2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include <linux/vmalloc.h>
25 #include "transaction.h"
26 #include "print-tree.h"
29 static int split_node(struct btrfs_trans_handle
*trans
, struct btrfs_root
30 *root
, struct btrfs_path
*path
, int level
);
31 static int split_leaf(struct btrfs_trans_handle
*trans
, struct btrfs_root
32 *root
, struct btrfs_key
*ins_key
,
33 struct btrfs_path
*path
, int data_size
, int extend
);
34 static int push_node_left(struct btrfs_trans_handle
*trans
,
35 struct btrfs_root
*root
, struct extent_buffer
*dst
,
36 struct extent_buffer
*src
, int empty
);
37 static int balance_node_right(struct btrfs_trans_handle
*trans
,
38 struct btrfs_root
*root
,
39 struct extent_buffer
*dst_buf
,
40 struct extent_buffer
*src_buf
);
41 static void del_ptr(struct btrfs_root
*root
, struct btrfs_path
*path
,
43 static int tree_mod_log_free_eb(struct btrfs_fs_info
*fs_info
,
44 struct extent_buffer
*eb
);
46 struct btrfs_path
*btrfs_alloc_path(void)
48 struct btrfs_path
*path
;
49 path
= kmem_cache_zalloc(btrfs_path_cachep
, GFP_NOFS
);
54 * set all locked nodes in the path to blocking locks. This should
55 * be done before scheduling
57 noinline
void btrfs_set_path_blocking(struct btrfs_path
*p
)
60 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
61 if (!p
->nodes
[i
] || !p
->locks
[i
])
63 btrfs_set_lock_blocking_rw(p
->nodes
[i
], p
->locks
[i
]);
64 if (p
->locks
[i
] == BTRFS_READ_LOCK
)
65 p
->locks
[i
] = BTRFS_READ_LOCK_BLOCKING
;
66 else if (p
->locks
[i
] == BTRFS_WRITE_LOCK
)
67 p
->locks
[i
] = BTRFS_WRITE_LOCK_BLOCKING
;
72 * reset all the locked nodes in the patch to spinning locks.
74 * held is used to keep lockdep happy, when lockdep is enabled
75 * we set held to a blocking lock before we go around and
76 * retake all the spinlocks in the path. You can safely use NULL
79 noinline
void btrfs_clear_path_blocking(struct btrfs_path
*p
,
80 struct extent_buffer
*held
, int held_rw
)
85 btrfs_set_lock_blocking_rw(held
, held_rw
);
86 if (held_rw
== BTRFS_WRITE_LOCK
)
87 held_rw
= BTRFS_WRITE_LOCK_BLOCKING
;
88 else if (held_rw
== BTRFS_READ_LOCK
)
89 held_rw
= BTRFS_READ_LOCK_BLOCKING
;
91 btrfs_set_path_blocking(p
);
93 for (i
= BTRFS_MAX_LEVEL
- 1; i
>= 0; i
--) {
94 if (p
->nodes
[i
] && p
->locks
[i
]) {
95 btrfs_clear_lock_blocking_rw(p
->nodes
[i
], p
->locks
[i
]);
96 if (p
->locks
[i
] == BTRFS_WRITE_LOCK_BLOCKING
)
97 p
->locks
[i
] = BTRFS_WRITE_LOCK
;
98 else if (p
->locks
[i
] == BTRFS_READ_LOCK_BLOCKING
)
99 p
->locks
[i
] = BTRFS_READ_LOCK
;
104 btrfs_clear_lock_blocking_rw(held
, held_rw
);
107 /* this also releases the path */
108 void btrfs_free_path(struct btrfs_path
*p
)
112 btrfs_release_path(p
);
113 kmem_cache_free(btrfs_path_cachep
, p
);
117 * path release drops references on the extent buffers in the path
118 * and it drops any locks held by this path
120 * It is safe to call this on paths that no locks or extent buffers held.
122 noinline
void btrfs_release_path(struct btrfs_path
*p
)
126 for (i
= 0; i
< BTRFS_MAX_LEVEL
; i
++) {
131 btrfs_tree_unlock_rw(p
->nodes
[i
], p
->locks
[i
]);
134 free_extent_buffer(p
->nodes
[i
]);
140 * safely gets a reference on the root node of a tree. A lock
141 * is not taken, so a concurrent writer may put a different node
142 * at the root of the tree. See btrfs_lock_root_node for the
145 * The extent buffer returned by this has a reference taken, so
146 * it won't disappear. It may stop being the root of the tree
147 * at any time because there are no locks held.
149 struct extent_buffer
*btrfs_root_node(struct btrfs_root
*root
)
151 struct extent_buffer
*eb
;
155 eb
= rcu_dereference(root
->node
);
158 * RCU really hurts here, we could free up the root node because
159 * it was cow'ed but we may not get the new root node yet so do
160 * the inc_not_zero dance and if it doesn't work then
161 * synchronize_rcu and try again.
163 if (atomic_inc_not_zero(&eb
->refs
)) {
173 /* loop around taking references on and locking the root node of the
174 * tree until you end up with a lock on the root. A locked buffer
175 * is returned, with a reference held.
177 struct extent_buffer
*btrfs_lock_root_node(struct btrfs_root
*root
)
179 struct extent_buffer
*eb
;
182 eb
= btrfs_root_node(root
);
184 if (eb
== root
->node
)
186 btrfs_tree_unlock(eb
);
187 free_extent_buffer(eb
);
192 /* loop around taking references on and locking the root node of the
193 * tree until you end up with a lock on the root. A locked buffer
194 * is returned, with a reference held.
196 static struct extent_buffer
*btrfs_read_lock_root_node(struct btrfs_root
*root
)
198 struct extent_buffer
*eb
;
201 eb
= btrfs_root_node(root
);
202 btrfs_tree_read_lock(eb
);
203 if (eb
== root
->node
)
205 btrfs_tree_read_unlock(eb
);
206 free_extent_buffer(eb
);
211 /* cowonly root (everything not a reference counted cow subvolume), just get
212 * put onto a simple dirty list. transaction.c walks this to make sure they
213 * get properly updated on disk.
215 static void add_root_to_dirty_list(struct btrfs_root
*root
)
217 if (test_bit(BTRFS_ROOT_DIRTY
, &root
->state
) ||
218 !test_bit(BTRFS_ROOT_TRACK_DIRTY
, &root
->state
))
221 spin_lock(&root
->fs_info
->trans_lock
);
222 if (!test_and_set_bit(BTRFS_ROOT_DIRTY
, &root
->state
)) {
223 /* Want the extent tree to be the last on the list */
224 if (root
->objectid
== BTRFS_EXTENT_TREE_OBJECTID
)
225 list_move_tail(&root
->dirty_list
,
226 &root
->fs_info
->dirty_cowonly_roots
);
228 list_move(&root
->dirty_list
,
229 &root
->fs_info
->dirty_cowonly_roots
);
231 spin_unlock(&root
->fs_info
->trans_lock
);
235 * used by snapshot creation to make a copy of a root for a tree with
236 * a given objectid. The buffer with the new root node is returned in
237 * cow_ret, and this func returns zero on success or a negative error code.
239 int btrfs_copy_root(struct btrfs_trans_handle
*trans
,
240 struct btrfs_root
*root
,
241 struct extent_buffer
*buf
,
242 struct extent_buffer
**cow_ret
, u64 new_root_objectid
)
244 struct extent_buffer
*cow
;
247 struct btrfs_disk_key disk_key
;
249 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
250 trans
->transid
!= root
->fs_info
->running_transaction
->transid
);
251 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
252 trans
->transid
!= root
->last_trans
);
254 level
= btrfs_header_level(buf
);
256 btrfs_item_key(buf
, &disk_key
, 0);
258 btrfs_node_key(buf
, &disk_key
, 0);
260 cow
= btrfs_alloc_tree_block(trans
, root
, 0, new_root_objectid
,
261 &disk_key
, level
, buf
->start
, 0);
265 copy_extent_buffer(cow
, buf
, 0, 0, cow
->len
);
266 btrfs_set_header_bytenr(cow
, cow
->start
);
267 btrfs_set_header_generation(cow
, trans
->transid
);
268 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
269 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
270 BTRFS_HEADER_FLAG_RELOC
);
271 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
272 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
274 btrfs_set_header_owner(cow
, new_root_objectid
);
276 write_extent_buffer(cow
, root
->fs_info
->fsid
, btrfs_header_fsid(),
279 WARN_ON(btrfs_header_generation(buf
) > trans
->transid
);
280 if (new_root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
281 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
283 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
288 btrfs_mark_buffer_dirty(cow
);
297 MOD_LOG_KEY_REMOVE_WHILE_FREEING
,
298 MOD_LOG_KEY_REMOVE_WHILE_MOVING
,
300 MOD_LOG_ROOT_REPLACE
,
303 struct tree_mod_move
{
308 struct tree_mod_root
{
313 struct tree_mod_elem
{
319 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
322 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
325 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
326 struct btrfs_disk_key key
;
329 /* this is used for op == MOD_LOG_MOVE_KEYS */
330 struct tree_mod_move move
;
332 /* this is used for op == MOD_LOG_ROOT_REPLACE */
333 struct tree_mod_root old_root
;
336 static inline void tree_mod_log_read_lock(struct btrfs_fs_info
*fs_info
)
338 read_lock(&fs_info
->tree_mod_log_lock
);
341 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info
*fs_info
)
343 read_unlock(&fs_info
->tree_mod_log_lock
);
346 static inline void tree_mod_log_write_lock(struct btrfs_fs_info
*fs_info
)
348 write_lock(&fs_info
->tree_mod_log_lock
);
351 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info
*fs_info
)
353 write_unlock(&fs_info
->tree_mod_log_lock
);
357 * Pull a new tree mod seq number for our operation.
359 static inline u64
btrfs_inc_tree_mod_seq(struct btrfs_fs_info
*fs_info
)
361 return atomic64_inc_return(&fs_info
->tree_mod_seq
);
365 * This adds a new blocker to the tree mod log's blocker list if the @elem
366 * passed does not already have a sequence number set. So when a caller expects
367 * to record tree modifications, it should ensure to set elem->seq to zero
368 * before calling btrfs_get_tree_mod_seq.
369 * Returns a fresh, unused tree log modification sequence number, even if no new
372 u64
btrfs_get_tree_mod_seq(struct btrfs_fs_info
*fs_info
,
373 struct seq_list
*elem
)
375 tree_mod_log_write_lock(fs_info
);
376 spin_lock(&fs_info
->tree_mod_seq_lock
);
378 elem
->seq
= btrfs_inc_tree_mod_seq(fs_info
);
379 list_add_tail(&elem
->list
, &fs_info
->tree_mod_seq_list
);
381 spin_unlock(&fs_info
->tree_mod_seq_lock
);
382 tree_mod_log_write_unlock(fs_info
);
387 void btrfs_put_tree_mod_seq(struct btrfs_fs_info
*fs_info
,
388 struct seq_list
*elem
)
390 struct rb_root
*tm_root
;
391 struct rb_node
*node
;
392 struct rb_node
*next
;
393 struct seq_list
*cur_elem
;
394 struct tree_mod_elem
*tm
;
395 u64 min_seq
= (u64
)-1;
396 u64 seq_putting
= elem
->seq
;
401 spin_lock(&fs_info
->tree_mod_seq_lock
);
402 list_del(&elem
->list
);
405 list_for_each_entry(cur_elem
, &fs_info
->tree_mod_seq_list
, list
) {
406 if (cur_elem
->seq
< min_seq
) {
407 if (seq_putting
> cur_elem
->seq
) {
409 * blocker with lower sequence number exists, we
410 * cannot remove anything from the log
412 spin_unlock(&fs_info
->tree_mod_seq_lock
);
415 min_seq
= cur_elem
->seq
;
418 spin_unlock(&fs_info
->tree_mod_seq_lock
);
421 * anything that's lower than the lowest existing (read: blocked)
422 * sequence number can be removed from the tree.
424 tree_mod_log_write_lock(fs_info
);
425 tm_root
= &fs_info
->tree_mod_log
;
426 for (node
= rb_first(tm_root
); node
; node
= next
) {
427 next
= rb_next(node
);
428 tm
= container_of(node
, struct tree_mod_elem
, node
);
429 if (tm
->seq
> min_seq
)
431 rb_erase(node
, tm_root
);
434 tree_mod_log_write_unlock(fs_info
);
438 * key order of the log:
439 * node/leaf start address -> sequence
441 * The 'start address' is the logical address of the *new* root node
442 * for root replace operations, or the logical address of the affected
443 * block for all other operations.
445 * Note: must be called with write lock (tree_mod_log_write_lock).
448 __tree_mod_log_insert(struct btrfs_fs_info
*fs_info
, struct tree_mod_elem
*tm
)
450 struct rb_root
*tm_root
;
451 struct rb_node
**new;
452 struct rb_node
*parent
= NULL
;
453 struct tree_mod_elem
*cur
;
457 tm
->seq
= btrfs_inc_tree_mod_seq(fs_info
);
459 tm_root
= &fs_info
->tree_mod_log
;
460 new = &tm_root
->rb_node
;
462 cur
= container_of(*new, struct tree_mod_elem
, node
);
464 if (cur
->logical
< tm
->logical
)
465 new = &((*new)->rb_left
);
466 else if (cur
->logical
> tm
->logical
)
467 new = &((*new)->rb_right
);
468 else if (cur
->seq
< tm
->seq
)
469 new = &((*new)->rb_left
);
470 else if (cur
->seq
> tm
->seq
)
471 new = &((*new)->rb_right
);
476 rb_link_node(&tm
->node
, parent
, new);
477 rb_insert_color(&tm
->node
, tm_root
);
482 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
483 * returns zero with the tree_mod_log_lock acquired. The caller must hold
484 * this until all tree mod log insertions are recorded in the rb tree and then
485 * call tree_mod_log_write_unlock() to release.
487 static inline int tree_mod_dont_log(struct btrfs_fs_info
*fs_info
,
488 struct extent_buffer
*eb
) {
490 if (list_empty(&(fs_info
)->tree_mod_seq_list
))
492 if (eb
&& btrfs_header_level(eb
) == 0)
495 tree_mod_log_write_lock(fs_info
);
496 if (list_empty(&(fs_info
)->tree_mod_seq_list
)) {
497 tree_mod_log_write_unlock(fs_info
);
504 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
505 static inline int tree_mod_need_log(const struct btrfs_fs_info
*fs_info
,
506 struct extent_buffer
*eb
)
509 if (list_empty(&(fs_info
)->tree_mod_seq_list
))
511 if (eb
&& btrfs_header_level(eb
) == 0)
517 static struct tree_mod_elem
*
518 alloc_tree_mod_elem(struct extent_buffer
*eb
, int slot
,
519 enum mod_log_op op
, gfp_t flags
)
521 struct tree_mod_elem
*tm
;
523 tm
= kzalloc(sizeof(*tm
), flags
);
527 tm
->logical
= eb
->start
;
528 if (op
!= MOD_LOG_KEY_ADD
) {
529 btrfs_node_key(eb
, &tm
->key
, slot
);
530 tm
->blockptr
= btrfs_node_blockptr(eb
, slot
);
534 tm
->generation
= btrfs_node_ptr_generation(eb
, slot
);
535 RB_CLEAR_NODE(&tm
->node
);
541 tree_mod_log_insert_key(struct btrfs_fs_info
*fs_info
,
542 struct extent_buffer
*eb
, int slot
,
543 enum mod_log_op op
, gfp_t flags
)
545 struct tree_mod_elem
*tm
;
548 if (!tree_mod_need_log(fs_info
, eb
))
551 tm
= alloc_tree_mod_elem(eb
, slot
, op
, flags
);
555 if (tree_mod_dont_log(fs_info
, eb
)) {
560 ret
= __tree_mod_log_insert(fs_info
, tm
);
561 tree_mod_log_write_unlock(fs_info
);
569 tree_mod_log_insert_move(struct btrfs_fs_info
*fs_info
,
570 struct extent_buffer
*eb
, int dst_slot
, int src_slot
,
571 int nr_items
, gfp_t flags
)
573 struct tree_mod_elem
*tm
= NULL
;
574 struct tree_mod_elem
**tm_list
= NULL
;
579 if (!tree_mod_need_log(fs_info
, eb
))
582 tm_list
= kcalloc(nr_items
, sizeof(struct tree_mod_elem
*), flags
);
586 tm
= kzalloc(sizeof(*tm
), flags
);
592 tm
->logical
= eb
->start
;
594 tm
->move
.dst_slot
= dst_slot
;
595 tm
->move
.nr_items
= nr_items
;
596 tm
->op
= MOD_LOG_MOVE_KEYS
;
598 for (i
= 0; i
+ dst_slot
< src_slot
&& i
< nr_items
; i
++) {
599 tm_list
[i
] = alloc_tree_mod_elem(eb
, i
+ dst_slot
,
600 MOD_LOG_KEY_REMOVE_WHILE_MOVING
, flags
);
607 if (tree_mod_dont_log(fs_info
, eb
))
612 * When we override something during the move, we log these removals.
613 * This can only happen when we move towards the beginning of the
614 * buffer, i.e. dst_slot < src_slot.
616 for (i
= 0; i
+ dst_slot
< src_slot
&& i
< nr_items
; i
++) {
617 ret
= __tree_mod_log_insert(fs_info
, tm_list
[i
]);
622 ret
= __tree_mod_log_insert(fs_info
, tm
);
625 tree_mod_log_write_unlock(fs_info
);
630 for (i
= 0; i
< nr_items
; i
++) {
631 if (tm_list
[i
] && !RB_EMPTY_NODE(&tm_list
[i
]->node
))
632 rb_erase(&tm_list
[i
]->node
, &fs_info
->tree_mod_log
);
636 tree_mod_log_write_unlock(fs_info
);
644 __tree_mod_log_free_eb(struct btrfs_fs_info
*fs_info
,
645 struct tree_mod_elem
**tm_list
,
651 for (i
= nritems
- 1; i
>= 0; i
--) {
652 ret
= __tree_mod_log_insert(fs_info
, tm_list
[i
]);
654 for (j
= nritems
- 1; j
> i
; j
--)
655 rb_erase(&tm_list
[j
]->node
,
656 &fs_info
->tree_mod_log
);
665 tree_mod_log_insert_root(struct btrfs_fs_info
*fs_info
,
666 struct extent_buffer
*old_root
,
667 struct extent_buffer
*new_root
, gfp_t flags
,
670 struct tree_mod_elem
*tm
= NULL
;
671 struct tree_mod_elem
**tm_list
= NULL
;
676 if (!tree_mod_need_log(fs_info
, NULL
))
679 if (log_removal
&& btrfs_header_level(old_root
) > 0) {
680 nritems
= btrfs_header_nritems(old_root
);
681 tm_list
= kcalloc(nritems
, sizeof(struct tree_mod_elem
*),
687 for (i
= 0; i
< nritems
; i
++) {
688 tm_list
[i
] = alloc_tree_mod_elem(old_root
, i
,
689 MOD_LOG_KEY_REMOVE_WHILE_FREEING
, flags
);
697 tm
= kzalloc(sizeof(*tm
), flags
);
703 tm
->logical
= new_root
->start
;
704 tm
->old_root
.logical
= old_root
->start
;
705 tm
->old_root
.level
= btrfs_header_level(old_root
);
706 tm
->generation
= btrfs_header_generation(old_root
);
707 tm
->op
= MOD_LOG_ROOT_REPLACE
;
709 if (tree_mod_dont_log(fs_info
, NULL
))
713 ret
= __tree_mod_log_free_eb(fs_info
, tm_list
, nritems
);
715 ret
= __tree_mod_log_insert(fs_info
, tm
);
717 tree_mod_log_write_unlock(fs_info
);
726 for (i
= 0; i
< nritems
; i
++)
735 static struct tree_mod_elem
*
736 __tree_mod_log_search(struct btrfs_fs_info
*fs_info
, u64 start
, u64 min_seq
,
739 struct rb_root
*tm_root
;
740 struct rb_node
*node
;
741 struct tree_mod_elem
*cur
= NULL
;
742 struct tree_mod_elem
*found
= NULL
;
744 tree_mod_log_read_lock(fs_info
);
745 tm_root
= &fs_info
->tree_mod_log
;
746 node
= tm_root
->rb_node
;
748 cur
= container_of(node
, struct tree_mod_elem
, node
);
749 if (cur
->logical
< start
) {
750 node
= node
->rb_left
;
751 } else if (cur
->logical
> start
) {
752 node
= node
->rb_right
;
753 } else if (cur
->seq
< min_seq
) {
754 node
= node
->rb_left
;
755 } else if (!smallest
) {
756 /* we want the node with the highest seq */
758 BUG_ON(found
->seq
> cur
->seq
);
760 node
= node
->rb_left
;
761 } else if (cur
->seq
> min_seq
) {
762 /* we want the node with the smallest seq */
764 BUG_ON(found
->seq
< cur
->seq
);
766 node
= node
->rb_right
;
772 tree_mod_log_read_unlock(fs_info
);
778 * this returns the element from the log with the smallest time sequence
779 * value that's in the log (the oldest log item). any element with a time
780 * sequence lower than min_seq will be ignored.
782 static struct tree_mod_elem
*
783 tree_mod_log_search_oldest(struct btrfs_fs_info
*fs_info
, u64 start
,
786 return __tree_mod_log_search(fs_info
, start
, min_seq
, 1);
790 * this returns the element from the log with the largest time sequence
791 * value that's in the log (the most recent log item). any element with
792 * a time sequence lower than min_seq will be ignored.
794 static struct tree_mod_elem
*
795 tree_mod_log_search(struct btrfs_fs_info
*fs_info
, u64 start
, u64 min_seq
)
797 return __tree_mod_log_search(fs_info
, start
, min_seq
, 0);
801 tree_mod_log_eb_copy(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*dst
,
802 struct extent_buffer
*src
, unsigned long dst_offset
,
803 unsigned long src_offset
, int nr_items
)
806 struct tree_mod_elem
**tm_list
= NULL
;
807 struct tree_mod_elem
**tm_list_add
, **tm_list_rem
;
811 if (!tree_mod_need_log(fs_info
, NULL
))
814 if (btrfs_header_level(dst
) == 0 && btrfs_header_level(src
) == 0)
817 tm_list
= kcalloc(nr_items
* 2, sizeof(struct tree_mod_elem
*),
822 tm_list_add
= tm_list
;
823 tm_list_rem
= tm_list
+ nr_items
;
824 for (i
= 0; i
< nr_items
; i
++) {
825 tm_list_rem
[i
] = alloc_tree_mod_elem(src
, i
+ src_offset
,
826 MOD_LOG_KEY_REMOVE
, GFP_NOFS
);
827 if (!tm_list_rem
[i
]) {
832 tm_list_add
[i
] = alloc_tree_mod_elem(dst
, i
+ dst_offset
,
833 MOD_LOG_KEY_ADD
, GFP_NOFS
);
834 if (!tm_list_add
[i
]) {
840 if (tree_mod_dont_log(fs_info
, NULL
))
844 for (i
= 0; i
< nr_items
; i
++) {
845 ret
= __tree_mod_log_insert(fs_info
, tm_list_rem
[i
]);
848 ret
= __tree_mod_log_insert(fs_info
, tm_list_add
[i
]);
853 tree_mod_log_write_unlock(fs_info
);
859 for (i
= 0; i
< nr_items
* 2; i
++) {
860 if (tm_list
[i
] && !RB_EMPTY_NODE(&tm_list
[i
]->node
))
861 rb_erase(&tm_list
[i
]->node
, &fs_info
->tree_mod_log
);
865 tree_mod_log_write_unlock(fs_info
);
872 tree_mod_log_eb_move(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*dst
,
873 int dst_offset
, int src_offset
, int nr_items
)
876 ret
= tree_mod_log_insert_move(fs_info
, dst
, dst_offset
, src_offset
,
882 tree_mod_log_set_node_key(struct btrfs_fs_info
*fs_info
,
883 struct extent_buffer
*eb
, int slot
, int atomic
)
887 ret
= tree_mod_log_insert_key(fs_info
, eb
, slot
,
889 atomic
? GFP_ATOMIC
: GFP_NOFS
);
894 tree_mod_log_free_eb(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*eb
)
896 struct tree_mod_elem
**tm_list
= NULL
;
901 if (btrfs_header_level(eb
) == 0)
904 if (!tree_mod_need_log(fs_info
, NULL
))
907 nritems
= btrfs_header_nritems(eb
);
908 tm_list
= kcalloc(nritems
, sizeof(struct tree_mod_elem
*), GFP_NOFS
);
912 for (i
= 0; i
< nritems
; i
++) {
913 tm_list
[i
] = alloc_tree_mod_elem(eb
, i
,
914 MOD_LOG_KEY_REMOVE_WHILE_FREEING
, GFP_NOFS
);
921 if (tree_mod_dont_log(fs_info
, eb
))
924 ret
= __tree_mod_log_free_eb(fs_info
, tm_list
, nritems
);
925 tree_mod_log_write_unlock(fs_info
);
933 for (i
= 0; i
< nritems
; i
++)
941 tree_mod_log_set_root_pointer(struct btrfs_root
*root
,
942 struct extent_buffer
*new_root_node
,
946 ret
= tree_mod_log_insert_root(root
->fs_info
, root
->node
,
947 new_root_node
, GFP_NOFS
, log_removal
);
952 * check if the tree block can be shared by multiple trees
954 int btrfs_block_can_be_shared(struct btrfs_root
*root
,
955 struct extent_buffer
*buf
)
958 * Tree blocks not in refernece counted trees and tree roots
959 * are never shared. If a block was allocated after the last
960 * snapshot and the block was not allocated by tree relocation,
961 * we know the block is not shared.
963 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
964 buf
!= root
->node
&& buf
!= root
->commit_root
&&
965 (btrfs_header_generation(buf
) <=
966 btrfs_root_last_snapshot(&root
->root_item
) ||
967 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)))
969 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
970 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
971 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
977 static noinline
int update_ref_for_cow(struct btrfs_trans_handle
*trans
,
978 struct btrfs_root
*root
,
979 struct extent_buffer
*buf
,
980 struct extent_buffer
*cow
,
990 * Backrefs update rules:
992 * Always use full backrefs for extent pointers in tree block
993 * allocated by tree relocation.
995 * If a shared tree block is no longer referenced by its owner
996 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
997 * use full backrefs for extent pointers in tree block.
999 * If a tree block is been relocating
1000 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1001 * use full backrefs for extent pointers in tree block.
1002 * The reason for this is some operations (such as drop tree)
1003 * are only allowed for blocks use full backrefs.
1006 if (btrfs_block_can_be_shared(root
, buf
)) {
1007 ret
= btrfs_lookup_extent_info(trans
, root
, buf
->start
,
1008 btrfs_header_level(buf
), 1,
1014 btrfs_std_error(root
->fs_info
, ret
, NULL
);
1019 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
1020 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
1021 flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
1026 owner
= btrfs_header_owner(buf
);
1027 BUG_ON(owner
== BTRFS_TREE_RELOC_OBJECTID
&&
1028 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
1031 if ((owner
== root
->root_key
.objectid
||
1032 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) &&
1033 !(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
)) {
1034 ret
= btrfs_inc_ref(trans
, root
, buf
, 1);
1035 BUG_ON(ret
); /* -ENOMEM */
1037 if (root
->root_key
.objectid
==
1038 BTRFS_TREE_RELOC_OBJECTID
) {
1039 ret
= btrfs_dec_ref(trans
, root
, buf
, 0);
1040 BUG_ON(ret
); /* -ENOMEM */
1041 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
1042 BUG_ON(ret
); /* -ENOMEM */
1044 new_flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
1047 if (root
->root_key
.objectid
==
1048 BTRFS_TREE_RELOC_OBJECTID
)
1049 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
1051 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
1052 BUG_ON(ret
); /* -ENOMEM */
1054 if (new_flags
!= 0) {
1055 int level
= btrfs_header_level(buf
);
1057 ret
= btrfs_set_disk_extent_flags(trans
, root
,
1060 new_flags
, level
, 0);
1065 if (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
1066 if (root
->root_key
.objectid
==
1067 BTRFS_TREE_RELOC_OBJECTID
)
1068 ret
= btrfs_inc_ref(trans
, root
, cow
, 1);
1070 ret
= btrfs_inc_ref(trans
, root
, cow
, 0);
1071 BUG_ON(ret
); /* -ENOMEM */
1072 ret
= btrfs_dec_ref(trans
, root
, buf
, 1);
1073 BUG_ON(ret
); /* -ENOMEM */
1075 clean_tree_block(trans
, root
->fs_info
, buf
);
1082 * does the dirty work in cow of a single block. The parent block (if
1083 * supplied) is updated to point to the new cow copy. The new buffer is marked
1084 * dirty and returned locked. If you modify the block it needs to be marked
1087 * search_start -- an allocation hint for the new block
1089 * empty_size -- a hint that you plan on doing more cow. This is the size in
1090 * bytes the allocator should try to find free next to the block it returns.
1091 * This is just a hint and may be ignored by the allocator.
1093 static noinline
int __btrfs_cow_block(struct btrfs_trans_handle
*trans
,
1094 struct btrfs_root
*root
,
1095 struct extent_buffer
*buf
,
1096 struct extent_buffer
*parent
, int parent_slot
,
1097 struct extent_buffer
**cow_ret
,
1098 u64 search_start
, u64 empty_size
)
1100 struct btrfs_disk_key disk_key
;
1101 struct extent_buffer
*cow
;
1104 int unlock_orig
= 0;
1107 if (*cow_ret
== buf
)
1110 btrfs_assert_tree_locked(buf
);
1112 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
1113 trans
->transid
!= root
->fs_info
->running_transaction
->transid
);
1114 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) &&
1115 trans
->transid
!= root
->last_trans
);
1117 level
= btrfs_header_level(buf
);
1120 btrfs_item_key(buf
, &disk_key
, 0);
1122 btrfs_node_key(buf
, &disk_key
, 0);
1124 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
1126 parent_start
= parent
->start
;
1132 cow
= btrfs_alloc_tree_block(trans
, root
, parent_start
,
1133 root
->root_key
.objectid
, &disk_key
, level
,
1134 search_start
, empty_size
);
1136 return PTR_ERR(cow
);
1138 /* cow is set to blocking by btrfs_init_new_buffer */
1140 copy_extent_buffer(cow
, buf
, 0, 0, cow
->len
);
1141 btrfs_set_header_bytenr(cow
, cow
->start
);
1142 btrfs_set_header_generation(cow
, trans
->transid
);
1143 btrfs_set_header_backref_rev(cow
, BTRFS_MIXED_BACKREF_REV
);
1144 btrfs_clear_header_flag(cow
, BTRFS_HEADER_FLAG_WRITTEN
|
1145 BTRFS_HEADER_FLAG_RELOC
);
1146 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
1147 btrfs_set_header_flag(cow
, BTRFS_HEADER_FLAG_RELOC
);
1149 btrfs_set_header_owner(cow
, root
->root_key
.objectid
);
1151 write_extent_buffer(cow
, root
->fs_info
->fsid
, btrfs_header_fsid(),
1154 ret
= update_ref_for_cow(trans
, root
, buf
, cow
, &last_ref
);
1156 btrfs_abort_transaction(trans
, root
, ret
);
1160 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
)) {
1161 ret
= btrfs_reloc_cow_block(trans
, root
, buf
, cow
);
1163 btrfs_abort_transaction(trans
, root
, ret
);
1168 if (buf
== root
->node
) {
1169 WARN_ON(parent
&& parent
!= buf
);
1170 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
1171 btrfs_header_backref_rev(buf
) < BTRFS_MIXED_BACKREF_REV
)
1172 parent_start
= buf
->start
;
1176 extent_buffer_get(cow
);
1177 tree_mod_log_set_root_pointer(root
, cow
, 1);
1178 rcu_assign_pointer(root
->node
, cow
);
1180 btrfs_free_tree_block(trans
, root
, buf
, parent_start
,
1182 free_extent_buffer(buf
);
1183 add_root_to_dirty_list(root
);
1185 if (root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
)
1186 parent_start
= parent
->start
;
1190 WARN_ON(trans
->transid
!= btrfs_header_generation(parent
));
1191 tree_mod_log_insert_key(root
->fs_info
, parent
, parent_slot
,
1192 MOD_LOG_KEY_REPLACE
, GFP_NOFS
);
1193 btrfs_set_node_blockptr(parent
, parent_slot
,
1195 btrfs_set_node_ptr_generation(parent
, parent_slot
,
1197 btrfs_mark_buffer_dirty(parent
);
1199 ret
= tree_mod_log_free_eb(root
->fs_info
, buf
);
1201 btrfs_abort_transaction(trans
, root
, ret
);
1205 btrfs_free_tree_block(trans
, root
, buf
, parent_start
,
1209 btrfs_tree_unlock(buf
);
1210 free_extent_buffer_stale(buf
);
1211 btrfs_mark_buffer_dirty(cow
);
1217 * returns the logical address of the oldest predecessor of the given root.
1218 * entries older than time_seq are ignored.
1220 static struct tree_mod_elem
*
1221 __tree_mod_log_oldest_root(struct btrfs_fs_info
*fs_info
,
1222 struct extent_buffer
*eb_root
, u64 time_seq
)
1224 struct tree_mod_elem
*tm
;
1225 struct tree_mod_elem
*found
= NULL
;
1226 u64 root_logical
= eb_root
->start
;
1233 * the very last operation that's logged for a root is the
1234 * replacement operation (if it is replaced at all). this has
1235 * the logical address of the *new* root, making it the very
1236 * first operation that's logged for this root.
1239 tm
= tree_mod_log_search_oldest(fs_info
, root_logical
,
1244 * if there are no tree operation for the oldest root, we simply
1245 * return it. this should only happen if that (old) root is at
1252 * if there's an operation that's not a root replacement, we
1253 * found the oldest version of our root. normally, we'll find a
1254 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1256 if (tm
->op
!= MOD_LOG_ROOT_REPLACE
)
1260 root_logical
= tm
->old_root
.logical
;
1264 /* if there's no old root to return, return what we found instead */
1272 * tm is a pointer to the first operation to rewind within eb. then, all
1273 * previous operations will be rewinded (until we reach something older than
1277 __tree_mod_log_rewind(struct btrfs_fs_info
*fs_info
, struct extent_buffer
*eb
,
1278 u64 time_seq
, struct tree_mod_elem
*first_tm
)
1281 struct rb_node
*next
;
1282 struct tree_mod_elem
*tm
= first_tm
;
1283 unsigned long o_dst
;
1284 unsigned long o_src
;
1285 unsigned long p_size
= sizeof(struct btrfs_key_ptr
);
1287 n
= btrfs_header_nritems(eb
);
1288 tree_mod_log_read_lock(fs_info
);
1289 while (tm
&& tm
->seq
>= time_seq
) {
1291 * all the operations are recorded with the operator used for
1292 * the modification. as we're going backwards, we do the
1293 * opposite of each operation here.
1296 case MOD_LOG_KEY_REMOVE_WHILE_FREEING
:
1297 BUG_ON(tm
->slot
< n
);
1299 case MOD_LOG_KEY_REMOVE_WHILE_MOVING
:
1300 case MOD_LOG_KEY_REMOVE
:
1301 btrfs_set_node_key(eb
, &tm
->key
, tm
->slot
);
1302 btrfs_set_node_blockptr(eb
, tm
->slot
, tm
->blockptr
);
1303 btrfs_set_node_ptr_generation(eb
, tm
->slot
,
1307 case MOD_LOG_KEY_REPLACE
:
1308 BUG_ON(tm
->slot
>= n
);
1309 btrfs_set_node_key(eb
, &tm
->key
, tm
->slot
);
1310 btrfs_set_node_blockptr(eb
, tm
->slot
, tm
->blockptr
);
1311 btrfs_set_node_ptr_generation(eb
, tm
->slot
,
1314 case MOD_LOG_KEY_ADD
:
1315 /* if a move operation is needed it's in the log */
1318 case MOD_LOG_MOVE_KEYS
:
1319 o_dst
= btrfs_node_key_ptr_offset(tm
->slot
);
1320 o_src
= btrfs_node_key_ptr_offset(tm
->move
.dst_slot
);
1321 memmove_extent_buffer(eb
, o_dst
, o_src
,
1322 tm
->move
.nr_items
* p_size
);
1324 case MOD_LOG_ROOT_REPLACE
:
1326 * this operation is special. for roots, this must be
1327 * handled explicitly before rewinding.
1328 * for non-roots, this operation may exist if the node
1329 * was a root: root A -> child B; then A gets empty and
1330 * B is promoted to the new root. in the mod log, we'll
1331 * have a root-replace operation for B, a tree block
1332 * that is no root. we simply ignore that operation.
1336 next
= rb_next(&tm
->node
);
1339 tm
= container_of(next
, struct tree_mod_elem
, node
);
1340 if (tm
->logical
!= first_tm
->logical
)
1343 tree_mod_log_read_unlock(fs_info
);
1344 btrfs_set_header_nritems(eb
, n
);
1348 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1349 * is returned. If rewind operations happen, a fresh buffer is returned. The
1350 * returned buffer is always read-locked. If the returned buffer is not the
1351 * input buffer, the lock on the input buffer is released and the input buffer
1352 * is freed (its refcount is decremented).
1354 static struct extent_buffer
*
1355 tree_mod_log_rewind(struct btrfs_fs_info
*fs_info
, struct btrfs_path
*path
,
1356 struct extent_buffer
*eb
, u64 time_seq
)
1358 struct extent_buffer
*eb_rewin
;
1359 struct tree_mod_elem
*tm
;
1364 if (btrfs_header_level(eb
) == 0)
1367 tm
= tree_mod_log_search(fs_info
, eb
->start
, time_seq
);
1371 btrfs_set_path_blocking(path
);
1372 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1374 if (tm
->op
== MOD_LOG_KEY_REMOVE_WHILE_FREEING
) {
1375 BUG_ON(tm
->slot
!= 0);
1376 eb_rewin
= alloc_dummy_extent_buffer(fs_info
, eb
->start
);
1378 btrfs_tree_read_unlock_blocking(eb
);
1379 free_extent_buffer(eb
);
1382 btrfs_set_header_bytenr(eb_rewin
, eb
->start
);
1383 btrfs_set_header_backref_rev(eb_rewin
,
1384 btrfs_header_backref_rev(eb
));
1385 btrfs_set_header_owner(eb_rewin
, btrfs_header_owner(eb
));
1386 btrfs_set_header_level(eb_rewin
, btrfs_header_level(eb
));
1388 eb_rewin
= btrfs_clone_extent_buffer(eb
);
1390 btrfs_tree_read_unlock_blocking(eb
);
1391 free_extent_buffer(eb
);
1396 btrfs_clear_path_blocking(path
, NULL
, BTRFS_READ_LOCK
);
1397 btrfs_tree_read_unlock_blocking(eb
);
1398 free_extent_buffer(eb
);
1400 extent_buffer_get(eb_rewin
);
1401 btrfs_tree_read_lock(eb_rewin
);
1402 __tree_mod_log_rewind(fs_info
, eb_rewin
, time_seq
, tm
);
1403 WARN_ON(btrfs_header_nritems(eb_rewin
) >
1404 BTRFS_NODEPTRS_PER_BLOCK(fs_info
->tree_root
));
1410 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1411 * value. If there are no changes, the current root->root_node is returned. If
1412 * anything changed in between, there's a fresh buffer allocated on which the
1413 * rewind operations are done. In any case, the returned buffer is read locked.
1414 * Returns NULL on error (with no locks held).
1416 static inline struct extent_buffer
*
1417 get_old_root(struct btrfs_root
*root
, u64 time_seq
)
1419 struct tree_mod_elem
*tm
;
1420 struct extent_buffer
*eb
= NULL
;
1421 struct extent_buffer
*eb_root
;
1422 struct extent_buffer
*old
;
1423 struct tree_mod_root
*old_root
= NULL
;
1424 u64 old_generation
= 0;
1427 eb_root
= btrfs_read_lock_root_node(root
);
1428 tm
= __tree_mod_log_oldest_root(root
->fs_info
, eb_root
, time_seq
);
1432 if (tm
->op
== MOD_LOG_ROOT_REPLACE
) {
1433 old_root
= &tm
->old_root
;
1434 old_generation
= tm
->generation
;
1435 logical
= old_root
->logical
;
1437 logical
= eb_root
->start
;
1440 tm
= tree_mod_log_search(root
->fs_info
, logical
, time_seq
);
1441 if (old_root
&& tm
&& tm
->op
!= MOD_LOG_KEY_REMOVE_WHILE_FREEING
) {
1442 btrfs_tree_read_unlock(eb_root
);
1443 free_extent_buffer(eb_root
);
1444 old
= read_tree_block(root
, logical
, 0);
1445 if (WARN_ON(IS_ERR(old
) || !extent_buffer_uptodate(old
))) {
1447 free_extent_buffer(old
);
1448 btrfs_warn(root
->fs_info
,
1449 "failed to read tree block %llu from get_old_root", logical
);
1451 eb
= btrfs_clone_extent_buffer(old
);
1452 free_extent_buffer(old
);
1454 } else if (old_root
) {
1455 btrfs_tree_read_unlock(eb_root
);
1456 free_extent_buffer(eb_root
);
1457 eb
= alloc_dummy_extent_buffer(root
->fs_info
, logical
);
1459 btrfs_set_lock_blocking_rw(eb_root
, BTRFS_READ_LOCK
);
1460 eb
= btrfs_clone_extent_buffer(eb_root
);
1461 btrfs_tree_read_unlock_blocking(eb_root
);
1462 free_extent_buffer(eb_root
);
1467 extent_buffer_get(eb
);
1468 btrfs_tree_read_lock(eb
);
1470 btrfs_set_header_bytenr(eb
, eb
->start
);
1471 btrfs_set_header_backref_rev(eb
, BTRFS_MIXED_BACKREF_REV
);
1472 btrfs_set_header_owner(eb
, btrfs_header_owner(eb_root
));
1473 btrfs_set_header_level(eb
, old_root
->level
);
1474 btrfs_set_header_generation(eb
, old_generation
);
1477 __tree_mod_log_rewind(root
->fs_info
, eb
, time_seq
, tm
);
1479 WARN_ON(btrfs_header_level(eb
) != 0);
1480 WARN_ON(btrfs_header_nritems(eb
) > BTRFS_NODEPTRS_PER_BLOCK(root
));
1485 int btrfs_old_root_level(struct btrfs_root
*root
, u64 time_seq
)
1487 struct tree_mod_elem
*tm
;
1489 struct extent_buffer
*eb_root
= btrfs_root_node(root
);
1491 tm
= __tree_mod_log_oldest_root(root
->fs_info
, eb_root
, time_seq
);
1492 if (tm
&& tm
->op
== MOD_LOG_ROOT_REPLACE
) {
1493 level
= tm
->old_root
.level
;
1495 level
= btrfs_header_level(eb_root
);
1497 free_extent_buffer(eb_root
);
1502 static inline int should_cow_block(struct btrfs_trans_handle
*trans
,
1503 struct btrfs_root
*root
,
1504 struct extent_buffer
*buf
)
1506 if (btrfs_test_is_dummy_root(root
))
1509 /* ensure we can see the force_cow */
1513 * We do not need to cow a block if
1514 * 1) this block is not created or changed in this transaction;
1515 * 2) this block does not belong to TREE_RELOC tree;
1516 * 3) the root is not forced COW.
1518 * What is forced COW:
1519 * when we create snapshot during commiting the transaction,
1520 * after we've finished coping src root, we must COW the shared
1521 * block to ensure the metadata consistency.
1523 if (btrfs_header_generation(buf
) == trans
->transid
&&
1524 !btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
) &&
1525 !(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
&&
1526 btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_RELOC
)) &&
1527 !test_bit(BTRFS_ROOT_FORCE_COW
, &root
->state
))
1533 * cows a single block, see __btrfs_cow_block for the real work.
1534 * This version of it has extra checks so that a block isn't cow'd more than
1535 * once per transaction, as long as it hasn't been written yet
1537 noinline
int btrfs_cow_block(struct btrfs_trans_handle
*trans
,
1538 struct btrfs_root
*root
, struct extent_buffer
*buf
,
1539 struct extent_buffer
*parent
, int parent_slot
,
1540 struct extent_buffer
**cow_ret
)
1545 if (trans
->transaction
!= root
->fs_info
->running_transaction
)
1546 WARN(1, KERN_CRIT
"trans %llu running %llu\n",
1548 root
->fs_info
->running_transaction
->transid
);
1550 if (trans
->transid
!= root
->fs_info
->generation
)
1551 WARN(1, KERN_CRIT
"trans %llu running %llu\n",
1552 trans
->transid
, root
->fs_info
->generation
);
1554 if (!should_cow_block(trans
, root
, buf
)) {
1559 search_start
= buf
->start
& ~((u64
)SZ_1G
- 1);
1562 btrfs_set_lock_blocking(parent
);
1563 btrfs_set_lock_blocking(buf
);
1565 ret
= __btrfs_cow_block(trans
, root
, buf
, parent
,
1566 parent_slot
, cow_ret
, search_start
, 0);
1568 trace_btrfs_cow_block(root
, buf
, *cow_ret
);
1574 * helper function for defrag to decide if two blocks pointed to by a
1575 * node are actually close by
1577 static int close_blocks(u64 blocknr
, u64 other
, u32 blocksize
)
1579 if (blocknr
< other
&& other
- (blocknr
+ blocksize
) < 32768)
1581 if (blocknr
> other
&& blocknr
- (other
+ blocksize
) < 32768)
1587 * compare two keys in a memcmp fashion
1589 static int comp_keys(struct btrfs_disk_key
*disk
, struct btrfs_key
*k2
)
1591 struct btrfs_key k1
;
1593 btrfs_disk_key_to_cpu(&k1
, disk
);
1595 return btrfs_comp_cpu_keys(&k1
, k2
);
1599 * same as comp_keys only with two btrfs_key's
1601 int btrfs_comp_cpu_keys(struct btrfs_key
*k1
, struct btrfs_key
*k2
)
1603 if (k1
->objectid
> k2
->objectid
)
1605 if (k1
->objectid
< k2
->objectid
)
1607 if (k1
->type
> k2
->type
)
1609 if (k1
->type
< k2
->type
)
1611 if (k1
->offset
> k2
->offset
)
1613 if (k1
->offset
< k2
->offset
)
1619 * this is used by the defrag code to go through all the
1620 * leaves pointed to by a node and reallocate them so that
1621 * disk order is close to key order
1623 int btrfs_realloc_node(struct btrfs_trans_handle
*trans
,
1624 struct btrfs_root
*root
, struct extent_buffer
*parent
,
1625 int start_slot
, u64
*last_ret
,
1626 struct btrfs_key
*progress
)
1628 struct extent_buffer
*cur
;
1631 u64 search_start
= *last_ret
;
1641 int progress_passed
= 0;
1642 struct btrfs_disk_key disk_key
;
1644 parent_level
= btrfs_header_level(parent
);
1646 WARN_ON(trans
->transaction
!= root
->fs_info
->running_transaction
);
1647 WARN_ON(trans
->transid
!= root
->fs_info
->generation
);
1649 parent_nritems
= btrfs_header_nritems(parent
);
1650 blocksize
= root
->nodesize
;
1651 end_slot
= parent_nritems
- 1;
1653 if (parent_nritems
<= 1)
1656 btrfs_set_lock_blocking(parent
);
1658 for (i
= start_slot
; i
<= end_slot
; i
++) {
1661 btrfs_node_key(parent
, &disk_key
, i
);
1662 if (!progress_passed
&& comp_keys(&disk_key
, progress
) < 0)
1665 progress_passed
= 1;
1666 blocknr
= btrfs_node_blockptr(parent
, i
);
1667 gen
= btrfs_node_ptr_generation(parent
, i
);
1668 if (last_block
== 0)
1669 last_block
= blocknr
;
1672 other
= btrfs_node_blockptr(parent
, i
- 1);
1673 close
= close_blocks(blocknr
, other
, blocksize
);
1675 if (!close
&& i
< end_slot
) {
1676 other
= btrfs_node_blockptr(parent
, i
+ 1);
1677 close
= close_blocks(blocknr
, other
, blocksize
);
1680 last_block
= blocknr
;
1684 cur
= btrfs_find_tree_block(root
->fs_info
, blocknr
);
1686 uptodate
= btrfs_buffer_uptodate(cur
, gen
, 0);
1689 if (!cur
|| !uptodate
) {
1691 cur
= read_tree_block(root
, blocknr
, gen
);
1693 return PTR_ERR(cur
);
1694 } else if (!extent_buffer_uptodate(cur
)) {
1695 free_extent_buffer(cur
);
1698 } else if (!uptodate
) {
1699 err
= btrfs_read_buffer(cur
, gen
);
1701 free_extent_buffer(cur
);
1706 if (search_start
== 0)
1707 search_start
= last_block
;
1709 btrfs_tree_lock(cur
);
1710 btrfs_set_lock_blocking(cur
);
1711 err
= __btrfs_cow_block(trans
, root
, cur
, parent
, i
,
1714 (end_slot
- i
) * blocksize
));
1716 btrfs_tree_unlock(cur
);
1717 free_extent_buffer(cur
);
1720 search_start
= cur
->start
;
1721 last_block
= cur
->start
;
1722 *last_ret
= search_start
;
1723 btrfs_tree_unlock(cur
);
1724 free_extent_buffer(cur
);
1730 * The leaf data grows from end-to-front in the node.
1731 * this returns the address of the start of the last item,
1732 * which is the stop of the leaf data stack
1734 static inline unsigned int leaf_data_end(struct btrfs_root
*root
,
1735 struct extent_buffer
*leaf
)
1737 u32 nr
= btrfs_header_nritems(leaf
);
1739 return BTRFS_LEAF_DATA_SIZE(root
);
1740 return btrfs_item_offset_nr(leaf
, nr
- 1);
1745 * search for key in the extent_buffer. The items start at offset p,
1746 * and they are item_size apart. There are 'max' items in p.
1748 * the slot in the array is returned via slot, and it points to
1749 * the place where you would insert key if it is not found in
1752 * slot may point to max if the key is bigger than all of the keys
1754 static noinline
int generic_bin_search(struct extent_buffer
*eb
,
1756 int item_size
, struct btrfs_key
*key
,
1763 struct btrfs_disk_key
*tmp
= NULL
;
1764 struct btrfs_disk_key unaligned
;
1765 unsigned long offset
;
1767 unsigned long map_start
= 0;
1768 unsigned long map_len
= 0;
1771 while (low
< high
) {
1772 mid
= (low
+ high
) / 2;
1773 offset
= p
+ mid
* item_size
;
1775 if (!kaddr
|| offset
< map_start
||
1776 (offset
+ sizeof(struct btrfs_disk_key
)) >
1777 map_start
+ map_len
) {
1779 err
= map_private_extent_buffer(eb
, offset
,
1780 sizeof(struct btrfs_disk_key
),
1781 &kaddr
, &map_start
, &map_len
);
1784 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
1787 read_extent_buffer(eb
, &unaligned
,
1788 offset
, sizeof(unaligned
));
1793 tmp
= (struct btrfs_disk_key
*)(kaddr
+ offset
-
1796 ret
= comp_keys(tmp
, key
);
1812 * simple bin_search frontend that does the right thing for
1815 static int bin_search(struct extent_buffer
*eb
, struct btrfs_key
*key
,
1816 int level
, int *slot
)
1819 return generic_bin_search(eb
,
1820 offsetof(struct btrfs_leaf
, items
),
1821 sizeof(struct btrfs_item
),
1822 key
, btrfs_header_nritems(eb
),
1825 return generic_bin_search(eb
,
1826 offsetof(struct btrfs_node
, ptrs
),
1827 sizeof(struct btrfs_key_ptr
),
1828 key
, btrfs_header_nritems(eb
),
1832 int btrfs_bin_search(struct extent_buffer
*eb
, struct btrfs_key
*key
,
1833 int level
, int *slot
)
1835 return bin_search(eb
, key
, level
, slot
);
1838 static void root_add_used(struct btrfs_root
*root
, u32 size
)
1840 spin_lock(&root
->accounting_lock
);
1841 btrfs_set_root_used(&root
->root_item
,
1842 btrfs_root_used(&root
->root_item
) + size
);
1843 spin_unlock(&root
->accounting_lock
);
1846 static void root_sub_used(struct btrfs_root
*root
, u32 size
)
1848 spin_lock(&root
->accounting_lock
);
1849 btrfs_set_root_used(&root
->root_item
,
1850 btrfs_root_used(&root
->root_item
) - size
);
1851 spin_unlock(&root
->accounting_lock
);
1854 /* given a node and slot number, this reads the blocks it points to. The
1855 * extent buffer is returned with a reference taken (but unlocked).
1856 * NULL is returned on error.
1858 static noinline
struct extent_buffer
*read_node_slot(struct btrfs_root
*root
,
1859 struct extent_buffer
*parent
, int slot
)
1861 int level
= btrfs_header_level(parent
);
1862 struct extent_buffer
*eb
;
1866 if (slot
>= btrfs_header_nritems(parent
))
1871 eb
= read_tree_block(root
, btrfs_node_blockptr(parent
, slot
),
1872 btrfs_node_ptr_generation(parent
, slot
));
1873 if (IS_ERR(eb
) || !extent_buffer_uptodate(eb
)) {
1875 free_extent_buffer(eb
);
1883 * node level balancing, used to make sure nodes are in proper order for
1884 * item deletion. We balance from the top down, so we have to make sure
1885 * that a deletion won't leave an node completely empty later on.
1887 static noinline
int balance_level(struct btrfs_trans_handle
*trans
,
1888 struct btrfs_root
*root
,
1889 struct btrfs_path
*path
, int level
)
1891 struct extent_buffer
*right
= NULL
;
1892 struct extent_buffer
*mid
;
1893 struct extent_buffer
*left
= NULL
;
1894 struct extent_buffer
*parent
= NULL
;
1898 int orig_slot
= path
->slots
[level
];
1904 mid
= path
->nodes
[level
];
1906 WARN_ON(path
->locks
[level
] != BTRFS_WRITE_LOCK
&&
1907 path
->locks
[level
] != BTRFS_WRITE_LOCK_BLOCKING
);
1908 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
1910 orig_ptr
= btrfs_node_blockptr(mid
, orig_slot
);
1912 if (level
< BTRFS_MAX_LEVEL
- 1) {
1913 parent
= path
->nodes
[level
+ 1];
1914 pslot
= path
->slots
[level
+ 1];
1918 * deal with the case where there is only one pointer in the root
1919 * by promoting the node below to a root
1922 struct extent_buffer
*child
;
1924 if (btrfs_header_nritems(mid
) != 1)
1927 /* promote the child to a root */
1928 child
= read_node_slot(root
, mid
, 0);
1931 btrfs_std_error(root
->fs_info
, ret
, NULL
);
1935 btrfs_tree_lock(child
);
1936 btrfs_set_lock_blocking(child
);
1937 ret
= btrfs_cow_block(trans
, root
, child
, mid
, 0, &child
);
1939 btrfs_tree_unlock(child
);
1940 free_extent_buffer(child
);
1944 tree_mod_log_set_root_pointer(root
, child
, 1);
1945 rcu_assign_pointer(root
->node
, child
);
1947 add_root_to_dirty_list(root
);
1948 btrfs_tree_unlock(child
);
1950 path
->locks
[level
] = 0;
1951 path
->nodes
[level
] = NULL
;
1952 clean_tree_block(trans
, root
->fs_info
, mid
);
1953 btrfs_tree_unlock(mid
);
1954 /* once for the path */
1955 free_extent_buffer(mid
);
1957 root_sub_used(root
, mid
->len
);
1958 btrfs_free_tree_block(trans
, root
, mid
, 0, 1);
1959 /* once for the root ptr */
1960 free_extent_buffer_stale(mid
);
1963 if (btrfs_header_nritems(mid
) >
1964 BTRFS_NODEPTRS_PER_BLOCK(root
) / 4)
1967 left
= read_node_slot(root
, parent
, pslot
- 1);
1969 btrfs_tree_lock(left
);
1970 btrfs_set_lock_blocking(left
);
1971 wret
= btrfs_cow_block(trans
, root
, left
,
1972 parent
, pslot
- 1, &left
);
1978 right
= read_node_slot(root
, parent
, pslot
+ 1);
1980 btrfs_tree_lock(right
);
1981 btrfs_set_lock_blocking(right
);
1982 wret
= btrfs_cow_block(trans
, root
, right
,
1983 parent
, pslot
+ 1, &right
);
1990 /* first, try to make some room in the middle buffer */
1992 orig_slot
+= btrfs_header_nritems(left
);
1993 wret
= push_node_left(trans
, root
, left
, mid
, 1);
1999 * then try to empty the right most buffer into the middle
2002 wret
= push_node_left(trans
, root
, mid
, right
, 1);
2003 if (wret
< 0 && wret
!= -ENOSPC
)
2005 if (btrfs_header_nritems(right
) == 0) {
2006 clean_tree_block(trans
, root
->fs_info
, right
);
2007 btrfs_tree_unlock(right
);
2008 del_ptr(root
, path
, level
+ 1, pslot
+ 1);
2009 root_sub_used(root
, right
->len
);
2010 btrfs_free_tree_block(trans
, root
, right
, 0, 1);
2011 free_extent_buffer_stale(right
);
2014 struct btrfs_disk_key right_key
;
2015 btrfs_node_key(right
, &right_key
, 0);
2016 tree_mod_log_set_node_key(root
->fs_info
, parent
,
2018 btrfs_set_node_key(parent
, &right_key
, pslot
+ 1);
2019 btrfs_mark_buffer_dirty(parent
);
2022 if (btrfs_header_nritems(mid
) == 1) {
2024 * we're not allowed to leave a node with one item in the
2025 * tree during a delete. A deletion from lower in the tree
2026 * could try to delete the only pointer in this node.
2027 * So, pull some keys from the left.
2028 * There has to be a left pointer at this point because
2029 * otherwise we would have pulled some pointers from the
2034 btrfs_std_error(root
->fs_info
, ret
, NULL
);
2037 wret
= balance_node_right(trans
, root
, mid
, left
);
2043 wret
= push_node_left(trans
, root
, left
, mid
, 1);
2049 if (btrfs_header_nritems(mid
) == 0) {
2050 clean_tree_block(trans
, root
->fs_info
, mid
);
2051 btrfs_tree_unlock(mid
);
2052 del_ptr(root
, path
, level
+ 1, pslot
);
2053 root_sub_used(root
, mid
->len
);
2054 btrfs_free_tree_block(trans
, root
, mid
, 0, 1);
2055 free_extent_buffer_stale(mid
);
2058 /* update the parent key to reflect our changes */
2059 struct btrfs_disk_key mid_key
;
2060 btrfs_node_key(mid
, &mid_key
, 0);
2061 tree_mod_log_set_node_key(root
->fs_info
, parent
,
2063 btrfs_set_node_key(parent
, &mid_key
, pslot
);
2064 btrfs_mark_buffer_dirty(parent
);
2067 /* update the path */
2069 if (btrfs_header_nritems(left
) > orig_slot
) {
2070 extent_buffer_get(left
);
2071 /* left was locked after cow */
2072 path
->nodes
[level
] = left
;
2073 path
->slots
[level
+ 1] -= 1;
2074 path
->slots
[level
] = orig_slot
;
2076 btrfs_tree_unlock(mid
);
2077 free_extent_buffer(mid
);
2080 orig_slot
-= btrfs_header_nritems(left
);
2081 path
->slots
[level
] = orig_slot
;
2084 /* double check we haven't messed things up */
2086 btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]))
2090 btrfs_tree_unlock(right
);
2091 free_extent_buffer(right
);
2094 if (path
->nodes
[level
] != left
)
2095 btrfs_tree_unlock(left
);
2096 free_extent_buffer(left
);
2101 /* Node balancing for insertion. Here we only split or push nodes around
2102 * when they are completely full. This is also done top down, so we
2103 * have to be pessimistic.
2105 static noinline
int push_nodes_for_insert(struct btrfs_trans_handle
*trans
,
2106 struct btrfs_root
*root
,
2107 struct btrfs_path
*path
, int level
)
2109 struct extent_buffer
*right
= NULL
;
2110 struct extent_buffer
*mid
;
2111 struct extent_buffer
*left
= NULL
;
2112 struct extent_buffer
*parent
= NULL
;
2116 int orig_slot
= path
->slots
[level
];
2121 mid
= path
->nodes
[level
];
2122 WARN_ON(btrfs_header_generation(mid
) != trans
->transid
);
2124 if (level
< BTRFS_MAX_LEVEL
- 1) {
2125 parent
= path
->nodes
[level
+ 1];
2126 pslot
= path
->slots
[level
+ 1];
2132 left
= read_node_slot(root
, parent
, pslot
- 1);
2134 /* first, try to make some room in the middle buffer */
2138 btrfs_tree_lock(left
);
2139 btrfs_set_lock_blocking(left
);
2141 left_nr
= btrfs_header_nritems(left
);
2142 if (left_nr
>= BTRFS_NODEPTRS_PER_BLOCK(root
) - 1) {
2145 ret
= btrfs_cow_block(trans
, root
, left
, parent
,
2150 wret
= push_node_left(trans
, root
,
2157 struct btrfs_disk_key disk_key
;
2158 orig_slot
+= left_nr
;
2159 btrfs_node_key(mid
, &disk_key
, 0);
2160 tree_mod_log_set_node_key(root
->fs_info
, parent
,
2162 btrfs_set_node_key(parent
, &disk_key
, pslot
);
2163 btrfs_mark_buffer_dirty(parent
);
2164 if (btrfs_header_nritems(left
) > orig_slot
) {
2165 path
->nodes
[level
] = left
;
2166 path
->slots
[level
+ 1] -= 1;
2167 path
->slots
[level
] = orig_slot
;
2168 btrfs_tree_unlock(mid
);
2169 free_extent_buffer(mid
);
2172 btrfs_header_nritems(left
);
2173 path
->slots
[level
] = orig_slot
;
2174 btrfs_tree_unlock(left
);
2175 free_extent_buffer(left
);
2179 btrfs_tree_unlock(left
);
2180 free_extent_buffer(left
);
2182 right
= read_node_slot(root
, parent
, pslot
+ 1);
2185 * then try to empty the right most buffer into the middle
2190 btrfs_tree_lock(right
);
2191 btrfs_set_lock_blocking(right
);
2193 right_nr
= btrfs_header_nritems(right
);
2194 if (right_nr
>= BTRFS_NODEPTRS_PER_BLOCK(root
) - 1) {
2197 ret
= btrfs_cow_block(trans
, root
, right
,
2203 wret
= balance_node_right(trans
, root
,
2210 struct btrfs_disk_key disk_key
;
2212 btrfs_node_key(right
, &disk_key
, 0);
2213 tree_mod_log_set_node_key(root
->fs_info
, parent
,
2215 btrfs_set_node_key(parent
, &disk_key
, pslot
+ 1);
2216 btrfs_mark_buffer_dirty(parent
);
2218 if (btrfs_header_nritems(mid
) <= orig_slot
) {
2219 path
->nodes
[level
] = right
;
2220 path
->slots
[level
+ 1] += 1;
2221 path
->slots
[level
] = orig_slot
-
2222 btrfs_header_nritems(mid
);
2223 btrfs_tree_unlock(mid
);
2224 free_extent_buffer(mid
);
2226 btrfs_tree_unlock(right
);
2227 free_extent_buffer(right
);
2231 btrfs_tree_unlock(right
);
2232 free_extent_buffer(right
);
2238 * readahead one full node of leaves, finding things that are close
2239 * to the block in 'slot', and triggering ra on them.
2241 static void reada_for_search(struct btrfs_root
*root
,
2242 struct btrfs_path
*path
,
2243 int level
, int slot
, u64 objectid
)
2245 struct extent_buffer
*node
;
2246 struct btrfs_disk_key disk_key
;
2252 struct extent_buffer
*eb
;
2260 if (!path
->nodes
[level
])
2263 node
= path
->nodes
[level
];
2265 search
= btrfs_node_blockptr(node
, slot
);
2266 blocksize
= root
->nodesize
;
2267 eb
= btrfs_find_tree_block(root
->fs_info
, search
);
2269 free_extent_buffer(eb
);
2275 nritems
= btrfs_header_nritems(node
);
2279 if (path
->reada
== READA_BACK
) {
2283 } else if (path
->reada
== READA_FORWARD
) {
2288 if (path
->reada
== READA_BACK
&& objectid
) {
2289 btrfs_node_key(node
, &disk_key
, nr
);
2290 if (btrfs_disk_key_objectid(&disk_key
) != objectid
)
2293 search
= btrfs_node_blockptr(node
, nr
);
2294 if ((search
<= target
&& target
- search
<= 65536) ||
2295 (search
> target
&& search
- target
<= 65536)) {
2296 gen
= btrfs_node_ptr_generation(node
, nr
);
2297 readahead_tree_block(root
, search
);
2301 if ((nread
> 65536 || nscan
> 32))
2306 static noinline
void reada_for_balance(struct btrfs_root
*root
,
2307 struct btrfs_path
*path
, int level
)
2311 struct extent_buffer
*parent
;
2312 struct extent_buffer
*eb
;
2317 parent
= path
->nodes
[level
+ 1];
2321 nritems
= btrfs_header_nritems(parent
);
2322 slot
= path
->slots
[level
+ 1];
2325 block1
= btrfs_node_blockptr(parent
, slot
- 1);
2326 gen
= btrfs_node_ptr_generation(parent
, slot
- 1);
2327 eb
= btrfs_find_tree_block(root
->fs_info
, block1
);
2329 * if we get -eagain from btrfs_buffer_uptodate, we
2330 * don't want to return eagain here. That will loop
2333 if (eb
&& btrfs_buffer_uptodate(eb
, gen
, 1) != 0)
2335 free_extent_buffer(eb
);
2337 if (slot
+ 1 < nritems
) {
2338 block2
= btrfs_node_blockptr(parent
, slot
+ 1);
2339 gen
= btrfs_node_ptr_generation(parent
, slot
+ 1);
2340 eb
= btrfs_find_tree_block(root
->fs_info
, block2
);
2341 if (eb
&& btrfs_buffer_uptodate(eb
, gen
, 1) != 0)
2343 free_extent_buffer(eb
);
2347 readahead_tree_block(root
, block1
);
2349 readahead_tree_block(root
, block2
);
2354 * when we walk down the tree, it is usually safe to unlock the higher layers
2355 * in the tree. The exceptions are when our path goes through slot 0, because
2356 * operations on the tree might require changing key pointers higher up in the
2359 * callers might also have set path->keep_locks, which tells this code to keep
2360 * the lock if the path points to the last slot in the block. This is part of
2361 * walking through the tree, and selecting the next slot in the higher block.
2363 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2364 * if lowest_unlock is 1, level 0 won't be unlocked
2366 static noinline
void unlock_up(struct btrfs_path
*path
, int level
,
2367 int lowest_unlock
, int min_write_lock_level
,
2368 int *write_lock_level
)
2371 int skip_level
= level
;
2373 struct extent_buffer
*t
;
2375 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
2376 if (!path
->nodes
[i
])
2378 if (!path
->locks
[i
])
2380 if (!no_skips
&& path
->slots
[i
] == 0) {
2384 if (!no_skips
&& path
->keep_locks
) {
2387 nritems
= btrfs_header_nritems(t
);
2388 if (nritems
< 1 || path
->slots
[i
] >= nritems
- 1) {
2393 if (skip_level
< i
&& i
>= lowest_unlock
)
2397 if (i
>= lowest_unlock
&& i
> skip_level
&& path
->locks
[i
]) {
2398 btrfs_tree_unlock_rw(t
, path
->locks
[i
]);
2400 if (write_lock_level
&&
2401 i
> min_write_lock_level
&&
2402 i
<= *write_lock_level
) {
2403 *write_lock_level
= i
- 1;
2410 * This releases any locks held in the path starting at level and
2411 * going all the way up to the root.
2413 * btrfs_search_slot will keep the lock held on higher nodes in a few
2414 * corner cases, such as COW of the block at slot zero in the node. This
2415 * ignores those rules, and it should only be called when there are no
2416 * more updates to be done higher up in the tree.
2418 noinline
void btrfs_unlock_up_safe(struct btrfs_path
*path
, int level
)
2422 if (path
->keep_locks
)
2425 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
2426 if (!path
->nodes
[i
])
2428 if (!path
->locks
[i
])
2430 btrfs_tree_unlock_rw(path
->nodes
[i
], path
->locks
[i
]);
2436 * helper function for btrfs_search_slot. The goal is to find a block
2437 * in cache without setting the path to blocking. If we find the block
2438 * we return zero and the path is unchanged.
2440 * If we can't find the block, we set the path blocking and do some
2441 * reada. -EAGAIN is returned and the search must be repeated.
2444 read_block_for_search(struct btrfs_trans_handle
*trans
,
2445 struct btrfs_root
*root
, struct btrfs_path
*p
,
2446 struct extent_buffer
**eb_ret
, int level
, int slot
,
2447 struct btrfs_key
*key
, u64 time_seq
)
2451 struct extent_buffer
*b
= *eb_ret
;
2452 struct extent_buffer
*tmp
;
2455 blocknr
= btrfs_node_blockptr(b
, slot
);
2456 gen
= btrfs_node_ptr_generation(b
, slot
);
2458 tmp
= btrfs_find_tree_block(root
->fs_info
, blocknr
);
2460 /* first we do an atomic uptodate check */
2461 if (btrfs_buffer_uptodate(tmp
, gen
, 1) > 0) {
2466 /* the pages were up to date, but we failed
2467 * the generation number check. Do a full
2468 * read for the generation number that is correct.
2469 * We must do this without dropping locks so
2470 * we can trust our generation number
2472 btrfs_set_path_blocking(p
);
2474 /* now we're allowed to do a blocking uptodate check */
2475 ret
= btrfs_read_buffer(tmp
, gen
);
2480 free_extent_buffer(tmp
);
2481 btrfs_release_path(p
);
2486 * reduce lock contention at high levels
2487 * of the btree by dropping locks before
2488 * we read. Don't release the lock on the current
2489 * level because we need to walk this node to figure
2490 * out which blocks to read.
2492 btrfs_unlock_up_safe(p
, level
+ 1);
2493 btrfs_set_path_blocking(p
);
2495 free_extent_buffer(tmp
);
2496 if (p
->reada
!= READA_NONE
)
2497 reada_for_search(root
, p
, level
, slot
, key
->objectid
);
2499 btrfs_release_path(p
);
2502 tmp
= read_tree_block(root
, blocknr
, 0);
2505 * If the read above didn't mark this buffer up to date,
2506 * it will never end up being up to date. Set ret to EIO now
2507 * and give up so that our caller doesn't loop forever
2510 if (!btrfs_buffer_uptodate(tmp
, 0, 0))
2512 free_extent_buffer(tmp
);
2518 * helper function for btrfs_search_slot. This does all of the checks
2519 * for node-level blocks and does any balancing required based on
2522 * If no extra work was required, zero is returned. If we had to
2523 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2527 setup_nodes_for_search(struct btrfs_trans_handle
*trans
,
2528 struct btrfs_root
*root
, struct btrfs_path
*p
,
2529 struct extent_buffer
*b
, int level
, int ins_len
,
2530 int *write_lock_level
)
2533 if ((p
->search_for_split
|| ins_len
> 0) && btrfs_header_nritems(b
) >=
2534 BTRFS_NODEPTRS_PER_BLOCK(root
) - 3) {
2537 if (*write_lock_level
< level
+ 1) {
2538 *write_lock_level
= level
+ 1;
2539 btrfs_release_path(p
);
2543 btrfs_set_path_blocking(p
);
2544 reada_for_balance(root
, p
, level
);
2545 sret
= split_node(trans
, root
, p
, level
);
2546 btrfs_clear_path_blocking(p
, NULL
, 0);
2553 b
= p
->nodes
[level
];
2554 } else if (ins_len
< 0 && btrfs_header_nritems(b
) <
2555 BTRFS_NODEPTRS_PER_BLOCK(root
) / 2) {
2558 if (*write_lock_level
< level
+ 1) {
2559 *write_lock_level
= level
+ 1;
2560 btrfs_release_path(p
);
2564 btrfs_set_path_blocking(p
);
2565 reada_for_balance(root
, p
, level
);
2566 sret
= balance_level(trans
, root
, p
, level
);
2567 btrfs_clear_path_blocking(p
, NULL
, 0);
2573 b
= p
->nodes
[level
];
2575 btrfs_release_path(p
);
2578 BUG_ON(btrfs_header_nritems(b
) == 1);
2588 static void key_search_validate(struct extent_buffer
*b
,
2589 struct btrfs_key
*key
,
2592 #ifdef CONFIG_BTRFS_ASSERT
2593 struct btrfs_disk_key disk_key
;
2595 btrfs_cpu_key_to_disk(&disk_key
, key
);
2598 ASSERT(!memcmp_extent_buffer(b
, &disk_key
,
2599 offsetof(struct btrfs_leaf
, items
[0].key
),
2602 ASSERT(!memcmp_extent_buffer(b
, &disk_key
,
2603 offsetof(struct btrfs_node
, ptrs
[0].key
),
2608 static int key_search(struct extent_buffer
*b
, struct btrfs_key
*key
,
2609 int level
, int *prev_cmp
, int *slot
)
2611 if (*prev_cmp
!= 0) {
2612 *prev_cmp
= bin_search(b
, key
, level
, slot
);
2616 key_search_validate(b
, key
, level
);
2622 int btrfs_find_item(struct btrfs_root
*fs_root
, struct btrfs_path
*path
,
2623 u64 iobjectid
, u64 ioff
, u8 key_type
,
2624 struct btrfs_key
*found_key
)
2627 struct btrfs_key key
;
2628 struct extent_buffer
*eb
;
2633 key
.type
= key_type
;
2634 key
.objectid
= iobjectid
;
2637 ret
= btrfs_search_slot(NULL
, fs_root
, &key
, path
, 0, 0);
2641 eb
= path
->nodes
[0];
2642 if (ret
&& path
->slots
[0] >= btrfs_header_nritems(eb
)) {
2643 ret
= btrfs_next_leaf(fs_root
, path
);
2646 eb
= path
->nodes
[0];
2649 btrfs_item_key_to_cpu(eb
, found_key
, path
->slots
[0]);
2650 if (found_key
->type
!= key
.type
||
2651 found_key
->objectid
!= key
.objectid
)
2658 * look for key in the tree. path is filled in with nodes along the way
2659 * if key is found, we return zero and you can find the item in the leaf
2660 * level of the path (level 0)
2662 * If the key isn't found, the path points to the slot where it should
2663 * be inserted, and 1 is returned. If there are other errors during the
2664 * search a negative error number is returned.
2666 * if ins_len > 0, nodes and leaves will be split as we walk down the
2667 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2670 int btrfs_search_slot(struct btrfs_trans_handle
*trans
, struct btrfs_root
2671 *root
, struct btrfs_key
*key
, struct btrfs_path
*p
, int
2674 struct extent_buffer
*b
;
2679 int lowest_unlock
= 1;
2681 /* everything at write_lock_level or lower must be write locked */
2682 int write_lock_level
= 0;
2683 u8 lowest_level
= 0;
2684 int min_write_lock_level
;
2687 lowest_level
= p
->lowest_level
;
2688 WARN_ON(lowest_level
&& ins_len
> 0);
2689 WARN_ON(p
->nodes
[0] != NULL
);
2690 BUG_ON(!cow
&& ins_len
);
2695 /* when we are removing items, we might have to go up to level
2696 * two as we update tree pointers Make sure we keep write
2697 * for those levels as well
2699 write_lock_level
= 2;
2700 } else if (ins_len
> 0) {
2702 * for inserting items, make sure we have a write lock on
2703 * level 1 so we can update keys
2705 write_lock_level
= 1;
2709 write_lock_level
= -1;
2711 if (cow
&& (p
->keep_locks
|| p
->lowest_level
))
2712 write_lock_level
= BTRFS_MAX_LEVEL
;
2714 min_write_lock_level
= write_lock_level
;
2719 * we try very hard to do read locks on the root
2721 root_lock
= BTRFS_READ_LOCK
;
2723 if (p
->search_commit_root
) {
2725 * the commit roots are read only
2726 * so we always do read locks
2728 if (p
->need_commit_sem
)
2729 down_read(&root
->fs_info
->commit_root_sem
);
2730 b
= root
->commit_root
;
2731 extent_buffer_get(b
);
2732 level
= btrfs_header_level(b
);
2733 if (p
->need_commit_sem
)
2734 up_read(&root
->fs_info
->commit_root_sem
);
2735 if (!p
->skip_locking
)
2736 btrfs_tree_read_lock(b
);
2738 if (p
->skip_locking
) {
2739 b
= btrfs_root_node(root
);
2740 level
= btrfs_header_level(b
);
2742 /* we don't know the level of the root node
2743 * until we actually have it read locked
2745 b
= btrfs_read_lock_root_node(root
);
2746 level
= btrfs_header_level(b
);
2747 if (level
<= write_lock_level
) {
2748 /* whoops, must trade for write lock */
2749 btrfs_tree_read_unlock(b
);
2750 free_extent_buffer(b
);
2751 b
= btrfs_lock_root_node(root
);
2752 root_lock
= BTRFS_WRITE_LOCK
;
2754 /* the level might have changed, check again */
2755 level
= btrfs_header_level(b
);
2759 p
->nodes
[level
] = b
;
2760 if (!p
->skip_locking
)
2761 p
->locks
[level
] = root_lock
;
2764 level
= btrfs_header_level(b
);
2767 * setup the path here so we can release it under lock
2768 * contention with the cow code
2772 * if we don't really need to cow this block
2773 * then we don't want to set the path blocking,
2774 * so we test it here
2776 if (!should_cow_block(trans
, root
, b
))
2780 * must have write locks on this node and the
2783 if (level
> write_lock_level
||
2784 (level
+ 1 > write_lock_level
&&
2785 level
+ 1 < BTRFS_MAX_LEVEL
&&
2786 p
->nodes
[level
+ 1])) {
2787 write_lock_level
= level
+ 1;
2788 btrfs_release_path(p
);
2792 btrfs_set_path_blocking(p
);
2793 err
= btrfs_cow_block(trans
, root
, b
,
2794 p
->nodes
[level
+ 1],
2795 p
->slots
[level
+ 1], &b
);
2802 p
->nodes
[level
] = b
;
2803 btrfs_clear_path_blocking(p
, NULL
, 0);
2806 * we have a lock on b and as long as we aren't changing
2807 * the tree, there is no way to for the items in b to change.
2808 * It is safe to drop the lock on our parent before we
2809 * go through the expensive btree search on b.
2811 * If we're inserting or deleting (ins_len != 0), then we might
2812 * be changing slot zero, which may require changing the parent.
2813 * So, we can't drop the lock until after we know which slot
2814 * we're operating on.
2816 if (!ins_len
&& !p
->keep_locks
) {
2819 if (u
< BTRFS_MAX_LEVEL
&& p
->locks
[u
]) {
2820 btrfs_tree_unlock_rw(p
->nodes
[u
], p
->locks
[u
]);
2825 ret
= key_search(b
, key
, level
, &prev_cmp
, &slot
);
2829 if (ret
&& slot
> 0) {
2833 p
->slots
[level
] = slot
;
2834 err
= setup_nodes_for_search(trans
, root
, p
, b
, level
,
2835 ins_len
, &write_lock_level
);
2842 b
= p
->nodes
[level
];
2843 slot
= p
->slots
[level
];
2846 * slot 0 is special, if we change the key
2847 * we have to update the parent pointer
2848 * which means we must have a write lock
2851 if (slot
== 0 && ins_len
&&
2852 write_lock_level
< level
+ 1) {
2853 write_lock_level
= level
+ 1;
2854 btrfs_release_path(p
);
2858 unlock_up(p
, level
, lowest_unlock
,
2859 min_write_lock_level
, &write_lock_level
);
2861 if (level
== lowest_level
) {
2867 err
= read_block_for_search(trans
, root
, p
,
2868 &b
, level
, slot
, key
, 0);
2876 if (!p
->skip_locking
) {
2877 level
= btrfs_header_level(b
);
2878 if (level
<= write_lock_level
) {
2879 err
= btrfs_try_tree_write_lock(b
);
2881 btrfs_set_path_blocking(p
);
2883 btrfs_clear_path_blocking(p
, b
,
2886 p
->locks
[level
] = BTRFS_WRITE_LOCK
;
2888 err
= btrfs_tree_read_lock_atomic(b
);
2890 btrfs_set_path_blocking(p
);
2891 btrfs_tree_read_lock(b
);
2892 btrfs_clear_path_blocking(p
, b
,
2895 p
->locks
[level
] = BTRFS_READ_LOCK
;
2897 p
->nodes
[level
] = b
;
2900 p
->slots
[level
] = slot
;
2902 btrfs_leaf_free_space(root
, b
) < ins_len
) {
2903 if (write_lock_level
< 1) {
2904 write_lock_level
= 1;
2905 btrfs_release_path(p
);
2909 btrfs_set_path_blocking(p
);
2910 err
= split_leaf(trans
, root
, key
,
2911 p
, ins_len
, ret
== 0);
2912 btrfs_clear_path_blocking(p
, NULL
, 0);
2920 if (!p
->search_for_split
)
2921 unlock_up(p
, level
, lowest_unlock
,
2922 min_write_lock_level
, &write_lock_level
);
2929 * we don't really know what they plan on doing with the path
2930 * from here on, so for now just mark it as blocking
2932 if (!p
->leave_spinning
)
2933 btrfs_set_path_blocking(p
);
2934 if (ret
< 0 && !p
->skip_release_on_error
)
2935 btrfs_release_path(p
);
2940 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2941 * current state of the tree together with the operations recorded in the tree
2942 * modification log to search for the key in a previous version of this tree, as
2943 * denoted by the time_seq parameter.
2945 * Naturally, there is no support for insert, delete or cow operations.
2947 * The resulting path and return value will be set up as if we called
2948 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2950 int btrfs_search_old_slot(struct btrfs_root
*root
, struct btrfs_key
*key
,
2951 struct btrfs_path
*p
, u64 time_seq
)
2953 struct extent_buffer
*b
;
2958 int lowest_unlock
= 1;
2959 u8 lowest_level
= 0;
2962 lowest_level
= p
->lowest_level
;
2963 WARN_ON(p
->nodes
[0] != NULL
);
2965 if (p
->search_commit_root
) {
2967 return btrfs_search_slot(NULL
, root
, key
, p
, 0, 0);
2971 b
= get_old_root(root
, time_seq
);
2972 level
= btrfs_header_level(b
);
2973 p
->locks
[level
] = BTRFS_READ_LOCK
;
2976 level
= btrfs_header_level(b
);
2977 p
->nodes
[level
] = b
;
2978 btrfs_clear_path_blocking(p
, NULL
, 0);
2981 * we have a lock on b and as long as we aren't changing
2982 * the tree, there is no way to for the items in b to change.
2983 * It is safe to drop the lock on our parent before we
2984 * go through the expensive btree search on b.
2986 btrfs_unlock_up_safe(p
, level
+ 1);
2989 * Since we can unwind eb's we want to do a real search every
2993 ret
= key_search(b
, key
, level
, &prev_cmp
, &slot
);
2997 if (ret
&& slot
> 0) {
3001 p
->slots
[level
] = slot
;
3002 unlock_up(p
, level
, lowest_unlock
, 0, NULL
);
3004 if (level
== lowest_level
) {
3010 err
= read_block_for_search(NULL
, root
, p
, &b
, level
,
3011 slot
, key
, time_seq
);
3019 level
= btrfs_header_level(b
);
3020 err
= btrfs_tree_read_lock_atomic(b
);
3022 btrfs_set_path_blocking(p
);
3023 btrfs_tree_read_lock(b
);
3024 btrfs_clear_path_blocking(p
, b
,
3027 b
= tree_mod_log_rewind(root
->fs_info
, p
, b
, time_seq
);
3032 p
->locks
[level
] = BTRFS_READ_LOCK
;
3033 p
->nodes
[level
] = b
;
3035 p
->slots
[level
] = slot
;
3036 unlock_up(p
, level
, lowest_unlock
, 0, NULL
);
3042 if (!p
->leave_spinning
)
3043 btrfs_set_path_blocking(p
);
3045 btrfs_release_path(p
);
3051 * helper to use instead of search slot if no exact match is needed but
3052 * instead the next or previous item should be returned.
3053 * When find_higher is true, the next higher item is returned, the next lower
3055 * When return_any and find_higher are both true, and no higher item is found,
3056 * return the next lower instead.
3057 * When return_any is true and find_higher is false, and no lower item is found,
3058 * return the next higher instead.
3059 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3062 int btrfs_search_slot_for_read(struct btrfs_root
*root
,
3063 struct btrfs_key
*key
, struct btrfs_path
*p
,
3064 int find_higher
, int return_any
)
3067 struct extent_buffer
*leaf
;
3070 ret
= btrfs_search_slot(NULL
, root
, key
, p
, 0, 0);
3074 * a return value of 1 means the path is at the position where the
3075 * item should be inserted. Normally this is the next bigger item,
3076 * but in case the previous item is the last in a leaf, path points
3077 * to the first free slot in the previous leaf, i.e. at an invalid
3083 if (p
->slots
[0] >= btrfs_header_nritems(leaf
)) {
3084 ret
= btrfs_next_leaf(root
, p
);
3090 * no higher item found, return the next
3095 btrfs_release_path(p
);
3099 if (p
->slots
[0] == 0) {
3100 ret
= btrfs_prev_leaf(root
, p
);
3105 if (p
->slots
[0] == btrfs_header_nritems(leaf
))
3112 * no lower item found, return the next
3117 btrfs_release_path(p
);
3127 * adjust the pointers going up the tree, starting at level
3128 * making sure the right key of each node is points to 'key'.
3129 * This is used after shifting pointers to the left, so it stops
3130 * fixing up pointers when a given leaf/node is not in slot 0 of the
3134 static void fixup_low_keys(struct btrfs_fs_info
*fs_info
,
3135 struct btrfs_path
*path
,
3136 struct btrfs_disk_key
*key
, int level
)
3139 struct extent_buffer
*t
;
3141 for (i
= level
; i
< BTRFS_MAX_LEVEL
; i
++) {
3142 int tslot
= path
->slots
[i
];
3143 if (!path
->nodes
[i
])
3146 tree_mod_log_set_node_key(fs_info
, t
, tslot
, 1);
3147 btrfs_set_node_key(t
, key
, tslot
);
3148 btrfs_mark_buffer_dirty(path
->nodes
[i
]);
3157 * This function isn't completely safe. It's the caller's responsibility
3158 * that the new key won't break the order
3160 void btrfs_set_item_key_safe(struct btrfs_fs_info
*fs_info
,
3161 struct btrfs_path
*path
,
3162 struct btrfs_key
*new_key
)
3164 struct btrfs_disk_key disk_key
;
3165 struct extent_buffer
*eb
;
3168 eb
= path
->nodes
[0];
3169 slot
= path
->slots
[0];
3171 btrfs_item_key(eb
, &disk_key
, slot
- 1);
3172 BUG_ON(comp_keys(&disk_key
, new_key
) >= 0);
3174 if (slot
< btrfs_header_nritems(eb
) - 1) {
3175 btrfs_item_key(eb
, &disk_key
, slot
+ 1);
3176 BUG_ON(comp_keys(&disk_key
, new_key
) <= 0);
3179 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
3180 btrfs_set_item_key(eb
, &disk_key
, slot
);
3181 btrfs_mark_buffer_dirty(eb
);
3183 fixup_low_keys(fs_info
, path
, &disk_key
, 1);
3187 * try to push data from one node into the next node left in the
3190 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3191 * error, and > 0 if there was no room in the left hand block.
3193 static int push_node_left(struct btrfs_trans_handle
*trans
,
3194 struct btrfs_root
*root
, struct extent_buffer
*dst
,
3195 struct extent_buffer
*src
, int empty
)
3202 src_nritems
= btrfs_header_nritems(src
);
3203 dst_nritems
= btrfs_header_nritems(dst
);
3204 push_items
= BTRFS_NODEPTRS_PER_BLOCK(root
) - dst_nritems
;
3205 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
3206 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
3208 if (!empty
&& src_nritems
<= 8)
3211 if (push_items
<= 0)
3215 push_items
= min(src_nritems
, push_items
);
3216 if (push_items
< src_nritems
) {
3217 /* leave at least 8 pointers in the node if
3218 * we aren't going to empty it
3220 if (src_nritems
- push_items
< 8) {
3221 if (push_items
<= 8)
3227 push_items
= min(src_nritems
- 8, push_items
);
3229 ret
= tree_mod_log_eb_copy(root
->fs_info
, dst
, src
, dst_nritems
, 0,
3232 btrfs_abort_transaction(trans
, root
, ret
);
3235 copy_extent_buffer(dst
, src
,
3236 btrfs_node_key_ptr_offset(dst_nritems
),
3237 btrfs_node_key_ptr_offset(0),
3238 push_items
* sizeof(struct btrfs_key_ptr
));
3240 if (push_items
< src_nritems
) {
3242 * don't call tree_mod_log_eb_move here, key removal was already
3243 * fully logged by tree_mod_log_eb_copy above.
3245 memmove_extent_buffer(src
, btrfs_node_key_ptr_offset(0),
3246 btrfs_node_key_ptr_offset(push_items
),
3247 (src_nritems
- push_items
) *
3248 sizeof(struct btrfs_key_ptr
));
3250 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
3251 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
3252 btrfs_mark_buffer_dirty(src
);
3253 btrfs_mark_buffer_dirty(dst
);
3259 * try to push data from one node into the next node right in the
3262 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3263 * error, and > 0 if there was no room in the right hand block.
3265 * this will only push up to 1/2 the contents of the left node over
3267 static int balance_node_right(struct btrfs_trans_handle
*trans
,
3268 struct btrfs_root
*root
,
3269 struct extent_buffer
*dst
,
3270 struct extent_buffer
*src
)
3278 WARN_ON(btrfs_header_generation(src
) != trans
->transid
);
3279 WARN_ON(btrfs_header_generation(dst
) != trans
->transid
);
3281 src_nritems
= btrfs_header_nritems(src
);
3282 dst_nritems
= btrfs_header_nritems(dst
);
3283 push_items
= BTRFS_NODEPTRS_PER_BLOCK(root
) - dst_nritems
;
3284 if (push_items
<= 0)
3287 if (src_nritems
< 4)
3290 max_push
= src_nritems
/ 2 + 1;
3291 /* don't try to empty the node */
3292 if (max_push
>= src_nritems
)
3295 if (max_push
< push_items
)
3296 push_items
= max_push
;
3298 tree_mod_log_eb_move(root
->fs_info
, dst
, push_items
, 0, dst_nritems
);
3299 memmove_extent_buffer(dst
, btrfs_node_key_ptr_offset(push_items
),
3300 btrfs_node_key_ptr_offset(0),
3302 sizeof(struct btrfs_key_ptr
));
3304 ret
= tree_mod_log_eb_copy(root
->fs_info
, dst
, src
, 0,
3305 src_nritems
- push_items
, push_items
);
3307 btrfs_abort_transaction(trans
, root
, ret
);
3310 copy_extent_buffer(dst
, src
,
3311 btrfs_node_key_ptr_offset(0),
3312 btrfs_node_key_ptr_offset(src_nritems
- push_items
),
3313 push_items
* sizeof(struct btrfs_key_ptr
));
3315 btrfs_set_header_nritems(src
, src_nritems
- push_items
);
3316 btrfs_set_header_nritems(dst
, dst_nritems
+ push_items
);
3318 btrfs_mark_buffer_dirty(src
);
3319 btrfs_mark_buffer_dirty(dst
);
3325 * helper function to insert a new root level in the tree.
3326 * A new node is allocated, and a single item is inserted to
3327 * point to the existing root
3329 * returns zero on success or < 0 on failure.
3331 static noinline
int insert_new_root(struct btrfs_trans_handle
*trans
,
3332 struct btrfs_root
*root
,
3333 struct btrfs_path
*path
, int level
)
3336 struct extent_buffer
*lower
;
3337 struct extent_buffer
*c
;
3338 struct extent_buffer
*old
;
3339 struct btrfs_disk_key lower_key
;
3341 BUG_ON(path
->nodes
[level
]);
3342 BUG_ON(path
->nodes
[level
-1] != root
->node
);
3344 lower
= path
->nodes
[level
-1];
3346 btrfs_item_key(lower
, &lower_key
, 0);
3348 btrfs_node_key(lower
, &lower_key
, 0);
3350 c
= btrfs_alloc_tree_block(trans
, root
, 0, root
->root_key
.objectid
,
3351 &lower_key
, level
, root
->node
->start
, 0);
3355 root_add_used(root
, root
->nodesize
);
3357 memset_extent_buffer(c
, 0, 0, sizeof(struct btrfs_header
));
3358 btrfs_set_header_nritems(c
, 1);
3359 btrfs_set_header_level(c
, level
);
3360 btrfs_set_header_bytenr(c
, c
->start
);
3361 btrfs_set_header_generation(c
, trans
->transid
);
3362 btrfs_set_header_backref_rev(c
, BTRFS_MIXED_BACKREF_REV
);
3363 btrfs_set_header_owner(c
, root
->root_key
.objectid
);
3365 write_extent_buffer(c
, root
->fs_info
->fsid
, btrfs_header_fsid(),
3368 write_extent_buffer(c
, root
->fs_info
->chunk_tree_uuid
,
3369 btrfs_header_chunk_tree_uuid(c
), BTRFS_UUID_SIZE
);
3371 btrfs_set_node_key(c
, &lower_key
, 0);
3372 btrfs_set_node_blockptr(c
, 0, lower
->start
);
3373 lower_gen
= btrfs_header_generation(lower
);
3374 WARN_ON(lower_gen
!= trans
->transid
);
3376 btrfs_set_node_ptr_generation(c
, 0, lower_gen
);
3378 btrfs_mark_buffer_dirty(c
);
3381 tree_mod_log_set_root_pointer(root
, c
, 0);
3382 rcu_assign_pointer(root
->node
, c
);
3384 /* the super has an extra ref to root->node */
3385 free_extent_buffer(old
);
3387 add_root_to_dirty_list(root
);
3388 extent_buffer_get(c
);
3389 path
->nodes
[level
] = c
;
3390 path
->locks
[level
] = BTRFS_WRITE_LOCK_BLOCKING
;
3391 path
->slots
[level
] = 0;
3396 * worker function to insert a single pointer in a node.
3397 * the node should have enough room for the pointer already
3399 * slot and level indicate where you want the key to go, and
3400 * blocknr is the block the key points to.
3402 static void insert_ptr(struct btrfs_trans_handle
*trans
,
3403 struct btrfs_root
*root
, struct btrfs_path
*path
,
3404 struct btrfs_disk_key
*key
, u64 bytenr
,
3405 int slot
, int level
)
3407 struct extent_buffer
*lower
;
3411 BUG_ON(!path
->nodes
[level
]);
3412 btrfs_assert_tree_locked(path
->nodes
[level
]);
3413 lower
= path
->nodes
[level
];
3414 nritems
= btrfs_header_nritems(lower
);
3415 BUG_ON(slot
> nritems
);
3416 BUG_ON(nritems
== BTRFS_NODEPTRS_PER_BLOCK(root
));
3417 if (slot
!= nritems
) {
3419 tree_mod_log_eb_move(root
->fs_info
, lower
, slot
+ 1,
3420 slot
, nritems
- slot
);
3421 memmove_extent_buffer(lower
,
3422 btrfs_node_key_ptr_offset(slot
+ 1),
3423 btrfs_node_key_ptr_offset(slot
),
3424 (nritems
- slot
) * sizeof(struct btrfs_key_ptr
));
3427 ret
= tree_mod_log_insert_key(root
->fs_info
, lower
, slot
,
3428 MOD_LOG_KEY_ADD
, GFP_NOFS
);
3431 btrfs_set_node_key(lower
, key
, slot
);
3432 btrfs_set_node_blockptr(lower
, slot
, bytenr
);
3433 WARN_ON(trans
->transid
== 0);
3434 btrfs_set_node_ptr_generation(lower
, slot
, trans
->transid
);
3435 btrfs_set_header_nritems(lower
, nritems
+ 1);
3436 btrfs_mark_buffer_dirty(lower
);
3440 * split the node at the specified level in path in two.
3441 * The path is corrected to point to the appropriate node after the split
3443 * Before splitting this tries to make some room in the node by pushing
3444 * left and right, if either one works, it returns right away.
3446 * returns 0 on success and < 0 on failure
3448 static noinline
int split_node(struct btrfs_trans_handle
*trans
,
3449 struct btrfs_root
*root
,
3450 struct btrfs_path
*path
, int level
)
3452 struct extent_buffer
*c
;
3453 struct extent_buffer
*split
;
3454 struct btrfs_disk_key disk_key
;
3459 c
= path
->nodes
[level
];
3460 WARN_ON(btrfs_header_generation(c
) != trans
->transid
);
3461 if (c
== root
->node
) {
3463 * trying to split the root, lets make a new one
3465 * tree mod log: We don't log_removal old root in
3466 * insert_new_root, because that root buffer will be kept as a
3467 * normal node. We are going to log removal of half of the
3468 * elements below with tree_mod_log_eb_copy. We're holding a
3469 * tree lock on the buffer, which is why we cannot race with
3470 * other tree_mod_log users.
3472 ret
= insert_new_root(trans
, root
, path
, level
+ 1);
3476 ret
= push_nodes_for_insert(trans
, root
, path
, level
);
3477 c
= path
->nodes
[level
];
3478 if (!ret
&& btrfs_header_nritems(c
) <
3479 BTRFS_NODEPTRS_PER_BLOCK(root
) - 3)
3485 c_nritems
= btrfs_header_nritems(c
);
3486 mid
= (c_nritems
+ 1) / 2;
3487 btrfs_node_key(c
, &disk_key
, mid
);
3489 split
= btrfs_alloc_tree_block(trans
, root
, 0, root
->root_key
.objectid
,
3490 &disk_key
, level
, c
->start
, 0);
3492 return PTR_ERR(split
);
3494 root_add_used(root
, root
->nodesize
);
3496 memset_extent_buffer(split
, 0, 0, sizeof(struct btrfs_header
));
3497 btrfs_set_header_level(split
, btrfs_header_level(c
));
3498 btrfs_set_header_bytenr(split
, split
->start
);
3499 btrfs_set_header_generation(split
, trans
->transid
);
3500 btrfs_set_header_backref_rev(split
, BTRFS_MIXED_BACKREF_REV
);
3501 btrfs_set_header_owner(split
, root
->root_key
.objectid
);
3502 write_extent_buffer(split
, root
->fs_info
->fsid
,
3503 btrfs_header_fsid(), BTRFS_FSID_SIZE
);
3504 write_extent_buffer(split
, root
->fs_info
->chunk_tree_uuid
,
3505 btrfs_header_chunk_tree_uuid(split
),
3508 ret
= tree_mod_log_eb_copy(root
->fs_info
, split
, c
, 0,
3509 mid
, c_nritems
- mid
);
3511 btrfs_abort_transaction(trans
, root
, ret
);
3514 copy_extent_buffer(split
, c
,
3515 btrfs_node_key_ptr_offset(0),
3516 btrfs_node_key_ptr_offset(mid
),
3517 (c_nritems
- mid
) * sizeof(struct btrfs_key_ptr
));
3518 btrfs_set_header_nritems(split
, c_nritems
- mid
);
3519 btrfs_set_header_nritems(c
, mid
);
3522 btrfs_mark_buffer_dirty(c
);
3523 btrfs_mark_buffer_dirty(split
);
3525 insert_ptr(trans
, root
, path
, &disk_key
, split
->start
,
3526 path
->slots
[level
+ 1] + 1, level
+ 1);
3528 if (path
->slots
[level
] >= mid
) {
3529 path
->slots
[level
] -= mid
;
3530 btrfs_tree_unlock(c
);
3531 free_extent_buffer(c
);
3532 path
->nodes
[level
] = split
;
3533 path
->slots
[level
+ 1] += 1;
3535 btrfs_tree_unlock(split
);
3536 free_extent_buffer(split
);
3542 * how many bytes are required to store the items in a leaf. start
3543 * and nr indicate which items in the leaf to check. This totals up the
3544 * space used both by the item structs and the item data
3546 static int leaf_space_used(struct extent_buffer
*l
, int start
, int nr
)
3548 struct btrfs_item
*start_item
;
3549 struct btrfs_item
*end_item
;
3550 struct btrfs_map_token token
;
3552 int nritems
= btrfs_header_nritems(l
);
3553 int end
= min(nritems
, start
+ nr
) - 1;
3557 btrfs_init_map_token(&token
);
3558 start_item
= btrfs_item_nr(start
);
3559 end_item
= btrfs_item_nr(end
);
3560 data_len
= btrfs_token_item_offset(l
, start_item
, &token
) +
3561 btrfs_token_item_size(l
, start_item
, &token
);
3562 data_len
= data_len
- btrfs_token_item_offset(l
, end_item
, &token
);
3563 data_len
+= sizeof(struct btrfs_item
) * nr
;
3564 WARN_ON(data_len
< 0);
3569 * The space between the end of the leaf items and
3570 * the start of the leaf data. IOW, how much room
3571 * the leaf has left for both items and data
3573 noinline
int btrfs_leaf_free_space(struct btrfs_root
*root
,
3574 struct extent_buffer
*leaf
)
3576 int nritems
= btrfs_header_nritems(leaf
);
3578 ret
= BTRFS_LEAF_DATA_SIZE(root
) - leaf_space_used(leaf
, 0, nritems
);
3580 btrfs_crit(root
->fs_info
,
3581 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3582 ret
, (unsigned long) BTRFS_LEAF_DATA_SIZE(root
),
3583 leaf_space_used(leaf
, 0, nritems
), nritems
);
3589 * min slot controls the lowest index we're willing to push to the
3590 * right. We'll push up to and including min_slot, but no lower
3592 static noinline
int __push_leaf_right(struct btrfs_trans_handle
*trans
,
3593 struct btrfs_root
*root
,
3594 struct btrfs_path
*path
,
3595 int data_size
, int empty
,
3596 struct extent_buffer
*right
,
3597 int free_space
, u32 left_nritems
,
3600 struct extent_buffer
*left
= path
->nodes
[0];
3601 struct extent_buffer
*upper
= path
->nodes
[1];
3602 struct btrfs_map_token token
;
3603 struct btrfs_disk_key disk_key
;
3608 struct btrfs_item
*item
;
3614 btrfs_init_map_token(&token
);
3619 nr
= max_t(u32
, 1, min_slot
);
3621 if (path
->slots
[0] >= left_nritems
)
3622 push_space
+= data_size
;
3624 slot
= path
->slots
[1];
3625 i
= left_nritems
- 1;
3627 item
= btrfs_item_nr(i
);
3629 if (!empty
&& push_items
> 0) {
3630 if (path
->slots
[0] > i
)
3632 if (path
->slots
[0] == i
) {
3633 int space
= btrfs_leaf_free_space(root
, left
);
3634 if (space
+ push_space
* 2 > free_space
)
3639 if (path
->slots
[0] == i
)
3640 push_space
+= data_size
;
3642 this_item_size
= btrfs_item_size(left
, item
);
3643 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
3647 push_space
+= this_item_size
+ sizeof(*item
);
3653 if (push_items
== 0)
3656 WARN_ON(!empty
&& push_items
== left_nritems
);
3658 /* push left to right */
3659 right_nritems
= btrfs_header_nritems(right
);
3661 push_space
= btrfs_item_end_nr(left
, left_nritems
- push_items
);
3662 push_space
-= leaf_data_end(root
, left
);
3664 /* make room in the right data area */
3665 data_end
= leaf_data_end(root
, right
);
3666 memmove_extent_buffer(right
,
3667 btrfs_leaf_data(right
) + data_end
- push_space
,
3668 btrfs_leaf_data(right
) + data_end
,
3669 BTRFS_LEAF_DATA_SIZE(root
) - data_end
);
3671 /* copy from the left data area */
3672 copy_extent_buffer(right
, left
, btrfs_leaf_data(right
) +
3673 BTRFS_LEAF_DATA_SIZE(root
) - push_space
,
3674 btrfs_leaf_data(left
) + leaf_data_end(root
, left
),
3677 memmove_extent_buffer(right
, btrfs_item_nr_offset(push_items
),
3678 btrfs_item_nr_offset(0),
3679 right_nritems
* sizeof(struct btrfs_item
));
3681 /* copy the items from left to right */
3682 copy_extent_buffer(right
, left
, btrfs_item_nr_offset(0),
3683 btrfs_item_nr_offset(left_nritems
- push_items
),
3684 push_items
* sizeof(struct btrfs_item
));
3686 /* update the item pointers */
3687 right_nritems
+= push_items
;
3688 btrfs_set_header_nritems(right
, right_nritems
);
3689 push_space
= BTRFS_LEAF_DATA_SIZE(root
);
3690 for (i
= 0; i
< right_nritems
; i
++) {
3691 item
= btrfs_item_nr(i
);
3692 push_space
-= btrfs_token_item_size(right
, item
, &token
);
3693 btrfs_set_token_item_offset(right
, item
, push_space
, &token
);
3696 left_nritems
-= push_items
;
3697 btrfs_set_header_nritems(left
, left_nritems
);
3700 btrfs_mark_buffer_dirty(left
);
3702 clean_tree_block(trans
, root
->fs_info
, left
);
3704 btrfs_mark_buffer_dirty(right
);
3706 btrfs_item_key(right
, &disk_key
, 0);
3707 btrfs_set_node_key(upper
, &disk_key
, slot
+ 1);
3708 btrfs_mark_buffer_dirty(upper
);
3710 /* then fixup the leaf pointer in the path */
3711 if (path
->slots
[0] >= left_nritems
) {
3712 path
->slots
[0] -= left_nritems
;
3713 if (btrfs_header_nritems(path
->nodes
[0]) == 0)
3714 clean_tree_block(trans
, root
->fs_info
, path
->nodes
[0]);
3715 btrfs_tree_unlock(path
->nodes
[0]);
3716 free_extent_buffer(path
->nodes
[0]);
3717 path
->nodes
[0] = right
;
3718 path
->slots
[1] += 1;
3720 btrfs_tree_unlock(right
);
3721 free_extent_buffer(right
);
3726 btrfs_tree_unlock(right
);
3727 free_extent_buffer(right
);
3732 * push some data in the path leaf to the right, trying to free up at
3733 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3735 * returns 1 if the push failed because the other node didn't have enough
3736 * room, 0 if everything worked out and < 0 if there were major errors.
3738 * this will push starting from min_slot to the end of the leaf. It won't
3739 * push any slot lower than min_slot
3741 static int push_leaf_right(struct btrfs_trans_handle
*trans
, struct btrfs_root
3742 *root
, struct btrfs_path
*path
,
3743 int min_data_size
, int data_size
,
3744 int empty
, u32 min_slot
)
3746 struct extent_buffer
*left
= path
->nodes
[0];
3747 struct extent_buffer
*right
;
3748 struct extent_buffer
*upper
;
3754 if (!path
->nodes
[1])
3757 slot
= path
->slots
[1];
3758 upper
= path
->nodes
[1];
3759 if (slot
>= btrfs_header_nritems(upper
) - 1)
3762 btrfs_assert_tree_locked(path
->nodes
[1]);
3764 right
= read_node_slot(root
, upper
, slot
+ 1);
3768 btrfs_tree_lock(right
);
3769 btrfs_set_lock_blocking(right
);
3771 free_space
= btrfs_leaf_free_space(root
, right
);
3772 if (free_space
< data_size
)
3775 /* cow and double check */
3776 ret
= btrfs_cow_block(trans
, root
, right
, upper
,
3781 free_space
= btrfs_leaf_free_space(root
, right
);
3782 if (free_space
< data_size
)
3785 left_nritems
= btrfs_header_nritems(left
);
3786 if (left_nritems
== 0)
3789 if (path
->slots
[0] == left_nritems
&& !empty
) {
3790 /* Key greater than all keys in the leaf, right neighbor has
3791 * enough room for it and we're not emptying our leaf to delete
3792 * it, therefore use right neighbor to insert the new item and
3793 * no need to touch/dirty our left leaft. */
3794 btrfs_tree_unlock(left
);
3795 free_extent_buffer(left
);
3796 path
->nodes
[0] = right
;
3802 return __push_leaf_right(trans
, root
, path
, min_data_size
, empty
,
3803 right
, free_space
, left_nritems
, min_slot
);
3805 btrfs_tree_unlock(right
);
3806 free_extent_buffer(right
);
3811 * push some data in the path leaf to the left, trying to free up at
3812 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3814 * max_slot can put a limit on how far into the leaf we'll push items. The
3815 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3818 static noinline
int __push_leaf_left(struct btrfs_trans_handle
*trans
,
3819 struct btrfs_root
*root
,
3820 struct btrfs_path
*path
, int data_size
,
3821 int empty
, struct extent_buffer
*left
,
3822 int free_space
, u32 right_nritems
,
3825 struct btrfs_disk_key disk_key
;
3826 struct extent_buffer
*right
= path
->nodes
[0];
3830 struct btrfs_item
*item
;
3831 u32 old_left_nritems
;
3835 u32 old_left_item_size
;
3836 struct btrfs_map_token token
;
3838 btrfs_init_map_token(&token
);
3841 nr
= min(right_nritems
, max_slot
);
3843 nr
= min(right_nritems
- 1, max_slot
);
3845 for (i
= 0; i
< nr
; i
++) {
3846 item
= btrfs_item_nr(i
);
3848 if (!empty
&& push_items
> 0) {
3849 if (path
->slots
[0] < i
)
3851 if (path
->slots
[0] == i
) {
3852 int space
= btrfs_leaf_free_space(root
, right
);
3853 if (space
+ push_space
* 2 > free_space
)
3858 if (path
->slots
[0] == i
)
3859 push_space
+= data_size
;
3861 this_item_size
= btrfs_item_size(right
, item
);
3862 if (this_item_size
+ sizeof(*item
) + push_space
> free_space
)
3866 push_space
+= this_item_size
+ sizeof(*item
);
3869 if (push_items
== 0) {
3873 WARN_ON(!empty
&& push_items
== btrfs_header_nritems(right
));
3875 /* push data from right to left */
3876 copy_extent_buffer(left
, right
,
3877 btrfs_item_nr_offset(btrfs_header_nritems(left
)),
3878 btrfs_item_nr_offset(0),
3879 push_items
* sizeof(struct btrfs_item
));
3881 push_space
= BTRFS_LEAF_DATA_SIZE(root
) -
3882 btrfs_item_offset_nr(right
, push_items
- 1);
3884 copy_extent_buffer(left
, right
, btrfs_leaf_data(left
) +
3885 leaf_data_end(root
, left
) - push_space
,
3886 btrfs_leaf_data(right
) +
3887 btrfs_item_offset_nr(right
, push_items
- 1),
3889 old_left_nritems
= btrfs_header_nritems(left
);
3890 BUG_ON(old_left_nritems
<= 0);
3892 old_left_item_size
= btrfs_item_offset_nr(left
, old_left_nritems
- 1);
3893 for (i
= old_left_nritems
; i
< old_left_nritems
+ push_items
; i
++) {
3896 item
= btrfs_item_nr(i
);
3898 ioff
= btrfs_token_item_offset(left
, item
, &token
);
3899 btrfs_set_token_item_offset(left
, item
,
3900 ioff
- (BTRFS_LEAF_DATA_SIZE(root
) - old_left_item_size
),
3903 btrfs_set_header_nritems(left
, old_left_nritems
+ push_items
);
3905 /* fixup right node */
3906 if (push_items
> right_nritems
)
3907 WARN(1, KERN_CRIT
"push items %d nr %u\n", push_items
,
3910 if (push_items
< right_nritems
) {
3911 push_space
= btrfs_item_offset_nr(right
, push_items
- 1) -
3912 leaf_data_end(root
, right
);
3913 memmove_extent_buffer(right
, btrfs_leaf_data(right
) +
3914 BTRFS_LEAF_DATA_SIZE(root
) - push_space
,
3915 btrfs_leaf_data(right
) +
3916 leaf_data_end(root
, right
), push_space
);
3918 memmove_extent_buffer(right
, btrfs_item_nr_offset(0),
3919 btrfs_item_nr_offset(push_items
),
3920 (btrfs_header_nritems(right
) - push_items
) *
3921 sizeof(struct btrfs_item
));
3923 right_nritems
-= push_items
;
3924 btrfs_set_header_nritems(right
, right_nritems
);
3925 push_space
= BTRFS_LEAF_DATA_SIZE(root
);
3926 for (i
= 0; i
< right_nritems
; i
++) {
3927 item
= btrfs_item_nr(i
);
3929 push_space
= push_space
- btrfs_token_item_size(right
,
3931 btrfs_set_token_item_offset(right
, item
, push_space
, &token
);
3934 btrfs_mark_buffer_dirty(left
);
3936 btrfs_mark_buffer_dirty(right
);
3938 clean_tree_block(trans
, root
->fs_info
, right
);
3940 btrfs_item_key(right
, &disk_key
, 0);
3941 fixup_low_keys(root
->fs_info
, path
, &disk_key
, 1);
3943 /* then fixup the leaf pointer in the path */
3944 if (path
->slots
[0] < push_items
) {
3945 path
->slots
[0] += old_left_nritems
;
3946 btrfs_tree_unlock(path
->nodes
[0]);
3947 free_extent_buffer(path
->nodes
[0]);
3948 path
->nodes
[0] = left
;
3949 path
->slots
[1] -= 1;
3951 btrfs_tree_unlock(left
);
3952 free_extent_buffer(left
);
3953 path
->slots
[0] -= push_items
;
3955 BUG_ON(path
->slots
[0] < 0);
3958 btrfs_tree_unlock(left
);
3959 free_extent_buffer(left
);
3964 * push some data in the path leaf to the left, trying to free up at
3965 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3967 * max_slot can put a limit on how far into the leaf we'll push items. The
3968 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3971 static int push_leaf_left(struct btrfs_trans_handle
*trans
, struct btrfs_root
3972 *root
, struct btrfs_path
*path
, int min_data_size
,
3973 int data_size
, int empty
, u32 max_slot
)
3975 struct extent_buffer
*right
= path
->nodes
[0];
3976 struct extent_buffer
*left
;
3982 slot
= path
->slots
[1];
3985 if (!path
->nodes
[1])
3988 right_nritems
= btrfs_header_nritems(right
);
3989 if (right_nritems
== 0)
3992 btrfs_assert_tree_locked(path
->nodes
[1]);
3994 left
= read_node_slot(root
, path
->nodes
[1], slot
- 1);
3998 btrfs_tree_lock(left
);
3999 btrfs_set_lock_blocking(left
);
4001 free_space
= btrfs_leaf_free_space(root
, left
);
4002 if (free_space
< data_size
) {
4007 /* cow and double check */
4008 ret
= btrfs_cow_block(trans
, root
, left
,
4009 path
->nodes
[1], slot
- 1, &left
);
4011 /* we hit -ENOSPC, but it isn't fatal here */
4017 free_space
= btrfs_leaf_free_space(root
, left
);
4018 if (free_space
< data_size
) {
4023 return __push_leaf_left(trans
, root
, path
, min_data_size
,
4024 empty
, left
, free_space
, right_nritems
,
4027 btrfs_tree_unlock(left
);
4028 free_extent_buffer(left
);
4033 * split the path's leaf in two, making sure there is at least data_size
4034 * available for the resulting leaf level of the path.
4036 static noinline
void copy_for_split(struct btrfs_trans_handle
*trans
,
4037 struct btrfs_root
*root
,
4038 struct btrfs_path
*path
,
4039 struct extent_buffer
*l
,
4040 struct extent_buffer
*right
,
4041 int slot
, int mid
, int nritems
)
4046 struct btrfs_disk_key disk_key
;
4047 struct btrfs_map_token token
;
4049 btrfs_init_map_token(&token
);
4051 nritems
= nritems
- mid
;
4052 btrfs_set_header_nritems(right
, nritems
);
4053 data_copy_size
= btrfs_item_end_nr(l
, mid
) - leaf_data_end(root
, l
);
4055 copy_extent_buffer(right
, l
, btrfs_item_nr_offset(0),
4056 btrfs_item_nr_offset(mid
),
4057 nritems
* sizeof(struct btrfs_item
));
4059 copy_extent_buffer(right
, l
,
4060 btrfs_leaf_data(right
) + BTRFS_LEAF_DATA_SIZE(root
) -
4061 data_copy_size
, btrfs_leaf_data(l
) +
4062 leaf_data_end(root
, l
), data_copy_size
);
4064 rt_data_off
= BTRFS_LEAF_DATA_SIZE(root
) -
4065 btrfs_item_end_nr(l
, mid
);
4067 for (i
= 0; i
< nritems
; i
++) {
4068 struct btrfs_item
*item
= btrfs_item_nr(i
);
4071 ioff
= btrfs_token_item_offset(right
, item
, &token
);
4072 btrfs_set_token_item_offset(right
, item
,
4073 ioff
+ rt_data_off
, &token
);
4076 btrfs_set_header_nritems(l
, mid
);
4077 btrfs_item_key(right
, &disk_key
, 0);
4078 insert_ptr(trans
, root
, path
, &disk_key
, right
->start
,
4079 path
->slots
[1] + 1, 1);
4081 btrfs_mark_buffer_dirty(right
);
4082 btrfs_mark_buffer_dirty(l
);
4083 BUG_ON(path
->slots
[0] != slot
);
4086 btrfs_tree_unlock(path
->nodes
[0]);
4087 free_extent_buffer(path
->nodes
[0]);
4088 path
->nodes
[0] = right
;
4089 path
->slots
[0] -= mid
;
4090 path
->slots
[1] += 1;
4092 btrfs_tree_unlock(right
);
4093 free_extent_buffer(right
);
4096 BUG_ON(path
->slots
[0] < 0);
4100 * double splits happen when we need to insert a big item in the middle
4101 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4102 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4105 * We avoid this by trying to push the items on either side of our target
4106 * into the adjacent leaves. If all goes well we can avoid the double split
4109 static noinline
int push_for_double_split(struct btrfs_trans_handle
*trans
,
4110 struct btrfs_root
*root
,
4111 struct btrfs_path
*path
,
4118 int space_needed
= data_size
;
4120 slot
= path
->slots
[0];
4121 if (slot
< btrfs_header_nritems(path
->nodes
[0]))
4122 space_needed
-= btrfs_leaf_free_space(root
, path
->nodes
[0]);
4125 * try to push all the items after our slot into the
4128 ret
= push_leaf_right(trans
, root
, path
, 1, space_needed
, 0, slot
);
4135 nritems
= btrfs_header_nritems(path
->nodes
[0]);
4137 * our goal is to get our slot at the start or end of a leaf. If
4138 * we've done so we're done
4140 if (path
->slots
[0] == 0 || path
->slots
[0] == nritems
)
4143 if (btrfs_leaf_free_space(root
, path
->nodes
[0]) >= data_size
)
4146 /* try to push all the items before our slot into the next leaf */
4147 slot
= path
->slots
[0];
4148 ret
= push_leaf_left(trans
, root
, path
, 1, space_needed
, 0, slot
);
4161 * split the path's leaf in two, making sure there is at least data_size
4162 * available for the resulting leaf level of the path.
4164 * returns 0 if all went well and < 0 on failure.
4166 static noinline
int split_leaf(struct btrfs_trans_handle
*trans
,
4167 struct btrfs_root
*root
,
4168 struct btrfs_key
*ins_key
,
4169 struct btrfs_path
*path
, int data_size
,
4172 struct btrfs_disk_key disk_key
;
4173 struct extent_buffer
*l
;
4177 struct extent_buffer
*right
;
4178 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4182 int num_doubles
= 0;
4183 int tried_avoid_double
= 0;
4186 slot
= path
->slots
[0];
4187 if (extend
&& data_size
+ btrfs_item_size_nr(l
, slot
) +
4188 sizeof(struct btrfs_item
) > BTRFS_LEAF_DATA_SIZE(root
))
4191 /* first try to make some room by pushing left and right */
4192 if (data_size
&& path
->nodes
[1]) {
4193 int space_needed
= data_size
;
4195 if (slot
< btrfs_header_nritems(l
))
4196 space_needed
-= btrfs_leaf_free_space(root
, l
);
4198 wret
= push_leaf_right(trans
, root
, path
, space_needed
,
4199 space_needed
, 0, 0);
4203 wret
= push_leaf_left(trans
, root
, path
, space_needed
,
4204 space_needed
, 0, (u32
)-1);
4210 /* did the pushes work? */
4211 if (btrfs_leaf_free_space(root
, l
) >= data_size
)
4215 if (!path
->nodes
[1]) {
4216 ret
= insert_new_root(trans
, root
, path
, 1);
4223 slot
= path
->slots
[0];
4224 nritems
= btrfs_header_nritems(l
);
4225 mid
= (nritems
+ 1) / 2;
4229 leaf_space_used(l
, mid
, nritems
- mid
) + data_size
>
4230 BTRFS_LEAF_DATA_SIZE(root
)) {
4231 if (slot
>= nritems
) {
4235 if (mid
!= nritems
&&
4236 leaf_space_used(l
, mid
, nritems
- mid
) +
4237 data_size
> BTRFS_LEAF_DATA_SIZE(root
)) {
4238 if (data_size
&& !tried_avoid_double
)
4239 goto push_for_double
;
4245 if (leaf_space_used(l
, 0, mid
) + data_size
>
4246 BTRFS_LEAF_DATA_SIZE(root
)) {
4247 if (!extend
&& data_size
&& slot
== 0) {
4249 } else if ((extend
|| !data_size
) && slot
== 0) {
4253 if (mid
!= nritems
&&
4254 leaf_space_used(l
, mid
, nritems
- mid
) +
4255 data_size
> BTRFS_LEAF_DATA_SIZE(root
)) {
4256 if (data_size
&& !tried_avoid_double
)
4257 goto push_for_double
;
4265 btrfs_cpu_key_to_disk(&disk_key
, ins_key
);
4267 btrfs_item_key(l
, &disk_key
, mid
);
4269 right
= btrfs_alloc_tree_block(trans
, root
, 0, root
->root_key
.objectid
,
4270 &disk_key
, 0, l
->start
, 0);
4272 return PTR_ERR(right
);
4274 root_add_used(root
, root
->nodesize
);
4276 memset_extent_buffer(right
, 0, 0, sizeof(struct btrfs_header
));
4277 btrfs_set_header_bytenr(right
, right
->start
);
4278 btrfs_set_header_generation(right
, trans
->transid
);
4279 btrfs_set_header_backref_rev(right
, BTRFS_MIXED_BACKREF_REV
);
4280 btrfs_set_header_owner(right
, root
->root_key
.objectid
);
4281 btrfs_set_header_level(right
, 0);
4282 write_extent_buffer(right
, fs_info
->fsid
,
4283 btrfs_header_fsid(), BTRFS_FSID_SIZE
);
4285 write_extent_buffer(right
, fs_info
->chunk_tree_uuid
,
4286 btrfs_header_chunk_tree_uuid(right
),
4291 btrfs_set_header_nritems(right
, 0);
4292 insert_ptr(trans
, root
, path
, &disk_key
, right
->start
,
4293 path
->slots
[1] + 1, 1);
4294 btrfs_tree_unlock(path
->nodes
[0]);
4295 free_extent_buffer(path
->nodes
[0]);
4296 path
->nodes
[0] = right
;
4298 path
->slots
[1] += 1;
4300 btrfs_set_header_nritems(right
, 0);
4301 insert_ptr(trans
, root
, path
, &disk_key
, right
->start
,
4303 btrfs_tree_unlock(path
->nodes
[0]);
4304 free_extent_buffer(path
->nodes
[0]);
4305 path
->nodes
[0] = right
;
4307 if (path
->slots
[1] == 0)
4308 fixup_low_keys(fs_info
, path
, &disk_key
, 1);
4310 btrfs_mark_buffer_dirty(right
);
4314 copy_for_split(trans
, root
, path
, l
, right
, slot
, mid
, nritems
);
4317 BUG_ON(num_doubles
!= 0);
4325 push_for_double_split(trans
, root
, path
, data_size
);
4326 tried_avoid_double
= 1;
4327 if (btrfs_leaf_free_space(root
, path
->nodes
[0]) >= data_size
)
4332 static noinline
int setup_leaf_for_split(struct btrfs_trans_handle
*trans
,
4333 struct btrfs_root
*root
,
4334 struct btrfs_path
*path
, int ins_len
)
4336 struct btrfs_key key
;
4337 struct extent_buffer
*leaf
;
4338 struct btrfs_file_extent_item
*fi
;
4343 leaf
= path
->nodes
[0];
4344 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4346 BUG_ON(key
.type
!= BTRFS_EXTENT_DATA_KEY
&&
4347 key
.type
!= BTRFS_EXTENT_CSUM_KEY
);
4349 if (btrfs_leaf_free_space(root
, leaf
) >= ins_len
)
4352 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
4353 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
4354 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4355 struct btrfs_file_extent_item
);
4356 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
4358 btrfs_release_path(path
);
4360 path
->keep_locks
= 1;
4361 path
->search_for_split
= 1;
4362 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
4363 path
->search_for_split
= 0;
4370 leaf
= path
->nodes
[0];
4371 /* if our item isn't there, return now */
4372 if (item_size
!= btrfs_item_size_nr(leaf
, path
->slots
[0]))
4375 /* the leaf has changed, it now has room. return now */
4376 if (btrfs_leaf_free_space(root
, path
->nodes
[0]) >= ins_len
)
4379 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
4380 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4381 struct btrfs_file_extent_item
);
4382 if (extent_len
!= btrfs_file_extent_num_bytes(leaf
, fi
))
4386 btrfs_set_path_blocking(path
);
4387 ret
= split_leaf(trans
, root
, &key
, path
, ins_len
, 1);
4391 path
->keep_locks
= 0;
4392 btrfs_unlock_up_safe(path
, 1);
4395 path
->keep_locks
= 0;
4399 static noinline
int split_item(struct btrfs_trans_handle
*trans
,
4400 struct btrfs_root
*root
,
4401 struct btrfs_path
*path
,
4402 struct btrfs_key
*new_key
,
4403 unsigned long split_offset
)
4405 struct extent_buffer
*leaf
;
4406 struct btrfs_item
*item
;
4407 struct btrfs_item
*new_item
;
4413 struct btrfs_disk_key disk_key
;
4415 leaf
= path
->nodes
[0];
4416 BUG_ON(btrfs_leaf_free_space(root
, leaf
) < sizeof(struct btrfs_item
));
4418 btrfs_set_path_blocking(path
);
4420 item
= btrfs_item_nr(path
->slots
[0]);
4421 orig_offset
= btrfs_item_offset(leaf
, item
);
4422 item_size
= btrfs_item_size(leaf
, item
);
4424 buf
= kmalloc(item_size
, GFP_NOFS
);
4428 read_extent_buffer(leaf
, buf
, btrfs_item_ptr_offset(leaf
,
4429 path
->slots
[0]), item_size
);
4431 slot
= path
->slots
[0] + 1;
4432 nritems
= btrfs_header_nritems(leaf
);
4433 if (slot
!= nritems
) {
4434 /* shift the items */
4435 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ 1),
4436 btrfs_item_nr_offset(slot
),
4437 (nritems
- slot
) * sizeof(struct btrfs_item
));
4440 btrfs_cpu_key_to_disk(&disk_key
, new_key
);
4441 btrfs_set_item_key(leaf
, &disk_key
, slot
);
4443 new_item
= btrfs_item_nr(slot
);
4445 btrfs_set_item_offset(leaf
, new_item
, orig_offset
);
4446 btrfs_set_item_size(leaf
, new_item
, item_size
- split_offset
);
4448 btrfs_set_item_offset(leaf
, item
,
4449 orig_offset
+ item_size
- split_offset
);
4450 btrfs_set_item_size(leaf
, item
, split_offset
);
4452 btrfs_set_header_nritems(leaf
, nritems
+ 1);
4454 /* write the data for the start of the original item */
4455 write_extent_buffer(leaf
, buf
,
4456 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
4459 /* write the data for the new item */
4460 write_extent_buffer(leaf
, buf
+ split_offset
,
4461 btrfs_item_ptr_offset(leaf
, slot
),
4462 item_size
- split_offset
);
4463 btrfs_mark_buffer_dirty(leaf
);
4465 BUG_ON(btrfs_leaf_free_space(root
, leaf
) < 0);
4471 * This function splits a single item into two items,
4472 * giving 'new_key' to the new item and splitting the
4473 * old one at split_offset (from the start of the item).
4475 * The path may be released by this operation. After
4476 * the split, the path is pointing to the old item. The
4477 * new item is going to be in the same node as the old one.
4479 * Note, the item being split must be smaller enough to live alone on
4480 * a tree block with room for one extra struct btrfs_item
4482 * This allows us to split the item in place, keeping a lock on the
4483 * leaf the entire time.
4485 int btrfs_split_item(struct btrfs_trans_handle
*trans
,
4486 struct btrfs_root
*root
,
4487 struct btrfs_path
*path
,
4488 struct btrfs_key
*new_key
,
4489 unsigned long split_offset
)
4492 ret
= setup_leaf_for_split(trans
, root
, path
,
4493 sizeof(struct btrfs_item
));
4497 ret
= split_item(trans
, root
, path
, new_key
, split_offset
);
4502 * This function duplicate a item, giving 'new_key' to the new item.
4503 * It guarantees both items live in the same tree leaf and the new item
4504 * is contiguous with the original item.
4506 * This allows us to split file extent in place, keeping a lock on the
4507 * leaf the entire time.
4509 int btrfs_duplicate_item(struct btrfs_trans_handle
*trans
,
4510 struct btrfs_root
*root
,
4511 struct btrfs_path
*path
,
4512 struct btrfs_key
*new_key
)
4514 struct extent_buffer
*leaf
;
4518 leaf
= path
->nodes
[0];
4519 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
4520 ret
= setup_leaf_for_split(trans
, root
, path
,
4521 item_size
+ sizeof(struct btrfs_item
));
4526 setup_items_for_insert(root
, path
, new_key
, &item_size
,
4527 item_size
, item_size
+
4528 sizeof(struct btrfs_item
), 1);
4529 leaf
= path
->nodes
[0];
4530 memcpy_extent_buffer(leaf
,
4531 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
4532 btrfs_item_ptr_offset(leaf
, path
->slots
[0] - 1),
4538 * make the item pointed to by the path smaller. new_size indicates
4539 * how small to make it, and from_end tells us if we just chop bytes
4540 * off the end of the item or if we shift the item to chop bytes off
4543 void btrfs_truncate_item(struct btrfs_root
*root
, struct btrfs_path
*path
,
4544 u32 new_size
, int from_end
)
4547 struct extent_buffer
*leaf
;
4548 struct btrfs_item
*item
;
4550 unsigned int data_end
;
4551 unsigned int old_data_start
;
4552 unsigned int old_size
;
4553 unsigned int size_diff
;
4555 struct btrfs_map_token token
;
4557 btrfs_init_map_token(&token
);
4559 leaf
= path
->nodes
[0];
4560 slot
= path
->slots
[0];
4562 old_size
= btrfs_item_size_nr(leaf
, slot
);
4563 if (old_size
== new_size
)
4566 nritems
= btrfs_header_nritems(leaf
);
4567 data_end
= leaf_data_end(root
, leaf
);
4569 old_data_start
= btrfs_item_offset_nr(leaf
, slot
);
4571 size_diff
= old_size
- new_size
;
4574 BUG_ON(slot
>= nritems
);
4577 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4579 /* first correct the data pointers */
4580 for (i
= slot
; i
< nritems
; i
++) {
4582 item
= btrfs_item_nr(i
);
4584 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4585 btrfs_set_token_item_offset(leaf
, item
,
4586 ioff
+ size_diff
, &token
);
4589 /* shift the data */
4591 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4592 data_end
+ size_diff
, btrfs_leaf_data(leaf
) +
4593 data_end
, old_data_start
+ new_size
- data_end
);
4595 struct btrfs_disk_key disk_key
;
4598 btrfs_item_key(leaf
, &disk_key
, slot
);
4600 if (btrfs_disk_key_type(&disk_key
) == BTRFS_EXTENT_DATA_KEY
) {
4602 struct btrfs_file_extent_item
*fi
;
4604 fi
= btrfs_item_ptr(leaf
, slot
,
4605 struct btrfs_file_extent_item
);
4606 fi
= (struct btrfs_file_extent_item
*)(
4607 (unsigned long)fi
- size_diff
);
4609 if (btrfs_file_extent_type(leaf
, fi
) ==
4610 BTRFS_FILE_EXTENT_INLINE
) {
4611 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
4612 memmove_extent_buffer(leaf
, ptr
,
4614 BTRFS_FILE_EXTENT_INLINE_DATA_START
);
4618 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4619 data_end
+ size_diff
, btrfs_leaf_data(leaf
) +
4620 data_end
, old_data_start
- data_end
);
4622 offset
= btrfs_disk_key_offset(&disk_key
);
4623 btrfs_set_disk_key_offset(&disk_key
, offset
+ size_diff
);
4624 btrfs_set_item_key(leaf
, &disk_key
, slot
);
4626 fixup_low_keys(root
->fs_info
, path
, &disk_key
, 1);
4629 item
= btrfs_item_nr(slot
);
4630 btrfs_set_item_size(leaf
, item
, new_size
);
4631 btrfs_mark_buffer_dirty(leaf
);
4633 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
4634 btrfs_print_leaf(root
, leaf
);
4640 * make the item pointed to by the path bigger, data_size is the added size.
4642 void btrfs_extend_item(struct btrfs_root
*root
, struct btrfs_path
*path
,
4646 struct extent_buffer
*leaf
;
4647 struct btrfs_item
*item
;
4649 unsigned int data_end
;
4650 unsigned int old_data
;
4651 unsigned int old_size
;
4653 struct btrfs_map_token token
;
4655 btrfs_init_map_token(&token
);
4657 leaf
= path
->nodes
[0];
4659 nritems
= btrfs_header_nritems(leaf
);
4660 data_end
= leaf_data_end(root
, leaf
);
4662 if (btrfs_leaf_free_space(root
, leaf
) < data_size
) {
4663 btrfs_print_leaf(root
, leaf
);
4666 slot
= path
->slots
[0];
4667 old_data
= btrfs_item_end_nr(leaf
, slot
);
4670 if (slot
>= nritems
) {
4671 btrfs_print_leaf(root
, leaf
);
4672 btrfs_crit(root
->fs_info
, "slot %d too large, nritems %d",
4678 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4680 /* first correct the data pointers */
4681 for (i
= slot
; i
< nritems
; i
++) {
4683 item
= btrfs_item_nr(i
);
4685 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4686 btrfs_set_token_item_offset(leaf
, item
,
4687 ioff
- data_size
, &token
);
4690 /* shift the data */
4691 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4692 data_end
- data_size
, btrfs_leaf_data(leaf
) +
4693 data_end
, old_data
- data_end
);
4695 data_end
= old_data
;
4696 old_size
= btrfs_item_size_nr(leaf
, slot
);
4697 item
= btrfs_item_nr(slot
);
4698 btrfs_set_item_size(leaf
, item
, old_size
+ data_size
);
4699 btrfs_mark_buffer_dirty(leaf
);
4701 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
4702 btrfs_print_leaf(root
, leaf
);
4708 * this is a helper for btrfs_insert_empty_items, the main goal here is
4709 * to save stack depth by doing the bulk of the work in a function
4710 * that doesn't call btrfs_search_slot
4712 void setup_items_for_insert(struct btrfs_root
*root
, struct btrfs_path
*path
,
4713 struct btrfs_key
*cpu_key
, u32
*data_size
,
4714 u32 total_data
, u32 total_size
, int nr
)
4716 struct btrfs_item
*item
;
4719 unsigned int data_end
;
4720 struct btrfs_disk_key disk_key
;
4721 struct extent_buffer
*leaf
;
4723 struct btrfs_map_token token
;
4725 if (path
->slots
[0] == 0) {
4726 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
);
4727 fixup_low_keys(root
->fs_info
, path
, &disk_key
, 1);
4729 btrfs_unlock_up_safe(path
, 1);
4731 btrfs_init_map_token(&token
);
4733 leaf
= path
->nodes
[0];
4734 slot
= path
->slots
[0];
4736 nritems
= btrfs_header_nritems(leaf
);
4737 data_end
= leaf_data_end(root
, leaf
);
4739 if (btrfs_leaf_free_space(root
, leaf
) < total_size
) {
4740 btrfs_print_leaf(root
, leaf
);
4741 btrfs_crit(root
->fs_info
, "not enough freespace need %u have %d",
4742 total_size
, btrfs_leaf_free_space(root
, leaf
));
4746 if (slot
!= nritems
) {
4747 unsigned int old_data
= btrfs_item_end_nr(leaf
, slot
);
4749 if (old_data
< data_end
) {
4750 btrfs_print_leaf(root
, leaf
);
4751 btrfs_crit(root
->fs_info
, "slot %d old_data %d data_end %d",
4752 slot
, old_data
, data_end
);
4756 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4758 /* first correct the data pointers */
4759 for (i
= slot
; i
< nritems
; i
++) {
4762 item
= btrfs_item_nr( i
);
4763 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4764 btrfs_set_token_item_offset(leaf
, item
,
4765 ioff
- total_data
, &token
);
4767 /* shift the items */
4768 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
+ nr
),
4769 btrfs_item_nr_offset(slot
),
4770 (nritems
- slot
) * sizeof(struct btrfs_item
));
4772 /* shift the data */
4773 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4774 data_end
- total_data
, btrfs_leaf_data(leaf
) +
4775 data_end
, old_data
- data_end
);
4776 data_end
= old_data
;
4779 /* setup the item for the new data */
4780 for (i
= 0; i
< nr
; i
++) {
4781 btrfs_cpu_key_to_disk(&disk_key
, cpu_key
+ i
);
4782 btrfs_set_item_key(leaf
, &disk_key
, slot
+ i
);
4783 item
= btrfs_item_nr(slot
+ i
);
4784 btrfs_set_token_item_offset(leaf
, item
,
4785 data_end
- data_size
[i
], &token
);
4786 data_end
-= data_size
[i
];
4787 btrfs_set_token_item_size(leaf
, item
, data_size
[i
], &token
);
4790 btrfs_set_header_nritems(leaf
, nritems
+ nr
);
4791 btrfs_mark_buffer_dirty(leaf
);
4793 if (btrfs_leaf_free_space(root
, leaf
) < 0) {
4794 btrfs_print_leaf(root
, leaf
);
4800 * Given a key and some data, insert items into the tree.
4801 * This does all the path init required, making room in the tree if needed.
4803 int btrfs_insert_empty_items(struct btrfs_trans_handle
*trans
,
4804 struct btrfs_root
*root
,
4805 struct btrfs_path
*path
,
4806 struct btrfs_key
*cpu_key
, u32
*data_size
,
4815 for (i
= 0; i
< nr
; i
++)
4816 total_data
+= data_size
[i
];
4818 total_size
= total_data
+ (nr
* sizeof(struct btrfs_item
));
4819 ret
= btrfs_search_slot(trans
, root
, cpu_key
, path
, total_size
, 1);
4825 slot
= path
->slots
[0];
4828 setup_items_for_insert(root
, path
, cpu_key
, data_size
,
4829 total_data
, total_size
, nr
);
4834 * Given a key and some data, insert an item into the tree.
4835 * This does all the path init required, making room in the tree if needed.
4837 int btrfs_insert_item(struct btrfs_trans_handle
*trans
, struct btrfs_root
4838 *root
, struct btrfs_key
*cpu_key
, void *data
, u32
4842 struct btrfs_path
*path
;
4843 struct extent_buffer
*leaf
;
4846 path
= btrfs_alloc_path();
4849 ret
= btrfs_insert_empty_item(trans
, root
, path
, cpu_key
, data_size
);
4851 leaf
= path
->nodes
[0];
4852 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
4853 write_extent_buffer(leaf
, data
, ptr
, data_size
);
4854 btrfs_mark_buffer_dirty(leaf
);
4856 btrfs_free_path(path
);
4861 * delete the pointer from a given node.
4863 * the tree should have been previously balanced so the deletion does not
4866 static void del_ptr(struct btrfs_root
*root
, struct btrfs_path
*path
,
4867 int level
, int slot
)
4869 struct extent_buffer
*parent
= path
->nodes
[level
];
4873 nritems
= btrfs_header_nritems(parent
);
4874 if (slot
!= nritems
- 1) {
4876 tree_mod_log_eb_move(root
->fs_info
, parent
, slot
,
4877 slot
+ 1, nritems
- slot
- 1);
4878 memmove_extent_buffer(parent
,
4879 btrfs_node_key_ptr_offset(slot
),
4880 btrfs_node_key_ptr_offset(slot
+ 1),
4881 sizeof(struct btrfs_key_ptr
) *
4882 (nritems
- slot
- 1));
4884 ret
= tree_mod_log_insert_key(root
->fs_info
, parent
, slot
,
4885 MOD_LOG_KEY_REMOVE
, GFP_NOFS
);
4890 btrfs_set_header_nritems(parent
, nritems
);
4891 if (nritems
== 0 && parent
== root
->node
) {
4892 BUG_ON(btrfs_header_level(root
->node
) != 1);
4893 /* just turn the root into a leaf and break */
4894 btrfs_set_header_level(root
->node
, 0);
4895 } else if (slot
== 0) {
4896 struct btrfs_disk_key disk_key
;
4898 btrfs_node_key(parent
, &disk_key
, 0);
4899 fixup_low_keys(root
->fs_info
, path
, &disk_key
, level
+ 1);
4901 btrfs_mark_buffer_dirty(parent
);
4905 * a helper function to delete the leaf pointed to by path->slots[1] and
4908 * This deletes the pointer in path->nodes[1] and frees the leaf
4909 * block extent. zero is returned if it all worked out, < 0 otherwise.
4911 * The path must have already been setup for deleting the leaf, including
4912 * all the proper balancing. path->nodes[1] must be locked.
4914 static noinline
void btrfs_del_leaf(struct btrfs_trans_handle
*trans
,
4915 struct btrfs_root
*root
,
4916 struct btrfs_path
*path
,
4917 struct extent_buffer
*leaf
)
4919 WARN_ON(btrfs_header_generation(leaf
) != trans
->transid
);
4920 del_ptr(root
, path
, 1, path
->slots
[1]);
4923 * btrfs_free_extent is expensive, we want to make sure we
4924 * aren't holding any locks when we call it
4926 btrfs_unlock_up_safe(path
, 0);
4928 root_sub_used(root
, leaf
->len
);
4930 extent_buffer_get(leaf
);
4931 btrfs_free_tree_block(trans
, root
, leaf
, 0, 1);
4932 free_extent_buffer_stale(leaf
);
4935 * delete the item at the leaf level in path. If that empties
4936 * the leaf, remove it from the tree
4938 int btrfs_del_items(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
4939 struct btrfs_path
*path
, int slot
, int nr
)
4941 struct extent_buffer
*leaf
;
4942 struct btrfs_item
*item
;
4949 struct btrfs_map_token token
;
4951 btrfs_init_map_token(&token
);
4953 leaf
= path
->nodes
[0];
4954 last_off
= btrfs_item_offset_nr(leaf
, slot
+ nr
- 1);
4956 for (i
= 0; i
< nr
; i
++)
4957 dsize
+= btrfs_item_size_nr(leaf
, slot
+ i
);
4959 nritems
= btrfs_header_nritems(leaf
);
4961 if (slot
+ nr
!= nritems
) {
4962 int data_end
= leaf_data_end(root
, leaf
);
4964 memmove_extent_buffer(leaf
, btrfs_leaf_data(leaf
) +
4966 btrfs_leaf_data(leaf
) + data_end
,
4967 last_off
- data_end
);
4969 for (i
= slot
+ nr
; i
< nritems
; i
++) {
4972 item
= btrfs_item_nr(i
);
4973 ioff
= btrfs_token_item_offset(leaf
, item
, &token
);
4974 btrfs_set_token_item_offset(leaf
, item
,
4975 ioff
+ dsize
, &token
);
4978 memmove_extent_buffer(leaf
, btrfs_item_nr_offset(slot
),
4979 btrfs_item_nr_offset(slot
+ nr
),
4980 sizeof(struct btrfs_item
) *
4981 (nritems
- slot
- nr
));
4983 btrfs_set_header_nritems(leaf
, nritems
- nr
);
4986 /* delete the leaf if we've emptied it */
4988 if (leaf
== root
->node
) {
4989 btrfs_set_header_level(leaf
, 0);
4991 btrfs_set_path_blocking(path
);
4992 clean_tree_block(trans
, root
->fs_info
, leaf
);
4993 btrfs_del_leaf(trans
, root
, path
, leaf
);
4996 int used
= leaf_space_used(leaf
, 0, nritems
);
4998 struct btrfs_disk_key disk_key
;
5000 btrfs_item_key(leaf
, &disk_key
, 0);
5001 fixup_low_keys(root
->fs_info
, path
, &disk_key
, 1);
5004 /* delete the leaf if it is mostly empty */
5005 if (used
< BTRFS_LEAF_DATA_SIZE(root
) / 3) {
5006 /* push_leaf_left fixes the path.
5007 * make sure the path still points to our leaf
5008 * for possible call to del_ptr below
5010 slot
= path
->slots
[1];
5011 extent_buffer_get(leaf
);
5013 btrfs_set_path_blocking(path
);
5014 wret
= push_leaf_left(trans
, root
, path
, 1, 1,
5016 if (wret
< 0 && wret
!= -ENOSPC
)
5019 if (path
->nodes
[0] == leaf
&&
5020 btrfs_header_nritems(leaf
)) {
5021 wret
= push_leaf_right(trans
, root
, path
, 1,
5023 if (wret
< 0 && wret
!= -ENOSPC
)
5027 if (btrfs_header_nritems(leaf
) == 0) {
5028 path
->slots
[1] = slot
;
5029 btrfs_del_leaf(trans
, root
, path
, leaf
);
5030 free_extent_buffer(leaf
);
5033 /* if we're still in the path, make sure
5034 * we're dirty. Otherwise, one of the
5035 * push_leaf functions must have already
5036 * dirtied this buffer
5038 if (path
->nodes
[0] == leaf
)
5039 btrfs_mark_buffer_dirty(leaf
);
5040 free_extent_buffer(leaf
);
5043 btrfs_mark_buffer_dirty(leaf
);
5050 * search the tree again to find a leaf with lesser keys
5051 * returns 0 if it found something or 1 if there are no lesser leaves.
5052 * returns < 0 on io errors.
5054 * This may release the path, and so you may lose any locks held at the
5057 int btrfs_prev_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
5059 struct btrfs_key key
;
5060 struct btrfs_disk_key found_key
;
5063 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, 0);
5065 if (key
.offset
> 0) {
5067 } else if (key
.type
> 0) {
5069 key
.offset
= (u64
)-1;
5070 } else if (key
.objectid
> 0) {
5073 key
.offset
= (u64
)-1;
5078 btrfs_release_path(path
);
5079 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5082 btrfs_item_key(path
->nodes
[0], &found_key
, 0);
5083 ret
= comp_keys(&found_key
, &key
);
5085 * We might have had an item with the previous key in the tree right
5086 * before we released our path. And after we released our path, that
5087 * item might have been pushed to the first slot (0) of the leaf we
5088 * were holding due to a tree balance. Alternatively, an item with the
5089 * previous key can exist as the only element of a leaf (big fat item).
5090 * Therefore account for these 2 cases, so that our callers (like
5091 * btrfs_previous_item) don't miss an existing item with a key matching
5092 * the previous key we computed above.
5100 * A helper function to walk down the tree starting at min_key, and looking
5101 * for nodes or leaves that are have a minimum transaction id.
5102 * This is used by the btree defrag code, and tree logging
5104 * This does not cow, but it does stuff the starting key it finds back
5105 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5106 * key and get a writable path.
5108 * This does lock as it descends, and path->keep_locks should be set
5109 * to 1 by the caller.
5111 * This honors path->lowest_level to prevent descent past a given level
5114 * min_trans indicates the oldest transaction that you are interested
5115 * in walking through. Any nodes or leaves older than min_trans are
5116 * skipped over (without reading them).
5118 * returns zero if something useful was found, < 0 on error and 1 if there
5119 * was nothing in the tree that matched the search criteria.
5121 int btrfs_search_forward(struct btrfs_root
*root
, struct btrfs_key
*min_key
,
5122 struct btrfs_path
*path
,
5125 struct extent_buffer
*cur
;
5126 struct btrfs_key found_key
;
5132 int keep_locks
= path
->keep_locks
;
5134 path
->keep_locks
= 1;
5136 cur
= btrfs_read_lock_root_node(root
);
5137 level
= btrfs_header_level(cur
);
5138 WARN_ON(path
->nodes
[level
]);
5139 path
->nodes
[level
] = cur
;
5140 path
->locks
[level
] = BTRFS_READ_LOCK
;
5142 if (btrfs_header_generation(cur
) < min_trans
) {
5147 nritems
= btrfs_header_nritems(cur
);
5148 level
= btrfs_header_level(cur
);
5149 sret
= bin_search(cur
, min_key
, level
, &slot
);
5151 /* at the lowest level, we're done, setup the path and exit */
5152 if (level
== path
->lowest_level
) {
5153 if (slot
>= nritems
)
5156 path
->slots
[level
] = slot
;
5157 btrfs_item_key_to_cpu(cur
, &found_key
, slot
);
5160 if (sret
&& slot
> 0)
5163 * check this node pointer against the min_trans parameters.
5164 * If it is too old, old, skip to the next one.
5166 while (slot
< nritems
) {
5169 gen
= btrfs_node_ptr_generation(cur
, slot
);
5170 if (gen
< min_trans
) {
5178 * we didn't find a candidate key in this node, walk forward
5179 * and find another one
5181 if (slot
>= nritems
) {
5182 path
->slots
[level
] = slot
;
5183 btrfs_set_path_blocking(path
);
5184 sret
= btrfs_find_next_key(root
, path
, min_key
, level
,
5187 btrfs_release_path(path
);
5193 /* save our key for returning back */
5194 btrfs_node_key_to_cpu(cur
, &found_key
, slot
);
5195 path
->slots
[level
] = slot
;
5196 if (level
== path
->lowest_level
) {
5200 btrfs_set_path_blocking(path
);
5201 cur
= read_node_slot(root
, cur
, slot
);
5202 BUG_ON(!cur
); /* -ENOMEM */
5204 btrfs_tree_read_lock(cur
);
5206 path
->locks
[level
- 1] = BTRFS_READ_LOCK
;
5207 path
->nodes
[level
- 1] = cur
;
5208 unlock_up(path
, level
, 1, 0, NULL
);
5209 btrfs_clear_path_blocking(path
, NULL
, 0);
5212 path
->keep_locks
= keep_locks
;
5214 btrfs_unlock_up_safe(path
, path
->lowest_level
+ 1);
5215 btrfs_set_path_blocking(path
);
5216 memcpy(min_key
, &found_key
, sizeof(found_key
));
5221 static void tree_move_down(struct btrfs_root
*root
,
5222 struct btrfs_path
*path
,
5223 int *level
, int root_level
)
5225 BUG_ON(*level
== 0);
5226 path
->nodes
[*level
- 1] = read_node_slot(root
, path
->nodes
[*level
],
5227 path
->slots
[*level
]);
5228 path
->slots
[*level
- 1] = 0;
5232 static int tree_move_next_or_upnext(struct btrfs_root
*root
,
5233 struct btrfs_path
*path
,
5234 int *level
, int root_level
)
5238 nritems
= btrfs_header_nritems(path
->nodes
[*level
]);
5240 path
->slots
[*level
]++;
5242 while (path
->slots
[*level
] >= nritems
) {
5243 if (*level
== root_level
)
5247 path
->slots
[*level
] = 0;
5248 free_extent_buffer(path
->nodes
[*level
]);
5249 path
->nodes
[*level
] = NULL
;
5251 path
->slots
[*level
]++;
5253 nritems
= btrfs_header_nritems(path
->nodes
[*level
]);
5260 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5263 static int tree_advance(struct btrfs_root
*root
,
5264 struct btrfs_path
*path
,
5265 int *level
, int root_level
,
5267 struct btrfs_key
*key
)
5271 if (*level
== 0 || !allow_down
) {
5272 ret
= tree_move_next_or_upnext(root
, path
, level
, root_level
);
5274 tree_move_down(root
, path
, level
, root_level
);
5279 btrfs_item_key_to_cpu(path
->nodes
[*level
], key
,
5280 path
->slots
[*level
]);
5282 btrfs_node_key_to_cpu(path
->nodes
[*level
], key
,
5283 path
->slots
[*level
]);
5288 static int tree_compare_item(struct btrfs_root
*left_root
,
5289 struct btrfs_path
*left_path
,
5290 struct btrfs_path
*right_path
,
5295 unsigned long off1
, off2
;
5297 len1
= btrfs_item_size_nr(left_path
->nodes
[0], left_path
->slots
[0]);
5298 len2
= btrfs_item_size_nr(right_path
->nodes
[0], right_path
->slots
[0]);
5302 off1
= btrfs_item_ptr_offset(left_path
->nodes
[0], left_path
->slots
[0]);
5303 off2
= btrfs_item_ptr_offset(right_path
->nodes
[0],
5304 right_path
->slots
[0]);
5306 read_extent_buffer(left_path
->nodes
[0], tmp_buf
, off1
, len1
);
5308 cmp
= memcmp_extent_buffer(right_path
->nodes
[0], tmp_buf
, off2
, len1
);
5315 #define ADVANCE_ONLY_NEXT -1
5318 * This function compares two trees and calls the provided callback for
5319 * every changed/new/deleted item it finds.
5320 * If shared tree blocks are encountered, whole subtrees are skipped, making
5321 * the compare pretty fast on snapshotted subvolumes.
5323 * This currently works on commit roots only. As commit roots are read only,
5324 * we don't do any locking. The commit roots are protected with transactions.
5325 * Transactions are ended and rejoined when a commit is tried in between.
5327 * This function checks for modifications done to the trees while comparing.
5328 * If it detects a change, it aborts immediately.
5330 int btrfs_compare_trees(struct btrfs_root
*left_root
,
5331 struct btrfs_root
*right_root
,
5332 btrfs_changed_cb_t changed_cb
, void *ctx
)
5336 struct btrfs_path
*left_path
= NULL
;
5337 struct btrfs_path
*right_path
= NULL
;
5338 struct btrfs_key left_key
;
5339 struct btrfs_key right_key
;
5340 char *tmp_buf
= NULL
;
5341 int left_root_level
;
5342 int right_root_level
;
5345 int left_end_reached
;
5346 int right_end_reached
;
5354 left_path
= btrfs_alloc_path();
5359 right_path
= btrfs_alloc_path();
5365 tmp_buf
= kmalloc(left_root
->nodesize
, GFP_KERNEL
| __GFP_NOWARN
);
5367 tmp_buf
= vmalloc(left_root
->nodesize
);
5374 left_path
->search_commit_root
= 1;
5375 left_path
->skip_locking
= 1;
5376 right_path
->search_commit_root
= 1;
5377 right_path
->skip_locking
= 1;
5380 * Strategy: Go to the first items of both trees. Then do
5382 * If both trees are at level 0
5383 * Compare keys of current items
5384 * If left < right treat left item as new, advance left tree
5386 * If left > right treat right item as deleted, advance right tree
5388 * If left == right do deep compare of items, treat as changed if
5389 * needed, advance both trees and repeat
5390 * If both trees are at the same level but not at level 0
5391 * Compare keys of current nodes/leafs
5392 * If left < right advance left tree and repeat
5393 * If left > right advance right tree and repeat
5394 * If left == right compare blockptrs of the next nodes/leafs
5395 * If they match advance both trees but stay at the same level
5397 * If they don't match advance both trees while allowing to go
5399 * If tree levels are different
5400 * Advance the tree that needs it and repeat
5402 * Advancing a tree means:
5403 * If we are at level 0, try to go to the next slot. If that's not
5404 * possible, go one level up and repeat. Stop when we found a level
5405 * where we could go to the next slot. We may at this point be on a
5408 * If we are not at level 0 and not on shared tree blocks, go one
5411 * If we are not at level 0 and on shared tree blocks, go one slot to
5412 * the right if possible or go up and right.
5415 down_read(&left_root
->fs_info
->commit_root_sem
);
5416 left_level
= btrfs_header_level(left_root
->commit_root
);
5417 left_root_level
= left_level
;
5418 left_path
->nodes
[left_level
] = left_root
->commit_root
;
5419 extent_buffer_get(left_path
->nodes
[left_level
]);
5421 right_level
= btrfs_header_level(right_root
->commit_root
);
5422 right_root_level
= right_level
;
5423 right_path
->nodes
[right_level
] = right_root
->commit_root
;
5424 extent_buffer_get(right_path
->nodes
[right_level
]);
5425 up_read(&left_root
->fs_info
->commit_root_sem
);
5427 if (left_level
== 0)
5428 btrfs_item_key_to_cpu(left_path
->nodes
[left_level
],
5429 &left_key
, left_path
->slots
[left_level
]);
5431 btrfs_node_key_to_cpu(left_path
->nodes
[left_level
],
5432 &left_key
, left_path
->slots
[left_level
]);
5433 if (right_level
== 0)
5434 btrfs_item_key_to_cpu(right_path
->nodes
[right_level
],
5435 &right_key
, right_path
->slots
[right_level
]);
5437 btrfs_node_key_to_cpu(right_path
->nodes
[right_level
],
5438 &right_key
, right_path
->slots
[right_level
]);
5440 left_end_reached
= right_end_reached
= 0;
5441 advance_left
= advance_right
= 0;
5444 if (advance_left
&& !left_end_reached
) {
5445 ret
= tree_advance(left_root
, left_path
, &left_level
,
5447 advance_left
!= ADVANCE_ONLY_NEXT
,
5450 left_end_reached
= ADVANCE
;
5453 if (advance_right
&& !right_end_reached
) {
5454 ret
= tree_advance(right_root
, right_path
, &right_level
,
5456 advance_right
!= ADVANCE_ONLY_NEXT
,
5459 right_end_reached
= ADVANCE
;
5463 if (left_end_reached
&& right_end_reached
) {
5466 } else if (left_end_reached
) {
5467 if (right_level
== 0) {
5468 ret
= changed_cb(left_root
, right_root
,
5469 left_path
, right_path
,
5471 BTRFS_COMPARE_TREE_DELETED
,
5476 advance_right
= ADVANCE
;
5478 } else if (right_end_reached
) {
5479 if (left_level
== 0) {
5480 ret
= changed_cb(left_root
, right_root
,
5481 left_path
, right_path
,
5483 BTRFS_COMPARE_TREE_NEW
,
5488 advance_left
= ADVANCE
;
5492 if (left_level
== 0 && right_level
== 0) {
5493 cmp
= btrfs_comp_cpu_keys(&left_key
, &right_key
);
5495 ret
= changed_cb(left_root
, right_root
,
5496 left_path
, right_path
,
5498 BTRFS_COMPARE_TREE_NEW
,
5502 advance_left
= ADVANCE
;
5503 } else if (cmp
> 0) {
5504 ret
= changed_cb(left_root
, right_root
,
5505 left_path
, right_path
,
5507 BTRFS_COMPARE_TREE_DELETED
,
5511 advance_right
= ADVANCE
;
5513 enum btrfs_compare_tree_result result
;
5515 WARN_ON(!extent_buffer_uptodate(left_path
->nodes
[0]));
5516 ret
= tree_compare_item(left_root
, left_path
,
5517 right_path
, tmp_buf
);
5519 result
= BTRFS_COMPARE_TREE_CHANGED
;
5521 result
= BTRFS_COMPARE_TREE_SAME
;
5522 ret
= changed_cb(left_root
, right_root
,
5523 left_path
, right_path
,
5524 &left_key
, result
, ctx
);
5527 advance_left
= ADVANCE
;
5528 advance_right
= ADVANCE
;
5530 } else if (left_level
== right_level
) {
5531 cmp
= btrfs_comp_cpu_keys(&left_key
, &right_key
);
5533 advance_left
= ADVANCE
;
5534 } else if (cmp
> 0) {
5535 advance_right
= ADVANCE
;
5537 left_blockptr
= btrfs_node_blockptr(
5538 left_path
->nodes
[left_level
],
5539 left_path
->slots
[left_level
]);
5540 right_blockptr
= btrfs_node_blockptr(
5541 right_path
->nodes
[right_level
],
5542 right_path
->slots
[right_level
]);
5543 left_gen
= btrfs_node_ptr_generation(
5544 left_path
->nodes
[left_level
],
5545 left_path
->slots
[left_level
]);
5546 right_gen
= btrfs_node_ptr_generation(
5547 right_path
->nodes
[right_level
],
5548 right_path
->slots
[right_level
]);
5549 if (left_blockptr
== right_blockptr
&&
5550 left_gen
== right_gen
) {
5552 * As we're on a shared block, don't
5553 * allow to go deeper.
5555 advance_left
= ADVANCE_ONLY_NEXT
;
5556 advance_right
= ADVANCE_ONLY_NEXT
;
5558 advance_left
= ADVANCE
;
5559 advance_right
= ADVANCE
;
5562 } else if (left_level
< right_level
) {
5563 advance_right
= ADVANCE
;
5565 advance_left
= ADVANCE
;
5570 btrfs_free_path(left_path
);
5571 btrfs_free_path(right_path
);
5577 * this is similar to btrfs_next_leaf, but does not try to preserve
5578 * and fixup the path. It looks for and returns the next key in the
5579 * tree based on the current path and the min_trans parameters.
5581 * 0 is returned if another key is found, < 0 if there are any errors
5582 * and 1 is returned if there are no higher keys in the tree
5584 * path->keep_locks should be set to 1 on the search made before
5585 * calling this function.
5587 int btrfs_find_next_key(struct btrfs_root
*root
, struct btrfs_path
*path
,
5588 struct btrfs_key
*key
, int level
, u64 min_trans
)
5591 struct extent_buffer
*c
;
5593 WARN_ON(!path
->keep_locks
);
5594 while (level
< BTRFS_MAX_LEVEL
) {
5595 if (!path
->nodes
[level
])
5598 slot
= path
->slots
[level
] + 1;
5599 c
= path
->nodes
[level
];
5601 if (slot
>= btrfs_header_nritems(c
)) {
5604 struct btrfs_key cur_key
;
5605 if (level
+ 1 >= BTRFS_MAX_LEVEL
||
5606 !path
->nodes
[level
+ 1])
5609 if (path
->locks
[level
+ 1]) {
5614 slot
= btrfs_header_nritems(c
) - 1;
5616 btrfs_item_key_to_cpu(c
, &cur_key
, slot
);
5618 btrfs_node_key_to_cpu(c
, &cur_key
, slot
);
5620 orig_lowest
= path
->lowest_level
;
5621 btrfs_release_path(path
);
5622 path
->lowest_level
= level
;
5623 ret
= btrfs_search_slot(NULL
, root
, &cur_key
, path
,
5625 path
->lowest_level
= orig_lowest
;
5629 c
= path
->nodes
[level
];
5630 slot
= path
->slots
[level
];
5637 btrfs_item_key_to_cpu(c
, key
, slot
);
5639 u64 gen
= btrfs_node_ptr_generation(c
, slot
);
5641 if (gen
< min_trans
) {
5645 btrfs_node_key_to_cpu(c
, key
, slot
);
5653 * search the tree again to find a leaf with greater keys
5654 * returns 0 if it found something or 1 if there are no greater leaves.
5655 * returns < 0 on io errors.
5657 int btrfs_next_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
)
5659 return btrfs_next_old_leaf(root
, path
, 0);
5662 int btrfs_next_old_leaf(struct btrfs_root
*root
, struct btrfs_path
*path
,
5667 struct extent_buffer
*c
;
5668 struct extent_buffer
*next
;
5669 struct btrfs_key key
;
5672 int old_spinning
= path
->leave_spinning
;
5673 int next_rw_lock
= 0;
5675 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5679 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, nritems
- 1);
5684 btrfs_release_path(path
);
5686 path
->keep_locks
= 1;
5687 path
->leave_spinning
= 1;
5690 ret
= btrfs_search_old_slot(root
, &key
, path
, time_seq
);
5692 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5693 path
->keep_locks
= 0;
5698 nritems
= btrfs_header_nritems(path
->nodes
[0]);
5700 * by releasing the path above we dropped all our locks. A balance
5701 * could have added more items next to the key that used to be
5702 * at the very end of the block. So, check again here and
5703 * advance the path if there are now more items available.
5705 if (nritems
> 0 && path
->slots
[0] < nritems
- 1) {
5712 * So the above check misses one case:
5713 * - after releasing the path above, someone has removed the item that
5714 * used to be at the very end of the block, and balance between leafs
5715 * gets another one with bigger key.offset to replace it.
5717 * This one should be returned as well, or we can get leaf corruption
5718 * later(esp. in __btrfs_drop_extents()).
5720 * And a bit more explanation about this check,
5721 * with ret > 0, the key isn't found, the path points to the slot
5722 * where it should be inserted, so the path->slots[0] item must be the
5725 if (nritems
> 0 && ret
> 0 && path
->slots
[0] == nritems
- 1) {
5730 while (level
< BTRFS_MAX_LEVEL
) {
5731 if (!path
->nodes
[level
]) {
5736 slot
= path
->slots
[level
] + 1;
5737 c
= path
->nodes
[level
];
5738 if (slot
>= btrfs_header_nritems(c
)) {
5740 if (level
== BTRFS_MAX_LEVEL
) {
5748 btrfs_tree_unlock_rw(next
, next_rw_lock
);
5749 free_extent_buffer(next
);
5753 next_rw_lock
= path
->locks
[level
];
5754 ret
= read_block_for_search(NULL
, root
, path
, &next
, level
,
5760 btrfs_release_path(path
);
5764 if (!path
->skip_locking
) {
5765 ret
= btrfs_try_tree_read_lock(next
);
5766 if (!ret
&& time_seq
) {
5768 * If we don't get the lock, we may be racing
5769 * with push_leaf_left, holding that lock while
5770 * itself waiting for the leaf we've currently
5771 * locked. To solve this situation, we give up
5772 * on our lock and cycle.
5774 free_extent_buffer(next
);
5775 btrfs_release_path(path
);
5780 btrfs_set_path_blocking(path
);
5781 btrfs_tree_read_lock(next
);
5782 btrfs_clear_path_blocking(path
, next
,
5785 next_rw_lock
= BTRFS_READ_LOCK
;
5789 path
->slots
[level
] = slot
;
5792 c
= path
->nodes
[level
];
5793 if (path
->locks
[level
])
5794 btrfs_tree_unlock_rw(c
, path
->locks
[level
]);
5796 free_extent_buffer(c
);
5797 path
->nodes
[level
] = next
;
5798 path
->slots
[level
] = 0;
5799 if (!path
->skip_locking
)
5800 path
->locks
[level
] = next_rw_lock
;
5804 ret
= read_block_for_search(NULL
, root
, path
, &next
, level
,
5810 btrfs_release_path(path
);
5814 if (!path
->skip_locking
) {
5815 ret
= btrfs_try_tree_read_lock(next
);
5817 btrfs_set_path_blocking(path
);
5818 btrfs_tree_read_lock(next
);
5819 btrfs_clear_path_blocking(path
, next
,
5822 next_rw_lock
= BTRFS_READ_LOCK
;
5827 unlock_up(path
, 0, 1, 0, NULL
);
5828 path
->leave_spinning
= old_spinning
;
5830 btrfs_set_path_blocking(path
);
5836 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5837 * searching until it gets past min_objectid or finds an item of 'type'
5839 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5841 int btrfs_previous_item(struct btrfs_root
*root
,
5842 struct btrfs_path
*path
, u64 min_objectid
,
5845 struct btrfs_key found_key
;
5846 struct extent_buffer
*leaf
;
5851 if (path
->slots
[0] == 0) {
5852 btrfs_set_path_blocking(path
);
5853 ret
= btrfs_prev_leaf(root
, path
);
5859 leaf
= path
->nodes
[0];
5860 nritems
= btrfs_header_nritems(leaf
);
5863 if (path
->slots
[0] == nritems
)
5866 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5867 if (found_key
.objectid
< min_objectid
)
5869 if (found_key
.type
== type
)
5871 if (found_key
.objectid
== min_objectid
&&
5872 found_key
.type
< type
)
5879 * search in extent tree to find a previous Metadata/Data extent item with
5882 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5884 int btrfs_previous_extent_item(struct btrfs_root
*root
,
5885 struct btrfs_path
*path
, u64 min_objectid
)
5887 struct btrfs_key found_key
;
5888 struct extent_buffer
*leaf
;
5893 if (path
->slots
[0] == 0) {
5894 btrfs_set_path_blocking(path
);
5895 ret
= btrfs_prev_leaf(root
, path
);
5901 leaf
= path
->nodes
[0];
5902 nritems
= btrfs_header_nritems(leaf
);
5905 if (path
->slots
[0] == nritems
)
5908 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
5909 if (found_key
.objectid
< min_objectid
)
5911 if (found_key
.type
== BTRFS_EXTENT_ITEM_KEY
||
5912 found_key
.type
== BTRFS_METADATA_ITEM_KEY
)
5914 if (found_key
.objectid
== min_objectid
&&
5915 found_key
.type
< BTRFS_EXTENT_ITEM_KEY
)