x86/topology: Fix function name in documentation
[cris-mirror.git] / drivers / char / ipmi / ipmi_si_intf.c
blob6768cb2dd740e692aeac2480ce8841be9e24ae2b
1 /*
2 * ipmi_si.c
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/notifier.h>
53 #include <linux/mutex.h>
54 #include <linux/kthread.h>
55 #include <asm/irq.h>
56 #include <linux/interrupt.h>
57 #include <linux/rcupdate.h>
58 #include <linux/ipmi.h>
59 #include <linux/ipmi_smi.h>
60 #include "ipmi_si.h"
61 #include <linux/string.h>
62 #include <linux/ctype.h>
64 #define PFX "ipmi_si: "
66 /* Measure times between events in the driver. */
67 #undef DEBUG_TIMING
69 /* Call every 10 ms. */
70 #define SI_TIMEOUT_TIME_USEC 10000
71 #define SI_USEC_PER_JIFFY (1000000/HZ)
72 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
73 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
74 short timeout */
76 enum si_intf_state {
77 SI_NORMAL,
78 SI_GETTING_FLAGS,
79 SI_GETTING_EVENTS,
80 SI_CLEARING_FLAGS,
81 SI_GETTING_MESSAGES,
82 SI_CHECKING_ENABLES,
83 SI_SETTING_ENABLES
84 /* FIXME - add watchdog stuff. */
87 /* Some BT-specific defines we need here. */
88 #define IPMI_BT_INTMASK_REG 2
89 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
90 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
92 static const char * const si_to_str[] = { "invalid", "kcs", "smic", "bt" };
94 static int initialized;
97 * Indexes into stats[] in smi_info below.
99 enum si_stat_indexes {
101 * Number of times the driver requested a timer while an operation
102 * was in progress.
104 SI_STAT_short_timeouts = 0,
107 * Number of times the driver requested a timer while nothing was in
108 * progress.
110 SI_STAT_long_timeouts,
112 /* Number of times the interface was idle while being polled. */
113 SI_STAT_idles,
115 /* Number of interrupts the driver handled. */
116 SI_STAT_interrupts,
118 /* Number of time the driver got an ATTN from the hardware. */
119 SI_STAT_attentions,
121 /* Number of times the driver requested flags from the hardware. */
122 SI_STAT_flag_fetches,
124 /* Number of times the hardware didn't follow the state machine. */
125 SI_STAT_hosed_count,
127 /* Number of completed messages. */
128 SI_STAT_complete_transactions,
130 /* Number of IPMI events received from the hardware. */
131 SI_STAT_events,
133 /* Number of watchdog pretimeouts. */
134 SI_STAT_watchdog_pretimeouts,
136 /* Number of asynchronous messages received. */
137 SI_STAT_incoming_messages,
140 /* This *must* remain last, add new values above this. */
141 SI_NUM_STATS
144 struct smi_info {
145 int intf_num;
146 ipmi_smi_t intf;
147 struct si_sm_data *si_sm;
148 const struct si_sm_handlers *handlers;
149 spinlock_t si_lock;
150 struct ipmi_smi_msg *waiting_msg;
151 struct ipmi_smi_msg *curr_msg;
152 enum si_intf_state si_state;
155 * Used to handle the various types of I/O that can occur with
156 * IPMI
158 struct si_sm_io io;
161 * Per-OEM handler, called from handle_flags(). Returns 1
162 * when handle_flags() needs to be re-run or 0 indicating it
163 * set si_state itself.
165 int (*oem_data_avail_handler)(struct smi_info *smi_info);
168 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
169 * is set to hold the flags until we are done handling everything
170 * from the flags.
172 #define RECEIVE_MSG_AVAIL 0x01
173 #define EVENT_MSG_BUFFER_FULL 0x02
174 #define WDT_PRE_TIMEOUT_INT 0x08
175 #define OEM0_DATA_AVAIL 0x20
176 #define OEM1_DATA_AVAIL 0x40
177 #define OEM2_DATA_AVAIL 0x80
178 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
179 OEM1_DATA_AVAIL | \
180 OEM2_DATA_AVAIL)
181 unsigned char msg_flags;
183 /* Does the BMC have an event buffer? */
184 bool has_event_buffer;
187 * If set to true, this will request events the next time the
188 * state machine is idle.
190 atomic_t req_events;
193 * If true, run the state machine to completion on every send
194 * call. Generally used after a panic to make sure stuff goes
195 * out.
197 bool run_to_completion;
199 /* The timer for this si. */
200 struct timer_list si_timer;
202 /* This flag is set, if the timer can be set */
203 bool timer_can_start;
205 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
206 bool timer_running;
208 /* The time (in jiffies) the last timeout occurred at. */
209 unsigned long last_timeout_jiffies;
211 /* Are we waiting for the events, pretimeouts, received msgs? */
212 atomic_t need_watch;
215 * The driver will disable interrupts when it gets into a
216 * situation where it cannot handle messages due to lack of
217 * memory. Once that situation clears up, it will re-enable
218 * interrupts.
220 bool interrupt_disabled;
223 * Does the BMC support events?
225 bool supports_event_msg_buff;
228 * Can we disable interrupts the global enables receive irq
229 * bit? There are currently two forms of brokenness, some
230 * systems cannot disable the bit (which is technically within
231 * the spec but a bad idea) and some systems have the bit
232 * forced to zero even though interrupts work (which is
233 * clearly outside the spec). The next bool tells which form
234 * of brokenness is present.
236 bool cannot_disable_irq;
239 * Some systems are broken and cannot set the irq enable
240 * bit, even if they support interrupts.
242 bool irq_enable_broken;
245 * Did we get an attention that we did not handle?
247 bool got_attn;
249 /* From the get device id response... */
250 struct ipmi_device_id device_id;
252 /* Default driver model device. */
253 struct platform_device *pdev;
255 /* Counters and things for the proc filesystem. */
256 atomic_t stats[SI_NUM_STATS];
258 struct task_struct *thread;
260 struct list_head link;
263 #define smi_inc_stat(smi, stat) \
264 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
265 #define smi_get_stat(smi, stat) \
266 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
268 #define IPMI_MAX_INTFS 4
269 static int force_kipmid[IPMI_MAX_INTFS];
270 static int num_force_kipmid;
272 static unsigned int kipmid_max_busy_us[IPMI_MAX_INTFS];
273 static int num_max_busy_us;
275 static bool unload_when_empty = true;
277 static int try_smi_init(struct smi_info *smi);
278 static void cleanup_one_si(struct smi_info *to_clean);
279 static void cleanup_ipmi_si(void);
281 #ifdef DEBUG_TIMING
282 void debug_timestamp(char *msg)
284 struct timespec64 t;
286 getnstimeofday64(&t);
287 pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
289 #else
290 #define debug_timestamp(x)
291 #endif
293 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
294 static int register_xaction_notifier(struct notifier_block *nb)
296 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
299 static void deliver_recv_msg(struct smi_info *smi_info,
300 struct ipmi_smi_msg *msg)
302 /* Deliver the message to the upper layer. */
303 if (smi_info->intf)
304 ipmi_smi_msg_received(smi_info->intf, msg);
305 else
306 ipmi_free_smi_msg(msg);
309 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
311 struct ipmi_smi_msg *msg = smi_info->curr_msg;
313 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
314 cCode = IPMI_ERR_UNSPECIFIED;
315 /* else use it as is */
317 /* Make it a response */
318 msg->rsp[0] = msg->data[0] | 4;
319 msg->rsp[1] = msg->data[1];
320 msg->rsp[2] = cCode;
321 msg->rsp_size = 3;
323 smi_info->curr_msg = NULL;
324 deliver_recv_msg(smi_info, msg);
327 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
329 int rv;
331 if (!smi_info->waiting_msg) {
332 smi_info->curr_msg = NULL;
333 rv = SI_SM_IDLE;
334 } else {
335 int err;
337 smi_info->curr_msg = smi_info->waiting_msg;
338 smi_info->waiting_msg = NULL;
339 debug_timestamp("Start2");
340 err = atomic_notifier_call_chain(&xaction_notifier_list,
341 0, smi_info);
342 if (err & NOTIFY_STOP_MASK) {
343 rv = SI_SM_CALL_WITHOUT_DELAY;
344 goto out;
346 err = smi_info->handlers->start_transaction(
347 smi_info->si_sm,
348 smi_info->curr_msg->data,
349 smi_info->curr_msg->data_size);
350 if (err)
351 return_hosed_msg(smi_info, err);
353 rv = SI_SM_CALL_WITHOUT_DELAY;
355 out:
356 return rv;
359 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
361 if (!smi_info->timer_can_start)
362 return;
363 smi_info->last_timeout_jiffies = jiffies;
364 mod_timer(&smi_info->si_timer, new_val);
365 smi_info->timer_running = true;
369 * Start a new message and (re)start the timer and thread.
371 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
372 unsigned int size)
374 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
376 if (smi_info->thread)
377 wake_up_process(smi_info->thread);
379 smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
382 static void start_check_enables(struct smi_info *smi_info)
384 unsigned char msg[2];
386 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
387 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
389 start_new_msg(smi_info, msg, 2);
390 smi_info->si_state = SI_CHECKING_ENABLES;
393 static void start_clear_flags(struct smi_info *smi_info)
395 unsigned char msg[3];
397 /* Make sure the watchdog pre-timeout flag is not set at startup. */
398 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
399 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
400 msg[2] = WDT_PRE_TIMEOUT_INT;
402 start_new_msg(smi_info, msg, 3);
403 smi_info->si_state = SI_CLEARING_FLAGS;
406 static void start_getting_msg_queue(struct smi_info *smi_info)
408 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
409 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
410 smi_info->curr_msg->data_size = 2;
412 start_new_msg(smi_info, smi_info->curr_msg->data,
413 smi_info->curr_msg->data_size);
414 smi_info->si_state = SI_GETTING_MESSAGES;
417 static void start_getting_events(struct smi_info *smi_info)
419 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
420 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
421 smi_info->curr_msg->data_size = 2;
423 start_new_msg(smi_info, smi_info->curr_msg->data,
424 smi_info->curr_msg->data_size);
425 smi_info->si_state = SI_GETTING_EVENTS;
429 * When we have a situtaion where we run out of memory and cannot
430 * allocate messages, we just leave them in the BMC and run the system
431 * polled until we can allocate some memory. Once we have some
432 * memory, we will re-enable the interrupt.
434 * Note that we cannot just use disable_irq(), since the interrupt may
435 * be shared.
437 static inline bool disable_si_irq(struct smi_info *smi_info)
439 if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
440 smi_info->interrupt_disabled = true;
441 start_check_enables(smi_info);
442 return true;
444 return false;
447 static inline bool enable_si_irq(struct smi_info *smi_info)
449 if ((smi_info->io.irq) && (smi_info->interrupt_disabled)) {
450 smi_info->interrupt_disabled = false;
451 start_check_enables(smi_info);
452 return true;
454 return false;
458 * Allocate a message. If unable to allocate, start the interrupt
459 * disable process and return NULL. If able to allocate but
460 * interrupts are disabled, free the message and return NULL after
461 * starting the interrupt enable process.
463 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
465 struct ipmi_smi_msg *msg;
467 msg = ipmi_alloc_smi_msg();
468 if (!msg) {
469 if (!disable_si_irq(smi_info))
470 smi_info->si_state = SI_NORMAL;
471 } else if (enable_si_irq(smi_info)) {
472 ipmi_free_smi_msg(msg);
473 msg = NULL;
475 return msg;
478 static void handle_flags(struct smi_info *smi_info)
480 retry:
481 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
482 /* Watchdog pre-timeout */
483 smi_inc_stat(smi_info, watchdog_pretimeouts);
485 start_clear_flags(smi_info);
486 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
487 if (smi_info->intf)
488 ipmi_smi_watchdog_pretimeout(smi_info->intf);
489 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
490 /* Messages available. */
491 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
492 if (!smi_info->curr_msg)
493 return;
495 start_getting_msg_queue(smi_info);
496 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
497 /* Events available. */
498 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
499 if (!smi_info->curr_msg)
500 return;
502 start_getting_events(smi_info);
503 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
504 smi_info->oem_data_avail_handler) {
505 if (smi_info->oem_data_avail_handler(smi_info))
506 goto retry;
507 } else
508 smi_info->si_state = SI_NORMAL;
512 * Global enables we care about.
514 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
515 IPMI_BMC_EVT_MSG_INTR)
517 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
518 bool *irq_on)
520 u8 enables = 0;
522 if (smi_info->supports_event_msg_buff)
523 enables |= IPMI_BMC_EVT_MSG_BUFF;
525 if (((smi_info->io.irq && !smi_info->interrupt_disabled) ||
526 smi_info->cannot_disable_irq) &&
527 !smi_info->irq_enable_broken)
528 enables |= IPMI_BMC_RCV_MSG_INTR;
530 if (smi_info->supports_event_msg_buff &&
531 smi_info->io.irq && !smi_info->interrupt_disabled &&
532 !smi_info->irq_enable_broken)
533 enables |= IPMI_BMC_EVT_MSG_INTR;
535 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
537 return enables;
540 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
542 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
544 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
546 if ((bool)irqstate == irq_on)
547 return;
549 if (irq_on)
550 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
551 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
552 else
553 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
556 static void handle_transaction_done(struct smi_info *smi_info)
558 struct ipmi_smi_msg *msg;
560 debug_timestamp("Done");
561 switch (smi_info->si_state) {
562 case SI_NORMAL:
563 if (!smi_info->curr_msg)
564 break;
566 smi_info->curr_msg->rsp_size
567 = smi_info->handlers->get_result(
568 smi_info->si_sm,
569 smi_info->curr_msg->rsp,
570 IPMI_MAX_MSG_LENGTH);
573 * Do this here becase deliver_recv_msg() releases the
574 * lock, and a new message can be put in during the
575 * time the lock is released.
577 msg = smi_info->curr_msg;
578 smi_info->curr_msg = NULL;
579 deliver_recv_msg(smi_info, msg);
580 break;
582 case SI_GETTING_FLAGS:
584 unsigned char msg[4];
585 unsigned int len;
587 /* We got the flags from the SMI, now handle them. */
588 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
589 if (msg[2] != 0) {
590 /* Error fetching flags, just give up for now. */
591 smi_info->si_state = SI_NORMAL;
592 } else if (len < 4) {
594 * Hmm, no flags. That's technically illegal, but
595 * don't use uninitialized data.
597 smi_info->si_state = SI_NORMAL;
598 } else {
599 smi_info->msg_flags = msg[3];
600 handle_flags(smi_info);
602 break;
605 case SI_CLEARING_FLAGS:
607 unsigned char msg[3];
609 /* We cleared the flags. */
610 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
611 if (msg[2] != 0) {
612 /* Error clearing flags */
613 dev_warn(smi_info->io.dev,
614 "Error clearing flags: %2.2x\n", msg[2]);
616 smi_info->si_state = SI_NORMAL;
617 break;
620 case SI_GETTING_EVENTS:
622 smi_info->curr_msg->rsp_size
623 = smi_info->handlers->get_result(
624 smi_info->si_sm,
625 smi_info->curr_msg->rsp,
626 IPMI_MAX_MSG_LENGTH);
629 * Do this here becase deliver_recv_msg() releases the
630 * lock, and a new message can be put in during the
631 * time the lock is released.
633 msg = smi_info->curr_msg;
634 smi_info->curr_msg = NULL;
635 if (msg->rsp[2] != 0) {
636 /* Error getting event, probably done. */
637 msg->done(msg);
639 /* Take off the event flag. */
640 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
641 handle_flags(smi_info);
642 } else {
643 smi_inc_stat(smi_info, events);
646 * Do this before we deliver the message
647 * because delivering the message releases the
648 * lock and something else can mess with the
649 * state.
651 handle_flags(smi_info);
653 deliver_recv_msg(smi_info, msg);
655 break;
658 case SI_GETTING_MESSAGES:
660 smi_info->curr_msg->rsp_size
661 = smi_info->handlers->get_result(
662 smi_info->si_sm,
663 smi_info->curr_msg->rsp,
664 IPMI_MAX_MSG_LENGTH);
667 * Do this here becase deliver_recv_msg() releases the
668 * lock, and a new message can be put in during the
669 * time the lock is released.
671 msg = smi_info->curr_msg;
672 smi_info->curr_msg = NULL;
673 if (msg->rsp[2] != 0) {
674 /* Error getting event, probably done. */
675 msg->done(msg);
677 /* Take off the msg flag. */
678 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
679 handle_flags(smi_info);
680 } else {
681 smi_inc_stat(smi_info, incoming_messages);
684 * Do this before we deliver the message
685 * because delivering the message releases the
686 * lock and something else can mess with the
687 * state.
689 handle_flags(smi_info);
691 deliver_recv_msg(smi_info, msg);
693 break;
696 case SI_CHECKING_ENABLES:
698 unsigned char msg[4];
699 u8 enables;
700 bool irq_on;
702 /* We got the flags from the SMI, now handle them. */
703 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
704 if (msg[2] != 0) {
705 dev_warn(smi_info->io.dev,
706 "Couldn't get irq info: %x.\n", msg[2]);
707 dev_warn(smi_info->io.dev,
708 "Maybe ok, but ipmi might run very slowly.\n");
709 smi_info->si_state = SI_NORMAL;
710 break;
712 enables = current_global_enables(smi_info, 0, &irq_on);
713 if (smi_info->io.si_type == SI_BT)
714 /* BT has its own interrupt enable bit. */
715 check_bt_irq(smi_info, irq_on);
716 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
717 /* Enables are not correct, fix them. */
718 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
719 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
720 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
721 smi_info->handlers->start_transaction(
722 smi_info->si_sm, msg, 3);
723 smi_info->si_state = SI_SETTING_ENABLES;
724 } else if (smi_info->supports_event_msg_buff) {
725 smi_info->curr_msg = ipmi_alloc_smi_msg();
726 if (!smi_info->curr_msg) {
727 smi_info->si_state = SI_NORMAL;
728 break;
730 start_getting_events(smi_info);
731 } else {
732 smi_info->si_state = SI_NORMAL;
734 break;
737 case SI_SETTING_ENABLES:
739 unsigned char msg[4];
741 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
742 if (msg[2] != 0)
743 dev_warn(smi_info->io.dev,
744 "Could not set the global enables: 0x%x.\n",
745 msg[2]);
747 if (smi_info->supports_event_msg_buff) {
748 smi_info->curr_msg = ipmi_alloc_smi_msg();
749 if (!smi_info->curr_msg) {
750 smi_info->si_state = SI_NORMAL;
751 break;
753 start_getting_events(smi_info);
754 } else {
755 smi_info->si_state = SI_NORMAL;
757 break;
763 * Called on timeouts and events. Timeouts should pass the elapsed
764 * time, interrupts should pass in zero. Must be called with
765 * si_lock held and interrupts disabled.
767 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
768 int time)
770 enum si_sm_result si_sm_result;
772 restart:
774 * There used to be a loop here that waited a little while
775 * (around 25us) before giving up. That turned out to be
776 * pointless, the minimum delays I was seeing were in the 300us
777 * range, which is far too long to wait in an interrupt. So
778 * we just run until the state machine tells us something
779 * happened or it needs a delay.
781 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
782 time = 0;
783 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
784 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
786 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
787 smi_inc_stat(smi_info, complete_transactions);
789 handle_transaction_done(smi_info);
790 goto restart;
791 } else if (si_sm_result == SI_SM_HOSED) {
792 smi_inc_stat(smi_info, hosed_count);
795 * Do the before return_hosed_msg, because that
796 * releases the lock.
798 smi_info->si_state = SI_NORMAL;
799 if (smi_info->curr_msg != NULL) {
801 * If we were handling a user message, format
802 * a response to send to the upper layer to
803 * tell it about the error.
805 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
807 goto restart;
811 * We prefer handling attn over new messages. But don't do
812 * this if there is not yet an upper layer to handle anything.
814 if (likely(smi_info->intf) &&
815 (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
816 unsigned char msg[2];
818 if (smi_info->si_state != SI_NORMAL) {
820 * We got an ATTN, but we are doing something else.
821 * Handle the ATTN later.
823 smi_info->got_attn = true;
824 } else {
825 smi_info->got_attn = false;
826 smi_inc_stat(smi_info, attentions);
829 * Got a attn, send down a get message flags to see
830 * what's causing it. It would be better to handle
831 * this in the upper layer, but due to the way
832 * interrupts work with the SMI, that's not really
833 * possible.
835 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
836 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
838 start_new_msg(smi_info, msg, 2);
839 smi_info->si_state = SI_GETTING_FLAGS;
840 goto restart;
844 /* If we are currently idle, try to start the next message. */
845 if (si_sm_result == SI_SM_IDLE) {
846 smi_inc_stat(smi_info, idles);
848 si_sm_result = start_next_msg(smi_info);
849 if (si_sm_result != SI_SM_IDLE)
850 goto restart;
853 if ((si_sm_result == SI_SM_IDLE)
854 && (atomic_read(&smi_info->req_events))) {
856 * We are idle and the upper layer requested that I fetch
857 * events, so do so.
859 atomic_set(&smi_info->req_events, 0);
862 * Take this opportunity to check the interrupt and
863 * message enable state for the BMC. The BMC can be
864 * asynchronously reset, and may thus get interrupts
865 * disable and messages disabled.
867 if (smi_info->supports_event_msg_buff || smi_info->io.irq) {
868 start_check_enables(smi_info);
869 } else {
870 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
871 if (!smi_info->curr_msg)
872 goto out;
874 start_getting_events(smi_info);
876 goto restart;
879 if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
880 /* Ok it if fails, the timer will just go off. */
881 if (del_timer(&smi_info->si_timer))
882 smi_info->timer_running = false;
885 out:
886 return si_sm_result;
889 static void check_start_timer_thread(struct smi_info *smi_info)
891 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
892 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
894 if (smi_info->thread)
895 wake_up_process(smi_info->thread);
897 start_next_msg(smi_info);
898 smi_event_handler(smi_info, 0);
902 static void flush_messages(void *send_info)
904 struct smi_info *smi_info = send_info;
905 enum si_sm_result result;
908 * Currently, this function is called only in run-to-completion
909 * mode. This means we are single-threaded, no need for locks.
911 result = smi_event_handler(smi_info, 0);
912 while (result != SI_SM_IDLE) {
913 udelay(SI_SHORT_TIMEOUT_USEC);
914 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
918 static void sender(void *send_info,
919 struct ipmi_smi_msg *msg)
921 struct smi_info *smi_info = send_info;
922 unsigned long flags;
924 debug_timestamp("Enqueue");
926 if (smi_info->run_to_completion) {
928 * If we are running to completion, start it. Upper
929 * layer will call flush_messages to clear it out.
931 smi_info->waiting_msg = msg;
932 return;
935 spin_lock_irqsave(&smi_info->si_lock, flags);
937 * The following two lines don't need to be under the lock for
938 * the lock's sake, but they do need SMP memory barriers to
939 * avoid getting things out of order. We are already claiming
940 * the lock, anyway, so just do it under the lock to avoid the
941 * ordering problem.
943 BUG_ON(smi_info->waiting_msg);
944 smi_info->waiting_msg = msg;
945 check_start_timer_thread(smi_info);
946 spin_unlock_irqrestore(&smi_info->si_lock, flags);
949 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
951 struct smi_info *smi_info = send_info;
953 smi_info->run_to_completion = i_run_to_completion;
954 if (i_run_to_completion)
955 flush_messages(smi_info);
959 * Use -1 in the nsec value of the busy waiting timespec to tell that
960 * we are spinning in kipmid looking for something and not delaying
961 * between checks
963 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
965 ts->tv_nsec = -1;
967 static inline int ipmi_si_is_busy(struct timespec64 *ts)
969 return ts->tv_nsec != -1;
972 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
973 const struct smi_info *smi_info,
974 struct timespec64 *busy_until)
976 unsigned int max_busy_us = 0;
978 if (smi_info->intf_num < num_max_busy_us)
979 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
980 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
981 ipmi_si_set_not_busy(busy_until);
982 else if (!ipmi_si_is_busy(busy_until)) {
983 getnstimeofday64(busy_until);
984 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
985 } else {
986 struct timespec64 now;
988 getnstimeofday64(&now);
989 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
990 ipmi_si_set_not_busy(busy_until);
991 return 0;
994 return 1;
999 * A busy-waiting loop for speeding up IPMI operation.
1001 * Lousy hardware makes this hard. This is only enabled for systems
1002 * that are not BT and do not have interrupts. It starts spinning
1003 * when an operation is complete or until max_busy tells it to stop
1004 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1005 * Documentation/IPMI.txt for details.
1007 static int ipmi_thread(void *data)
1009 struct smi_info *smi_info = data;
1010 unsigned long flags;
1011 enum si_sm_result smi_result;
1012 struct timespec64 busy_until;
1014 ipmi_si_set_not_busy(&busy_until);
1015 set_user_nice(current, MAX_NICE);
1016 while (!kthread_should_stop()) {
1017 int busy_wait;
1019 spin_lock_irqsave(&(smi_info->si_lock), flags);
1020 smi_result = smi_event_handler(smi_info, 0);
1023 * If the driver is doing something, there is a possible
1024 * race with the timer. If the timer handler see idle,
1025 * and the thread here sees something else, the timer
1026 * handler won't restart the timer even though it is
1027 * required. So start it here if necessary.
1029 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1030 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1032 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1033 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1034 &busy_until);
1035 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1036 ; /* do nothing */
1037 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1038 schedule();
1039 else if (smi_result == SI_SM_IDLE) {
1040 if (atomic_read(&smi_info->need_watch)) {
1041 schedule_timeout_interruptible(100);
1042 } else {
1043 /* Wait to be woken up when we are needed. */
1044 __set_current_state(TASK_INTERRUPTIBLE);
1045 schedule();
1047 } else
1048 schedule_timeout_interruptible(1);
1050 return 0;
1054 static void poll(void *send_info)
1056 struct smi_info *smi_info = send_info;
1057 unsigned long flags = 0;
1058 bool run_to_completion = smi_info->run_to_completion;
1061 * Make sure there is some delay in the poll loop so we can
1062 * drive time forward and timeout things.
1064 udelay(10);
1065 if (!run_to_completion)
1066 spin_lock_irqsave(&smi_info->si_lock, flags);
1067 smi_event_handler(smi_info, 10);
1068 if (!run_to_completion)
1069 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1072 static void request_events(void *send_info)
1074 struct smi_info *smi_info = send_info;
1076 if (!smi_info->has_event_buffer)
1077 return;
1079 atomic_set(&smi_info->req_events, 1);
1082 static void set_need_watch(void *send_info, bool enable)
1084 struct smi_info *smi_info = send_info;
1085 unsigned long flags;
1087 atomic_set(&smi_info->need_watch, enable);
1088 spin_lock_irqsave(&smi_info->si_lock, flags);
1089 check_start_timer_thread(smi_info);
1090 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1093 static void smi_timeout(struct timer_list *t)
1095 struct smi_info *smi_info = from_timer(smi_info, t, si_timer);
1096 enum si_sm_result smi_result;
1097 unsigned long flags;
1098 unsigned long jiffies_now;
1099 long time_diff;
1100 long timeout;
1102 spin_lock_irqsave(&(smi_info->si_lock), flags);
1103 debug_timestamp("Timer");
1105 jiffies_now = jiffies;
1106 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1107 * SI_USEC_PER_JIFFY);
1108 smi_result = smi_event_handler(smi_info, time_diff);
1110 if ((smi_info->io.irq) && (!smi_info->interrupt_disabled)) {
1111 /* Running with interrupts, only do long timeouts. */
1112 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1113 smi_inc_stat(smi_info, long_timeouts);
1114 goto do_mod_timer;
1118 * If the state machine asks for a short delay, then shorten
1119 * the timer timeout.
1121 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1122 smi_inc_stat(smi_info, short_timeouts);
1123 timeout = jiffies + 1;
1124 } else {
1125 smi_inc_stat(smi_info, long_timeouts);
1126 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1129 do_mod_timer:
1130 if (smi_result != SI_SM_IDLE)
1131 smi_mod_timer(smi_info, timeout);
1132 else
1133 smi_info->timer_running = false;
1134 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1137 irqreturn_t ipmi_si_irq_handler(int irq, void *data)
1139 struct smi_info *smi_info = data;
1140 unsigned long flags;
1142 if (smi_info->io.si_type == SI_BT)
1143 /* We need to clear the IRQ flag for the BT interface. */
1144 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1145 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1146 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1148 spin_lock_irqsave(&(smi_info->si_lock), flags);
1150 smi_inc_stat(smi_info, interrupts);
1152 debug_timestamp("Interrupt");
1154 smi_event_handler(smi_info, 0);
1155 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1156 return IRQ_HANDLED;
1159 static int smi_start_processing(void *send_info,
1160 ipmi_smi_t intf)
1162 struct smi_info *new_smi = send_info;
1163 int enable = 0;
1165 new_smi->intf = intf;
1167 /* Set up the timer that drives the interface. */
1168 timer_setup(&new_smi->si_timer, smi_timeout, 0);
1169 new_smi->timer_can_start = true;
1170 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1172 /* Try to claim any interrupts. */
1173 if (new_smi->io.irq_setup) {
1174 new_smi->io.irq_handler_data = new_smi;
1175 new_smi->io.irq_setup(&new_smi->io);
1179 * Check if the user forcefully enabled the daemon.
1181 if (new_smi->intf_num < num_force_kipmid)
1182 enable = force_kipmid[new_smi->intf_num];
1184 * The BT interface is efficient enough to not need a thread,
1185 * and there is no need for a thread if we have interrupts.
1187 else if ((new_smi->io.si_type != SI_BT) && (!new_smi->io.irq))
1188 enable = 1;
1190 if (enable) {
1191 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1192 "kipmi%d", new_smi->intf_num);
1193 if (IS_ERR(new_smi->thread)) {
1194 dev_notice(new_smi->io.dev, "Could not start"
1195 " kernel thread due to error %ld, only using"
1196 " timers to drive the interface\n",
1197 PTR_ERR(new_smi->thread));
1198 new_smi->thread = NULL;
1202 return 0;
1205 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1207 struct smi_info *smi = send_info;
1209 data->addr_src = smi->io.addr_source;
1210 data->dev = smi->io.dev;
1211 data->addr_info = smi->io.addr_info;
1212 get_device(smi->io.dev);
1214 return 0;
1217 static void set_maintenance_mode(void *send_info, bool enable)
1219 struct smi_info *smi_info = send_info;
1221 if (!enable)
1222 atomic_set(&smi_info->req_events, 0);
1225 static const struct ipmi_smi_handlers handlers = {
1226 .owner = THIS_MODULE,
1227 .start_processing = smi_start_processing,
1228 .get_smi_info = get_smi_info,
1229 .sender = sender,
1230 .request_events = request_events,
1231 .set_need_watch = set_need_watch,
1232 .set_maintenance_mode = set_maintenance_mode,
1233 .set_run_to_completion = set_run_to_completion,
1234 .flush_messages = flush_messages,
1235 .poll = poll,
1238 static LIST_HEAD(smi_infos);
1239 static DEFINE_MUTEX(smi_infos_lock);
1240 static int smi_num; /* Used to sequence the SMIs */
1242 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1244 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1245 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1246 " disabled(0). Normally the IPMI driver auto-detects"
1247 " this, but the value may be overridden by this parm.");
1248 module_param(unload_when_empty, bool, 0);
1249 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1250 " specified or found, default is 1. Setting to 0"
1251 " is useful for hot add of devices using hotmod.");
1252 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1253 MODULE_PARM_DESC(kipmid_max_busy_us,
1254 "Max time (in microseconds) to busy-wait for IPMI data before"
1255 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1256 " if kipmid is using up a lot of CPU time.");
1258 void ipmi_irq_finish_setup(struct si_sm_io *io)
1260 if (io->si_type == SI_BT)
1261 /* Enable the interrupt in the BT interface. */
1262 io->outputb(io, IPMI_BT_INTMASK_REG,
1263 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1266 void ipmi_irq_start_cleanup(struct si_sm_io *io)
1268 if (io->si_type == SI_BT)
1269 /* Disable the interrupt in the BT interface. */
1270 io->outputb(io, IPMI_BT_INTMASK_REG, 0);
1273 static void std_irq_cleanup(struct si_sm_io *io)
1275 ipmi_irq_start_cleanup(io);
1276 free_irq(io->irq, io->irq_handler_data);
1279 int ipmi_std_irq_setup(struct si_sm_io *io)
1281 int rv;
1283 if (!io->irq)
1284 return 0;
1286 rv = request_irq(io->irq,
1287 ipmi_si_irq_handler,
1288 IRQF_SHARED,
1289 DEVICE_NAME,
1290 io->irq_handler_data);
1291 if (rv) {
1292 dev_warn(io->dev, "%s unable to claim interrupt %d,"
1293 " running polled\n",
1294 DEVICE_NAME, io->irq);
1295 io->irq = 0;
1296 } else {
1297 io->irq_cleanup = std_irq_cleanup;
1298 ipmi_irq_finish_setup(io);
1299 dev_info(io->dev, "Using irq %d\n", io->irq);
1302 return rv;
1305 static int wait_for_msg_done(struct smi_info *smi_info)
1307 enum si_sm_result smi_result;
1309 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
1310 for (;;) {
1311 if (smi_result == SI_SM_CALL_WITH_DELAY ||
1312 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
1313 schedule_timeout_uninterruptible(1);
1314 smi_result = smi_info->handlers->event(
1315 smi_info->si_sm, jiffies_to_usecs(1));
1316 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1317 smi_result = smi_info->handlers->event(
1318 smi_info->si_sm, 0);
1319 } else
1320 break;
1322 if (smi_result == SI_SM_HOSED)
1324 * We couldn't get the state machine to run, so whatever's at
1325 * the port is probably not an IPMI SMI interface.
1327 return -ENODEV;
1329 return 0;
1332 static int try_get_dev_id(struct smi_info *smi_info)
1334 unsigned char msg[2];
1335 unsigned char *resp;
1336 unsigned long resp_len;
1337 int rv = 0;
1339 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1340 if (!resp)
1341 return -ENOMEM;
1344 * Do a Get Device ID command, since it comes back with some
1345 * useful info.
1347 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1348 msg[1] = IPMI_GET_DEVICE_ID_CMD;
1349 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1351 rv = wait_for_msg_done(smi_info);
1352 if (rv)
1353 goto out;
1355 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1356 resp, IPMI_MAX_MSG_LENGTH);
1358 /* Check and record info from the get device id, in case we need it. */
1359 rv = ipmi_demangle_device_id(resp[0] >> 2, resp[1],
1360 resp + 2, resp_len - 2, &smi_info->device_id);
1362 out:
1363 kfree(resp);
1364 return rv;
1367 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
1369 unsigned char msg[3];
1370 unsigned char *resp;
1371 unsigned long resp_len;
1372 int rv;
1374 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1375 if (!resp)
1376 return -ENOMEM;
1378 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1379 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1380 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1382 rv = wait_for_msg_done(smi_info);
1383 if (rv) {
1384 dev_warn(smi_info->io.dev,
1385 "Error getting response from get global enables command: %d\n",
1386 rv);
1387 goto out;
1390 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1391 resp, IPMI_MAX_MSG_LENGTH);
1393 if (resp_len < 4 ||
1394 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1395 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
1396 resp[2] != 0) {
1397 dev_warn(smi_info->io.dev,
1398 "Invalid return from get global enables command: %ld %x %x %x\n",
1399 resp_len, resp[0], resp[1], resp[2]);
1400 rv = -EINVAL;
1401 goto out;
1402 } else {
1403 *enables = resp[3];
1406 out:
1407 kfree(resp);
1408 return rv;
1412 * Returns 1 if it gets an error from the command.
1414 static int set_global_enables(struct smi_info *smi_info, u8 enables)
1416 unsigned char msg[3];
1417 unsigned char *resp;
1418 unsigned long resp_len;
1419 int rv;
1421 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1422 if (!resp)
1423 return -ENOMEM;
1425 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1426 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1427 msg[2] = enables;
1428 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1430 rv = wait_for_msg_done(smi_info);
1431 if (rv) {
1432 dev_warn(smi_info->io.dev,
1433 "Error getting response from set global enables command: %d\n",
1434 rv);
1435 goto out;
1438 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1439 resp, IPMI_MAX_MSG_LENGTH);
1441 if (resp_len < 3 ||
1442 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1443 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1444 dev_warn(smi_info->io.dev,
1445 "Invalid return from set global enables command: %ld %x %x\n",
1446 resp_len, resp[0], resp[1]);
1447 rv = -EINVAL;
1448 goto out;
1451 if (resp[2] != 0)
1452 rv = 1;
1454 out:
1455 kfree(resp);
1456 return rv;
1460 * Some BMCs do not support clearing the receive irq bit in the global
1461 * enables (even if they don't support interrupts on the BMC). Check
1462 * for this and handle it properly.
1464 static void check_clr_rcv_irq(struct smi_info *smi_info)
1466 u8 enables = 0;
1467 int rv;
1469 rv = get_global_enables(smi_info, &enables);
1470 if (!rv) {
1471 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
1472 /* Already clear, should work ok. */
1473 return;
1475 enables &= ~IPMI_BMC_RCV_MSG_INTR;
1476 rv = set_global_enables(smi_info, enables);
1479 if (rv < 0) {
1480 dev_err(smi_info->io.dev,
1481 "Cannot check clearing the rcv irq: %d\n", rv);
1482 return;
1485 if (rv) {
1487 * An error when setting the event buffer bit means
1488 * clearing the bit is not supported.
1490 dev_warn(smi_info->io.dev,
1491 "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1492 smi_info->cannot_disable_irq = true;
1497 * Some BMCs do not support setting the interrupt bits in the global
1498 * enables even if they support interrupts. Clearly bad, but we can
1499 * compensate.
1501 static void check_set_rcv_irq(struct smi_info *smi_info)
1503 u8 enables = 0;
1504 int rv;
1506 if (!smi_info->io.irq)
1507 return;
1509 rv = get_global_enables(smi_info, &enables);
1510 if (!rv) {
1511 enables |= IPMI_BMC_RCV_MSG_INTR;
1512 rv = set_global_enables(smi_info, enables);
1515 if (rv < 0) {
1516 dev_err(smi_info->io.dev,
1517 "Cannot check setting the rcv irq: %d\n", rv);
1518 return;
1521 if (rv) {
1523 * An error when setting the event buffer bit means
1524 * setting the bit is not supported.
1526 dev_warn(smi_info->io.dev,
1527 "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
1528 smi_info->cannot_disable_irq = true;
1529 smi_info->irq_enable_broken = true;
1533 static int try_enable_event_buffer(struct smi_info *smi_info)
1535 unsigned char msg[3];
1536 unsigned char *resp;
1537 unsigned long resp_len;
1538 int rv = 0;
1540 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
1541 if (!resp)
1542 return -ENOMEM;
1544 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1545 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
1546 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1548 rv = wait_for_msg_done(smi_info);
1549 if (rv) {
1550 pr_warn(PFX "Error getting response from get global enables command, the event buffer is not enabled.\n");
1551 goto out;
1554 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1555 resp, IPMI_MAX_MSG_LENGTH);
1557 if (resp_len < 4 ||
1558 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1559 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
1560 resp[2] != 0) {
1561 pr_warn(PFX "Invalid return from get global enables command, cannot enable the event buffer.\n");
1562 rv = -EINVAL;
1563 goto out;
1566 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
1567 /* buffer is already enabled, nothing to do. */
1568 smi_info->supports_event_msg_buff = true;
1569 goto out;
1572 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1573 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
1574 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
1575 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
1577 rv = wait_for_msg_done(smi_info);
1578 if (rv) {
1579 pr_warn(PFX "Error getting response from set global, enables command, the event buffer is not enabled.\n");
1580 goto out;
1583 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1584 resp, IPMI_MAX_MSG_LENGTH);
1586 if (resp_len < 3 ||
1587 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
1588 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
1589 pr_warn(PFX "Invalid return from get global, enables command, not enable the event buffer.\n");
1590 rv = -EINVAL;
1591 goto out;
1594 if (resp[2] != 0)
1596 * An error when setting the event buffer bit means
1597 * that the event buffer is not supported.
1599 rv = -ENOENT;
1600 else
1601 smi_info->supports_event_msg_buff = true;
1603 out:
1604 kfree(resp);
1605 return rv;
1608 #ifdef CONFIG_IPMI_PROC_INTERFACE
1609 static int smi_type_proc_show(struct seq_file *m, void *v)
1611 struct smi_info *smi = m->private;
1613 seq_printf(m, "%s\n", si_to_str[smi->io.si_type]);
1615 return 0;
1618 static int smi_type_proc_open(struct inode *inode, struct file *file)
1620 return single_open(file, smi_type_proc_show, PDE_DATA(inode));
1623 static const struct file_operations smi_type_proc_ops = {
1624 .open = smi_type_proc_open,
1625 .read = seq_read,
1626 .llseek = seq_lseek,
1627 .release = single_release,
1630 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
1632 struct smi_info *smi = m->private;
1634 seq_printf(m, "interrupts_enabled: %d\n",
1635 smi->io.irq && !smi->interrupt_disabled);
1636 seq_printf(m, "short_timeouts: %u\n",
1637 smi_get_stat(smi, short_timeouts));
1638 seq_printf(m, "long_timeouts: %u\n",
1639 smi_get_stat(smi, long_timeouts));
1640 seq_printf(m, "idles: %u\n",
1641 smi_get_stat(smi, idles));
1642 seq_printf(m, "interrupts: %u\n",
1643 smi_get_stat(smi, interrupts));
1644 seq_printf(m, "attentions: %u\n",
1645 smi_get_stat(smi, attentions));
1646 seq_printf(m, "flag_fetches: %u\n",
1647 smi_get_stat(smi, flag_fetches));
1648 seq_printf(m, "hosed_count: %u\n",
1649 smi_get_stat(smi, hosed_count));
1650 seq_printf(m, "complete_transactions: %u\n",
1651 smi_get_stat(smi, complete_transactions));
1652 seq_printf(m, "events: %u\n",
1653 smi_get_stat(smi, events));
1654 seq_printf(m, "watchdog_pretimeouts: %u\n",
1655 smi_get_stat(smi, watchdog_pretimeouts));
1656 seq_printf(m, "incoming_messages: %u\n",
1657 smi_get_stat(smi, incoming_messages));
1658 return 0;
1661 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
1663 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
1666 static const struct file_operations smi_si_stats_proc_ops = {
1667 .open = smi_si_stats_proc_open,
1668 .read = seq_read,
1669 .llseek = seq_lseek,
1670 .release = single_release,
1673 static int smi_params_proc_show(struct seq_file *m, void *v)
1675 struct smi_info *smi = m->private;
1677 seq_printf(m,
1678 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1679 si_to_str[smi->io.si_type],
1680 addr_space_to_str[smi->io.addr_type],
1681 smi->io.addr_data,
1682 smi->io.regspacing,
1683 smi->io.regsize,
1684 smi->io.regshift,
1685 smi->io.irq,
1686 smi->io.slave_addr);
1688 return 0;
1691 static int smi_params_proc_open(struct inode *inode, struct file *file)
1693 return single_open(file, smi_params_proc_show, PDE_DATA(inode));
1696 static const struct file_operations smi_params_proc_ops = {
1697 .open = smi_params_proc_open,
1698 .read = seq_read,
1699 .llseek = seq_lseek,
1700 .release = single_release,
1702 #endif
1704 #define IPMI_SI_ATTR(name) \
1705 static ssize_t ipmi_##name##_show(struct device *dev, \
1706 struct device_attribute *attr, \
1707 char *buf) \
1709 struct smi_info *smi_info = dev_get_drvdata(dev); \
1711 return snprintf(buf, 10, "%u\n", smi_get_stat(smi_info, name)); \
1713 static DEVICE_ATTR(name, S_IRUGO, ipmi_##name##_show, NULL)
1715 static ssize_t ipmi_type_show(struct device *dev,
1716 struct device_attribute *attr,
1717 char *buf)
1719 struct smi_info *smi_info = dev_get_drvdata(dev);
1721 return snprintf(buf, 10, "%s\n", si_to_str[smi_info->io.si_type]);
1723 static DEVICE_ATTR(type, S_IRUGO, ipmi_type_show, NULL);
1725 static ssize_t ipmi_interrupts_enabled_show(struct device *dev,
1726 struct device_attribute *attr,
1727 char *buf)
1729 struct smi_info *smi_info = dev_get_drvdata(dev);
1730 int enabled = smi_info->io.irq && !smi_info->interrupt_disabled;
1732 return snprintf(buf, 10, "%d\n", enabled);
1734 static DEVICE_ATTR(interrupts_enabled, S_IRUGO,
1735 ipmi_interrupts_enabled_show, NULL);
1737 IPMI_SI_ATTR(short_timeouts);
1738 IPMI_SI_ATTR(long_timeouts);
1739 IPMI_SI_ATTR(idles);
1740 IPMI_SI_ATTR(interrupts);
1741 IPMI_SI_ATTR(attentions);
1742 IPMI_SI_ATTR(flag_fetches);
1743 IPMI_SI_ATTR(hosed_count);
1744 IPMI_SI_ATTR(complete_transactions);
1745 IPMI_SI_ATTR(events);
1746 IPMI_SI_ATTR(watchdog_pretimeouts);
1747 IPMI_SI_ATTR(incoming_messages);
1749 static ssize_t ipmi_params_show(struct device *dev,
1750 struct device_attribute *attr,
1751 char *buf)
1753 struct smi_info *smi_info = dev_get_drvdata(dev);
1755 return snprintf(buf, 200,
1756 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
1757 si_to_str[smi_info->io.si_type],
1758 addr_space_to_str[smi_info->io.addr_type],
1759 smi_info->io.addr_data,
1760 smi_info->io.regspacing,
1761 smi_info->io.regsize,
1762 smi_info->io.regshift,
1763 smi_info->io.irq,
1764 smi_info->io.slave_addr);
1766 static DEVICE_ATTR(params, S_IRUGO, ipmi_params_show, NULL);
1768 static struct attribute *ipmi_si_dev_attrs[] = {
1769 &dev_attr_type.attr,
1770 &dev_attr_interrupts_enabled.attr,
1771 &dev_attr_short_timeouts.attr,
1772 &dev_attr_long_timeouts.attr,
1773 &dev_attr_idles.attr,
1774 &dev_attr_interrupts.attr,
1775 &dev_attr_attentions.attr,
1776 &dev_attr_flag_fetches.attr,
1777 &dev_attr_hosed_count.attr,
1778 &dev_attr_complete_transactions.attr,
1779 &dev_attr_events.attr,
1780 &dev_attr_watchdog_pretimeouts.attr,
1781 &dev_attr_incoming_messages.attr,
1782 &dev_attr_params.attr,
1783 NULL
1786 static const struct attribute_group ipmi_si_dev_attr_group = {
1787 .attrs = ipmi_si_dev_attrs,
1791 * oem_data_avail_to_receive_msg_avail
1792 * @info - smi_info structure with msg_flags set
1794 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
1795 * Returns 1 indicating need to re-run handle_flags().
1797 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
1799 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
1800 RECEIVE_MSG_AVAIL);
1801 return 1;
1805 * setup_dell_poweredge_oem_data_handler
1806 * @info - smi_info.device_id must be populated
1808 * Systems that match, but have firmware version < 1.40 may assert
1809 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
1810 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
1811 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
1812 * as RECEIVE_MSG_AVAIL instead.
1814 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
1815 * assert the OEM[012] bits, and if it did, the driver would have to
1816 * change to handle that properly, we don't actually check for the
1817 * firmware version.
1818 * Device ID = 0x20 BMC on PowerEdge 8G servers
1819 * Device Revision = 0x80
1820 * Firmware Revision1 = 0x01 BMC version 1.40
1821 * Firmware Revision2 = 0x40 BCD encoded
1822 * IPMI Version = 0x51 IPMI 1.5
1823 * Manufacturer ID = A2 02 00 Dell IANA
1825 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
1826 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
1829 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
1830 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
1831 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
1832 #define DELL_IANA_MFR_ID 0x0002a2
1833 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
1835 struct ipmi_device_id *id = &smi_info->device_id;
1836 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
1837 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
1838 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
1839 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
1840 smi_info->oem_data_avail_handler =
1841 oem_data_avail_to_receive_msg_avail;
1842 } else if (ipmi_version_major(id) < 1 ||
1843 (ipmi_version_major(id) == 1 &&
1844 ipmi_version_minor(id) < 5)) {
1845 smi_info->oem_data_avail_handler =
1846 oem_data_avail_to_receive_msg_avail;
1851 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
1852 static void return_hosed_msg_badsize(struct smi_info *smi_info)
1854 struct ipmi_smi_msg *msg = smi_info->curr_msg;
1856 /* Make it a response */
1857 msg->rsp[0] = msg->data[0] | 4;
1858 msg->rsp[1] = msg->data[1];
1859 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
1860 msg->rsp_size = 3;
1861 smi_info->curr_msg = NULL;
1862 deliver_recv_msg(smi_info, msg);
1866 * dell_poweredge_bt_xaction_handler
1867 * @info - smi_info.device_id must be populated
1869 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
1870 * not respond to a Get SDR command if the length of the data
1871 * requested is exactly 0x3A, which leads to command timeouts and no
1872 * data returned. This intercepts such commands, and causes userspace
1873 * callers to try again with a different-sized buffer, which succeeds.
1876 #define STORAGE_NETFN 0x0A
1877 #define STORAGE_CMD_GET_SDR 0x23
1878 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
1879 unsigned long unused,
1880 void *in)
1882 struct smi_info *smi_info = in;
1883 unsigned char *data = smi_info->curr_msg->data;
1884 unsigned int size = smi_info->curr_msg->data_size;
1885 if (size >= 8 &&
1886 (data[0]>>2) == STORAGE_NETFN &&
1887 data[1] == STORAGE_CMD_GET_SDR &&
1888 data[7] == 0x3A) {
1889 return_hosed_msg_badsize(smi_info);
1890 return NOTIFY_STOP;
1892 return NOTIFY_DONE;
1895 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
1896 .notifier_call = dell_poweredge_bt_xaction_handler,
1900 * setup_dell_poweredge_bt_xaction_handler
1901 * @info - smi_info.device_id must be filled in already
1903 * Fills in smi_info.device_id.start_transaction_pre_hook
1904 * when we know what function to use there.
1906 static void
1907 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
1909 struct ipmi_device_id *id = &smi_info->device_id;
1910 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
1911 smi_info->io.si_type == SI_BT)
1912 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
1916 * setup_oem_data_handler
1917 * @info - smi_info.device_id must be filled in already
1919 * Fills in smi_info.device_id.oem_data_available_handler
1920 * when we know what function to use there.
1923 static void setup_oem_data_handler(struct smi_info *smi_info)
1925 setup_dell_poweredge_oem_data_handler(smi_info);
1928 static void setup_xaction_handlers(struct smi_info *smi_info)
1930 setup_dell_poweredge_bt_xaction_handler(smi_info);
1933 static void check_for_broken_irqs(struct smi_info *smi_info)
1935 check_clr_rcv_irq(smi_info);
1936 check_set_rcv_irq(smi_info);
1939 static inline void stop_timer_and_thread(struct smi_info *smi_info)
1941 if (smi_info->thread != NULL) {
1942 kthread_stop(smi_info->thread);
1943 smi_info->thread = NULL;
1946 smi_info->timer_can_start = false;
1947 if (smi_info->timer_running)
1948 del_timer_sync(&smi_info->si_timer);
1951 static struct smi_info *find_dup_si(struct smi_info *info)
1953 struct smi_info *e;
1955 list_for_each_entry(e, &smi_infos, link) {
1956 if (e->io.addr_type != info->io.addr_type)
1957 continue;
1958 if (e->io.addr_data == info->io.addr_data) {
1960 * This is a cheap hack, ACPI doesn't have a defined
1961 * slave address but SMBIOS does. Pick it up from
1962 * any source that has it available.
1964 if (info->io.slave_addr && !e->io.slave_addr)
1965 e->io.slave_addr = info->io.slave_addr;
1966 return e;
1970 return NULL;
1973 int ipmi_si_add_smi(struct si_sm_io *io)
1975 int rv = 0;
1976 struct smi_info *new_smi, *dup;
1978 if (!io->io_setup) {
1979 if (io->addr_type == IPMI_IO_ADDR_SPACE) {
1980 io->io_setup = ipmi_si_port_setup;
1981 } else if (io->addr_type == IPMI_MEM_ADDR_SPACE) {
1982 io->io_setup = ipmi_si_mem_setup;
1983 } else {
1984 return -EINVAL;
1988 new_smi = kzalloc(sizeof(*new_smi), GFP_KERNEL);
1989 if (!new_smi)
1990 return -ENOMEM;
1991 spin_lock_init(&new_smi->si_lock);
1993 new_smi->io = *io;
1995 mutex_lock(&smi_infos_lock);
1996 dup = find_dup_si(new_smi);
1997 if (dup) {
1998 if (new_smi->io.addr_source == SI_ACPI &&
1999 dup->io.addr_source == SI_SMBIOS) {
2000 /* We prefer ACPI over SMBIOS. */
2001 dev_info(dup->io.dev,
2002 "Removing SMBIOS-specified %s state machine in favor of ACPI\n",
2003 si_to_str[new_smi->io.si_type]);
2004 cleanup_one_si(dup);
2005 } else {
2006 dev_info(new_smi->io.dev,
2007 "%s-specified %s state machine: duplicate\n",
2008 ipmi_addr_src_to_str(new_smi->io.addr_source),
2009 si_to_str[new_smi->io.si_type]);
2010 rv = -EBUSY;
2011 kfree(new_smi);
2012 goto out_err;
2016 pr_info(PFX "Adding %s-specified %s state machine\n",
2017 ipmi_addr_src_to_str(new_smi->io.addr_source),
2018 si_to_str[new_smi->io.si_type]);
2020 /* So we know not to free it unless we have allocated one. */
2021 new_smi->intf = NULL;
2022 new_smi->si_sm = NULL;
2023 new_smi->handlers = NULL;
2025 list_add_tail(&new_smi->link, &smi_infos);
2027 if (initialized) {
2028 rv = try_smi_init(new_smi);
2029 if (rv) {
2030 mutex_unlock(&smi_infos_lock);
2031 cleanup_one_si(new_smi);
2032 return rv;
2035 out_err:
2036 mutex_unlock(&smi_infos_lock);
2037 return rv;
2041 * Try to start up an interface. Must be called with smi_infos_lock
2042 * held, primarily to keep smi_num consistent, we only one to do these
2043 * one at a time.
2045 static int try_smi_init(struct smi_info *new_smi)
2047 int rv = 0;
2048 int i;
2049 char *init_name = NULL;
2050 bool platform_device_registered = false;
2052 pr_info(PFX "Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
2053 ipmi_addr_src_to_str(new_smi->io.addr_source),
2054 si_to_str[new_smi->io.si_type],
2055 addr_space_to_str[new_smi->io.addr_type],
2056 new_smi->io.addr_data,
2057 new_smi->io.slave_addr, new_smi->io.irq);
2059 switch (new_smi->io.si_type) {
2060 case SI_KCS:
2061 new_smi->handlers = &kcs_smi_handlers;
2062 break;
2064 case SI_SMIC:
2065 new_smi->handlers = &smic_smi_handlers;
2066 break;
2068 case SI_BT:
2069 new_smi->handlers = &bt_smi_handlers;
2070 break;
2072 default:
2073 /* No support for anything else yet. */
2074 rv = -EIO;
2075 goto out_err;
2078 new_smi->intf_num = smi_num;
2080 /* Do this early so it's available for logs. */
2081 if (!new_smi->io.dev) {
2082 init_name = kasprintf(GFP_KERNEL, "ipmi_si.%d",
2083 new_smi->intf_num);
2086 * If we don't already have a device from something
2087 * else (like PCI), then register a new one.
2089 new_smi->pdev = platform_device_alloc("ipmi_si",
2090 new_smi->intf_num);
2091 if (!new_smi->pdev) {
2092 pr_err(PFX "Unable to allocate platform device\n");
2093 goto out_err;
2095 new_smi->io.dev = &new_smi->pdev->dev;
2096 new_smi->io.dev->driver = &ipmi_platform_driver.driver;
2097 /* Nulled by device_add() */
2098 new_smi->io.dev->init_name = init_name;
2101 /* Allocate the state machine's data and initialize it. */
2102 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
2103 if (!new_smi->si_sm) {
2104 rv = -ENOMEM;
2105 goto out_err;
2107 new_smi->io.io_size = new_smi->handlers->init_data(new_smi->si_sm,
2108 &new_smi->io);
2110 /* Now that we know the I/O size, we can set up the I/O. */
2111 rv = new_smi->io.io_setup(&new_smi->io);
2112 if (rv) {
2113 dev_err(new_smi->io.dev, "Could not set up I/O space\n");
2114 goto out_err;
2117 /* Do low-level detection first. */
2118 if (new_smi->handlers->detect(new_smi->si_sm)) {
2119 if (new_smi->io.addr_source)
2120 dev_err(new_smi->io.dev,
2121 "Interface detection failed\n");
2122 rv = -ENODEV;
2123 goto out_err;
2127 * Attempt a get device id command. If it fails, we probably
2128 * don't have a BMC here.
2130 rv = try_get_dev_id(new_smi);
2131 if (rv) {
2132 if (new_smi->io.addr_source)
2133 dev_err(new_smi->io.dev,
2134 "There appears to be no BMC at this location\n");
2135 goto out_err;
2138 setup_oem_data_handler(new_smi);
2139 setup_xaction_handlers(new_smi);
2140 check_for_broken_irqs(new_smi);
2142 new_smi->waiting_msg = NULL;
2143 new_smi->curr_msg = NULL;
2144 atomic_set(&new_smi->req_events, 0);
2145 new_smi->run_to_completion = false;
2146 for (i = 0; i < SI_NUM_STATS; i++)
2147 atomic_set(&new_smi->stats[i], 0);
2149 new_smi->interrupt_disabled = true;
2150 atomic_set(&new_smi->need_watch, 0);
2152 rv = try_enable_event_buffer(new_smi);
2153 if (rv == 0)
2154 new_smi->has_event_buffer = true;
2157 * Start clearing the flags before we enable interrupts or the
2158 * timer to avoid racing with the timer.
2160 start_clear_flags(new_smi);
2163 * IRQ is defined to be set when non-zero. req_events will
2164 * cause a global flags check that will enable interrupts.
2166 if (new_smi->io.irq) {
2167 new_smi->interrupt_disabled = false;
2168 atomic_set(&new_smi->req_events, 1);
2171 if (new_smi->pdev) {
2172 rv = platform_device_add(new_smi->pdev);
2173 if (rv) {
2174 dev_err(new_smi->io.dev,
2175 "Unable to register system interface device: %d\n",
2176 rv);
2177 goto out_err;
2179 platform_device_registered = true;
2182 dev_set_drvdata(new_smi->io.dev, new_smi);
2183 rv = device_add_group(new_smi->io.dev, &ipmi_si_dev_attr_group);
2184 if (rv) {
2185 dev_err(new_smi->io.dev,
2186 "Unable to add device attributes: error %d\n",
2187 rv);
2188 goto out_err_stop_timer;
2191 rv = ipmi_register_smi(&handlers,
2192 new_smi,
2193 new_smi->io.dev,
2194 new_smi->io.slave_addr);
2195 if (rv) {
2196 dev_err(new_smi->io.dev,
2197 "Unable to register device: error %d\n",
2198 rv);
2199 goto out_err_remove_attrs;
2202 #ifdef CONFIG_IPMI_PROC_INTERFACE
2203 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
2204 &smi_type_proc_ops,
2205 new_smi);
2206 if (rv) {
2207 dev_err(new_smi->io.dev,
2208 "Unable to create proc entry: %d\n", rv);
2209 goto out_err_stop_timer;
2212 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
2213 &smi_si_stats_proc_ops,
2214 new_smi);
2215 if (rv) {
2216 dev_err(new_smi->io.dev,
2217 "Unable to create proc entry: %d\n", rv);
2218 goto out_err_stop_timer;
2221 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
2222 &smi_params_proc_ops,
2223 new_smi);
2224 if (rv) {
2225 dev_err(new_smi->io.dev,
2226 "Unable to create proc entry: %d\n", rv);
2227 goto out_err_stop_timer;
2229 #endif
2231 /* Don't increment till we know we have succeeded. */
2232 smi_num++;
2234 dev_info(new_smi->io.dev, "IPMI %s interface initialized\n",
2235 si_to_str[new_smi->io.si_type]);
2237 WARN_ON(new_smi->io.dev->init_name != NULL);
2238 kfree(init_name);
2240 return 0;
2242 out_err_remove_attrs:
2243 device_remove_group(new_smi->io.dev, &ipmi_si_dev_attr_group);
2244 dev_set_drvdata(new_smi->io.dev, NULL);
2246 out_err_stop_timer:
2247 stop_timer_and_thread(new_smi);
2249 out_err:
2250 new_smi->interrupt_disabled = true;
2252 if (new_smi->intf) {
2253 ipmi_smi_t intf = new_smi->intf;
2254 new_smi->intf = NULL;
2255 ipmi_unregister_smi(intf);
2258 if (new_smi->io.irq_cleanup) {
2259 new_smi->io.irq_cleanup(&new_smi->io);
2260 new_smi->io.irq_cleanup = NULL;
2264 * Wait until we know that we are out of any interrupt
2265 * handlers might have been running before we freed the
2266 * interrupt.
2268 synchronize_sched();
2270 if (new_smi->si_sm) {
2271 if (new_smi->handlers)
2272 new_smi->handlers->cleanup(new_smi->si_sm);
2273 kfree(new_smi->si_sm);
2274 new_smi->si_sm = NULL;
2276 if (new_smi->io.addr_source_cleanup) {
2277 new_smi->io.addr_source_cleanup(&new_smi->io);
2278 new_smi->io.addr_source_cleanup = NULL;
2280 if (new_smi->io.io_cleanup) {
2281 new_smi->io.io_cleanup(&new_smi->io);
2282 new_smi->io.io_cleanup = NULL;
2285 if (new_smi->pdev) {
2286 if (platform_device_registered)
2287 platform_device_unregister(new_smi->pdev);
2288 else
2289 platform_device_put(new_smi->pdev);
2290 new_smi->pdev = NULL;
2293 kfree(init_name);
2295 return rv;
2298 static int init_ipmi_si(void)
2300 struct smi_info *e;
2301 enum ipmi_addr_src type = SI_INVALID;
2303 if (initialized)
2304 return 0;
2306 pr_info("IPMI System Interface driver.\n");
2308 /* If the user gave us a device, they presumably want us to use it */
2309 if (!ipmi_si_hardcode_find_bmc())
2310 goto do_scan;
2312 ipmi_si_platform_init();
2314 ipmi_si_pci_init();
2316 ipmi_si_parisc_init();
2318 /* We prefer devices with interrupts, but in the case of a machine
2319 with multiple BMCs we assume that there will be several instances
2320 of a given type so if we succeed in registering a type then also
2321 try to register everything else of the same type */
2322 do_scan:
2323 mutex_lock(&smi_infos_lock);
2324 list_for_each_entry(e, &smi_infos, link) {
2325 /* Try to register a device if it has an IRQ and we either
2326 haven't successfully registered a device yet or this
2327 device has the same type as one we successfully registered */
2328 if (e->io.irq && (!type || e->io.addr_source == type)) {
2329 if (!try_smi_init(e)) {
2330 type = e->io.addr_source;
2335 /* type will only have been set if we successfully registered an si */
2336 if (type)
2337 goto skip_fallback_noirq;
2339 /* Fall back to the preferred device */
2341 list_for_each_entry(e, &smi_infos, link) {
2342 if (!e->io.irq && (!type || e->io.addr_source == type)) {
2343 if (!try_smi_init(e)) {
2344 type = e->io.addr_source;
2349 skip_fallback_noirq:
2350 initialized = 1;
2351 mutex_unlock(&smi_infos_lock);
2353 if (type)
2354 return 0;
2356 mutex_lock(&smi_infos_lock);
2357 if (unload_when_empty && list_empty(&smi_infos)) {
2358 mutex_unlock(&smi_infos_lock);
2359 cleanup_ipmi_si();
2360 pr_warn(PFX "Unable to find any System Interface(s)\n");
2361 return -ENODEV;
2362 } else {
2363 mutex_unlock(&smi_infos_lock);
2364 return 0;
2367 module_init(init_ipmi_si);
2369 static void cleanup_one_si(struct smi_info *to_clean)
2371 int rv = 0;
2373 if (!to_clean)
2374 return;
2376 if (to_clean->intf) {
2377 ipmi_smi_t intf = to_clean->intf;
2379 to_clean->intf = NULL;
2380 rv = ipmi_unregister_smi(intf);
2381 if (rv) {
2382 pr_err(PFX "Unable to unregister device: errno=%d\n",
2383 rv);
2387 device_remove_group(to_clean->io.dev, &ipmi_si_dev_attr_group);
2388 dev_set_drvdata(to_clean->io.dev, NULL);
2390 list_del(&to_clean->link);
2393 * Make sure that interrupts, the timer and the thread are
2394 * stopped and will not run again.
2396 if (to_clean->io.irq_cleanup)
2397 to_clean->io.irq_cleanup(&to_clean->io);
2398 stop_timer_and_thread(to_clean);
2401 * Timeouts are stopped, now make sure the interrupts are off
2402 * in the BMC. Note that timers and CPU interrupts are off,
2403 * so no need for locks.
2405 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
2406 poll(to_clean);
2407 schedule_timeout_uninterruptible(1);
2409 if (to_clean->handlers)
2410 disable_si_irq(to_clean);
2411 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
2412 poll(to_clean);
2413 schedule_timeout_uninterruptible(1);
2416 if (to_clean->handlers)
2417 to_clean->handlers->cleanup(to_clean->si_sm);
2419 kfree(to_clean->si_sm);
2421 if (to_clean->io.addr_source_cleanup)
2422 to_clean->io.addr_source_cleanup(&to_clean->io);
2423 if (to_clean->io.io_cleanup)
2424 to_clean->io.io_cleanup(&to_clean->io);
2426 if (to_clean->pdev)
2427 platform_device_unregister(to_clean->pdev);
2429 kfree(to_clean);
2432 int ipmi_si_remove_by_dev(struct device *dev)
2434 struct smi_info *e;
2435 int rv = -ENOENT;
2437 mutex_lock(&smi_infos_lock);
2438 list_for_each_entry(e, &smi_infos, link) {
2439 if (e->io.dev == dev) {
2440 cleanup_one_si(e);
2441 rv = 0;
2442 break;
2445 mutex_unlock(&smi_infos_lock);
2447 return rv;
2450 void ipmi_si_remove_by_data(int addr_space, enum si_type si_type,
2451 unsigned long addr)
2453 /* remove */
2454 struct smi_info *e, *tmp_e;
2456 mutex_lock(&smi_infos_lock);
2457 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
2458 if (e->io.addr_type != addr_space)
2459 continue;
2460 if (e->io.si_type != si_type)
2461 continue;
2462 if (e->io.addr_data == addr)
2463 cleanup_one_si(e);
2465 mutex_unlock(&smi_infos_lock);
2468 static void cleanup_ipmi_si(void)
2470 struct smi_info *e, *tmp_e;
2472 if (!initialized)
2473 return;
2475 ipmi_si_pci_shutdown();
2477 ipmi_si_parisc_shutdown();
2479 ipmi_si_platform_shutdown();
2481 mutex_lock(&smi_infos_lock);
2482 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
2483 cleanup_one_si(e);
2484 mutex_unlock(&smi_infos_lock);
2486 module_exit(cleanup_ipmi_si);
2488 MODULE_ALIAS("platform:dmi-ipmi-si");
2489 MODULE_LICENSE("GPL");
2490 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2491 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
2492 " system interfaces.");