3 * Copyright (c) 2001-2003 The ffmpeg Project
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 #include "bitstream.h"
25 * First version by Francois Revol (revol@free.fr)
26 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
27 * by Mike Melanson (melanson@pcisys.net)
28 * CD-ROM XA ADPCM codec by BERO
29 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
31 * Features and limitations:
33 * Reference documents:
34 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
35 * http://www.geocities.com/SiliconValley/8682/aud3.txt
36 * http://openquicktime.sourceforge.net/plugins.htm
37 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
38 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
39 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
42 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
43 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
44 * readstr http://www.geocities.co.jp/Playtown/2004/
49 #define CLAMP_TO_SHORT(value) \
52 else if (value < -32768) \
55 /* step_table[] and index_table[] are from the ADPCM reference source */
56 /* This is the index table: */
57 static const int index_table
[16] = {
58 -1, -1, -1, -1, 2, 4, 6, 8,
59 -1, -1, -1, -1, 2, 4, 6, 8,
63 * This is the step table. Note that many programs use slight deviations from
64 * this table, but such deviations are negligible:
66 static const int step_table
[89] = {
67 7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
68 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
69 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
70 130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
71 337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
72 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
73 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
74 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
75 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
78 /* These are for MS-ADPCM */
79 /* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
80 static const int AdaptationTable
[] = {
81 230, 230, 230, 230, 307, 409, 512, 614,
82 768, 614, 512, 409, 307, 230, 230, 230
85 static const int AdaptCoeff1
[] = {
86 256, 512, 0, 192, 240, 460, 392
89 static const int AdaptCoeff2
[] = {
90 0, -256, 0, 64, 0, -208, -232
93 /* These are for CD-ROM XA ADPCM */
94 static const int xa_adpcm_table
[5][2] = {
102 static const int ea_adpcm_table
[] = {
103 0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
104 3, 4, 7, 8, 10, 11, 0, -1, -3, -4
107 static const int ct_adpcm_table
[8] = {
108 0x00E6, 0x00E6, 0x00E6, 0x00E6,
109 0x0133, 0x0199, 0x0200, 0x0266
112 // padded to zero where table size is less then 16
113 static const int swf_index_tables
[4][16] = {
115 /*3*/ { -1, -1, 2, 4 },
116 /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
117 /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
120 static const int yamaha_indexscale
[] = {
121 230, 230, 230, 230, 307, 409, 512, 614,
122 230, 230, 230, 230, 307, 409, 512, 614
125 static const int yamaha_difflookup
[] = {
126 1, 3, 5, 7, 9, 11, 13, 15,
127 -1, -3, -5, -7, -9, -11, -13, -15
132 typedef struct ADPCMChannelStatus
{
134 short int step_index
;
145 } ADPCMChannelStatus
;
147 typedef struct ADPCMContext
{
148 int channel
; /* for stereo MOVs, decode left, then decode right, then tell it's decoded */
149 ADPCMChannelStatus status
[2];
150 short sample_buffer
[32]; /* hold left samples while waiting for right samples */
157 /* XXX: implement encoding */
159 #ifdef CONFIG_ENCODERS
160 static int adpcm_encode_init(AVCodecContext
*avctx
)
162 if (avctx
->channels
> 2)
163 return -1; /* only stereo or mono =) */
164 switch(avctx
->codec
->id
) {
165 case CODEC_ID_ADPCM_IMA_QT
:
166 av_log(avctx
, AV_LOG_ERROR
, "ADPCM: codec adpcm_ima_qt unsupported for encoding !\n");
167 avctx
->frame_size
= 64; /* XXX: can multiple of avctx->channels * 64 (left and right blocks are interleaved) */
170 case CODEC_ID_ADPCM_IMA_WAV
:
171 avctx
->frame_size
= (BLKSIZE
- 4 * avctx
->channels
) * 8 / (4 * avctx
->channels
) + 1; /* each 16 bits sample gives one nibble */
172 /* and we have 4 bytes per channel overhead */
173 avctx
->block_align
= BLKSIZE
;
174 /* seems frame_size isn't taken into account... have to buffer the samples :-( */
176 case CODEC_ID_ADPCM_MS
:
177 avctx
->frame_size
= (BLKSIZE
- 7 * avctx
->channels
) * 2 / avctx
->channels
+ 2; /* each 16 bits sample gives one nibble */
178 /* and we have 7 bytes per channel overhead */
179 avctx
->block_align
= BLKSIZE
;
181 case CODEC_ID_ADPCM_YAMAHA
:
182 avctx
->frame_size
= BLKSIZE
* avctx
->channels
;
183 avctx
->block_align
= BLKSIZE
;
190 avctx
->coded_frame
= avcodec_alloc_frame();
191 avctx
->coded_frame
->key_frame
= 1;
196 static int adpcm_encode_close(AVCodecContext
*avctx
)
198 av_freep(&avctx
->coded_frame
);
204 static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus
*c
, short sample
)
207 unsigned char nibble
;
209 int sign
= 0; /* sign bit of the nibble (MSB) */
210 int delta
, predicted_delta
;
212 delta
= sample
- c
->prev_sample
;
219 step_index
= c
->step_index
;
221 /* nibble = 4 * delta / step_table[step_index]; */
222 nibble
= (delta
<< 2) / step_table
[step_index
];
227 step_index
+= index_table
[nibble
];
233 /* what the decoder will find */
234 predicted_delta
= ((step_table
[step_index
] * nibble
) / 4) + (step_table
[step_index
] / 8);
237 c
->prev_sample
-= predicted_delta
;
239 c
->prev_sample
+= predicted_delta
;
241 CLAMP_TO_SHORT(c
->prev_sample
);
244 nibble
+= sign
<< 3; /* sign * 8 */
247 c
->step_index
= step_index
;
252 static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus
*c
, short sample
)
254 int predictor
, nibble
, bias
;
256 predictor
= (((c
->sample1
) * (c
->coeff1
)) + ((c
->sample2
) * (c
->coeff2
))) / 256;
258 nibble
= sample
- predictor
;
259 if(nibble
>=0) bias
= c
->idelta
/2;
260 else bias
=-c
->idelta
/2;
262 nibble
= (nibble
+ bias
) / c
->idelta
;
263 nibble
= clip(nibble
, -8, 7)&0x0F;
265 predictor
+= (signed)((nibble
& 0x08)?(nibble
- 0x10):(nibble
)) * c
->idelta
;
266 CLAMP_TO_SHORT(predictor
);
268 c
->sample2
= c
->sample1
;
269 c
->sample1
= predictor
;
271 c
->idelta
= (AdaptationTable
[(int)nibble
] * c
->idelta
) >> 8;
272 if (c
->idelta
< 16) c
->idelta
= 16;
277 static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus
*c
, short sample
)
285 j1
= sample
- c
->predictor
;
287 j1
= (j1
* 8) / c
->step
;
294 c
->predictor
= c
->predictor
+ ((c
->step
* yamaha_difflookup
[i1
]) / 8);
295 CLAMP_TO_SHORT(c
->predictor
);
296 c
->step
= (c
->step
* yamaha_indexscale
[i1
]) >> 8;
297 c
->step
= clip(c
->step
, 127, 24567);
302 static int adpcm_encode_frame(AVCodecContext
*avctx
,
303 unsigned char *frame
, int buf_size
, void *data
)
308 ADPCMContext
*c
= avctx
->priv_data
;
311 samples
= (short *)data
;
312 st
= avctx
->channels
== 2;
313 /* n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
315 switch(avctx
->codec
->id
) {
316 case CODEC_ID_ADPCM_IMA_QT
: /* XXX: can't test until we get .mov writer */
318 case CODEC_ID_ADPCM_IMA_WAV
:
319 n
= avctx
->frame_size
/ 8;
320 c
->status
[0].prev_sample
= (signed short)samples
[0]; /* XXX */
321 /* c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
322 *dst
++ = (c
->status
[0].prev_sample
) & 0xFF; /* little endian */
323 *dst
++ = (c
->status
[0].prev_sample
>> 8) & 0xFF;
324 *dst
++ = (unsigned char)c
->status
[0].step_index
;
325 *dst
++ = 0; /* unknown */
327 if (avctx
->channels
== 2) {
328 c
->status
[1].prev_sample
= (signed short)samples
[1];
329 /* c->status[1].step_index = 0; */
330 *dst
++ = (c
->status
[1].prev_sample
) & 0xFF;
331 *dst
++ = (c
->status
[1].prev_sample
>> 8) & 0xFF;
332 *dst
++ = (unsigned char)c
->status
[1].step_index
;
337 /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
339 *dst
= adpcm_ima_compress_sample(&c
->status
[0], samples
[0]) & 0x0F;
340 *dst
|= (adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
]) << 4) & 0xF0;
342 *dst
= adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 2]) & 0x0F;
343 *dst
|= (adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 3]) << 4) & 0xF0;
345 *dst
= adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 4]) & 0x0F;
346 *dst
|= (adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 5]) << 4) & 0xF0;
348 *dst
= adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 6]) & 0x0F;
349 *dst
|= (adpcm_ima_compress_sample(&c
->status
[0], samples
[avctx
->channels
* 7]) << 4) & 0xF0;
352 if (avctx
->channels
== 2) {
353 *dst
= adpcm_ima_compress_sample(&c
->status
[1], samples
[1]);
354 *dst
|= adpcm_ima_compress_sample(&c
->status
[1], samples
[3]) << 4;
356 *dst
= adpcm_ima_compress_sample(&c
->status
[1], samples
[5]);
357 *dst
|= adpcm_ima_compress_sample(&c
->status
[1], samples
[7]) << 4;
359 *dst
= adpcm_ima_compress_sample(&c
->status
[1], samples
[9]);
360 *dst
|= adpcm_ima_compress_sample(&c
->status
[1], samples
[11]) << 4;
362 *dst
= adpcm_ima_compress_sample(&c
->status
[1], samples
[13]);
363 *dst
|= adpcm_ima_compress_sample(&c
->status
[1], samples
[15]) << 4;
366 samples
+= 8 * avctx
->channels
;
369 case CODEC_ID_ADPCM_MS
:
370 for(i
=0; i
<avctx
->channels
; i
++){
374 c
->status
[i
].coeff1
= AdaptCoeff1
[predictor
];
375 c
->status
[i
].coeff2
= AdaptCoeff2
[predictor
];
377 for(i
=0; i
<avctx
->channels
; i
++){
378 if (c
->status
[i
].idelta
< 16)
379 c
->status
[i
].idelta
= 16;
381 *dst
++ = c
->status
[i
].idelta
& 0xFF;
382 *dst
++ = c
->status
[i
].idelta
>> 8;
384 for(i
=0; i
<avctx
->channels
; i
++){
385 c
->status
[i
].sample1
= *samples
++;
387 *dst
++ = c
->status
[i
].sample1
& 0xFF;
388 *dst
++ = c
->status
[i
].sample1
>> 8;
390 for(i
=0; i
<avctx
->channels
; i
++){
391 c
->status
[i
].sample2
= *samples
++;
393 *dst
++ = c
->status
[i
].sample2
& 0xFF;
394 *dst
++ = c
->status
[i
].sample2
>> 8;
397 for(i
=7*avctx
->channels
; i
<avctx
->block_align
; i
++) {
399 nibble
= adpcm_ms_compress_sample(&c
->status
[ 0], *samples
++)<<4;
400 nibble
|= adpcm_ms_compress_sample(&c
->status
[st
], *samples
++);
404 case CODEC_ID_ADPCM_YAMAHA
:
405 n
= avctx
->frame_size
/ 2;
407 for(i
= 0; i
< avctx
->channels
; i
++) {
409 nibble
= adpcm_yamaha_compress_sample(&c
->status
[i
], samples
[i
]);
410 nibble
|= adpcm_yamaha_compress_sample(&c
->status
[i
], samples
[i
+avctx
->channels
]) << 4;
413 samples
+= 2 * avctx
->channels
;
421 #endif //CONFIG_ENCODERS
423 static int adpcm_decode_init(AVCodecContext
* avctx
)
425 ADPCMContext
*c
= avctx
->priv_data
;
428 c
->status
[0].predictor
= c
->status
[1].predictor
= 0;
429 c
->status
[0].step_index
= c
->status
[1].step_index
= 0;
430 c
->status
[0].step
= c
->status
[1].step
= 0;
432 switch(avctx
->codec
->id
) {
433 case CODEC_ID_ADPCM_CT
:
434 c
->status
[0].step
= c
->status
[1].step
= 511;
442 static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus
*c
, char nibble
, int shift
)
446 int sign
, delta
, diff
, step
;
448 step
= step_table
[c
->step_index
];
449 step_index
= c
->step_index
+ index_table
[(unsigned)nibble
];
450 if (step_index
< 0) step_index
= 0;
451 else if (step_index
> 88) step_index
= 88;
455 /* perform direct multiplication instead of series of jumps proposed by
456 * the reference ADPCM implementation since modern CPUs can do the mults
458 diff
= ((2 * delta
+ 1) * step
) >> shift
;
459 predictor
= c
->predictor
;
460 if (sign
) predictor
-= diff
;
461 else predictor
+= diff
;
463 CLAMP_TO_SHORT(predictor
);
464 c
->predictor
= predictor
;
465 c
->step_index
= step_index
;
467 return (short)predictor
;
470 static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus
*c
, char nibble
)
474 predictor
= (((c
->sample1
) * (c
->coeff1
)) + ((c
->sample2
) * (c
->coeff2
))) / 256;
475 predictor
+= (signed)((nibble
& 0x08)?(nibble
- 0x10):(nibble
)) * c
->idelta
;
476 CLAMP_TO_SHORT(predictor
);
478 c
->sample2
= c
->sample1
;
479 c
->sample1
= predictor
;
480 c
->idelta
= (AdaptationTable
[(int)nibble
] * c
->idelta
) >> 8;
481 if (c
->idelta
< 16) c
->idelta
= 16;
483 return (short)predictor
;
486 static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus
*c
, char nibble
)
489 int sign
, delta
, diff
;
494 /* perform direct multiplication instead of series of jumps proposed by
495 * the reference ADPCM implementation since modern CPUs can do the mults
497 diff
= ((2 * delta
+ 1) * c
->step
) >> 3;
498 predictor
= c
->predictor
;
499 /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
501 predictor
= ((predictor
* 254) >> 8) - diff
;
503 predictor
= ((predictor
* 254) >> 8) + diff
;
504 /* calculate new step and clamp it to range 511..32767 */
505 new_step
= (ct_adpcm_table
[nibble
& 7] * c
->step
) >> 8;
512 CLAMP_TO_SHORT(predictor
);
513 c
->predictor
= predictor
;
514 return (short)predictor
;
517 static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus
*c
, unsigned char nibble
)
524 c
->predictor
+= (c
->step
* yamaha_difflookup
[nibble
]) / 8;
525 CLAMP_TO_SHORT(c
->predictor
);
526 c
->step
= (c
->step
* yamaha_indexscale
[nibble
]) >> 8;
527 c
->step
= clip(c
->step
, 127, 24567);
531 static void xa_decode(short *out
, const unsigned char *in
,
532 ADPCMChannelStatus
*left
, ADPCMChannelStatus
*right
, int inc
)
535 int shift
,filter
,f0
,f1
;
541 shift
= 12 - (in
[4+i
*2] & 15);
542 filter
= in
[4+i
*2] >> 4;
543 f0
= xa_adpcm_table
[filter
][0];
544 f1
= xa_adpcm_table
[filter
][1];
552 t
= (signed char)(d
<<4)>>4;
553 s
= ( t
<<shift
) + ((s_1
*f0
+ s_2
*f1
+32)>>6);
561 if (inc
==2) { /* stereo */
564 s_1
= right
->sample1
;
565 s_2
= right
->sample2
;
566 out
= out
+ 1 - 28*2;
569 shift
= 12 - (in
[5+i
*2] & 15);
570 filter
= in
[5+i
*2] >> 4;
572 f0
= xa_adpcm_table
[filter
][0];
573 f1
= xa_adpcm_table
[filter
][1];
578 t
= (signed char)d
>> 4;
579 s
= ( t
<<shift
) + ((s_1
*f0
+ s_2
*f1
+32)>>6);
587 if (inc
==2) { /* stereo */
588 right
->sample1
= s_1
;
589 right
->sample2
= s_2
;
599 /* DK3 ADPCM support macro */
600 #define DK3_GET_NEXT_NIBBLE() \
601 if (decode_top_nibble_next) \
603 nibble = (last_byte >> 4) & 0x0F; \
604 decode_top_nibble_next = 0; \
608 last_byte = *src++; \
609 if (src >= buf + buf_size) break; \
610 nibble = last_byte & 0x0F; \
611 decode_top_nibble_next = 1; \
614 static int adpcm_decode_frame(AVCodecContext
*avctx
,
615 void *data
, int *data_size
,
616 uint8_t *buf
, int buf_size
)
618 ADPCMContext
*c
= avctx
->priv_data
;
619 ADPCMChannelStatus
*cs
;
620 int n
, m
, channel
, i
;
621 int block_predictor
[2];
626 /* DK3 ADPCM accounting variables */
627 unsigned char last_byte
= 0;
628 unsigned char nibble
;
629 int decode_top_nibble_next
= 0;
632 /* EA ADPCM state variables */
633 uint32_t samples_in_chunk
;
634 int32_t previous_left_sample
, previous_right_sample
;
635 int32_t current_left_sample
, current_right_sample
;
636 int32_t next_left_sample
, next_right_sample
;
637 int32_t coeff1l
, coeff2l
, coeff1r
, coeff2r
;
638 uint8_t shift_left
, shift_right
;
647 st
= avctx
->channels
== 2;
649 switch(avctx
->codec
->id
) {
650 case CODEC_ID_ADPCM_IMA_QT
:
651 n
= (buf_size
- 2);/* >> 2*avctx->channels;*/
652 channel
= c
->channel
;
653 cs
= &(c
->status
[channel
]);
654 /* (pppppp) (piiiiiii) */
656 /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
657 cs
->predictor
= (*src
++) << 8;
658 cs
->predictor
|= (*src
& 0x80);
659 cs
->predictor
&= 0xFF80;
662 if(cs
->predictor
& 0x8000)
663 cs
->predictor
-= 0x10000;
665 CLAMP_TO_SHORT(cs
->predictor
);
667 cs
->step_index
= (*src
++) & 0x7F;
669 if (cs
->step_index
> 88) av_log(avctx
, AV_LOG_ERROR
, "ERROR: step_index = %i\n", cs
->step_index
);
670 if (cs
->step_index
> 88) cs
->step_index
= 88;
672 cs
->step
= step_table
[cs
->step_index
];
677 for(m
=32; n
>0 && m
>0; n
--, m
--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
678 *samples
= adpcm_ima_expand_nibble(cs
, src
[0] & 0x0F, 3);
679 samples
+= avctx
->channels
;
680 *samples
= adpcm_ima_expand_nibble(cs
, (src
[0] >> 4) & 0x0F, 3);
681 samples
+= avctx
->channels
;
685 if(st
) { /* handle stereo interlacing */
686 c
->channel
= (channel
+ 1) % 2; /* we get one packet for left, then one for right data */
687 if(channel
== 1) { /* wait for the other packet before outputing anything */
692 case CODEC_ID_ADPCM_IMA_WAV
:
693 if (avctx
->block_align
!= 0 && buf_size
> avctx
->block_align
)
694 buf_size
= avctx
->block_align
;
696 for(i
=0; i
<avctx
->channels
; i
++){
697 cs
= &(c
->status
[i
]);
698 cs
->predictor
= *src
++;
699 cs
->predictor
|= (*src
++) << 8;
700 if(cs
->predictor
& 0x8000)
701 cs
->predictor
-= 0x10000;
702 CLAMP_TO_SHORT(cs
->predictor
);
704 // XXX: is this correct ??: *samples++ = cs->predictor;
706 cs
->step_index
= *src
++;
707 if (cs
->step_index
< 0) cs
->step_index
= 0;
708 if (cs
->step_index
> 88) cs
->step_index
= 88;
709 if (*src
++) av_log(avctx
, AV_LOG_ERROR
, "unused byte should be null !!\n"); /* unused */
712 for(m
=4; src
< (buf
+ buf_size
);) {
713 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0], src
[0] & 0x0F, 3);
715 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[1], src
[4] & 0x0F, 3);
716 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0], (src
[0] >> 4) & 0x0F, 3);
718 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[1], (src
[4] >> 4) & 0x0F, 3);
727 case CODEC_ID_ADPCM_4XM
:
728 cs
= &(c
->status
[0]);
729 c
->status
[0].predictor
= (int16_t)(src
[0] + (src
[1]<<8)); src
+=2;
731 c
->status
[1].predictor
= (int16_t)(src
[0] + (src
[1]<<8)); src
+=2;
733 c
->status
[0].step_index
= (int16_t)(src
[0] + (src
[1]<<8)); src
+=2;
735 c
->status
[1].step_index
= (int16_t)(src
[0] + (src
[1]<<8)); src
+=2;
737 if (cs
->step_index
< 0) cs
->step_index
= 0;
738 if (cs
->step_index
> 88) cs
->step_index
= 88;
740 m
= (buf_size
- (src
- buf
))>>st
;
742 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0], src
[i
] & 0x0F, 4);
744 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[1], src
[i
+m
] & 0x0F, 4);
745 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0], src
[i
] >> 4, 4);
747 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[1], src
[i
+m
] >> 4, 4);
753 case CODEC_ID_ADPCM_MS
:
754 if (avctx
->block_align
!= 0 && buf_size
> avctx
->block_align
)
755 buf_size
= avctx
->block_align
;
756 n
= buf_size
- 7 * avctx
->channels
;
759 block_predictor
[0] = clip(*src
++, 0, 7);
760 block_predictor
[1] = 0;
762 block_predictor
[1] = clip(*src
++, 0, 7);
763 c
->status
[0].idelta
= (int16_t)((*src
& 0xFF) | ((src
[1] << 8) & 0xFF00));
766 c
->status
[1].idelta
= (int16_t)((*src
& 0xFF) | ((src
[1] << 8) & 0xFF00));
769 c
->status
[0].coeff1
= AdaptCoeff1
[block_predictor
[0]];
770 c
->status
[0].coeff2
= AdaptCoeff2
[block_predictor
[0]];
771 c
->status
[1].coeff1
= AdaptCoeff1
[block_predictor
[1]];
772 c
->status
[1].coeff2
= AdaptCoeff2
[block_predictor
[1]];
774 c
->status
[0].sample1
= ((*src
& 0xFF) | ((src
[1] << 8) & 0xFF00));
776 if (st
) c
->status
[1].sample1
= ((*src
& 0xFF) | ((src
[1] << 8) & 0xFF00));
778 c
->status
[0].sample2
= ((*src
& 0xFF) | ((src
[1] << 8) & 0xFF00));
780 if (st
) c
->status
[1].sample2
= ((*src
& 0xFF) | ((src
[1] << 8) & 0xFF00));
783 *samples
++ = c
->status
[0].sample1
;
784 if (st
) *samples
++ = c
->status
[1].sample1
;
785 *samples
++ = c
->status
[0].sample2
;
786 if (st
) *samples
++ = c
->status
[1].sample2
;
788 *samples
++ = adpcm_ms_expand_nibble(&c
->status
[0], (src
[0] >> 4) & 0x0F);
789 *samples
++ = adpcm_ms_expand_nibble(&c
->status
[st
], src
[0] & 0x0F);
793 case CODEC_ID_ADPCM_IMA_DK4
:
794 if (avctx
->block_align
!= 0 && buf_size
> avctx
->block_align
)
795 buf_size
= avctx
->block_align
;
797 c
->status
[0].predictor
= (int16_t)(src
[0] | (src
[1] << 8));
798 c
->status
[0].step_index
= src
[2];
800 *samples
++ = c
->status
[0].predictor
;
802 c
->status
[1].predictor
= (int16_t)(src
[0] | (src
[1] << 8));
803 c
->status
[1].step_index
= src
[2];
805 *samples
++ = c
->status
[1].predictor
;
807 while (src
< buf
+ buf_size
) {
809 /* take care of the top nibble (always left or mono channel) */
810 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
811 (src
[0] >> 4) & 0x0F, 3);
813 /* take care of the bottom nibble, which is right sample for
814 * stereo, or another mono sample */
816 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[1],
819 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
825 case CODEC_ID_ADPCM_IMA_DK3
:
826 if (avctx
->block_align
!= 0 && buf_size
> avctx
->block_align
)
827 buf_size
= avctx
->block_align
;
829 c
->status
[0].predictor
= (int16_t)(src
[10] | (src
[11] << 8));
830 c
->status
[1].predictor
= (int16_t)(src
[12] | (src
[13] << 8));
831 c
->status
[0].step_index
= src
[14];
832 c
->status
[1].step_index
= src
[15];
833 /* sign extend the predictors */
835 diff_channel
= c
->status
[1].predictor
;
837 /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
838 * the buffer is consumed */
841 /* for this algorithm, c->status[0] is the sum channel and
842 * c->status[1] is the diff channel */
844 /* process the first predictor of the sum channel */
845 DK3_GET_NEXT_NIBBLE();
846 adpcm_ima_expand_nibble(&c
->status
[0], nibble
, 3);
848 /* process the diff channel predictor */
849 DK3_GET_NEXT_NIBBLE();
850 adpcm_ima_expand_nibble(&c
->status
[1], nibble
, 3);
852 /* process the first pair of stereo PCM samples */
853 diff_channel
= (diff_channel
+ c
->status
[1].predictor
) / 2;
854 *samples
++ = c
->status
[0].predictor
+ c
->status
[1].predictor
;
855 *samples
++ = c
->status
[0].predictor
- c
->status
[1].predictor
;
857 /* process the second predictor of the sum channel */
858 DK3_GET_NEXT_NIBBLE();
859 adpcm_ima_expand_nibble(&c
->status
[0], nibble
, 3);
861 /* process the second pair of stereo PCM samples */
862 diff_channel
= (diff_channel
+ c
->status
[1].predictor
) / 2;
863 *samples
++ = c
->status
[0].predictor
+ c
->status
[1].predictor
;
864 *samples
++ = c
->status
[0].predictor
- c
->status
[1].predictor
;
867 case CODEC_ID_ADPCM_IMA_WS
:
868 /* no per-block initialization; just start decoding the data */
869 while (src
< buf
+ buf_size
) {
872 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
873 (src
[0] >> 4) & 0x0F, 3);
874 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[1],
877 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
878 (src
[0] >> 4) & 0x0F, 3);
879 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
886 case CODEC_ID_ADPCM_XA
:
887 c
->status
[0].sample1
= c
->status
[0].sample2
=
888 c
->status
[1].sample1
= c
->status
[1].sample2
= 0;
889 while (buf_size
>= 128) {
890 xa_decode(samples
, src
, &c
->status
[0], &c
->status
[1],
897 case CODEC_ID_ADPCM_EA
:
898 samples_in_chunk
= LE_32(src
);
899 if (samples_in_chunk
>= ((buf_size
- 12) * 2)) {
904 current_left_sample
= (int16_t)LE_16(src
);
906 previous_left_sample
= (int16_t)LE_16(src
);
908 current_right_sample
= (int16_t)LE_16(src
);
910 previous_right_sample
= (int16_t)LE_16(src
);
913 for (count1
= 0; count1
< samples_in_chunk
/28;count1
++) {
914 coeff1l
= ea_adpcm_table
[(*src
>> 4) & 0x0F];
915 coeff2l
= ea_adpcm_table
[((*src
>> 4) & 0x0F) + 4];
916 coeff1r
= ea_adpcm_table
[*src
& 0x0F];
917 coeff2r
= ea_adpcm_table
[(*src
& 0x0F) + 4];
920 shift_left
= ((*src
>> 4) & 0x0F) + 8;
921 shift_right
= (*src
& 0x0F) + 8;
924 for (count2
= 0; count2
< 28; count2
++) {
925 next_left_sample
= (((*src
& 0xF0) << 24) >> shift_left
);
926 next_right_sample
= (((*src
& 0x0F) << 28) >> shift_right
);
929 next_left_sample
= (next_left_sample
+
930 (current_left_sample
* coeff1l
) +
931 (previous_left_sample
* coeff2l
) + 0x80) >> 8;
932 next_right_sample
= (next_right_sample
+
933 (current_right_sample
* coeff1r
) +
934 (previous_right_sample
* coeff2r
) + 0x80) >> 8;
935 CLAMP_TO_SHORT(next_left_sample
);
936 CLAMP_TO_SHORT(next_right_sample
);
938 previous_left_sample
= current_left_sample
;
939 current_left_sample
= next_left_sample
;
940 previous_right_sample
= current_right_sample
;
941 current_right_sample
= next_right_sample
;
942 *samples
++ = (unsigned short)current_left_sample
;
943 *samples
++ = (unsigned short)current_right_sample
;
947 case CODEC_ID_ADPCM_IMA_SMJPEG
:
948 c
->status
[0].predictor
= *src
;
950 c
->status
[0].step_index
= *src
++;
951 src
++; /* skip another byte before getting to the meat */
952 while (src
< buf
+ buf_size
) {
953 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
955 *samples
++ = adpcm_ima_expand_nibble(&c
->status
[0],
956 (*src
>> 4) & 0x0F, 3);
960 case CODEC_ID_ADPCM_CT
:
961 while (src
< buf
+ buf_size
) {
963 *samples
++ = adpcm_ct_expand_nibble(&c
->status
[0],
964 (src
[0] >> 4) & 0x0F);
965 *samples
++ = adpcm_ct_expand_nibble(&c
->status
[1],
968 *samples
++ = adpcm_ct_expand_nibble(&c
->status
[0],
969 (src
[0] >> 4) & 0x0F);
970 *samples
++ = adpcm_ct_expand_nibble(&c
->status
[0],
976 case CODEC_ID_ADPCM_SWF
:
981 int size
= buf_size
*8;
983 init_get_bits(&gb
, buf
, size
);
985 // first frame, read bits & inital values
988 c
->nb_bits
= get_bits(&gb
, 2)+2;
989 // av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", c->nb_bits);
992 table
= swf_index_tables
[c
->nb_bits
-2];
993 k0
= 1 << (c
->nb_bits
-2);
994 signmask
= 1 << (c
->nb_bits
-1);
996 while (get_bits_count(&gb
) <= size
)
1001 // wrap around at every 4096 samples...
1002 if ((c
->nb_samples
& 0xfff) == 1)
1004 for (i
= 0; i
<= st
; i
++)
1006 *samples
++ = c
->status
[i
].predictor
= get_sbits(&gb
, 16);
1007 c
->status
[i
].step_index
= get_bits(&gb
, 6);
1011 // similar to IMA adpcm
1012 for (i
= 0; i
<= st
; i
++)
1014 int delta
= get_bits(&gb
, c
->nb_bits
);
1015 int step
= step_table
[c
->status
[i
].step_index
];
1016 long vpdiff
= 0; // vpdiff = (delta+0.5)*step/4
1027 if (delta
& signmask
)
1028 c
->status
[i
].predictor
-= vpdiff
;
1030 c
->status
[i
].predictor
+= vpdiff
;
1032 c
->status
[i
].step_index
+= table
[delta
& (~signmask
)];
1034 c
->status
[i
].step_index
= clip(c
->status
[i
].step_index
, 0, 88);
1035 c
->status
[i
].predictor
= clip(c
->status
[i
].predictor
, -32768, 32767);
1037 *samples
++ = c
->status
[i
].predictor
;
1041 // src += get_bits_count(&gb)*8;
1046 case CODEC_ID_ADPCM_YAMAHA
:
1047 while (src
< buf
+ buf_size
) {
1049 *samples
++ = adpcm_yamaha_expand_nibble(&c
->status
[0],
1051 *samples
++ = adpcm_yamaha_expand_nibble(&c
->status
[1],
1052 (src
[0] >> 4) & 0x0F);
1054 *samples
++ = adpcm_yamaha_expand_nibble(&c
->status
[0],
1056 *samples
++ = adpcm_yamaha_expand_nibble(&c
->status
[0],
1057 (src
[0] >> 4) & 0x0F);
1065 *data_size
= (uint8_t *)samples
- (uint8_t *)data
;
1071 #ifdef CONFIG_ENCODERS
1072 #define ADPCM_ENCODER(id,name) \
1073 AVCodec name ## _encoder = { \
1077 sizeof(ADPCMContext), \
1078 adpcm_encode_init, \
1079 adpcm_encode_frame, \
1080 adpcm_encode_close, \
1084 #define ADPCM_ENCODER(id,name)
1087 #ifdef CONFIG_DECODERS
1088 #define ADPCM_DECODER(id,name) \
1089 AVCodec name ## _decoder = { \
1093 sizeof(ADPCMContext), \
1094 adpcm_decode_init, \
1097 adpcm_decode_frame, \
1100 #define ADPCM_DECODER(id,name)
1103 #define ADPCM_CODEC(id, name) \
1104 ADPCM_ENCODER(id,name) ADPCM_DECODER(id,name)
1106 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_QT
, adpcm_ima_qt
);
1107 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WAV
, adpcm_ima_wav
);
1108 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK3
, adpcm_ima_dk3
);
1109 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_DK4
, adpcm_ima_dk4
);
1110 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_WS
, adpcm_ima_ws
);
1111 ADPCM_CODEC(CODEC_ID_ADPCM_IMA_SMJPEG
, adpcm_ima_smjpeg
);
1112 ADPCM_CODEC(CODEC_ID_ADPCM_MS
, adpcm_ms
);
1113 ADPCM_CODEC(CODEC_ID_ADPCM_4XM
, adpcm_4xm
);
1114 ADPCM_CODEC(CODEC_ID_ADPCM_XA
, adpcm_xa
);
1115 ADPCM_CODEC(CODEC_ID_ADPCM_ADX
, adpcm_adx
);
1116 ADPCM_CODEC(CODEC_ID_ADPCM_EA
, adpcm_ea
);
1117 ADPCM_CODEC(CODEC_ID_ADPCM_CT
, adpcm_ct
);
1118 ADPCM_CODEC(CODEC_ID_ADPCM_SWF
, adpcm_swf
);
1119 ADPCM_CODEC(CODEC_ID_ADPCM_YAMAHA
, adpcm_yamaha
);