device with the specified unique identifier or role which was
85 // set at construction.
86 HRESULT hr
= SetCaptureDevice();
90 // Obtain an IAudioClient interface which enables us to create and initialize
91 // an audio stream between an audio application and the audio engine.
92 hr
= ActivateCaptureDevice();
96 // Retrieve the stream format which the audio engine uses for its internal
97 // processing/mixing of shared-mode streams. This function call is for
98 // diagnostic purposes only and only in debug mode.
100 hr
= GetAudioEngineStreamFormat();
103 // Verify that the selected audio endpoint supports the specified format
104 // set during construction.
105 if (!DesiredFormatIsSupported())
108 // Initialize the audio stream between the client and the device using
109 // shared mode and a lowest possible glitch-free latency.
110 hr
= InitializeAudioEngine();
112 opened_
= SUCCEEDED(hr
);
116 void WASAPIAudioInputStream::Start(AudioInputCallback
* callback
) {
117 DCHECK(CalledOnValidThread());
119 DLOG_IF(ERROR
, !opened_
) << "Open() has not been called successfully";
128 // Starts periodic AGC microphone measurements if the AGC has been enabled
129 // using SetAutomaticGainControl().
132 // Create and start the thread that will drive the capturing by waiting for
135 new base::DelegateSimpleThread(this, "wasapi_capture_thread");
136 capture_thread_
->Start();
138 // Start streaming data between the endpoint buffer and the audio engine.
139 HRESULT hr
= audio_client_
->Start();
140 DLOG_IF(ERROR
, FAILED(hr
)) << "Failed to start input streaming.";
142 if (SUCCEEDED(hr
) && audio_render_client_for_loopback_
)
143 hr
= audio_render_client_for_loopback_
->Start();
145 started_
= SUCCEEDED(hr
);
148 void WASAPIAudioInputStream::Stop() {
149 DCHECK(CalledOnValidThread());
150 DVLOG(1) << "WASAPIAudioInputStream::Stop()";
154 // Stops periodic AGC microphone measurements.
157 // Shut down the capture thread.
158 if (stop_capture_event_
.IsValid()) {
159 SetEvent(stop_capture_event_
.Get());
162 // Stop the input audio streaming.
163 HRESULT hr
= audio_client_
->Stop();
165 LOG(ERROR
) << "Failed to stop input streaming.";
168 // Wait until the thread completes and perform cleanup.
169 if (capture_thread_
) {
170 SetEvent(stop_capture_event_
.Get());
171 capture_thread_
->Join();
172 capture_thread_
= NULL
;
178 void WASAPIAudioInputStream::Close() {
179 DVLOG(1) << "WASAPIAudioInputStream::Close()";
180 // It is valid to call Close() before calling open or Start().
181 // It is also valid to call Close() after Start() has been called.
184 sink_
->OnClose(this);
188 // Inform the audio manager that we have been closed. This will cause our
190 manager_
->ReleaseInputStream(this);
193 double WASAPIAudioInputStream::GetMaxVolume() {
194 // Verify that Open() has been called succesfully, to ensure that an audio
195 // session exists and that an ISimpleAudioVolume interface has been created.
196 DLOG_IF(ERROR
, !opened_
) << "Open() has not been called successfully";
200 // The effective volume value is always in the range 0.0 to 1.0, hence
201 // we can return a fixed value (=1.0) here.
205 void WASAPIAudioInputStream::SetVolume(double volume
) {
206 DVLOG(1) << "SetVolume(volume=" << volume
<< ")";
207 DCHECK(CalledOnValidThread());
208 DCHECK_GE(volume
, 0.0);
209 DCHECK_LE(volume
, 1.0);
211 DLOG_IF(ERROR
, !opened_
) << "Open() has not been called successfully";
215 // Set a new master volume level. Valid volume levels are in the range
216 // 0.0 to 1.0. Ignore volume-change events.
217 HRESULT hr
= simple_audio_volume_
->SetMasterVolume(static_cast<float>(volume
),
219 DLOG_IF(WARNING
, FAILED(hr
)) << "Failed to set new input master volume.";
221 // Update the AGC volume level based on the last setting above. Note that,
222 // the volume-level resolution is not infinite and it is therefore not
223 // possible to assume that the volume provided as input parameter can be
224 // used directly. Instead, a new query to the audio hardware is required.
225 // This method does nothing if AGC is disabled.
229 double WASAPIAudioInputStream::GetVolume() {
230 DLOG_IF(ERROR
, !opened_
) << "Open() has not been called successfully";
234 // Retrieve the current volume level. The value is in the range 0.0 to 1.0.
236 HRESULT hr
= simple_audio_volume_
->GetMasterVolume(&level
);
237 DLOG_IF(WARNING
, FAILED(hr
)) << "Failed to get input master volume.";
239 return static_cast<double>(level
);
243 int WASAPIAudioInputStream::HardwareSampleRate(
244 const std::string
& device_id
) {
245 base::win::ScopedCoMem
<WAVEFORMATEX
> audio_engine_mix_format
;
246 HRESULT hr
= GetMixFormat(device_id
, &audio_engine_mix_format
);
250 return static_cast<int>(audio_engine_mix_format
->nSamplesPerSec
);
254 uint32
WASAPIAudioInputStream::HardwareChannelCount(
255 const std::string
& device_id
) {
256 base::win::ScopedCoMem
<WAVEFORMATEX
> audio_engine_mix_format
;
257 HRESULT hr
= GetMixFormat(device_id
, &audio_engine_mix_format
);
261 return static_cast<uint32
>(audio_engine_mix_format
->nChannels
);
265 HRESULT
WASAPIAudioInputStream::GetMixFormat(const std::string
& device_id
,
266 WAVEFORMATEX
** device_format
) {
267 // It is assumed that this static method is called from a COM thread, i.e.,
268 // CoInitializeEx() is not called here to avoid STA/MTA conflicts.
269 ScopedComPtr
<IMMDeviceEnumerator
> enumerator
;
270 HRESULT hr
= enumerator
.CreateInstance(__uuidof(MMDeviceEnumerator
), NULL
,
271 CLSCTX_INPROC_SERVER
);
275 ScopedComPtr
<IMMDevice
> endpoint_device
;
276 if (device_id
== AudioManagerBase::kDefaultDeviceId
) {
277 // Retrieve the default capture audio endpoint.
278 hr
= enumerator
->GetDefaultAudioEndpoint(eCapture
, eConsole
,
279 endpoint_device
.Receive());
280 } else if (device_id
== AudioManagerBase::kLoopbackInputDeviceId
) {
281 // Capture the default playback stream.
282 hr
= enumerator
->GetDefaultAudioEndpoint(eRender
, eConsole
,
283 endpoint_device
.Receive());
285 // Retrieve a capture endpoint device that is specified by an endpoint
286 // device-identification string.
287 hr
= enumerator
->GetDevice(UTF8ToUTF16(device_id
).c_str(),
288 endpoint_device
.Receive());
293 ScopedComPtr
<IAudioClient
> audio_client
;
294 hr
= endpoint_device
->Activate(__uuidof(IAudioClient
),
295 CLSCTX_INPROC_SERVER
,
297 audio_client
.ReceiveVoid());
298 return SUCCEEDED(hr
) ? audio_client
->GetMixFormat(device_format
) : hr
;
301 void WASAPIAudioInputStream::Run() {
302 ScopedCOMInitializer
com_init(ScopedCOMInitializer::kMTA
);
304 // Increase the thread priority.
305 capture_thread_
->SetThreadPriority(base::kThreadPriority_RealtimeAudio
);
307 // Enable MMCSS to ensure that this thread receives prioritized access to
309 DWORD task_index
= 0;
310 HANDLE mm_task
= avrt::AvSetMmThreadCharacteristics(L
"Pro Audio",
313 (mm_task
&& avrt::AvSetMmThreadPriority(mm_task
, AVRT_PRIORITY_CRITICAL
));
315 // Failed to enable MMCSS on this thread. It is not fatal but can lead
316 // to reduced QoS at high load.
317 DWORD err
= GetLastError();
318 LOG(WARNING
) << "Failed to enable MMCSS (error code=" << err
<< ").";
321 // Allocate a buffer with a size that enables us to take care of cases like:
322 // 1) The recorded buffer size is smaller, or does not match exactly with,
323 // the selected packet size used in each callback.
324 // 2) The selected buffer size is larger than the recorded buffer size in
326 size_t buffer_frame_index
= 0;
327 size_t capture_buffer_size
= std::max(
328 2 * endpoint_buffer_size_frames_
* frame_size_
,
329 2 * packet_size_frames_
* frame_size_
);
330 scoped_ptr
<uint8
[]> capture_buffer(new uint8
[capture_buffer_size
]);
332 LARGE_INTEGER now_count
;
333 bool recording
= true;
335 double volume
= GetVolume();
336 HANDLE wait_array
[2] = {stop_capture_event_
, audio_samples_ready_event_
};
338 while (recording
&& !error
) {
339 HRESULT hr
= S_FALSE
;
341 // Wait for a close-down event or a new capture event.
342 DWORD wait_result
= WaitForMultipleObjects(2, wait_array
, FALSE
, INFINITE
);
343 switch (wait_result
) {
347 case WAIT_OBJECT_0
+ 0:
348 // |stop_capture_event_| has been set.
351 case WAIT_OBJECT_0
+ 1:
353 // |audio_samples_ready_event_| has been set.
354 BYTE
* data_ptr
= NULL
;
355 UINT32 num_frames_to_read
= 0;
357 UINT64 device_position
= 0;
358 UINT64 first_audio_frame_timestamp
= 0;
360 // Retrieve the amount of data in the capture endpoint buffer,
361 // replace it with silence if required, create callbacks for each
362 // packet and store non-delivered data for the next event.
363 hr
= audio_capture_client_
->GetBuffer(&data_ptr
,
367 &first_audio_frame_timestamp
);
369 DLOG(ERROR
) << "Failed to get data from the capture buffer";
373 if (num_frames_to_read
!= 0) {
374 size_t pos
= buffer_frame_index
* frame_size_
;
375 size_t num_bytes
= num_frames_to_read
* frame_size_
;
376 DCHECK_GE(capture_buffer_size
, pos
+ num_bytes
);
378 if (flags
& AUDCLNT_BUFFERFLAGS_SILENT
) {
379 // Clear out the local buffer since silence is reported.
380 memset(&capture_buffer
[pos
], 0, num_bytes
);
382 // Copy captured data from audio engine buffer to local buffer.
383 memcpy(&capture_buffer
[pos
], data_ptr
, num_bytes
);
386 buffer_frame_index
+= num_frames_to_read
;
389 hr
= audio_capture_client_
->ReleaseBuffer(num_frames_to_read
);
390 DLOG_IF(ERROR
, FAILED(hr
)) << "Failed to release capture buffer";
392 // Derive a delay estimate for the captured audio packet.
393 // The value contains two parts (A+B), where A is the delay of the
394 // first audio frame in the packet and B is the extra delay
395 // contained in any stored data. Unit is in audio frames.
396 QueryPerformanceCounter(&now_count
);
397 double audio_delay_frames
=
398 ((perf_count_to_100ns_units_
* now_count
.QuadPart
-
399 first_audio_frame_timestamp
) / 10000.0) * ms_to_frame_count_
+
400 buffer_frame_index
- num_frames_to_read
;
402 // Get a cached AGC volume level which is updated once every second
403 // on the audio manager thread. Note that, |volume| is also updated
404 // each time SetVolume() is called through IPC by the render-side AGC.
405 GetAgcVolume(&volume
);
407 // Deliver captured data to the registered consumer using a packet
408 // size which was specified at construction.
409 uint32 delay_frames
= static_cast<uint32
>(audio_delay_frames
+ 0.5);
410 while (buffer_frame_index
>= packet_size_frames_
) {
412 reinterpret_cast<uint8
*>(capture_buffer
.get());
414 // Deliver data packet, delay estimation and volume level to
419 delay_frames
* frame_size_
,
422 // Store parts of the recorded data which can't be delivered
423 // using the current packet size. The stored section will be used
424 // either in the next while-loop iteration or in the next
426 memmove(&capture_buffer
[0],
427 &capture_buffer
[packet_size_bytes_
],
428 (buffer_frame_index
- packet_size_frames_
) * frame_size_
);
430 buffer_frame_index
-= packet_size_frames_
;
431 delay_frames
-= packet_size_frames_
;
441 if (recording
&& error
) {
442 // TODO(henrika): perhaps it worth improving the cleanup here by e.g.
443 // stopping the audio client, joining the thread etc.?
444 NOTREACHED() << "WASAPI capturing failed with error code "
449 if (mm_task
&& !avrt::AvRevertMmThreadCharacteristics(mm_task
)) {
450 PLOG(WARNING
) << "Failed to disable MMCSS";
454 void WASAPIAudioInputStream::HandleError(HRESULT err
) {
455 NOTREACHED() << "Error code: " << err
;
457 sink_
->OnError(this);
460 HRESULT
WASAPIAudioInputStream::SetCaptureDevice() {
461 ScopedComPtr
<IMMDeviceEnumerator
> enumerator
;
462 HRESULT hr
= enumerator
.CreateInstance(__uuidof(MMDeviceEnumerator
),
463 NULL
, CLSCTX_INPROC_SERVER
);
467 // Retrieve the IMMDevice by using the specified role or the specified
468 // unique endpoint device-identification string.
469 // TODO(henrika): possibly add support for the eCommunications as well.
470 if (device_id_
== AudioManagerBase::kDefaultDeviceId
) {
471 // Retrieve the default capture audio endpoint for the specified role.
472 // Note that, in Windows Vista, the MMDevice API supports device roles
473 // but the system-supplied user interface programs do not.
474 hr
= enumerator
->GetDefaultAudioEndpoint(eCapture
, eConsole
,
475 endpoint_device_
.Receive());
476 } else if (device_id_
== AudioManagerBase::kLoopbackInputDeviceId
) {
477 // Capture the default playback stream.
478 hr
= enumerator
->GetDefaultAudioEndpoint(eRender
, eConsole
,
479 endpoint_device_
.Receive());
481 // Retrieve a capture endpoint device that is specified by an endpoint
482 // device-identification string.
483 hr
= enumerator
->GetDevice(UTF8ToUTF16(device_id_
).c_str(),
484 endpoint_device_
.Receive());
490 // Verify that the audio endpoint device is active, i.e., the audio
491 // adapter that connects to the endpoint device is present and enabled.
492 DWORD state
= DEVICE_STATE_DISABLED
;
493 hr
= endpoint_device_
->GetState(&state
);
497 if (!(state
& DEVICE_STATE_ACTIVE
)) {
498 DLOG(ERROR
) << "Selected capture device is not active.";
505 HRESULT
WASAPIAudioInputStream::ActivateCaptureDevice() {
506 // Creates and activates an IAudioClient COM object given the selected
507 // capture endpoint device.
508 HRESULT hr
= endpoint_device_
->Activate(__uuidof(IAudioClient
),
509 CLSCTX_INPROC_SERVER
,
511 audio_client_
.ReceiveVoid());
515 HRESULT
WASAPIAudioInputStream::GetAudioEngineStreamFormat() {
518 // The GetMixFormat() method retrieves the stream format that the
519 // audio engine uses for its internal processing of shared-mode streams.
520 // The method always uses a WAVEFORMATEXTENSIBLE structure, instead
521 // of a stand-alone WAVEFORMATEX structure, to specify the format.
522 // An WAVEFORMATEXTENSIBLE structure can specify both the mapping of
523 // channels to speakers and the number of bits of precision in each sample.
524 base::win::ScopedCoMem
<WAVEFORMATEXTENSIBLE
> format_ex
;
525 hr
= audio_client_
->GetMixFormat(
526 reinterpret_cast<WAVEFORMATEX
**>(&format_ex
));
528 // See http://msdn.microsoft.com/en-us/windows/hardware/gg463006#EFH
529 // for details on the WAVE file format.
530 WAVEFORMATEX format
= format_ex
->Format
;
531 DVLOG(2) << "WAVEFORMATEX:";
532 DVLOG(2) << " wFormatTags : 0x" << std::hex
<< format
.wFormatTag
;
533 DVLOG(2) << " nChannels : " << format
.nChannels
;
534 DVLOG(2) << " nSamplesPerSec : " << format
.nSamplesPerSec
;
535 DVLOG(2) << " nAvgBytesPerSec: " << format
.nAvgBytesPerSec
;
536 DVLOG(2) << " nBlockAlign : " << format
.nBlockAlign
;
537 DVLOG(2) << " wBitsPerSample : " << format
.wBitsPerSample
;
538 DVLOG(2) << " cbSize : " << format
.cbSize
;
540 DVLOG(2) << "WAVEFORMATEXTENSIBLE:";
541 DVLOG(2) << " wValidBitsPerSample: " <<
542 format_ex
->Samples
.wValidBitsPerSample
;
543 DVLOG(2) << " dwChannelMask : 0x" << std::hex
<<
544 format_ex
->dwChannelMask
;
545 if (format_ex
->SubFormat
== KSDATAFORMAT_SUBTYPE_PCM
)
546 DVLOG(2) << " SubFormat : KSDATAFORMAT_SUBTYPE_PCM";
547 else if (format_ex
->SubFormat
== KSDATAFORMAT_SUBTYPE_IEEE_FLOAT
)
548 DVLOG(2) << " SubFormat : KSDATAFORMAT_SUBTYPE_IEEE_FLOAT";
549 else if (format_ex
->SubFormat
== KSDATAFORMAT_SUBTYPE_WAVEFORMATEX
)
550 DVLOG(2) << " SubFormat : KSDATAFORMAT_SUBTYPE_WAVEFORMATEX";
555 bool WASAPIAudioInputStream::DesiredFormatIsSupported() {
556 // An application that uses WASAPI to manage shared-mode streams can rely
557 // on the audio engine to perform only limited format conversions. The audio
558 // engine can convert between a standard PCM sample size used by the
559 // application and the floating-point samples that the engine uses for its
560 // internal processing. However, the format for an application stream
561 // typically must have the same number of channels and the same sample
562 // rate as the stream format used by the device.
563 // Many audio devices support both PCM and non-PCM stream formats. However,
564 // the audio engine can mix only PCM streams.
565 base::win::ScopedCoMem
<WAVEFORMATEX
> closest_match
;
566 HRESULT hr
= audio_client_
->IsFormatSupported(AUDCLNT_SHAREMODE_SHARED
,
569 DLOG_IF(ERROR
, hr
== S_FALSE
) << "Format is not supported "
570 << "but a closest match exists.";
574 HRESULT
WASAPIAudioInputStream::InitializeAudioEngine() {
576 // Use event-driven mode only fo regular input devices. For loopback the
577 // EVENTCALLBACK flag is specified when intializing
578 // |audio_render_client_for_loopback_|.
579 if (device_id_
== AudioManagerBase::kLoopbackInputDeviceId
) {
580 flags
= AUDCLNT_STREAMFLAGS_LOOPBACK
| AUDCLNT_STREAMFLAGS_NOPERSIST
;
583 AUDCLNT_STREAMFLAGS_EVENTCALLBACK
| AUDCLNT_STREAMFLAGS_NOPERSIST
;
586 // Initialize the audio stream between the client and the device.
587 // We connect indirectly through the audio engine by using shared mode.
588 // Note that, |hnsBufferDuration| is set of 0, which ensures that the
589 // buffer is never smaller than the minimum buffer size needed to ensure
590 // that glitches do not occur between the periodic processing passes.
591 // This setting should lead to lowest possible latency.
592 HRESULT hr
= audio_client_
->Initialize(AUDCLNT_SHAREMODE_SHARED
,
594 0, // hnsBufferDuration
601 // Retrieve the length of the endpoint buffer shared between the client
602 // and the audio engine. The buffer length determines the maximum amount
603 // of capture data that the audio engine can read from the endpoint buffer
604 // during a single processing pass.
605 // A typical value is 960 audio frames <=> 20ms @ 48kHz sample rate.
606 hr
= audio_client_
->GetBufferSize(&endpoint_buffer_size_frames_
);
610 DVLOG(1) << "endpoint buffer size: " << endpoint_buffer_size_frames_
614 // The period between processing passes by the audio engine is fixed for a
615 // particular audio endpoint device and represents the smallest processing
616 // quantum for the audio engine. This period plus the stream latency between
617 // the buffer and endpoint device represents the minimum possible latency
618 // that an audio application can achieve.
619 // TODO(henrika): possibly remove this section when all parts are ready.
620 REFERENCE_TIME device_period_shared_mode
= 0;
621 REFERENCE_TIME device_period_exclusive_mode
= 0;
622 HRESULT hr_dbg
= audio_client_
->GetDevicePeriod(
623 &device_period_shared_mode
, &device_period_exclusive_mode
);
624 if (SUCCEEDED(hr_dbg
)) {
625 DVLOG(1) << "device period: "
626 << static_cast<double>(device_period_shared_mode
/ 10000.0)
630 REFERENCE_TIME latency
= 0;
631 hr_dbg
= audio_client_
->GetStreamLatency(&latency
);
632 if (SUCCEEDED(hr_dbg
)) {
633 DVLOG(1) << "stream latency: " << static_cast<double>(latency
/ 10000.0)
638 // Set the event handle that the audio engine will signal each time a buffer
639 // becomes ready to be processed by the client.
641 // In loopback case the capture device doesn't receive any events, so we
642 // need to create a separate playback client to get notifications. According
645 // A pull-mode capture client does not receive any events when a stream is
646 // initialized with event-driven buffering and is loopback-enabled. To
647 // work around this, initialize a render stream in event-driven mode. Each
648 // time the client receives an event for the render stream, it must signal
649 // the capture client to run the capture thread that reads the next set of
650 // samples from the capture endpoint buffer.
652 // http://msdn.microsoft.com/en-us/library/windows/desktop/dd316551(v=vs.85).aspx
653 if (device_id_
== AudioManagerBase::kLoopbackInputDeviceId
) {
654 hr
= endpoint_device_
->Activate(
655 __uuidof(IAudioClient
), CLSCTX_INPROC_SERVER
, NULL
,
656 audio_render_client_for_loopback_
.ReceiveVoid());
660 hr
= audio_render_client_for_loopback_
->Initialize(
661 AUDCLNT_SHAREMODE_SHARED
,
662 AUDCLNT_STREAMFLAGS_EVENTCALLBACK
| AUDCLNT_STREAMFLAGS_NOPERSIST
,
663 0, 0, &format_
, NULL
);
667 hr
= audio_render_client_for_loopback_
->SetEventHandle(
668 audio_samples_ready_event_
.Get());
670 hr
= audio_client_
->SetEventHandle(audio_samples_ready_event_
.Get());
676 // Get access to the IAudioCaptureClient interface. This interface
677 // enables us to read input data from the capture endpoint buffer.
678 hr
= audio_client_
->GetService(__uuidof(IAudioCaptureClient
),
679 audio_capture_client_
.ReceiveVoid());
683 // Obtain a reference to the ISimpleAudioVolume interface which enables
684 // us to control the master volume level of an audio session.
685 hr
= audio_client_
->GetService(__uuidof(ISimpleAudioVolume
),
686 simple_audio_volume_
.ReceiveVoid());