2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
41 #include <trace/events/block.h>
45 #include "md-bitmap.h"
47 #define UNSUPPORTED_MDDEV_FLAGS \
48 ((1L << MD_HAS_JOURNAL) | \
49 (1L << MD_JOURNAL_CLEAN) | \
50 (1L << MD_HAS_PPL) | \
51 (1L << MD_HAS_MULTIPLE_PPLS))
54 * Number of guaranteed r1bios in case of extreme VM load:
56 #define NR_RAID1_BIOS 256
58 /* when we get a read error on a read-only array, we redirect to another
59 * device without failing the first device, or trying to over-write to
60 * correct the read error. To keep track of bad blocks on a per-bio
61 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
63 #define IO_BLOCKED ((struct bio *)1)
64 /* When we successfully write to a known bad-block, we need to remove the
65 * bad-block marking which must be done from process context. So we record
66 * the success by setting devs[n].bio to IO_MADE_GOOD
68 #define IO_MADE_GOOD ((struct bio *)2)
70 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
72 /* When there are this many requests queue to be written by
73 * the raid1 thread, we become 'congested' to provide back-pressure
76 static int max_queued_requests
= 1024;
78 static void allow_barrier(struct r1conf
*conf
, sector_t sector_nr
);
79 static void lower_barrier(struct r1conf
*conf
, sector_t sector_nr
);
81 #define raid1_log(md, fmt, args...) \
82 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
87 * for resync bio, r1bio pointer can be retrieved from the per-bio
88 * 'struct resync_pages'.
90 static inline struct r1bio
*get_resync_r1bio(struct bio
*bio
)
92 return get_resync_pages(bio
)->raid_bio
;
95 static void * r1bio_pool_alloc(gfp_t gfp_flags
, void *data
)
97 struct pool_info
*pi
= data
;
98 int size
= offsetof(struct r1bio
, bios
[pi
->raid_disks
]);
100 /* allocate a r1bio with room for raid_disks entries in the bios array */
101 return kzalloc(size
, gfp_flags
);
104 static void r1bio_pool_free(void *r1_bio
, void *data
)
109 #define RESYNC_DEPTH 32
110 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
111 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
112 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
113 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
114 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
116 static void * r1buf_pool_alloc(gfp_t gfp_flags
, void *data
)
118 struct pool_info
*pi
= data
;
119 struct r1bio
*r1_bio
;
123 struct resync_pages
*rps
;
125 r1_bio
= r1bio_pool_alloc(gfp_flags
, pi
);
129 rps
= kmalloc(sizeof(struct resync_pages
) * pi
->raid_disks
,
135 * Allocate bios : 1 for reading, n-1 for writing
137 for (j
= pi
->raid_disks
; j
-- ; ) {
138 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
141 r1_bio
->bios
[j
] = bio
;
144 * Allocate RESYNC_PAGES data pages and attach them to
146 * If this is a user-requested check/repair, allocate
147 * RESYNC_PAGES for each bio.
149 if (test_bit(MD_RECOVERY_REQUESTED
, &pi
->mddev
->recovery
))
150 need_pages
= pi
->raid_disks
;
153 for (j
= 0; j
< pi
->raid_disks
; j
++) {
154 struct resync_pages
*rp
= &rps
[j
];
156 bio
= r1_bio
->bios
[j
];
158 if (j
< need_pages
) {
159 if (resync_alloc_pages(rp
, gfp_flags
))
162 memcpy(rp
, &rps
[0], sizeof(*rp
));
163 resync_get_all_pages(rp
);
166 rp
->raid_bio
= r1_bio
;
167 bio
->bi_private
= rp
;
170 r1_bio
->master_bio
= NULL
;
176 resync_free_pages(&rps
[j
]);
179 while (++j
< pi
->raid_disks
)
180 bio_put(r1_bio
->bios
[j
]);
184 r1bio_pool_free(r1_bio
, data
);
188 static void r1buf_pool_free(void *__r1_bio
, void *data
)
190 struct pool_info
*pi
= data
;
192 struct r1bio
*r1bio
= __r1_bio
;
193 struct resync_pages
*rp
= NULL
;
195 for (i
= pi
->raid_disks
; i
--; ) {
196 rp
= get_resync_pages(r1bio
->bios
[i
]);
197 resync_free_pages(rp
);
198 bio_put(r1bio
->bios
[i
]);
201 /* resync pages array stored in the 1st bio's .bi_private */
204 r1bio_pool_free(r1bio
, data
);
207 static void put_all_bios(struct r1conf
*conf
, struct r1bio
*r1_bio
)
211 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
212 struct bio
**bio
= r1_bio
->bios
+ i
;
213 if (!BIO_SPECIAL(*bio
))
219 static void free_r1bio(struct r1bio
*r1_bio
)
221 struct r1conf
*conf
= r1_bio
->mddev
->private;
223 put_all_bios(conf
, r1_bio
);
224 mempool_free(r1_bio
, conf
->r1bio_pool
);
227 static void put_buf(struct r1bio
*r1_bio
)
229 struct r1conf
*conf
= r1_bio
->mddev
->private;
230 sector_t sect
= r1_bio
->sector
;
233 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
234 struct bio
*bio
= r1_bio
->bios
[i
];
236 rdev_dec_pending(conf
->mirrors
[i
].rdev
, r1_bio
->mddev
);
239 mempool_free(r1_bio
, conf
->r1buf_pool
);
241 lower_barrier(conf
, sect
);
244 static void reschedule_retry(struct r1bio
*r1_bio
)
247 struct mddev
*mddev
= r1_bio
->mddev
;
248 struct r1conf
*conf
= mddev
->private;
251 idx
= sector_to_idx(r1_bio
->sector
);
252 spin_lock_irqsave(&conf
->device_lock
, flags
);
253 list_add(&r1_bio
->retry_list
, &conf
->retry_list
);
254 atomic_inc(&conf
->nr_queued
[idx
]);
255 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
257 wake_up(&conf
->wait_barrier
);
258 md_wakeup_thread(mddev
->thread
);
262 * raid_end_bio_io() is called when we have finished servicing a mirrored
263 * operation and are ready to return a success/failure code to the buffer
266 static void call_bio_endio(struct r1bio
*r1_bio
)
268 struct bio
*bio
= r1_bio
->master_bio
;
269 struct r1conf
*conf
= r1_bio
->mddev
->private;
271 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
272 bio
->bi_status
= BLK_STS_IOERR
;
276 * Wake up any possible resync thread that waits for the device
279 allow_barrier(conf
, r1_bio
->sector
);
282 static void raid_end_bio_io(struct r1bio
*r1_bio
)
284 struct bio
*bio
= r1_bio
->master_bio
;
286 /* if nobody has done the final endio yet, do it now */
287 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
288 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
289 (bio_data_dir(bio
) == WRITE
) ? "write" : "read",
290 (unsigned long long) bio
->bi_iter
.bi_sector
,
291 (unsigned long long) bio_end_sector(bio
) - 1);
293 call_bio_endio(r1_bio
);
299 * Update disk head position estimator based on IRQ completion info.
301 static inline void update_head_pos(int disk
, struct r1bio
*r1_bio
)
303 struct r1conf
*conf
= r1_bio
->mddev
->private;
305 conf
->mirrors
[disk
].head_position
=
306 r1_bio
->sector
+ (r1_bio
->sectors
);
310 * Find the disk number which triggered given bio
312 static int find_bio_disk(struct r1bio
*r1_bio
, struct bio
*bio
)
315 struct r1conf
*conf
= r1_bio
->mddev
->private;
316 int raid_disks
= conf
->raid_disks
;
318 for (mirror
= 0; mirror
< raid_disks
* 2; mirror
++)
319 if (r1_bio
->bios
[mirror
] == bio
)
322 BUG_ON(mirror
== raid_disks
* 2);
323 update_head_pos(mirror
, r1_bio
);
328 static void raid1_end_read_request(struct bio
*bio
)
330 int uptodate
= !bio
->bi_status
;
331 struct r1bio
*r1_bio
= bio
->bi_private
;
332 struct r1conf
*conf
= r1_bio
->mddev
->private;
333 struct md_rdev
*rdev
= conf
->mirrors
[r1_bio
->read_disk
].rdev
;
336 * this branch is our 'one mirror IO has finished' event handler:
338 update_head_pos(r1_bio
->read_disk
, r1_bio
);
341 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
342 else if (test_bit(FailFast
, &rdev
->flags
) &&
343 test_bit(R1BIO_FailFast
, &r1_bio
->state
))
344 /* This was a fail-fast read so we definitely
348 /* If all other devices have failed, we want to return
349 * the error upwards rather than fail the last device.
350 * Here we redefine "uptodate" to mean "Don't want to retry"
353 spin_lock_irqsave(&conf
->device_lock
, flags
);
354 if (r1_bio
->mddev
->degraded
== conf
->raid_disks
||
355 (r1_bio
->mddev
->degraded
== conf
->raid_disks
-1 &&
356 test_bit(In_sync
, &rdev
->flags
)))
358 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
362 raid_end_bio_io(r1_bio
);
363 rdev_dec_pending(rdev
, conf
->mddev
);
368 char b
[BDEVNAME_SIZE
];
369 pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
371 bdevname(rdev
->bdev
, b
),
372 (unsigned long long)r1_bio
->sector
);
373 set_bit(R1BIO_ReadError
, &r1_bio
->state
);
374 reschedule_retry(r1_bio
);
375 /* don't drop the reference on read_disk yet */
379 static void close_write(struct r1bio
*r1_bio
)
381 /* it really is the end of this request */
382 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
383 bio_free_pages(r1_bio
->behind_master_bio
);
384 bio_put(r1_bio
->behind_master_bio
);
385 r1_bio
->behind_master_bio
= NULL
;
387 /* clear the bitmap if all writes complete successfully */
388 bitmap_endwrite(r1_bio
->mddev
->bitmap
, r1_bio
->sector
,
390 !test_bit(R1BIO_Degraded
, &r1_bio
->state
),
391 test_bit(R1BIO_BehindIO
, &r1_bio
->state
));
392 md_write_end(r1_bio
->mddev
);
395 static void r1_bio_write_done(struct r1bio
*r1_bio
)
397 if (!atomic_dec_and_test(&r1_bio
->remaining
))
400 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
401 reschedule_retry(r1_bio
);
404 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
))
405 reschedule_retry(r1_bio
);
407 raid_end_bio_io(r1_bio
);
411 static void raid1_end_write_request(struct bio
*bio
)
413 struct r1bio
*r1_bio
= bio
->bi_private
;
414 int behind
= test_bit(R1BIO_BehindIO
, &r1_bio
->state
);
415 struct r1conf
*conf
= r1_bio
->mddev
->private;
416 struct bio
*to_put
= NULL
;
417 int mirror
= find_bio_disk(r1_bio
, bio
);
418 struct md_rdev
*rdev
= conf
->mirrors
[mirror
].rdev
;
421 discard_error
= bio
->bi_status
&& bio_op(bio
) == REQ_OP_DISCARD
;
424 * 'one mirror IO has finished' event handler:
426 if (bio
->bi_status
&& !discard_error
) {
427 set_bit(WriteErrorSeen
, &rdev
->flags
);
428 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
429 set_bit(MD_RECOVERY_NEEDED
, &
430 conf
->mddev
->recovery
);
432 if (test_bit(FailFast
, &rdev
->flags
) &&
433 (bio
->bi_opf
& MD_FAILFAST
) &&
434 /* We never try FailFast to WriteMostly devices */
435 !test_bit(WriteMostly
, &rdev
->flags
)) {
436 md_error(r1_bio
->mddev
, rdev
);
437 if (!test_bit(Faulty
, &rdev
->flags
))
438 /* This is the only remaining device,
439 * We need to retry the write without
442 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
444 /* Finished with this branch */
445 r1_bio
->bios
[mirror
] = NULL
;
449 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
452 * Set R1BIO_Uptodate in our master bio, so that we
453 * will return a good error code for to the higher
454 * levels even if IO on some other mirrored buffer
457 * The 'master' represents the composite IO operation
458 * to user-side. So if something waits for IO, then it
459 * will wait for the 'master' bio.
464 r1_bio
->bios
[mirror
] = NULL
;
467 * Do not set R1BIO_Uptodate if the current device is
468 * rebuilding or Faulty. This is because we cannot use
469 * such device for properly reading the data back (we could
470 * potentially use it, if the current write would have felt
471 * before rdev->recovery_offset, but for simplicity we don't
474 if (test_bit(In_sync
, &rdev
->flags
) &&
475 !test_bit(Faulty
, &rdev
->flags
))
476 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
478 /* Maybe we can clear some bad blocks. */
479 if (is_badblock(rdev
, r1_bio
->sector
, r1_bio
->sectors
,
480 &first_bad
, &bad_sectors
) && !discard_error
) {
481 r1_bio
->bios
[mirror
] = IO_MADE_GOOD
;
482 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
487 if (test_bit(WriteMostly
, &rdev
->flags
))
488 atomic_dec(&r1_bio
->behind_remaining
);
491 * In behind mode, we ACK the master bio once the I/O
492 * has safely reached all non-writemostly
493 * disks. Setting the Returned bit ensures that this
494 * gets done only once -- we don't ever want to return
495 * -EIO here, instead we'll wait
497 if (atomic_read(&r1_bio
->behind_remaining
) >= (atomic_read(&r1_bio
->remaining
)-1) &&
498 test_bit(R1BIO_Uptodate
, &r1_bio
->state
)) {
499 /* Maybe we can return now */
500 if (!test_and_set_bit(R1BIO_Returned
, &r1_bio
->state
)) {
501 struct bio
*mbio
= r1_bio
->master_bio
;
502 pr_debug("raid1: behind end write sectors"
504 (unsigned long long) mbio
->bi_iter
.bi_sector
,
505 (unsigned long long) bio_end_sector(mbio
) - 1);
506 call_bio_endio(r1_bio
);
510 if (r1_bio
->bios
[mirror
] == NULL
)
511 rdev_dec_pending(rdev
, conf
->mddev
);
514 * Let's see if all mirrored write operations have finished
517 r1_bio_write_done(r1_bio
);
523 static sector_t
align_to_barrier_unit_end(sector_t start_sector
,
528 WARN_ON(sectors
== 0);
530 * len is the number of sectors from start_sector to end of the
531 * barrier unit which start_sector belongs to.
533 len
= round_up(start_sector
+ 1, BARRIER_UNIT_SECTOR_SIZE
) -
543 * This routine returns the disk from which the requested read should
544 * be done. There is a per-array 'next expected sequential IO' sector
545 * number - if this matches on the next IO then we use the last disk.
546 * There is also a per-disk 'last know head position' sector that is
547 * maintained from IRQ contexts, both the normal and the resync IO
548 * completion handlers update this position correctly. If there is no
549 * perfect sequential match then we pick the disk whose head is closest.
551 * If there are 2 mirrors in the same 2 devices, performance degrades
552 * because position is mirror, not device based.
554 * The rdev for the device selected will have nr_pending incremented.
556 static int read_balance(struct r1conf
*conf
, struct r1bio
*r1_bio
, int *max_sectors
)
558 const sector_t this_sector
= r1_bio
->sector
;
560 int best_good_sectors
;
561 int best_disk
, best_dist_disk
, best_pending_disk
;
565 unsigned int min_pending
;
566 struct md_rdev
*rdev
;
568 int choose_next_idle
;
572 * Check if we can balance. We can balance on the whole
573 * device if no resync is going on, or below the resync window.
574 * We take the first readable disk when above the resync window.
577 sectors
= r1_bio
->sectors
;
580 best_dist
= MaxSector
;
581 best_pending_disk
= -1;
582 min_pending
= UINT_MAX
;
583 best_good_sectors
= 0;
585 choose_next_idle
= 0;
586 clear_bit(R1BIO_FailFast
, &r1_bio
->state
);
588 if ((conf
->mddev
->recovery_cp
< this_sector
+ sectors
) ||
589 (mddev_is_clustered(conf
->mddev
) &&
590 md_cluster_ops
->area_resyncing(conf
->mddev
, READ
, this_sector
,
591 this_sector
+ sectors
)))
596 for (disk
= 0 ; disk
< conf
->raid_disks
* 2 ; disk
++) {
600 unsigned int pending
;
603 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
604 if (r1_bio
->bios
[disk
] == IO_BLOCKED
606 || test_bit(Faulty
, &rdev
->flags
))
608 if (!test_bit(In_sync
, &rdev
->flags
) &&
609 rdev
->recovery_offset
< this_sector
+ sectors
)
611 if (test_bit(WriteMostly
, &rdev
->flags
)) {
612 /* Don't balance among write-mostly, just
613 * use the first as a last resort */
614 if (best_dist_disk
< 0) {
615 if (is_badblock(rdev
, this_sector
, sectors
,
616 &first_bad
, &bad_sectors
)) {
617 if (first_bad
<= this_sector
)
618 /* Cannot use this */
620 best_good_sectors
= first_bad
- this_sector
;
622 best_good_sectors
= sectors
;
623 best_dist_disk
= disk
;
624 best_pending_disk
= disk
;
628 /* This is a reasonable device to use. It might
631 if (is_badblock(rdev
, this_sector
, sectors
,
632 &first_bad
, &bad_sectors
)) {
633 if (best_dist
< MaxSector
)
634 /* already have a better device */
636 if (first_bad
<= this_sector
) {
637 /* cannot read here. If this is the 'primary'
638 * device, then we must not read beyond
639 * bad_sectors from another device..
641 bad_sectors
-= (this_sector
- first_bad
);
642 if (choose_first
&& sectors
> bad_sectors
)
643 sectors
= bad_sectors
;
644 if (best_good_sectors
> sectors
)
645 best_good_sectors
= sectors
;
648 sector_t good_sectors
= first_bad
- this_sector
;
649 if (good_sectors
> best_good_sectors
) {
650 best_good_sectors
= good_sectors
;
658 if ((sectors
> best_good_sectors
) && (best_disk
>= 0))
660 best_good_sectors
= sectors
;
664 /* At least two disks to choose from so failfast is OK */
665 set_bit(R1BIO_FailFast
, &r1_bio
->state
);
667 nonrot
= blk_queue_nonrot(bdev_get_queue(rdev
->bdev
));
668 has_nonrot_disk
|= nonrot
;
669 pending
= atomic_read(&rdev
->nr_pending
);
670 dist
= abs(this_sector
- conf
->mirrors
[disk
].head_position
);
675 /* Don't change to another disk for sequential reads */
676 if (conf
->mirrors
[disk
].next_seq_sect
== this_sector
678 int opt_iosize
= bdev_io_opt(rdev
->bdev
) >> 9;
679 struct raid1_info
*mirror
= &conf
->mirrors
[disk
];
683 * If buffered sequential IO size exceeds optimal
684 * iosize, check if there is idle disk. If yes, choose
685 * the idle disk. read_balance could already choose an
686 * idle disk before noticing it's a sequential IO in
687 * this disk. This doesn't matter because this disk
688 * will idle, next time it will be utilized after the
689 * first disk has IO size exceeds optimal iosize. In
690 * this way, iosize of the first disk will be optimal
691 * iosize at least. iosize of the second disk might be
692 * small, but not a big deal since when the second disk
693 * starts IO, the first disk is likely still busy.
695 if (nonrot
&& opt_iosize
> 0 &&
696 mirror
->seq_start
!= MaxSector
&&
697 mirror
->next_seq_sect
> opt_iosize
&&
698 mirror
->next_seq_sect
- opt_iosize
>=
700 choose_next_idle
= 1;
706 if (choose_next_idle
)
709 if (min_pending
> pending
) {
710 min_pending
= pending
;
711 best_pending_disk
= disk
;
714 if (dist
< best_dist
) {
716 best_dist_disk
= disk
;
721 * If all disks are rotational, choose the closest disk. If any disk is
722 * non-rotational, choose the disk with less pending request even the
723 * disk is rotational, which might/might not be optimal for raids with
724 * mixed ratation/non-rotational disks depending on workload.
726 if (best_disk
== -1) {
727 if (has_nonrot_disk
|| min_pending
== 0)
728 best_disk
= best_pending_disk
;
730 best_disk
= best_dist_disk
;
733 if (best_disk
>= 0) {
734 rdev
= rcu_dereference(conf
->mirrors
[best_disk
].rdev
);
737 atomic_inc(&rdev
->nr_pending
);
738 sectors
= best_good_sectors
;
740 if (conf
->mirrors
[best_disk
].next_seq_sect
!= this_sector
)
741 conf
->mirrors
[best_disk
].seq_start
= this_sector
;
743 conf
->mirrors
[best_disk
].next_seq_sect
= this_sector
+ sectors
;
746 *max_sectors
= sectors
;
751 static int raid1_congested(struct mddev
*mddev
, int bits
)
753 struct r1conf
*conf
= mddev
->private;
756 if ((bits
& (1 << WB_async_congested
)) &&
757 conf
->pending_count
>= max_queued_requests
)
761 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
762 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
763 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
764 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
768 /* Note the '|| 1' - when read_balance prefers
769 * non-congested targets, it can be removed
771 if ((bits
& (1 << WB_async_congested
)) || 1)
772 ret
|= bdi_congested(q
->backing_dev_info
, bits
);
774 ret
&= bdi_congested(q
->backing_dev_info
, bits
);
781 static void flush_bio_list(struct r1conf
*conf
, struct bio
*bio
)
783 /* flush any pending bitmap writes to disk before proceeding w/ I/O */
784 bitmap_unplug(conf
->mddev
->bitmap
);
785 wake_up(&conf
->wait_barrier
);
787 while (bio
) { /* submit pending writes */
788 struct bio
*next
= bio
->bi_next
;
789 struct md_rdev
*rdev
= (void *)bio
->bi_disk
;
791 bio_set_dev(bio
, rdev
->bdev
);
792 if (test_bit(Faulty
, &rdev
->flags
)) {
794 } else if (unlikely((bio_op(bio
) == REQ_OP_DISCARD
) &&
795 !blk_queue_discard(bio
->bi_disk
->queue
)))
799 generic_make_request(bio
);
804 static void flush_pending_writes(struct r1conf
*conf
)
806 /* Any writes that have been queued but are awaiting
807 * bitmap updates get flushed here.
809 spin_lock_irq(&conf
->device_lock
);
811 if (conf
->pending_bio_list
.head
) {
812 struct blk_plug plug
;
815 bio
= bio_list_get(&conf
->pending_bio_list
);
816 conf
->pending_count
= 0;
817 spin_unlock_irq(&conf
->device_lock
);
820 * As this is called in a wait_event() loop (see freeze_array),
821 * current->state might be TASK_UNINTERRUPTIBLE which will
822 * cause a warning when we prepare to wait again. As it is
823 * rare that this path is taken, it is perfectly safe to force
824 * us to go around the wait_event() loop again, so the warning
825 * is a false-positive. Silence the warning by resetting
828 __set_current_state(TASK_RUNNING
);
829 blk_start_plug(&plug
);
830 flush_bio_list(conf
, bio
);
831 blk_finish_plug(&plug
);
833 spin_unlock_irq(&conf
->device_lock
);
837 * Sometimes we need to suspend IO while we do something else,
838 * either some resync/recovery, or reconfigure the array.
839 * To do this we raise a 'barrier'.
840 * The 'barrier' is a counter that can be raised multiple times
841 * to count how many activities are happening which preclude
843 * We can only raise the barrier if there is no pending IO.
844 * i.e. if nr_pending == 0.
845 * We choose only to raise the barrier if no-one is waiting for the
846 * barrier to go down. This means that as soon as an IO request
847 * is ready, no other operations which require a barrier will start
848 * until the IO request has had a chance.
850 * So: regular IO calls 'wait_barrier'. When that returns there
851 * is no backgroup IO happening, It must arrange to call
852 * allow_barrier when it has finished its IO.
853 * backgroup IO calls must call raise_barrier. Once that returns
854 * there is no normal IO happeing. It must arrange to call
855 * lower_barrier when the particular background IO completes.
857 static void raise_barrier(struct r1conf
*conf
, sector_t sector_nr
)
859 int idx
= sector_to_idx(sector_nr
);
861 spin_lock_irq(&conf
->resync_lock
);
863 /* Wait until no block IO is waiting */
864 wait_event_lock_irq(conf
->wait_barrier
,
865 !atomic_read(&conf
->nr_waiting
[idx
]),
868 /* block any new IO from starting */
869 atomic_inc(&conf
->barrier
[idx
]);
871 * In raise_barrier() we firstly increase conf->barrier[idx] then
872 * check conf->nr_pending[idx]. In _wait_barrier() we firstly
873 * increase conf->nr_pending[idx] then check conf->barrier[idx].
874 * A memory barrier here to make sure conf->nr_pending[idx] won't
875 * be fetched before conf->barrier[idx] is increased. Otherwise
876 * there will be a race between raise_barrier() and _wait_barrier().
878 smp_mb__after_atomic();
880 /* For these conditions we must wait:
881 * A: while the array is in frozen state
882 * B: while conf->nr_pending[idx] is not 0, meaning regular I/O
883 * existing in corresponding I/O barrier bucket.
884 * C: while conf->barrier[idx] >= RESYNC_DEPTH, meaning reaches
885 * max resync count which allowed on current I/O barrier bucket.
887 wait_event_lock_irq(conf
->wait_barrier
,
888 !conf
->array_frozen
&&
889 !atomic_read(&conf
->nr_pending
[idx
]) &&
890 atomic_read(&conf
->barrier
[idx
]) < RESYNC_DEPTH
,
893 atomic_inc(&conf
->nr_sync_pending
);
894 spin_unlock_irq(&conf
->resync_lock
);
897 static void lower_barrier(struct r1conf
*conf
, sector_t sector_nr
)
899 int idx
= sector_to_idx(sector_nr
);
901 BUG_ON(atomic_read(&conf
->barrier
[idx
]) <= 0);
903 atomic_dec(&conf
->barrier
[idx
]);
904 atomic_dec(&conf
->nr_sync_pending
);
905 wake_up(&conf
->wait_barrier
);
908 static void _wait_barrier(struct r1conf
*conf
, int idx
)
911 * We need to increase conf->nr_pending[idx] very early here,
912 * then raise_barrier() can be blocked when it waits for
913 * conf->nr_pending[idx] to be 0. Then we can avoid holding
914 * conf->resync_lock when there is no barrier raised in same
915 * barrier unit bucket. Also if the array is frozen, I/O
916 * should be blocked until array is unfrozen.
918 atomic_inc(&conf
->nr_pending
[idx
]);
920 * In _wait_barrier() we firstly increase conf->nr_pending[idx], then
921 * check conf->barrier[idx]. In raise_barrier() we firstly increase
922 * conf->barrier[idx], then check conf->nr_pending[idx]. A memory
923 * barrier is necessary here to make sure conf->barrier[idx] won't be
924 * fetched before conf->nr_pending[idx] is increased. Otherwise there
925 * will be a race between _wait_barrier() and raise_barrier().
927 smp_mb__after_atomic();
930 * Don't worry about checking two atomic_t variables at same time
931 * here. If during we check conf->barrier[idx], the array is
932 * frozen (conf->array_frozen is 1), and chonf->barrier[idx] is
933 * 0, it is safe to return and make the I/O continue. Because the
934 * array is frozen, all I/O returned here will eventually complete
935 * or be queued, no race will happen. See code comment in
938 if (!READ_ONCE(conf
->array_frozen
) &&
939 !atomic_read(&conf
->barrier
[idx
]))
943 * After holding conf->resync_lock, conf->nr_pending[idx]
944 * should be decreased before waiting for barrier to drop.
945 * Otherwise, we may encounter a race condition because
946 * raise_barrer() might be waiting for conf->nr_pending[idx]
947 * to be 0 at same time.
949 spin_lock_irq(&conf
->resync_lock
);
950 atomic_inc(&conf
->nr_waiting
[idx
]);
951 atomic_dec(&conf
->nr_pending
[idx
]);
953 * In case freeze_array() is waiting for
954 * get_unqueued_pending() == extra
956 wake_up(&conf
->wait_barrier
);
957 /* Wait for the barrier in same barrier unit bucket to drop. */
958 wait_event_lock_irq(conf
->wait_barrier
,
959 !conf
->array_frozen
&&
960 !atomic_read(&conf
->barrier
[idx
]),
962 atomic_inc(&conf
->nr_pending
[idx
]);
963 atomic_dec(&conf
->nr_waiting
[idx
]);
964 spin_unlock_irq(&conf
->resync_lock
);
967 static void wait_read_barrier(struct r1conf
*conf
, sector_t sector_nr
)
969 int idx
= sector_to_idx(sector_nr
);
972 * Very similar to _wait_barrier(). The difference is, for read
973 * I/O we don't need wait for sync I/O, but if the whole array
974 * is frozen, the read I/O still has to wait until the array is
975 * unfrozen. Since there is no ordering requirement with
976 * conf->barrier[idx] here, memory barrier is unnecessary as well.
978 atomic_inc(&conf
->nr_pending
[idx
]);
980 if (!READ_ONCE(conf
->array_frozen
))
983 spin_lock_irq(&conf
->resync_lock
);
984 atomic_inc(&conf
->nr_waiting
[idx
]);
985 atomic_dec(&conf
->nr_pending
[idx
]);
987 * In case freeze_array() is waiting for
988 * get_unqueued_pending() == extra
990 wake_up(&conf
->wait_barrier
);
991 /* Wait for array to be unfrozen */
992 wait_event_lock_irq(conf
->wait_barrier
,
995 atomic_inc(&conf
->nr_pending
[idx
]);
996 atomic_dec(&conf
->nr_waiting
[idx
]);
997 spin_unlock_irq(&conf
->resync_lock
);
1000 static void wait_barrier(struct r1conf
*conf
, sector_t sector_nr
)
1002 int idx
= sector_to_idx(sector_nr
);
1004 _wait_barrier(conf
, idx
);
1007 static void _allow_barrier(struct r1conf
*conf
, int idx
)
1009 atomic_dec(&conf
->nr_pending
[idx
]);
1010 wake_up(&conf
->wait_barrier
);
1013 static void allow_barrier(struct r1conf
*conf
, sector_t sector_nr
)
1015 int idx
= sector_to_idx(sector_nr
);
1017 _allow_barrier(conf
, idx
);
1020 /* conf->resync_lock should be held */
1021 static int get_unqueued_pending(struct r1conf
*conf
)
1025 ret
= atomic_read(&conf
->nr_sync_pending
);
1026 for (idx
= 0; idx
< BARRIER_BUCKETS_NR
; idx
++)
1027 ret
+= atomic_read(&conf
->nr_pending
[idx
]) -
1028 atomic_read(&conf
->nr_queued
[idx
]);
1033 static void freeze_array(struct r1conf
*conf
, int extra
)
1035 /* Stop sync I/O and normal I/O and wait for everything to
1037 * This is called in two situations:
1038 * 1) management command handlers (reshape, remove disk, quiesce).
1039 * 2) one normal I/O request failed.
1041 * After array_frozen is set to 1, new sync IO will be blocked at
1042 * raise_barrier(), and new normal I/O will blocked at _wait_barrier()
1043 * or wait_read_barrier(). The flying I/Os will either complete or be
1044 * queued. When everything goes quite, there are only queued I/Os left.
1046 * Every flying I/O contributes to a conf->nr_pending[idx], idx is the
1047 * barrier bucket index which this I/O request hits. When all sync and
1048 * normal I/O are queued, sum of all conf->nr_pending[] will match sum
1049 * of all conf->nr_queued[]. But normal I/O failure is an exception,
1050 * in handle_read_error(), we may call freeze_array() before trying to
1051 * fix the read error. In this case, the error read I/O is not queued,
1052 * so get_unqueued_pending() == 1.
1054 * Therefore before this function returns, we need to wait until
1055 * get_unqueued_pendings(conf) gets equal to extra. For
1056 * normal I/O context, extra is 1, in rested situations extra is 0.
1058 spin_lock_irq(&conf
->resync_lock
);
1059 conf
->array_frozen
= 1;
1060 raid1_log(conf
->mddev
, "wait freeze");
1061 wait_event_lock_irq_cmd(
1063 get_unqueued_pending(conf
) == extra
,
1065 flush_pending_writes(conf
));
1066 spin_unlock_irq(&conf
->resync_lock
);
1068 static void unfreeze_array(struct r1conf
*conf
)
1070 /* reverse the effect of the freeze */
1071 spin_lock_irq(&conf
->resync_lock
);
1072 conf
->array_frozen
= 0;
1073 spin_unlock_irq(&conf
->resync_lock
);
1074 wake_up(&conf
->wait_barrier
);
1077 static void alloc_behind_master_bio(struct r1bio
*r1_bio
,
1080 int size
= bio
->bi_iter
.bi_size
;
1081 unsigned vcnt
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1083 struct bio
*behind_bio
= NULL
;
1085 behind_bio
= bio_alloc_mddev(GFP_NOIO
, vcnt
, r1_bio
->mddev
);
1089 /* discard op, we don't support writezero/writesame yet */
1090 if (!bio_has_data(bio
)) {
1091 behind_bio
->bi_iter
.bi_size
= size
;
1095 while (i
< vcnt
&& size
) {
1097 int len
= min_t(int, PAGE_SIZE
, size
);
1099 page
= alloc_page(GFP_NOIO
);
1100 if (unlikely(!page
))
1103 bio_add_page(behind_bio
, page
, len
, 0);
1109 bio_copy_data(behind_bio
, bio
);
1111 r1_bio
->behind_master_bio
= behind_bio
;;
1112 set_bit(R1BIO_BehindIO
, &r1_bio
->state
);
1117 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1118 bio
->bi_iter
.bi_size
);
1119 bio_free_pages(behind_bio
);
1120 bio_put(behind_bio
);
1123 struct raid1_plug_cb
{
1124 struct blk_plug_cb cb
;
1125 struct bio_list pending
;
1129 static void raid1_unplug(struct blk_plug_cb
*cb
, bool from_schedule
)
1131 struct raid1_plug_cb
*plug
= container_of(cb
, struct raid1_plug_cb
,
1133 struct mddev
*mddev
= plug
->cb
.data
;
1134 struct r1conf
*conf
= mddev
->private;
1137 if (from_schedule
|| current
->bio_list
) {
1138 spin_lock_irq(&conf
->device_lock
);
1139 bio_list_merge(&conf
->pending_bio_list
, &plug
->pending
);
1140 conf
->pending_count
+= plug
->pending_cnt
;
1141 spin_unlock_irq(&conf
->device_lock
);
1142 wake_up(&conf
->wait_barrier
);
1143 md_wakeup_thread(mddev
->thread
);
1148 /* we aren't scheduling, so we can do the write-out directly. */
1149 bio
= bio_list_get(&plug
->pending
);
1150 flush_bio_list(conf
, bio
);
1154 static void init_r1bio(struct r1bio
*r1_bio
, struct mddev
*mddev
, struct bio
*bio
)
1156 r1_bio
->master_bio
= bio
;
1157 r1_bio
->sectors
= bio_sectors(bio
);
1159 r1_bio
->mddev
= mddev
;
1160 r1_bio
->sector
= bio
->bi_iter
.bi_sector
;
1163 static inline struct r1bio
*
1164 alloc_r1bio(struct mddev
*mddev
, struct bio
*bio
)
1166 struct r1conf
*conf
= mddev
->private;
1167 struct r1bio
*r1_bio
;
1169 r1_bio
= mempool_alloc(conf
->r1bio_pool
, GFP_NOIO
);
1170 /* Ensure no bio records IO_BLOCKED */
1171 memset(r1_bio
->bios
, 0, conf
->raid_disks
* sizeof(r1_bio
->bios
[0]));
1172 init_r1bio(r1_bio
, mddev
, bio
);
1176 static void raid1_read_request(struct mddev
*mddev
, struct bio
*bio
,
1177 int max_read_sectors
, struct r1bio
*r1_bio
)
1179 struct r1conf
*conf
= mddev
->private;
1180 struct raid1_info
*mirror
;
1181 struct bio
*read_bio
;
1182 struct bitmap
*bitmap
= mddev
->bitmap
;
1183 const int op
= bio_op(bio
);
1184 const unsigned long do_sync
= (bio
->bi_opf
& REQ_SYNC
);
1187 bool print_msg
= !!r1_bio
;
1188 char b
[BDEVNAME_SIZE
];
1191 * If r1_bio is set, we are blocking the raid1d thread
1192 * so there is a tiny risk of deadlock. So ask for
1193 * emergency memory if needed.
1195 gfp_t gfp
= r1_bio
? (GFP_NOIO
| __GFP_HIGH
) : GFP_NOIO
;
1198 /* Need to get the block device name carefully */
1199 struct md_rdev
*rdev
;
1201 rdev
= rcu_dereference(conf
->mirrors
[r1_bio
->read_disk
].rdev
);
1203 bdevname(rdev
->bdev
, b
);
1210 * Still need barrier for READ in case that whole
1213 wait_read_barrier(conf
, bio
->bi_iter
.bi_sector
);
1216 r1_bio
= alloc_r1bio(mddev
, bio
);
1218 init_r1bio(r1_bio
, mddev
, bio
);
1219 r1_bio
->sectors
= max_read_sectors
;
1222 * make_request() can abort the operation when read-ahead is being
1223 * used and no empty request is available.
1225 rdisk
= read_balance(conf
, r1_bio
, &max_sectors
);
1228 /* couldn't find anywhere to read from */
1230 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1233 (unsigned long long)r1_bio
->sector
);
1235 raid_end_bio_io(r1_bio
);
1238 mirror
= conf
->mirrors
+ rdisk
;
1241 pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
1243 (unsigned long long)r1_bio
->sector
,
1244 bdevname(mirror
->rdev
->bdev
, b
));
1246 if (test_bit(WriteMostly
, &mirror
->rdev
->flags
) &&
1249 * Reading from a write-mostly device must take care not to
1250 * over-take any writes that are 'behind'
1252 raid1_log(mddev
, "wait behind writes");
1253 wait_event(bitmap
->behind_wait
,
1254 atomic_read(&bitmap
->behind_writes
) == 0);
1257 if (max_sectors
< bio_sectors(bio
)) {
1258 struct bio
*split
= bio_split(bio
, max_sectors
,
1259 gfp
, conf
->bio_split
);
1260 bio_chain(split
, bio
);
1261 generic_make_request(bio
);
1263 r1_bio
->master_bio
= bio
;
1264 r1_bio
->sectors
= max_sectors
;
1267 r1_bio
->read_disk
= rdisk
;
1269 read_bio
= bio_clone_fast(bio
, gfp
, mddev
->bio_set
);
1271 r1_bio
->bios
[rdisk
] = read_bio
;
1273 read_bio
->bi_iter
.bi_sector
= r1_bio
->sector
+
1274 mirror
->rdev
->data_offset
;
1275 bio_set_dev(read_bio
, mirror
->rdev
->bdev
);
1276 read_bio
->bi_end_io
= raid1_end_read_request
;
1277 bio_set_op_attrs(read_bio
, op
, do_sync
);
1278 if (test_bit(FailFast
, &mirror
->rdev
->flags
) &&
1279 test_bit(R1BIO_FailFast
, &r1_bio
->state
))
1280 read_bio
->bi_opf
|= MD_FAILFAST
;
1281 read_bio
->bi_private
= r1_bio
;
1284 trace_block_bio_remap(read_bio
->bi_disk
->queue
, read_bio
,
1285 disk_devt(mddev
->gendisk
), r1_bio
->sector
);
1287 generic_make_request(read_bio
);
1290 static void raid1_write_request(struct mddev
*mddev
, struct bio
*bio
,
1291 int max_write_sectors
)
1293 struct r1conf
*conf
= mddev
->private;
1294 struct r1bio
*r1_bio
;
1296 struct bitmap
*bitmap
= mddev
->bitmap
;
1297 unsigned long flags
;
1298 struct md_rdev
*blocked_rdev
;
1299 struct blk_plug_cb
*cb
;
1300 struct raid1_plug_cb
*plug
= NULL
;
1304 if (mddev_is_clustered(mddev
) &&
1305 md_cluster_ops
->area_resyncing(mddev
, WRITE
,
1306 bio
->bi_iter
.bi_sector
, bio_end_sector(bio
))) {
1310 prepare_to_wait(&conf
->wait_barrier
,
1312 if (!md_cluster_ops
->area_resyncing(mddev
, WRITE
,
1313 bio
->bi_iter
.bi_sector
,
1314 bio_end_sector(bio
)))
1318 finish_wait(&conf
->wait_barrier
, &w
);
1322 * Register the new request and wait if the reconstruction
1323 * thread has put up a bar for new requests.
1324 * Continue immediately if no resync is active currently.
1326 wait_barrier(conf
, bio
->bi_iter
.bi_sector
);
1328 r1_bio
= alloc_r1bio(mddev
, bio
);
1329 r1_bio
->sectors
= max_write_sectors
;
1331 if (conf
->pending_count
>= max_queued_requests
) {
1332 md_wakeup_thread(mddev
->thread
);
1333 raid1_log(mddev
, "wait queued");
1334 wait_event(conf
->wait_barrier
,
1335 conf
->pending_count
< max_queued_requests
);
1337 /* first select target devices under rcu_lock and
1338 * inc refcount on their rdev. Record them by setting
1340 * If there are known/acknowledged bad blocks on any device on
1341 * which we have seen a write error, we want to avoid writing those
1343 * This potentially requires several writes to write around
1344 * the bad blocks. Each set of writes gets it's own r1bio
1345 * with a set of bios attached.
1348 disks
= conf
->raid_disks
* 2;
1350 blocked_rdev
= NULL
;
1352 max_sectors
= r1_bio
->sectors
;
1353 for (i
= 0; i
< disks
; i
++) {
1354 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1355 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1356 atomic_inc(&rdev
->nr_pending
);
1357 blocked_rdev
= rdev
;
1360 r1_bio
->bios
[i
] = NULL
;
1361 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
)) {
1362 if (i
< conf
->raid_disks
)
1363 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
1367 atomic_inc(&rdev
->nr_pending
);
1368 if (test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1373 is_bad
= is_badblock(rdev
, r1_bio
->sector
, max_sectors
,
1374 &first_bad
, &bad_sectors
);
1376 /* mustn't write here until the bad block is
1378 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1379 blocked_rdev
= rdev
;
1382 if (is_bad
&& first_bad
<= r1_bio
->sector
) {
1383 /* Cannot write here at all */
1384 bad_sectors
-= (r1_bio
->sector
- first_bad
);
1385 if (bad_sectors
< max_sectors
)
1386 /* mustn't write more than bad_sectors
1387 * to other devices yet
1389 max_sectors
= bad_sectors
;
1390 rdev_dec_pending(rdev
, mddev
);
1391 /* We don't set R1BIO_Degraded as that
1392 * only applies if the disk is
1393 * missing, so it might be re-added,
1394 * and we want to know to recover this
1396 * In this case the device is here,
1397 * and the fact that this chunk is not
1398 * in-sync is recorded in the bad
1404 int good_sectors
= first_bad
- r1_bio
->sector
;
1405 if (good_sectors
< max_sectors
)
1406 max_sectors
= good_sectors
;
1409 r1_bio
->bios
[i
] = bio
;
1413 if (unlikely(blocked_rdev
)) {
1414 /* Wait for this device to become unblocked */
1417 for (j
= 0; j
< i
; j
++)
1418 if (r1_bio
->bios
[j
])
1419 rdev_dec_pending(conf
->mirrors
[j
].rdev
, mddev
);
1421 allow_barrier(conf
, bio
->bi_iter
.bi_sector
);
1422 raid1_log(mddev
, "wait rdev %d blocked", blocked_rdev
->raid_disk
);
1423 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1424 wait_barrier(conf
, bio
->bi_iter
.bi_sector
);
1428 if (max_sectors
< bio_sectors(bio
)) {
1429 struct bio
*split
= bio_split(bio
, max_sectors
,
1430 GFP_NOIO
, conf
->bio_split
);
1431 bio_chain(split
, bio
);
1432 generic_make_request(bio
);
1434 r1_bio
->master_bio
= bio
;
1435 r1_bio
->sectors
= max_sectors
;
1438 atomic_set(&r1_bio
->remaining
, 1);
1439 atomic_set(&r1_bio
->behind_remaining
, 0);
1443 for (i
= 0; i
< disks
; i
++) {
1444 struct bio
*mbio
= NULL
;
1445 if (!r1_bio
->bios
[i
])
1451 * Not if there are too many, or cannot
1452 * allocate memory, or a reader on WriteMostly
1453 * is waiting for behind writes to flush */
1455 (atomic_read(&bitmap
->behind_writes
)
1456 < mddev
->bitmap_info
.max_write_behind
) &&
1457 !waitqueue_active(&bitmap
->behind_wait
)) {
1458 alloc_behind_master_bio(r1_bio
, bio
);
1461 bitmap_startwrite(bitmap
, r1_bio
->sector
,
1463 test_bit(R1BIO_BehindIO
,
1468 if (r1_bio
->behind_master_bio
)
1469 mbio
= bio_clone_fast(r1_bio
->behind_master_bio
,
1470 GFP_NOIO
, mddev
->bio_set
);
1472 mbio
= bio_clone_fast(bio
, GFP_NOIO
, mddev
->bio_set
);
1474 if (r1_bio
->behind_master_bio
) {
1475 if (test_bit(WriteMostly
, &conf
->mirrors
[i
].rdev
->flags
))
1476 atomic_inc(&r1_bio
->behind_remaining
);
1479 r1_bio
->bios
[i
] = mbio
;
1481 mbio
->bi_iter
.bi_sector
= (r1_bio
->sector
+
1482 conf
->mirrors
[i
].rdev
->data_offset
);
1483 bio_set_dev(mbio
, conf
->mirrors
[i
].rdev
->bdev
);
1484 mbio
->bi_end_io
= raid1_end_write_request
;
1485 mbio
->bi_opf
= bio_op(bio
) | (bio
->bi_opf
& (REQ_SYNC
| REQ_FUA
));
1486 if (test_bit(FailFast
, &conf
->mirrors
[i
].rdev
->flags
) &&
1487 !test_bit(WriteMostly
, &conf
->mirrors
[i
].rdev
->flags
) &&
1488 conf
->raid_disks
- mddev
->degraded
> 1)
1489 mbio
->bi_opf
|= MD_FAILFAST
;
1490 mbio
->bi_private
= r1_bio
;
1492 atomic_inc(&r1_bio
->remaining
);
1495 trace_block_bio_remap(mbio
->bi_disk
->queue
,
1496 mbio
, disk_devt(mddev
->gendisk
),
1498 /* flush_pending_writes() needs access to the rdev so...*/
1499 mbio
->bi_disk
= (void *)conf
->mirrors
[i
].rdev
;
1501 cb
= blk_check_plugged(raid1_unplug
, mddev
, sizeof(*plug
));
1503 plug
= container_of(cb
, struct raid1_plug_cb
, cb
);
1507 bio_list_add(&plug
->pending
, mbio
);
1508 plug
->pending_cnt
++;
1510 spin_lock_irqsave(&conf
->device_lock
, flags
);
1511 bio_list_add(&conf
->pending_bio_list
, mbio
);
1512 conf
->pending_count
++;
1513 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1514 md_wakeup_thread(mddev
->thread
);
1518 r1_bio_write_done(r1_bio
);
1520 /* In case raid1d snuck in to freeze_array */
1521 wake_up(&conf
->wait_barrier
);
1524 static bool raid1_make_request(struct mddev
*mddev
, struct bio
*bio
)
1528 if (unlikely(bio
->bi_opf
& REQ_PREFLUSH
)) {
1529 md_flush_request(mddev
, bio
);
1534 * There is a limit to the maximum size, but
1535 * the read/write handler might find a lower limit
1536 * due to bad blocks. To avoid multiple splits,
1537 * we pass the maximum number of sectors down
1538 * and let the lower level perform the split.
1540 sectors
= align_to_barrier_unit_end(
1541 bio
->bi_iter
.bi_sector
, bio_sectors(bio
));
1543 if (bio_data_dir(bio
) == READ
)
1544 raid1_read_request(mddev
, bio
, sectors
, NULL
);
1546 if (!md_write_start(mddev
,bio
))
1548 raid1_write_request(mddev
, bio
, sectors
);
1553 static void raid1_status(struct seq_file
*seq
, struct mddev
*mddev
)
1555 struct r1conf
*conf
= mddev
->private;
1558 seq_printf(seq
, " [%d/%d] [", conf
->raid_disks
,
1559 conf
->raid_disks
- mddev
->degraded
);
1561 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1562 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1563 seq_printf(seq
, "%s",
1564 rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
1567 seq_printf(seq
, "]");
1570 static void raid1_error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1572 char b
[BDEVNAME_SIZE
];
1573 struct r1conf
*conf
= mddev
->private;
1574 unsigned long flags
;
1577 * If it is not operational, then we have already marked it as dead
1578 * else if it is the last working disks, ignore the error, let the
1579 * next level up know.
1580 * else mark the drive as failed
1582 spin_lock_irqsave(&conf
->device_lock
, flags
);
1583 if (test_bit(In_sync
, &rdev
->flags
)
1584 && (conf
->raid_disks
- mddev
->degraded
) == 1) {
1586 * Don't fail the drive, act as though we were just a
1587 * normal single drive.
1588 * However don't try a recovery from this drive as
1589 * it is very likely to fail.
1591 conf
->recovery_disabled
= mddev
->recovery_disabled
;
1592 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1595 set_bit(Blocked
, &rdev
->flags
);
1596 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1598 set_bit(Faulty
, &rdev
->flags
);
1600 set_bit(Faulty
, &rdev
->flags
);
1601 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1603 * if recovery is running, make sure it aborts.
1605 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1606 set_mask_bits(&mddev
->sb_flags
, 0,
1607 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
1608 pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1609 "md/raid1:%s: Operation continuing on %d devices.\n",
1610 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1611 mdname(mddev
), conf
->raid_disks
- mddev
->degraded
);
1614 static void print_conf(struct r1conf
*conf
)
1618 pr_debug("RAID1 conf printout:\n");
1620 pr_debug("(!conf)\n");
1623 pr_debug(" --- wd:%d rd:%d\n", conf
->raid_disks
- conf
->mddev
->degraded
,
1627 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1628 char b
[BDEVNAME_SIZE
];
1629 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1631 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1632 i
, !test_bit(In_sync
, &rdev
->flags
),
1633 !test_bit(Faulty
, &rdev
->flags
),
1634 bdevname(rdev
->bdev
,b
));
1639 static void close_sync(struct r1conf
*conf
)
1643 for (idx
= 0; idx
< BARRIER_BUCKETS_NR
; idx
++) {
1644 _wait_barrier(conf
, idx
);
1645 _allow_barrier(conf
, idx
);
1648 mempool_destroy(conf
->r1buf_pool
);
1649 conf
->r1buf_pool
= NULL
;
1652 static int raid1_spare_active(struct mddev
*mddev
)
1655 struct r1conf
*conf
= mddev
->private;
1657 unsigned long flags
;
1660 * Find all failed disks within the RAID1 configuration
1661 * and mark them readable.
1662 * Called under mddev lock, so rcu protection not needed.
1663 * device_lock used to avoid races with raid1_end_read_request
1664 * which expects 'In_sync' flags and ->degraded to be consistent.
1666 spin_lock_irqsave(&conf
->device_lock
, flags
);
1667 for (i
= 0; i
< conf
->raid_disks
; i
++) {
1668 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
1669 struct md_rdev
*repl
= conf
->mirrors
[conf
->raid_disks
+ i
].rdev
;
1671 && !test_bit(Candidate
, &repl
->flags
)
1672 && repl
->recovery_offset
== MaxSector
1673 && !test_bit(Faulty
, &repl
->flags
)
1674 && !test_and_set_bit(In_sync
, &repl
->flags
)) {
1675 /* replacement has just become active */
1677 !test_and_clear_bit(In_sync
, &rdev
->flags
))
1680 /* Replaced device not technically
1681 * faulty, but we need to be sure
1682 * it gets removed and never re-added
1684 set_bit(Faulty
, &rdev
->flags
);
1685 sysfs_notify_dirent_safe(
1690 && rdev
->recovery_offset
== MaxSector
1691 && !test_bit(Faulty
, &rdev
->flags
)
1692 && !test_and_set_bit(In_sync
, &rdev
->flags
)) {
1694 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
1697 mddev
->degraded
-= count
;
1698 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1704 static int raid1_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1706 struct r1conf
*conf
= mddev
->private;
1709 struct raid1_info
*p
;
1711 int last
= conf
->raid_disks
- 1;
1713 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
1716 if (md_integrity_add_rdev(rdev
, mddev
))
1719 if (rdev
->raid_disk
>= 0)
1720 first
= last
= rdev
->raid_disk
;
1723 * find the disk ... but prefer rdev->saved_raid_disk
1726 if (rdev
->saved_raid_disk
>= 0 &&
1727 rdev
->saved_raid_disk
>= first
&&
1728 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1729 first
= last
= rdev
->saved_raid_disk
;
1731 for (mirror
= first
; mirror
<= last
; mirror
++) {
1732 p
= conf
->mirrors
+mirror
;
1736 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1737 rdev
->data_offset
<< 9);
1739 p
->head_position
= 0;
1740 rdev
->raid_disk
= mirror
;
1742 /* As all devices are equivalent, we don't need a full recovery
1743 * if this was recently any drive of the array
1745 if (rdev
->saved_raid_disk
< 0)
1747 rcu_assign_pointer(p
->rdev
, rdev
);
1750 if (test_bit(WantReplacement
, &p
->rdev
->flags
) &&
1751 p
[conf
->raid_disks
].rdev
== NULL
) {
1752 /* Add this device as a replacement */
1753 clear_bit(In_sync
, &rdev
->flags
);
1754 set_bit(Replacement
, &rdev
->flags
);
1755 rdev
->raid_disk
= mirror
;
1758 rcu_assign_pointer(p
[conf
->raid_disks
].rdev
, rdev
);
1762 if (mddev
->queue
&& blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
1763 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, mddev
->queue
);
1768 static int raid1_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1770 struct r1conf
*conf
= mddev
->private;
1772 int number
= rdev
->raid_disk
;
1773 struct raid1_info
*p
= conf
->mirrors
+ number
;
1775 if (rdev
!= p
->rdev
)
1776 p
= conf
->mirrors
+ conf
->raid_disks
+ number
;
1779 if (rdev
== p
->rdev
) {
1780 if (test_bit(In_sync
, &rdev
->flags
) ||
1781 atomic_read(&rdev
->nr_pending
)) {
1785 /* Only remove non-faulty devices if recovery
1788 if (!test_bit(Faulty
, &rdev
->flags
) &&
1789 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
1790 mddev
->degraded
< conf
->raid_disks
) {
1795 if (!test_bit(RemoveSynchronized
, &rdev
->flags
)) {
1797 if (atomic_read(&rdev
->nr_pending
)) {
1798 /* lost the race, try later */
1804 if (conf
->mirrors
[conf
->raid_disks
+ number
].rdev
) {
1805 /* We just removed a device that is being replaced.
1806 * Move down the replacement. We drain all IO before
1807 * doing this to avoid confusion.
1809 struct md_rdev
*repl
=
1810 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
;
1811 freeze_array(conf
, 0);
1812 clear_bit(Replacement
, &repl
->flags
);
1814 conf
->mirrors
[conf
->raid_disks
+ number
].rdev
= NULL
;
1815 unfreeze_array(conf
);
1818 clear_bit(WantReplacement
, &rdev
->flags
);
1819 err
= md_integrity_register(mddev
);
1827 static void end_sync_read(struct bio
*bio
)
1829 struct r1bio
*r1_bio
= get_resync_r1bio(bio
);
1831 update_head_pos(r1_bio
->read_disk
, r1_bio
);
1834 * we have read a block, now it needs to be re-written,
1835 * or re-read if the read failed.
1836 * We don't do much here, just schedule handling by raid1d
1838 if (!bio
->bi_status
)
1839 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
1841 if (atomic_dec_and_test(&r1_bio
->remaining
))
1842 reschedule_retry(r1_bio
);
1845 static void end_sync_write(struct bio
*bio
)
1847 int uptodate
= !bio
->bi_status
;
1848 struct r1bio
*r1_bio
= get_resync_r1bio(bio
);
1849 struct mddev
*mddev
= r1_bio
->mddev
;
1850 struct r1conf
*conf
= mddev
->private;
1853 struct md_rdev
*rdev
= conf
->mirrors
[find_bio_disk(r1_bio
, bio
)].rdev
;
1856 sector_t sync_blocks
= 0;
1857 sector_t s
= r1_bio
->sector
;
1858 long sectors_to_go
= r1_bio
->sectors
;
1859 /* make sure these bits doesn't get cleared. */
1861 bitmap_end_sync(mddev
->bitmap
, s
,
1864 sectors_to_go
-= sync_blocks
;
1865 } while (sectors_to_go
> 0);
1866 set_bit(WriteErrorSeen
, &rdev
->flags
);
1867 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
1868 set_bit(MD_RECOVERY_NEEDED
, &
1870 set_bit(R1BIO_WriteError
, &r1_bio
->state
);
1871 } else if (is_badblock(rdev
, r1_bio
->sector
, r1_bio
->sectors
,
1872 &first_bad
, &bad_sectors
) &&
1873 !is_badblock(conf
->mirrors
[r1_bio
->read_disk
].rdev
,
1876 &first_bad
, &bad_sectors
)
1878 set_bit(R1BIO_MadeGood
, &r1_bio
->state
);
1880 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
1881 int s
= r1_bio
->sectors
;
1882 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
1883 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
1884 reschedule_retry(r1_bio
);
1887 md_done_sync(mddev
, s
, uptodate
);
1892 static int r1_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
1893 int sectors
, struct page
*page
, int rw
)
1895 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, 0, false))
1899 set_bit(WriteErrorSeen
, &rdev
->flags
);
1900 if (!test_and_set_bit(WantReplacement
,
1902 set_bit(MD_RECOVERY_NEEDED
, &
1903 rdev
->mddev
->recovery
);
1905 /* need to record an error - either for the block or the device */
1906 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
1907 md_error(rdev
->mddev
, rdev
);
1911 static int fix_sync_read_error(struct r1bio
*r1_bio
)
1913 /* Try some synchronous reads of other devices to get
1914 * good data, much like with normal read errors. Only
1915 * read into the pages we already have so we don't
1916 * need to re-issue the read request.
1917 * We don't need to freeze the array, because being in an
1918 * active sync request, there is no normal IO, and
1919 * no overlapping syncs.
1920 * We don't need to check is_badblock() again as we
1921 * made sure that anything with a bad block in range
1922 * will have bi_end_io clear.
1924 struct mddev
*mddev
= r1_bio
->mddev
;
1925 struct r1conf
*conf
= mddev
->private;
1926 struct bio
*bio
= r1_bio
->bios
[r1_bio
->read_disk
];
1927 struct page
**pages
= get_resync_pages(bio
)->pages
;
1928 sector_t sect
= r1_bio
->sector
;
1929 int sectors
= r1_bio
->sectors
;
1931 struct md_rdev
*rdev
;
1933 rdev
= conf
->mirrors
[r1_bio
->read_disk
].rdev
;
1934 if (test_bit(FailFast
, &rdev
->flags
)) {
1935 /* Don't try recovering from here - just fail it
1936 * ... unless it is the last working device of course */
1937 md_error(mddev
, rdev
);
1938 if (test_bit(Faulty
, &rdev
->flags
))
1939 /* Don't try to read from here, but make sure
1940 * put_buf does it's thing
1942 bio
->bi_end_io
= end_sync_write
;
1947 int d
= r1_bio
->read_disk
;
1951 if (s
> (PAGE_SIZE
>>9))
1954 if (r1_bio
->bios
[d
]->bi_end_io
== end_sync_read
) {
1955 /* No rcu protection needed here devices
1956 * can only be removed when no resync is
1957 * active, and resync is currently active
1959 rdev
= conf
->mirrors
[d
].rdev
;
1960 if (sync_page_io(rdev
, sect
, s
<<9,
1962 REQ_OP_READ
, 0, false)) {
1968 if (d
== conf
->raid_disks
* 2)
1970 } while (!success
&& d
!= r1_bio
->read_disk
);
1973 char b
[BDEVNAME_SIZE
];
1975 /* Cannot read from anywhere, this block is lost.
1976 * Record a bad block on each device. If that doesn't
1977 * work just disable and interrupt the recovery.
1978 * Don't fail devices as that won't really help.
1980 pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1981 mdname(mddev
), bio_devname(bio
, b
),
1982 (unsigned long long)r1_bio
->sector
);
1983 for (d
= 0; d
< conf
->raid_disks
* 2; d
++) {
1984 rdev
= conf
->mirrors
[d
].rdev
;
1985 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
1987 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
1991 conf
->recovery_disabled
=
1992 mddev
->recovery_disabled
;
1993 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1994 md_done_sync(mddev
, r1_bio
->sectors
, 0);
2006 /* write it back and re-read */
2007 while (d
!= r1_bio
->read_disk
) {
2009 d
= conf
->raid_disks
* 2;
2011 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
2013 rdev
= conf
->mirrors
[d
].rdev
;
2014 if (r1_sync_page_io(rdev
, sect
, s
,
2017 r1_bio
->bios
[d
]->bi_end_io
= NULL
;
2018 rdev_dec_pending(rdev
, mddev
);
2022 while (d
!= r1_bio
->read_disk
) {
2024 d
= conf
->raid_disks
* 2;
2026 if (r1_bio
->bios
[d
]->bi_end_io
!= end_sync_read
)
2028 rdev
= conf
->mirrors
[d
].rdev
;
2029 if (r1_sync_page_io(rdev
, sect
, s
,
2032 atomic_add(s
, &rdev
->corrected_errors
);
2038 set_bit(R1BIO_Uptodate
, &r1_bio
->state
);
2043 static void process_checks(struct r1bio
*r1_bio
)
2045 /* We have read all readable devices. If we haven't
2046 * got the block, then there is no hope left.
2047 * If we have, then we want to do a comparison
2048 * and skip the write if everything is the same.
2049 * If any blocks failed to read, then we need to
2050 * attempt an over-write
2052 struct mddev
*mddev
= r1_bio
->mddev
;
2053 struct r1conf
*conf
= mddev
->private;
2058 /* Fix variable parts of all bios */
2059 vcnt
= (r1_bio
->sectors
+ PAGE_SIZE
/ 512 - 1) >> (PAGE_SHIFT
- 9);
2060 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2061 blk_status_t status
;
2062 struct bio
*b
= r1_bio
->bios
[i
];
2063 struct resync_pages
*rp
= get_resync_pages(b
);
2064 if (b
->bi_end_io
!= end_sync_read
)
2066 /* fixup the bio for reuse, but preserve errno */
2067 status
= b
->bi_status
;
2069 b
->bi_status
= status
;
2070 b
->bi_iter
.bi_sector
= r1_bio
->sector
+
2071 conf
->mirrors
[i
].rdev
->data_offset
;
2072 bio_set_dev(b
, conf
->mirrors
[i
].rdev
->bdev
);
2073 b
->bi_end_io
= end_sync_read
;
2074 rp
->raid_bio
= r1_bio
;
2077 /* initialize bvec table again */
2078 md_bio_reset_resync_pages(b
, rp
, r1_bio
->sectors
<< 9);
2080 for (primary
= 0; primary
< conf
->raid_disks
* 2; primary
++)
2081 if (r1_bio
->bios
[primary
]->bi_end_io
== end_sync_read
&&
2082 !r1_bio
->bios
[primary
]->bi_status
) {
2083 r1_bio
->bios
[primary
]->bi_end_io
= NULL
;
2084 rdev_dec_pending(conf
->mirrors
[primary
].rdev
, mddev
);
2087 r1_bio
->read_disk
= primary
;
2088 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2090 struct bio
*pbio
= r1_bio
->bios
[primary
];
2091 struct bio
*sbio
= r1_bio
->bios
[i
];
2092 blk_status_t status
= sbio
->bi_status
;
2093 struct page
**ppages
= get_resync_pages(pbio
)->pages
;
2094 struct page
**spages
= get_resync_pages(sbio
)->pages
;
2096 int page_len
[RESYNC_PAGES
] = { 0 };
2098 if (sbio
->bi_end_io
!= end_sync_read
)
2100 /* Now we can 'fixup' the error value */
2101 sbio
->bi_status
= 0;
2103 bio_for_each_segment_all(bi
, sbio
, j
)
2104 page_len
[j
] = bi
->bv_len
;
2107 for (j
= vcnt
; j
-- ; ) {
2108 if (memcmp(page_address(ppages
[j
]),
2109 page_address(spages
[j
]),
2116 atomic64_add(r1_bio
->sectors
, &mddev
->resync_mismatches
);
2117 if (j
< 0 || (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)
2119 /* No need to write to this device. */
2120 sbio
->bi_end_io
= NULL
;
2121 rdev_dec_pending(conf
->mirrors
[i
].rdev
, mddev
);
2125 bio_copy_data(sbio
, pbio
);
2129 static void sync_request_write(struct mddev
*mddev
, struct r1bio
*r1_bio
)
2131 struct r1conf
*conf
= mddev
->private;
2133 int disks
= conf
->raid_disks
* 2;
2136 if (!test_bit(R1BIO_Uptodate
, &r1_bio
->state
))
2137 /* ouch - failed to read all of that. */
2138 if (!fix_sync_read_error(r1_bio
))
2141 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2142 process_checks(r1_bio
);
2147 atomic_set(&r1_bio
->remaining
, 1);
2148 for (i
= 0; i
< disks
; i
++) {
2149 wbio
= r1_bio
->bios
[i
];
2150 if (wbio
->bi_end_io
== NULL
||
2151 (wbio
->bi_end_io
== end_sync_read
&&
2152 (i
== r1_bio
->read_disk
||
2153 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))))
2155 if (test_bit(Faulty
, &conf
->mirrors
[i
].rdev
->flags
))
2158 bio_set_op_attrs(wbio
, REQ_OP_WRITE
, 0);
2159 if (test_bit(FailFast
, &conf
->mirrors
[i
].rdev
->flags
))
2160 wbio
->bi_opf
|= MD_FAILFAST
;
2162 wbio
->bi_end_io
= end_sync_write
;
2163 atomic_inc(&r1_bio
->remaining
);
2164 md_sync_acct(conf
->mirrors
[i
].rdev
->bdev
, bio_sectors(wbio
));
2166 generic_make_request(wbio
);
2169 if (atomic_dec_and_test(&r1_bio
->remaining
)) {
2170 /* if we're here, all write(s) have completed, so clean up */
2171 int s
= r1_bio
->sectors
;
2172 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2173 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2174 reschedule_retry(r1_bio
);
2177 md_done_sync(mddev
, s
, 1);
2183 * This is a kernel thread which:
2185 * 1. Retries failed read operations on working mirrors.
2186 * 2. Updates the raid superblock when problems encounter.
2187 * 3. Performs writes following reads for array synchronising.
2190 static void fix_read_error(struct r1conf
*conf
, int read_disk
,
2191 sector_t sect
, int sectors
)
2193 struct mddev
*mddev
= conf
->mddev
;
2199 struct md_rdev
*rdev
;
2201 if (s
> (PAGE_SIZE
>>9))
2209 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2211 (test_bit(In_sync
, &rdev
->flags
) ||
2212 (!test_bit(Faulty
, &rdev
->flags
) &&
2213 rdev
->recovery_offset
>= sect
+ s
)) &&
2214 is_badblock(rdev
, sect
, s
,
2215 &first_bad
, &bad_sectors
) == 0) {
2216 atomic_inc(&rdev
->nr_pending
);
2218 if (sync_page_io(rdev
, sect
, s
<<9,
2219 conf
->tmppage
, REQ_OP_READ
, 0, false))
2221 rdev_dec_pending(rdev
, mddev
);
2227 if (d
== conf
->raid_disks
* 2)
2229 } while (!success
&& d
!= read_disk
);
2232 /* Cannot read from anywhere - mark it bad */
2233 struct md_rdev
*rdev
= conf
->mirrors
[read_disk
].rdev
;
2234 if (!rdev_set_badblocks(rdev
, sect
, s
, 0))
2235 md_error(mddev
, rdev
);
2238 /* write it back and re-read */
2240 while (d
!= read_disk
) {
2242 d
= conf
->raid_disks
* 2;
2245 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2247 !test_bit(Faulty
, &rdev
->flags
)) {
2248 atomic_inc(&rdev
->nr_pending
);
2250 r1_sync_page_io(rdev
, sect
, s
,
2251 conf
->tmppage
, WRITE
);
2252 rdev_dec_pending(rdev
, mddev
);
2257 while (d
!= read_disk
) {
2258 char b
[BDEVNAME_SIZE
];
2260 d
= conf
->raid_disks
* 2;
2263 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2265 !test_bit(Faulty
, &rdev
->flags
)) {
2266 atomic_inc(&rdev
->nr_pending
);
2268 if (r1_sync_page_io(rdev
, sect
, s
,
2269 conf
->tmppage
, READ
)) {
2270 atomic_add(s
, &rdev
->corrected_errors
);
2271 pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2273 (unsigned long long)(sect
+
2275 bdevname(rdev
->bdev
, b
));
2277 rdev_dec_pending(rdev
, mddev
);
2286 static int narrow_write_error(struct r1bio
*r1_bio
, int i
)
2288 struct mddev
*mddev
= r1_bio
->mddev
;
2289 struct r1conf
*conf
= mddev
->private;
2290 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2292 /* bio has the data to be written to device 'i' where
2293 * we just recently had a write error.
2294 * We repeatedly clone the bio and trim down to one block,
2295 * then try the write. Where the write fails we record
2297 * It is conceivable that the bio doesn't exactly align with
2298 * blocks. We must handle this somehow.
2300 * We currently own a reference on the rdev.
2306 int sect_to_write
= r1_bio
->sectors
;
2309 if (rdev
->badblocks
.shift
< 0)
2312 block_sectors
= roundup(1 << rdev
->badblocks
.shift
,
2313 bdev_logical_block_size(rdev
->bdev
) >> 9);
2314 sector
= r1_bio
->sector
;
2315 sectors
= ((sector
+ block_sectors
)
2316 & ~(sector_t
)(block_sectors
- 1))
2319 while (sect_to_write
) {
2321 if (sectors
> sect_to_write
)
2322 sectors
= sect_to_write
;
2323 /* Write at 'sector' for 'sectors'*/
2325 if (test_bit(R1BIO_BehindIO
, &r1_bio
->state
)) {
2326 wbio
= bio_clone_fast(r1_bio
->behind_master_bio
,
2330 wbio
= bio_clone_fast(r1_bio
->master_bio
, GFP_NOIO
,
2334 bio_set_op_attrs(wbio
, REQ_OP_WRITE
, 0);
2335 wbio
->bi_iter
.bi_sector
= r1_bio
->sector
;
2336 wbio
->bi_iter
.bi_size
= r1_bio
->sectors
<< 9;
2338 bio_trim(wbio
, sector
- r1_bio
->sector
, sectors
);
2339 wbio
->bi_iter
.bi_sector
+= rdev
->data_offset
;
2340 bio_set_dev(wbio
, rdev
->bdev
);
2342 if (submit_bio_wait(wbio
) < 0)
2344 ok
= rdev_set_badblocks(rdev
, sector
,
2349 sect_to_write
-= sectors
;
2351 sectors
= block_sectors
;
2356 static void handle_sync_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2359 int s
= r1_bio
->sectors
;
2360 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++) {
2361 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2362 struct bio
*bio
= r1_bio
->bios
[m
];
2363 if (bio
->bi_end_io
== NULL
)
2365 if (!bio
->bi_status
&&
2366 test_bit(R1BIO_MadeGood
, &r1_bio
->state
)) {
2367 rdev_clear_badblocks(rdev
, r1_bio
->sector
, s
, 0);
2369 if (bio
->bi_status
&&
2370 test_bit(R1BIO_WriteError
, &r1_bio
->state
)) {
2371 if (!rdev_set_badblocks(rdev
, r1_bio
->sector
, s
, 0))
2372 md_error(conf
->mddev
, rdev
);
2376 md_done_sync(conf
->mddev
, s
, 1);
2379 static void handle_write_finished(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2384 for (m
= 0; m
< conf
->raid_disks
* 2 ; m
++)
2385 if (r1_bio
->bios
[m
] == IO_MADE_GOOD
) {
2386 struct md_rdev
*rdev
= conf
->mirrors
[m
].rdev
;
2387 rdev_clear_badblocks(rdev
,
2389 r1_bio
->sectors
, 0);
2390 rdev_dec_pending(rdev
, conf
->mddev
);
2391 } else if (r1_bio
->bios
[m
] != NULL
) {
2392 /* This drive got a write error. We need to
2393 * narrow down and record precise write
2397 if (!narrow_write_error(r1_bio
, m
)) {
2398 md_error(conf
->mddev
,
2399 conf
->mirrors
[m
].rdev
);
2400 /* an I/O failed, we can't clear the bitmap */
2401 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
2403 rdev_dec_pending(conf
->mirrors
[m
].rdev
,
2407 spin_lock_irq(&conf
->device_lock
);
2408 list_add(&r1_bio
->retry_list
, &conf
->bio_end_io_list
);
2409 idx
= sector_to_idx(r1_bio
->sector
);
2410 atomic_inc(&conf
->nr_queued
[idx
]);
2411 spin_unlock_irq(&conf
->device_lock
);
2413 * In case freeze_array() is waiting for condition
2414 * get_unqueued_pending() == extra to be true.
2416 wake_up(&conf
->wait_barrier
);
2417 md_wakeup_thread(conf
->mddev
->thread
);
2419 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2420 close_write(r1_bio
);
2421 raid_end_bio_io(r1_bio
);
2425 static void handle_read_error(struct r1conf
*conf
, struct r1bio
*r1_bio
)
2427 struct mddev
*mddev
= conf
->mddev
;
2429 struct md_rdev
*rdev
;
2430 sector_t bio_sector
;
2432 clear_bit(R1BIO_ReadError
, &r1_bio
->state
);
2433 /* we got a read error. Maybe the drive is bad. Maybe just
2434 * the block and we can fix it.
2435 * We freeze all other IO, and try reading the block from
2436 * other devices. When we find one, we re-write
2437 * and check it that fixes the read error.
2438 * This is all done synchronously while the array is
2442 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2443 bio_sector
= conf
->mirrors
[r1_bio
->read_disk
].rdev
->data_offset
+ r1_bio
->sector
;
2445 r1_bio
->bios
[r1_bio
->read_disk
] = NULL
;
2447 rdev
= conf
->mirrors
[r1_bio
->read_disk
].rdev
;
2449 && !test_bit(FailFast
, &rdev
->flags
)) {
2450 freeze_array(conf
, 1);
2451 fix_read_error(conf
, r1_bio
->read_disk
,
2452 r1_bio
->sector
, r1_bio
->sectors
);
2453 unfreeze_array(conf
);
2455 r1_bio
->bios
[r1_bio
->read_disk
] = IO_BLOCKED
;
2458 rdev_dec_pending(rdev
, conf
->mddev
);
2459 allow_barrier(conf
, r1_bio
->sector
);
2460 bio
= r1_bio
->master_bio
;
2462 /* Reuse the old r1_bio so that the IO_BLOCKED settings are preserved */
2464 raid1_read_request(mddev
, bio
, r1_bio
->sectors
, r1_bio
);
2467 static void raid1d(struct md_thread
*thread
)
2469 struct mddev
*mddev
= thread
->mddev
;
2470 struct r1bio
*r1_bio
;
2471 unsigned long flags
;
2472 struct r1conf
*conf
= mddev
->private;
2473 struct list_head
*head
= &conf
->retry_list
;
2474 struct blk_plug plug
;
2477 md_check_recovery(mddev
);
2479 if (!list_empty_careful(&conf
->bio_end_io_list
) &&
2480 !test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
)) {
2482 spin_lock_irqsave(&conf
->device_lock
, flags
);
2483 if (!test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
))
2484 list_splice_init(&conf
->bio_end_io_list
, &tmp
);
2485 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2486 while (!list_empty(&tmp
)) {
2487 r1_bio
= list_first_entry(&tmp
, struct r1bio
,
2489 list_del(&r1_bio
->retry_list
);
2490 idx
= sector_to_idx(r1_bio
->sector
);
2491 atomic_dec(&conf
->nr_queued
[idx
]);
2492 if (mddev
->degraded
)
2493 set_bit(R1BIO_Degraded
, &r1_bio
->state
);
2494 if (test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2495 close_write(r1_bio
);
2496 raid_end_bio_io(r1_bio
);
2500 blk_start_plug(&plug
);
2503 flush_pending_writes(conf
);
2505 spin_lock_irqsave(&conf
->device_lock
, flags
);
2506 if (list_empty(head
)) {
2507 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2510 r1_bio
= list_entry(head
->prev
, struct r1bio
, retry_list
);
2511 list_del(head
->prev
);
2512 idx
= sector_to_idx(r1_bio
->sector
);
2513 atomic_dec(&conf
->nr_queued
[idx
]);
2514 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2516 mddev
= r1_bio
->mddev
;
2517 conf
= mddev
->private;
2518 if (test_bit(R1BIO_IsSync
, &r1_bio
->state
)) {
2519 if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2520 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2521 handle_sync_write_finished(conf
, r1_bio
);
2523 sync_request_write(mddev
, r1_bio
);
2524 } else if (test_bit(R1BIO_MadeGood
, &r1_bio
->state
) ||
2525 test_bit(R1BIO_WriteError
, &r1_bio
->state
))
2526 handle_write_finished(conf
, r1_bio
);
2527 else if (test_bit(R1BIO_ReadError
, &r1_bio
->state
))
2528 handle_read_error(conf
, r1_bio
);
2533 if (mddev
->sb_flags
& ~(1<<MD_SB_CHANGE_PENDING
))
2534 md_check_recovery(mddev
);
2536 blk_finish_plug(&plug
);
2539 static int init_resync(struct r1conf
*conf
)
2543 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2544 BUG_ON(conf
->r1buf_pool
);
2545 conf
->r1buf_pool
= mempool_create(buffs
, r1buf_pool_alloc
, r1buf_pool_free
,
2547 if (!conf
->r1buf_pool
)
2552 static struct r1bio
*raid1_alloc_init_r1buf(struct r1conf
*conf
)
2554 struct r1bio
*r1bio
= mempool_alloc(conf
->r1buf_pool
, GFP_NOIO
);
2555 struct resync_pages
*rps
;
2559 for (i
= conf
->poolinfo
->raid_disks
; i
--; ) {
2560 bio
= r1bio
->bios
[i
];
2561 rps
= bio
->bi_private
;
2563 bio
->bi_private
= rps
;
2565 r1bio
->master_bio
= NULL
;
2570 * perform a "sync" on one "block"
2572 * We need to make sure that no normal I/O request - particularly write
2573 * requests - conflict with active sync requests.
2575 * This is achieved by tracking pending requests and a 'barrier' concept
2576 * that can be installed to exclude normal IO requests.
2579 static sector_t
raid1_sync_request(struct mddev
*mddev
, sector_t sector_nr
,
2582 struct r1conf
*conf
= mddev
->private;
2583 struct r1bio
*r1_bio
;
2585 sector_t max_sector
, nr_sectors
;
2589 int write_targets
= 0, read_targets
= 0;
2590 sector_t sync_blocks
;
2591 int still_degraded
= 0;
2592 int good_sectors
= RESYNC_SECTORS
;
2593 int min_bad
= 0; /* number of sectors that are bad in all devices */
2594 int idx
= sector_to_idx(sector_nr
);
2597 if (!conf
->r1buf_pool
)
2598 if (init_resync(conf
))
2601 max_sector
= mddev
->dev_sectors
;
2602 if (sector_nr
>= max_sector
) {
2603 /* If we aborted, we need to abort the
2604 * sync on the 'current' bitmap chunk (there will
2605 * only be one in raid1 resync.
2606 * We can find the current addess in mddev->curr_resync
2608 if (mddev
->curr_resync
< max_sector
) /* aborted */
2609 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2611 else /* completed sync */
2614 bitmap_close_sync(mddev
->bitmap
);
2617 if (mddev_is_clustered(mddev
)) {
2618 conf
->cluster_sync_low
= 0;
2619 conf
->cluster_sync_high
= 0;
2624 if (mddev
->bitmap
== NULL
&&
2625 mddev
->recovery_cp
== MaxSector
&&
2626 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2627 conf
->fullsync
== 0) {
2629 return max_sector
- sector_nr
;
2631 /* before building a request, check if we can skip these blocks..
2632 * This call the bitmap_start_sync doesn't actually record anything
2634 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
2635 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2636 /* We can skip this block, and probably several more */
2642 * If there is non-resync activity waiting for a turn, then let it
2643 * though before starting on this new sync request.
2645 if (atomic_read(&conf
->nr_waiting
[idx
]))
2646 schedule_timeout_uninterruptible(1);
2648 /* we are incrementing sector_nr below. To be safe, we check against
2649 * sector_nr + two times RESYNC_SECTORS
2652 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
,
2653 mddev_is_clustered(mddev
) && (sector_nr
+ 2 * RESYNC_SECTORS
> conf
->cluster_sync_high
));
2654 r1_bio
= raid1_alloc_init_r1buf(conf
);
2656 raise_barrier(conf
, sector_nr
);
2660 * If we get a correctably read error during resync or recovery,
2661 * we might want to read from a different device. So we
2662 * flag all drives that could conceivably be read from for READ,
2663 * and any others (which will be non-In_sync devices) for WRITE.
2664 * If a read fails, we try reading from something else for which READ
2668 r1_bio
->mddev
= mddev
;
2669 r1_bio
->sector
= sector_nr
;
2671 set_bit(R1BIO_IsSync
, &r1_bio
->state
);
2672 /* make sure good_sectors won't go across barrier unit boundary */
2673 good_sectors
= align_to_barrier_unit_end(sector_nr
, good_sectors
);
2675 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2676 struct md_rdev
*rdev
;
2677 bio
= r1_bio
->bios
[i
];
2679 rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
2681 test_bit(Faulty
, &rdev
->flags
)) {
2682 if (i
< conf
->raid_disks
)
2684 } else if (!test_bit(In_sync
, &rdev
->flags
)) {
2685 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
2686 bio
->bi_end_io
= end_sync_write
;
2689 /* may need to read from here */
2690 sector_t first_bad
= MaxSector
;
2693 if (is_badblock(rdev
, sector_nr
, good_sectors
,
2694 &first_bad
, &bad_sectors
)) {
2695 if (first_bad
> sector_nr
)
2696 good_sectors
= first_bad
- sector_nr
;
2698 bad_sectors
-= (sector_nr
- first_bad
);
2700 min_bad
> bad_sectors
)
2701 min_bad
= bad_sectors
;
2704 if (sector_nr
< first_bad
) {
2705 if (test_bit(WriteMostly
, &rdev
->flags
)) {
2712 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
2713 bio
->bi_end_io
= end_sync_read
;
2715 } else if (!test_bit(WriteErrorSeen
, &rdev
->flags
) &&
2716 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) &&
2717 !test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)) {
2719 * The device is suitable for reading (InSync),
2720 * but has bad block(s) here. Let's try to correct them,
2721 * if we are doing resync or repair. Otherwise, leave
2722 * this device alone for this sync request.
2724 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
2725 bio
->bi_end_io
= end_sync_write
;
2729 if (bio
->bi_end_io
) {
2730 atomic_inc(&rdev
->nr_pending
);
2731 bio
->bi_iter
.bi_sector
= sector_nr
+ rdev
->data_offset
;
2732 bio_set_dev(bio
, rdev
->bdev
);
2733 if (test_bit(FailFast
, &rdev
->flags
))
2734 bio
->bi_opf
|= MD_FAILFAST
;
2740 r1_bio
->read_disk
= disk
;
2742 if (read_targets
== 0 && min_bad
> 0) {
2743 /* These sectors are bad on all InSync devices, so we
2744 * need to mark them bad on all write targets
2747 for (i
= 0 ; i
< conf
->raid_disks
* 2 ; i
++)
2748 if (r1_bio
->bios
[i
]->bi_end_io
== end_sync_write
) {
2749 struct md_rdev
*rdev
= conf
->mirrors
[i
].rdev
;
2750 ok
= rdev_set_badblocks(rdev
, sector_nr
,
2754 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
2759 /* Cannot record the badblocks, so need to
2761 * If there are multiple read targets, could just
2762 * fail the really bad ones ???
2764 conf
->recovery_disabled
= mddev
->recovery_disabled
;
2765 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
2771 if (min_bad
> 0 && min_bad
< good_sectors
) {
2772 /* only resync enough to reach the next bad->good
2774 good_sectors
= min_bad
;
2777 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) && read_targets
> 0)
2778 /* extra read targets are also write targets */
2779 write_targets
+= read_targets
-1;
2781 if (write_targets
== 0 || read_targets
== 0) {
2782 /* There is nowhere to write, so all non-sync
2783 * drives must be failed - so we are finished
2787 max_sector
= sector_nr
+ min_bad
;
2788 rv
= max_sector
- sector_nr
;
2794 if (max_sector
> mddev
->resync_max
)
2795 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2796 if (max_sector
> sector_nr
+ good_sectors
)
2797 max_sector
= sector_nr
+ good_sectors
;
2802 int len
= PAGE_SIZE
;
2803 if (sector_nr
+ (len
>>9) > max_sector
)
2804 len
= (max_sector
- sector_nr
) << 9;
2807 if (sync_blocks
== 0) {
2808 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
2809 &sync_blocks
, still_degraded
) &&
2811 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
2813 if ((len
>> 9) > sync_blocks
)
2814 len
= sync_blocks
<<9;
2817 for (i
= 0 ; i
< conf
->raid_disks
* 2; i
++) {
2818 struct resync_pages
*rp
;
2820 bio
= r1_bio
->bios
[i
];
2821 rp
= get_resync_pages(bio
);
2822 if (bio
->bi_end_io
) {
2823 page
= resync_fetch_page(rp
, page_idx
);
2826 * won't fail because the vec table is big
2827 * enough to hold all these pages
2829 bio_add_page(bio
, page
, len
, 0);
2832 nr_sectors
+= len
>>9;
2833 sector_nr
+= len
>>9;
2834 sync_blocks
-= (len
>>9);
2835 } while (++page_idx
< RESYNC_PAGES
);
2837 r1_bio
->sectors
= nr_sectors
;
2839 if (mddev_is_clustered(mddev
) &&
2840 conf
->cluster_sync_high
< sector_nr
+ nr_sectors
) {
2841 conf
->cluster_sync_low
= mddev
->curr_resync_completed
;
2842 conf
->cluster_sync_high
= conf
->cluster_sync_low
+ CLUSTER_RESYNC_WINDOW_SECTORS
;
2843 /* Send resync message */
2844 md_cluster_ops
->resync_info_update(mddev
,
2845 conf
->cluster_sync_low
,
2846 conf
->cluster_sync_high
);
2849 /* For a user-requested sync, we read all readable devices and do a
2852 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
2853 atomic_set(&r1_bio
->remaining
, read_targets
);
2854 for (i
= 0; i
< conf
->raid_disks
* 2 && read_targets
; i
++) {
2855 bio
= r1_bio
->bios
[i
];
2856 if (bio
->bi_end_io
== end_sync_read
) {
2858 md_sync_acct_bio(bio
, nr_sectors
);
2859 if (read_targets
== 1)
2860 bio
->bi_opf
&= ~MD_FAILFAST
;
2861 generic_make_request(bio
);
2865 atomic_set(&r1_bio
->remaining
, 1);
2866 bio
= r1_bio
->bios
[r1_bio
->read_disk
];
2867 md_sync_acct_bio(bio
, nr_sectors
);
2868 if (read_targets
== 1)
2869 bio
->bi_opf
&= ~MD_FAILFAST
;
2870 generic_make_request(bio
);
2876 static sector_t
raid1_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
2881 return mddev
->dev_sectors
;
2884 static struct r1conf
*setup_conf(struct mddev
*mddev
)
2886 struct r1conf
*conf
;
2888 struct raid1_info
*disk
;
2889 struct md_rdev
*rdev
;
2892 conf
= kzalloc(sizeof(struct r1conf
), GFP_KERNEL
);
2896 conf
->nr_pending
= kcalloc(BARRIER_BUCKETS_NR
,
2897 sizeof(atomic_t
), GFP_KERNEL
);
2898 if (!conf
->nr_pending
)
2901 conf
->nr_waiting
= kcalloc(BARRIER_BUCKETS_NR
,
2902 sizeof(atomic_t
), GFP_KERNEL
);
2903 if (!conf
->nr_waiting
)
2906 conf
->nr_queued
= kcalloc(BARRIER_BUCKETS_NR
,
2907 sizeof(atomic_t
), GFP_KERNEL
);
2908 if (!conf
->nr_queued
)
2911 conf
->barrier
= kcalloc(BARRIER_BUCKETS_NR
,
2912 sizeof(atomic_t
), GFP_KERNEL
);
2916 conf
->mirrors
= kzalloc(sizeof(struct raid1_info
)
2917 * mddev
->raid_disks
* 2,
2922 conf
->tmppage
= alloc_page(GFP_KERNEL
);
2926 conf
->poolinfo
= kzalloc(sizeof(*conf
->poolinfo
), GFP_KERNEL
);
2927 if (!conf
->poolinfo
)
2929 conf
->poolinfo
->raid_disks
= mddev
->raid_disks
* 2;
2930 conf
->r1bio_pool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
2933 if (!conf
->r1bio_pool
)
2936 conf
->bio_split
= bioset_create(BIO_POOL_SIZE
, 0, 0);
2937 if (!conf
->bio_split
)
2940 conf
->poolinfo
->mddev
= mddev
;
2943 spin_lock_init(&conf
->device_lock
);
2944 rdev_for_each(rdev
, mddev
) {
2945 int disk_idx
= rdev
->raid_disk
;
2946 if (disk_idx
>= mddev
->raid_disks
2949 if (test_bit(Replacement
, &rdev
->flags
))
2950 disk
= conf
->mirrors
+ mddev
->raid_disks
+ disk_idx
;
2952 disk
= conf
->mirrors
+ disk_idx
;
2957 disk
->head_position
= 0;
2958 disk
->seq_start
= MaxSector
;
2960 conf
->raid_disks
= mddev
->raid_disks
;
2961 conf
->mddev
= mddev
;
2962 INIT_LIST_HEAD(&conf
->retry_list
);
2963 INIT_LIST_HEAD(&conf
->bio_end_io_list
);
2965 spin_lock_init(&conf
->resync_lock
);
2966 init_waitqueue_head(&conf
->wait_barrier
);
2968 bio_list_init(&conf
->pending_bio_list
);
2969 conf
->pending_count
= 0;
2970 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
2973 for (i
= 0; i
< conf
->raid_disks
* 2; i
++) {
2975 disk
= conf
->mirrors
+ i
;
2977 if (i
< conf
->raid_disks
&&
2978 disk
[conf
->raid_disks
].rdev
) {
2979 /* This slot has a replacement. */
2981 /* No original, just make the replacement
2982 * a recovering spare
2985 disk
[conf
->raid_disks
].rdev
;
2986 disk
[conf
->raid_disks
].rdev
= NULL
;
2987 } else if (!test_bit(In_sync
, &disk
->rdev
->flags
))
2988 /* Original is not in_sync - bad */
2993 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
2994 disk
->head_position
= 0;
2996 (disk
->rdev
->saved_raid_disk
< 0))
3002 conf
->thread
= md_register_thread(raid1d
, mddev
, "raid1");
3010 mempool_destroy(conf
->r1bio_pool
);
3011 kfree(conf
->mirrors
);
3012 safe_put_page(conf
->tmppage
);
3013 kfree(conf
->poolinfo
);
3014 kfree(conf
->nr_pending
);
3015 kfree(conf
->nr_waiting
);
3016 kfree(conf
->nr_queued
);
3017 kfree(conf
->barrier
);
3018 if (conf
->bio_split
)
3019 bioset_free(conf
->bio_split
);
3022 return ERR_PTR(err
);
3025 static void raid1_free(struct mddev
*mddev
, void *priv
);
3026 static int raid1_run(struct mddev
*mddev
)
3028 struct r1conf
*conf
;
3030 struct md_rdev
*rdev
;
3032 bool discard_supported
= false;
3034 if (mddev
->level
!= 1) {
3035 pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3036 mdname(mddev
), mddev
->level
);
3039 if (mddev
->reshape_position
!= MaxSector
) {
3040 pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3044 if (mddev_init_writes_pending(mddev
) < 0)
3047 * copy the already verified devices into our private RAID1
3048 * bookkeeping area. [whatever we allocate in run(),
3049 * should be freed in raid1_free()]
3051 if (mddev
->private == NULL
)
3052 conf
= setup_conf(mddev
);
3054 conf
= mddev
->private;
3057 return PTR_ERR(conf
);
3060 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
3061 blk_queue_max_write_zeroes_sectors(mddev
->queue
, 0);
3064 rdev_for_each(rdev
, mddev
) {
3065 if (!mddev
->gendisk
)
3067 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
3068 rdev
->data_offset
<< 9);
3069 if (blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
3070 discard_supported
= true;
3073 mddev
->degraded
= 0;
3074 for (i
=0; i
< conf
->raid_disks
; i
++)
3075 if (conf
->mirrors
[i
].rdev
== NULL
||
3076 !test_bit(In_sync
, &conf
->mirrors
[i
].rdev
->flags
) ||
3077 test_bit(Faulty
, &conf
->mirrors
[i
].rdev
->flags
))
3080 if (conf
->raid_disks
- mddev
->degraded
== 1)
3081 mddev
->recovery_cp
= MaxSector
;
3083 if (mddev
->recovery_cp
!= MaxSector
)
3084 pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3086 pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
3087 mdname(mddev
), mddev
->raid_disks
- mddev
->degraded
,
3091 * Ok, everything is just fine now
3093 mddev
->thread
= conf
->thread
;
3094 conf
->thread
= NULL
;
3095 mddev
->private = conf
;
3096 set_bit(MD_FAILFAST_SUPPORTED
, &mddev
->flags
);
3098 md_set_array_sectors(mddev
, raid1_size(mddev
, 0, 0));
3101 if (discard_supported
)
3102 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
,
3105 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
,
3109 ret
= md_integrity_register(mddev
);
3111 md_unregister_thread(&mddev
->thread
);
3112 raid1_free(mddev
, conf
);
3117 static void raid1_free(struct mddev
*mddev
, void *priv
)
3119 struct r1conf
*conf
= priv
;
3121 mempool_destroy(conf
->r1bio_pool
);
3122 kfree(conf
->mirrors
);
3123 safe_put_page(conf
->tmppage
);
3124 kfree(conf
->poolinfo
);
3125 kfree(conf
->nr_pending
);
3126 kfree(conf
->nr_waiting
);
3127 kfree(conf
->nr_queued
);
3128 kfree(conf
->barrier
);
3129 if (conf
->bio_split
)
3130 bioset_free(conf
->bio_split
);
3134 static int raid1_resize(struct mddev
*mddev
, sector_t sectors
)
3136 /* no resync is happening, and there is enough space
3137 * on all devices, so we can resize.
3138 * We need to make sure resync covers any new space.
3139 * If the array is shrinking we should possibly wait until
3140 * any io in the removed space completes, but it hardly seems
3143 sector_t newsize
= raid1_size(mddev
, sectors
, 0);
3144 if (mddev
->external_size
&&
3145 mddev
->array_sectors
> newsize
)
3147 if (mddev
->bitmap
) {
3148 int ret
= bitmap_resize(mddev
->bitmap
, newsize
, 0, 0);
3152 md_set_array_sectors(mddev
, newsize
);
3153 if (sectors
> mddev
->dev_sectors
&&
3154 mddev
->recovery_cp
> mddev
->dev_sectors
) {
3155 mddev
->recovery_cp
= mddev
->dev_sectors
;
3156 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3158 mddev
->dev_sectors
= sectors
;
3159 mddev
->resync_max_sectors
= sectors
;
3163 static int raid1_reshape(struct mddev
*mddev
)
3166 * 1/ resize the r1bio_pool
3167 * 2/ resize conf->mirrors
3169 * We allocate a new r1bio_pool if we can.
3170 * Then raise a device barrier and wait until all IO stops.
3171 * Then resize conf->mirrors and swap in the new r1bio pool.
3173 * At the same time, we "pack" the devices so that all the missing
3174 * devices have the higher raid_disk numbers.
3176 mempool_t
*newpool
, *oldpool
;
3177 struct pool_info
*newpoolinfo
;
3178 struct raid1_info
*newmirrors
;
3179 struct r1conf
*conf
= mddev
->private;
3180 int cnt
, raid_disks
;
3181 unsigned long flags
;
3184 /* Cannot change chunk_size, layout, or level */
3185 if (mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
||
3186 mddev
->layout
!= mddev
->new_layout
||
3187 mddev
->level
!= mddev
->new_level
) {
3188 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
3189 mddev
->new_layout
= mddev
->layout
;
3190 mddev
->new_level
= mddev
->level
;
3194 if (!mddev_is_clustered(mddev
))
3195 md_allow_write(mddev
);
3197 raid_disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
3199 if (raid_disks
< conf
->raid_disks
) {
3201 for (d
= 0; d
< conf
->raid_disks
; d
++)
3202 if (conf
->mirrors
[d
].rdev
)
3204 if (cnt
> raid_disks
)
3208 newpoolinfo
= kmalloc(sizeof(*newpoolinfo
), GFP_KERNEL
);
3211 newpoolinfo
->mddev
= mddev
;
3212 newpoolinfo
->raid_disks
= raid_disks
* 2;
3214 newpool
= mempool_create(NR_RAID1_BIOS
, r1bio_pool_alloc
,
3215 r1bio_pool_free
, newpoolinfo
);
3220 newmirrors
= kzalloc(sizeof(struct raid1_info
) * raid_disks
* 2,
3224 mempool_destroy(newpool
);
3228 freeze_array(conf
, 0);
3230 /* ok, everything is stopped */
3231 oldpool
= conf
->r1bio_pool
;
3232 conf
->r1bio_pool
= newpool
;
3234 for (d
= d2
= 0; d
< conf
->raid_disks
; d
++) {
3235 struct md_rdev
*rdev
= conf
->mirrors
[d
].rdev
;
3236 if (rdev
&& rdev
->raid_disk
!= d2
) {
3237 sysfs_unlink_rdev(mddev
, rdev
);
3238 rdev
->raid_disk
= d2
;
3239 sysfs_unlink_rdev(mddev
, rdev
);
3240 if (sysfs_link_rdev(mddev
, rdev
))
3241 pr_warn("md/raid1:%s: cannot register rd%d\n",
3242 mdname(mddev
), rdev
->raid_disk
);
3245 newmirrors
[d2
++].rdev
= rdev
;
3247 kfree(conf
->mirrors
);
3248 conf
->mirrors
= newmirrors
;
3249 kfree(conf
->poolinfo
);
3250 conf
->poolinfo
= newpoolinfo
;
3252 spin_lock_irqsave(&conf
->device_lock
, flags
);
3253 mddev
->degraded
+= (raid_disks
- conf
->raid_disks
);
3254 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3255 conf
->raid_disks
= mddev
->raid_disks
= raid_disks
;
3256 mddev
->delta_disks
= 0;
3258 unfreeze_array(conf
);
3260 set_bit(MD_RECOVERY_RECOVER
, &mddev
->recovery
);
3261 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3262 md_wakeup_thread(mddev
->thread
);
3264 mempool_destroy(oldpool
);
3268 static void raid1_quiesce(struct mddev
*mddev
, int quiesce
)
3270 struct r1conf
*conf
= mddev
->private;
3273 freeze_array(conf
, 0);
3275 unfreeze_array(conf
);
3278 static void *raid1_takeover(struct mddev
*mddev
)
3280 /* raid1 can take over:
3281 * raid5 with 2 devices, any layout or chunk size
3283 if (mddev
->level
== 5 && mddev
->raid_disks
== 2) {
3284 struct r1conf
*conf
;
3285 mddev
->new_level
= 1;
3286 mddev
->new_layout
= 0;
3287 mddev
->new_chunk_sectors
= 0;
3288 conf
= setup_conf(mddev
);
3289 if (!IS_ERR(conf
)) {
3290 /* Array must appear to be quiesced */
3291 conf
->array_frozen
= 1;
3292 mddev_clear_unsupported_flags(mddev
,
3293 UNSUPPORTED_MDDEV_FLAGS
);
3297 return ERR_PTR(-EINVAL
);
3300 static struct md_personality raid1_personality
=
3304 .owner
= THIS_MODULE
,
3305 .make_request
= raid1_make_request
,
3308 .status
= raid1_status
,
3309 .error_handler
= raid1_error
,
3310 .hot_add_disk
= raid1_add_disk
,
3311 .hot_remove_disk
= raid1_remove_disk
,
3312 .spare_active
= raid1_spare_active
,
3313 .sync_request
= raid1_sync_request
,
3314 .resize
= raid1_resize
,
3316 .check_reshape
= raid1_reshape
,
3317 .quiesce
= raid1_quiesce
,
3318 .takeover
= raid1_takeover
,
3319 .congested
= raid1_congested
,
3322 static int __init
raid_init(void)
3324 return register_md_personality(&raid1_personality
);
3327 static void raid_exit(void)
3329 unregister_md_personality(&raid1_personality
);
3332 module_init(raid_init
);
3333 module_exit(raid_exit
);
3334 MODULE_LICENSE("GPL");
3335 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3336 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3337 MODULE_ALIAS("md-raid1");
3338 MODULE_ALIAS("md-level-1");
3340 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);