1 // Copyright 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #ifndef BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_
6 #define BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_
11 #include "base/base_export.h"
12 #include "base/basictypes.h"
13 #include "base/callback_forward.h"
14 #include "base/debug/task_annotator.h"
15 #include "base/location.h"
16 #include "base/memory/ref_counted.h"
17 #include "base/memory/scoped_ptr.h"
18 #include "base/message_loop/incoming_task_queue.h"
19 #include "base/message_loop/message_loop_proxy.h"
20 #include "base/message_loop/message_loop_proxy_impl.h"
21 #include "base/message_loop/message_pump.h"
22 #include "base/message_loop/timer_slack.h"
23 #include "base/observer_list.h"
24 #include "base/pending_task.h"
25 #include "base/sequenced_task_runner_helpers.h"
26 #include "base/synchronization/lock.h"
27 #include "base/time/time.h"
28 #include "base/tracking_info.h"
30 // TODO(sky): these includes should not be necessary. Nuke them.
32 #include "base/message_loop/message_pump_win.h"
34 #include "base/message_loop/message_pump_io_ios.h"
35 #elif defined(OS_POSIX)
36 #include "base/message_loop/message_pump_libevent.h"
43 class ThreadTaskRunnerHandle
;
46 // A MessageLoop is used to process events for a particular thread. There is
47 // at most one MessageLoop instance per thread.
49 // Events include at a minimum Task instances submitted to PostTask and its
50 // variants. Depending on the type of message pump used by the MessageLoop
51 // other events such as UI messages may be processed. On Windows APC calls (as
52 // time permits) and signals sent to a registered set of HANDLEs may also be
55 // NOTE: Unless otherwise specified, a MessageLoop's methods may only be called
56 // on the thread where the MessageLoop's Run method executes.
58 // NOTE: MessageLoop has task reentrancy protection. This means that if a
59 // task is being processed, a second task cannot start until the first task is
60 // finished. Reentrancy can happen when processing a task, and an inner
61 // message pump is created. That inner pump then processes native messages
62 // which could implicitly start an inner task. Inner message pumps are created
63 // with dialogs (DialogBox), common dialogs (GetOpenFileName), OLE functions
64 // (DoDragDrop), printer functions (StartDoc) and *many* others.
66 // Sample workaround when inner task processing is needed:
69 // MessageLoop::ScopedNestableTaskAllower allow(MessageLoop::current());
70 // hr = DoDragDrop(...); // Implicitly runs a modal message loop.
72 // // Process |hr| (the result returned by DoDragDrop()).
74 // Please be SURE your task is reentrant (nestable) and all global variables
75 // are stable and accessible before calling SetNestableTasksAllowed(true).
77 class BASE_EXPORT MessageLoop
: public MessagePump::Delegate
{
79 // A MessageLoop has a particular type, which indicates the set of
80 // asynchronous events it may process in addition to tasks and timers.
83 // This type of ML only supports tasks and timers.
86 // This type of ML also supports native UI events (e.g., Windows messages).
87 // See also MessageLoopForUI.
90 // This type of ML also supports asynchronous IO. See also
94 // This type of ML is backed by a Java message handler which is responsible
95 // for running the tasks added to the ML. This is only for use on Android.
96 // TYPE_JAVA behaves in essence like TYPE_UI, except during construction
97 // where it does not use the main thread specific pump factory.
100 // MessagePump was supplied to constructor.
107 #if defined(OS_ANDROID)
109 #endif // defined(OS_ANDROID)
112 // Normally, it is not necessary to instantiate a MessageLoop. Instead, it
113 // is typical to make use of the current thread's MessageLoop instance.
114 explicit MessageLoop(Type type
= TYPE_DEFAULT
);
115 // Creates a TYPE_CUSTOM MessageLoop with the supplied MessagePump, which must
117 explicit MessageLoop(scoped_ptr
<base::MessagePump
> pump
);
118 virtual ~MessageLoop();
120 // Returns the MessageLoop object for the current thread, or null if none.
121 static MessageLoop
* current();
123 static void EnableHistogrammer(bool enable_histogrammer
);
125 typedef scoped_ptr
<MessagePump
> (MessagePumpFactory
)();
126 // Uses the given base::MessagePumpForUIFactory to override the default
127 // MessagePump implementation for 'TYPE_UI'. Returns true if the factory
128 // was successfully registered.
129 static bool InitMessagePumpForUIFactory(MessagePumpFactory
* factory
);
131 // Creates the default MessagePump based on |type|. Caller owns return
133 static scoped_ptr
<MessagePump
> CreateMessagePumpForType(Type type
);
134 // A DestructionObserver is notified when the current MessageLoop is being
135 // destroyed. These observers are notified prior to MessageLoop::current()
136 // being changed to return NULL. This gives interested parties the chance to
137 // do final cleanup that depends on the MessageLoop.
139 // NOTE: Any tasks posted to the MessageLoop during this notification will
140 // not be run. Instead, they will be deleted.
142 class BASE_EXPORT DestructionObserver
{
144 virtual void WillDestroyCurrentMessageLoop() = 0;
147 virtual ~DestructionObserver();
150 // Add a DestructionObserver, which will start receiving notifications
152 void AddDestructionObserver(DestructionObserver
* destruction_observer
);
154 // Remove a DestructionObserver. It is safe to call this method while a
155 // DestructionObserver is receiving a notification callback.
156 void RemoveDestructionObserver(DestructionObserver
* destruction_observer
);
158 // The "PostTask" family of methods call the task's Run method asynchronously
159 // from within a message loop at some point in the future.
161 // With the PostTask variant, tasks are invoked in FIFO order, inter-mixed
162 // with normal UI or IO event processing. With the PostDelayedTask variant,
163 // tasks are called after at least approximately 'delay_ms' have elapsed.
165 // The NonNestable variants work similarly except that they promise never to
166 // dispatch the task from a nested invocation of MessageLoop::Run. Instead,
167 // such tasks get deferred until the top-most MessageLoop::Run is executing.
169 // The MessageLoop takes ownership of the Task, and deletes it after it has
172 // PostTask(from_here, task) is equivalent to
173 // PostDelayedTask(from_here, task, 0).
175 // NOTE: These methods may be called on any thread. The Task will be invoked
176 // on the thread that executes MessageLoop::Run().
177 void PostTask(const tracked_objects::Location
& from_here
,
178 const Closure
& task
);
180 void PostDelayedTask(const tracked_objects::Location
& from_here
,
184 void PostNonNestableTask(const tracked_objects::Location
& from_here
,
185 const Closure
& task
);
187 void PostNonNestableDelayedTask(const tracked_objects::Location
& from_here
,
191 // A variant on PostTask that deletes the given object. This is useful
192 // if the object needs to live until the next run of the MessageLoop (for
193 // example, deleting a RenderProcessHost from within an IPC callback is not
196 // NOTE: This method may be called on any thread. The object will be deleted
197 // on the thread that executes MessageLoop::Run(). If this is not the same
198 // as the thread that calls PostDelayedTask(FROM_HERE, ), then T MUST inherit
199 // from RefCountedThreadSafe<T>!
201 void DeleteSoon(const tracked_objects::Location
& from_here
, const T
* object
) {
202 base::subtle::DeleteHelperInternal
<T
, void>::DeleteViaSequencedTaskRunner(
203 this, from_here
, object
);
206 // A variant on PostTask that releases the given reference counted object
207 // (by calling its Release method). This is useful if the object needs to
208 // live until the next run of the MessageLoop, or if the object needs to be
209 // released on a particular thread.
211 // A common pattern is to manually increment the object's reference count
212 // (AddRef), clear the pointer, then issue a ReleaseSoon. The reference count
213 // is incremented manually to ensure clearing the pointer does not trigger a
214 // delete and to account for the upcoming decrement (ReleaseSoon). For
217 // scoped_refptr<Foo> foo = ...
219 // Foo* raw_foo = foo.get();
221 // message_loop->ReleaseSoon(raw_foo);
223 // NOTE: This method may be called on any thread. The object will be
224 // released (and thus possibly deleted) on the thread that executes
225 // MessageLoop::Run(). If this is not the same as the thread that calls
226 // PostDelayedTask(FROM_HERE, ), then T MUST inherit from
227 // RefCountedThreadSafe<T>!
229 void ReleaseSoon(const tracked_objects::Location
& from_here
,
231 base::subtle::ReleaseHelperInternal
<T
, void>::ReleaseViaSequencedTaskRunner(
232 this, from_here
, object
);
235 // Deprecated: use RunLoop instead.
236 // Run the message loop.
239 // Deprecated: use RunLoop instead.
240 // Process all pending tasks, windows messages, etc., but don't wait/sleep.
241 // Return as soon as all items that can be run are taken care of.
244 // TODO(jbates) remove this. crbug.com/131220. See QuitWhenIdle().
245 void Quit() { QuitWhenIdle(); }
247 // Deprecated: use RunLoop instead.
249 // Signals the Run method to return when it becomes idle. It will continue to
250 // process pending messages and future messages as long as they are enqueued.
251 // Warning: if the MessageLoop remains busy, it may never quit. Only use this
252 // Quit method when looping procedures (such as web pages) have been shut
255 // This method may only be called on the same thread that called Run, and Run
256 // must still be on the call stack.
258 // Use QuitClosure variants if you need to Quit another thread's MessageLoop,
259 // but note that doing so is fairly dangerous if the target thread makes
260 // nested calls to MessageLoop::Run. The problem being that you won't know
261 // which nested run loop you are quitting, so be careful!
264 // Deprecated: use RunLoop instead.
266 // This method is a variant of Quit, that does not wait for pending messages
267 // to be processed before returning from Run.
270 // TODO(jbates) remove this. crbug.com/131220. See QuitWhenIdleClosure().
271 static Closure
QuitClosure() { return QuitWhenIdleClosure(); }
273 // Deprecated: use RunLoop instead.
274 // Construct a Closure that will call QuitWhenIdle(). Useful to schedule an
275 // arbitrary MessageLoop to QuitWhenIdle.
276 static Closure
QuitWhenIdleClosure();
278 // Set the timer slack for this message loop.
279 void SetTimerSlack(TimerSlack timer_slack
) {
280 pump_
->SetTimerSlack(timer_slack
);
283 // Returns true if this loop is |type|. This allows subclasses (especially
284 // those in tests) to specialize how they are identified.
285 virtual bool IsType(Type type
) const;
287 // Returns the type passed to the constructor.
288 Type
type() const { return type_
; }
290 // Optional call to connect the thread name with this loop.
291 void set_thread_name(const std::string
& thread_name
) {
292 DCHECK(thread_name_
.empty()) << "Should not rename this thread!";
293 thread_name_
= thread_name
;
295 const std::string
& thread_name() const { return thread_name_
; }
297 // Gets the message loop proxy associated with this message loop.
299 // NOTE: Deprecated; prefer task_runner() and the TaskRunner interfaces
300 scoped_refptr
<MessageLoopProxy
> message_loop_proxy() {
301 return message_loop_proxy_
;
304 // Gets the TaskRunner associated with this message loop.
305 scoped_refptr
<SingleThreadTaskRunner
> task_runner() {
306 return message_loop_proxy_
;
309 // Enables or disables the recursive task processing. This happens in the case
310 // of recursive message loops. Some unwanted message loop may occurs when
311 // using common controls or printer functions. By default, recursive task
312 // processing is disabled.
314 // Please utilize |ScopedNestableTaskAllower| instead of calling these methods
315 // directly. In general nestable message loops are to be avoided. They are
316 // dangerous and difficult to get right, so please use with extreme caution.
318 // The specific case where tasks get queued is:
319 // - The thread is running a message loop.
320 // - It receives a task #1 and execute it.
321 // - The task #1 implicitly start a message loop, like a MessageBox in the
322 // unit test. This can also be StartDoc or GetSaveFileName.
323 // - The thread receives a task #2 before or while in this second message
325 // - With NestableTasksAllowed set to true, the task #2 will run right away.
326 // Otherwise, it will get executed right after task #1 completes at "thread
327 // message loop level".
328 void SetNestableTasksAllowed(bool allowed
);
329 bool NestableTasksAllowed() const;
331 // Enables nestable tasks on |loop| while in scope.
332 class ScopedNestableTaskAllower
{
334 explicit ScopedNestableTaskAllower(MessageLoop
* loop
)
336 old_state_(loop_
->NestableTasksAllowed()) {
337 loop_
->SetNestableTasksAllowed(true);
339 ~ScopedNestableTaskAllower() {
340 loop_
->SetNestableTasksAllowed(old_state_
);
348 // Returns true if we are currently running a nested message loop.
351 // A TaskObserver is an object that receives task notifications from the
354 // NOTE: A TaskObserver implementation should be extremely fast!
355 class BASE_EXPORT TaskObserver
{
359 // This method is called before processing a task.
360 virtual void WillProcessTask(const PendingTask
& pending_task
) = 0;
362 // This method is called after processing a task.
363 virtual void DidProcessTask(const PendingTask
& pending_task
) = 0;
366 virtual ~TaskObserver();
369 // These functions can only be called on the same thread that |this| is
371 void AddTaskObserver(TaskObserver
* task_observer
);
372 void RemoveTaskObserver(TaskObserver
* task_observer
);
375 void set_os_modal_loop(bool os_modal_loop
) {
376 os_modal_loop_
= os_modal_loop
;
379 bool os_modal_loop() const {
380 return os_modal_loop_
;
384 // Can only be called from the thread that owns the MessageLoop.
385 bool is_running() const;
387 // Returns true if the message loop has high resolution timers enabled.
388 // Provided for testing.
389 bool HasHighResolutionTasks();
391 // Returns true if the message loop is "idle". Provided for testing.
392 bool IsIdleForTesting();
394 //----------------------------------------------------------------------------
396 scoped_ptr
<MessagePump
> pump_
;
399 friend class internal::IncomingTaskQueue
;
400 friend class RunLoop
;
402 // Configures various members for the two constructors.
405 // Invokes the actual run loop using the message pump.
408 // Called to process any delayed non-nestable tasks.
409 bool ProcessNextDelayedNonNestableTask();
411 // Runs the specified PendingTask.
412 void RunTask(const PendingTask
& pending_task
);
414 // Calls RunTask or queues the pending_task on the deferred task list if it
415 // cannot be run right now. Returns true if the task was run.
416 bool DeferOrRunPendingTask(const PendingTask
& pending_task
);
418 // Adds the pending task to delayed_work_queue_.
419 void AddToDelayedWorkQueue(const PendingTask
& pending_task
);
421 // Delete tasks that haven't run yet without running them. Used in the
422 // destructor to make sure all the task's destructors get called. Returns
423 // true if some work was done.
424 bool DeletePendingTasks();
426 // Returns the TaskAnnotator which is used to add debug information to posted
428 debug::TaskAnnotator
* task_annotator() { return &task_annotator_
; }
430 // Loads tasks from the incoming queue to |work_queue_| if the latter is
432 void ReloadWorkQueue();
434 // Wakes up the message pump. Can be called on any thread. The caller is
435 // responsible for synchronizing ScheduleWork() calls.
436 void ScheduleWork(bool was_empty
);
438 // Start recording histogram info about events and action IF it was enabled
439 // and IF the statistics recorder can accept a registration of our histogram.
440 void StartHistogrammer();
442 // Add occurrence of event to our histogram, so that we can see what is being
443 // done in a specific MessageLoop instance (i.e., specific thread).
444 // If message_histogram_ is NULL, this is a no-op.
445 void HistogramEvent(int event
);
447 // MessagePump::Delegate methods:
448 virtual bool DoWork() OVERRIDE
;
449 virtual bool DoDelayedWork(TimeTicks
* next_delayed_work_time
) OVERRIDE
;
450 virtual bool DoIdleWork() OVERRIDE
;
454 // A list of tasks that need to be processed by this instance. Note that
455 // this queue is only accessed (push/pop) by our current thread.
456 TaskQueue work_queue_
;
458 // How many high resolution tasks are in the pending task queue. This value
459 // increases by N every time we call ReloadWorkQueue() and decreases by 1
460 // every time we call RunTask() if the task needs a high resolution timer.
461 int pending_high_res_tasks_
;
462 // Tracks if we have requested high resolution timers. Its only use is to
463 // turn off the high resolution timer upon loop destruction.
464 bool in_high_res_mode_
;
466 // Contains delayed tasks, sorted by their 'delayed_run_time' property.
467 DelayedTaskQueue delayed_work_queue_
;
469 // A recent snapshot of Time::Now(), used to check delayed_work_queue_.
470 TimeTicks recent_time_
;
472 // A queue of non-nestable tasks that we had to defer because when it came
473 // time to execute them we were in a nested message loop. They will execute
474 // once we're out of nested message loops.
475 TaskQueue deferred_non_nestable_work_queue_
;
477 ObserverList
<DestructionObserver
> destruction_observers_
;
479 // A recursion block that prevents accidentally running additional tasks when
480 // insider a (accidentally induced?) nested message pump.
481 bool nestable_tasks_allowed_
;
484 // Should be set to true before calling Windows APIs like TrackPopupMenu, etc
485 // which enter a modal message loop.
489 std::string thread_name_
;
490 // A profiling histogram showing the counts of various messages and events.
491 HistogramBase
* message_histogram_
;
495 ObserverList
<TaskObserver
> task_observers_
;
497 debug::TaskAnnotator task_annotator_
;
499 scoped_refptr
<internal::IncomingTaskQueue
> incoming_task_queue_
;
501 // The message loop proxy associated with this message loop.
502 scoped_refptr
<internal::MessageLoopProxyImpl
> message_loop_proxy_
;
503 scoped_ptr
<ThreadTaskRunnerHandle
> thread_task_runner_handle_
;
505 template <class T
, class R
> friend class base::subtle::DeleteHelperInternal
;
506 template <class T
, class R
> friend class base::subtle::ReleaseHelperInternal
;
508 void DeleteSoonInternal(const tracked_objects::Location
& from_here
,
509 void(*deleter
)(const void*),
511 void ReleaseSoonInternal(const tracked_objects::Location
& from_here
,
512 void(*releaser
)(const void*),
515 DISALLOW_COPY_AND_ASSIGN(MessageLoop
);
518 #if !defined(OS_NACL)
520 //-----------------------------------------------------------------------------
521 // MessageLoopForUI extends MessageLoop with methods that are particular to a
522 // MessageLoop instantiated with TYPE_UI.
524 // This class is typically used like so:
525 // MessageLoopForUI::current()->...call some method...
527 class BASE_EXPORT MessageLoopForUI
: public MessageLoop
{
529 MessageLoopForUI() : MessageLoop(TYPE_UI
) {
532 // Returns the MessageLoopForUI of the current thread.
533 static MessageLoopForUI
* current() {
534 MessageLoop
* loop
= MessageLoop::current();
536 DCHECK_EQ(MessageLoop::TYPE_UI
, loop
->type());
537 return static_cast<MessageLoopForUI
*>(loop
);
540 static bool IsCurrent() {
541 MessageLoop
* loop
= MessageLoop::current();
542 return loop
&& loop
->type() == MessageLoop::TYPE_UI
;
546 // On iOS, the main message loop cannot be Run(). Instead call Attach(),
547 // which connects this MessageLoop to the UI thread's CFRunLoop and allows
548 // PostTask() to work.
552 #if defined(OS_ANDROID)
553 // On Android, the UI message loop is handled by Java side. So Run() should
554 // never be called. Instead use Start(), which will forward all the native UI
555 // events to the Java message loop.
559 #if defined(USE_OZONE) || (defined(USE_X11) && !defined(USE_GLIB))
560 // Please see MessagePumpLibevent for definition.
561 bool WatchFileDescriptor(
564 MessagePumpLibevent::Mode mode
,
565 MessagePumpLibevent::FileDescriptorWatcher
* controller
,
566 MessagePumpLibevent::Watcher
* delegate
);
570 // Do not add any member variables to MessageLoopForUI! This is important b/c
571 // MessageLoopForUI is often allocated via MessageLoop(TYPE_UI). Any extra
572 // data that you need should be stored on the MessageLoop's pump_ instance.
573 COMPILE_ASSERT(sizeof(MessageLoop
) == sizeof(MessageLoopForUI
),
574 MessageLoopForUI_should_not_have_extra_member_variables
);
576 #endif // !defined(OS_NACL)
578 //-----------------------------------------------------------------------------
579 // MessageLoopForIO extends MessageLoop with methods that are particular to a
580 // MessageLoop instantiated with TYPE_IO.
582 // This class is typically used like so:
583 // MessageLoopForIO::current()->...call some method...
585 class BASE_EXPORT MessageLoopForIO
: public MessageLoop
{
587 MessageLoopForIO() : MessageLoop(TYPE_IO
) {
590 // Returns the MessageLoopForIO of the current thread.
591 static MessageLoopForIO
* current() {
592 MessageLoop
* loop
= MessageLoop::current();
593 DCHECK_EQ(MessageLoop::TYPE_IO
, loop
->type());
594 return static_cast<MessageLoopForIO
*>(loop
);
597 static bool IsCurrent() {
598 MessageLoop
* loop
= MessageLoop::current();
599 return loop
&& loop
->type() == MessageLoop::TYPE_IO
;
602 #if !defined(OS_NACL)
605 typedef MessagePumpForIO::IOHandler IOHandler
;
606 typedef MessagePumpForIO::IOContext IOContext
;
607 typedef MessagePumpForIO::IOObserver IOObserver
;
608 #elif defined(OS_IOS)
609 typedef MessagePumpIOSForIO::Watcher Watcher
;
610 typedef MessagePumpIOSForIO::FileDescriptorWatcher
611 FileDescriptorWatcher
;
612 typedef MessagePumpIOSForIO::IOObserver IOObserver
;
615 WATCH_READ
= MessagePumpIOSForIO::WATCH_READ
,
616 WATCH_WRITE
= MessagePumpIOSForIO::WATCH_WRITE
,
617 WATCH_READ_WRITE
= MessagePumpIOSForIO::WATCH_READ_WRITE
619 #elif defined(OS_POSIX)
620 typedef MessagePumpLibevent::Watcher Watcher
;
621 typedef MessagePumpLibevent::FileDescriptorWatcher
622 FileDescriptorWatcher
;
623 typedef MessagePumpLibevent::IOObserver IOObserver
;
626 WATCH_READ
= MessagePumpLibevent::WATCH_READ
,
627 WATCH_WRITE
= MessagePumpLibevent::WATCH_WRITE
,
628 WATCH_READ_WRITE
= MessagePumpLibevent::WATCH_READ_WRITE
632 void AddIOObserver(IOObserver
* io_observer
);
633 void RemoveIOObserver(IOObserver
* io_observer
);
636 // Please see MessagePumpWin for definitions of these methods.
637 void RegisterIOHandler(HANDLE file
, IOHandler
* handler
);
638 bool RegisterJobObject(HANDLE job
, IOHandler
* handler
);
639 bool WaitForIOCompletion(DWORD timeout
, IOHandler
* filter
);
640 #elif defined(OS_POSIX)
641 // Please see MessagePumpIOSForIO/MessagePumpLibevent for definition.
642 bool WatchFileDescriptor(int fd
,
645 FileDescriptorWatcher
*controller
,
647 #endif // defined(OS_IOS) || defined(OS_POSIX)
648 #endif // !defined(OS_NACL)
651 // Do not add any member variables to MessageLoopForIO! This is important b/c
652 // MessageLoopForIO is often allocated via MessageLoop(TYPE_IO). Any extra
653 // data that you need should be stored on the MessageLoop's pump_ instance.
654 COMPILE_ASSERT(sizeof(MessageLoop
) == sizeof(MessageLoopForIO
),
655 MessageLoopForIO_should_not_have_extra_member_variables
);
659 #endif // BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_