soc/intel/xeon_sp/util: Enhance lock_pam0123
[coreboot2.git] / payloads / libpayload / include / fpmath.h
blob48e900402e5fa039d5d98b2eca48a43e0659b951
1 /*
3 * Copyright (C) 2020 Google, Inc.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. The name of the author may not be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
29 #include <stdint.h>
32 * This file implements operations for a simple 32.32 fixed-point math type.
33 * This is intended for speed-critical stuff (e.g. graphics) so there are
34 * intentionally no overflow checks or assertions, and operations are written
35 * to prefer speed over precision (e.g. multiplying by 1 may lose precision).
36 * For best results, only use for applications where 16.16 would fit.
39 typedef struct { /* wrap in struct to prevent direct access */
40 int64_t v;
41 } fpmath_t;
43 #define FPMATH_SHIFT 32 /* define where to place the decimal point */
45 /* Turn an integer into an fpmath_t. */
46 static inline fpmath_t fp(int32_t a)
48 return (fpmath_t){ .v = (int64_t)a << FPMATH_SHIFT };
51 /* Create an fpmath_t from a fraction. (numerator / denominator) */
52 static inline fpmath_t fpfrac(int32_t numerator, int32_t denominator)
54 return (fpmath_t){ .v = ((int64_t)numerator << FPMATH_SHIFT) / denominator };
57 /* Turn an fpmath_t back into an integer, rounding towards -INF. */
58 static inline int32_t fpfloor(fpmath_t a)
60 return a.v >> FPMATH_SHIFT;
63 /* Turn an fpmath_t back into an integer, rounding towards nearest. */
64 static inline int32_t fpround(fpmath_t a)
66 return (a.v + ((int64_t)1 << (FPMATH_SHIFT - 1))) >> FPMATH_SHIFT;
69 /* Turn an fpmath_t back into an integer, rounding towards +INF. */
70 static inline int32_t fpceil(fpmath_t a)
72 return (a.v + ((int64_t)1 << FPMATH_SHIFT) - 1) >> FPMATH_SHIFT;
75 /* Add two fpmath_t. (a + b) */
76 static inline fpmath_t fpadd(fpmath_t a, fpmath_t b)
78 return (fpmath_t){ .v = a.v + b.v };
81 /* Add an fpmath_t and an integer. (a + b) */
82 static inline fpmath_t fpaddi(fpmath_t a, int32_t b)
84 return (fpmath_t){ .v = a.v + ((int64_t)b << FPMATH_SHIFT) };
87 /* Subtract one fpmath_t from another. (a + b) */
88 static inline fpmath_t fpsub(fpmath_t a, fpmath_t b)
90 return (fpmath_t){ .v = a.v - b.v };
93 /* Subtract an integer from an fpmath_t. (a - b) */
94 static inline fpmath_t fpsubi(fpmath_t a, int32_t b)
96 return (fpmath_t){ .v = a.v - ((int64_t)b << FPMATH_SHIFT) };
99 /* Subtract an fpmath_t from an integer. (a - b) */
100 static inline fpmath_t fpisub(int32_t a, fpmath_t b)
102 return (fpmath_t){ .v = ((int64_t)a << FPMATH_SHIFT) - b.v };
105 /* Multiply two fpmath_t. (a * b)
106 Looses 16 bits fractional precision on each. */
107 static inline fpmath_t fpmul(fpmath_t a, fpmath_t b)
109 return (fpmath_t){ .v = (a.v >> (FPMATH_SHIFT/2)) * (b.v >> (FPMATH_SHIFT/2)) };
112 /* Multiply an fpmath_t and an integer. (a * b) */
113 static inline fpmath_t fpmuli(fpmath_t a, int32_t b)
115 return (fpmath_t){ .v = a.v * b };
118 /* Divide an fpmath_t by another. (a / b)
119 Truncates integral part of a to 16 bits! Careful with this one! */
120 static inline fpmath_t fpdiv(fpmath_t a, fpmath_t b)
122 return (fpmath_t){ .v = (a.v << (FPMATH_SHIFT/2)) / (b.v >> (FPMATH_SHIFT/2)) };
125 /* Divide an fpmath_t by an integer. (a / b) */
126 static inline fpmath_t fpdivi(fpmath_t a, int32_t b)
128 return (fpmath_t){ .v = a.v / b };
131 /* Calculate absolute value of an fpmath_t. (ABS(a)) */
132 static inline fpmath_t fpabs(fpmath_t a)
134 return (fpmath_t){ .v = (a.v < 0 ? -a.v : a.v) };
137 /* Return true iff two fpmath_t are exactly equal. (a == b)
138 Like with floats, you probably don't want to use this most of the time. */
139 static inline int fpequals(fpmath_t a, fpmath_t b)
141 return a.v == b.v;
144 /* Return true iff one fpmath_t is less than another. (a < b) */
145 static inline int fpless(fpmath_t a, fpmath_t b)
147 return a.v < b.v;
150 /* Return true iff one fpmath_t is more than another. (a > b) */
151 static inline int fpmore(fpmath_t a, fpmath_t b)
153 return a.v > b.v;
156 /* Return the smaller of two fpmath_t. (MIN(a, b)) */
157 static inline fpmath_t fpmin(fpmath_t a, fpmath_t b)
159 if (a.v < b.v)
160 return a;
161 else
162 return b;
165 /* Return the larger of two fpmath_t. (MAX(a, b)) */
166 static inline fpmath_t fpmax(fpmath_t a, fpmath_t b)
168 if (a.v > b.v)
169 return a;
170 else
171 return b;
174 /* Return the constant PI as an fpmath_t. */
175 static inline fpmath_t fppi(void)
177 /* Rounded (uint64_t)(M_PI * (1UL << 60)) to nine hex digits. */
178 return (fpmath_t){ .v = 0x3243f6a89 };
182 * Returns the "one-based" sine of an fpmath_t, meaning the input is interpreted as if the range
183 * 0.0-1.0 corresponded to 0.0-PI/2 for radians. This is mostly here as the base primitives for
184 * the other trig stuff, but it may be useful to use directly if your input value already needs
185 * to be multiplied by some factor of PI and you want to save the instructions (and precision)
186 * for multiplying it in just so that the trig functions can divide it right out again.
188 fpmath_t fpsin1(fpmath_t x);
190 /* Returns the "one-based" cosine of an fpmath_t (analogous definition to fpsin1()). */
191 static inline fpmath_t fpcos1(fpmath_t x)
193 return fpsin1(fpaddi(x, 1));
196 /* Returns the sine of an fpmath_t interpreted as radians. */
197 static inline fpmath_t fpsinr(fpmath_t radians)
199 return fpsin1(fpdiv(radians, fpdivi(fppi(), 2)));
202 /* Returns the sine of an fpmath_t interpreted as degrees. */
203 static inline fpmath_t fpsind(fpmath_t degrees)
205 return fpsin1(fpdivi(degrees, 90));
208 /* Returns the cosine of an fpmath_t interpreted as radians. */
209 static inline fpmath_t fpcosr(fpmath_t radians)
211 return fpcos1(fpdiv(radians, fpdivi(fppi(), 2)));
214 /* Returns the cosine of an fpmath_t interpreted as degrees. */
215 static inline fpmath_t fpcosd(fpmath_t degrees)
217 return fpcos1(fpdivi(degrees, 90));
220 /* Returns the tangent of an fpmath_t interpreted as radians.
221 No guard rails, don't call this at the poles or you'll divide by 0! */
222 static inline fpmath_t fptanr(fpmath_t radians)
224 fpmath_t one_based = fpdiv(radians, fpdivi(fppi(), 2));
225 return fpdiv(fpsin1(one_based), fpcos1(one_based));
228 /* Returns the tangent of an fpmath_t interpreted as degrees.
229 No guard rails, don't call this at the poles or you'll divide by 0! */
230 static inline fpmath_t fptand(fpmath_t degrees)
232 fpmath_t one_based = fpdivi(degrees, 90);
233 return fpdiv(fpsin1(one_based), fpcos1(one_based));