mb/google/nissa/var/rull: add ssd timing and modify ssd GPIO pins of rtd3
[coreboot2.git] / src / lib / hardwaremain.c
blobfda6c62d2ea4b1a06e718c9c45944c0c007ed6e0
1 /* SPDX-License-Identifier: GPL-2.0-only */
4 /*
5 * C Bootstrap code for the coreboot
6 */
8 #include <acpi/acpi.h>
9 #include <acpi/acpi_gnvs.h>
10 #include <adainit.h>
11 #include <arch/exception.h>
12 #include <boot/tables.h>
13 #include <bootstate.h>
14 #include <cbmem.h>
15 #include <commonlib/console/post_codes.h>
16 #include <commonlib/helpers.h>
17 #include <console/console.h>
18 #include <delay.h>
19 #include <device/device.h>
20 #include <device/pci.h>
21 #include <program_loading.h>
22 #include <thread.h>
23 #include <timer.h>
24 #include <timestamp.h>
25 #include <types.h>
27 static boot_state_t bs_pre_device(void *arg);
28 static boot_state_t bs_dev_init_chips(void *arg);
29 static boot_state_t bs_dev_enumerate(void *arg);
30 static boot_state_t bs_dev_resources(void *arg);
31 static boot_state_t bs_dev_enable(void *arg);
32 static boot_state_t bs_dev_init(void *arg);
33 static boot_state_t bs_post_device(void *arg);
34 static boot_state_t bs_os_resume_check(void *arg);
35 static boot_state_t bs_os_resume(void *arg);
36 static boot_state_t bs_write_tables(void *arg);
37 static boot_state_t bs_payload_load(void *arg);
38 static boot_state_t bs_payload_boot(void *arg);
40 /* The prologue (BS_ON_ENTRY) and epilogue (BS_ON_EXIT) of a state can be
41 * blocked from transitioning to the next (state,seq) pair. When the blockers
42 * field is 0 a transition may occur. */
43 struct boot_phase {
44 struct boot_state_callback *callbacks;
45 int blockers;
48 struct boot_state {
49 const char *name;
50 boot_state_t id;
51 u8 post_code;
52 struct boot_phase phases[2];
53 boot_state_t (*run_state)(void *arg);
54 void *arg;
55 int num_samples;
56 bool complete;
59 #define BS_INIT(state_, run_func_) \
60 { \
61 .name = #state_, \
62 .id = state_, \
63 .post_code = POSTCODE_ ## state_, \
64 .phases = { { NULL, 0 }, { NULL, 0 } }, \
65 .run_state = run_func_, \
66 .arg = NULL, \
67 .complete = false, \
69 #define BS_INIT_ENTRY(state_, run_func_) \
70 [state_] = BS_INIT(state_, run_func_)
72 static struct boot_state boot_states[] = {
73 BS_INIT_ENTRY(BS_PRE_DEVICE, bs_pre_device),
74 BS_INIT_ENTRY(BS_DEV_INIT_CHIPS, bs_dev_init_chips),
75 BS_INIT_ENTRY(BS_DEV_ENUMERATE, bs_dev_enumerate),
76 BS_INIT_ENTRY(BS_DEV_RESOURCES, bs_dev_resources),
77 BS_INIT_ENTRY(BS_DEV_ENABLE, bs_dev_enable),
78 BS_INIT_ENTRY(BS_DEV_INIT, bs_dev_init),
79 BS_INIT_ENTRY(BS_POST_DEVICE, bs_post_device),
80 BS_INIT_ENTRY(BS_OS_RESUME_CHECK, bs_os_resume_check),
81 BS_INIT_ENTRY(BS_OS_RESUME, bs_os_resume),
82 BS_INIT_ENTRY(BS_WRITE_TABLES, bs_write_tables),
83 BS_INIT_ENTRY(BS_PAYLOAD_LOAD, bs_payload_load),
84 BS_INIT_ENTRY(BS_PAYLOAD_BOOT, bs_payload_boot),
87 void __weak arch_bootstate_coreboot_exit(void) { }
89 static boot_state_t bs_pre_device(void *arg)
91 return BS_DEV_INIT_CHIPS;
94 static boot_state_t bs_dev_init_chips(void *arg)
96 timestamp_add_now(TS_DEVICE_ENUMERATE);
98 /* Initialize chips early, they might disable unused devices. */
99 dev_initialize_chips();
101 return BS_DEV_ENUMERATE;
104 static boot_state_t bs_dev_enumerate(void *arg)
106 /* Find the devices we don't have hard coded knowledge about. */
107 dev_enumerate();
109 return BS_DEV_RESOURCES;
112 static boot_state_t bs_dev_resources(void *arg)
114 timestamp_add_now(TS_DEVICE_CONFIGURE);
116 /* Now compute and assign the bus resources. */
117 dev_configure();
119 return BS_DEV_ENABLE;
122 static boot_state_t bs_dev_enable(void *arg)
124 timestamp_add_now(TS_DEVICE_ENABLE);
126 /* Now actually enable devices on the bus */
127 dev_enable();
129 return BS_DEV_INIT;
132 static boot_state_t bs_dev_init(void *arg)
134 timestamp_add_now(TS_DEVICE_INITIALIZE);
136 /* And of course initialize devices on the bus */
137 dev_initialize();
139 return BS_POST_DEVICE;
142 static boot_state_t bs_post_device(void *arg)
144 dev_finalize();
145 timestamp_add_now(TS_DEVICE_DONE);
147 return BS_OS_RESUME_CHECK;
150 static boot_state_t bs_os_resume_check(void *arg)
152 void *wake_vector = NULL;
154 if (CONFIG(HAVE_ACPI_RESUME))
155 wake_vector = acpi_find_wakeup_vector();
157 if (wake_vector != NULL) {
158 boot_states[BS_OS_RESUME].arg = wake_vector;
159 return BS_OS_RESUME;
162 timestamp_add_now(TS_CBMEM_POST);
164 return BS_WRITE_TABLES;
167 static boot_state_t bs_os_resume(void *wake_vector)
169 if (CONFIG(HAVE_ACPI_RESUME)) {
170 arch_bootstate_coreboot_exit();
171 acpi_resume(wake_vector);
172 /* We will not come back. */
174 die("Failed OS resume\n");
177 static boot_state_t bs_write_tables(void *arg)
179 timestamp_add_now(TS_WRITE_TABLES);
181 /* Now that we have collected all of our information
182 * write our configuration tables.
184 write_tables();
186 timestamp_add_now(TS_FINALIZE_CHIPS);
187 dev_finalize_chips();
189 return BS_PAYLOAD_LOAD;
192 static boot_state_t bs_payload_load(void *arg)
194 payload_load();
196 return BS_PAYLOAD_BOOT;
199 static boot_state_t bs_payload_boot(void *arg)
201 arch_bootstate_coreboot_exit();
202 payload_run();
204 printk(BIOS_EMERG, "Boot failed\n");
205 /* Returning from this state will fail because the following signals
206 * return to a completed state. */
207 return BS_PAYLOAD_BOOT;
211 * Typically a state will take 4 time samples:
212 * 1. Before state entry callbacks
213 * 2. After state entry callbacks / Before state function.
214 * 3. After state function / Before state exit callbacks.
215 * 4. After state exit callbacks.
217 static void bs_sample_time(struct boot_state *state)
219 static const char *const sample_id[] = { "entry", "run", "exit" };
220 static struct mono_time previous_sample;
221 struct mono_time this_sample;
222 long console;
224 if (!CONFIG(HAVE_MONOTONIC_TIMER))
225 return;
227 console = console_time_get_and_reset();
228 timer_monotonic_get(&this_sample);
229 state->num_samples++;
231 int i = state->num_samples - 2;
232 if ((i >= 0) && (i < ARRAY_SIZE(sample_id))) {
233 long execution = mono_time_diff_microseconds(&previous_sample, &this_sample);
235 /* Report with millisecond precision to reduce log diffs. */
236 execution = DIV_ROUND_CLOSEST(execution, USECS_PER_MSEC);
237 console = DIV_ROUND_CLOSEST(console, USECS_PER_MSEC);
238 if (execution) {
239 printk(BIOS_DEBUG, "BS: %s %s times (exec / console): %ld / %ld ms\n",
240 state->name, sample_id[i], execution - console, console);
241 /* Reset again to ignore printk() time above. */
242 console_time_get_and_reset();
245 timer_monotonic_get(&previous_sample);
248 #if CONFIG(TIMER_QUEUE)
249 static void bs_run_timers(int drain)
251 /* Drain all timer callbacks until none are left, if directed.
252 * Otherwise run the timers only once. */
253 do {
254 if (!timers_run())
255 break;
256 } while (drain);
258 #else
259 static void bs_run_timers(int drain) {}
260 #endif
262 static void bs_call_callbacks(struct boot_state *state,
263 boot_state_sequence_t seq)
265 struct boot_phase *phase = &state->phases[seq];
266 struct mono_time mt_start, mt_stop;
268 while (1) {
269 if (phase->callbacks != NULL) {
270 struct boot_state_callback *bscb;
272 /* Remove the first callback. */
273 bscb = phase->callbacks;
274 phase->callbacks = bscb->next;
275 bscb->next = NULL;
277 if (CONFIG(DEBUG_BOOT_STATE)) {
278 printk(BIOS_DEBUG, "BS: callback (%p) @ %s.\n",
279 bscb, bscb_location(bscb));
280 timer_monotonic_get(&mt_start);
282 bscb->callback(bscb->arg);
283 if (CONFIG(DEBUG_BOOT_STATE)) {
284 timer_monotonic_get(&mt_stop);
285 printk(BIOS_DEBUG, "BS: callback (%p) @ %s (%lld ms).\n", bscb,
286 bscb_location(bscb),
287 mono_time_diff_microseconds(&mt_start, &mt_stop)
288 / USECS_PER_MSEC);
291 bs_run_timers(0);
293 continue;
296 /* All callbacks are complete and there are no blockers for
297 * this state. Therefore, this part of the state is complete. */
298 if (!phase->blockers)
299 break;
301 /* Something is blocking this state from transitioning. As
302 * there are no more callbacks a pending timer needs to be
303 * ran to unblock the state. */
304 bs_run_timers(0);
308 /* Keep track of the current state. */
309 static struct state_tracker {
310 boot_state_t state_id;
311 boot_state_sequence_t seq;
312 } current_phase = {
313 .state_id = BS_PRE_DEVICE,
314 .seq = BS_ON_ENTRY,
317 static void bs_walk_state_machine(void)
319 while (1) {
320 struct boot_state *state;
321 boot_state_t next_id;
323 state = &boot_states[current_phase.state_id];
325 if (state->complete) {
326 printk(BIOS_EMERG, "BS: %s state already executed.\n",
327 state->name);
328 break;
331 if (CONFIG(DEBUG_BOOT_STATE))
332 printk(BIOS_DEBUG, "BS: Entering %s state.\n",
333 state->name);
335 bs_run_timers(0);
337 bs_sample_time(state);
339 bs_call_callbacks(state, current_phase.seq);
340 /* Update the current sequence so that any calls to block the
341 * current state from the run_state() function will place a
342 * block on the correct phase. */
343 current_phase.seq = BS_ON_EXIT;
345 bs_sample_time(state);
347 post_code(state->post_code);
349 next_id = state->run_state(state->arg);
351 if (CONFIG(DEBUG_BOOT_STATE))
352 printk(BIOS_DEBUG, "BS: Exiting %s state.\n",
353 state->name);
355 bs_sample_time(state);
357 bs_run_timers(0);
359 bs_call_callbacks(state, current_phase.seq);
361 if (CONFIG(DEBUG_BOOT_STATE))
362 printk(BIOS_DEBUG,
363 "----------------------------------------\n");
365 /* Update the current phase with new state id and sequence. */
366 current_phase.state_id = next_id;
367 current_phase.seq = BS_ON_ENTRY;
369 bs_sample_time(state);
371 state->complete = true;
375 static int boot_state_sched_callback(struct boot_state *state,
376 struct boot_state_callback *bscb,
377 boot_state_sequence_t seq)
379 if (state->complete) {
380 printk(BIOS_WARNING,
381 "Tried to schedule callback on completed state %s.\n",
382 state->name);
384 return -1;
387 bscb->next = state->phases[seq].callbacks;
388 state->phases[seq].callbacks = bscb;
390 return 0;
393 int boot_state_sched_on_entry(struct boot_state_callback *bscb,
394 boot_state_t state_id)
396 struct boot_state *state = &boot_states[state_id];
398 return boot_state_sched_callback(state, bscb, BS_ON_ENTRY);
401 int boot_state_sched_on_exit(struct boot_state_callback *bscb,
402 boot_state_t state_id)
404 struct boot_state *state = &boot_states[state_id];
406 return boot_state_sched_callback(state, bscb, BS_ON_EXIT);
409 static void boot_state_schedule_static_entries(void)
411 extern struct boot_state_init_entry *_bs_init_begin[];
412 struct boot_state_init_entry **slot;
414 for (slot = &_bs_init_begin[0]; *slot != NULL; slot++) {
415 struct boot_state_init_entry *cur = *slot;
417 if (cur->when == BS_ON_ENTRY)
418 boot_state_sched_on_entry(&cur->bscb, cur->state);
419 else
420 boot_state_sched_on_exit(&cur->bscb, cur->state);
424 void main(void)
427 * We can generally jump between C and Ada code back and forth
428 * without trouble. But since we don't have an Ada main() we
429 * have to do some Ada package initializations that GNAT would
430 * do there. This has to be done before calling any Ada code.
432 * The package initializations should not have any dependen-
433 * cies on C code. So we can call them here early, and don't
434 * have to worry at which point we can start to use Ada.
436 ramstage_adainit();
438 /* TODO: Understand why this is here and move to arch/platform code. */
439 /* For MMIO UART this needs to be called before any other printk. */
440 if (ENV_X86)
441 init_timer();
443 /* console_init() MUST PRECEDE ALL printk()! Additionally, ensure
444 * it is the very first thing done in ramstage.*/
445 console_init();
446 post_code(POSTCODE_CONSOLE_READY);
448 exception_init();
451 * CBMEM needs to be recovered because timestamps, ACPI, etc rely on
452 * the cbmem infrastructure being around. Explicitly recover it.
454 cbmem_initialize();
456 timestamp_add_now(TS_RAMSTAGE_START);
457 post_code(POSTCODE_ENTRY_HARDWAREMAIN);
459 /* Handoff sleep type from romstage. */
460 acpi_is_wakeup_s3();
462 /* Schedule the static boot state entries. */
463 boot_state_schedule_static_entries();
465 bs_walk_state_machine();
467 die("Boot state machine failure.\n");
471 int boot_state_block(boot_state_t state, boot_state_sequence_t seq)
473 struct boot_phase *bp;
475 /* Blocking a previously ran state is not appropriate. */
476 if (current_phase.state_id > state ||
477 (current_phase.state_id == state && current_phase.seq > seq)) {
478 printk(BIOS_WARNING,
479 "BS: Completed state (%d, %d) block attempted.\n",
480 state, seq);
481 return -1;
484 bp = &boot_states[state].phases[seq];
485 bp->blockers++;
487 return 0;
490 int boot_state_unblock(boot_state_t state, boot_state_sequence_t seq)
492 struct boot_phase *bp;
494 /* Blocking a previously ran state is not appropriate. */
495 if (current_phase.state_id > state ||
496 (current_phase.state_id == state && current_phase.seq > seq)) {
497 printk(BIOS_WARNING,
498 "BS: Completed state (%d, %d) unblock attempted.\n",
499 state, seq);
500 return -1;
503 bp = &boot_states[state].phases[seq];
505 if (bp->blockers == 0) {
506 printk(BIOS_WARNING,
507 "BS: Unblock attempted on non-blocked state (%d, %d).\n",
508 state, seq);
509 return -1;
512 bp->blockers--;
514 return 0;